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Precision installation of silyl synthetic 
handles within arenes by regiocontrolled 
ruthenium C(sp2)–H functionalization
 

Jamie H. Docherty    1,2, Mishra Deepak Hareram1, Luke M. Nichols    1, 
Ignacio Pérez-Ortega1, Iñigo J. Vitorica-Yrezabal    1 & Igor Larrosa    1 

The site-selective functionalization of C(sp2)–H bonds represents a powerful 
strategy for the synthesis of structurally diverse compounds with broad 
applicability. Here we report efficient regioselective catalytic methods for the 
formation of benzyltrimethylsilanes through ruthenium-catalysed C(sp2)–H 
silylmethylation. The developed protocols enable selective functionalization 
at both ortho and meta positions within arenes bearing N-based directing 
groups. The resulting silylmethyl compounds can undergo diverse 
transformations, including nucleophilic aromatic substitution, carbonyl 
addition, olefination and desilylation. Significantly, the regiodivergent 
installation of silylmethyl synthetic handles allows for the synthesis of the 
pharmaceutical losmapimod and could further be applied in direct late-stage 
functionalizations. Mechanistically, an essential role for biscyclometallated 
ruthenium(II) species has been found, with the formation of intermediate 
ruthenium(III) species indicated by paramagnetic NMR experiments. These 
synthetic inventions and mechanistic elucidations signify a transformative 
step within ruthenium-catalysed C(sp2)–H functionalization, enabling diver
se syntheses and providing a framework for future development.

Highly regioselective catalytic protocols have served as powerful 
tools for the transformation of both simple and complex molecules 
into structures of profound utility across diverse fields such as phar-
maceuticals and materials science1–6. One critical tenet in synthetic 
chemistry has been the effective incorporation of multifunctional 
synthetic handles within organic molecules7–14. These handles can be 
used to introduce structural diversity by serving as general reactive 
coupling partners or reagents, substantially broadening the range 
of strategies available to synthetic practitioners (Fig. 1a). There
fore, the ability to selectively install versatile handles into densely 
functionalized substrates offers compelling advantages, such as 
allowing for general arrays of diverse late-stage modifications15,16. 
As such, these approaches represent powerful strategies for ena-
bling library syntheses and facilitating accelerated exploration of 
chemical space.

Given their synthetic versatility, boronic esters and acids have 
emerged as exemplar multifunctional handles for a plethora of syn-
thetic manipulations17–19. The C(sp2)–H borylation of arenes represents 
an efficient example of their synthetic preparation, which has been 
achieved using metal-catalysed20–22, metal-free23 and radical-mediated 
processes24 (Fig. 1b). However, maintaining control over regioselectiv-
ity within these reactions presents a primary challenge and has neces-
sitated the development of innovative strategies25.

Alternatives have emerged to complement the utility of 
boron-based compounds, for example, silicon-based synthetic 
handles have attracted interest for their ability to serve as useful 
pro-nucleophiles and coupling partners26–29. The synthetic applicability 
of silyl groups is analogous to that of boronic esters with potentially 
wide synthetic suitability for a varied selection of synthetic transforma-
tions. Benzylic silanes in particular hold considerable promise due to 
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preferentially react to give ortho-C(sp2)–H functionalization, while 
secondary and tertiary alkyl halides favour meta addition (Fig. 1d)44–48. 
The regiocontrol in these transformations is therefore commonly pred-
icated on the structure of the electrophile, thus providing a framework 
for precision functionalization. We posited that if these observations 
hold universally, we could strategically use primary and secondary 
halo(silyl)methane reagents for a regiodivergent set of C(sp2)–H silyl-
methylation reactions. While differentiating between ortho and meta 
positions was feasible based on substrate design, we recognized the 
challenge of obtaining good reactivity with sterically encumbered 
electrophiles (for example, SiMe3, A-value = 2.5) as well as limiting the 
formation of over-addition products.

