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Abstract—This study introduces a sophisticated supervised
machine learning method for electric theft detection utilizing
a customized Histogram Gradient Boosting (HGB) algorithm.
Comprehensive preprocessing, including imputation, normaliza-
tion, outlier management, and resampling, ensures the time-
series data is accurately prepared for analysis. The SMOTE-ENN
algorithm corrects class imbalances, preparing the data for the
feature optimization stage, in which key features are selected
and extracted. The HGB algorithm, enhanced through Bayesian
optimization, is central to the training process, resulting in a
model that precisely classifies electricity consumption patterns as
genuine or fraudulent. The robustness of the model is evaluated
against other recognized boosting methods, such as Adaptive
Boosting (ADB), Gradient Boosting Decision Tree (GBDT), and
LightGBM, alongside various ensemble and traditional machine
learning models. Utilizing key performance metrics like accuracy,
F1 score, and AUC for validation, the proposed model yields very
promising results, with 93% accuracy, 95% F1 score, and 98%
AUC, outperforming the comparison group under similar dataset
and hyperparameter conditions. This underscores the model’s
potential as a highly accurate tool for combating electricity theft
within an advanced metering infrastructure (AMI).

Index Terms—Electricity Theft Detection, Class Balancing,
Feature Engineering, Boosting Algorithms, Advanced Metering
Infrastructure, Smart Grid.

I. INTRODUCTION

A. Background

As we move towards a future in which cutting-edge tech-
nology makes cities more connected and effective, the idea of
smart grids becomes increasingly important [1]. These grids,
enhanced with digital technology, are set to change the way
energy is used, managed, and distributed in tomorrow’s urban
landscapes. Nevertheless, the futuristic concept of intercon-
nected energy systems faces various obstacles, one of which
is the issue of technical and non-technical losses (NTL) [2].
Technical losses, inherent to every electrical system, result
from the dissipation of energy during the process of transmit-
ting and distributing it. The aforementioned losses, including
transformer losses, corona discharge, and resistance in wires,
can be reduced by the use of technological advancements
and improvements in the system [3]. NTL, which can result
from different irregularities such as energy theft, inaccuracies
in meter parameterization, installation problems, or defective
meters, provide a significant burden for power companies [4].
These losses not only lead to substantial decreases in revenue
but also introduce uncertainty into the functioning of the

power system by concealing true consumption patterns [5].
The mitigation of NTL is important to energy providers, as
these losses constitute a significant proportion (40-60%) of
the overall power losses [6].

Energy theft, central to NTL, poses a severe challenge to
the smart grid vision and the protection of the overall energy
infrastructure [7]. It has major financial consequences, with
estimated revenue losses of $96 billion annually, undermin-
ing the economic and operational stability of global energy
infrastructures. In the US alone, energy theft-driven NTL
costs amount to $9 billion. The issue is not isolated; Canada
reports losses of $100 million, the UK $234 million, and the
State Grid Corporation of China (SGCC) close to $1.8 billion
[8]. Illegitimate acts exceed mere financial implications. They
impact on energy management protocols, threaten equipment
integrity, and interrupt seamless power flow. When energy is
stolen, grids experience unexpected loads, posing challenges
in energy distribution and increasing risks of outages.

The advent of advanced metering infrastructure (AMI) has
facilitated the development of novel approaches to detect NTL.
This task was previously difficult due to the coarse granu-
larity of the data [6]. Utilities now have access to frequent
and precise measurements of energy consumption due to the
widespread deployment of smart meters. This granular data
provides greater insight into consumers’ behaviour, improving
the ability to identify irregularities [9]. The sheer scale of
data generation, 22 GB daily from approximately 2.2 million
smart meter users, demands robust solutions for storage and
new analytics. Although this wealth of data is crucial for
improving energy theft detection, customer service, and op-
erational efficiency, the path forward is laden with obstacles,
including ensuring data integrity, maintaining privacy, and
scaling systems to meet demand [10].

In addition to NTL, other fraudulent techniques pose sig-
nificant challenges to smart grid and smart metering applica-
tions [11]. These techniques include meter tampering, where
individuals physically interfere with meters to alter readings,
either by slowing down the meter or stopping it altogether.
Another common method is bypassing meters, where illegal
connections are made to the power supply ahead of the
meter, allowing consumption of electricity without recording
usage. Furthermore, false meter readings can be transmitted by
manipulating the data from the meter to report lower consump-
tion. These fraudulent activities undermine the integrity and
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reliability of smart grids, again leading to substantial financial
losses and operational disruptions.

AMIs raises critical privacy and security issues that need
to be addressed to protect consumer information [12]. Smart
meters collect detailed data on energy usage, which can
inadvertently reveal personal information, such as living habits
and occupancy patterns. For instance, detailed consumption
data can indicate when residents are home, their daily routines,
and appliance usage patterns, which can be misused if not
adequately protected. Additionally, energy usage patterns can
reveal when a home is occupied or vacant, posing security
risks if accessed by unauthorized parties. Ensuring the integrity
and confidentiality of data is required to maintain consumer
trust.

