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Obstacle Avoidance and Path Planning Methods for
Autonomous Navigation of Mobile Robot
Kornél Katona *,† , Husam A. Neamah † and Péter Korondi

Department of Electrical Engineering and Mechatronics, Faculty of Engineering, University of Debrecen,
4028 Debrecen, Hungary; husam@eng.unideb.hu (H.A.N.); korondi.peter@eng.unideb.hu (P.K.)
* Correspondence: katona.kornel@eng.unideb.hu
† These authors contributed equally to this work.

Abstract: Path planning creates the shortest path from the source to the destination based on sensory
information obtained from the environment. Within path planning, obstacle avoidance is a crucial
task in robotics, as the autonomous operation of robots needs to reach their destination without
collisions. Obstacle avoidance algorithms play a key role in robotics and autonomous vehicles.
These algorithms enable robots to navigate their environment efficiently, minimizing the risk of
collisions and safely avoiding obstacles. This article provides an overview of key obstacle avoidance
algorithms, including classic techniques such as the Bug algorithm and Dijkstra’s algorithm, and
newer developments like genetic algorithms and approaches based on neural networks. It analyzes
in detail the advantages, limitations, and application areas of these algorithms and highlights current
research directions in obstacle avoidance robotics. This article aims to provide comprehensive insight
into the current state and prospects of obstacle avoidance algorithms in robotics applications. It also
mentions the use of predictive methods and deep learning strategies.

Keywords: obstacle avoidance; global path planning; local path planning; autonomous vehicles;
navigation algorithms

1. Introduction

Autonomous robots are machines or devices capable of operating independently
and making decisions in their environment. These robots are equipped with sensors and
embedded systems to gather information about their surroundings, such as mapping,
navigation, and obstacle detection. Obstacle avoidance plays a crucial role in the opera-
tion of autonomous robots, enabling them to navigate their environment efficiently and
safely. Obstacle avoidance algorithms assist robots in avoiding obstacles and minimizing
collisions, allowing them to reach their destination safely and accomplish their tasks. Thus,
obstacle avoidance is an indispensable element of effective and reliable operation for au-
tonomous robots. This paper explores a literature review of alternative route planning and
mobile robot navigation methods. The main algorithms it considers are discussed in the
following sections. Global path planning involves navigating a robot based on preexisting
environmental data, which is loaded into the robot’s planning system to compute a tra-
jectory from the starting point to the destination. This method generates a complete path
before the robot begins its journey, essentially optimizing the route gradually [1]. Global
path planning is consciously determining the best way to move a robot from a starting
point to a destination. In global route planning, the robot has already been moved from
the starting location to the destination, and the robot is then released into the specified
environment [2]. In contrast, local path planning involves navigating a robot in dynamic or
unknown environments where the algorithm adapts to real-time obstacles and changes.
This method primarily focuses on real-time obstacle avoidance using sensor-based data
for safe navigation [3]. The robot typically follows the shortest, straight-line path from the

Sensors 2024, 24, 3573. https://doi.org/10.3390/s24113573 https://www.mdpi.com/journal/sensors1



Sensors 2024, 24, 3573

start to the destination until encountering an obstacle. Upon detection, it deviates from this
path while updating essential details like the new distance to the target and the point of
obstacle bypass [2]. Continuous knowledge of the target’s position relative to the robot is
critical for accurate navigation, as depicted in Figure 1.

Figure 1. The obstacle avoidance procedure [4].

The diagram of the algorithms of each type included in this paper is shown in Figure 2.
Another classification divides the methods into classical and heuristic algorithms (Figure 3).
The classification according to classic and heuristic obstacle avoidance algorithms makes
the selection and application of algorithms more transparent and manageable. Users can
more easily identify which algorithm best meets the requirements of a given problem.
Classical algorithms such as Dijkstra perform well for minor deterministic problems, while
heuristic algorithms such as A* can be more efficient for larger and more complex issues.
Moreover, the separation between global and local search algorithms is less clear. There are
heuristic algorithms (such as A* or the DL-based algorithms) that have both versions of the
search algorithm. This paper follows the latter classification.

One group of algorithms is called optimization methods. These mathematical proce-
dures and algorithms aim to find the best possible solution to a given problem within the
constraints available. An optimal solution is usually a combination of the values of one or
more variables that maximizes or minimizes the value of the objective function while taking
into account various constraints or conditions. For example, Particle Swarm Optimization,
Cuckoo Search Algorithm, Artificial Bee Colony, Ant Colony Optimization, and Grey Wolf
Optimization are based on such optimization techniques. These methods are called swarm
(population)-based because they are inspired by animal behavior. Usually, some population
of individuals (solutions) is used, and these individuals are iteratively developed and
modified to find the best solution. They can effectively find optimal solutions to complex
and diverse problems that traditional algorithms cannot manage with difficulty or at all.
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Figure 2. Diagram of the algorithms.

Section 2 discusses bright spaces and fundamental obstacle avoidance methods. Then,
in the Section 3, classical avoidance algorithms such as Dijkstra, Floyd–Warshall (FW),
Bellman-Ford (BF), Artificial Potential Field (APF), Bug Algorithms, Vector Field Histogram
(VFH), Probabilistic Roadmap Method (PRM), Rapidly exploring Random Tree (RRT), Cell
Decomposition (CD), and the Following Gap Method (FGM) are discussed. Heuristic
algorithms are presented in Section 3. This includes the A* Algorithm, Fuzzy Logic (FL),
Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Cuckoo Search Algorithm
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(CSA), Artificial Bee Colony (ABC), and Ant Colony Optimization (ACO). It also mentions
using deep learning (DL) strategies and predictive methods. In this section, we discuss
Artificial Neural Networks (ANNs), Model Predictive Control (MPC), and Deep Reinforce-
ment Learning (DRL). Other algorithms are mentioned here, such as Dynamic Window
Approach (DWA), Golden Jackal Optimization (GJO), or Grey Wolf Optimization (GWO).
At the end of the chapter, a further so-called hybrid algorithm consists of two or more of
the algorithms discussed earlier. Sliding Mode (SM) is presented in more detail among the
hybrid methods. This article tries to collect and analyze most of the algorithms commonly
used in practice. However, covering all currently existing methods in a single article is
impossible, so this is not the aim here. This paper attempts to provide an overview of
historically important and currently significant algorithms in practice as comprehensively
as possible. Of course, it is impossible to discuss all possible methods (especially in the case
of hybrid algorithms), but we tried to present the development directions of each algorithm.
Such an extensive literature review cannot be found in other works. One of this article’s
most important values, after the description of the theoretical background, is the summary
table of the individual algorithms, which provides a sufficient comparison based on the
algorithms’ main properties (e.g., convergence, calculation time).

Figure 3. The classical/heuristic division of algorithms.

2. Classic Approaches

This section presents some classic approaches.

2.1. Dijkstra Algorithm

Dutch scientist Edsger Wybe Dijkstra introduced the Dijkstra Algorithm (DA) in 1956,
which he published in 1959 [5]. The question of the shortest path between two nodes
in a directed graph is solved by this method, which is one of the most commonly used
techniques for mapping isolated workspace paths [6]. This method is a well-known strategy,
but it is less effective when the origin and destination are farther apart. In this case, the
algorithm calculates the shortest path for all nodes, even if the node is irrelevant for the
optimal route. Consequently, most of the calculations may be redundant, resulting in a
time-consuming process. Another factor that may contribute to the time-consuming process
is the presence of long edges in the graph. In this case, the Dijkstra algorithm has to spend
a considerable amount of time processing the edges [7].

To plan the shortest path in Dijkstra’s algorithm, the starting position must be specified,
and two heaps S and U must be introduced. The S heap records the vertices for which the
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shortest path is not found and the distance between the vertex and the starting point [8].
The flowchart of the Dijkstra algorithm is shown in Figure 4.

Figure 4. The flowchart of the Dijkstra.

The work in [9] used DA to define vehicle routes on toll roads. Path planning is in a
localization-insecure environment based on the Dijkstra method in [10]. Dijkstra was used
to determine the shortest distance between cities on the island of Java [11]. This method
was later modified to handle the situation where most of the network parameters are un-
known and expressed as neutrosophic values (can be true, false, and neutral simultaneously,
depending on the point of view) [12]. A Dijkstra-based route planning strategy for au-
tonomous vehicles is included in [13]. In [14], a Dijkstra algorithm is applied to unmanned
aerial vehicles (UAVs). Ref. [15] presents the optimal route planning of an unmanned
surface vehicle in a real-time maritime environment using the Dijkstra algorithm.