In this report, we present ruthenium-catalysed procedures for 
the site-selective installation of these useful silyl synthetic handles at 
ortho and meta sites within arenes bearing N-based directing groups 
and demonstrate their utility through a series of synthetic transforma-
tions. Regioselective installation was achieved using (bromomethyl)
trimethylsilane for ortho selectivity and bis(trimethylsilyl)chlorometh-
ane for meta selectivity (Fig. 1e). In each case, optimized reaction 

their ability to serve as masked benzylic anion equivalents (Fig. 1c)30–34. 
This reactivity allows the silyl group to be readily unmasked using 
fluoride or alkoxide reagents, unveiling species capable of acting as 
general nucleophiles towards a diverse set of electrophiles. Moreover, 
the utility of benzylic silanes extends beyond anion reactivity, with 
this class of compounds additionally serving as robust precursors for 
benzylic radicals35,36. However, classical synthetic strategies for their 
preparation have required the use of highly reactive halosilanes, such 
as chlorotrimethylsilane, and organometallic reagents37–41.

Considering the growing synthetic utility exhibited by silyl syn-
thetic handles, we questioned whether ruthenium-catalysed C(sp2)–H 
functionalization might serve as an effective method for installing 
silylmethyl groups. We reasoned that, with a ruthenium catalyst, we 
could achieve site-selective installation of this class of synthetic handle 
at both ortho and meta sites within arenes bearing N-based directing 
groups42,43. This approach relied on the emerging evidence supporting 
the ability to obtain high levels of site selectivity in ruthenium-catalysed 
C(sp2)–H functionalization reactions. For instance, prevailing stud-
ies suggest that aryl halide and primary alkyl halide electrophiles 
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Fig. 1 | Concepts and strategies for the installation of synthetic handles within 
arenes and their utility. a, Generic utility of multifunctional synthetic handles 
within chemical transformations. b, Regiochemical challenges associated 
with C(sp2)–H functionalization reactions. Pinacolboronic esters have proven 
broad synthetic utility in a variety of transformations; however, installation 
by metal-catalysed C(sp2)–H borylation has required innovative strategies for 
regiocontrol. Bpin, 4,4,5,5-tetramethyl-1,3,2-dioxaborolane. c, Synthetic utility 

of benzylic trimethylsilanes as masked anion equivalents. Nu, nucleophile. 
d, Overview of mechanistic pathways for the proposed ruthenium-catalysed 
C(sp2)–H functionalization leading to regiodivergent outcomes. 1°, primary;  
2°, secondary; 3°, tertiary. e, Regiodivergent silylmethylation enabled by a single 
ruthenium catalyst, [(tBuCN)5Ru(H2O)](BF4)2, providing site-selective access to 
both ortho- and meta-silylmethylated arenes. f, Reaction conditions for both 
meta- and ortho-silylmethylation.
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conditions allowed for both excellent levels of reactivity as well as 
regioselectivity (Fig. 1f). These synthetic inventions underscore the 
powerful capabilities of ruthenium catalysis and the broad utility of 
silicon-based synthetic handles that serve to expand the breadth of 
downstream structures.

Results
Identification of ortho-silylmethylation reaction conditions
To discover reaction conditions for ortho-silylmethylation, we systemati-
cally assessed key reaction variables such as choice of (pre)catalyst, base, 
additives and solvent. Principally, ortho-alkylation reactions using halide 
electrophiles have used (pre)catalysts based on [(p-cymene)RuCl2]2 and 
its derivatives due to their widespread commercial availability. However, 
this class of (pre)catalyst possesses a substantial barrier to activation 
and consequently necessitates the use of high temperatures45 (≳100 °C) 
or light irradiation46. For ortho-silylmethylation, we selected (bromo-
methyl)trimethylsilane (3) as electrophile and 2-phenylpyridine (2a) as 
a model substrate (Fig. 2). Reaction at 80 °C in THF using [(p-cymene)
RuCl2]2 or analogues such as [(C6H6)RuCl2]2 gave only low levels of reac-
tivity (17% and 14% yield of 4a, respectively, Supplementary Table 7). 
Key for high levels of reactivity was the use of [(tBuCN)5Ru(H2O)](BF4)2 
(RuAqua, 1) as (pre)catalyst, which gave 4a in excellent yield (93%). We 
recently reported the robust air and moisture stability of 1 as well as its 
diverse reactivity enabled by its more labile ligand sphere49.