AMIs have significant implications for consumer house-
holds, offering both benefits and challenges. Smart meters
enable consumers to monitor their energy usage in real-time,
facilitating better energy management and cost savings. They
also support demand response programs, where consumers
can adjust their usage during peak times in response to
price signals, and improve billing accuracy by reducing errors
associated with manual readings [13]. However, there are
challenges, such as privacy concerns, the cost of implementing
and maintaining smart meters, and potential technical issues
related to installation and operation. Addressing these chal-
lenges through robust security measures, consumer education,
and support from utilities is essential for realizing the full
benefits of smart metering technology.

B. Related Works
NTL detection approaches diverge into theoretical,

hardware-based, and non-hardware-based methodologies
[14]–[16]. Theoretical methods correlate socio-economic
and demographic data to inform policy-making for NTL
mitigation [17]. Hardware-based strategies employ physical
devices like sensors and detection equipment to monitor
electrical parameters, triggering alerts upon tampering
attempts. However, these incur high costs for installation
and upkeep, limiting their utility for many power companies
[18]. Non-hardware-based methods, which avoid these
costs, bifurcate into game-theoretic and data-driven models
[19], [20]. Game-theoretic approaches frame detection as a
strategic interaction between utility providers and thieves, but
complexity in defining the roles and strategies of involved
parties hampers practical application [21]. Data-driven
methods, on the other hand, leverage consumer usage
data and are subdivided into unsupervised learning [22],
which clusters consumer profiles based on usage patterns,
and supervised learning [3], which relies on labeled data
to train algorithms to distinguish between legitimate and
fraudulent usage. The present article focuses on supervised
learning, which faces challenges such as managing missing
data, addressing class imbalance, feature selection, classifier
optimization, and model interpretation [23], [24].

Smart meter datasets are frequently plagued by inconsis-
tencies, with null values being a common occurrence. These

issues often arise from a range of factors, including equipment
malfunctions, errors in data estimation, ad hoc repairs, and
storage anomalies. Such data irregularities present substantial
challenges for machine learning classifiers tasked with identi-
fying consumption patterns. A critical review of 34 papers on
theft detection using supervised machine learning, as noted
in [25], reveals that a mere 50% have tackled the issue of
missing data, a nontrivial concern that can significantly skew
analytical outcomes. To address this, the literature suggests a
variety of data imputation methods. Among these, the most
prevalent practices remain the deletion of missing entries or
the substitution of null values with the mean of adjacent data
points, as documented in [26], [27]. While these methods
are straightforward and widely used, they are not without
drawbacks. Deletion can lead to a considerable loss of valuable
information, potentially biasing the results.

Class imbalance in labeled datasets significantly impedes
machine and deep learning models, often introducing a bias
towards the majority class and consequently neglecting crucial
minority classes, such as actual theft cases. Rectifying this
imbalance is imperative to maintain the efficacy and fairness
of data-driven models, especially in detecting NTL. Inam et al.
[28] and Gunturi and Sarkar [29] have employed the Synthetic
Minority Over-sampling Technique (SMOTE) to enhance mi-
nority class representation with a degree of success. However,
SMOTE’s tendency to randomly oversample can lead to model
overfitting and reduced generalizability. Conversely, Buzau et
al. [30] explored under-sampling, removing samples from the
majority class to achieve balance. While straightforward, such
techniques risk the loss of significant information, potentially
compromising the model’s accuracy.

Feature engineering is pivotal in supervised NTL detection,
yet existing literature often presents a piecemeal approach to
feature selection and extraction procedures. Studies like those
of Simona et al. [31] survey feature engineering methods
extensively but fall short of integrating selection with extrac-
tion, potentially limiting model performance. Razavi et al.
[24] explore Genetic Programming for feature construction,
but scalability remains a concern. The FRESH algorithm,
employed by Saddam et al. [32], effectively identifies rele-
vant features but may increase model complexity. Similarly,
Darshana et al. [33] use a gradient boosting-based Weighted
Feature Importance (WFI) model for feature elimination, risk-
ing the oversight of predictive feature interactions. Shoaib et
al. [34] introduce innovative feature engineering methods, yet
they often require extensive computational resources, raising
concerns about scalability and efficiency. Pamir et al. [35]
apply autoencoders for feature extraction from historical data,
trading off interpretability for sophistication. These studies,
while forward-moving, accentuate the necessity for a unified
approach that balances computational efficiency with the pre-
cision and interpretability of models.

Algorithm selection plays a crucial role in determining the
effectiveness of classification outcomes in NTL. In [36], the
authors apply metaheuristic approaches, specifically artificial
bee colony and genetic algorithms, paired with denoising au-



toencoders, to enhance feature selection, with Support Vector
Machine (SVM) as the classifier. While this model achieved an
AUC of 90% when applied to an SGCC electricity consump-
tion dataset, it incurred high computational costs, particularly
due to the extensive tuning required for SVM hyperparameters,
such as the cost penalty (C), loss function parameter (ϵ),
and kernel parameter (γ). Another notable approach employed
a supervised Categorical Boosting (CatBoost) model with
SMOTE-Tomek resampling for NTL detection on the SGCC
dataset [32]. This method demonstrated strong performance
across multiple metrics (e.g., 93% accuracy, 0.87 MCC) but
did not include AUC evaluation, a critical metric for highly im-
balanced datasets. Additionally, CatBoost’s ordered boosting,
though effective in reducing overfitting, added computational
demands, resulting in slower training.

