Supplemental Material for "First double-differential cross section measurement of neutral-current π^0 production in neutrino-argon scattering in the MicroBooNE detector"

2

3

20

21

22

23

24

25

26

27

28

I. EFFICIENCIES AND PURITIES

This section shows the purities and efficiencies for the chosen binning schemes and 35 MeV kinetic energy threshold 5 ⁶ used to divide the 0p and Np channels. The overall efficiency and the purity for the sample of events fully-contained 7 (FC) within the detector are shown for all measurements presented in Sec. X. For the simultaneous 0p and Np $_{\circ}$ measurements, the efficiency and purity with respect to (w.r.t.) the NC π^{0} selection are also shown. These are defined • by the ratio of the number of true 0p signal events selected as 0p to the total number of true 0p signal events ¹⁰ passing the NC π^0 selection (total number of true signal events, with no requirement on protons, selected as 0p). The $_{11}$ definitions of these metrics are written out explicitly Eq. (1) - (10). Examining these two sets of metrics is useful in ¹² separating the impact of the split into 0p and Np subchannels from the overall NC π^0 selection. Put another way, for ¹³ Op (Np) events, the efficiency w.r.t. $NC\pi^0$ is the probability that a true $NC\pi^0$ Op (Np) event selected by the $NC\pi^0$ ¹⁴ selection is categorised correctly as reconstructed 0p (Np), whereas the overall efficiency is the probability that any ¹⁵ true 0p (Np) $NC\pi^0$ event is selected as a reconstructed 0p (Np) $NC\pi^0$ event. Similarly, the purity w.r.t. $NC\pi^0$ is the ¹⁶ probability that a true NC π^0 event that passes the reconstructed NC π^0 0p (Np) selection is really a true π^0 0p (Np) ¹⁷ event, whereas the overall purity is the probability any reconstructed 0p (Np) selected event is a true NC π^0 0p (Np) ¹⁸ event. In the following figures, the same binning is used for the purity as the efficiency, with the only exception being ¹⁹ the highest P_{π^0} bin, which corresponds to overflow in reconstructed space but ends at 1200 MeV in truth space.

$$Xp \text{ efficiency} = \frac{\text{Number of true } NC\pi^0 \text{ events selected as } NC\pi^0}{\text{Number of true } NC\pi^0 \text{ events}}$$
(1)

Np efficiency =
$$\frac{\text{Number of true NC}\pi^0 \text{ Np events selected as NC}\pi^0 \text{ Np}}{\text{Number of true Np NC}\pi^0 \text{ events}}$$
(2)

$$0p \text{ efficiency} = \frac{\text{Number of true NC}\pi^0 \ 0p \text{ events selected as NC}\pi^0 \ 0p}{\text{Number of true } 0p \ NC}\pi^0 \text{ events}$$
(3)

Np efficiency w.r.t.
$$NC\pi^0$$
 selection = $\frac{Number of true NC\pi^0 Np \text{ events selected as } NC\pi^0 Np}{Number of true NC\pi^0 Np \text{ events selected as } NC\pi^0}$ (4)

$$0p \text{ efficiency w.r.t. } NC\pi^0 \text{ selection} = \frac{\text{Number of true } NC\pi^0 0p \text{ events selected as } NC\pi^0 0p}{\text{Number of true } NC\pi^0 0p \text{ events selected as } NC\pi^0}$$
(5)

$$Xp purity = \frac{Number of true NC\pi^{0} \text{ events selected as } NC\pi^{0}}{Number of events selected as NC\pi^{0}}$$
(6)

Np purity =
$$\frac{\text{Number of true NC}\pi^0 \text{ Np events selected as NC}\pi^0 \text{ Np}}{\text{Number of events selected as NC}\pi^0 \text{ Np}}$$
(7)

$$0p \text{ purity} = \frac{\text{Number of true NC}\pi^0 \ 0p \text{ events selected as NC}\pi^0 \ 0p}{\text{Number of events selected as NC}\pi^0 \ 0p}$$
(8)

Np purity w.r.t.
$$NC\pi^0$$
 selection = $\frac{Number of true NC\pi^0 Np \text{ events selected as } NC\pi^0 Np}{Number of true NC\pi^0 \text{ events selected as } NC\pi^0 Np}$ (9)

$$0p \text{ purity w.r.t. } NC\pi^0 \text{ selection} = \frac{\text{Number of true } NC\pi^0 0p \text{ events selected as } NC\pi^0 0p}{\text{Number of true } NC\pi^0 \text{ events selected as } NC\pi^0 0p}$$
(10)

FIG. 1: [(a) and (b)] The 0p and Np NC π^0 selection efficiency as a function of true π^0 momentum. [(c) and (d)] The 0p and Np NC π^0 selection purity as a function of reconstructed π^0 momentum for FC events. The error bars contain only statistical uncertainty. The 0p (Np) efficiency w.r.t. NC π^0 and purity w.r.t. NC π^0 are calculated using only true 0p (Np) signal events passing the NC π^0 selection. The last bin ends at 1200 MeV in (a) and (b), but is treated as overflow in (c) and (d).

FIG. 2: [(a) and (b)] The 0p and Np NC π^0 selection efficiency as a function of true $\cos \theta_{\pi^0}$. [(c) and (d)] The 0p and Np NC π^0 selection purity as a function of reconstructed $\cos \theta_{\pi^0}$ for FC events. The error bars contain only statistical uncertainty. The 0p (Np) efficiency w.r.t. NC π^0 and purity w.r.t. NC π^0 are calculated using only true 0p (Np) signal events passing the NC π^0 selection.

FIG. 3: [(a) and (b)] The Xp NC π^0 selection efficiency as a function of true $\cos \theta_{\pi^0}$ and P_{π^0} . [(c) and (d)] The Xp NC π^0 selection purity as a function of reconstructed $\cos \theta_{\pi^0}$ and P_{π^0} for FC events. In (b) and (d) the bins are displayed according to the physical bin width with the z axis indicating the efficiency (purity). In (a) and (c) the bins are vectorized as a function of the bin width with error bars containing only statistical uncertainty. The y axis thus corresponds to the efficiency (purity) and the bins do not correspond to their physical width. The same binning is used for the purity and the efficiency, with the only exception being the last bin of each angular slice, which correspond to overflow in reconstructed space but end at 1200 MeV in truth space. More information on the binning can be found in Sec. X.

FIG. 4: (a) The Xp NC π^0 selection efficiency as a function of true π^0 momentum. (b) The Xp NC π^0 selection purity as a function of reconstructed π^0 momentum for FC events. The error bars contain only statistical uncertainty. The last bin ends at 1200 MeV in (a), but is treated as overflow in (b).

4

FIG. 5: (a) The Xp NC π^0 selection efficiency as a function of true $\cos \theta_{\pi^0}$. (b) The Xp NC π^0 selection purity as a function of reconstructed $\cos \theta_{\pi^0}$ for FC events. The error bars contain only statistical uncertainty.

II. SMEARING MATRICES

29

The following figures show the smearing between reconstructed and true bins. This illustrates the reconstruction 30 ³¹ quality and degree to which the overall model must correct for imperfect reconstruction. These histograms contain all FC selected signal events with each column normalized to one. Thus, a given bin describes the probability that a 32 selected signal event in the corresponding truth bin will be reconstructed in the corresponding reconstructed space bin. 33 The sliced measurements and simultaneous 0p and Np measurements contain separate blocks for each slice/multiplicity. 34 Events are categorized as reconstructed (true) Np if they have a reconstructed (true) primary proton with kinetic 35 energy greater than 35 MeV. In these figures, the same binning was used for reconstructed space and truth space, 36 with the only exception being the last P_{π^0} bin, which corresponds to overflow in reconstructed space but ends at 37 1.2 GeV/c in truth space. The most prominent smearing comes from true Np events which are reconstructed as 0p. 38 39 Beyond this, the histograms in this section are mostly diagonal, indicating relatively good reconstruction quality on 40 the variables of interest.

FIG. 6: Smearing matrices for the simultaneous 0p and Np (a) single-differential P_{π^0} and (b) single-differential $\cos \theta_{\pi^0}$ measurements. Selected FC signal events are shown with each column normalized to one. The green lines divide bins containing true (reconstructed) events with and without protons, where reconstructed 0p (Np) and true 0p (Np) is on the bottom (top) left (right), and reconstructed 0p (Np) and true Np (0p) is on the bottom (top) right (left). In (a), the last bin of each multiplicity block corresponds to overflow in reconstructed space but ends at 1.2 GeV/c in truth space.

FIG. 7: Smearing matrices for the Xp (a) single-differential P_{π^0} and (b) single-differential $\cos \theta_{\pi^0}$ measurements. Selected FC signal events are shown with each column normalized to one. In (a), the last bin corresponds to overflow in reconstructed space but ends at 1.2 GeV/c in truth space.

FIG. 8: Smearing matrix for the Xp double-differential $\cos \theta_{\pi^0}$ and P_{π^0} measurement. Selected FC signal events are shown with each column normalized to one. The axes corresponds to the bin index. As such, the bins do not correspond to their physical width. The green lines indicate the division between angular slices. The binning is the same for reconstructed space as truth space, with the only exception being the last bin of all angular slices, which correspond to overflow in reconstructed space but end at 1.2 GeV/c in truth space. More information on the binning can be found in Sec. X.

41

What follows is the contribution of uncertainties by systematic type and the corresponding covariance and correlation matrices for each extracted cross section. Note that these correlation and covariance matrices have axes for each extracted cross section. Note that these correlation and covariance matrices have axes figures, the 0p bins all come before the Np ones. For the double-differential measurement, the bins are in angular for the slices, which go from backwards on the left to forwards on the right. The binning is described in more detail in Sec. X. In all cases, the detector systematics are the dominant source of uncertainty. This is followed by the data statistical, for the largest of these three except in regions with a larger numbers of events, such as moderate momenta and forward angles. MC statistical, dirt, POT, target and reinteraction systematics are all sub-dominant and contribute is little to the total uncertainty. The total uncertainty is larger at higher momenta in all measurements. It is also somewhat larger at backwards angles for 0p and Xp, while appearing relatively flat across all angles for Np.