While polar aprotic solvents such as N-methyl-2-pyrrolidone 
(NMP) have been used previously to facilitate ruthenium-catalysed 
ortho-alkylation reactions47, we found that ortho-silylmethylation could 
be performed in a range of solvents, including ethyl acetate, dioxane 
and THF (Supplementary Table 6). Crucial to both high levels of reac-
tivity and selectivity was the addition of NaI. We observed that in the 
absence of NaI, considerable meta-silylmethylation occurred as well as 
the formation of over-addition products (Supplementary Tables 1–4).

Applicability of ortho-silylmethylation
To assess the generality of the developed ortho-silylmethylation reac-
tion, a selection of arenes bearing N-heterocycle groups were sub-
jected to the reaction conditions (Fig. 2). Free benzylic alcohol 2b and 
analogues with silyl (2c), para-methoxybenzyl (2d) and acetyl (2e) 
protecting groups all underwent selective ortho-silylmethylation in 
high-to-excellent yields. Similarly, 4-substituted free aniline 2h and 
phenol 2i were well tolerated, giving the corresponding silylmeth-
ylated species 4h and 4i in good yields (55% and 62%, respectively). 
1,2,5-Trisubstituted arene 2j was also ortho-silylmethylated on a 1-mmol 
scale to give 4j in excellent yield (79%), highlighting the ability of the 
developed protocol to functionalize polysubstituted substrates. Arenes 
bearing meta electron-withdrawing (2k) and electron-donating (2l) 
substituents underwent productive functionalization, albeit with 2l 
requiring increased catalyst loading (10 mol%). Amides 2m,n and esters 
2o,p, including those containing structural units derived from biologi-
cally active compounds, also participated in ortho-silylmethylation, 
generally in good-to-excellent yields.

We recognized that it was key to demonstrate the value of this 
synthetic invention in both the context of broad functional group toler-
ance and its applicability across a diverse range of structures. Therefore 
we opted to look beyond pyridine-based N-heterocycles and explored 
the reactivity of pyrimidine, pyrazole, oxazoline, imine and related 
structures. Such broad applicability would be key to enable stream-
lined syntheses of a wide array of structures and thus allow accelerated 
discovery and exploration of chemical space. Accordingly, pyrimidine 
2q was subjected to the established reaction conditions, selectively 
giving the expected product 4q in good yield (65%). Similarly, pyra-
zoles 2r–t underwent successful ortho-silylmethylation to give 4r–t in 
moderate-to-good yields (36–69%). The formal ortho-silylmethylation 
of ketones was facilitated using imines as temporary directing groups. 
Specifically, ketimines 2v–x derived from 4-(dimethylamino)aniline 

were used to give the corresponding ortho-functionalized products. 
After acid hydrolysis, successful isolation of the ortho-silylmethylated 
ketones 4v–x was achieved in appreciable yields (45–52%).

One powerful application of any C–H functionalization meth-
odology is its capacity to functionalize targets bearing substantial 
functional group density and diversity. In particular, late-stage func-
tionalization of biologically active compounds has served as a valuable 
tool for the rapid generation of medicinally relevant analogues. The 
ortho-silylmethylation protocol was therefore applied to a range of 
pharmaceutical targets (Fig. 1, bottom). Anti-retroviral compound 
atazanavir (2y) underwent successful ortho-silylmethylation to give 
4y in a low but useful yield (25%). Imidazo[1,2-a]pyridine-containing 
zolimidine (2z) and zolpidem analogue 2aa similarly reacted to 
selectively give 4z and 4aa in yields of 36% and 16%, respectively. 
Lastly, the well-known anxiolytic diazepam (2ab) containing the 
tetrahydrobenzo[e][1,4]diazepin-2-one directing group underwent 
silylmethylation to give 4ab in good yield (40%), with the transforma-
tion tolerant of the halide handle within 2ab.

Identification of meta-silylmethylation reaction conditions
In contrast to the ortho reactivity obtained with (bromomethyl)tri-
methylsilane (3), the use of bis(trimethylsilyl)chloromethane (5) 
necessitated an elevated temperature (100 °C) and an aqueous sol-
vent mixture (iPrOH–H2O, 3:2) for good levels of meta-selective reac-
tivity (Supplementary Tables 9–16). Akin to ortho-silylmethylation, 
the use of RuAqua (1) as the (pre)catalyst proved effective for 
meta-silylmethylation using 5, allowing for the use of a single (pre)
catalyst for both ortho- and meta-silylmethylation reactions. At the 
outset, we determined functional-group tolerance through a robust-
ness screen50 under the optimized reaction conditions. For this screen-
ing process, we used 2-phenylpyridine (2a) as a model substrate and 
bis(trimethylsilyl)chloromethane (5; Supplementary Table 16). This 
rapid survey of additive compounds highlighted the tolerance towards 
amide, carbamate and amine groups, amongst others.