Researchers have also investigated other classifiers, includ-
ing Decision Trees (DT) [37], Random Forest (RF) [38], and
Gradient Boosting Decision Trees (GBDT) [39], to achieve
optimal classification results. However, conventional data-
driven approaches often face significant challenges, such as
overfitting, where models perform well on training data but
struggle to generalize effectively to unseen data. Furthermore,
the high dimensionality of these datasets introduces additional
computational complexity, potentially leading to the curse
of dimensionality and impairing model performance. The
constantly evolving nature of electricity theft tactics further
necessitates ongoing updates and refinements in detection
algorithms to maintain effectiveness.

C. Contributions
This article concerns a supervised learning scenario for

the analysis of time-series electricity consumption data. The
proposed approach is applied to the SGCC daily consumption
dataset alluded to above. These data are tagged with labels
denoting normal or abnormal usage, and are available to re-
searchers following prior work by [19]. The labels are derived
from expert analysis and historical instances of confirmed
electricity theft, hence serve as a foundation for the training
and evaluation of new models and algorithms. Fig. 1 shows the
consumption patterns for an illustrative honest and dishonest
consumer [19]. Typically, as in Fig. 1, honest consumers
exhibit a lower, more stable consumption pattern.

We propose a sequential framework anchored by the His-
togram Gradient Boosting (HGB) algorithm. HGB iteratively
refines decision trees, with each iteration designed to amelio-
rate the errors of its forerunner. Its innovative binning strategy
divides feature values into discrete bins, which not only aids
in accurately capturing the data distributions but also enhances
computational speed. Although HGB is a promising approach,
the following challenges must be addressed:

• Sensitivity to Noisy Data: Despite its ability to handle a
wide range of data, HGB’s architecture is susceptible to
data noise. Its iterative refining method, which is intended
to gradually enhance the system, might accidentally in-
crease the impact of noise and outliers. As a result, this
could lead to inaccurate prediction outcomes. Although

error correction procedures are intended to refine pre-
dictions, they can occasionally amplify the anomalies
inherent in noisy datasets.

• Complexity in High-Dimensional Data: The binning
process of HGB is designed to handle continuous features
efficiently. However, the model faces interpretability is-
sues when deals high-dimensional data. With an increase
in feature dimensionality, the number of corresponding
bins increases. This can veil the relationships between
features and their predictive impacts, complicating the
model’s interpretability for classification problems.

• Class Imbalance Challenge: The HGB algorithm’s learn-
ing ability is compromised in situations when training
data has a high-class imbalance issue. A disproportionate
data class distribution can bias the algorithm towards
the majority class (honest) instances, diminishing its
efficacy in learning and identifying patterns pertinent to
the minority class (theft) instances. The trained models
may perform well on the training data but falter on new
data, neglecting the nuances of minority classes.

To address these issues, the present work introduces a com-
prehensive, sequential framework designed to detect electricity
theft within large-scale datasets. This framework is based on
three components: data preprocessing, feature engineering, and
optimized classification, as summarized in Fig. 2. During the
initial phase of data preprocessing, we employ a suite of
algorithms that preserve the temporal integrity of the data. The
feature engineering process is designed to select those features
that are relevant to the temporal order of the data points and
for dimensionality reduction of the electricity consumption
record. The aim is to simplify the dataset by reducing the
number of features while still retaining the important time-
related information that could affect electricity consumption
fluctuations over time. This systematic preparation sets the
stage for the application of a boosting classifier.

The main contributions of this paper are summarised below:

1) We present an integrated electricity theft detection frame-
work to make accurate data-driven predictions in smart
grids. To our knowledge, this is the first time data pre-
processing, feature selection, extraction and classification
are all integrated in this manner for the studied problem.

2) The preprocessing stage employs data imputation tech-
niques to rectify missing values, followed by robust scalar
and quantile transformer algorithms for dataset standard-
ization. We harness the SelectKBest (SKB) algorithm
to identify and select key features with high predictive
performance. To contend with the high dimensionality,
Principal Component Analysis (PCA) is utilized to main-
tain data tractability while preserving its intrinsic infor-
mational richness. For a balanced representation of both
minority and majority instances, we adopt the SMOTE-
Edited Nearest Neighbors (SMOTE-ENN). At the core of
the proposed methodology is the HGB classifier. HGB
performance is further improved with hyperparameter
tuning using Bayesian optimisation.
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Fig. 1: Daily Electricity Consumption for an illustrative
Honest and Theft Consumer (Data source: State Grid
Corporation of China (SGCC) electricity consumption

records, 2015-2019)

3) The framework’s effectiveness is showcased through sev-
eral experiments with real-world grid data. Numerical
results suggest that our proposal has superior performance
when compared to other state-of-the-art methods.

The structure of this paper as follows: Section II describes
the proposed methodology, beginning with data preprocessing,
advancing through feature engineering, and culminating with
classification. Section III presents empirical results and the
subsequent analysis. Finally, Section IV discusses key find-
ings, wider implications and potential applications.

II. PROPOSED METHODOLOGY

Algorithm 1 and Fig. 2 illustrates the architecture of our
NTL detection framework, iHGB, which is structured into
three key phases: initial data pre-processing, detailed feature
engineering, and integrated models training and testing, fol-
lowed by interpretation.

