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Abstract

We empirically evaluate variance-covariance (VCV) estimators for equity portfolio construction and challenge

traditional validation methods based on unconstrained global minimum-variance (GMV) portfolios. While

traditional methods support using shrinkage and modeling covariance dynamics, the resulting portfolios are

often impractical due to high leverage, concentration, and costs. By examining more realistic constrained

GMV and risk parity portfolios, we find a significantly reduced opportunity for alternative VCV estimators

to outperform the sample estimator. Asset weight constraints provide implicit shrinkage, making further

explicit shrinkage largely unnecessary. However, accounting for time-series dynamics in asset returns remains

statistically relevant for volatility reduction. We propose using a weight-constrained, long-only GMV portfolio

with transaction cost penalties as a more suitable test portfolio for the practical evaluation of VCV estimators.

Our findings emphasize the importance of considering both statistical robustness and practical implementation

when selecting VCV estimators for portfolio management.
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1. Introduction

The key ingredient to equity portfolio construction is the variance-covariance (VCV)

matrix of asset returns. The natural candidate to use is the sample covariance matrix;

however, this estimator is prone to error and not suitable when the number of assets under

consideration is large (Clarke, De Silva and Thorley, 2006; Lee, 2011; Ardia, Bolliger, Boudt

and Gagnon-Fleury, 2017; Jurczenko and Teiletche, 2018). A rich literature proposes many

alternative VCV estimators to address these limitations. These estimators are typically

evaluated empirically using the ex post volatility of Markowitz’s (1952) global minimum-

variance (GMV) portfolio.1 Except for a long-only constraint, studies proposing new VCV

estimators rarely impose additional constraints on the GMV test portfolio, making the

resulting portfolios unrealistic to implement in practice due to high leverage, concentration,

turnover, and transaction costs.2 We explore recent enhancements in VCV matrix estimation

in equity universes from a practitioner’s perspective across a range of risk-based portfolios,

including constrained GMV and risk parity portfolios. We challenge the use of the ex post

volatility of the unconstrained GMV portfolio as the primary empirical evaluation criteria

for the performance of VCV estimators. Instead, we propose the use of a more realistic

weight-constrained long-only GMV portfolio with transaction cost penalties and to consult

additional performance measures to assess the practical relevance.

Using the 500 largest U.S. stocks from January 1990 to December 2021, we empirically

evaluate a selection of VCV matrix estimators across various risk-based portfolio construction

methods. The key performance metric for VCV matrix estimators is the ex post volatility of

the test portfolios. The ex post evaluation metric should be aligned with the ex ante objective,

which for the risk-based portfolios is minimizing portfolio volatility (Lee, 2011; Engle et al.,

2019). In addition, we investigate portfolio characteristics beyond ex post volatility to verify

whether these portfolios are realistic to hold in practice. We evaluate their risk-adjusted

returns, asset weight concentration, portfolio turnover, transaction costs, and factor exposures,

1This is predicated on the out-of-sample properties of these portfolios which has been established in prior
research (Haugen and Baker, 1991; Jagannathan and Ma, 2003).

2Some recent examples are Engle, Ledoit and Wolf (2019), Trućıos, Zevallos, Hotta and Santos (2019), Conlon,
Cotter and Kynigakis (2021), De Nard, Ledoit and Wolf (2021), and De Nard, Engle, Ledoit and Wolf
(2022).
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characteristics that are commonly ignored in the portfolio management literature (Lesmond,

Schill and Zhou, 2004; Frazzini, Israel and Moskowitz, 2012; Novy-Marx and Velikov, 2016).

An evaluation metric we do not consider is the consistency of the VCV estimators. While this

metric is widely used in the literature to evaluate VCVs (see, e.g., Fan, Liao and Mincheva

(2013); Ledoit and Wolf (2004b, 2022a); Caner, Medeiros and Vasconcelos (2023)), it needs

to be determined using simulations and may not significantly affect performance in practice

(Engle et al., 2019; Ledoit and Wolf, 2024).

Our selection of VCV estimators consists of both traditional and state-of-the-art VCV

estimators focusing on three key design choices: (i) shrinkage, (ii) time-dynamics, and (iii)

factor structure. Combining these elements results in estimators with varying degrees of

complexity. We first investigate the linear (LS) and nonlinear (NLS) shrinkage estimators of

Ledoit and Wolf (2004b, 2024). Next, we account for dynamic time-series dependence in asset

returns using the dynamic conditional correlation (DCC) model of Engle (2002) combined

with nonlinear shrinkage methods (denoted DCC-NLS), following Engle et al. (2019) and the

RiskMetrics (RM) approach (RiskMetrics, 1996) using an exponentially weighted moving

average scheme. Finally, we impose two different factor structures to model the VCV matrix

of a large number of assets assuming a small number of driving risk factors.

We construct a set of GMV and risk parity test portfolios to evaluate the VCVs. Specifi-

cally, we consider the traditional unconstrained GMV portfolio, a long-only GMV portfolio,

and we introduce a long-only GMV portfolio with a maximum-weight constraint and a

transaction cost penalty. Building on GMV portfolios, risk parity portfolios effectively aim

to minimize portfolio variance subject to a diversification constraint and thus serve as a

natural alternative to GMV portfolios. We evaluate two risk parity allocations: the equal risk

contribution (ERC) portfolio of Maillard, Roncalli and Tëıletche (2010) and the hierarchical

risk parity (HRP) portfolio of López de Prado (2016).

Our main findings can be summarized as follows. For the traditional unconstrained GMV

portfolios, we find a superior performance for sophisticated estimators like nonlinear shrinkage

and DCC-NLS. The nonlinear shrinkage estimator obtains a significantly lower volatility

than the simpler sample and linear shrinkage estimators, while DCC-NLS achieves the best

performance overall. Although these findings are in line with the academic literature, we
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show that the unconstrained GMV portfolio is not a realistic test portfolio due its extremely

high leverage, concentration, and turnover. Specifically, there is a considerable variation

in the gross exposure and turnover, with a gap of nearly 600% gross exposure and 300%

turnover across the estimators.

As the test portfolios become more realistic, there is a clear reduction in the range of

volatilities between the best and worst estimators from 6.37% (unconstrained GMV) to

0.56% (weight-constrained GMV portfolio with a transaction cost penalty). This is an

important result, as it shows that the discriminatory power of VCV estimators declines in

more realistic test portfolios. This result can be partly explained by the implicit shrinkage

embedded in portfolio constraints, which renders further shrinkage unnecessary (Jagannathan

and Ma, 2003). Accounting for time-series dynamics remains statistically significant, as

dynamic estimators are consistently the best-performing. Moreover, the sample estimator

achieves similar results to the shrinkage estimators, which suggests that this estimator benefits

most from implicit shrinkage and can achieve superior net risk-adjusted returns as a result.

Finally, while the long-only GMV portfolio generally yields higher net Sharpe ratios than the

unconstrained portfolio, these portfolios still give rise to large transaction costs and remain

highly concentrated in the number of assets. This shows that the long-only constraint is not

sufficient. We suggest imposing additional weight constraints and a transaction cost penalty

to the GMV portfolio or considering risk parity portfolios for the practical evaluation of VCV

estimators.

The intersection of VCV matrix estimators and risk-based portfolio construction has

been explored in various contexts, with studies like Nakagawa, Imamura and Yoshida (2018)

applying VCV estimators to multiple risk-based portfolios, and Ardia et al. (2017) and Jain

and Jain (2019) examining traditional VCV estimators on risk-based portfolios for small

asset universes.3 However, as the number of assets increases, traditional VCV estimators

face challenges such as numerical instability and “Markowitz’s curse”, where diversification

benefits are overpowered by estimation errors (Michaud, 1989; López de Prado, 2016; Ledoit

and Wolf, 2004b).4 These challenges highlight the need for well-conditioned VCV estimators

3Ardia et al. (2017) consider six asset universes with 7–30 assets and Jain and Jain (2019) consider five
different asset universes with ten assets each.

4This curse is derived from a high condition number, i.e., the absolute value of the ratio between the maximum
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in large asset universes, as emphasized by Kan and Zhou (2007), who demonstrate the

increased severity of variance estimation errors compared to mean errors as the number of

assets grows. Our study applies a wide range of state-of-the-art VCV estimators on multiple

risk-based portfolio construction methods in a large investment universe. We extend beyond

ex post volatility to consider broader performance measures and jointly evaluate complex

VCV estimators across numerous risk-based portfolio construction techniques. Importantly,

we demonstrate how the selection of optimal VCV estimator can differ significantly based on

the chosen evaluation portfolio.