Applicability of meta-silylmethylation
To further evaluate the generality of the developed meta- 
silylmethylation reaction, the optimized reaction conditions were 
applied to a selection of arenes bearing N-heterocycles (Fig. 3). Specifi-
cally, a range of substrates bearing pyridyl directing groups were sub-
jected to the established reaction conditions. These reactions resulted 
in successful meta-silylmethylation using 5 to give the corresponding 
products 6a–m, generally in good-to-excellent yields. Despite the pres-
ence of the sterically demanding geminal trimethylsilyl groups within 
electrophile 5, installation could still be achieved at the meta position 
of para-substituted arylpyridines, as exemplified by the formation of 
products 6c–g. A range of ester-containing arenes were successfully 
meta-silylmethylated using 5 to give 6h–j in good yields (45–77%). The 
functional-group compatibility highlighted in the robustness screen 
was corroborated in the successful synthesis of tertiary amide 6k in high 
yield (70%). The methodology was successfully expanded to include 
other N-heterocycles, specifically, arylpyrimidines, which gave the 
corresponding meta-silylmethylated compounds 6o,p. Moreover, a 
selection of arylpyrazoles underwent successful functionalization, 
giving products 6q–t in moderate-to-good yields (38–50%).

This ruthenium-catalysed method was further applied in the 
synthesis of the pharmaceutical compound losmapimod (8), which 
holds promise for the treatment of facioscapulohumeral muscular 
dystrophy51. Initially, arylpyridine 2ac was meta-silylmethylated using 
the established reaction conditions to selectively give a multigram 
quantity of product 6x in good yield (2.4 g, 54%). This compound 6x 
was then oxidized to a carboxylic acid, followed by amide coupling with 
cyclopropylamine to give 7. Application of the ortho-silylmethylation 
conditions to 7 using silane 3 in NMP selectively gave losmapimod (8) 
in 52% yield (Fig. 3, bottom).
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Synthetic utility of benzyltrimethylsilanes
Selective C(sp2)–H silylmethylation offers a synthetically useful step 
for the generation of benzylic trimethylsilanes that can be further 
elaborated by several strategies to produce diverse compounds.  
To highlight the synthetic utility of the products formed from 
both ortho- and meta-silylmethylation reactions, these were sub-
jected to several different functionalization reactions (Fig. 4a). 
ortho-Silylmethylated compound 4a was subjected to the condi-
tions reported by Reidl and Bandar for nucleophilic aromatic substi-
tution (SNAr) coupling with 4-cyanopyridine (9), which gave coupled 
product 10 in good yield (55%)33. Similarly, benzylic anion reactivity 
was achieved using the conditions of Das and O’Shea30, which ena-
bled nucleophilic addition into aldehyde 11 to give homobenzylic 
alcohol 12 in excellent yield (82%). Similar reactivity was achieved 
when applied to ketone 13, which gave the corresponding alcohol 
14, once again in high yield (70%). para-Selective C(sp2)–H benzyla-
tion of (diacetoxyiodo)benzene 15 was achieved by reaction of 4a in 
the presence of excess trimethylsilyl triflate to give 16 in moderate 
yield (29%)52. The benzylic trimethylsilane 4a also served as a suitable 
precursor for Peterson-type olefination using imine 19 to give alkene 
20 in excellent yield and diastereoselectivity (74%, >99:1 E/Z)34. The 
ortho-silylmethylation reaction could also serve as a valuable proce-
dure for the selective formal ortho-methylation of arenes by reaction 
of 4a with excess tetrabutylammonium fluoride to give ortho-methyl 
compound 21 in excellent yield (90%).