A. Data Preprocessing

This phase is segmented into the following tasks: handling
missing data, data distribution transformation for optimum
representation, data scaling and data resampling to ensure its
congruence with analytical requirements.

1) Handling Missing Data: Our preprocessing approach
addresses the missing data within the original SGCC dataset,
where such gaps account for 25% of the information. We
implement a straightforward imputer strategy [5]. This method
involves the integration of the mean values of existing data, for
a given consumer, into the places where ‘NaN’ (Not a Number)
entries occur, thus ensuring data continuity and integrity:

x̂i =
1

n

n∑
j=1

xj (1)

Here, x̂i symbolizes the inferred value for the absent datum
i, with xj denoting the observed value at datum point j, and
n indicating the aggregate of observed data points.

2) Mitigating Outliers: Following interpolation, we em-
ploy a robust scaler for data normalization. This scaler effec-
tively mitigates distortions caused by outliers by utilizing the
interquartile range, thus providing greater resilience against
outliers compared to methods based on mean and variance
[40]. The transformation of the data value xi to its scaled
counterpart x̂i is as follows:

x̂i =
xi −Q1(x)

Q3(x)−Q1(x)
(2)

Within this formulation, Q1(x) and Q3(x) stand for the first
and third quartiles of attribute x, respectively.

3) Data Scaling: Our preprocessing pipeline includes data
scaling using a quantile transformation (QT) [41], which nor-
malizes the distribution of the data to approximate a Gaussian
distribution, facilitating compatibility with subsequent classi-
fication algorithms. This transformation corrects for skewness
and kurtosis, potentially improving classifier accuracy. The
transformation for a given data point xi in feature x is
mathematically expressed as:

x̂i = Q

(
rank(xi)− 0.5

n

)
(3)

Here, rank(xi) is the rank of xi when the data are sorted in as-
cending order, n is the number of data points for the consumer
in question, and Q is the quantile function derived from the
Gaussian distribution. The transformed value x̂i replaces the
original xi in the scaled dataset. Fig. 3a illustrates the original
scaled data across all consumers, while 3b demonstrates the
data post-quantile transformation, showcasing the uniformity
in scale and distribution achieved across features.

B. Data Resampling
Imbalanced datasets can skew machine learning models,

impairing their ability to predict minority class outcomes.
To mitigate this, we apply the SMOTE-ENN technique, en-
hancing the traditional SMOTE algorithm’s synthetic sample
generation by integrating Edited Nearest Neighbors (ENN)
for refinement [42]. This hybrid approach not only augments
the minority class with interpolated instances but also prunes
samples that could blur the classification boundaries.

For the SGCC dataset, characterized by a class imbalance
ratio of |Ch| : |Cd| = 0.91n : 0.09n, the SMOTE-ENN
process begins by generating synthetic instances xnew from
each minority class instance x and its k nearest neighbors
xneighbor, using the equation:

xnew = x+ λ× (xneighbor − x) (4)

where λ is a random number between 0 and 1.
Following SMOTE, ENN identifies and removes synthetic

instances that are too close to the majority class boundary,
based on the majority class neighbor fraction (p):

xremove =

{
x if p > 0.5

retain otherwise
(5)
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The efficacy of the proposed resampling technique and its
contribution to the overall accuracy of our model is further
discussed in Section III, which considers the empirical results
and their implications for the SGCC dataset.

C. Feature Engineering
Feature engineering process plays a critical role in increas-

ing the effectiveness of predictive models. This process of
selecting, modifying, and creating features from raw data is
vital for disclosing significant insights that might otherwise
remain unnoticed [23]. By refining the input data through
feature engineering, predictive models can focus on relevant
information, resulting in more accurate and reliable predic-
tions. It not only reduces data dimensionality, which reduces
computational needs, but also helps in avoiding overfitting to
improve model generalizability. In essence, feature engineer-
ing is crucial in transforming data into useful information, a

Algorithm 1 iHGB-Based Approach for NTL Identification
Input: Dataset D with features xi and binary labels yi.
Output: Optimized HGB Model M.
1: Split D into Dtrain and Dtest (80% : 20%).
2: Impute missing values in Dtrain and Dtest.
3: Standardize Dtrain and Dtest with RS and QT.
4: Feature selection on Dtrain using SKB for set F .
5: Apply PCA on Dtrain for dimensionality reduction to
FPCA.
6: Balance Dtrain with SMOTE-ENN for dataset D∗

train.
7: Define hyperparameter space for HGB.
8: Perform random search to find the optimal hyperparameters:

• Define the number of iterations N for random search.
• For each iteration, sample a set of hyperparameters.
• Train HGB on D∗

train with current hyperparameters.
• Evaluate performance on a validation set.
• Keep track of the best performing hyperparameters.

9: Train HGB on D∗
train with the best hyperparameters from

random search.
10: Test M on Dtest and compare with ADB, GB, LGB.
11: Deploy M if it outperforms others.

critical step that heavily influences the success of the predictive
task.