An extensive body of literature proposes modifications to VCV estimators for large-scale

portfolio optimization, including shrinkage methods (Ledoit and Wolf, 2003, 2017, 2020,

2022a), factor models (Fan et al., 2013), robust optimization (DeMiguel, Martin-Utrera and

Nogales, 2013), and dynamic models (Engle, Ledoit and Wolf, 2019; De Nard, Ledoit and

Wolf, 2021; De Nard, Engle, Ledoit and Wolf, 2022). Most of these studies evaluate their

innovations based on the ex post volatility of unconstrained GMV portfolios. Recent literature

has also explored alternative portfolio construction techniques, such as weight constraints

(Jagannathan and Ma, 2003; DeMiguel, Garlappi, Nogales and Uppal, 2009), gross leverage

constraints (Fan, Zhang and Yu, 2012; Zhao, Ledoit and Jiang, 2023), long-only constraints

(Ledoit and Wolf, 2017) and transaction cost penalties (Ledoit and Wolf, 2017), with Boyd,

Johansson, Kahn, Schiele and Schmelzer (2024) providing a comprehensive summary of

various adjustments to the standard Markowitz portfolio optimization paradigm.

Our proposed test portfolio is similar to that of Zhao et al. (2023) and Ledoit and Wolf

(2024). Zhao et al. (2023) impose gross exposure constraints of varying degrees and find that a

DCC-NLS style estimator is the preferred estimator for their constrained GMV test portfolios.

When Zhao et al. (2023) reduce the gross exposure of their test portfolios, they find that

the difference in volatility reduction between the sample estimator and preferred DCC-NLS

estimator is smaller. Ledoit and Wolf (2024) incorporate gross exposure constraints and a

transaction cost penalty into the objective function of their test portfolios, however they do

not test a long-only strategy. They find that the more advanced DCC-NLS estimators indeed

and minimum eigenvalues of the correlation/VCV matrix. If this ratio is high, a small change of an element
in the VCV matrix leads to a completely different inverse.
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outperform the basic NLS estimators for unconstrained GMV portfolios and a 130% long,

30% short GMV portfolio. We build upon both studies by constructing test portfolios which

incorporate all these dimensions (gross exposure constraints, transaction cost penalties),

as well as applying explicit asset-level weight constraints and constructing alternative risk

parity portfolios. By designing a test portfolio that is both simple and closely resembles

real-world constraints, our research provides a comprehensive understanding of VCV estimator

performance in practical portfolio management contexts.

Our findings emphasize the importance of prudent test portfolio selection when evaluating

VCV matrix estimators. We find discrepancies between the optimal VCV matrix estimator

among different risk-based portfolios. As such, VCV estimators that have only been tested

on unconstrained GMV portfolios, which is the standard practice in the academic literature,

may not be the best choice for portfolios with meaningful investment constraints. Indeed,

unconstrained and long-only GMV portfolios come with high levels of portfolio concentration

and turnover, they show poor risk-adjusted returns, rendering them unsuitable candidates

for evaluating VCV estimators. Our maximum-weight-constrained long-only GMV portfolio

with transaction cost penalty mitigates these adverse properties and is thus a more suitable

test portfolio for evaluating new VCV matrix estimators on. For practitioners, our findings

emphasize the necessity to benchmark innovations in VCV estimators against portfolios

resembling those that will be used in practice. For academics, we illustrate the importance of

presenting the performance of VCV estimators across a range of risk-based portfolios when

establishing the practical relevance of innovations in these estimators.

The remainder of this paper is structured as follows. Section 2 and Section 3 describe the

risk-based portfolios and VCV matrix estimators used in the analysis, respectively. Section 4

presents the the empirical design including the data descriptions and performance metrics,

and Section 5 portrays the results from horse-racing VCV estimators. Section 6 concludes.

2. Designing test portfolios for evaluating variance-covariance estimators

Classical Markowitz (1952) mean-variance portfolio optimization that trades off expected

risk and return often suffers from estimation error, producing concentrated portfolios that may
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disappoint ex post from a risk-adjusted performance perspective. Avoiding the forecasting of

expected returns and, in turn, focusing on risk-based portfolio allocation has thus become a

popular area of research. In the realm of mean-variance portfolio optimization, risk-based

portfolio allocation boils down to investigating minimum-variance portfolios, in which the

VCV matrix is the key determinant of the resulting portfolio. Estimating VCVs is also prone

to estimation error, especially in large asset universes where estimation error of the VCV

becomes larger than that of expected returns (Kan and Zhou, 2007). Academic researchers

have embraced the GMV portfolio as a natural candidate to judge the success of any effort

to improve the accuracy of VCV estimation.

Although the GMV is a salient use-case in the study of risk-based portfolio allocations,

there are other contenders that could benefit from more precise risk measurement and

management. Therefore, we carefully lay out the different notions of risk-based allocation.

We start with introducing the classical GMV problem along with a set of general constraints.

We then move beyond GMV and present alternative allocation schemes designed to maximize

risk diversification. Such risk parity strategies can be considered GMV portfolios that are

subject to diversification constraints. While these portfolios strive to equalize single stock

risk contributions to the overall portfolio, we also look into HRP portfolios that leverage the

hierarchical structure inherent in the VCV. Lastly, we use simple allocation strategies like

1/N or inverse volatility for benchmarking the more involved strategies. For the portfolios

that do not restrict short selling, we use their analytical formulae, and we resort to convex

optimization for determining the long-only portfolios. Throughout this section Nt denotes

the number of assets in the asset universe on date t. Table 1 provides an overview of the

risk-based portfolios and VCV estimators used in the subsequent analyses.

<Insert Table 1 about here>

2.1. Global minimum-variance (GMV) portfolio

The GMV portfolio minimizes the ex ante portfolio variance:

min
wt

w′tΣtwt s.t. ι′wt = 1, (1)
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where wt is the vector of asset weights at date t, Σt is the VCV matrix of dimension Nt ×Nt

at date t, and ι is a vector of ones with length Nt. This optimization problem, that we refer

to as unconstrained GMV (labeled GMV UNC), has the following analytical solution:

w∗t =
Σ−1
t ι

ι′Σ−1
t ι

. (2)

The GMV portfolio corresponds to a single point on Markowitz’s (1952) efficient frontier

and requires only the VCV as input. The unconstrained GMV portfolio is simplistic by

nature (e.g., due to the absence of asset weight restrictions). Still, various studies show that

standard GMV portfolios often yield superior out-of-sample performance compared to other

mean-variance portfolios, even when performance is measured not only in terms of minimal

ex post risk, but also in terms of risk-adjusted returns (Jagannathan and Ma, 2003; Haugen

and Baker, 1991).

2.1.1 Long-only constraints

Imposing long-only constraints (i.e., wt ≥ 0) to the GMV portfolio (labeled GMV LO)

can be beneficial for two reasons. First, large leveraged portfolios are generally riskier to

investors and often require higher portfolio turnover to implement, thereby reducing net

portfolio returns. Second, long-only constraints bring implicit shrinkage of the VCV matrix

estimator (Jagannathan and Ma, 2003), and thus helps to mitigate the adverse portfolio

effects of estimation error. Zhao et al. (2023) compare direct shrinkage of the VCV matrix to

imposing gross exposure constraints. They find that nonlinear shrinkage of the VCV matrix

remains beneficial even if moderate gross exposure constraints are imposed as long as some

short positions are allowed. This is because the constraints only adhere to one degree of

freedom (i.e., the magnitude of the gross exposure constraints), whereas nonlinear shrinkage

methods have Nt degrees of freedom.

2.1.2 Transaction cost penalty and maximum-weight constraints

Long-only GMV portfolios can still be overly concentrated and do not explicitly control

for transaction costs. To construct more practically relevant portfolios, we investigate the
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long-only GMV portfolio with a transaction cost penalty in conjunction with maximum-weight

constraints of one percent:

min
wt

w′tΣtwt + λ ·

(
Nt∑
i=1

ct,i|wi,t − w∗i,t−1|+ τfix
t

)
(3)

s.t. ι′wt = 1, wt ≥ 0, wi,t ≤ 0.01, ∀i = 1, . . . , Nt,

where ct,i are the estimated transaction costs of asset i, w∗i,t−1is the weight of asset i one day

prior to the rebalancing date, τfix
t are the fixed transaction costs due to assets leaving the

asset universe on date t, and λ is the transaction cost penalty parameter. At the initial date,

t = 0, w∗i,t−1 is set to zero. After evaluating a grid of transaction cost penalties λ = 10−j for

j ∈ {2, 3, 4, 5, 6}, we use λ = 10−3 for each of the VCV estimators in the main analysis. Ledoit

and Wolf (2024) use different values for λ for their static and dynamic estimators. Since they

investigate mean-variance portfolios with transaction cost penalties and an expected return

constraint, they base their choice on the Sharpe ratio. Because we consider GMV portfolios,

specifically, we instead base the choice of λ on a trade-off between the ex post volatility and

the average transaction costs . We estimate the stock-specific transaction costs ct,i using

the model of Briere, Lehalle, Nefedova and Raboun (2020) that requires open-high-low-close

price data.

The maximum-weight constraints of one percent ensure that at least 100 positions are

held and thus force the portfolio to be overdiversified, whilst forcing the asset weights to

sum to one. Asset weight constraints also impose implicit shrinkage on the VCV. The

specification we present here extends the formulation used in Ledoit and Wolf (2024) by

incorporating long-only and maximum-weight constraints alongside a transaction cost penalty.