FIG. 9: Contribution of uncertainties by systematic type for the extraction of the (a) 0p and (b) Np P_{π^0} differential cross section. (c) The covariance and (d) correlation matrices obtained from the simultaneous extraction of the 0p and Np P_{π^0} differential cross section. The dashed lines separate the 0p and Np channels. On all subfigures, the true bins are those found in Sec. X and are the same as those for the extracted cross section. The entries shown in (a) and (b) correspond to the square root of the diagonal elements of (c) divided by the value of the extracted cross section for the given bin. The covariance matrix in (c) is in units of $(10^{-39} \text{ cm}^2/\text{nucleon}/(\text{GeV/c}))^2$.

FIG. 10: Contribution of uncertainties by systematic type for the extraction of the (a) 0p and (b) Np $\cos \theta_{\pi^0}$ differential cross section. (c) The covariance and (d) correlation matrices obtained from the simultaneous extraction of the 0p and Np $\cos \theta_{\pi^0}$ differential cross section. The dashed lines separate the 0p and Np channels. On all subfigures, the true bins are those found in Sec. X and are the same as those for the extracted cross section. The entries shown in (a) and (b) correspond to the square root of the diagonal elements of (c) divided by the value of the extracted cross section for the given bin. The covariance matrix in (c) is in units of $(10^{-39} \text{ cm}^2/\text{nucleon})^2$.

FIG. 11: (a) Contribution of uncertainties by systematic type for the extraction of the Xp P_{π^0} differential cross section. (b) The covariance and (c) correlation matrices obtained from the extraction of the Xp P_{π^0} differential cross section. On all subfigures, the true bins are those found in Sec. X and are the same as those for the extracted cross section. The entries shown in (a) correspond to the square root of the diagonal elements of (b) divided by the extracted cross section for the given bin. The covariance matrix in (b) is in units of $(10^{-39} \text{ cm}^2/\text{nucleon}/(\text{GeV/c}))^2$.

FIG. 12: (a) Contribution of uncertainties by systematic type for the extraction of the Xp $\cos \theta_{\pi^0}$ differential cross section. (b) The covariance and (c) correlation matrices obtained from the extraction of the Xp $\cos \theta_{\pi^0}$ differential cross section. On all subfigures, the true bins are those found in Sec. X and are the same as those on the extracted cross section. The entries shown in (a) correspond to the square root of the diagonal elements of (b) divided by the extracted cross section for the given bin. The covariance matrix in (c) is in units of $(10^{-39} \text{ cm}^2/\text{nucleon})^2$.

FIG. 13: (a)-(d) Contribution of uncertainties by systematic type for the extraction of the Xp $\cos \theta_{\pi^0}$ and P_{π^0} double-differential cross section. Different angular regions are shown in each subfigure. (e) The covariance and (f) correlation matrices obtained from the extraction of the Xp $\cos \theta_{\pi^0}$ and P_{π^0} double-differential cross section. On all subfigures, the true bins are those found in Sec. X and are the same as those for the extracted cross section. In (e) and (f), the bins are in angular slices, which go from backwards on the left to forwards on the right. The entries shown in (a)-(d) correspond to the square root of the diagonal elements of (e) divided by the value of the extracted cross section for the given bin. The covariance matrix in (e) is in units of $(10^{-39} \text{ cm}^2/\text{nucleon}/(\text{GeV/c}))^2$.

FIG. 14: The blockwise (a) fractional covariance and (b) correlation matrices obtained utilizing the blockwise unfolding procedure. The dashed lines separate different measurements which are ordered as follows: 0p and Np P_{π^0} , Xp P_{π^0} , 0p and Np $\cos \theta_{\pi^0}$, Xp $\cos \theta_{\pi^0}$, and Xp $\{\cos \theta_{\pi^0}, P_{\pi^0}\}$. Each axis corresponds to the bin index and does not represent the physical width of the bin. More information on the binning is found in Sec. X.

FIG. 15: Contribution of uncertainties by systematic type for the total Xp, 0p, and Np cross sections.

IV. ADDITIONAL SMEARING MATRICES A_C

This section contains the additional smearing matrices, A_C , obtained in the Wiener-SVD unfolding. These matrices capture the bias induced by regularization. Any generator or theory prediction should be multiplied by this matrix when making a comparison to this data. For the simultaneous 0p and Np measurements, the 0p bins all come before the Np ones. For the double-differential measurement, the bins are in angular slices, which go from backwards on the left to forwards on the right. The binning is described in more detail in Sec. X.

FIG. 16: The additional smearing matrix, A_C , obtained from the simultaneous extraction of the 0p and Np P_{π^0} differential cross section. The dashed lines separate the 0p and Np channels. The true bins are those found in Sec. X and are the same as those for the extracted cross section.

FIG. 17: The additional smearing matrix, A_C , obtained from the simultaneous extraction of the the 0p and Np cos θ_{π^0} differential cross section. The dashed lines separate the 0p and Np channels. The true bins are those found in Sec. X and are the same as those for the extracted cross section.

FIG. 18: The additional smearing matrix, A_C , obtained from the extraction of the Xp P_{π^0} differential cross section. The true bins are those found in Sec. X and are the same as those for the extracted cross section.

FIG. 19: The additional smearing matrix, A_C , obtained from the extraction of the the Xp $\cos \theta_{\pi^0}$ differential cross section. The true bins are those found in Sec. X and are the same as those for the extracted cross section.

FIG. 20: The additional smearing matrix, A_C , obtained from the extraction of the the Xp $\cos \theta_{\pi^0}$ and P_{π^0} differential cross section. The bining structure utilizes angle slices, which go from backwards on the left to forwards on the right. The true bins are those found in Sec. X and are the same as those for the extracted cross section.

V. SIDEBAND STUDIES

In addition to the model validation described in the previous section, further sideband studies were performed to build confidence that the background model is able to describe data within its uncertainties. These studies, outlined throughout the rest of this section, employ the same constraint from the ν_{μ} CC channel as the other model validation tests in order to further evaluate the modeling in each kinematic variable and hadronic final state relevant to the unfolding. When plots are shown with the MC prediction broken down by event type, this is done based on the same categories as in Sec. V, where they are described in more detail.

66

59

A. The "Tight" Sideband

⁶⁷ The "tight" side band is defined as all events with a BDT score in the [0.816,1.816] range and two reconstructed ⁶⁸ showers that Wire-Cell associated together as a π^0 . These events are more "signal like" as the primary NC π^0 selection ⁶⁹ begins at a BDT score of 1.816. This sideband is rich in the more prominent backgrounds seen in the main selections, ⁷⁰ namely NCOther and CC π^0 . The "tight" sideband's efficiency for NC π^0 signal events in 10%. Good data to MC ⁷¹ agreement is seen for this sideband. This is indicated by the relatively low χ^2 value in all cases, even when the ν_{μ} CC ⁷² constraint is applied. No significant data to MC disagreement is seen in any specific region of phase space.

FIG. 21: Comparison between data and prediction for the "tight" Xp sideband as a function of reconstructed π^0 momentum (a) and the cosine of the reconstructed π^0 angle (b). The last bin of (a) corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 22: Comparison between data and prediction for the "tight" sideband as a function of reconstructed π^0 momentum [(a) and (b)] and the cosine of the reconstructed π^0 angle [(c) and (d)]. The reconstructed 0p selection is shown in (a) and (c), and the Np selection is shown in (b) and (d). In (a) and (b), the last bin corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

ΣDATA/Σ(MC+EXT)=0.87±0.03(data err)±0.14(pred err)

χ²/ndf=3.17/16 ///

Data POT: 6.369e+20

BNB data, 881.0

FIG. 23: Comparison between data and prediction as a function of reconstructed π^0 momentum for the "tight" Xp sideband. Different $\cos \theta_{\pi^0}$ slices are shown in each subplot. The last bin in each slice corresponds to momentum overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 24: Comparison between data and prediction for the "tight" sideband as a function of reconstructed π^0 momentum [(a) and (b)] and the reconstructed π^0 angle [(c) and (d)]. The reconstructed 0p selection is shown in (a) and (c), the Np selection is shown in (b) and (d). In (a) and (b), the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 25: Comparison between data and prediction for the "tight" Xp sideband as a function of reconstructed π^0 momentum (a) and the reconstructed π^0 angle (b). In (a), the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 26: Comparison between data and prediction as a function of reconstructed leading proton kinetic energy for the "tight" sideband. The last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint. The constraint is from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 27: Comparison between data and prediction as a function of reconstructed π^0 momentum for the "tight" Xp sideband. Different $\cos \theta_{\pi^0}$ slices are shown in each subplot. In all plots, the last bin corresponds to momentum overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points. The χ^2/ndf across all bins after constraint is 18.2/64.

(c)

FIG. 28: Comparison between data and prediction as a function of the total reconstructed energy for the "tight" sideband. The reconstructed 0p selection is shown in (a), the Np selection is shown in (b), and the Xp selection is shown in (c). In all plots, the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 29: Comparison between data and prediction as a function of the total reconstructed energy for the "tight" Xp sideband. Different $\cos \theta_{\pi^0}$ slices are shown in each subplot. In all plots, the last bin corresponds to momentum overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points. The χ^2/ndf across all bins after constraint is 29.5/64.