Analogous to the reactivity observed using the ortho-silylmethyl 
synthetic handle within 4a, the geminal bis(trimethylsilyl)methane 
group in 6a could also be used as a pro-nucleophile (Fig. 4b). To illus-
trate, 6a underwent reaction with pyridine N-oxide (22) to give the 
coupled product 23 in good yield (61%)32. Application of Reidl and 
Bandar’s conditions enabled SNAr with 9 to give the coupled compound 
24 in high yield (71%)33. Iterative SNAr using 9 and 1,4-addition with 
acrylamide 25 was achieved under similar conditions to give 26 in 
appreciable yield (46%). Formal arene meta-formylation to produce 
27 was realized following conversion of the gem-silyl handle within 6a 
using excess ammonium ceric nitrate. Direct olefination of the gem-silyl 
handle using imine 19 gave E-alkene 29 in high yield and excellent dias-
tereoselectivity (78%, >99:1 E/Z)31. Similarly to the ortho-silyl group, the 
meta-silyl handle in 6a also underwent protodesilylation using excess 
tetrabutylammonium fluoride to give meta-methyl compound 30 in 
excellent yield (90%). This reactivity therefore demonstrates a viable 
strategy for the formal C(sp2)–H meta-methylation of arenes. Taken 
together, the meta-selective silylmethylation reaction provides generic 
access to a broad suite of functional groups, thus offering a transforma-
tive approach to the diversification of aromatic compounds.

Mechanistic considerations
Both ortho- and meta-selective C(sp2)–H functionalization reactions 
using ruthenium catalysts have been proposed to proceed through 
intermediate cyclometallated species (Fig. 5a). Mechanistic hypoth-
eses have suggested the involvement of mono- and biscyclometallated 
ruthenium(II) species (for example, Int-I to Int-III) as key reactive inter-
mediates that are formed before reaction with halide electrophiles45–47. 
Based on density functional theory calculations, Ackermann and 
co-workers proposed that monocyclometallated ruthenium(II) com-
plexes (that is, with additional acetate and 2a coordination, Int-II) 
react favourably by inner-sphere single-electron transfer (SET) with 
1-bromohexane (Gibbs energy of activation, ∆G‡ = 16.6 kcal mol−1) 
and tert-butyl bromide (∆G‡ = 15.6 kcal mol−1)53. These values contrast 
with those determined for biscyclometallated species (for example, 
Int-III). For this class of complex, the reactions with primary and tertiary 
alkyl bromides were calculated to have considerably higher barriers 
(∆G‡ = 22.9 and 22.1 kcal mol−1, respectively). Therefore, these calcula-
tions suggest a marked difference in the reactivity of the monocyclo-
metallated and biscyclometallated species.

To probe these mechanistic proposals in the context of ortho- and 
meta-silylmethylation, monocyclometallated ruthenium(II) complex 
31 was subjected to a series of control experiments (Fig. 5b). When com-
plex 31 was heated at 40 °C with ortho-selective bromide 3, no reaction 
was observed (Fig. 5b(i)). In contrast, reaction in the presence of added 
arylpyridine 2j gave the ortho-silylmethylation product 4j (Fig. 5b(ii)). 
The addition of arylpyridine 2j allows for further cyclometallation 
and formation of a biscyclometallated species (that is, complex 40), 
which was observed in the reaction mixture (Supplementary Figs. 15 
and 16). Similarly, to mimic the intermediate species proposed by 
Ackermann and co-workers, we conducted the reaction with added 
2-(2,6-difluorophenyl)pyridine (34; Fig. 5b(iii)). The ortho-fluorine 
substitution within 34 precludes cyclometallation while still allowing 
for pyridine coordination; however, no silylmethylation was observed.

Similarly for meta-silylmethylation reactivity, in the stoichio-
metric reaction of monocyclometallated ruthenium(II) complex 31 at 
40 °C with meta-selective chloride 5, neither product 6l nor its cyclo-
metallated analogue (for example, 36) was observed (Fig. 5b(iv)). 
However, in the presence of added arylpyridine 2j, the same reaction 
gave the meta-silylmethylation product 6l (Fig. 5b(v)). This outcome 
was not replicated when the same experiment was conducted with 
34 (Fig. 5b(vi)). The independent synthesis of the cyclometallated 
ruthenium(II) complex bearing product 6l facilitated direct com-
parison of the reaction spectra to exclude the formation of this type of 
species in the absence of added arylpyridine 2j (Fig. 5c). Importantly, 
these experiments were reproducible with analogous monocyclometal-
lated complexes bearing distinct substituents (Supplementary Fig. 17). 
These mechanistic observations were suggestive of a key role for the 
formation and reactivity of a biscyclometallated species, which stands 
in contrast to previously proposed pathways.