These constraints resonate with an investment objective more closely aligned with a large

institutional investor who is predominantly long-only and sensitive to transaction costs. We

label this GMV portfolio variant GMV CON.5

5We separately run portfolios with maximum-weight constraints and transaction cost penalties. We find
similar results to the combined case, and thus do not report them.
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2.2. Risk parity portfolios

One feature that makes VCV matrix estimators attractive in the construction of risk-

based portfolios is the option to take diversification into account via the pairwise information

contained in the asset covariances. GMV portfolios implicitly aim to maximize risk diversifi-

cation by minimizing the ex ante portfolio variance. We investigate two alternative risk-based

portfolios that explicitly aim for optimally risk-diversified portfolios.

2.2.1 Equal Risk Contribution (ERC) portfolio

ERC portfolios aim for an allocation in which every asset contributes equally to the total

portfolio risk, meaning that the risk contribution (RCi,t) to the portfolio by any asset i on

date t is equal to 1/Nt. We numerically optimize the ERC portfolio by minimizing the variance

of the risk contributions:

min
wt

Nt∑
i=1

wi,t[Σtwt]i
w′tΣtwt︸ ︷︷ ︸

RCi,t

− 1

Nt


2

(4)

s.t. ι′wt = 1, wi,t ≥ 0, ∀i ∈ {1, . . . , Nt}.

Importantly, this problem can be expressed as a minimum-variance optimization problem

subject to a diversification constraint, see Maillard, Roncalli and Tëıletche (2010). Specifically,

min
w̃t

w̃t
′Σw̃t (5)

s.t.
Nt∑
i=1

log(w̃i,t) ≥ ct, w̃i,t ≥ 0, ∀i ∈ {1, . . . , Nt},

where ct is a constant and w̃i,t are the unscaled optimal weights that are then scaled to sum

up to one: wi,t =
w̃i,t∑Nt
i=1 w̃i,t

. Hence, it is natural to consider risk parity as test portfolios for

evaluating VCV matrix estimators where success then is gauged in terms of the resulting

impact on portfolio volatility and diversification. The ex ante volatility of ERC portfolios

can be directly related to GMV and equally-weighted (EW) portfolios, specifically, Maillard
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et al. (2010) show that:

σGMV,t ≤ σERC,t ≤ σEW,t. (6)

where σi,t = w′i,tΣi,twi,t with i ∈ GMV,ERC,EW are the ex ante portfolio volatilities. This

ranking holds after plugging in an estimated VCV matrix and portfolio weights, computed

with in-sample asset returns. Given this in-sample relation, the ERC portfolio can be

interpreted as a middle-ground portfolio between GMV and EW portfolios. The ranking does

not necessarily hold for the ex post portfolio volatilities, which still have to be verified with

out of sample asset returns.

2.2.2 Hierarchical Risk Parity (HRP) portfolio

The notion of a hierarchical structure in financial markets is becoming increasingly

popular in modern portfolio theory. Mantegna (1999) established an economically meaningful

taxonomy for stocks in the S&P 500 universe using hierarchical clustering on the correlation

matrix of its assets. Tumminello, Aste, Di Matteo and Mantegna (2005) show that the

instability of VCV matrix characteristics can be reduced through hierarchical clustering.

Standard VCV estimators do not take into account that certain assets are close substitutes of

one another (López de Prado, 2016). Not distinguishing between assets in the asset universe

can produce ill-conditioned VCV estimators that are prone to Markowitz’s curse. López

de Prado (2016) assumes a hierarchical structure of the financial assets, which alleviates

this problem by reducing the number of links between each of the assets to one, resulting

in a minimum spanning tree with N − 1 edges. López de Prado (2016) proposes to build

a hierarchical risk parity (HRP) procedure that can be summarized in three steps: (i) tree

clustering, (ii) quasi-diagonalization, and (iii) recursive bisection. We refer the reader to

López de Prado (2016) for further details on the estimation of the HRP portfolio.

2.3. Benchmark portfolios

We use three simple portfolio allocation schemes as benchmark portfolios: (i) equally

weighted (EW), (ii) value-weighted (VW), and (iii) inverse-variance (IV). The EW strategy

assigns equal weights to all assets in the portfolio:
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wEWi,t =
1

Nt

. (7)

The EW strategy is a natural candidate as DeMiguel, Garlappi and Uppal (2009) show that

this portfolio can be difficult to beat out of sample based on Sharpe ratio, certainty-equivalent

return, or turnover. The VW portfolio assigns asset weights proportional to their market cap

and this market portfolio is a classic reference point:

wVWi,t =
mcapi,t

ΣNt
i=imcapi,t

, (8)

where mcapi,t is the market capitalization of stock i at time t. Finally, the IV portfolio

minimizes portfolio variance without accounting for risk diversification benefits by assigning

weights inverse to the stock’s historical volatility:

wIVi,t =
1/σi,t

1/Σ
Nt
i=1σi,t

, (9)

where σi,t is the stock i’s historical volatility estimated over the same period as the VCVs.

This can be seen as a special case of a fully-invested GMV portfolio where all off-diagonal

elements of the VCV are set to zero.

3. Estimating large VCV matrices

The key ingredient to determining risk-based portfolio allocations is the VCV matrix.

However, accurate estimation of the VCV matrix is challenging, particularly in large asset

universes. Therefore, it is crucial to produce well-conditioned VCV estimators. The literature

has put forward different methods to estimate the VCV with high precision but which come

with varying degrees of complexity. In this paper, we compare the performance of the

standard sample estimator to a set of salient shrinkage-based estimators that are introduced

in this section. Drawing inspiration from the literature, we increase the complexity of the

shrinkage-based estimators along three dimensions: (i) shrinkage type, (ii) time-dynamics,

and (iii) factor structure. Our selection of VCV estimators encompasses most commonly used
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ones in the literature.6

3.1. Sample estimators in large asset universes

The most common VCV matrix estimator is the unbiased sample estimator, S ∈ RN×N :

S = Ê [(rt − r̄)(rt − r̄)′] =
1

T − 1

T∑
t=1

(rt − r̄)(rt − r̄)′, (10)

where rt ∈ RN are the asset returns at time t and r̄ = 1
T

∑T
t=1 rt.

Using the sample estimator for portfolio allocation in large asset universes is problematic.

Large asset universes are synonymous with high concentration ratios (that is, the number

of assets over the number of observations), making portfolios that require inverting the

VCV matrix infeasible due to the (near) singularity of the sample estimator. However, even

when the VCV matrix is non-singular, unbiased sample estimators of the VCV matrix are

well-known for producing unstable portfolios with poor out-of-sample performance in large

asset universes (Jobson and Korkie, 1980; Brandt, 2010; Ledoit and Wolf, 2004b).7 This

is again a manifestation of Markowitz’s curse, where error maximization largely drives the

resultant portfolios.

3.2. Shrinkage estimators

To reduce estimation errors in the sample mean, Stein (1956) and James and Stein (1961)

established the concept of shrinkage. Ledoit and Wolf (2003; 2004a; 2004b; 2012; 2015; 2017;

2020; 2022a) apply shrinkage to VCV matrix estimation with the aim of achieving more stable

risk-based portfolio performance when the concentration ratio is high. Simple shrinkage

involves combining or averaging two “extreme” estimators to create a better performing and

more stable combined estimator. There are two main approaches to shrinkage: linear and

6Two notables classes of estimators that we do not cover are the POET estimator by Fan et al. (2013) and
precision matrix estimators. The former is effectively an approximate factor model (see Section 3.4) with
two key differences: (i) latent factors instead of observable factors, and (ii) thresholding instead of shrinkage
of the residual covariance matrix. Precision matrix estimators, such as Caner et al. (2023); Friedman et al.
(2008); Kourtis et al. (2012), directly estimate the inverse variance-covariance matrix and forego the need
to invert the VCV matrix. We do not consider these estimators because not all our portfolio allocation
problems require the inversion of the VCV matrix.

7The concentration ratio could simply be reduced by increasing T . However, this solution is generally not
applicable to financial time series, such as stock returns, given limited data availability and non-stationarity.
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nonlinear.8 The shrinkage estimators that we consider are solely driven by the asset return

data.9

3.2.1 Linear shrinkage

The simplest version of linear shrinkage is shrinking the N × N sample VCV matrix

toward a scalar multiple of the identity matrix (Ledoit and Wolf, 2004b):

Σ̂ = (1− κ)S + κqIN , (11)

where κ ∈ [0, 1] is the shrinkage intensity, q ∈ R is a scalar, and IN ∈ RN×N is the identity

matrix. We set q equal to the average of the univariate variances of the sample VCV matrix

estimator, enforcing qIN as the shrinkage target. Throughout the remainder of this paper,

we refer to the linear shrinkage estimator as LS.10 The shrinkage intensity κ is calculated

based on Ledoit and Wolf (2004b) such that it is a consistent estimator of the asymptotically

optimal intensity.