1) Feature Selection: The SKB algorithm is used to de-
termine the most statistically important features for the binary
classification problem of detecting electricity theft [34]. SKB



operates on a univariate basis, evaluating each feature indepen-
dently using a preset statistical test and maintaining just the
top k features that are most relevant to the target variables.
The scoring function fclassif computes the F-value from the
analysis of variance (ANOVA) given the binary nature of given
task. This F-value reflects how important the feature is to the
predictive model. The F-value for each feature is calculated
using the formula:

f = (n− 2)
r2i

1− r2i
(6)

where f represents the computed F-value, n is the total number
of samples, and ri is the Pearson correlation coefficient
between the i-th feature and the target variable. The correlation
coefficient ri is determined by the following equation:

r =

∑
(xi − xi)(y − y)√∑

(xi − xi)2
√∑

(y − y)2
(7)

In this context, xi and xi denote the i-th feature vector and its
mean, y and y represent the target variable and its mean. The
selection of k is critical and is typically determined through
cross-validation to optimize the model’s performance.

2) Feature Extraction: After performing feature selection,
we apply PCA on selected features to reduce the dimen-
sionality of the data [43]. PCA is a statistical method that
uses orthogonal transformation to convert a set of possibly
correlated observations into a set of linearly uncorrelated
values known as principal components. The initial step in PCA
is to construct the covariance matrix C from the mean-centred
data matrix X , which is given by:

C =
1

N − 1
XTX (8)

where N is the number of observations in the dataset. The
eigen decomposition of the covariance matrix C is performed
to obtain the eigenvalues λ and the corresponding eigenvectors
v, which define the principal components. These components
are the directions in the feature space along which the data
varies the most. Once the principal components are deter-
mined, the dataset can be projected onto the subspace spanned
by these components. The reduced dataset Y is obtained by:

Y = XVk (9)

where Vk is the matrix containing the first k eigenvectors
corresponding to the largest k eigenvalues. The number of
principal components retained, k, is chosen based on the cu-
mulative explained variance, which measures the total variance
captured by the first k components. We retain 10 components
to ensure that a substantial amount of the original variance is
preserved, thereby maintaining the dataset’s intrinsic structure,
while also reducing the computational load, which is crucial
for the scalability and speed of subsequent analyses.

D. Classifier Adjustment
Post two-stage feature selection and extraction procedures,

the superfluous and duplicative features have been effectively

filtered out. This section describes our proposed algorithm to
perform the final classification task on the processed data. We
employ the HGB algorithm, which is an advanced variant of
traditional GBDT, and is known to be robust and efficient
for predictive modelling challenges within large datasets. The
algorithm leverages histograms and optimised data structures
to improve computational speed and predictive adeptness [44].
In this section, we investigate the formulated classification
problem and Bayesian optimization technique to fine-tune
HGB hyperparameters.

1) Problem Formulation: The HGB model employs a
sophisticated ensemble of decision trees to make binary pre-
dictions with high accuracy. The effect of each tree on the
final prediction for a sample xi is described by the equation:

f(xi; Θ) =

K∑
k=1

θkhk(xi) (10)

where θk denotes the weight, and hk(xi) is the corresponding
prediction of the kth tree for sample xi. The model’s predictive
performance is evaluated using the binary cross-entropy loss
function, which access the difference between real labels and
the predicted probabilities using:

L(yi, ŷi) = −[yi log(ŷi) + (1− yi) log(1− ŷi)] (11)

where yi represents the actual label, and ŷi, derived from
f(xi; Θ), denotes the predicted probability of the sample
belonging to class 1. The primary objective of the HGB
model is to minimize this loss function, optimizing the ensem-
ble weights Θ for better predictive performance. To achieve
this with greater computational efficiency, the model adopts
a histogram-based strategy for processing continuous input
features:

Xhist = H(x, y) = [Hij ] (12)

with Hij representing the number of observations for feature j
within bin i. Throughout the training phase, the HGB model
applies a methodical gradient-based optimization technique.
At each iteration t, it computes the negative gradient of the
loss function with respect to the predicted probabilities. This
computation directs the construction of a new decision tree:

Gi,t = −
(
∂L(yi, ŷi)

∂ŷi

)
(13)

which subsequently identifies the optimal regions in the feature
space for the tree ht to learn from:

ht(x) = argmin
R

∑
i:xi∈R

Gi,t (14)

The model updates its predictions by integrating the new tree’s
output, modulated by a learning rate λ, into the preceding
predictions:

ŷi,t+1 = ŷi,t + λht(xi) (15)

In the final step of the iteration, the ensemble weights Θ are
refined via a gradient descent method to decrease the loss
further, adhering to the update formula:

Θt+1 = Θt − η · ∇ΘL (16)



TABLE I: Optimized HGB Hyperparameters

Hyperparameter Tested Range Optimal Value
Learning Rate 0.01 to 0.1 0.04
Max Leaf Nodes 1 to 50 3
Max Depth 1 to 15 3
Min Samples Leaf 1 to 5 2

Fig. 4: Hyperparameter Correlation and Model Performance

where Θt+1 denotes the newly adjusted weights, Θt the
weights from the previous iteration, η the learning rate of the
gradient descent, and ∇ΘL the gradient of the loss function
relative to the weights. This iterative enhancement of decision
trees and ensemble weights persists until the model reaches
an optimal parameter configuration or fulfils a predetermined
iteration count.