2.2. Floyd-Warshall Algorithm (FW)

The Floyd-Warshall algorithm can be considered dynamic programming, and it was
published in 1962 by Robert Floyd. The algorithm efficiently and simultaneously finds
the shortest paths between all pairs of vertices of a weighted and potentially directed
graph [16,17].

The algorithm compares all possible paths for each line of all points on the graph. The
graph’s vertices should be numbered from 1 to n (n number of vertexes). Suppose there is
also a shortest path function f (i, j, k) which gives the shortest path from i to j using only
the node from 1 to k as an intermediate point. The ultimate goal of using this function is to
find the shortest path from each vertex i to vertex j using the intermediate node from 1 to
k + 1. This algorithm first computes the function f (i, j, 1) for each pair (i, j), then uses the
results to compute f (i, j, 2) for each pair (i, j), and so on. This process continues until k = n,
and the shortest path is found for all (i, j) pairs with the interpolation of vertices [18].

The algorithm consists of two parts: the construction of the path matrix and the state
transition equation. The construction of the path matrix is based on the weight matrix
of the graph to obtain the matrix Dn of the shortest path between each two points. The
elements of row i and column j of the matrix Dn are the length of the shortest path from

5
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vertex i to vertex j. The state transition equation mathematically calculates the shortest
distance between each point (1). The computation time is O(n3) [19].

dk
ij = min{dk−1

ij , dk−1
ik + dk−1

kj } (1)

where the notation dk
ij represents the shortest path from i to j that also passes through vertex

k. For example, d0
ij is the edge length between vertices i and j.

2.3. Bellman-Ford Algorithm (BF)

The Bellman-Ford algorithm is a classical method that computes the shortest paths in a
weighted graph from a single source. This algorithm considers the negative-weighted edges
of the graph, so it can handle graphs that contain negative-weighted cycles. These cycles
generate several paths from the origin to the destination, where each cycle minimizes the
shortest path length. The algorithm efficiently uses O(nṁ) time for a graph with n vertices
and m edges. The BF algorithm can handle edges with negative weights, unlike Dijkstra’s
algorithm, which only works with edges with positive weights. For this reason, the BF
algorithm is mainly used for graphs with negative edge weights. Although its efficiency
is lower than that of Dijkstra’s algorithm, some problems would be impossible without
negative weights. The BF algorithm is similar to Dijkstra’s algorithm, but it approximates
all edges instead of selecting vertices with minimum distance. This operation is performed
n− 1 times, where n is the number of vertices in the graph, and these iterations provide an
exact prior in the graph [20–22].

2.4. Artificial Potential Field (APF)

The idea is that the mobile robot moves within a potential field where the robot
and obstacles behave as positive charges while the target behaves as a negative charge.
The mismatch between attractive and repulsive forces helps the robot to move in the
environment. The attractive force attracts the robot to the target location, while the repulsive
force keeps it away from each obstacle [23], as shown in Figure 5.

The final force acting on the robot is the vector sum of all repulsive and attractive
forces. However, the distance determines the magnitude of the force, i.e., obstacles close to
the robot will have a more significant effect. Similarly, if the robot is far from the target,
its speed will be high and slow down as it approaches the target. As mentioned in the
literature [24], the attractive force is the negative gradient of the attractive potential (2).

Fattr = −∇Uattr = −Kattr(d− dgoal) (2)

where d− dgoal is the Euclidean distance between the current position and the target, and
Kattr is the scaling factor. The repulsive force can be calculated by adding the repulsive
effect of the obstacles on the robot. This can be obtained by calculating the obstacles’
distance and direction (angle) from the robot. An obstacle close to the robot has a high
repulsive force. The formula described by [25] is (3)

Urep =
n

∑
i=1

Urepi(d) (3)

Urep negative gradient repulsive force. So (4),

Frep = −Urepi(d) (4)

6



Sensors 2024, 24, 3573

Figure 5. APF-based navigation for a mobile robot.

To avoid local minima, various methods have been devised. One such method is
the left-turning potential field approach, which compels the robot to change direction
when encountering a local minimum. Conversely, the virtual target point method involves
strategically placing a virtual target point when the robot reaches a local minimum. During
this process, the robot disregards the influence of both the target point and obstacles,
enabling it to pivot and break free from the local minimum. Another critical issue with
APF is its susceptibility to local minima, which can hinder the robot’s progress. Symmetric
and U-shaped obstacles exemplify these dead-end scenarios, leading to the robot becoming
trapped. Figure 6 illustrates symmetric obstacles, where the forces exerted by the target
and obstacles cancel each other out, resulting in a stalemate for the robot—a classic instance
of local minima. To address this problem, significant attractor forces are temporarily
applied at random locations to prevent the robot from being trapped in local minima.
These measures aim to disrupt the equilibrium between attractive and repulsive forces,
enabling the robot to navigate effectively [26]. In summary, while APF offers a direct path
from source to destination, its susceptibility to local minima poses a significant challenge.
Various strategies, such as the left-turning potential field and virtual target point methods,
have been developed to mitigate this issue and ensure smoother navigation in complex
environments [27].

The APF has been used in a dynamically changing, obstacle-filled environment be-
tween unmanned aerial vehicles (UAVs) [28]. Ref. [29] proposes an improved artificial
potential field method for autonomous underwater vehicle (AUV) route planning. Based
on an improved artificial potential field, ref. [30] introduces dynamic route planning for
autonomous vehicles on icy and snowy roads. Ref. [31] discusses local path planning
for multi-robot systems using an improved APF. Furthermore, ref. [32] outlines an active
obstacle avoidance method for autonomous vehicles that is also based on an improved APF.

7
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Figure 6. Dead-end scenario of the artificial potential field method: (a) symmetric obstacles and
(b) U-shaped obstacle.

2.5. Bug Algorithms

Despite the presence of more efficient algorithms, Bug algorithms are still significant
in robotics. These were the earliest navigation and obstacle avoidance algorithms that
achieved relatively reliable results with speedy computation times. The algorithms are de-
signed to work assuming that the robot is a single point in 2D space and that its movement
is between each point. Bug algorithms are a popular type of robot navigation algorithms
that provide a trajectory following an obstacle boundary in navigation scenarios with
unknown obstacles, similar to the behavior of a bug [33]. The algorithm can be divided into
three main variants based on their obstacle avoidance behavior, as discussed below [34,35]:

• The Bug-1 algorithm activates when the robot detects an obstacle. It starts circum-
navigating the obstacle until it reaches the starting point from which it began while
calculating the shortest distance from the destination to the departure point and
creating a new path from the calculated departure point to the destination as it circum-
navigates the obstacle. After completing full circles, it resumes circumnavigating the
obstacles until it reaches the departure point, then proceeds on the newly generated
path toward the destination.

• The bug-2 algorithm sets a direction from the starting position to the destination,
and the robot follows it until it encounters an obstacle. Upon interruption, it follows
the obstacle’s edge and calculates a new direction from each new position until the
new direction matches the original direction. Once reaching this position, the robot
resumes following the previously generated path towards the destination.

• In contrast, the Dist-Bug algorithm relies on distances to targets and obstacles. When
encountering an obstacle on the path, the robot begins following the obstacle’s edge
and calculates the distance between that point and the destination at each point. The
point with the smallest distance to the target is called the distance point. Subsequently,
the robot creates a new path along which it moves to the destination when it finds the
distance point during its movement around the obstacle.

The three versions are shown in Figure 7.
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Figure 7. Obstacle avoidance with the Bug algorithms: (a) path of the Bug-1 algorithm, (b) the path
of the Bug-1 algorithm, and (c) Dist-Bug algorithm path.

A maritime search route planning method for unmanned surface vehicles (USVs)
based on the improved Bug algorithm presented here is also presented in [36].

2.6. Follow the Gap Method (FGM)

The FGM avoids obstacles by finding the gap between them. It calculates the gap
angle. The minimum gap between obstacles is the threshold gap from which the robot can
move. If the measured gap is larger than the threshold, the robot follows the calculated gap
angle. Obstacle avoidance using the FGM is achieved in three main steps [37].

The algorithm uses sensory information to identify gaps with the largest angle and
works in three steps, as follows [38]:

• The initial step involves computing the arrays of gaps. During this phase, the algo-
rithm utilizes the current sensory data, such as information from the LIDAR sensor, to
produce a gap array. This array provides details regarding the sizes of the available
gaps surrounding the robot in angular form. The FGM algorithm identifies the largest
gap by the conclusion of this stage.