3.2.2 Nonlinear shrinkage

A drawback of linear shrinkage is that the shrinkage target has to be determined a priori

based on assumed characteristics of the unknown true VCV matrix (Ledoit and Wolf, 2022b).

In contrast, nonlinear shrinkage methods do not require assumptions on the characteristics

of the true VCV matrix. Although nonlinear shrinkage methods are more complex, they

show significantly better out-of-sample performance (Ledoit and Wolf, 2022b). We use the

Quadratic Inverse Shrinkage (QIS) estimator of Ledoit and Wolf (2022a), referred to as NLS

throughout this paper. This estimator shrinks the inverse eigenvalues of the VCV matrix.11

8We refer to Ledoit and Wolf (2022b) for a comprehensive overview of various shrinkage estimators developed
over the past 15 years.

9Because not all portfolios in our analysis require VCV matrix inversions, we do not consider direct shrinkage
estimators of the inverse VCV matrix. For examples of shrinkage estimators of the inverse VCV matrix, see
the works of Friedman, Hastie and Tibshirani (2008), Kourtis, Dotsis and Markellos (2012), and DeMiguel,
Martin-Utrera and Nogales (2013).

10We also consider linear shrinkage toward a constant-correlation matrix (Ledoit and Wolf, 2004a). Results
are generally inferior compared to the LS estimator.

11We find similar results when implementing the analytical NLS estimator of Ledoit and Wolf (2020).
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3.3. Dynamic estimators

The estimators introduced so far are static and ignore time-variation of the VCV matrix.

Static estimators introduce biases towards older asset returns and ignore the time-variability

and clustering of volatility. In this vein, dynamic estimators allow for time-varying conditional

covariance matrices by assigning different weights to older and more recent asset returns.

Similar to Engle et al. (2019), we apply nonlinear shrinkage to the dynamic estimators to

prevent in-sample overfitting and ensure a non-singular matrix. For consistency, we use the

Ledoit and Wolf (2022a) NLS estimator and do not consider other shrinkage methods since

Engle et al. (2019) find nonlinear shrinkage to be most effective.

3.3.1 Dynamic conditional correlation model

We estimate the dynamic conditional correlation model with nonlinear shrinkage (DCC-

NLS) of Engle et al. (2019). The model extends Engle’s (2002) DCC model, which models

the time-varying conditional volatilities and correlations using a generalized autoregressive

conditional heteroskedasticity (GARCH)-like process. Nonlinear shrinkage (in our case: the

NLS estimator) is applied to the correlation targeting matrix to prevent negative eigenvalues

of the matrix. Furthermore, we use the averaged forecast approach of De Nard et al. (2021)

to convert the DCC estimator (which is a prediction for the next day) to a prediction for the

next month.

3.3.2 RiskMetrics

Accounting for dynamics based on the described DCC-NLS estimator introduces significant

complexity. Therefore, we also consider a simple dynamic estimator that is popular among

practitioners, the RiskMetrics (1996) estimator (RM). This estimator weights the observations

by a decay parameter ξ−(T−t). Here, T is the current date and t is the date of some earlier

observation. We set ξ = 0.99734, which roughly corresponds to a half-life of one year for

daily return data. We refer to this estimator as RM.

Because the RM estimator, by itself, does not account for poor conditioning of the VCV

matrix, shrinkage may be beneficial in a large asset universe setting. Therefore, we apply the
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NLS estimator to the estimated RM VCV matrix and we label this the RM-NLS estimator.

Estimation follows a two-stage process. First, we estimate the sample covariance matrix

using RiskMetrics, thus introducing exponential decay in the estimation of the volatilities

and pairwise correlations. Second, we apply NLS to the estimated RM covariance matrix.

Although the NLS estimator of Ledoit and Wolf (2022a) is designed for sample VCV matrices

in an i.i.d. sample, using NLS allows for the RM-NLS estimator to serve as a middle ground

between the RM and DCC-NLS estimators.12

3.4. Factor models

Factor models are derived from asset pricing theory and focus on specifying a functional

form of stock returns. Factor models reduce dimensionality in asset pricing by attempting to

explain the cross-sectional information of a large number of asset returns (N) based on a

parsimonious set of factors (K). Linear factor models can be represented as:

rt = α +Bft + ut, ∀t ∈ {1, . . . , T}, (12)

where α ∈ RNt is often assumed 0, ft ∈ RK are the factor returns, B ∈ RNt×K is the loadings

matrix, ut ∼ NNt(0,Σu,t) are the idiosyncratic errors, and T is the sample size. Exploiting

this linear factor structure, the VCV matrix of asset returns, Σt, can be written as:

Σt = B′Σf,tB + Σu,t, (13)

where Σf,t is the K ×K factor returns VCV matrix and Σu,t is the N × N residual VCV

matrix on date t.

For Σu,t, we consider both an exact factor model (EFM) and an approximate factor model

(AFM) design. The difference between EFMs and AFMs is fundamentally a bias-variance

trade-off. EFMs assume that the factors fully explain cross-sectional asset risk, i.e., Σu,t is a

diagonal matrix of static sample variances. AFMs assume a less stringent structure with a

12This approach shares some similarities with the DCC-NLS model. Both estimators estimate the conditional
standard deviations using a GARCH-like process and both estimators shrink the correlations using the NLS
shrinkage estimator. The key difference is that DCC-NLS applies shrinkage to estimate the unconditional
correlation matrix, whereas we apply it to the conditional correlation matrix estimated using RM.
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sparse residual VCV matrix, which we model using the DCC-NLS estimator. This estimator

originates from De Nard et al. (2021) and is denoted by AFM-DCC-NLS. De Nard et al.

(2021) find a one-factor structure to be optimal for their AFM-DCC-NLS. Therefore, our

application also uses a one-factor model with the market factor to construct Σf,t for both our

EFM and AFM.13 Ledoit and Wolf (2022b) and De Nard et al. (2021) find no improvements

in the performance of their factor-model-based estimator when they allow for time-variation

of the factor VCV matrix. Because the main objective of this paper is to compare common

VCV estimator choices from the literature rather than finding the overall ‘best’ estimator, we

also do not model a time-varying factor VCV matrix or factor loadings.

4. Empirical design

4.1. Data

Our asset universe comprises of U.S. stocks with share codes 10 or 11 that are listed on

the NYSE, AMEX, and NASDAQ stock exchanges from January 1, 1990, through December

31, 2021. The data consists of daily stock-level returns, market capitalization, and open-

high-low-close prices, sourced from the Center of Research in Security Prices. We take daily

and monthly Treasury bill rates, market, and factor returns from the Kenneth French Data

Library. Treasury bill rates are used as the risk-free rate to calculate excess returns. Lastly,

we obtain returns of the Low-Volatility factor from Robeco Datasets and VIX data from the

FRED.14

VCV matrices are estimated using a rolling window approach with a five-year estimation

period. VCV matrix estimates are provided to each portfolio construction method, where

we rebalance portfolios on the last trading day of each month. Portfolios are then held for

one month and subsequently rebalanced. On the first trading day of the month, the asset

universe includes all assets that are among the N ∈ {500, 1, 000} largest in terms of market

13We tested various specifications including Principal Components Analysis and the Fama-French three-factor
model (Fama and French, 1993), and found that our results are robust to the choice of factor model. We
focus on the one-market-factor model for brevity and to keep our methodology consistent with the findings
of De Nard et al. (2021).

14See the websites https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html,
https://www.robeco.com/en-int/insights/2022/04/data-sets-volatility-sorted-portfolios, and
https://fred.stlouisfed.org/series/VIXCLS.
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cap on that day, and have data available on every day during the in-sample period (that is,

during the estimation rolling window). If asset return data is missing in the out-of-sample

period, we set it equal to zero. Because the results for the 500 and 1,000 stocks universes

lead to the same conclusions, we show the results for the 500 stocks universe in this paper

and refer to the Online Supplementary Material for the results of the 1,000 stocks universe.

To gauge the practicality of the resulting risk-based portfolio allocation we compute

portfolio performance net of transaction costs. The asset-specific transaction costs are

estimated using the model of Briere et al. (2020) that requires open-high-low-close price

data. Figure 1 presents the distribution of estimated transaction costs. The average median

transaction cost throughout the sample is 4.1bps. Clear spikes in transaction costs can be

seen after 2008 and 2020 coinciding with the GFC and COVID-19 crisis, respectively. These

numbers are in line with other studies, e.g., Corwin and Schultz (2012), Abdi and Ranaldo

(2017), Ardia, Guidotti and Kroencke (2024), and Ledoit and Wolf (2024).

<Insert Figure 1 about here>

4.2. Performance metrics

We evaluate each portfolio in the upcoming horse race using several ex post performance

metrics. In line with Lee (2011), the main performance criterion is the annualized ex post

portfolio volatility, computed as the standard deviation of the out-of-sample portfolio returns.