2) Optimal Classification: To optimize the performance
of the proposed model, Bayesian optimization was applied,
targeting an enhancement in the ROC AUC score [45].
The procedure is initiated by establishing a hyperparameter
search space that includes key parameters such as learning
rate, maximum leaf nodes, maximum depth, and minimum
samples per leaf [28]. Employing the Tree-structured Parzen
Estimator method, the optimization is executed over 100
iterations, navigating the trade-off between the exploration of
new parameter regions and the exploitation of those known
to yield positive outcomes. The culmination of this process

TABLE II: Consumer Statistics from SGCC Data Collection

Dataset Information Description

Data collection time frame 01-01-2014 to 31-10-2016
Total Consumers 42,472
Normal Users 38,757
Abnormal Consumers 3,615
Missing data samples 25%
Percentage of Normal Users 91.38%
Percentage of Abnormal Consumers 8.62%
Dataset file size 167 MB
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is the identification of an optimal set of hyperparameters,
subsequently used to train an advanced version of the HGB
model on both the untouched and the resampled datasets. This
approach not only boosts the model’s accuracy but also affords
a deeper understanding of hyperparameter influence, aiding
in the mitigation of overfitting and improving the model’s
ability to generalize. The selected hyperparameters, along with
their respective ranges and the determined optimal values, are
detailed in Table I.

The synergy between hyperparameters and their impact
on model performance is depicted in the correlation matrix
presented in Fig. 4. The Learning Rate (LR) exhibits a
low positive correlation with Max Depth (MD) and minimal
negative correlation with Max Leaf Nodes (MLN), suggesting
a rather subdued effect on the overall model score. In contrast,
MD displays a notable positive correlation with both MLN and
the model score, indicating its pivotal role in boosting model
performance. Similarly, MLN, despite marginal correlation
with Min Samples Leaf (MSL), has a considerable positive
influence on the model score, underscoring its importance
in the model’s predictive success. MLN shows a modest
correlation with the score, hence also contributes to the fine-
tuning process.
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III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

Our analysis utilizes the SGCC’s labeled dataset of daily
electricity consumption for 42,372 consumers from January
2014 to October 2016, as detailed in Table II. On-site in-
spections verified consumer classifications, with 38,757 as
honest and 3,615 as dishonest. For model validation, we
utilized stratified sampling with a random seed to divide the
dataset into an 80% training set and a 20% testing set, whilst
preserving the original distribution of consumer classifications.
This stratification, coupled with the inherent randomness of
the sampling, guarantees that our model is trained on a repre-
sentative and unbiased subset of the data, thereby ensuring a
robust evaluation against unseen data. The setup, executed on
Google Collaboratory, powered by a MAC i7 processor and
16GB RAM, leveraged a simulator consistent with the system
framework described in Section II.

B. Performance Results

1) Impact of Data Resampling: In this subsection, we
compare classification outcomes using two different ap-
proaches: without any resampling and with the application of
the SMOTE-ENN resampling technique. Figures 5a and 5b
demonstrate the distribution of minority and majority classes
before and after applying SMOTE-ENN to address imbalanced
data. As shown in Fig. 5a, the dominance of the majority class
(represented as blue circles) leads to a classifier bias, favoring
negative samples. This results in a high True Negative (TN)
rate of 90.54%, but also a concerning high False Negative
(FN) rate of 7.89% and a low True Positive (TP) rate of
1.55%, as shown via the Confusion Matrix (CM) in Fig. 6a.
In the context of ETD, such a high FN rate, which incorrectly
classifies fraudulent users as legitimate, poses a significant
problem. To mitigate this issue, we employ the SMOTE-ENN
technique, which is demonstrated to be effective in Fig. 5b.
This method balances the distribution of data, enhancing the
model’s training and its ability to generalize well on test data.
The resultant improvement in model performance, after the
application of SMOTE-ENN, is depicted in the CM shown
in Fig. 6b. Here, the enhanced balance in data distribution
contributes to a more accurate identification of fraudulent
behavior, reducing the FN rate and increasing the overall
reliability of the ETD system.

2) Impact of Feature Engineering: Feature engineering
plays a pivotal role in improving anomaly detection for
electricity theft within the SGCC dataset. We employ the Se-
lectKBest algorithm with ANOVA-F values to systematically
prioritize features (i.e. electricity consumption data points),
as illustrated in Fig. 7. By setting k = 10, we identify the
most influential features, which exhibit a balanced importance
distribution: sample 766 (10.5%), 1009 (10.1%), 767 (10.0%),
785 (10.0%), 764 (10.0%), 765 (10.0%), 1010 (10.0%), 784
(9.8%), 763 (9.8%), and 782 (9.8%). This near-uniform distri-
bution (9.8–10.5%) highlights the temporal diversity of theft
behaviors in the SGCC dataset. Fraudulent consumers dis-
tribute manipulations across different time windows, prevent-
ing detection through single temporal patterns. Consequently,
multiple time-series features exhibit comparable discriminative
power. This observation justifies the application of dimen-
sionality reduction, as these features likely contain subtle
temporal correlations that can be effectively captured in a
reduced-dimensional space. To address this, PCA was applied,
condensing the feature set while retaining essential variance, as
demonstrated in Fig. 8. Iterative analysis of different k values
reveales a trade-off: while increasing the number of features
improves model accuracy, it significantly increases computa-
tional complexity. PCA mitigates this trade-off by preserving
discriminative information in a more compact representation,
enabling efficient processing without compromising predictive
performance.