B. The "Loose" Sideband

The "loose" side band is defined as all events with a BDT score less than 1.816 and two reconstructed showers that Wire-Cell associated together as a π^0 . This sideband is an inclusive look at events with a π^0 that pass the generic neutrino selection, but fail the primary NC π^0 selection, which begins at a BDT score of 1.816. As such, this sideband contains a very low purity of NC π^0 events. Approximately 60% of the events in this sideband also pass the ν_{μ} CC selection. This is accounted for when applying a constraint from the ν_{μ} CC selection by including the statistical correlations between these two distributions. These were ignored for the "tight" sideband as only about 9% of those event also pass the ν_{μ} CC selection and thus the statistical correlations are very small compared to the overall uncertainty budget. Good data to MC agreement is seen for this sideband. This is indicated by the relatively $20 \text{ W} \chi^2$ value in all cases, even when the ν_{μ} CC constraint is applied. No noticeable data to MC disagreement is seen any specific region of phase space.

FIG. 30: Comparison between data and prediction for the "loose" Xp sideband as a function of reconstructed π^0 momentum (a) and the cosine of the reconstructed π^0 angle (b). The last bin of (a) corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 31: Comparison between data and prediction for the "loose" sideband as a function of reconstructed π^0 momentum [(a) and (b)] and the cosine of the reconstructed π^0 angle [(c) and (d)]. The reconstructed 0p selection is shown in (a) and (c), and the Np selection is shown in (b) and (d). In (a) and (b), the last bin corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 32: Comparison between data and prediction as a function of reconstructed π^0 momentum for the "loose" Xp sideband. Different $\cos \theta_{\pi^0}$ slices are shown in each subplot. The last bin in each slice corresponds to momentum overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 33: Comparison between data and prediction for the "loose" sideband as a function of reconstructed π^0 momentum [(a) and (b)] and the reconstructed π^0 angle [(c) and (d)]. The reconstructed 0p selection is shown in (a) and (c), the Np selection is shown in (b) and (d). In (a) and (b), the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 34: Comparison between data and prediction for the "loose" Xp sideband as a function of reconstructed π^0 momentum (a) and the reconstructed π^0 angle (b). In (a), the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 35: Comparison between data and prediction as a function of reconstructed leading proton kinetic energy for the "loose" sideband. The last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint. The constraint is from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 36: Comparison between data and prediction as a function of reconstructed π^0 momentum for the "loose" Xp sideband. Different $\cos \theta_{\pi^0}$ slices are shown in each subplot. In all plots, the last bin corresponds to momentum overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points. The χ^2/ndf across all bins after constraint is 19.3/64.

(c)

FIG. 37: Comparison between data and prediction as a function of the total reconstructed energy for the "loose" sideband. The reconstructed 0p selection is shown in (a), the Np selection is shown in (b), and the Xp selection is shown in (c). In all plots, the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 38: Comparison between data and prediction as a function of the total reconstructed energy for the "loose" Xp sideband. Different $\cos \theta_{\pi^0}$ slices are shown in each subplot. In all plots, the last bin corresponds to momentum overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points. The χ^2/ndf across all bins after constraint is 23.1/64.

VI. MODEL VALIDATION

30

The following section contains the various tests used to validate the overall model used for cross section extraction, which is more briefly described in the main text. In these tests, the compatibility between the data and model is valuated with goodness-of-fit tests that utilize a χ^2 test statistic. Many of the tests also make use of the conditional constraint formalism [1] to increase the stringency of the validation. This procedure utilizes a set of data distributions to narrow the allowed model parameter space of a different set of distributions. The constraint does this by utilizing the correlations between these distributions, which describe the predicted relationship between them, alongside the observation in the constraining distribution to reduce the uncertainties and update the central value prediction on the constrained distribution. More explicitly, given a covariance matrix containing two channels (X, Y):

$$\Sigma = \begin{pmatrix} \Sigma^{XX} & \Sigma^{XY} \\ \Sigma^{YX} & \Sigma^{YY} \end{pmatrix}, \quad n : \text{measurement}, \quad \mu : \text{ prediction}, \tag{11}$$

 $_{93}$ we can derive the prediction for X given the constraints from Y,

$$\mu^{X,\text{const.}} = \mu^X + \Sigma^{XY} \cdot \left(\Sigma^{YY}\right)^{-1} \cdot \left(n^Y - \mu^Y\right)$$
(12)

$$\Sigma^{XX,\text{const.}} = \Sigma^{XX} - \Sigma^{XY} \cdot \left(\Sigma^{YY}\right)^{-1} \cdot \Sigma^{YX}.$$
(13)

⁹⁴ Thus, by performing a goodness-of-fit test using the updated model prediction, $\mu^{X,\text{const.}}$, and the constrained model ⁹⁵ uncertainties of $\Sigma^{XX,\text{const.}}$, we achieve a more stringent examination of the compatibility between the model and data. ⁹⁶ This overall procedure follows closely what has been done in several other MicroBooNE analyses [2–4].

⁹⁷ Specifically, for this analysis, the ν_{μ} CC selection (which is identical to that of [2–6]) is used to constrain the NC π^{0} ⁹⁸ channel in the variables directly used in the unfolding and those relevant to the reconstruction of NC π^{0} events. ⁹⁹ Several tests also utilize constraints directly from the NC π^{0} selection but in other variables. Since, in these tests, the ¹⁰⁰ constraining and constrained distributions are formed from the same set of events, the correlations in the statistical ¹⁰¹ uncertainties need to be accounted for. These correlations are estimated using a bootstrapping procedure to resample ¹⁰² events and form a correlated statistical covariance matrix, which is added to the overall covariance matrix. To help ¹⁰³ ensure an unbiased unfolding, we require that the overall model is able to describe the data within 2σ for all tests.

The validation aims to test the model in the phase space relevant to the cross section extraction. It thus explores 104 both 0p and Np final states and two dimensional $\{\cos \theta_{\pi^0}, P_{\pi^0}\}$ distributions. Quantities related to the reconstruction 105 quality are also examined. The histograms shown in this section present the distributions of FC events. All model 106 validation tests shown in this section are also applied to the PC distributions, which are less informative due to 107 their smaller event counts and larger uncertainties, and all of which yield a p-value close to one. This suite of tests 108 demonstrates that the overall model is able to describe the data at the 2σ level. This indicates that any relevant 109 mismodleing is covered by the stated uncertainties and the extracted cross sections will not be biased beyond the 110 uncertainties obtained from the extracted covariance matrix. 111

Several histograms are shown with the MC prediction broken down into three signal categories and eight background 112 ¹¹³ categories. The background event categories are: "Cosmic", which corresponds to mistakenly selected cosmic-ray backgrounds selected in events for which a neutrino event is present; "EXT", which refers to cosmic-ray background 114 events from the beam-off data set that have no BNB neutrino interactions; "Dirt", which refers to neutrino interactions 115 with their true neutrino interaction vertices outside the cryostat; "Out FV", which includes events originating inside 116 the cryostat but outside the fiducial volume (all subsequent categories require the event to be within the FV); "NC 117 Other", which includes all NC interactions not part of the signal; "CC π^0 " which corresponds to all ν_{μ} (and $\bar{\nu}_{\mu}$) 118 ¹¹⁹ charged current events with a π^0 , "CC Other" which comprises all ν_{μ} (and $\bar{\nu}_{\mu}$) charged current events without a π^0 ; 120 and " $\nu_e/\bar{\nu}_e$ CC", which includes all ν_e and $\bar{\nu}_e$ charged current events. The signal categories include all events in which ¹²¹ a NC interaction of any flavor neutrino produces a single true π^0 with $P_{\pi^0} < 1.2$ GeV/c. Additionally, the "NC π^0 ¹²² COH" category only includes signal events produced by a coherent process, "NC π^0 RES" includes only those from ¹²³ resonant pion production, and "NC π^0 Other" includes signal events not falling in the first two categories.

Event counts

1000

80

600

400

200

1.5

0.5

Data/Pred

(a)

Cosmic, 80.6

Dirt, 42.4

FIG. 39: Comparison between data and prediction for FC selected NC π^0 events as a function of reconstructed π^0 momentum [(a) and (b)] and the cosine of the reconstructed π^0 angle [(c) and (d)]. The reconstructed 0p selection is shown in (a) and (c), and the Np selection is shown in (b) and (d). In (a) and (b), the last bin corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 40: Comparison between data and prediction for FC selected $NC\pi^0$ Xp events as a function of reconstructed π^0 momentum (a) and the cosine of the reconstructed π^0 angle (b). The last bin of (a) corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

32

FIG. 41: Comparison between data and prediction as a function of reconstructed π^0 momentum for FC selected NC π^0 Xp events. Different $\cos \theta_{\pi^0}$ slices are shown in each subfigure. The last bin in each slice corresponds to overflow. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 42: Comparison between data and prediction for FC selected NC π^0 events as a function of reconstructed π^0 momentum [(a) and (b)] and the reconstructed π^0 angle [(c) and (d)]. The reconstructed 0p selection is shown in (a) and (c), the Np selection is shown in (b) and (d). In (a) and (b), the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 43: Comparison between data and prediction for FC selected $NC\pi^0$ Xp events as a function of reconstructed π^0 momentum (a) and the reconstructed π^0 angle (b). In (a), the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the $\nu_{\mu}CC$ reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 44: Comparison between data and prediction as a function of reconstructed leading proton kinetic energy for FC selected $NC\pi^0$ events. The last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint. In (a) the constraint is from the $\nu_{\mu}CC$ reconstructed neutrino energy distribution and in (b) the constraint is from the the FC reconstructed π^0 momentum and angle distributions. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 45: Comparison between data and prediction as a function of reconstructed π^0 momentum for FC selected NC π^0 Xp events. Different $\cos \theta_{\pi^0}$ slices are shown in each subfigure. In all histograms, the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points. The χ^2/ndf across all bins after constraint is 27.0/64.