As ERC portfolios can be reformulated as minimum-variance optimizers, ex post volatility

also closely aligns with the ex ante objective of all risk-based portfolios. We use the pairwise

variance test of Ledoit and Wolf (2011) to determine whether differences in ex post volatility

between two estimators are statistically significant.

To keep the amount of testing tractable, we do not test every possible pairwise combination

of estimators. Instead, as the complexity of the estimator increases we typically use a simpler

model as the benchmark to test against. Specifically, the LS estimator is tested against

the Sample estimator; the NLS estimator against the LS estimator; the RM-NLS estimator

against the NLS estimator; the DCC-NLS estimator against the RM-NLS estimator; the

EFM estimator against the Sample estimator; and the AFM-RM-NLS estimator against the
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RM-NLS estimator. The ex post p-values are adjusted using the Holm (1979) correction to

control for the family-wise error rate, accounting for the seven comparisons we make.

In addition to ex post volatility, we calculate (risk-adjusted) returns (both gross and net

of transaction costs), portfolio concentration, and turnover, which are all of practical interest

to investors.15 With regards to portfolio concentration, we calculate three measures. The

average number of positions with an absolute weight greater than 0.1% (POS), the average

monthly sum of the largest absolute 10 of positions (MAXW), and the average monthly

effective portfolio weights (i.e., the inverse of the sum of the squared portfolio weights, denoted

WEFF). We note that for highly leveraged long-short portfolios, the measurement of WEFF

can become distorted. However, WEFF still provides a meaningful reference point when

comparing portfolio concentration within and across different portfolio construction methods.

We refer to Table 2 for an overview of the performance metrics.

<Insert Table 2 about here>

5. Horse racing VCV estimators in risk-based portfolios

5.1. Evaluating VCV matrix estimators by ex post portfolio volatility

Table 3 shows the ex post volatility of the benchmark portfolios, risk-based portfolios,

and selected VCV matrix estimators detailed in Table 1. Specifically, for each risk-based

portfolio and VCV estimator combination, we use a five-year VCV estimator as input to the

risk-based portfolio method. We then calculate the outperformance of each pair over the

designated benchmark model.

<Insert Table 3 about here>

5.1.1 How does the choice of shrinkage method affect performance?

To set the stage, we first report the ex post volatilities of the three benchmark strategies.

The market portfolio (value-weighted) has an annualized volatility of 18.92%, while the

equal-weighted portfolio’s volatility is one half percentage point higher (19.38%); the inverse

15We also calculate the 1% and 5% Value-at-Risk (VAR) and Expected Shortfall. These results are not
reported as they result in conclusions largely consistent with ex post volatility.
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variance portfolio has a volatility of 16.84%. Against this backdrop, the unconstrained GMV

clearly outperforms the benchmark portfolios with a volatility of 10.91% for the sample

estimator. This is not surprising, as the unconstrained GMV portfolios have the ability to

short assets, thereby mitigating exposure to systematic risk factors such as the market factor.

When long-only constraints are imposed, there is an increase in the overall portfolio volatility.

Nevertheless, the sample estimator continues to outperform the benchmark portfolios even

after imposing long-only constraints across the GMV and HRP test portfolios. The only

exception is the ERC portfolio for which the inverse variance portfolio achieves a lower

volatility.

Moving from the sample estimator to the shrinkage estimators clearly reduces the ex post

volatilities of the unconstrained GMV portfolio further, yielding volatilities between 10.08%

(NLS) and 10.49% (LS). In terms of linear versus nonlinear shrinkage, the NLS estimator

thus clearly outperforms the LS estimator for the unconstrained GMV portfolio.

The range of volatilities decreases, and the value of shrinkage estimators diminishes

when considering other test portfolios. These portfolios impose portfolio constraints, which

already provide implicit shrinkage (Jagannathan and Ma, 2003). In all cases, the shrinkage

estimators yield similar ex post volatilities as the sample estimator. Therefore, there is no

conclusive evidence of which static structure-free shrinkage estimator is best for minimizing

ex post volatility beyond the unconstrained base case. However, shrinkage estimators may

still be useful in long-only portfolios to prevent singularity of the VCV matrix when the asset

universe is very large.

5.1.2 Do dynamic estimators outperform static estimators?

Moving from (structure-free) static estimators to (structure-free) dynamic estimators,

the discrepancy between the unconstrained GMV portfolios and the remaining long-only

portfolios becomes most evident. The simple RM estimator is among the worst performers in

terms of minimizing ex post volatility for the unconstrained GMV portfolio. Combining the

RM estimator with NLS shrinkage results in a volatility lower than that of the static shrinkage

estimators. The more sophisticated DCC-NLS estimator achieves the lowest volatility (9.33%)

out of the VCV estimator candidates, which is also significantly lower than for the RM-NLS
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estimator. Hence, both shrinkage and the choice of dynamic estimator is important for the

unconstrained GMV portfolio.

For the long-only GMV portfolios, each dynamic estimator outperforms the static estima-

tors, with RM and RM-NLS performing equally well. Since the benefits of shrinkage decrease

when long-only constraints are imposed, the additional flexibility of dynamic estimators seems

to be a meaningful way to further reduce ex post volatility. This holds true for all other test

portfolios, as the structure-free dynamic estimators result in significantly lower volatilities

than their static counterparts. The DCC-NLS achieves the lowest ex post volatility among

all estimators across all but the GMV CON test portfolios.

5.1.3 Do minimum-variance problems benefit from a factor structure?

Lastly, we investigate whether accounting for a factor structure is important in VCV

estimation. It turns out that—setting aside the two risk parity portfolios—EFMs are among

the worst estimators in terms of minimizing ex post volatility. This suggests that the

additional bias outweighs the benefits of reduced estimation errors; arguing in favor of AFMs

rather than EFMs to limit this structural bias (if one does not wish to shrink the components

of the VCV matrix estimator driven by the risk factors). However, AFM-DCC-NLS does not

improve upon the structure-free DCC-NLS estimator in any of the risk-based portfolios.16

5.1.4 Subperiod analysis

Panels C and D of Table 3 show how the ex post volatility of the risk-based portfolios

differs in high- and low-volatility regimes. When the VIX index is above (below) its five-

year moving average we consider the period a high-volatility (low-volatility) regime and

16We note that this finding contrasts that of De Nard et al. (2021) who find that AFM-DCC-NLS further
reduces the volatility for GMV UNC over the DCC-NLS estimator. We replicate their results in the 500
stocks universe over their sample period of 1978-2017 and find very similar values in terms of volatility
(8.1%), turnover (129%) and gross exposure (345%) for the GMV UNC portfolio under the AFM-DCC-NLS
estimator. However, our DCC-NLS estimator finds a slightly lower volatility than that of De Nard et al.
(2021) (8.1% compared to 8.3%), which changes the ranking of our estimators compared to theirs for
GMV UNC. These differences can be attributed to the shrinkage estimator used (we use QIS Ledoit and
Wolf (2022a); they use QuEST Ledoit and Wolf (2017)) and the sample selection processes, (we use the
end-of-month calendar dates to determine our out-of-sample periods; De Nard et al. (2021) assume fixed
estimation and out-of-sample periods). Our extension to 1978-2017 data suggests that the factor structure
benefits emerge from the 1978-1990 period.
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we thus divide the sample period into 46% high-volatility regimes and 54% low-volatility

regimes, respectively. Not surprisingly, the level of ex post volatilities is the highest during

high-volatility regimes. For instance, average market volatility then stands at 25.32% whilst

low volatility regimes see a figure of 10.92%. By and large, the evaluation of estimators by

volatility regime is consistent with the presented full sample evidence. For instance, the

RM, RM-NLS and DCC-NLS estimators consistently outperform the other estimators in the

long-only GMV portfolios and are among the best performers in the risk parity portfolios.

5.2. Risk-based portfolios in practice

Having evaluated risk-based portfolios from an ex post volatility perspective, we won-

der about their practical relevance. To this end, we investigate the risk-based portfolios’

performance statistics, specifically looking into the performance drag imposed by portfolio

turnover. We also scrutinize the distributions of portfolio weights to gauge overall portfolio

concentration and diversification.

5.2.1 Unconstrained global minimum-variance portfolios

Table 4 presents the detailed performance statistics for the benchmark portfolios, the three

GMV portfolios, and the two risk parity alternatives. As expected, the unconstrained GMV

portfolio achieves the lowest ex post volatility. Although GMV UNC allows for considerable

reductions in portfolio volatility, one has to be mindful that these reductions rely on highly

levered long and short portfolio positions. For instance, the unconstrained GMV based on

the sample VCV comes with an average gross exposure of 723%. Notably, modeling a more

structured VCV helps reducing such gross exposure (with the EFM variant having the lowest

gross exposures, 232%). Still, these portfolios display unduly high portfolio turnover, ranging

from 25.7% (EFM) to 302.0% (RM) in terms of one-way monthly turnover.