Table III shows the performance evaluation of the proposed
algorithm with different preprocessing steps. It shows that
feature engineering notably improves the execution time of
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Framework C by 25% compared to Framework B, albeit with a
marginal decrease in accuracy (Frameworks A–E are discussed
later). This trade-off underscores the balance required in ma-
chine learning between computational efficiency and predictive
integrity, especially in real-time anomaly detection scenarios.

3) Comparison Among Benchmark Algorithms: We com-
pare HGB and the proposed iHGB performance with var-
ious machine learning classifiers, including SVM, RF, LR
and DT, together with three other well performing ensemble
classifiers, using the key performance metrics of accuracy, F1-
score, AUC, and execution time. Figs. 9 and 10 illustrate the
results for machine learning algorithms and ensemble strate-
gies, respectively. Table III illustrates a detailed performance
comparison, where iHGB emerges with the lead across all the
performance metrics. Notably, iHGB’s accuracy peaks at 97%,
coupled with an F1-score of 96%, a testament to its precision
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Fig. 12: Hybrid Model Learning Curves Comparison

and recall balance. Moreover, an AUC of 98% underscores its
discriminative power in segregating between both classes.

These substantial gains in performance do not come at the
expense of efficiency, as evidenced by a reasonable execution
time of 40 seconds. Given that the iHGB model takes 40
seconds to complete training on the 12,458 samples in our
training dataset, the per-sample execution time is approxi-
mately 0.0032 seconds per sample. This is particularly notable
when compared to traditional models such as SVM and DT,
which, despite lower performance metrics, exhibit comparable
execution times of 77 and 31 seconds, respectively. The sub-
stantial margin by which iHGB outperforms its counterparts,
ADB, XGB [4], GBM, and LGB, reinforces the impact of
Bayesian Optimization on model efficacy. This optimization
approach has fine-tuned iHGB to a level of performance that



TABLE III: Performance Evaluation of the Proposed Algorithm with Different Preprocessing Steps

Techniques Framework Accuracy F1-Score AUC Time (Sec)

Original Data + HGB A 0.522 0.532 0.591 18
Data Preprocessing (DP) + HGB B 0.792 0.740 0.821 20
DP + Feature Engineering (FE) + HGB C 0.701 0.739 0.754 15
DP + FE + Data Balancing (DB) + HGB D 0.881 0.820 0.892 44
DP + FE + DB + iHGB E 0.970 0.962 0.981 93

TABLE IV: Performance Comparison of Different
Algorithms

Algorithms Accuracy F1-Score AUC Time (Sec)

LGB [32] 0.64 0.78 0.80 7
SVM [36] 0.67 0.66 0.78 77
LR 0.62 0.69 0.76 30
DT 0.68 0.72 0.79 31
RF 0.65 0.69 0.77 14
ADB 0.71 0.78 0.79 06
GBM 0.74 0.80 0.80 32
XGB [4] 0.81 0.84 0.87 17
HGB 0.82 0.87 0.89 13
iHGB 0.95 0.96 0.98 40
ANN 0.68 0.74 0.82 157
LSTM 0.64 0.72 0.71 322
CNN 0.79 0.77 0.85 290
CNN-LSTM 0.89 0.89 0.92 262
ConvLSTM [8] 0.90 0.92 0.95 369
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Fig. 13: Robustness Comparison for iHGB and Benchmark
Frameworks to Data Noise Conditions

arguably sets a new benchmark within the domain, particularly
in the context of electrical consumption pattern analysis.

4) iHGB Performance Comparison with Deep Learning
Models: In this empirical investigation, we present a rigorous
comparative analysis of various deep learning architectures,
and our proposed iHGB model. The evaluation metrics include
accuracy, F1-score, AUC, and computational efficiency, as
detailed in Table IV and visualized in Fig. 11

The experimental results demonstrate the hierarchical per-
formance patterns across different architectural paradigms.
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Hybrid architectures, specifically CNN-LSTM and ConvL-
STM [8], exhibit superior predictive capabilities compared to
standalone models, achieving accuracy rates of 89% and 90%
respectively. These architectures leverage both spatial and tem-
poral feature extraction mechanisms, resulting in enhanced dis-
criminative power. As illustrated in Fig. 12, the learning curves
for both hybrid models reveal significant convergence limita-
tions. After 20 epochs, performance plateaus at approximately
92% accuracy, demonstrating clear difficulty achieving optimal
convergence - a threshold that our proposed iHGB model
successfully surpasses. The CNN-LSTM architecture exhibits
particularly inconsistent behavior with notable performance
fluctuations, while the ConvLSTM shows more stable but
ultimately constrained learning progression. The conventional
deep learning models show varying degrees of effectiveness:
CNN achieves 79% accuracy with an AUC of 0.85, while
LSTM and ANN demonstrate more modest performance (64%
and 68% accuracy respectively). This performance disparity,
clearly visible in the comparative analysis shown in Fig. 11,
highlights the limitations of single-architecture approaches in
capturing complex data patterns.