Reactivity of biscyclometallated ruthenium(II) complexes
Following the observed inactivity exhibited by monocyclometallated 
ruthenium(II) complexes, we next examined the stoichiometric reac-
tivity of a biscyclometallated ruthenium(II) species. Thus, we initially 
synthesized biscyclometallated complex 33 from its monocyclomet-
allated precursor 37 (Fig. 6a). This complex was treated with excess 
(bromomethyl)trimethylsilane (3) in [D6]benzene at 29 °C, tracking the 
reaction progress by 1H NMR spectroscopy (Fig. 6b). Notably, the prod-
uct 4ac and its ruthenium(II) coordinated analogue 38 were observed, 
without the need for any additives or base, and in less than 1 h.

We similarly explored the use of biscyclometallated ruthenium(II) 
complex 33 to understand the reactivity exhibited in the 
meta-silylmethylation reaction using bis(trimethylsilyl)chlorometh-
ane (5). However, in complex 33, the site where electrophile 5 would 
initiate carbon–carbon bond formation is impeded by a methyl sub-
stituent (para to ruthenium) and thus no reactivity was anticipated. 
Despite this, when 33 was treated with excess 5 at room temperature, 
we noted the formation of a paramagnetic species in solution. This 
was identified by characteristic 1H NMR resonances that fell outside 
the typical sweep width (that is, δ1H = 72.0, –14.8 and −19.3 ppm, see 
Supplementary Fig. 34).

To garner information on the number of unpaired electrons within 
the newly formed paramagnetic ruthenium species, we used the Evans 
NMR method (Fig. 6c)54. The reaction of 33 and 5 in [D6]benzene was 
conducted in a J Young NMR tube incorporating a sealed inner capil-
lary containing [D6]benzene to serve as a reference. We monitored the 
progress of the reaction in real time using 1H NMR spectroscopy and 
observed a clear divergence in the resonance frequency of the [D6]
benzene residuals (that is, the signal from the reaction mixture versus 
the signal from the capillary). From this, we determined a spin-only 
magnetic moment μeff of 1.74 μB, which is supportive of a single unpaired 
electron (Supplementary Equation (1))54. Given the theoretical elec-
tronic configurations of an octahedral ruthenium(II) species (d6,  
diamagnetic) and a singly oxidized octahedral ruthenium(III) species 
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(d5, paramagnetic), these observations are coherent with the forma-
tion of a ruthenium(III) species. Based on the diffusion-ordered NMR 
spectra and mass spectrometry data, the reaction of 33 and 5 gener-
ated a putative ruthenium(III) dimer 39 (Supplementary Figs. 37–39).

Given the limitations imposed by the densely substituted biscy-
clometallated species 33 to undergo meta-selective functionalization, 

we questioned the feasibility of producing an unsubstituted analogue. 
Biscyclometallated ruthenium(II) complex 40 was synthesized from its 
monocyclometallated analogue 31 and arylpyridine 2j in useful yield 
(35%; Fig. 7a). Comparative cyclic voltammograms (CVs) of monocyclo-
metallated ruthenium(II) complexes 31 and 37 and biscyclometallated 
ruthenium(II) complexes 40 and 33 showed distinctly different redox 
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potentials. Specifically, the Ru(III)/Ru(II) redox potentials in 40 and 33 
are E1/2 = −0.37 and −0.51 V, respectively, versus ferrocene/ferrocenium, 
while the Ru(III)/Ru(II) redox potentials in monocyclometallated 31 and 
37 are E1/2 = 0.49 and 0.29 V, respectively, versus ferrocene/ferrocenium. 