• The FGM calculates the angle to the gap’s center point using specific geometric relations.
• In the third stage, this method calculates the final heading angle, φ f inal , using (5)

φ f inal =

α
dmin

φgap−c + φgoal
α

dmin
+ 1

(5)

The weighted function described in Equation (5) comprises the angle to the center
point of the widest gap φgap−c, the angle to the goal point φgoal , the distance to the
nearest obstacle dmin, and a safety parameter denoted as α. Higher values of the alpha
parameter prompt the robot to maintain a safe distance from obstacles and align with
the center of the safe gap. Conversely, lower values of alpha lead the robot to prioritize
the goal point, potentially approaching obstacles too closely in certain scenarios.

The representation of the gaps accessible to the robot, the angle towards the midpoint
of the widest gap, the angle towards the destination, and the final heading angle determined
by FGM are depicted in a robot-obstacle configuration, as illustrated in Figure 8.
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Figure 8. Robot-obstacle configuration, obstacles (A, B, and C), the midpoint of the widest angular
gap (M2), goal point (X), angle to the goal point (φgoal), final heading angle (φ f inal), and angle to the
largest gap’s center point (φgap′scenter). [38].

So, in this procedure, the robot selects the largest gap around it and moves towards
the target, taking into account the largest gap and the minimum distance from the obstacle.
One of the drawbacks of this method is the lengthening of the path, which can sometimes
be unnecessary. Another challenge is the subtle differences in gap sizes. This can sometimes
result in the robot changing the number of selected gaps instantly, which can lead to zigzag
paths [39].

In [40], the collision avoidance task is accomplished with the Follow the Gap Vec-
tor Method. A central part of the approach proposed in [2] is to identify gaps in the
environment by analyzing sensor data.

2.7. Vector Field Histogram (VFH)

The algorithm initiates by generating a 2D histogram around the robot to depict
obstacles. Subsequently, the 2D histogram undergoes updates with new sensor detections.
It converts this 2D histogram into a 1D histogram and further into a polar histogram.
Finally, the algorithm identifies the most suitable sector characterized by low polar obstacle
density and computes the steering angle and velocity towards this direction. Figure 9 is
from the work of [41] which illustrates the 2D histogram grid. The conversion from 2D to
1D histogram is shown in Figure 10a, and Figure 10b is a representation of the 1D polar
histogram with obstacle density for a situation where the robot has three obstacles, A, B
and C in its close vicinity.

Figure 9. Structure of the 2D histogram grid map [42].
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Figure 10. Representation of (a) the 1D histogram (b) the polar histogram with obstacle density for a
situation where the robot has three obstacles, A, B and C in its close vicinity [42].

The first step is to sort the costs of the traversable area and then calculate the cost using
the cost function based on the indicated direction of the polar histogram. The designated
directions are selected from the traversable areas taking into account the robot’s kinematic
and dynamic characteristics. Inaccessible sectors, as determined by the robot’s capabilities,
are classified as impassable areas. Areas above the threshold are labeled as impassable,
whereas those below the threshold are considered passable. To continue, the histogram
generated in the previous step must be converted into a binary format by choosing the
appropriate threshold based on the current situation. The commonly used cost function is
shown as follows (6) [43]:

f (v) = c1 · ∆(v, dg) + c2 · ∆
(

v,
Θ
α

)
+ c3 + ·∆(v, dg−1) (6)

The candidate direction f v represents the cost value f (v). c1, c2, and c3 are three
parameters to be determined according to the actual situation. The dg is the target direction,
dg−1 is the previous direction, and the orientation of the robot is Θ

α . The absolute difference
between v and dg is denoted by ∆(v, dt). The difference between the marked direction and

the orientation of the robot is denoted by ∆
(

v, Theta
alpha

)
. The difference between v and dg−1 is

denoted by ∆(v, dg−1).
To determine the robot’s desired control command, this algorithm employs a two-stage

data reduction process. Although this ensures accurate computation of the robot’s path to
the target, it necessitates additional resources, such as memory and processing power [44].

Initial tests have shown that the mobile robot can use the VHF to traverse very
crowded obstacle courses at high average speeds, and can pass through narrow openings
(e.g., doorways) and move through narrow corridors without oscillating [41]. In [45],
an improved 3D-VFH algorithm is proposed for autonomous flight and local obstacle
avoidance of multirotor UAVs in confined environments.

2.8. Cell Decomposition (CD)

The cell-by-cell technique divides the area into non-overlapping grids, called cells, and
uses grids that can be connected from the initial cells to the target to move from one cell to
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another. This method is classified as exact, approximate, and probabilistic CD depending
on the assignment of boundaries between cells. For exact CD, the resolution is lossless
and the shape and size of the cells are not fixed and each element is assigned a number. In
contrast, for approximate CD, the decomposition result approximates the actual map and
the grid has a fixed shape and size. And the probabilistic CD is like the approximate CD,
except for the cell boundaries, which do not represent a physical meaning [46]. Figure 11
shows that the CD systems can be divided into three classes.

Figure 11. (Top): approximate CD; (middle): exact CD, and (bottom): probability CD [47].

2.9. Probabilistic Roadmap Method (PRM)

Classical methods face several drawbacks, such as high time requirements at large
scales and getting bogged down in local minima, which makes them ineffective in practical
scenarios. To address these limitations and increase efficiency, probabilistic algorithms
have been proposed. These algorithms aim at providing practical paths for robots through
static workspaces [48].

One of the most important examples is the Probabilistic Roadmap Method (PRM) [49].
It uses lines to delimit the connectivity of the robot’s free areas. This includes the visibility
graph and the Voronoi graph [47]. Figure 12 illustrates these two graphs.

In the visibility graph, the obstacles are represented as polygons [50], and the vertical
nodes of the polygonal obstacles are connected in such a way that the path length is
minimized while the lines remain close to the obstacles. In contrast, the Voronoi graph uses
the two closest points of the edges of the obstacles for planning and divides the domain
into subdomains. In the latter case, the robot moves farther away from the obstacles, which
increases safety but results in longer paths compared with the visibility graph [51].
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Figure 12. Visibility graph (left); Voronoi graph (right). The visibility graph is constructed based
on the visibility between points, while the Voronoi graph is constructed based on the geometric
relationships between areas.

To link the initial state with the goal region, PRMs explore this roadmap graph and
pinpoint a sequence of states and local connections that the robot can traverse. While these
algorithms can theoretically create arbitrarily accurate representations as the number of
samples approaches infinity, in practice, only a handful of critical states are needed to define
solution trajectories. These critical states often have significant structure, such as entries to
narrow passages, but they can only be identified through exhaustive sampling [52].

These algorithms offer highly accurate representations with a theoretically infinite
number of samples. In practice, however, this is only necessary in a few cases. For example,
entering a bottleneck. The Voronoi graph continues to play a crucial role in the further
development of different algorithms for different purposes [53]. Notably, ref. [54] presents
a useful visibility Voronoi graph search algorithm for generating routes for unmanned
surface vehicles. In addition, ref. [55] uses the Voronoi graph to partition agricultural areas
into multiple fields, making it easier for multiple robots to perform agricultural tasks.

2.10. Rapidly Exploring Random Tree (RRT)

The Rapidly exploring Random Tree (RRT) method facilitates swift exploration of the
configuration space [56]. Initially proposed by LaValle [57], the RRT algorithm generates a
graph, termed a “tree”, where nodes signify potential reachable states and edges denote
transitions between states. The RRT’s root denotes the initial state, with all other states
reachable along the path from the root to the corresponding node. Leveraging a sampling
approach, this algorithm operates effectively in complex environments, evading local
minima [58]. It has proven effective in tackling nonholonomic and kinodynamic motion
planning challenges. In robotics, algorithms employed to generate RRTs are versatile,
allowing trajectories to incorporate turns at any angle, albeit subject to kinematic and
dynamic constraints [56].

When sampling, it allows all nodes in the robot configuration space to be reached with
equal probability. Based on the constraints of the algorithm, it selects a node in the random
tree. On impact, it resamples and discards the previous node. If no collision occurs, the
selected node is added to the random tree. If a node on the route is redundant, it is deleted;
otherwise, it remains as a node in the random tree [59].