FIG. 46: Comparison between data and prediction as a function of the total reconstructed energy for FC selected NC π^0 events. The reconstructed 0p selection is shown in (a), the Np selection is shown in (b), and the Xp selection is shown in (c). The last bin corresponds to overflow in all histograms. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 47: Comparison between data and prediction as a function of the total reconstructed energy for FC selected NC π^0 Xp events. Different $\cos \theta_{\pi^0}$ slices are shown in each subfigure. In all histograms, the last bin corresponds to overflow. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points. The χ^2/ndf across all bins after constraint is 26.3/64.

FIG. 48: Comparison between data and prediction as a function of the cosine of the reconstructed π^0 angle for FC selected NC π^0 events. The reconstructed 0p selection is shown in (a), the Np selection is shown in (b), and the Xp selection is shown in (c). The red (blue) lines and bands show the prediction without (with) the constraint from the FC reconstructed π^0 momentum distributions. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 49: Comparison between data and prediction for FC selected $NC\pi^0$ events as a function of reconstructed leading photon energy [(a) and (b)] and the reconstructed sub-leading photon energy. The reconstructed 0p selection is shown in (a) and (c), and the Np selection is shown in (b) and (d). The last bin corresponds to overflow in all histograms. The red (blue) lines and bands show the prediction without (with) the constraint from the $\nu_{\mu}CC$ reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 50: Comparison between data and prediction for FC selected NC π^0 Xp events as a function of the reconstructed leading photon energy (a) and the reconstructed sub-leading photon energy (b). The last bin corresponds to overflow in all histograms. The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 51: Comparison between data and prediction as a function of reconstructed angle between the π^0 decay photons for FC selected NC π^0 events. The reconstructed 0p selection is shown in (a), the Np selection is shown in (b), and the Xp selection is shown in (c). The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 52: Comparison between data and prediction as a function of reconstructed invariant mass for FC selected $NC\pi^0$ events. The reconstructed 0p selection is shown in (a), the Np selection is shown in (b), and the Xp selection is shown in (c). The last bin corresponds to overflow in all histograms. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

VII. FAKE DATA STUDIES

124

A. NuWro Fake Data Studies

Fake data studies were carried out to test the robustness of the model validation and cross section extraction. For 126 the studies presented here, a NuWro 19.02.2 MC sample was propagated thought the MicroBooNE simulation and 127 econstruction chain in the same way as the nominal GENIEv3-based μ BooNE tune MC, after which it was treated 128 identically to real data. Because the fake data and MC prediction use the same detector and flux simulations, 129 uncertainties due to beam exposure, number of targets, detector, fluxes, and reinteractions are fully correlated and 130 not included. Only the uncorrelated uncertainties (cross section, statistical, and MC statistical) are used for the 131 model validation, the cross section extraction, and the subsequent χ^2 calculations between the fake data results and 132 generator predictions. 133

The same model validation used for real data was applied to the fake data. These tests expose some disagreement 134 between the NuWro fake data and MC predictions, indicating that the model does not necessarily have sufficient 135 uncertainties to extract fake data cross section without inducing bias. In particular, tests on the distribution of the 136 reconstructed proton kinetic energy, K_p^{rec} , and the total reconstructed energy in backwards π^0 angular slices yield *p*-values of 0.02 and 0.11, respectively. This level of tension that would either fail validation, or comes close enough 137 138 failing that further investigation would be warranted. These test can be seen in Fig. 53. If this scenario were 139 encountered in real data, the tension would be mitigated by an updated model prediction or an expanded uncertainty 140 budget through a procedure analogous to that of [2]. Furthermore, the Np $\cos \theta_{\pi^0}^{rec}$ distribution shows a significant 141 deficit in the most forward bin which is not mitigated by the constraint from the ν_{μ} CC reconstructed neutrino energy 142 distribution nor the $P_{\pi^0}^{reco}$ distribution. This distribution can be seen in Fig. 54. This is possibly related to the failure 143 of the model validation for K_p^{rec} , which indicates significant differences with respect to the modeling of the final state ¹⁴⁵ proton kinetic energy and the division into 0p and Np final states. For real data, seeing such a large deficit that was ¹⁴⁶ worsened, rather than improved, by the constraints would likewise motivate further investigation before the model 147 was considered validated.

Despite the moderate tension seen in the model validation, cross section results were subsequently extracted for 148 all intended measurements without an expansion to the nominal model used for unfolding. The results can be seen 149 throughout the rest of this section. Note that the 0p and Np cross sections were extracted simultaneously; the formu-150 lation for such an extraction is described in more detail in [2]. Subsequent figures contain the extracted fake data dif-151 ferential cross section as well as predictions from NuWro 19.02.2 (NuWro 19), NuWro 21.02 (NuWro), GENIE v2.12.10 152 (GENIEv2), GENIE v3.0.6 G18_10a_02_11a (GENIEv3) [7], NEUT 5.4.0.1 (NEUT) [8], and GiBUU 2023 (GiBUU). These 153 include predictions shown in the main text and the predictions included in Sec. VIII of the Supplemental Material that 154 modify the form factors describing the neutrino-nucleon interaction, the FSI experienced by the outgoing particles, and 155 the contribution from coherent scattering. Note that the NuWro FF alt prediction in the main text corresponds to the 156 NuWro FF2 prediction in this section. These generator predictions were processed with the NUISANCE framework [9], 157 and each has been smeared with the A_C matrix obtained from unfolding the fake data. 158

Closure of the study is achieved when the fake data shows good agreement with the NuWro 19 prediction (blue 159 line). This is quantified by the χ^2/ndf calculated between the fake data and prediction with uncertainties according 160 to the extracted covariance matrix. The NuWro 19 prediction was generated independently and at higher stats than 161 the fake data, which, at 6.11×10^{20} POT, is comparable in size to the real data set. Despite the tension seen in the 162 model validation, acceptable closure is achieved in all cases, with χ^2/ndf values around or below unity. The extracted 163 fake data cross sections agree with the NuWro 19 prediction approximately as well as, or better than, they do with 164 any other generator. The NuWro 19 prediction also falls within 1σ of the extracted results on almost all bins. The 165 ¹⁶⁶ Np $\cos \theta_{\pi^0}$ result does show some bias towards lower values in the most forward bins, which is unsurprising given the results of the model validation, as the Wiener-SVD unfolding smears the observed deficit in the most forward $\cos \theta_{\pi 0}^{rec}$ bin across the first several bins during the extraction. Nevertheless, the resulting χ^2 calculated for the Np cos θ_{π^0} 168 result and NuWro 19 prediction still indicates good agreement and a successful cross section extraction. The situation 169 ¹⁷⁰ is similar for the double-differential fake data result. Though showing some bias on a bin-by-bin basis around the 171 peak of the distribution in the two more forward angular slices, this fake data result shows reasonable closure in terms χ^2 values, which properly considers the correlations between bins that are not visually obvious. This is true both ¹⁷³ on individual angular slices and on the distribution as a whole, again indicating a relatively successfully cross section ¹⁷⁴ extraction despite the tension identified in the model validation. These tests of the unfolding give us confidence that 175 the model validation is sufficient for detecting potentially relevant mismodeling and that the cross section extraction ¹⁷⁶ methodology is reasonably robust even in cases where moderate tension is seen in the validation.

FIG. 53: Results of several model validation tests for NuWro fake data study that either fail, or nearly fail model validation. The comparison between the NuWro fake data and model prediction for FC selected NC π^0 Xp events as a function of reconstructed leading proton kinetic energy is shown in (a), and the comparison between NuWro fake data and model prediction for FC selected NC π^0 Xp events with $0 \leq \cos \theta_{\pi^0} \leq 0.5$ as a function of $P_{\pi^0}^{reco}$ is shown in (b). The last bin corresponds to overflow in all histograms. The red (blue) lines and bands show the prediction without (with) constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 54: Comparison between NuWro fake data and model prediction for FC selected NC π^0 Np events as a function of $cos\theta_{\pi^0}^{rec}$. The red (blue) lines and bands show the prediction without (with) the constraint. The ν_{μ} CC reconstructed neutrino energy distribution is used for the constraint in (a) and the $P_{\pi^0}^{reco}$ distribution is used in (b). The statistical and systematic uncertainties of the prediction are shown in the bands. The data statistical errors are shown on the data points.

FIG. 55: Unfolded NuWro 19 fake data 0p and Np P_{π^0} differential cross section results. The 0p result is shown in (a) and the Np result is shown in (b). The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values displayed in the legend. The χ^2 values calculated using all bins are shown at the top of the figure.

FIG. 56: Unfolded NuWro 19 fake data 0p and Np $\cos \theta_{\pi^0}$ differential cross section results. The 0p result is shown in (a) and the Np result is shown in (b). The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values displayed in the legend. The χ^2 values calculated using all bins are shown at the top of the figure.

FIG. 57: Unfolded NuWro 19 fake data Xp $\cos \theta_{\pi^0}$ and P_{π^0} double-differential cross section result. The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values calculated for the given slice displayed in the legend. The χ^2 values calculated using all bins are shown at the top of the figure.

FIG. 58: Unfolded NuWro 19 fake data Xp P_{π^0} differential cross section result (a) and Xp $\cos \theta_{\pi^0}$ differential cross section result (b). The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values displayed in the legend.

0p and Np χ^2 (ndf = 12): NuWro 19 (no FSI) = 10.4 (132.5), GENIEv3 (no FSI) = 43.5 (197.1), NEUT (no FSI) = 25.9 (148.7), GIBUU (no FSI) = 70.0 (115.6)

FIG. 59: Same as Fig. 55, but with the generator predictions from Fig. 1 of the main text that modify the FSI.

Op and Np χ^2 (ndf = 23): NuWro 19 = 21.5, GENIEv3 = 53.6, GENIEv3 no COH = 59.1, NEUT = 36.7, NEUT no COH = 50.9, GiBUU = 77.1, GiBUU wi NEUT COH = 55.1

FIG. 60: Same as Fig. 56, but with the generator predictions from Sec. VIII that modify coherent pion production.