The distinct differences in the redox potentials underscore the enhanced 
reducing properties of the biscyclometallated ruthenium(II) complexes 
compared with their monocyclometallated analogues (ΔE1/2 ≈ 0.8 V) 
and are consistent with the observed reactivity towards electrophiles.
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Having synthetically established access to 40, we treated this 
complex with ortho-silylmethylation reagent 3 at 40 °C, monitor-
ing the reaction progress by 1H NMR spectroscopy (Fig. 7b, top). The 
formation of functionalized product 4j was observed in conjunc-
tion with the consumption of complex 40. Similarly, the reaction of 
meta-silylmethylation reagent 5 and complex 40 was also tracked 
using 1H NMR spectroscopy (Fig. 7b, bottom). In this instance, product 
6l was observed alongside uncharacterized paramagnetic species, 
concurrent with the consumption of complex 40. The reactivities 
observed highlight the ability of the halide reagents 3 and 5 to readily 
engage with biscyclometallated complexes 40 and 33. In stark con-
trast, no reactivity was observed when these reagents were applied 
to monocyclometallated ruthenium(II) analogues 31 and 37. These 
findings are therefore supportive of a key role for biscyclometallated 
species during catalysis.

To gain further mechanistic insight, we measured the kinetic 
orders of the components in the reactions using variable-time normali-
zation analysis55. For the meta-silylmethylation reaction, an order of 1 
on the Ru catalyst, 0.2 on arene, 0.4 on electrophile 5 and −0.5 order on 
LiCl were observed (Fig. 8a), while for the ortho-silylmethylation reac-
tion, an order of 1 on the Ru catalyst, 0.5 on arene, 0.7 on electrophile 
3 and 0 order on NaI were observed (Fig. 8b).

Mechanistically, both pathways proceed by sequential C–H acti-
vation, forming Int-III via the monocyclometallated intermediate 
Int-I (Fig. 8c). Int-III was confirmed as the active catalytic interme-
diate through comparative stoichiometric experiments, showing 
the need for biscyclometallation over activation by N coordination 
(Int-II). The measured kinetic orders on the arene substrate of 0.2 and 
0.5 for meta- and ortho-silylmethylation, respectively, are consistent 
with a reversible C–H activation step. This was also evidenced by the 
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Fig. 8 | Variable-time normalization analysis for ortho- and meta-
silylmethylation and overall mechanistic hypothesis. a,b, Normalized 
reaction plots to determine the kinetic orders for the ruthenium catalyst, arene, 
electrophile, lithium chloride and sodium iodide in the meta-silylmethylation 

(a) and ortho-silylmethylation (b) reactions. The progress in both reactions 
was monitored by gas chromatography with flame ionization detection using 
biphenyl as internal standard. c, Mechanistic overview of both ortho and meta 
selectivity in the silylmethylation reaction, diverting post-SET.
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observation of H/D exchange in reactions carried out in the presence of 
D2O (Supplementary Information). While Int-III possesses considerably 
more reducing power than its predecessor Int-I, the reduction poten-
tials of typical alkyl halides remain out of reach for an outer-sphere 
mechanism56. It is therefore proposed that the reaction proceeds via 
an inner-sphere complex, where the oxidation potential of the electro-
phile is reduced to an accessible value57. This pathway agrees with the 
partial orders measured for the electrophiles, which are indicative of 
a reversible reaction of the alkyl halide with a catalytic intermediate 
preceding the rate-determining step. The following SET to Int-IV was 
confirmed by Evans NMR experiments as well as by the observation of 
1H NMR chemical shifts consistent with its formation. The divergence 
in reactivity originates from the propensity for the alkyl radicals to be 
sequestered by Ru in Int-IV (ortho) to form Int-VII or to attack the arene 
system (meta) to give Int-V.

Conclusion
We have developed distinct site-selective synthetic methods for the 
installation of silylmethyl synthetic handles using ruthenium (pre)
catalyst 1. The versatility of the resulting silylmethyl products has 
been highlighted through their application to several different trans-
formations, including protodesilylation of the installed handle to 
allow for formal arene ortho- and meta-methylation. Moreover, the 
regiodivergent installation of silylmethyl groups enables an alterna-
tive synthetic route to the active pharmaceutical losmapimod (8). 
This type of synthetic strategy using silyl synthetic handles allows 
broad composability for the potential synthesis of derivative com-
pounds along the synthetic path. Given that the PubChem database 
contains more than 6 million (hetero)aromatic compounds bearing 
a suitable N(sp2) for ortho-C(sp2)–H cyclometallation, these synthetic 
inventions provide substantial utility. Mechanistic investigations 
conveyed the key role of reducing biscyclometallated ruthenium(II) 
species for reactivity with both primary and secondary electrophiles, 
with Evans NMR experiments revealing the formation of a putative 
ruthenium(III) species that is likely reflective of relevant intermediates 
formed during the catalytic process. By expanding the mechanistic 
understanding within ruthenium-catalysed C–H functionalization, 
these findings provide long-awaited insights that will aid the develop-
ment of future protocols.