The flow chart of an RRT is shown in Figure 13:
This method does not require the modeling of space and can be used in large-scale

environments. It also takes into account the objective constraints of unmanned vehicles,
making it suitable for handling route planning problems in dynamic and multiobstacle
environments. However, the route is randomly generated, leading to distortion. Second,
the random tree has no orientation during the search process, resulting in slow convergence
speed and low search efficiency [60]. Several improvements have been made to address the
limitations of the algorithm. Among others, the RRT-Connect algorithm, the asymptotically
optimal Rapidly Exploring Random Tree (RRT), the asymptotically optimal bidirectional
Rapidly Exploring Random Tree (B-RRT), and the intelligent bidirectional RRT (IB-RRT)
were born out of this necessity. Ref. [60]. The RRT* algorithm can construct an RRT whose
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branches converge asymptotically to the optimal solution given a given cost function. It
solves feasibility problems efficiently and qualitatively concerning the cost function [56].

RRT has been used to plan the routes of ships [58], industrial robots [59] and micro
aerial vehicles (MAVs) [61], among others.

Figure 13. The RRT process.

3. Heuristic Approach

A heuristic approach is used to solve problems faster [62]. The method has proven its
effectiveness and is widely used in autonomous navigation [5].

3.1. A* Algorithm

The A* algorithm is a graph search algorithm similar to Dijkstra’s algorithm, developed
by Hart (1968) [63] to speed up the search process of Dijkstra’s algorithm. To do this, they
introduced a heuristic cost function, which is the distance between the current point and
the target point. Like the Dijkstra algorithm, the A* algorithm needs an environment model,
e.g., a grid map. In the A* algorithm, the search area is usually divided into small squares,
where each square represents a node. The algorithm can solve various routing problems
with superior performance and accuracy compared with Dijkstra’s algorithm. Algorithm
A* solves problems by finding the path with the lowest cost (e.g., the shortest time) among
all possible paths to the solution. Of these paths, it first considers those that appear to lead
the fastest to the solution. The A* algorithm uses an evaluation function (7):

f (n) = g(n) + h(n) (7)

The function f (n) represents the cumulative cost from the starting point to the current
point, extending to the target point. Meanwhile, g(n) denotes the shortest cost from the
initial point to the current position n, and h(n) predicts the optimal path cost from the
current point n to the destination, often calculated as the Manhattan distance [64]. Initially
applied in port areas, Casalino used the A* algorithm [65] for local pathfinding. Guan
proposed an improved version of the A* algorithm [66], which helps Unmanned Surface

14



Sensors 2024, 24, 3573

Vessels (USVs) avoid static obstacles at sea and reach their destination smoothly while
avoiding local minima. In addition, a collision-free trajectory planning method for space
robots based on the A* algorithm has been developed in [67]. The geometric A* presented
in [68] is designed for route planning of automated guided vehicles (AGVs) operating in
port environments.

Despite its advantages, traditional A* does not always provide an optimal solution, as
it does not take into account all feasible routes. In each iteration, A* evaluates the nodes
based on their f values, which is a computationally expensive process, especially in large
map search areas. Consequently, this approach can significantly slow down the speed of
route planning.

3.2. Fuzzy Logic (FL)

Fuzzy logic (FL) is a technique for persuading the human intellect. FL is a uniform
approximate (linguistic) method for inferring uncertain facts using uncertain rules [69]. In
1965, Lotfi A. Zadeh was the first to introduce the idea of an FL system [70]. The fuzzy sets
he created are an extension of the traditional notion of a set, going beyond the Aristotelian
(true–not–true; yes–no) division. The fuzzy set A is defined as follows [70]:

A = {x, µA(x) | x ∈ X, µA(x) : X → [0, 1]}
where X is the so-called reference surface, and muA(x) is the so-called membership function,
which takes values in the complete closed interval between 0 and 1. In the special case
where muA(x) takes only values 0 and 1, A reduces to a classical set. The three basic
operations on fuzzy sets (intersection, union, complement) are defined as extensions of the
corresponding operations on classical sets. The standard properties of sets (De Morgan,
absorption, associativity, distributivity, idempotence) hold here as well. Fuzzy inference (or
fuzzy reasoning) is an extension of classical inference [69]. However, Zadeh’s vision was
later expanded in several areas. The FL serves as a formal blueprint for representing and
implementing the heuristic intelligence and observation-based methods of experts [71,72].

Figure 14 is an example of the primary FL driver used in [73]. The general architecture
of a fuzzy logic controller consists of four units: IF–THEN rules, whose associated linguistic
variable values can be not only true or false but can vary between the two; a fuzzy inference
mechanism, which is a process to identify the output values associated with the input
variables based on the fuzzy rules; an input fuzzification unit; and an output defuzzification
unit. Hex Moor [74] was the first to apply the FL concept to robot path planning and
obstacle avoidance. Since then, for example, the FL route planning approach has been
applied in unknown environments [73]. Mobile robot routing algorithm based on FL and
neural networks designed [75]. Chelsea and Kelly demonstrate FL controller for UAVs in a
two-dimensional environment [6]. Then, 3D space navigation was demonstrated using FL
for aerial [76] and underwater [77] robots and a Mamdani-type FL-based controller for a
nonholonomic wheeled mobile robot that tracks moving obstacles [78].

Figure 14. Basic FL controller consisting of an IF–THEN rule, an inference mechanism, an input
fuzzification unit, and an output defuzzification unit.

3.3. Genetic Algorithm (GA)

A genetic algorithm is an optimization technique referring to genetics and natural
selection, first introduced by Bremermann in 1958 [79]. It is based on Darwinian evolu-
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tionary theory and mimics the concept of survival of individuals best adapted to their
environment. The most viable members of the population survive, while the weakest die
off. The surviving members, depending on their fitness, allow the genes to be passed on
to the next generation through cross-breeding, mutation, and selection. In this way, the
individual fitness of the population continuously approaches the optimum. This random
structure information was used to create a search algorithm that provided solutions to the
problem of finding feasible pathways [79].

GAs stand for a sequence of algorithms. They randomly initialize populations with a
character string and an objective function. Then, based on Darwinian evolutionary theory,
they generate a new population using the three genetic operators (mutation, crossover, and
selection). The new populations are created until the stopping conditions are met [50]. Such
stopping conditions are a time limit, the required fitness value, and the maximum number
of generations. During mutation, elements of an arbitrary string mutate with a given
mutation probability. In a crossover, the elements of two strings are crossed according to a
certain rule, thus creating two new strings. In selection, two strings selected by probability
based on their objective function are compared based on their fitness, and the higher ranked
higher-ranked one is selected to create the new population. The GA process is illustrated
in Figure 15. The initial input comes from the population variables. This is followed by
the encoding and decoding of chromosomes, the initialization of the population, and, the
evaluation of the fitness values of the individuals within it. If the conditions are met, the
optimal solution is obtained directly. Otherwise, the algorithm iterates, evolves, and selects
new individuals from the population, whose fitness is re-evaluated until the condition is
met. After that, the process stops.

Figure 15. Process of GA [80].

GAs are used in many areas for mobile robot path planning problems, for example, for
humanoid robot navigation [81], for the underwater robot navigation challenge in 3D route
planning [82], and for aerial robots [83,84], as well as genetic-algorithm-based trajectory
optimization for digital twin robots [85]. Work using improved genetic algorithms can be
found in [86,87].
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3.4. Simulated Annealing (SA) and Tabu Search (TS)

Simulated annealing and the Tabu search are approximate (heuristic) algorithms and
therefore do not guarantee the optimal solution. They do not know when the optimal
solution has been reached. Therefore, they need to be told when to stop. Easily designed to
implement any combinatorial optimization problem, under some conditions, they converge
asymptotically to the optimal solution. The same can be said for GAs [88].

3.4.1. Simulated Annealing (SA)

SA is an iterative search method based on the analogy of annealing metals. Annealing
is a process in which a low-energy state of the metal is created by melting the metal and
then slowly cooling it. Temperature is the control variable in the annealing process and
determines how random the energy state is [88]. Consider an energy diagram with two
potential barriers. A ball is randomly placed on the potential curve and can only move
down the curve. The ball then has an equal chance of going to A than to B (Figure16).

Figure 16. The potential barriers (A, B).

Upward movements can be accepted at times with a probability controlled by the
parameter temperature (T). For example, if you want the ball to move from pit A to pit B
with a higher probability, you have to increase its temperature. The probability of accepting
upward movement decreases as T decreases. At high temperatures, the search becomes
almost random, while at low temperatures it becomes almost greedy. At zero temperature,
the search becomes completely greedy, i.e., it accepts only downward movements. The
algorithm is based on the Metropolis procedure, which simulates the heat treatment process
at a given temperature T [89]. At the beginning of the procedure, the current temperature
and solution are given, as well as the time for which the heat treatment at the given
temperature should be maintained. The SA algorithm should start from a high temperature.
However, if the initial temperature is too high, it will only result in a loss of time. The initial
temperature should be such that virtually any proposed movement is acceptable, whether
upward or downward. Thereafter, the temperature will gradually decrease. The annealing
time increases as the temperature decreases. The annealing process stops when the time
exceeds the permissible time [90].