FIG. 61: Same as Fig. 57, but with the generator predictions from Fig. 2 of the main text that modify the form factors describing the neutrino-nucleon Δ excitation cross section.

B. Proton Detection Efficiency Mismodeling Studies

In this section, we examine hypothetical detector mismodeling of proton identification efficiencies and energy recontrop struction. We investigate how this might impact the 0p and Np cross section results and how well the corresponding model validation tests are able to identify this mismodeling. These studies aim to demonstrate that the detector systematics are capable of simultaneously covering issues associated with the modeling of the proton detection efficiency and/or energy reconstruction and threshold. Moreover, they also aim to build confidence that the data-driven tests performed to validate the model used in the cross section extraction are efficacious for detecting issues associated with the proton related observables before they would begin to bias the cross section extraction.

For these studies, we consider the "truth" to be the nominal GENIEv3 prediction used in the MicroBooNE MC. 185 For the fake data sets we consider two forms of detector mismodeling. The first is a mismodeling of the energy 186 reconstruction and corresponding proton detection threshold. This is achieved through creating fake data sets from 187 the nominal MC by scaling the reconstructed energy of each proton. We produce two fake data samples in this 188 manner, one that scales the energy of each proton to 85% of its nominal value, and another that scales the energy 189 of each proton to 70% of its nominal value. These fake data sets represent significant deviations from the nominal 190 model, as the fake data set that scales to 85% is already more extreme than the variations considered in [2]. The 191 second form of detector mismodeling that we consider is a flat efficiency mismodeling impacting all protons. This 192 was emulated with a fake data set produced by removing all reconstructed protons from 10% of events. Lastly, we 193 investigate the scenario where both the energy/threshold dependent mismodeling and the flat efficiency mismodeling 194 are present by producing additional fake data sets which remove all reconstructed protons from 10% of events and 195 scale the reconstructed proton energy in all events to either 85% or 70% the nominal value. Layering these effects 196 creates a challenging scenario in which the detect systematics and unfolding machinery must contend with multiple 197 forms of mismodeling. We would also like to note that this mismodeling of the proton reconstruction efficiency is 198 identical to a mismodeling of the migration of events between the 0p and Np sample; the same events are selected in 199 these fake data sets, but whether they end up reconstructed as 0p or Np is altered. 200

For each fake data set we extract the cross section using the nominal MC response matrix and central value 201 prediction for backgrounds. The GENIEv3 curve we compare to as "truth" was obtained from a high stats sample that 202 is statistically independent from the fake data. We only include detector uncertainties and statistical uncertainties in 203 our extraction and subsequent comparisons with the truth. The flux and cross section systematics are not included 204 as these are not being altered in these fake data sets (the same holds for all the other "additional" uncertainties). 205 Before the cross section extraction, we also perform the model validation outlined in the manuscript and detailed in 206 Sec. VI to investigate how well these tests are able to identify the detector modeling deficiency. The results of the 207 cross section extraction and model validation are shown and discussed below for each fake data set. We note that, 208 in the model validation, it is assumed that the same form of detector mismodeling is also present in the constraining 209 channels. The effect of removing this assumption would be to restore perfect agreement between the fake data and 210 ²¹¹ nominal model in the constraining distributions. This would cause the prediction in the constrained channel to be unaffected by the constraint; the prior and posterior predictions would be the same due to the perfect agreement in 212 the constraining channel. This is a direct consequence of the form of Eq. (12). However, Eq. (12) also dictates that 213 the reduction in the uncertainties on the posterior prediction are independent of the data to MC agreement in the 214 constraining channel. The posterior systematic uncertainties on the constrained channel are the same regardless of 215 the assumption about the source of this mismodeling being present in the constraining channel. 216

For the fake data set with the reconstructed proton energy scaled to 85% of the nominal value, several of the model 217 validation tests are already able to identify the mismodeling. This is consistent with the studies presented in [2], where 218 the corresponding model validation showed sensitivity to mismodeling prior to the 85% level. In particular, Fig. 62 219 shows the tests performed on the total reconstructed energy for 0p, Np and Xp FC event distributions before and after constraint from the ν_{μ} CC reconstructed energy distributions (these are analogous to the tests show in Fig. 46). We also 221 ²²² show the test performed on the reconstructed proton energy for FC events before and after constraint from the 0pNp ν_{μ} CC reconstructed energy distributions (this is analogous to the test shown in Fig. 44). The test performed on the reconstructed proton energy distribution indicates that the model is unable to describe the fake data, revealing more 224 tension than observed for real data. This level of tension would prevent the analysis from extracting the cross section 225 in the hypothetical scenario using our nominal uncertainties and detector model, which would have to be expanded 226 before proceeding to the unfolding. Nevertheless, for the purposes of this study, the cross section is extracted and 227 reveals no tension with the nominal model, as is illustrated in Figs. 63 and 64. The total 0p cross section and total Np 228 cross section, which were obtained by unfolding the reconstructed P_{π^0} distribution to a pair of 0p and Np unregularized 229 bins, are measured to be $(0.176\pm0.032)\times10^{-39}$ cm²/nucleon and $(0.246\pm0.026)\times10^{-39}$ cm²/nucleon, respectively (the 230 ²³¹ analogous values for the real data are presented in the data release in Sec. X). These are in good agreement with the ²³² true values of 0.167 and 0.254, respectively, but appear somewhat more discrepant than the differential measurements. ²³³ This can be understood as a result of smaller detector uncertainties on the total cross section measurement compared ²³⁴ to the differential ones, and the χ^2 calculated for the differential results containing a significant contribution from the ²³⁵ shape of the distribution, which is more robust to this hypothetical mismodeling than the overall normalization. This ²³⁶ is a general trend which will be seen throughout these studies. The good agreement in the extracted cross sections ²³⁷ can be understood as partially coming from the fact that such energy/threshold dependent mismodeling does not ²³⁸ have a drastic impact on the migration between the 0p and Np channels. This is due to the fact that many of the 0p ²³⁹ events are "truly" 0p and have no protons in the final state regardless of their energy, as well as the fairly long tail on ²⁴⁰ the K_p distribution which is largely unaffected by mismodeling of the threshold. The observations for this fake data ²⁴¹ set are consistent with the notion that the suite of model validation tests is more sensitive to mismodeling than the ²⁴² extraction of the cross sections.

FIG. 62: Comparison between fake data produced by scaling the energy of all reconstructed protons to 85% their nominal value and nominal model prediction for FC selected NC π^0 events. The distribution of the total reconstructed energy is shown in (a) for 0p events, (b) for Np events, and (c) for Xp events. The distribution as a function of the reconstructed proton kinetic energy is shown in (d). The red (blue) lines and bands show the prediction without (with) the constraint from the ν_{μ} CC reconstructed neutrino energy distribution. The data statistical errors are shown on the data points. The statistical and systematic uncertainties of the prediction are shown in the bands. Only detector uncertainties are included in these comparisons.

FIG. 63: Unfolded 0p and Np P_{π^0} differential cross section results for the fake data produced by scaling the energy of all reconstructed protons to 85% their nominal value. The 0p result is shown in (a) and the Np result is shown in (b). Only detector uncertainties are included in this study. The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values displayed in the legend. The χ^2 values calculated using all bins are shown at the top of the figure.

FIG. 64: Unfolded 0p and Np $\cos \theta_{\pi^0}$ differential cross section results for the fake data produced by scaling the energy of all reconstructed protons to 85% their nominal value. The 0p result is shown in (a) and the Np result is shown in (b). Only detector uncertainties are included in this study. The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values displayed in the legend. The χ^2 values calculated using all bins are shown at the top of the figure.

²⁴³ Proceeding to the fake data set where the reconstructed proton energy is scaled to 70% of the nominal value, the ²⁴⁴ model validation test on the total reconstructed energy for the Np and Xp FC events distributions also reveal significant ²⁴⁵ tension which would prevent the extraction of the 0pNp cross sections. For the cross section that we nonetheless extract ²⁴⁶ for this fake data set, we observe that the central value is shifted above the truth for the 0p sample and below the ²⁴⁷ truth for the Np sample, as expected based on the manufactured overestimation of our proton detection threshold in ²⁴⁸ this study. The resulting measurements still fall well within 1σ of the truth. This is also reflected in the measured ²⁴⁹ total 0p and Np cross sections of $(0.189 \pm 0.031) \times 10^{-39}$ cm² and $(0.235 \pm 0.026) \times 10^{-39}$ cm², respectively, which ²⁵⁰ are also in good agreement with the truth.

FIG. 65: Same as Fig. 62, but for the fake data produced by scaling the energy of all reconstructed protons to 70% their nominal value.

FIG. 66: Same as Fig. 63, but for the fake data produced by scaling the energy of all reconstructed protons to 70% their nominal value.

FIG. 67: Same as Fig. 64, but for the fake data produced by scaling the energy of all reconstructed protons to 70% their nominal value.

Moving to the fake data set that entirely removes the reconstructed protons from 10% of events in order to mimic a global proton reconstruction inefficiency, a non-trivial discrepancy is revealed in the Xp distribution of the total reconstructed energy. Comparing the nominal MC to the fake data in this distribution yields a *p*-value of 0.02 and would prevent the extraction of the cross section if this were real data. The unfolded cross sections begins to slightly favor NuWro over the truth, and some individual bins begin to fall outside 1σ of the truth, but this is very mild and the overall χ^2 still remains well within 1σ of the truth. The measured total 0p cross section of $(0.217 \pm 0.032) \times 10^{-39}$ cm² and the measured total Np cross section of $(0.211 \pm 0.025) \times 10^{-39}$ cm² are in slightly more tension with the true values of 0.167 and 0.254, respectively.