Notably, our proposed iHGB model demonstrates improved
performance metrics, achieving 95% accuracy and 0.98 AUC
score, surpassing the predictive power of hybrid architectures.
The superior performance of iHGB is particularly signif-
icant given that hybrid models, despite their architectural
sophistication and extended training periods, still fall short of
matching iHGB’s predictive capabilities, as evidenced by the
performance metrics visualized in Fig. 11. A critical advantage



TABLE V: Performance of Classifiers at Different Training Ratios

Classifiers Training Ratio = 50% Training Ratio = 60% Training Ratio = 70%

Accuracy F1-Score AUC Accuracy F1-Score AUC Accuracy F1-Score AUC

RF 0.64 0.78 0.68 0.64 0.78 0.63 0.64 0.78 0.67
DT 0.68 0.79 0.72 0.68 0.79 0.71 0.68 0.79 0.71
LR 0.64 0.76 0.69 0.64 0.76 0.68 0.64 0.76 0.68
SVM 0.71 0.79 0.75 0.71 0.79 0.75 0.72 0.79 0.75
XGB [4] 0.74 0.76 0.78 0.78 0.79 0.80 0.80 0.82 0.83
HGB 0.79 0.84 0.86 0.79 0.85 0.87 0.80 0.85 0.87
ConvLSTM [8] 0.78 0.77 0.80 0.85 0.85 0.84 0.89 0.90 0.90
iHGB 0.87 0.90 0.90 0.88 0.92 0.93 0.94 0.94 0.95

of iHGB lies in its computational efficiency. While hybrid
models require substantial computational resources (CNN-
LSTM: 262s, ConvLSTM: 369s), iHGB achieves superior
performance in merely 40 seconds, as demonstrated in Ta-
ble IV. This optimization in computational overhead, coupled
with enhanced predictive accuracy, positions iHGB as an ideal
solution for real-time applications requiring both precision and
efficiency.

For comprehensive architectural details of hybrid models
and their implementations, readers are directed to Refer-
ence [8]. The empirical evidence suggests that while hybrid
deep learning models offer robust performance, iHGB provides
a more efficient and accurate alternative, making it particularly
suitable for practical applications demanding both computa-
tional efficiency and high predictive accuracy.

5) iHGB Robustness Compared with Benchmark Algo-
rithms: The robustness of the iHGB model is compared
with two of the benchmark algorithms, namely GBDT and
SVM. The evaluation was conducted using two different
noise introduction methods. Firstly, random noise is added to
each feature individually to simulate errors typically caused
by malfunctioning sensors. The average accuracy of each
algorithm under these conditions is depicted by solid traces in
Fig. 13. Secondly, random noise was added globally to selected
data points across multiple features to mimic transmission
errors in critical environments, with the results shown by
dashed traces in Fig. 13. These results suggest that the iHGB
model could exhibit superior robustness compared to the
benchmark algorithms. The impact of feature-specific noise
on the iHGB model’s accuracy is minimal, indicating that
the model effectively filters out less important features during
the selection and extraction process. Furthermore, the iHGB
framework shows enhanced resilience to global noise, main-
taining high accuracy even when multiple features are affected.
This robustness can be attributed to the tuned hyperparameters
and the model’s ability to mitigate the influence of noisy
features, validating the iHGB model’s effectiveness for real-
world applications where data integrity may be compromised.

6) iHGB Scalable Theft Detection Comparative Perfor-
mance Analysis: To ascertain the efficacy of the iHGB al-
gorithm, we performed the comparative analyses summarized
in Table IV and Fig. 14. These help to corroborate iHGB’s
enhanced accuracy in detecting theft over the benchmarks.
This comparative evaluation across frameworks A through

D and our proposed system E confirms that each integrated
module in our design contributes to the heightened accuracy
of theft detection. The iHGB algorithm, through the reduction
of irrelevant and redundant features, coupled with the fine-
tuning of hyperparameters via Bayesian Optimization, ensures
elevated accuracy in identifying instances of electricity theft.

Finally, we explore the scalability of our framework by
varying the sizes of the training subsets and monitoring the
resultant average accuracy, as tabulated in Table V. The iHGB
algorithm consistently outshines the benchmarks, achieving
AUC scores of 94.2%, 95.1%, and 95.7%, with training subsets
of 50%, 60%, and 70%, respectively, thus surpassing the
standard HGB and other models. Our framework demonstrates
greater scalability in comparison to the five benchmarks. No-
tably, the size of the training subset exerts minimal influence
on the accuracy of our model, attributable to the discarding of
non-essential features during the feature selection and extrac-
tion phases, enhancing the model’s efficiency and predictive
performance.

IV. CONCLUSIONS
This article has presented a robust NTL detection frame-

work, anchored by a novel application of HGB. Data defi-
ciencies and imbalances are addressed first, thereby laying
the groundwork for precise data analysis. The application of
SMOTE-ENN effectively normalizes data distribution, while
SKB and PCA refine the feature selection process, enhancing
the classifier’s performance and efficiency. Central to the
study’s success is the deployment of the HGB algorithm,
which differentiates between legitimate and fraudulent en-
ergy use. This system’s precision is improved by Bayesian
optimization, which fine-tunes the model to prevent overfit-
ting and ensure broader applicability. Benchmarked against
contemporary models, the new framework surpasses standard
performance metrics, achieving 93.4% accuracy, a 96% F1
score, and a 98% AUC.

In future research, we aim to assess the potential of
unsupervised methodologies, with an emphasis on deep
learning techniques, to enhance the precision of NTL
detection. The motivation behind this direction is the prospect
of uncovering latent correlations within the dataset that might
be elusive to traditional approaches.
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