The main part of the algorithm consists of two circles. In the inner circle, a possible
move is generated and the acceptance of the move is decided by an acceptance function.
The acceptance function assigns a Paccept probability based on the current temperature and
the cost change ∆C (8). At high temperatures, most uphill movements are likely to be
accepted by the algorithm, regardless of the increase in costs. However, as temperatures
fall, only downward movements are accepted. If the step is accepted, it is applied to the
current path to generate the next state. The outer loop checks if the stopping condition is
satisfied. Each time the inner loop completes, the temperature is updated using a function,
and the stopping condition is checked again. This continues until the stop condition is
met [90].

Paccept =

{
e−

∆C
T if ∆C ≥ 0

1 if ∆C < 0
(8)

3.4.2. Tabu Search (TS)

TS is a combinatorial optimization technique that optimizes an initial given permuta-
tion or converts it to the closest possible optimal solution, by alternating successive steps.
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Using this method, it is possible to reduce the cost of a path by a series of edge swaps in a
randomly generated round trip. The process continues until the path with the minimum
cost is found. The selection of the best step to improve or not improve the current solution
is based on the fact that good steps are more likely to reach the optimal or close to the
optimal solution. The set of acceptable solutions in a given iteration forms a candidate
list. The Tabu search selects the best solution from this candidate list, whose size reflects
the trade-off between quality and performance. To Tabu the relocation attributes, a Tabu
constraint is introduced to prevent the reversal of moves. This constraint is enforced by a
Tabu list that stores the relocation attributes. The aspiration-level component allows the
Tabu state to be temporarily overridden if the reversal results in a better solution than the
best one achieved so far [88].

In [91], the design of minimal-cost delivery routes for goods-carrying mobile robots is
developed using hybrid simulated annealing/Tabu search and approximation methods
based on Tabu search algorithms, which start and end from a central warehouse while the
robots serve customers. Each customer is supplied exactly once per vehicle path.

3.5. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a nature-inspired approach that mimics the col-
lective behavior of bird flocks, fish schools, or animal herds as they seek food, adapt to their
surroundings, and interact with predators [92]. PSO draws inspiration from the foraging
strategy observed in bird flocks, where individuals move towards the most favorable food
sources guided by their knowledge, collective wisdom, and momentum. This behavior
is emulated by the PSO algorithm through the representation of each potential solution
as a particle, with personal and global best positions and inertia. Each particle maintains
specific attributes such as position, velocity, and objective, striving to converge toward the
global optimum over multiple iterations. The PSO process begins with the initialization
of a randomly generated particle swarm, with each particle assigned a unique velocity to
navigate the search space. Notably, unlike genetic algorithms, PSO assigns random weights
to all potential solutions, enabling particles to explore the solution space dynamically.
The algorithm’s functioning revolves around the interplay between particle positions and
velocities, with each particle’s position updated based on its velocity conditions. Refer to
Figure 17 for an illustration of this process [93,94].

Figure 17. The basic concept of PSO.

Suppose that the search space is D-dimensional, and the ith particle of the population
can be represented by a D-dimensional vector (x1

i , x2
i , . . . , xiD)T . The velocity of this particle

can be represented by another D-dimensional vector (V1
i , V2

i , . . . , VD
i )T . The previously
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best-visited position of the ith particle is denoted by Pi, and the best particle in the swarm
is denoted by Pg. The update of the particle’s position is accomplished by the following
two equations: Equation (9) calculates a new velocity for each particle based on its previous
velocity, and (10) updates each particle’s position in the search space [92,95].

Vk+1
id = wVk

id + c1r1 pk
idt− xidt + c2r2 pk

gt− xk
idt

V(t + 1) = wV(t) + [c1r1(Pbest − x(t))] + [c2r2(Gbest − x(t))] (9)

xk+1
id t + 1 = xk

idt + vk+1
id + 1

x(t + 1) = x(t) + v(t + 1) (10)

where k is the iteration number, d = 1, 2, 3, . . . , D; i = 1, 2, 3, . . . , N; and N is the swarm
size. w is inertia weight, which controls the momentum of the particle by weighing the
contribution of the previous velocity. c1 and c2 are positive constants, called acceleration
coefficients. Alternatively, c1 is also called the cognitive (local or personal) weight, and c2
is the social (or global) weight. r1 and r2 are random values ranging from [0, 1]. V(t) is
the velocity associated with the particle at time t, and X(t) is the position of the particle at
time t.

The PSO process, depicted in Figure 18, is characterized by rapid convergence but
shows slower responses during particle search within a region. This limitation, due to its
fixed convergence rate, can lead to localization issues [96].

PSO is widely applied in mobile robot path planning across various types, including
humanoid [97], industrial, [98], wheeled [99], aerial [100], and underwater robots [101],
particularly in complex three-dimensional environments.

Figure 18. The PSO process.
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3.6. Cuckoo Search Algorithm (CSA)

The concept of a cuckoo search is inspired by the behavior of cuckoo birds, which lay
their eggs in the nests of other host birds (of different species). The cuckoo bird attempts to
deposit its eggs in the nest of a host bird by removing one of the host’s eggs and replacing
it with one of its own, which closely resembles the host bird’s eggs. Afterward, the cuckoo
bird swiftly departs. The primary goal of this behavior is to safeguard its eggs from
predators, as well as to ensure that its offspring have access to food and protection in
the host nest. However, there is a risk that the host bird may detect the cuckoo egg and
either remove it from the nest or abandon the nest to construct a new one. Consequently,
the cuckoo continuously evolves its egg appearance to mimic that of the host bird’s eggs,
reducing the likelihood of detection. Importantly, the host bird also learns to detect foreign
eggs over time, perpetuating the cycle of egg-laying and detection. Once the cuckoo
successfully places its egg in the host nest, a new phase ensues. Cuckoo chicks hatch earlier
than the host bird’s offspring and may attempt to eject the host eggs or chicks from the nest.
Additionally, cuckoo chicks compel the host mother bird to provide them with more food,
potentially depriving the host chicks of sustenance altogether [102].

The interaction between the cuckoo and the host bird results in a direct conflict, as the
host bird has a probability, denoted as P and ranging from 0 to 1, of detecting the cuckoo’s
egg. If a host bird detects cuckoo eggs in its nest, it may either discard the egg or desert
the nest altogether. These fundamental occurrences form the basis of the cuckoo search
algorithm. The primary features of the CSA are outlined in [103]:

In the cuckoo search algorithm, a single egg is deposited by a cuckoo in a nest selected
at random, symbolizing a potential solution to an optimization problem. The nest contain-
ing the most promising eggs—representing the optimal solutions—is carried forward to
subsequent iterations. The total number of available nests remains constant, and each egg
laid by a cuckoo is subject to a probability (Pa) within the interval [0, 1] of being detected
and consequently abandoned. Consequently, during each iteration (t), a proportion (Pa) of
the entire population undergoes alteration.

The efficiency of the cuckoo search algorithm is enhanced through the utilization of
Levy flight instead of random walk. Numerous animals and insects exhibit the characteristic
Levy flight behavior. Levy flight entails a random walk with step lengths determined by
a heavy-tailed probability distribution, as depicted in (11) [104]. Levy flight outperforms
random walk in this regard. Hence, we opted for the cuckoo search algorithm in this
research due to its ability to achieve faster convergence rates.

Xi(t + 1) = Xi(t) + α⊕ L(λ) (11)

α = α0 ⊗ (xi(t)− xbest) (12)

where Xi(t + 1) represents the new solution, t indicates the current generation (iteration) of
the solution, α is the step-wise parameter that controls the moving step size of the cuckoo,
⊕ is entry-wise multiplication, and α0 denotes the step size factor, which is usually set to
0.01. and L(λ) is Levy exponent, which stands for a random search path, which can be
expressed as

L(λ) =
ϕ×m

|n|
1
β

(13)

where m and n are two random numbers subjected to the normal distribution, β is set to
1.5. ϕ is defined as:

ϕ =


Γ(1 + β)× sin(π β

2 )

Γ 1+β
2 × β× 2

β−1
2




1
β

(14)

Algorithms with high computational complexity typically demand significant re-
sources, which may not always be feasible. The cuckoo search algorithm (CSA), however,
requires only a few initial parameters, enabling efficient resolution of multimodal problems.