FIG. 68: Same as Fig. 62, but for the fake data that removes the reconstructed protons from 10% of events.

FIG. 69: Same as Fig. 63, but for the fake data that removes the reconstructed protons from 10% of events.

FIG. 70: Same as Fig. 64, but for the fake data that removes the reconstructed protons from 10% of events.

259

260

FIG. 71: Same as Fig. 62, but for the fake data produced by scaling the energy of all reconstructed protons to 85% their nominal value and also removes the reconstructed protons from 10% of events.

FIG. 72: Same as Fig. 63, but for the fake data produced by scaling the energy of all reconstructed protons to 85% their nominal value and also removes the reconstructed protons from 10% of events.

FIG. 73: Same as Fig. 64, but for the fake data produced by scaling the energy of all reconstructed protons to 85% their nominal value and also removes the reconstructed protons from 10% of events.

Finally, for the most extreme fake data set, where both the proton energy is reduced to 70% of the nominal value 266 and the reconstructed protons are entirely removed from 10% of events, the model continues to fail validation in a 267 variety of distributions. In the extracted differential cross sections, some bins are outside of 1σ , but based on more 268 rigorous examination of the data though the χ^2 calculated across all bins, we do not see disagreement beyond 1σ . 269 Though NuWro is favored over the truth, one would not rule out the truth due to the bias in the cross section extraction. 270 This is reassuring given the extremity of this fake data set. The corresponding total 0p and Np cross section are 271 measured to be $(0.237 \pm 0.032) \times 10^{-39}$ cm² and $(0.193 \pm 0.025) \times 10^{-39}$ cm², respectively, which is a slightly larger $_{273}$ than 2σ discrepancy with the truth. The results, particularity those for the differential cross sections, are reasonable ²⁷⁴ despite the fact that the detector performance was altered quite drastically far beyond what is suggested by the suite ²⁷⁵ of studies performed on the real data in Sec. VI.

FIG. 74: Same as Fig. 62, but for the fake data produced by scaling the energy of all reconstructed protons to 70% their nominal value and also removes the reconstructed protons from 10% of events.

FIG. 75: Same as Fig. 63, but for the fake data produced by scaling the energy of all reconstructed protons to 70% their nominal value and also removes the reconstructed protons from 10% of events.

FIG. 76: Same as Fig. 64, but for the fake data produced by scaling the energy of all reconstructed protons to 70% their nominal value and also removes the reconstructed protons from 10% of events.

VIII. ADDITIONAL MEASUREMENTS AND χ^2 VALUES

276

Figure 77 shows the 0p and Np $\cos \theta_{\pi^0}$ differential cross section results analogous to the 0p and Np P_{π^0} result 277 shown in Fig. 1 of the main text. Sensitivity to the modeling of coherent pion production is illustrated by comparing 278 these results to NEUT and GENIEv3 predictions with and without the coherent (COH) contribution. A prediction from 279 GiBUU, which does not simulate coherent events, is also shown with and without the addition of the coherent prediction 280 from NEUT. Because coherent events occur with small momentum transfer and leave the nucleus intact [10, 11], the 281 impact of coherent pion production on the $NC\pi^0$ channel is only apparent for the 0p channel in the forward direction 282 and the predictions with coherent events are slightly favored by the data. This is most noticeable for GiBUU, which 283 underpredicts the most forward bins by almost 2σ until the coherent prediction from NEUT is added. The resulting 284 prediction falls within 1σ of the data on all bins and the χ^2/ndf is lowered by about 0.5 thereby demonstrating the 285 importance of properly modeling coherent interactions in describing $NC\pi^0$ production without protons in the final 286 state. Characterizing the coherent process in more detail is beyond the scope of this work and could be explored by 287 future measurement with an event selection and analysis strategy tailored to disentangle resonant and coherent π^0 a 288 production. 289

Analogous to the simultaneous 0p and Np measurements seen in Fig. 1 of the main text and Fig. 77 of the ²⁹¹ supplemental material, the single-differential P_{π^0} and $\cos \theta_{\pi^0}$ Xp cross section measurements are presented in this ²⁹² section. The P_{π^0} result can be seen in Fig. 78a and the $\cos \theta_{\pi^0}$ result can be seen in Fig. 78b. These results are ²⁹³ compared to predictions from the various generators described in the main text without any modification to their ²⁹⁴ default parameters.

²⁹⁵ The single-differential Xp results show a similar set of trends as the results in the main text. For P_{π^0} , the sharper ²⁹⁶ drop beyond the peak of the distribution around the 200-500 MeV range is caused by the energy dependence of pion ²⁹⁷ reabsorption through the Δ resonance during FSI [12] is quite obvious. In this regime, GiBUU is the only generator not ²⁹⁸ overpredicting the data and describes the data quite well, possibly due to its more robust description of FSI. However, ²⁹⁹ GiBUU underestimated the cross section around the peak of the distribution, where the other generators describe the ³⁰⁰ data well. This gives NEUT the lowest χ^2 values, which other than slightly overpredicting in the 200-500 MeV range, ³⁰¹ shows very good agreement with the data. The GENIEv2 prediction is significantly worse than the other generators ³⁰² due to its larger overprediction in the aforementioned regions which are more sensitive to FSI.

For the unfolded Xp $\cos \theta_{\pi^0}$ differential cross section result, NEUT agrees well at backwards angles and describes the rise in the cross section at forward angles quite well leading to a lower χ^2 than achieved by the other generators. The two GENIE-based generator predictions overestimate this rise, and GiBUU underpredicts it. The former effect is possibly due to insufficient π^0 FSI, and the latter is possible in part due to the lack of coherent pion production in GiBUU. The discrepancy at forward angles is worst for GENIEv2, as is evident by its higher χ^2 , with the other three generators, which have comparable χ^2 values, albeit larger than the one for NEUT.

FIG. 77: Unfolded 0p (a) and Np (b) $\cos \theta_{\pi^0}$ differential cross sections. The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Generator predictions are indicated by the colored lines with corresponding χ^2/ndf values displayed in the legend.

FIG. 78: Unfolded Xp P_{π^0} differential cross section result (a) and $\cos \theta_{\pi^0}$ differential cross section result (b). The black inner (outer) error bars on the data points represent the statistical (total) uncertainties on the extracted cross section corresponding to the square root of the diagonal elements of the extracted covariance matrix. Different generator predictions are indicated by the colored lines with corresponding χ^2 values displayed in the legend.

Tables I and II contain additional χ^2 values quantifying the various generator predictions' ability to describe the data. Generator predictions with the default parameters are shown in Table I and predictions with modified parameterizations of the Δ excitation form factors are shown in Table II. Note that the NuWro FF alt prediction in the main text corresponds to the NuWro FF2 prediction in this table. These tables include χ^2 values calculated across the simultaneously measured 0p and Np bins, as well as for individual slices in the double-differential measurement. Additionally, the inter-variable correlations obtained with the blockwise unfolding [13] are used to calculate χ^2 values across different measurements. These are listed in the "All Bins" columns. The covariance matrix used to produce these χ^2 values is reported in the data release in cov.txt. More details on the data release are found in Sec. X.

Measurement	Channel	ndf	NuWro	GENIEv2	GENIEv3	NEUT	GiBUU
P_{π^0}	0p	6	7.8	9.0	6.7	7.3	12.9
	Np	6	11.3	23.2	14.8	9.3	8.2
	$0 \mathrm{pNp}$	12	16.0	28.0	18.8	13.2	17.0
	Хр	9	16.5	26.3	10.1	7.8	9.9
$\cos heta_{\pi^0}$	$0\mathrm{p}$	8	5.0	6.8	3.4	1.9	9.1
	Np	15	9.1	15.8	12.9	6.9	6.9
	$0 \mathrm{pNp}$	23	11.3	18.3	18.7	10.5	14.6
	Хр	17	10.7	14.5	9.1	6.9	9.2
$\{\cos\theta_{\pi^0}, P_{\pi^0}\}$	Хр	24	25.3	34.2	16.5	13.3	18.0
$-1>\cos\theta_{\pi^0}<0$		4	4.7	8.0	2.1	0.4	5.6
$0>\cos\theta_{\pi^0}<0.5$		5	4.3	7.7	3.0	0.4	4.3
$0.5>\cos\theta_{\pi^0}<0.85$		8	11.0	13.7	7.8	4.5	6.5
$0.85>\cos\theta_{\pi^0}<1$		7	14.9	9.7	6.2	6.5	6.8
All Bins	$0\mathrm{p}$	14	12.2	17.4	14.6	10.7	16.8
	Np	21	16.9	30.3	20.0	14.0	13.8
	0pNp	35	24.5	39.9	30.3	23.0	28.9
	Xp	50	36.0	44.1	25.0	23.6	27.7
	0pNpXp	85	82.2	68.8	47.8	53.9	58.5

TABLE I: Summary of the comparisons between the various generator prediction and each data result. When applicable, the 0p, Np, 0pNp and Xp χ^2 and respective *ndf* are shown for each measured variable. Additional χ^2 values including multiple measurements calculated using the covariance matrix obtained from the blockwise unfolding are also shown.

