Kernels of bounded operators on the classical transfinite Banach sequence spaces

Arnott, Max and Laustsen, Niels (2025) Kernels of bounded operators on the classical transfinite Banach sequence spaces. In: Banach algebras and harmonic analysis :. de Gruyter. (In Press)

[thumbnail of ArnottLaustsenOuluProc]
Text (ArnottLaustsenOuluProc)
ArnottLaustsenOuluProc.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (434kB)

Abstract

Every closed subspace of each of the Banach spaces X=lp(Γ) and X=c0(Γ), where Γ is a set and 1<p<∞, is the kernel of a bounded operator X→X. On the other hand, whenever Γ is an uncountable set, l1(Γ) contains a closed subspace that is not the kernel of any bounded operator l1(Γ)→l1(Γ).

Item Type:
Contribution in Book/Report/Proceedings
Uncontrolled Keywords:
Research Output Funding/yes_externally_funded
Subjects:
?? non-separable banach spacetransfinite sequence spacebounded operatorkernelyes - externally fundednomathematics(all) ??
ID Code:
228521
Deposited By:
Deposited On:
27 Mar 2025 14:50
Refereed?:
Yes
Published?:
In Press
Last Modified:
27 Mar 2025 14:50