20



Sensors 2024, 24, 3573

The CSA, depicted in Figure 19, involves three key operations: (i) Levy flight for generating
new solutions, (ii) replacement of nests with superior solutions based on fitness evaluations,
and (iii) greedy selection to maintain the best solutions until the goal is achieved.

Figure 19. The CSA process.

CSA has been effectively hybridized with an adaptive neuro-fuzzy inference system
for enhancing the navigation of multiple mobile robots in unknown environments [105]
and applied in vehicle track design [106] and scheduling [107]. Additionally, it has been
used in a novel artificial neural network approach to predict ground vibrations from mine
blasting [108].

3.7. Artificial Bee Colony (ABC)

Karaboga developed the Artificial Bee Colony (ABC) technique, a swarm-based algo-
rithm inspired by the foraging behaviors of bees [109]. The three rules of the ABC model
are as follows: (a) Forager bees: Forager bees are sent to the food sites (the nearest colony)
and inspect the quality of the food. (b) Inactive forager bees: Based on information from
active forager bees, inactive bees inspect the food sources detected and assess/assess them.
(c) Food sources: Forager bees that find rich food sources distribute them, while forager
bees with few food sources give them up, creating a problematic situation.

The population is initialized from the set of employed and onlooker bees. Each worker
is sent to the food source (xj

i ) that the bee is responsible for, and according to (15), the fitness
value of each source of food is determined [110].

f iti =

{
1

1+ fi
if fi ≥ 0

1 + | fi| if fi < 0
(15)
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where the objective function fi shows the fitness value of source xi. In addition, the failure
counter, which is a limit value for each food source, is defined and initialized to zero.

Then, using (16), they try to find a better food source (vi,j).

vj
i = xj

i + α
j
i(xj

i − xj
k) (16)

where j = 1, 2, . . . , D. The problem dimension is defined by D. k = 1, 2, . . . , N. N represents
the total number of employed or onlooker bees. The value of k is not equal to i, and α

j
i is a

random number generated from a uniform distribution in [−1, 1].
Should the fitness value of the new position surpass that of the current one, the bee

retains the newly identified food source location and disregards the previous source. The
worker bee then communicates the fitness value of this new food source to the onlooker
bee. The onlooker bee evaluates each food source based on the probability Pj

i and selects
the optimal food source xi. The probability evaluation of the food source is determined
using Equation (17) [110].

Pj
i =

f iti

∑N
j=1 f itj

(17)

where f iti is the fitness value of the solution i. This is clear from the ABC algorithm’s
general flow chart (depicted in Figure 20) [111].

Figure 20. The ABC process.
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The ABC algorithm has been used to solve many real-world problems. Ref. [112]’s
applications of the ABC algorithm can be seen in many situations where MR (moving
robot) systems operate in static environments [113,114]. For example, they tested a wheeled
MR underwater [115], applying it to the routing problem of autonomous vehicles [116],
as well as aerial robots [117]. The modified ABC algorithm was used for the Unmanned
Combat Aerial Vehicle (UCAV) navigation problem [118] to plan optimal routes in a three-
dimensional environment, including unmanned helicopters [119].

3.8. Ant Colony Optimization (ACO)

This algorithm is inspired by the foraging behavior and communication of ants, and
it was presented by Dorigo and Maniezzo in 1991 [120]. Ants leave behind a kind of
pheromone on the paths they traverse. The more ants travel along a path, the more
pheromone accumulates on it, and other ants will follow stronger pheromone trails left by
other ants in the area. When an ant initiates a search process in a problem, for example,
searching for a route on a map, it randomly selects a route and follows it. As it progresses,
the ant senses the amount of pheromones in the environment and makes decisions to
modify its route based on this information. Ants prefer routes with higher pheromone
concentrations. The ACO algorithm runs repeated colonies of ants and compares the results
of each colony to optimize the pathways based on the amount of pheromones. In this
process, the algorithm gradually converges to an optimal solution to the problem. The
formulae of the ACO algorithm (19) are described in [80]:

Pk
ij(t) =





τα
ij (t)n

β
ij(t)

∑s∈dk
τα

ij (t)n
β
ij(t)

s ∈ dk

0 otherwise
(18)

nij =
1

dij

where Pk
ij(t) is the transition probability, τα

ij(t) represents the pheromone concentration,

nβ
ij(t) is the heuristic function, dk is a collection of access points, and nij is a heuristic

function, usually expressed as the reciprocal of the distance dij between i and j.

τij(t + ∆t) = (1− ρ)τij(t) + ∆τij(t) (19)

τij = τij +
M

∑
k=1

∆τk
ij (20)

∆τk
ij =

{
1

dij
Ant k pass (i, j)

0 otherwise
(21)

where ρ represents the pheromone volatility coefficient, M is the total number of ants in the
ant colony, and ∆τk

ij represents the pheromone amount released by the kth ant. The ACO
process is illustrated in Figure 21

Initially applied to solving the Traveling Salesman Problem (TSP) [120], the principles
and mathematical models of the ACO algorithm have since been systematically studied
and have undergone significant development, such as in [121] with airport AGV route
optimization model based on the ant colony algorithm for optimizing Dijkstra’s algorithm
in urban systems. In [122], a search and rescue is presented in a maze-like environment with
ant and Dijkstra algorithms. The work in [123] describes the application of odometry and
Dijkstra’s algorithm to warehouse mobile robot navigation and shortest path determination.
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Figure 21. The ACO process.

3.9. Deep-Learning-Based Control (DL)

Machine learning (ML) is the process of using computer systems to learn and improve
without their experience, explicitly programming them. Machine learning algorithms
rely on recognizing patterns and rules from data and making decisions or predictions
based on them. Basic machine learning techniques include supervised learning (where
algorithms are trained on labeled data), unsupervised learning (where algorithms try to find
structure from unlabeled data), and semisupervised learning, which uses a combination
of the two methods. Deep learning is a specialized field of machine learning that uses
deep neural networks to learn complex patterns and representations. Deep learning
enables computer systems to learn representations of data using multilayered, hierarchical
structures. These layers gradually learn higher-level features, which makes deep learning
algorithms particularly effective in image recognition, speech recognition, natural language
processing, and many other complex tasks. Deep learning models such as Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have made significant
breakthroughs in various application areas of artificial intelligence. The main advantage
of solutions based on machine learning is that they can learn from the data, so their
models already incorporate the nonlinear behavior of the control plant. This enables
better performance in many control applications than classical approaches. Deep learning
techniques are suitable for handling both global and local path-planning problems [124].

3.9.1. Artificial Neutral Network (ANN)

A neural network, which draws inspiration from the natural human senses, serves as
an intelligent system and was originally devised for mobile robot route planning [125]. It
consists of simulated networks composed of neuron-like units. These networks undergo
optimization through comprehensive training on designated tasks, with the connection
strengths between units being gradually adjusted over time [126]. In a neural network,
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the processing elements (neurons) are usually ordered topologically and interconnected
in a well-defined way. The structure of the neural network plays an important role in the
execution of the task. Due to the internal parallel structure of neural nets, computations
can be performed in parallel, thus ensuring high processing speed. Thus, neural networks
are particularly suitable for solving real-time tasks.

A general neuron structure is shown in Figure 22.

Figure 22. A general neuron structure.

Where xi is input to the neuron, X = [x1, x2, . . . xn] is the input vector (n represents
the number of inputs on the neuron). b is a constant input (bias-offset value), and y
is the neuron’s output. wi represents the weight factor associated with the ith input,
W = [w1, w2, . . . wn] is the weight vector, and f represents the activation function.

The xi scalar inputs are summed by weighting wi and the weighted sum is then
summed to a nonlinear element. The weighted sum of the input signals, which is the
input to the activation function, is called the excitation, while the output signal is called
the response (activation). The f function is called the activation function. The output of a
neuron can be calculated as follows:

y = f

(
n

∑
i=1

xiwi − b

)
(22)

The weight factors determine the degree of influence on connections with neighbor-
ing neurons within a neuron’s vicinity. A neural network’s functionality relies on these
weight factors, which encapsulate information or the processing of information during the
learning phase.

Utilizing a nonlinear activation function enables the neural network to model any
nonlinear function when applied to a suitable neuron. Conversely, a linear activation
function leads to a linear neural network. To imbue a neural network with nonlinearity,
it is imperative to incorporate at least one nonlinear activation function. Additionally,
differentiation plays a crucial role, as gradient-based learning stands as the predominant
method for adjusting neural network weights.