Measurement	Channel	ndf	NuWro	NuWro FF1	NuWro FF1	NuWro FF2	NuWro FF3
				$M_A=1.05$	$M_A=0.84$		
P_{π^0}	0p	6	7.8	7.5	6.4	6.7	6.2
	Np	6	11.3	10.8	6.8	6.4	6.9
	$0 \mathrm{pNp}$	12	16.0	15.6	12.1	12.2	12.0
	Хр	9	16.5	15.9	10.7	10.6	11.0
$\cos \theta_{\pi^0}$	0p	8	5.0	4.5	3.0	3.3	2.8
	Np	15	9.1	8.5	5.6	5.8	5.9
	$0 \mathrm{pNp}$	23	11.3	10.7	7.9	8.1	8.0
	Хр	17	10.7	10.2	6.9	7.0	7.1
$\{\cos\theta_{\pi^0}, P_{\pi^0}\}$	Xp	24	25.3	24.1	17.0	16.9	17.7
$-1 > \cos \theta_{\pi^0} < 0$		4	4.7	4.1	1.2	1.4	1.2
$0>\cos\theta_{\pi^0}<0.5$		5	4.3	3.6	0.8	0.9	0.8
$0.5 > \cos \theta_{\pi^0} < 0.85$		8	11.0	10.2	5.5	5.5	5.8
$0.85>\cos\theta_{\pi^0}<1$		7	14.9	13.6	7.1	6.6	8.0
All Bins	$0\mathrm{p}$	14	12.2	11.6	8.8	9.1	8.8
	Np	21	16.9	16.3	11.7	11.5	12.1
	$0 \mathrm{pNp}$	35	24.5	23.9	20.6	21.0	20.7
	Xp	50	36.0	35.2	28.6	28.7	29.0
	0pNpXp	85	82.2	84.3	66.7	63.5	70.9

TABLE II: Summary of the comparisons between the generator predictions with different form factors and each data result. When applicable, the 0p, Np, 0pNp and Xp χ^2 and respective ndf are shown for each measured variable. Additional χ^2 values including multiple measurements calculated using the covariance matrix obtained from the blockwise unfolding are also shown.

IX. FORM FACTORS

What follows is a description of the predictions that utilize modified form factors. The evolution of C_A as a function ³¹⁹ of Q^2 is shown for each prediction in Fig. 79. The NuWro prediction corresponds to a dipole form factor:

$$C_5^A(Q^2) = C_5^A(0) \frac{1}{\left(1 + Q^2/M_A^2\right)^2}$$
(14)

with $M_A = 0.94$ GeV and $C_5^A(0) = 1.19$ as obtained by fits to ANL and BNL bubble chamber data in [14]. This are equivalent to the default used in the NuWro event generator. A second set of parameterizations, which utilize a modified dipole form factor,

$$C_5^A(Q^2) = C_5^A(0) \frac{1}{\left(1 + Q^2/M_A^2\right)^2} \frac{1}{\left(1 + Q^2/3M_A^2\right)}$$
(15)

³²³ are taken from [15]. Two values of with M_A are considered; $M_A = 1.05$ GeV and $M_A = 0.84$ GeV. These predictions ³²⁴ use $C_5^A(0) = 1.2$ and correspond to NuWro FF1 M_A=1.05 and NuWro FF1 M_A=0.84, respectively. Additionally, as ³²⁵ in [15], two other form factors with a steeper Q^2 dependence are also explored. These are

$$C_5^A(Q^2) = C_5^A(0) \frac{1}{\left(1 + Q^2/M_A^2\right)^2} \frac{1}{\left(1 + 2Q^2/M_A^2\right)}$$
(16)

 $_{326}$ with $M_A = 1.05$ GeV, and

$$C_5^A(Q^2) = C_5^A(0) \frac{1}{\left(1 + Q^2/M_A^2\right)^2} \frac{1}{\left(1 + Q^2/3M_A^2\right)^2}$$
(17)

³²⁷ with $M_A = 0.95$ GeV. These parameterizations correspond to the NuWro alt FF (or NuWro FF2 in Sec. VII and VIII ³²⁸ and Fig. 79) and NuWro FF3, respectively. These predictions also use $C_5^A(0) = 1.2$.

FIG. 79: The evolution of C_A as a function of Q^2 for the various NuWro predictions with different parameterizations of the Δ excitation form factors. Note that the curve labeled NuWro FF2 corresponds to NuWro alt FF in the main text.

X. DATA RELEASE

61

The unfolded cross section results shown in the main text and Sec. VIII can be found tabulated below. The 330 total uncertainty, corresponding to the square root of the diagonal elements of the extracted covariance matrix, is 331 shown for each bin. The extracted cross section results and corresponding covariance matrices can be found in a 332 machine-readable form in xs.txt and cov.txt, respectively. The additional smearing matrix, A_C , obtained from the 333 Wiener-SVD unfolding can be found in the same format in Ac.txt. Any theory or event generator prediction should 334 be multiplied by the additional smearing matrix when comparing to this data. These files are presented in a blockwise 335 fashion with inter-variable correlations obtained via the blockwise unfolding procedure described in Sec. III B of [2]. 336 The Global Bin index listed in the following tables corresponds to the location of the bin in the blockwise covariance 337 matrix and the Bin index corresponds to the location within the given measurement. An example script demonstrating 338 how to compare the data to an external prediction is also included. This script loads the various data release files into 339 ROOT TMatrixD and TVectorD objects. It then compares the data to an external prediction contained in pred.txt, 340 which in this case is the μ BooNE tune MC, by first smearing the prediction and then calculating χ^2 values for various 341 342

measurements. More information on the files and their usage can be found in readme.txt. The nominal ν_{μ} , $\bar{\nu}_{\mu}$, ν_{e} , $\bar{\nu}_{e}$ fluxes of the Fermilab Booster Neutrino Beam (BNB) at the MicroBooNE detector

343 344 location can be found in numu_flux.txt, numubar_flux.txt, nue_flux.txt, and nuebar_flux.txt, respectively. The integrated flux is calculated separately for all four neutrino flavors. The sum of these integrated fluxes is the flux 345 constant that these results are averaged over. The total integrated flux and the fraction of the total integrated flux for 346 each neutrino flavor is summarized in Table. III. Neutrino flux uncertainties are fully accounted for in the extracted 347 covariance matrix and do not need to be included in theory or event generator predictions when comparing to the 348 results. More information on the flux files can be found in readme.txt. The total $NC\pi^0$ cross section integrated over 349 this flux, which is obtained by collapsing over all $P_{\pi^0}^{rec}$ bins, is found to be $(0.206 \pm 0.041) \times 10^{-39} \text{ cm}^2/\text{nucleon for 0p}$, $(0.145 \pm 0.040) \times 10^{-39} \text{ cm}^2/\text{nucleon for Np}$, and $(0.341 \pm 0.054) \times 10^{-39} \text{ cm}^2/\text{nucleon for Xp}$. This value is consistent 350 351 with the total Xp cross section of $(0.311 \pm 0.050) \times 10^{-39}$ cm²/nucleon measured in an earlier MicroBooNE NC π^0 352 ³⁵³ analysis [16] employing a very similar signal definition.

Flavor	Total Flux	Fraction
$ u_{\mu} $	4.585×10^{11}	0.9365
$\bar{ u}_{\mu}$	2.834×10^{10}	0.0579
ν_e	$2.473{\times}10^9$	0.0051
$\bar{\nu}_e$	$2.508{\times}10^8$	0.0005
Total	4.896×10^{11}	1

TABLE III: The integrated nominal flux of the BNB for each neutrino flavor in units of number of neutrinos per $\rm cm^2$ for an exposure of 6.369×10^{20} protons on target. This is the reference flux the extracted cross section results are averaged over. The Fraction column corresponds to the fraction of the total flux produced by the given flavor.

0pNp P_{π^0} differential cross section results							
Global Bin	Bin	P_{π^0} Low	P_{π^0} High	$rac{d\sigma}{dP_{\pi^0}}$	Uncertainty		
		$({\rm GeV/c})$	$\left(\mathrm{GeV}/\mathrm{c}\right)$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon (GeV/c)}}\right)$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon} (\mathrm{GeV/c})}\right)$		
0p							
0	0	0.0	0.15	0.4469	0.0796		
1	1	0.15	0.21	0.5744	0.0940		
2	2	0.21	0.3	0.4328	0.0765		
3	3	0.3	0.42	0.2809	0.0505		
4	4	0.42	0.6	0.1241	0.0353		
5	5	0.6	1.2	0.0232	0.0156		
				Np			
6	6	0.0	0.12	0.2101	0.0856		
7	7	0.12	0.18	0.5026	0.1269		
8	8	0.18	0.3	0.3660	0.0853		
9	9	0.3	0.42	0.1996	0.0644		
10	10	0.42	0.6	0.0426	0.0396		
11	11	0.6	1.2	0.0241	0.0164		

TABLE IV: Unfolded 0pNp P_{π^0} differential cross section results. The uncertainty corresponds to the square root of the diagonal elements of the extracted covariance matrix. Bin corresponds to the bin index within the given measurement, and Global Bin corresponds to the bin index within the blockwise covariance matrix.

Xp P_{π^0} differential cross section result							
Global Bin	Bin	P_{π^0} Low	P_{π^0} High	$\frac{d\sigma}{dP_{-0}}$ High $\frac{d\sigma}{dP_{-0}}$ Uncert			
		$({\rm GeV/c})$	$({\rm GeV/c})$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon \ GeV/c}}\right)$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon~GeV/c}}\right)$		
12	0	0.0	0.12	0.6168	0.1300		
13	1	0.12	0.18	1.0073	0.1751		
14	2	0.18	0.24	0.9004	0.1578		
15	3	0.24	0.3	0.6987	0.1244		
16	4	0.3	0.36	0.5026	0.1187		
17	5	0.36	0.42	0.3295	0.1055		
18	6	0.42	0.51	0.2406	0.0742		
19	7	0.51	0.66	0.1771	0.0655		
20	8	0.66	1.2	0.0378	0.0261		

TABLE V: Unfolded Xp P_{π^0} differential cross section result. The uncertainty corresponds to the square root of the diagonal elements of the extracted covariance matrix. Bin corresponds to the bin index within the given measurement, and Global Bin corresponds to the bin index within the blockwise covariance matrix.