<Insert Table 4 about here>

Despite relatively high transaction costs and turnover, the GMV UNC portfolio has one

candidate VCV estimator that stands out in terms of risk-adjusted returns : the DCC-NLS

estimator. The transaction costs reduce the Sharpe ratio of the GMV UNC portfolio with
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DCC-NLS estimator from 0.958 to 0.850, which still dwarfs the Sharpe ratios of all other

portfolios considered in the analysis. This is in line with the finding of Ledoit and Wolf (2024),

who show the DCC-NLS estimator outperforming the NLS estimator and EW portfolio in

terms of maximizing the net Sharpe ratio.

Nevertheless, poor diversification properties highlight the impractical nature of the GMV

UNC portfolio regardless of the choice of VCV estimator. For instance, the top ten names

of GMV UNC make up a large share of the portfolio weights and the effective portfolio

weights range between 5.0 (RM) and 48.0 (EFM).17 The sobering verdict is that GMV UNC

is of little practical relevance and thus not particularly informative for the choice of VCV

estimators in actual portfolio management settings. Therefore, we investigate more realistic

GMV variants, one with long-only constraint and one with tighter maximum stock weights

as well as a transaction cost penalty.

5.2.2 Long-only GMV portfolios

By design, long-only GMV variants come with a reduced gross exposure of 100%.

Still, turnover statistics are elevated and range from 11.8% (EFM) to 90.7% (DCC-NLS)—

suggesting that the consideration of covariance dynamics can become costly. From a turnover

perspective, AFM-DCC-NLS improves upon the DCC-NLS estimator by reducing the turnover

nearly by half at the expense of a higher average volatility. Modeling dynamics via RiskMet-

rics or RM-NLS is even less turnover-intensive with an average turnover of 28.2 and 25.7%,

respectively. Notwithstanding, long-only GMV portfolios are generally too concentrated to

be considered viable alternatives in practice; the effective portfolio weights are consistently

below 30.0. This finding is in line with Clarke, De Silva and Thorley (2011), who rationalize

that the long-only GMV portfolio tends to only select assets with low market exposures.

Against this backdrop, we next enforce more diversified GMV portfolios by complementing

the long-only constraint using upper weights constraints (wt ≤1%) as well as a transaction

cost penalty. As a result, portfolio concentration is considerably reduced, seeing the top ten

names making up almost exactly 10% for all considered VCV estimators.18 Unsurprisingly,

17POS, MAXW, and WEFF are all computed using absolute portfolio weights.
18The 10% threshold is marginally exceeded for all estimators due to rounding.
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the GMV portfolio optimization sees most portfolio names testing the upper bound of 1%,

resulting in portfolios that have hardly more than 100 names in total. In addition to improved

portfolio diversification, one enjoys reduced turnover and transaction costs, but these result

in higher net Sharpe ratio compared to the GMV LO portfolios for the static estimators only.

The transaction costs drop for each of the estimators except for the EFM estimator. Since we

apply the same penalty λ = 10−3 to all VCV estimators, the dynamic estimators still have

a higher level of turnover and transaction costs. 19While applying a higher penalty to the

dynamic estimators would result in equal levels of transaction costs, this may come at the

cost of higher volatility. Naturally, the implicit shrinkage brings about a reduction in the

opportunity set for any given VCV estimator.

5.2.3 Beyond GMV portfolios

Table 4 also presents the performance statistics and portfolio characteristics of the two

risk parity alternatives. While the HRP portfolio has similar turnover figures as the long-only

GMV portfolio, the classic ERC portfolios display the lowest turnover statistics across all

tested strategies. Naturally, dynamic modeling of the VCV calls for higher turnover with risk

parity strategies, albeit at a lower level. Although ERC and HRP have, on average, the same

amount of non-negligible positions (500), the HRP portfolio is more concentrated than the

ERC portfolio as its top ten names consume between 7.2–14.1% of the total portfolio (relative

to 5.3–6.4% for ERC). Moreover, the number of effective portfolio positions is consistently

the highest for the ERC portfolio ranging from 382.0 (EFM) to 415.0 (LS) making the ERC

portfolio the least concentrated among the risk-based portfolios. This finding is in line with

the notion that this portfolio serves as a middle ground between the EW and long-only GMV

portfolios. As a result, the estimated transaction costs are 0.38–0.61bps for ERC which is

on par with naive EW strategies but around 5 times higher than the transaction cost of

the VW market portfolio. The emerging net returns are slightly lower than those of the

market portfolio and the corresponding net Sharpe ratios are smaller than the long-only

GMV portfolios, owing to the higher risk level of the risk parity strategies.

19Table A.1 in the Online Supplementary Material shows the effect of different transaction cost penalties on
ex post volatility and transaction costs.
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Examining the effect of the choice of VCV estimator for ERC and HRP portfolios, we

observe a spread of only 0.5% (ERC) and 1.8% (HRP) in ex post volatility across the VCV

estimators. This indicates a significantly reduced opportunity set for the VCV estimators.

We find that shrinkage does generally not result in significant volatility reduction relative

to the sample estimator. However, with the exception of RM for the HRP portfolio, the

dynamic estimators all significantly outperform their static counterparts. ERC and HRP are

also the only portfolios where EFM improves upon the sample estimator. Finally, the number

of effective positions is (second) lowest for DCC-NLS, this means that this estimator diverges

most from the equally weighted benchmark. Paired with the fact that this estimator also

yields the lowest ex post volatility, this result shows that optimal diversification, powered by

a well-conditioned VCV estimator, may improve upon naive 1/N diversification.

5.2.4 Risk-based portfolio selection and factor investing

Regardless of the chosen VCV estimator, we have demonstrated that long-only minimum-

variance investing would have generated higher risk-adjusted returns than a naive market

portfolio (VW). To rationalize this observation, we run a style factor regression of the risk-

based portfolios’ returns to investigate their salient systematic factor exposures. Table 5

reports regression results based on a multi-factor regression featuring an intercept (α) and

seven off-the-shelve factors: Market (MKT), Size (SMB), Value (HML), Profitability (RMW),

Investment (CMA), and Momentum (MOM) factors from the Kenneth French library as

well as the Low-Volatility (LOWVOL) factor. Here, we focus on risk-based portfolio returns

based on the DCC-NLS estimator estimated over the five-year estimation window. Indeed,

all variations of the GMV portfolio display very low Market betas that are significantly lower

than 1.0, ranging from 0.3 for the unconstrained GMV to around 0.6 for the constrained

variants. The low Market betas are in line with Clarke et al. (2011) and Scherer (2011), who

find that GMV portfolios only select assets with low Market exposures.

<Insert Table 5 about here>

Moreover, all GMV portfolios load positively on the Low-Volatility factor with highly

significant betas around 0.10–0.24. Such exposures are expected given the risk-based portfolio
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objective that renders the GMV portfolios implicitly exploiting the Low-Volatility anomaly.

Outside Market and Low-Volatility factor exposures, we only observe significant exposures in

GMV CON for the Profitability and Investment factors. Taken together such factor exposures

explain only 47% of the variation in long-only GMV portfolio returns and 75% of the GMV

CON portfolio returns, which in both cases leave no significant alpha.

Notably, the two risk parity variants show some similar factor exposures as GMV CON.

We also document strong loadings on the Low-Volatility, Profitability, and Investment factors

and a Market beta that is significantly lower than 1.0. Unlike the long-only GMV portfolio,

the ERC portfolio comes with positive Size exposure. Overall, more than 85% of the variation

in risk parity portfolio return can be attributed to such common factor exposures, again

leaving an insignificant alpha over the sample period.

5.3. Results summary

Figure 2 summarizes our key results across the seven VCV estimators and five risk-based

portfolios that we explore. First, we confirm the academic evidence that the unconstrained

GMV portfolio benefits from more complexity in VCV modeling. The according ex post

portfolio volatility based on the sample VCV is 10.91% and reduces down to 9.33% when

applying DCC together with nonlinear shrinkage. Second, the implicit VCV shrinkage that

arises from incorporating practical considerations into the portfolio optimization limits the

ex post volatility reduction of more involved VCV estimation choices, such as accounting for

time-series dynamics and imposing factor model structures. For instance, the constrained

GMV setting shrinks the ex post volatility range to lie in between 12.99% and 13.55%,

and the shrinkage of this opportunity set is even more pronounced for the other portfolio

statistics. Third, unconstrained GMV portfolios are very concentrated and have unduly high

turnover which eats up any gross return benefit. Indeed, after accounting for turnover and

transaction costs, the Sharpe ratio improvement of more complex VCV estimators over the

sample estimator is reduced, particularly for the more constrained test portfolios. Specifically,

a VCV estimator that combines a simple dynamics model, such as RiskMetrics with nonlinear

shrinkage, performs in line with more complex VCV estimators on realistic test portfolios.

Ultimately, these findings highlight practitioners’ need for an alternative test portfolio to
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evaluate VCV estimators.