ANNs are structured into distinct layers: the input layer, where known data are fed
into the model; the intermediate layers, referred to as hidden layers; and the output layer,
which yields the final sought-after value. Each layer comprises various units (neurons
or nodes), with each unit connected to the subsequent layer through a transfer function.
Within an ANN, the output of layer i− 1 serves as the input for layer i. The known data
enter the input layer, accompanied by a bias term. Subsequently, these data are subjected
to multiplication by initial weights, followed by summation. The resulting values are
then passed through functions to the subsequent layer, iterating until reaching the output
layer, where the final value is derived. Transitioning from one layer to the next in an ANN
involves the utilization of transfer functions [127]. A possible layout of an artificial neural
network is illustrated in Figure 23.
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Figure 23. A possible structure of the ANN (the number of hidden layers may vary).

The operation of neural networks can typically be divided into two phases:

• Learning phase—the network stores the desired information processing procedure in
some way.

• Recall phase—the stored procedure is used to execute information processing.

The main forms of learning in neural networks [128]:

• Learning with a teacher (called supervised or guided learning (also known as con-
trolled learning)).

• Reinforcement learning.
• Learning without a teacher (unsupervised or unsupervised learning).
• Analytical learning.

Learning neural networks is nothing more than a multivariate optimization procedure
based on a predefined criterion function (cost function). Various optimization techniques
have been widely used for learning neural networks: gradient-based strategies [129,130],
evolutionary methods, genetic algorithms [131,132], and particle swarm optimization (PSO;
see later) algorithms [133].

ANN has been applied in a wide range of fields, including search optimization [134],
pattern recognition [135,136], image processing [137,138], mobile robot routing [139], signal
processing [140], and many more. A hybrid approach to mobile robot navigation combining
an ANN and FL [141,142] was designed for a mobile robot navigation controller using a
neuro-fuzzy logic system.

In [143], a single-layer approach to robot tracking control was proposed. Through
experiments on a KUKA LBR4+ robotic manipulator, the feasibility of the novel ANN
approximation for robot control was examined. Ref. [144] presents positioning the error
compensation of an industrial robot using neural networks. Ref. [145] presents a recurrent
neural network for prediction of motion paths in human robot collaborative assembly.

The ANN was extended to create the Guided Adaptive Pulse Coupled Neural Net-
work (GAPCNN) for mobile robots [146]. The GAPCNN aims to achieve fast parameter
convergence to help the robot move in both static and dynamic environments. In particular,
the ANN method has been used in MATLAB for mobile robot trajectory planning problems
for aerial robots [147], humanoid robots [148], underwater robots [149], and industrial
robots [150].

3.9.2. Model Predictive Control (MPC)

The MPC method (Figure 24) is used to predict the behavior of the system for a given
time interval and, based on the prediction, optimize the intervention signal at each time
instant. As a result, it minimizes the cost function and determines the optimal control
sequence. The method has the advantage of a user-friendly design process and easy
implementation. It has many applications in the automotive industry, for example, it is
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used to solve tracking problems [151]. The path planning of autonomous vehicles can also
be conducted using a predictive approach [152,153].

Figure 24. The general concept of the MPC.

Due to the high computational complexity of numerical optimization, it is of paramount
importance to ensure real-time computability, which requires the right formulation of the
problem and the choice of the appropriate procedure for its solution. The most commonly
used MPC approach is based on linear models, but this also has limitations that can re-
duce performance. Advances in recent decades have allowed engineers to use control
approaches that have a higher computational cost, such as Nonlinear Model Predictive
Control (NMPC). The main drawback of an NMPC is its complexity, which can lead to high
computational time. As a consequence, in most cases, only suboptimal solutions can be
obtained, which may degrade the performance of the closed-loop system [154].

Ref. [155] also proposes a cooperative regulatory strategy for docking unmanned
aerial vehicles (UAVs) based on MPC. The proposed strategy implements a nonlinear and
a linear MPC for the coarse approach (long range) and the fine docking maneuver (short
range) based on the same objective function with tailored optimization strategies. Docking
is a complex, critical maneuver that requires knowledge of the flight safety of the docking
route and the constraints associated with the position of the platform to be docked. In
addition, nonlinear effects such as vorticity due to the close approach of the lead agent
must be taken into account.

Using the MPC method, it is easier to prove the stability and performance of the
system, as it does not require knowledge of the system model. Instead, a local model is
used and updated every time step. In addition, other methods are available to redefine
the learning characteristics compared with neural networks. For example, in [156], an
MPC-based control solution is proposed where the terminal cost and the set are determined
through an iterative process.

The presented algorithms do not guarantee stability, which makes their application
in safety-critical systems, such as autonomous vehicles, risky. However, some solutions
address this problem. For example, ref. [157] presents a control strategy based on safety
settings that can modify the input signal of the system when the output of a machine
learning agent may destabilize the system. Another solution is given in [158], in which
a Hamilton–Jacobi reachability algorithm is exploited that can work with any machine
learning-based solution. A combined approach is presented in [159], in which a classical
controller is used to control the linearized system, while the machine learning-based
algorithm handles the nonlinearities of the system.

B. Németh [160] incorporated machine learning into the usual model-based robust
control theory framework, but emphasized it as a new tool and an additional data-driven
branch. For all its learning nature, however, robust control remains, i.e., the traditional
model-based solution has been extended to fit today’s new approach to new types of tasks.
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The method is independent of the internal structure of the learning-based control element.
Hence, a control element with any structure can be incorporated in its place, providing
considerable freedom in control design. For example, solutions based on neural networks,
which are already well established in practice, can be implemented in the developed control
solutions for reference signal training or feedback loops. However, data-based MPC-type
control schemes typically have a more closed, less flexible formalism for the optimization
formulated in them. Another consequence of the hierarchical structure is that the learning-
based management element can be physically separated from the supervisor and robust
management elements. The vehicle motion dynamics are considered in the robust control
element and the learning functions in the learning-based control element. For example,
in the context of automated vehicles, the supervisor-robust control dual, which has a low
computational demand, can be placed on board the vehicle, while the learning-based
control element can be placed on an independent platform, such as a cloud. Control
solutions that rely predominantly on solving an optimization task online typically do not
have this advantage. The supervisor element, which requires online computation, has
significantly lower computational requirements than traditional MPC or more advanced
data-based (learning) MPC solutions. This is because the supervisor performs significantly
fewer tasks than the main optimization task of the MPC. In the supervisor, it is not necessary
to perform an optimization over a long horizon, since the impact on future motion states is
taken into account in the learning process by running on episodes or prespecified patterns.

3.9.3. Deep Reinforcement Learning (DRL)

Reinforcement learning (RL), inspired by animal psychological learning, learns optimal
decision-making strategies from experience [161]. RF is a special type of ML algorithm
that does not require large amounts of data for training. The RF algorithm is modeled
based on reward, and several papers address the problem of autonomous vehicle control
using RF methods [162,163]. Although RF-based solutions can be efficient, the stability
of the closed-loop system is still an open question. A proposed solution is an RF-based
algorithm combined with a robust controller [164], which achieves the stability of the
algorithm by applying uncertainty models. The Deep Reinforcement Learning (DRL)
model is particularly promising for solving Vehicle Routing Problems (VRPs). DRL can
estimate patterns that are difficult to find with manual heuristics, especially for large-scale
problems. Moreover, DRL can generate and infer routes quickly, making it extremely useful
for solving time-sensitive VRPs.

The use of DRL in mobile robot navigation is a growing trend. The purpose of using
the DRL algorithm in an autonomous navigation task is to find the optimal policy for
guiding the robot to the target position through interaction with the environment. The
advantage of DRL-based navigation is that it is map-free, has strong learning ability, and
has little dependence on sensor accuracy [124].

3.10. Other Algorithms

Without wishing to be exhaustive, we briefly mention some algorithms that have
recently become common.

3.10.1. Dynamic Window Approach (DWA)

The DWA can generally be classified as a heuristic method, as it does not rely on
rigorous mathematical models or algorithms to solve the problem but rather on an empirical
approach. This method is designed for local routing and obstacle avoidance [165]. It takes
into account the robot’s current speed, acceleration limits, and immediate surroundings to
calculate a safe and feasible path to the destination. Creates a dynamic window based on
possible velocities and angular velocities. An objective function calculates the optimal value
of these pairs of velocities based on the minimum distance from the obstacles, the final
bearing angle, and the velocity values of the robots. While in less complex environments
the DWA can deftly avoid obstacles, its performance in extremely crowded environments
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may be suboptimal [166]. The DWA has the local minima and the global convergence
problems [167].