0pNp $\cos \theta_{\pi^0}$ differential cross section results									
Global Bin	Bin	$\cos \theta_{\pi^0}$ Low	$\cos \theta_{\pi^0}$ High	$\frac{d\sigma}{d\cos\theta_{\pi^0}}$	Uncertainty				
				$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon}}\right)$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon}}\right)$				
0p									
21	0	-1	0	0.0354	0.0177				
22	1	0	0.3	0.0423	0.0159				
23	2	0.3	0.5	0.0539	0.0141				
24	3	0.5	0.6	0.0771	0.0167				
25	4	0.6	0.7	0.1097	0.0255				
26	5	0.7	0.8	0.1507	0.0362				
27	6	0.8	0.9	0.1921	0.0465				
28	7	0.9	1	0.2303	0.0574				
	Np								
29	8	-1	-0.6	0.0465	0.0144				
30	9	-0.6	-0.4	0.0575	0.0138				
31	10	-0.4	-0.2	0.0669	0.0139				
32	11	-0.2	-0.1	0.0683	0.0149				
33	12	-0.1	0	0.0671	0.0162				
34	13	0	0.1	0.0703	0.0174				
35	14	0.1	0.2	0.0758	0.0185				
36	15	0.2	0.3	0.0826	0.0199				
37	16	0.3	0.4	0.0868	0.0217				
38	17	0.4	0.5	0.0903	0.0243				
39	18	0.5	0.6	0.0959	0.0269				
40	19	0.6	0.7	0.1076	0.0307				
41	20	0.7	0.8	0.1193	0.0346				
42	21	0.8	0.9	0.1290	0.0386				
43	22	0.9	1	0.1355	0.0425				

TABLE VI: Unfolded 0pNp $\cos \theta_{\pi^0}$ differential cross section results. The uncertainty corresponds to the square root of the diagonal elements of the extracted covariance matrix. Bin corresponds to the bin index within the given measurement, and global bin corresponds to the bin index within the blockwise covariance matrix.

Xp $\cos \theta_{\pi^0}$ differential cross section results								
Global Bin	Bin	$\cos \theta_{\pi^0}$ Low	$\cos\theta_{\pi^0}$ High	$\frac{d\sigma}{d\cos\theta_{\pi^0}}$	Uncertainty			
				$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon}}\right)$	$\left(\times 10^{-39} \tfrac{\mathrm{cm}^2}{\mathrm{nucleon}}\right)$			
44	0	-1	-0.8	0.0680	0.0265			
45	1	-0.8	-0.6	0.0784	0.0249			
46	2	-0.6	-0.4	0.0952	0.0239			
47	3	-0.4	-0.3	0.1129	0.0246			
48	4	-0.3	-0.2	0.1224	0.0255			
49	5	-0.2	-0.1	0.1248	0.0269			
50	6	-0.1	0	0.1214	0.0276			
51	7	0	0.1	0.1242	0.0282			
52	8	0.1	0.2	0.1319	0.0291			
53	9	0.2	0.3	0.1435	0.0320			
54	10	0.3	0.4	0.1570	0.0360			
55	11	0.4	0.5	0.1734	0.0395			
56	12	0.5	0.6	0.1986	0.0431			
57	13	0.6	0.7	0.2364	0.0477			
58	14	0.7	0.8	0.2841	0.0533			
59	15	0.8	0.9	0.3409	0.0618			
60	16	0.9	1	0.4047	0.0739			

TABLE VII: Unfolded Xp $\cos \theta_{\pi^0}$ differential cross section results. The uncertainty corresponds to the square root of the diagonal elements of the extracted covariance matrix. Bin corresponds to the bin index within the given measurement, and Global Bin corresponds to the bin index within the blockwise covariance matrix.

	Xp $\cos \theta_{\pi^0}$ and P_{π^0} double-differential cross section result								
Global Bin	Bin	$\cos \theta_{\pi^0}$ Low	$\cos\theta_{\pi^0}$ High	P_{π^0} Low	P_{π^0} High	$\frac{d^2\sigma}{dP_{\pi^0}d\cos\theta_{\pi^0}}$	Uncertainty		
				$({\rm GeV/c})$	$({\rm GeV/c})$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon}~(\mathrm{GeV/c})}\right)$	$\left(\times 10^{-39} \frac{\mathrm{cm}^2}{\mathrm{nucleon} (\mathrm{GeV/c})}\right)$		
61	0	-1	0	0	0.15	0.3010	0.0917		
62	1	-1	0	0.15	0.21	0.4274	0.0890		
63	2	-1	0	0.21	0.3	0.2204	0.0702		
64	3	-1	0	0.3	1.2	0.0085	0.0042		
65	4	0	0.5	0	0.15	0.2407	0.1023		
66	5	0	0.5	0.15	0.24	0.3964	0.1014		
67	6	0	0.5	0.24	0.33	0.2985	0.0797		
68	7	0	0.5	0.33	0.42	0.1983	0.0551		
69	8	0	0.5	0.42	1.2	0.0176	0.0068		
70	9	0.5	0.85	0	0.12	0.4589	0.1407		
71	10	0.5	0.85	0.12	0.18	0.6683	0.1757		
72	11	0.5	0.85	0.18	0.24	0.7095	0.1663		
73	12	0.5	0.85	0.24	0.3	0.6670	0.1501		
74	13	0.5	0.85	0.3	0.36	0.5485	0.1555		
75	14	0.5	0.85	0.36	0.42	0.3718	0.1397		
76	15	0.5	0.85	0.42	0.54	0.1987	0.0881		
77	16	0.5	0.85	0.54	1.2	0.0875	0.0298		
78	17	0.85	1	0	0.15	0.2704	0.1296		
79	18	0.85	1	0.15	0.24	0.5218	0.1329		
80	19	0.85	1	0.24	0.33	0.7079	0.1853		
81	20	0.85	1	0.33	0.42	0.8002	0.2342		
82	21	0.85	1	0.42	0.51	0.6722	0.1900		
83	22	0.85	1	0.51	0.66	0.4258	0.1056		
84	23	0.85	1	0.66	1.2	0.1464	0.0986		

TABLE VIII: Unfolded Xp $\cos \theta_{\pi^0}$ and P_{π^0} double-differential cross section result. The uncertainty corresponds to the square root of the diagonal elements of the extracted covariance matrix. Bin corresponds to the bin index within the given measurement, and Global Bin corresponds to the bin index within the blockwise covariance matrix.

³⁵⁴ [1] M. L. Eaton, Multivariate Statistics: a Vector Space Approach (John Wiley and Sons, 1983) pp. 116–117.

³⁵⁵ [2] P. Abratenko *et al.* (MicroBooNE Collaboration), Inclusive cross section measurements in final states with and without ³⁵⁶ protons for charged-current ν_{μ} -Ar scattering in MicroBooNE, Phys. Rev. D **110**, 013006 (2024).

 ^[3] P. Abratenko *et al.* (MicroBooNE Collaboration), First Measurement of Energy-Dependent Inclusive Muon Neutrino
 Charged-Current Cross Sections on Argon with the MicroBooNE Detector, Phys. Rev. Lett. **128**, 151801 (2022).

^[4] P. Abratenko *et al.* (MicroBooNE Collaboration), Search for an anomalous excess of inclusive charged-current ν_e interactions in the MicroBooNE experiment using Wire-Cell reconstruction, Phys. Rev. D 105, 112005 (2022).

^[5] P. Abratenko *et al.* (MicroBooNE Collaboration), Measurement of triple-differential inclusive muon-neutrino chargedcurrent cross section on argon with the MicroBooNE detector (2023), arXiv:2307.06413 [hep-ex].

 ^[6] P. Abratenko *et al.* (MicroBooNE Collaboration), First Simultaneous Measurement of Differential Muon-Neutrino Charged ³⁶⁴ Current Cross Sections on Argon for Final States with and Without Protons Using MicroBooNE Data, Phys. Rev. Lett.

- **133**, 041801 (2024).
- [7] L. Alvarez-Ruso et al. (GENIE Collaboration), Recent highlights from GENIE v3, Eur. Phys. J. ST 230, 4449 (2021).
- [8] Y. Hayato and L. Pickering, The NEUT neutrino interaction simulation program library, Eur. Phys. J. ST 230, 4469
 (2021).
- [9] P. Stowell *et al.*, NUISANCE: a neutrino cross-section generator tuning and comparison framework, J. Instrum. 12 (01),
 P01016.
- 371 [10] L. Alvarez-Ruso, Review of weak coherent pion production, AIP Conf. Proc. 1405, 140 (2011).
- $_{372}$ [11] D. Rein and L. M. Sehgal, Coherent π^0 production in neutrino reactions, Nucl. Phys. B 223, 29 (1983).
- ³⁷³ [12] T. Leitner, L. Alvarez-Ruso, and U. Mosel, Neutral current neutrino-nucleus interactions at intermediate energies, Phys. ³⁷⁴ Rev. C 74, 065502 (2006).
- ³⁷⁵ [13] S. Gardiner, Mathematical methods for neutrino cross-section extraction, arXiv preprint (2024), FERMILAB-PUB-23-³⁷⁶ 692-CSAID, arXiv:2401.04065 [hep-ex].
- ³⁷⁷ [14] K. M. Graczyk, D. Kiełczewska, P. Przewłocki, and J. T. Sobczyk, C_5^A axial form factor from bubble chamber experiments, ³⁷⁸ Phys. Rev. D **80**, 093001 (2009).
- ³⁷⁹ [15] O. Lalakulich and E. A. Paschos, Resonance production by neutrinos: J = 3/2 resonances, Phys. Rev. D **71**, 074003 ³⁸⁰ (2005).
- $_{381}$ [16] P. Abratenko *et al.* (MicroBooNE Collaboration), Measurement of neutral current single π^0 production on argon with the
- ³⁸² MicroBooNE detector, Phys. Rev. D **107**, 012004 (2023).