Methods
General procedure for the meta-silylmethylation of arenes
Arene (0.250 mmol), bis(trimethylsilyl)chloromethane (59.0 mg, 
0.300 mmol, 1.20 equiv.), [(tBuCN)5Ru(H2O)](BF4)2 (9.0 mg, 13.0 µmol, 
5 mol%), lithium carbonate (22.0 mg, 0.300 mmol, 1.20 equiv.) and 
lithium cyclohexanecarboxylate (3.4 mg, 25.0 µmol, 10 mol%) were 
added to a vial, which was sealed (crimp-capped) and purged for ~40 s 
with N2. N2-sparged isopropanol–water (3:2, 250 µl) was injected into 
the vial using a syringe and the reaction mixture was heated at 100 °C 
for 4 h. The reaction mixture was then cooled to room temperature, 
the cap was removed and the solvent removed in vacuo before direct 
purification by flash column chromatography.

General procedure for the ortho-silylmethylation of arenes
Arene (0.250 mmol), (trimethylsilyl)bromomethane (41.8 mg, 
0.250 mmol, 1.00 equiv.), [(tBuCN)5Ru(H2O)](BF4)2 (9.0 mg, 13.0 µmol, 
5 mol%), potassium carbonate (69.0 mg, 0.500 mmol, 2.00 equiv.), 
potassium phenylphosphonate (17.5 mg, 75.0 µmol, 30 mol%) and 
sodium iodide (37.0 mg, 0.250 mmol, 1.00 equiv.) were added to 
a vial, which was sealed (crimp-capped) and purged for ~40 s with 
N2. Anhydrous THF (500 µl) was added using a syringe and the reac-
tion mixture was heated at 80 °C for 18 h. The reaction mixture was 
then cooled to room temperature, the cap was removed and the 
solvent removed in vacuo before direct purification by flash column 
chromatography.

Procedure for the synthesis of bis[2-(2,5-difluorophenyl)-
5-methylpyridine]ruthenium(II) bis(acetonitrile) (40)
In a glove box under an atmosphere of purified argon, 
2 - ( 2 , 5 - d i fl u o r o p h e n y l ) - 5 - m e t h y l p y r i d i n e r u t h e n i u m ( I I ) 
tetrakis(acetonitrile) hexafluorophosphate (123.0 mg, 0.200 mmol), 
2-(2,5-difluorophenyl)-5-methylpyridine (45.1 mg, 0.220 mmol, 
1.10 equiv.), potassium carbonate (82.8 mg, 0.600 mmol, 3.00 equiv.), 
potassium acetate (14.0 mg, 0.100 mmol, 0.500 equiv.) and acetone 
(2.0 ml) were stirred in a sealed vial (crimp-capped) at 70 °C for 18 h. 
The reaction mixture was then cooled to room temperature and fil-
tered (2.5 µm polytetrafluoroethylene filter). The solvent was con-
centrated in vacuo and pentane (20.0 ml) was slowly added whilst 
stirring until a solid precipitated. The precipitate was collected by 
filtration and washed with pentane to give bis[2-(2,5-difluorophenyl)-
5-methylpyridine]ruthenium(II) bis(acetonitrile) (42.0 mg, 
0.070 mmol, 35%) as an amorphous red solid. Note that complex 40 is 
air-sensitive and should be stored in a glove box under an atmosphere 
of purified argon.

Data availability
The data supporting the findings of this work are provided within the 
main text and the Supplementary Information. The crystallographic 
data for complexes 31, 36 and 40 have been deposited at the Cambridge 
Crystallographic Data Centre (CCDC) under CCDC numbers 2384328 
(31), 2383351 (36) and 2384329 (40). Copies of the data can be obtained 
free of charge via https://www.ccdc.cam.ac.uk/structures/. Data are 
available from the corresponding author upon request.
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