<Insert Figure 2 about here>

6. Conclusion

The estimation of VCV matrices lies at the heart of risk-based portfolio optimization. The

associated estimation risk unduly exacerbates error maximization in portfolio construction,

particularly when dealing with large asset universes. A plethora of advanced VCV estimators

have been suggested in the literature, and we study the practical value-add of key contenders.

The tested estimators differ in salient model features regarding their approach to shrinkage,

dynamics, and factor structure.

The key contribution of the present paper is to question the common practice in the

literature of validating VCV estimators based on the ex post performance of an (unconstrained)

GMV portfolio. We confirm the latter use-case benefits from more complexity in VCV

modeling, resulting in a reduction of ex post volatilities that tends to boost the GMV

portfolio’s Sharpe ratios. Yet, we argue that there are more portfolio characteristics to

consider for demonstrating the practical value-add of new VCV estimators. Specifically,

unconstrained GMV portfolios come with very high turnover and thus transaction costs that

(more than) erode any observed gross benefits. Moreover, the ensuing portfolios concentrate

portfolio weights on very few names, defeating the core principle of portfolio diversification.

Against this backdrop, we focus on more realistic test portfolios, including more diversified

GMV portfolios as well as two risk parity propositions. Constraining portfolio weights brings

more realistic GMVs that have lower turnover and costs, though portfolio concentration is

still high. Importantly, while the implicit shrinkage imposed by the asset weight constraints

renders the opportunity set for linear and nonlinear shrinkage methods marginal, dynamic

covariance modeling is still rewarded. Interestingly, VCV modeling via the RiskMetrics

approach is found to be on par with more intricate DCC-NLS modeling when considering

constrained GMV portfolios.

Lastly, we investigate two salient risk parity strategies, ERC and HRP. Both improve

upon the tested GMV variants in terms of portfolio diversification and turnover. By design,
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these strategies operate at a higher absolute level of volatility, and we find them offering even

less opportunity for the various VCV estimators to impact the associated ex post volatilities.

By and large, the relative ranking of VCVs for the risk parity use-cases mirrors that of

the constrained GMV use-cases, and dynamic VCV modeling is still deemed relevant (with

DCC-NLS outperforming RiskMetrics-NLS in a statistically significant manner). In terms of

economic significance, however, the more sophisticated estimators hardly improve the ex post

volatility of these more realistic portfolios, especially when compared to the unconstrained

GMV case.

Our findings emphasize the importance of risk-based portfolio selection when evaluating

VCV estimators. As of this writing, the ex post volatility of the traditional GMV portfolio

is the key validation criterion in the academic literature. We recommend against directly

implementing estimators that were empirically found to be optimal solely based on this

criterion alone. Instead, estimators should be evaluated based on the objective of the risk-

based investor whilst enforcing meaningful investment constraints. At the minimum, we

propose using a long-only GMV portfolio with maximum-weight constraints and a transaction

cost penalty as the starting point for evaluating VCV matrix estimators in large asset

universes. Such realistic test portfolios suggest that the overall room for improvement from a

given VCV estimator is limited, but one might though make a difference that sometimes is

deemed statistically significant.
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Figure 1: Quantile plots of the estimated stock-specific transaction costs
This plot shows the cross-sectional median and the top/bottom 5% and 25% quantiles of the
stock-specific transaction costs in basis points. The sample period is from January 1, 1995, to
December 31, 2021.
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Figure 2: Key portfolio properties across tested VCV estimators and portfolios
This figure presents the key portfolio properties obtained from implementing alternative VCV
estimators for different test portfolios with 500 US stocks. Details on the used acronyms for
estimators and test portfolios can be taken from Table 1. The upper left panel shows ex post
volatility, the upper right shows annualized gross returns, the lower left panel shows average monthly
portfolio one-way turnover, and the lower right panel shows net Sharpe ratios. Within each panel
the range of observed portfolio statistics is highlighted by a colored bar. The portfolio metrics are
calculated over the full out-of-sample period from January 1, 1995, to December 31, 2021.
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Table 1: Description of the risk-based portfolios and VCV matrix estimators
This table presents a descriptive glossary of the risk-based portfolio construction methods (Panel A)
and VCV matrix estimators methods (Panel B) that we use. The GMV UNC portfolio does not
use long-only constraints. All other portfolios use a long-only constraint. The far right Benchmark
column in Panel B displays the choice of benchmark estimator that each VCV matrix estimator
is evaluated against. The estimators below the horizontal line in Panel B make use of a factor
structure.

Panel A: VCV matrix estimators

Portfolio Description

GMV UNC Unconstrained global minimum-variance portfolio

GMV LO Global minimum-variance portfolio with long-only constraints

GMV CON Global minimum-variance portfolio with long-only constraints, maximum-weight constraints and a transaction cost penalty

ERC Equal risk contribution portfolio

HRP Hierarchical risk parity portfolio

Panel B: Risk-based portfolios

Estimator Description Benchmark

Sample Sample estimator -

LS Linear shrinkage toward a scalar multiple of
the identity matrix

Sample

NLS Quadratic shrinkage of the inverse eigenvalues LS

RM RiskMetrics estimator Sample

RM-NLS RiskMetrics estimator with NLS NLS

DCC-NLS Dynamic conditional correlation model with
NLS

RM-NLS

EFM Exact factor model with diagonal residual
VCV matrix

Sample

AFM-DCC-NLS Approximate factor model with the DCC-NLS
estimator used for the correlation targeting
matrix

DCC-NLS
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Table 2: Description of performance metrics
This table presents a descriptive glossary of the presented portfolio performance metrics. For the
calculation of these metrics, we use the daily portfolio returns (Rt), the daily risk-free rate (Rf,t), the
net returns after taking transaction costs into account (Rnet,t), the asset weights at the beginning of
the month after rebalancing (wi,t), the asset weights at the end of the month before rebalancing
(w∗i,t), and the monthly transaction costs (TCt) computed using the approach of Briere et al. (2020).

Acronym Metric Definition

Vol. Volatility V ol =

√
1

T−1

∑T
t=1

(
Rt − 1

T

∑T
t=1 Rt

)2

Ret. Expected returns Ret = 1
T

∑T
t=1 Rt

SR Sharpe ratio SR = 1
T

∑T
t=1 (Rt −Rf,t) /V ol

NSR Net Sharpe ratio NSR = 1
T

∑T
t=1(Rnet,t −Rf,t)/Vol

TO Monthly turnover TO = 1
T

∑T
t=1 |wt+1 − w∗t |

TC Monthly transaction costs TC = 1
T

∑T
t=1 TCt

POS Average monthly number of non-negligible
positions

POS = 1
T

∑T
t=1

∑Nt

i=1 1|wi,t|≥10bps

MAXW Average monthly top 10 stock positions MAXW = 1
T

∑T
t=1

∑10
j=1 w

top10
j,t

WEFF Effective portfolio weights WEFF = 1
T

∑T
t=1

1∑Nt
i=1 w

2
i,t

GEXP Gross exposure GEXP = 1
T

∑T
t=1

∑Nt

i=1 |wi,t|
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Table 3: Ex post volatility of the risk-based portfolios
This table presents the ex post volatility of risk-based portfolios of the universe with 500 US stocks
driven by various VCV matrix estimators over the full out-of-sample period (Panel B) from January
1, 1995, to December 31, 2021, and during high- (Panel C) and low-volatility (Panel D) regimes.
High- and low-volatility regimes correspond to dates on which the VIX index is above or below
its five-year moving average, respectively. Panel A presents the realized volatility of the three
benchmark portfolios. The top three performers of each risk-based portfolio are in bold face. *
and ** indicate a 5% and 1% statistically significant reduction in ex post volatility after a Holm
correction for multiple testing. Differences in ex post volatility are tested as follows: (1) LS versus
Sample (2) NLS versus LS, (3) RM versus Sample, (4) RM-NLS versus NLS, (5) DCC-NLS versus
RM-NLS, (6) EFM versus Sample, and (7) AFM-DCC-NLS versus DCC-NLS.

Panel A: Benchmark portfolios

VW EW IV

Full sample 18.92 19.38 16.84

High volatility regime 25.32 25.75 22.51

Low volatility regime 10.92 11.54 9.76

Panel B: Full sample

GMV UNC GMV LO GMV CON ERC HRP

Sample 10.91 12.24 13.36 17.31 16.11

LS 10.49** 12.23 13.36 17.31 16.14

NLS 10.08** 12.22 13.36 17.29** 16.16

RM 11.36 11.31** 13.00** 17.04** 15.80**

RM-NLS 9.91 11.33** 12.99** 17.02** 15.83**

DCC-NLS 9.33* 9.74** 13.10 16.77** 14.40**

EFM 15.70 14.50 13.55 17.07** 15.71**

AFM-DCC-NLS 9.69 11.78 13.34 17.30 15.89

Panel C: High volatility regime

GMV UNC GMV LO GMV CON ERC HRP

Sample 13.45 15.95 17.60 23.06 21.47

LS 13.05** 15.95 17.60 23.07 21.53

NLS 12.79* 15.93 17.58 23.03** 21.54

RM 14.03 14.71** 17.19** 22.69** 21.04**

RM-NLS 12.58 14.75** 17.16** 22.66** 21.08**

DCC-NLS 12.09 12.52** 17.34 22.28** 19.11**

EFM 19.88 18.59 17.72 22.75** 20.94**

AFM-DCC-NLS 12.37 15.21 17.59 23.07 21.21

Panel D: Low volatility regime

GMV UNC GMV LO GMV CON ERC HRP

Sample 8.19 7.86 8.23 10.18 9.45

LS 7.72** 7.82** 8.23 10.18 9.45

NLS 7.03** 7.82 8.25 10.17** 9.48

RM 8.49 7.30** 7.89** 10.06** 9.32**

RM-NLS 6.90 7.29** 7.89** 10.04** 9.33**

DCC-NLS 6.12** 6.54** 7.91 9.99** 8.63**

EFM 11.04 9.81 8.58 10.01** 9.22**

AFM-DCC-NLS 6.65 7.80 8.19 10.13 9.26
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Table 4: Performance overview of the risk-based portfolios
This table presents the performance statistics for the risk-based portfolios. The first three rows
present the performance statistics for the three benchmark portfolios. The results presented are
for the universe with 500 US stocks using a five year estimation period over the full out-of-sample
period from January 1, 1995, to December 31, 2021. We present annualized portfolio volatility (%)
(Vol.), annualized portfolio return (%) (Ret.), annualized portfolio Sharpe ratio (SR), annualized
portfolio Sharpe ratio net of transaction costs (NSR), annualized portfolio transaction costs (bps)
(TC), average monthly portfolio one-way turnover (%) (TO), average monthly number of positions
with weight >0.1% (POS), average monthly sum of the largest 10% of positions (%) (MAXW), the
average monthly effective portfolio weights (WEFF), and average monthly gross portfolio exposure
(%) (GEXP).

Portfolio Estimator Vol. Ret. SR NSR TO TC POS MAXW WEFF GEXP

VW - 18.9 14.0 0.627 0.626 2.5 0.09 219 21.5 119 100

EW - 19.4 14.2 0.623 0.620 10.3 0.42 500 2.0 500 100

IV - 16.8 13.7 0.688 0.685 8.6 0.30 398 6.0 367 100

GMV UNC

Sample 10.9 8.2 0.554 0.467 223.7 7.50 470 34.4 6 723

LS 10.5 8.7 0.630 0.560 172.2 5.84 466 30.8 9 602

NLS 10.1 8.8 0.659 0.611 107.7 3.75 457 26.1 17 447

RM 11.4 8.5 0.557 0.444 302.0 10.27 473 34.6 5 812

RM-NLS 9.9 8.8 0.670 0.599 160.7 5.67 463 29.1 13 518

DCC-NLS 9.3 11.1 0.958 0.850 255.3 8.00 422 54.9 12 349

EFM 15.7 9.7 0.484 0.475 25.7 0.91 412 24.3 48 232

AFM-DCC-NLS 9.7 10.4 0.848 0.771 184.0 5.96 440 41.6 13 420

GMV LO

Sample 12.2 11.2 0.743 0.737 20.1 0.55 40 66.0 18 100

LS 12.2 11.2 0.743 0.737 19.6 0.55 44 62.0 21 100

NLS 12.2 11.2 0.739 0.734 18.3 0.52 54 51.6 29 100

RM 11.3 10.9 0.775 0.766 28.2 0.75 38 67.3 17 100

RM-NLS 11.3 10.9 0.776 0.768 25.7 0.71 48 56.0 25 100

DCC-NLS 9.7 9.8 0.788 0.758 90.7 2.35 29 78.0 11 100

EFM 14.5 10.5 0.576 0.573 11.8 0.31 40 56.4 24 100

AFM-DCC-NLS 11.8 11.5 0.794 0.781 47.1 1.22 36 70.0 16 100

GMV CON

Sample 13.4 12.4 0.764 0.760 14.0 0.44 110 10.1 104 100

LS 13.4 12.3 0.764 0.760 13.9 0.44 111 10.1 105 100

NLS 13.4 12.3 0.761 0.757 13.5 0.43 113 10.1 106 100

RM 13.0 11.8 0.745 0.739 18.2 0.57 110 10.1 104 100

RM-NLS 13.0 11.8 0.745 0.740 17.7 0.55 112 10.1 105 100

DCC-NLS 13.1 11.9 0.742 0.727 51.9 1.60 110 10.1 104 100

EFM 13.5 12.3 0.747 0.744 11.7 0.36 109 10.1 104 100

AFM-DCC-NLS 13.3 12.5 0.774 0.767 21.0 0.67 111 10.1 105 100

ERC

Sample 17.3 13.6 0.662 0.659 10.1 0.38 481 5.3 414 100

LS 17.3 13.6 0.662 0.659 10.1 0.38 482 5.3 415 100

NLS 17.3 13.6 0.662 0.659 10.1 0.38 480 5.5 410 100

RM 17.0 13.5 0.668 0.665 10.4 0.39 481 5.6 407 100

RM-NLS 17.0 13.5 0.668 0.665 10.4 0.39 480 5.7 403 100

DCC-NLS 16.8 13.5 0.680 0.676 17.2 0.61 475 6.0 393 100

EFM 17.1 13.6 0.674 0.671 10.0 0.37 464 6.4 382 100

AFM-DCC-NLS 17.3 13.6 0.664 0.661 10.5 0.39 478 5.8 397 100

HRP

Sample 16.1 13.4 0.700 0.694 21.3 0.70 372 7.9 323 100

LS 16.1 13.5 0.702 0.696 20.9 0.69 373 7.7 326 100

NLS 16.2 13.5 0.704 0.698 18.8 0.62 377 7.2 338 100

RM 15.8 13.2 0.700 0.694 22.9 0.74 370 8.2 317 100

RM-NLS 15.8 13.3 0.704 0.699 20.6 0.68 373 7.6 330 100

DCC-NLS 14.4 13.1 0.765 0.754 38.1 1.17 345 14.1 238 100

EFM 15.7 13.4 0.715 0.712 12.5 0.42 353 10.0 272 100

AFM-DCC-NLS 15.9 13.5 0.713 0.706 23.6 0.77 366 8.6 305 100
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Table 5: Risk-based portfolio multi-factor exposures
This table presents the results from regressing the time series of monthly excess portfolio returns
derived from the portfolio/estimator combinations against five asset pricing factors: Market mi-
nus risk-free rate (MKT), Size (SMB), Value (HML), Momentum (WML), and Low-Volatility
(LOWVOL). The portfolios are computed for the universe with 500 US stocks using a five year
estimation window over the full-out-of-sample period from January 1, 1995, to December 31, 2021.
The GMV, ERC and HRP portfolios are estimated using the RM-NLS VCV estimator (similar
results are obtained for the other estimators). t-values are shown in parentheses, and computed using
HC3 standard errors. * and ** indicate statistical significance at the 5% and 1% level, respectively.
For the MKT factor, the t-values and significance level are shown with respect to 1.0.

Portfolio VW EW IV GMV UNC GMV LO GMV CON ERC HRP

α (%) 0.09 0.04 0.02 0.22 0.11 0.01 0.02 0.07

(1.20) (0.47) (0.27) (1.73) (0.84) (0.12) (0.20) (0.65)

MKT 0.96 0.97 0.83** 0.34** 0.38** 0.6** 0.86** 0.74**

(-1.68) (-0.73) (-5.16) (-12.78) (-12.86) (-9.67) (-3.98) (-6.59)

SMB -0.12** 0.10** 0.04 -0.01 0.01 0.03 0.08** 0.05

(-4.98) (3.35) (1.35) (-0.18) (0.21) (1.01) (2.82) (1.48)

HML -0.04 0.07 0.07 -0.06 -0.06 -0.01 0.06 -0.01

(-1.51) (1.63) (1.43) (-0.83) (-0.92) (-0.22) (1.17) (-0.12)

RMW 0.07* 0.12** 0.20** 0.16 0.13 0.19** 0.18** 0.19**

(1.97) (2.79) (4.53) (1.95) (1.61) (2.80) (3.79) (3.58)

CMA 0.04 0.07 0.12* 0.07 0.14 0.15* 0.12* 0.14*

(0.89) (1.20) (2.16) (0.83) (1.56) (1.98) (2.10) (1.97)

MOM -0.01 -0.06** -0.04* 0.04 0.02 0.01 -0.02 -0.02

(-1.18) (-3.20) (-2.12) (1.28) (0.65) (0.43) (-1.11) (-0.88)

LOWVOL 0.01 0.04 0.16** 0.21** 0.18** 0.24** 0.10** 0.15**

(0.62) (1.21) (5.35) (3.80) (3.36) (6.47) (3.37) (4.37)

R2 0.94 0.91 0.89 0.43 0.47 0.75 0.89 0.85
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