Once the task creator has set one or more targets and the global route has been planned,
the execution phase involves the robot scanning the surrounding environment, planning
local trajectories, and moving forward. This sequence is repeated until the goal is reached.
At the beginning of this flow, it samples all the speed pairs corresponding to the kinematic
constraints of the robot. DWA computes the coordinates of the waypoints for each input
velocity pair using iterations (23) to (25) [168].

x(tn) = x(tn−1) + v · ∆t · cos (Θ(tn−1)) (23)

y(tn) = y(tn−1) + v · ∆t · sin (Θ(tn−1)) (24)

Θ(tn) = Θ(tn−1) + ω · ∆t (25)

The model assumes that the robot moves a distance of v · ∆t along the heading of tn−1
and then rotates an angle of ω · ∆t, where x(t) and y(t) represent the coordinates, and Θ(t)
represents the heading of the robot. By iterating the input velocities, this method computes
the coordinates and heading of the robot from time t0 to tn. The computation time depends
on the number of iterations. In the next step, DWA calculates the distance between each
obstacle and waypoint using matrix operations. The calculation time is influenced by the
number of paths and obstacle points. Subsequently, DWA swiftly determines the direction
to the path’s endpoint and the distance to the target. After assessing all possible speed pairs,
the optimal speed command is generated. This model is extensively utilized in research
involving wheeled robots [168].

3.10.2. Golden Jackal Optimization (GJO)

GJO is a metaheuristic, swarm-intelligence-based algorithm proposed by Nitish
Chopra and Muhammad Mohsin Ansari, which models the cooperative hunting behavior
and tactics of golden jackals in nature. Because these opportunistic animals are famous
for their ability to adapt to different environments [169]. Golden jackals usually hunt with
males and females. After finding the prey, they begin to move towards it cautiously. The
prey is then surrounded and stalked until it stops. Finally, it is attacked and captured.
Updating the position of the prey often depends on the male golden jackal. For this reason,
the diversity of golden jackals is not adequate in some cases, and the search algorithm
tends to fall into the local optimum [170].

GJO initiates with a randomized distribution of the first solution across the search
space, as shown in Equation (26) [169]:

Y0 = Ymin + rand(Ymax −Ymin) (26)

where Ymax and Ymin are the maximum and minimum values of the variable Y, and
rand(Ymax −Ymin) is a uniform random vector in the range of 0 to 1.

In [171], a hybrid-strategy-based GJO algorithm for robot path planning is presented.

3.10.3. Grey Wolf Optimization (GWO)

GWO is another type of swarm intelligence algorithm [172] that mimics the hunting
strategy of wolves. It categorizes the wolves into different roles: the chief wolf, α, who leads
the hunt; β, who assists the leader; δ, who scouts and guards; and the rest ω. The wolves’
hunting process is generally broken down into three phases: encirclement, pursuit, and
attack. During the encirclement phase, the algorithm updates positions using Equation (27):

X(t + 1) = XP(t)− A|C · XP(t)− X(t)| (27)
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Although GWO is efficient, it needs a unique initial population. Another drawback
is its slow convergence and easily falling into a local optimum [173]. Shitu Singh [174]
proposed a more advanced version using Levy’s flight model to modify the population
and the greedy selection method to update the path.

The Grey Wolf Optimization algorithm has been successfully applied to route plan-
ning [175]. The Golden Sine Grey Wolf Optimizer (GSGWO) has been improved from the
Grey Wolf Optimizer (GWO), which provides slow convergence speed and easily falls into
local optimum, especially without an obstacle-crossing function [176].

3.10.4. Gravitation Search Algorithm (GSA)

GSA is also a robust metaheuristic population-based search algorithm based on gravity
rules [177]. Objects are attracted to each other by the force of gravity, and this force is
responsible for the global movement of all objects towards more massive objects. The
masses thus interact through gravitational force. Heavy masses, which are good solutions,
move more slowly than lighter masses (bad solutions). The position of the mass corresponds
to the solution of the problem. The gravitational and inertial mass of bodies is determined
by a fitness function. GSA can be seen as an isolated system for masses.

Like other metaheuristic systems, GSA has parameters that greatly affect its perfor-
mance. The mass j acting on mass i by mass j is the equation Fij giving the gravitational
force and the gravitational acceleration ai caused by it (28) [177]:

Fi,j = G
Maj Mpi

R2 (28)

ai =
Fi,j

Mii
(29)

where Maj and Mpi represent the active gravitational mass of particle i and passive grav-
itational mass of particle j, respectively, R is the distance between masses, and Mii rep-
resents the inertia mass of particle i. “G(t) is the gravitational constant that decreases
iteratively” [178]:

G(t) = G0e−α t
T (30)

The gravitational constant G is the most sensitive entity in the GSA model and ef-
fectively controls the balance between the exploration and exploitation capabilities of
the algorithm. α and G0 are constant parameters that affect the performance of the algo-
rithm. As for the tuning of the mentioned parameters, many GSA variants have been
developed [178].

4. Hybrid Algorithms

As you can see, there are many other ways to avoid obstacles. Among these are many
that use several classical or heuristic algorithms at the same time, which are also described
in this article. These are commonly referred to as “hybrids”. In this article, three such
algorithms are mentioned as an addition.

4.1. New Hybrid Navigation Algorithm (NHNA)

The so-called “new hybrid navigation” algorithm consists of two independent layers,
the deliberative and reactive layers. The deliberative layer plans the reference route using
the A* search algorithm based on the stored preliminary information. The reactive layer
takes over the reference trajectory and guides the robot autonomously along the planned
route [25]. The reference path is temporary, and it can be changed by the reactive layer
during movement. This layer uses the D-H error algorithm (Distance Histogram bug). It is
an improved version of the bug-2 algorithm [42], which allows the robot to freely rotate at
angles less than 90° to avoid obstacles. If a rotation of 90° or more is required to avoid an
obstacle, the bug-2 algorithm behaves as a bug [44]. The algorithm needs prior information
about the environment, which it stores as a binary grid map. The state of each grid on the
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map is free or occupied: free if there is no obstacle in it, and occupied if it has an obstacle.
Figure 25 shows the results of [25], which shows the planned and shortest paths generated
by the algorithm. Figure 26a shows the path of the robot with the Dist-Bug algorithm, while
Figure 26b shows the behavior of the robot with the D-H error algorithm [25].

Figure 25. Raster map and robot path (with NHNA) [25].

Figure 26. Obstacle avoidance strategy: (a) path of the Dist-Bug algorithm and (b) robot trajectory
with the distance histogram (D-H) error algorithm.

4.2. Hybrid Navigation Algorithm with Roaming Trails (HNA)

This algorithm is designed to effectively handle environments where the robot encoun-
ters obstacles during movement. During navigation, the robot can deviate from its path to
avoid obstacles using reactive navigation strategies, but is always limited within the area.
By ensuring the robot moves within a convex area encompassing the target node’s location,
it is assured to reach the target in the presence of static obstacles by following a straight
path. In certain scenarios, the mobile robot must navigate around obstacles or come to a
halt when faced with an obstacle. [44]. The main difference between the hybrid navigation
algorithm and NHNA is that it uses APF instead of D-H BUG in the reactive layer. NHNA
did not describe any constraints on the deviation from the reference path, but HNA used
the concept of roaming trails for the same purpose. Figure 27 shows the roaming traces
with the preliminary map (top) and the safe trajectory of the robot on the roaming traces
(bottom) [179].
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Figure 27. Route Path of the robot with roaming trails (HNA): Top: Primary map with roaming trails.
Bottom: Robot trajectory (dashed line) [179].

For more than ten years, the approach has been extensively tested on robots, in
particular on the autonomous robot Staffetta [179]. Staffetta is specifically designed for
autonomous transport in hospitals, with a payload of 120 kg and a maximum speed of
1 m/s. The robot is equipped with sensors to detect nearby objects and touch sensors to
avoid collisions. Furthermore, it is equipped with a laser-based localization system that
allows regular position corrections. Based on the experimental experience gained, the
second generation of the robot (Merry Porter™) has been further developed and is now
independently transporting waste within the Modena Polyclinic.

4.3. Methods Based on Sliding Mode (SM)

The intelligent space learns motion control by tracking the robot’s movements [180],
thus being able to learn an obstacle avoidance strategy. This learning is based on a neuro-
fuzzy approximation of vector-field-based obstacle avoidance. The efficiency of navigation
is crucial, as the main application tasks of a mobile robot may include, for example,
the guidance of visually impaired people, which requires an immediate reaction to any
disturbance. Using the artificial potential field, a collision-free trajectory is guaranteed
along gradient lines. The equations of motion of the robot concerning the fixed world
system (x f , y f ) can be derived as follows:

ẋ = vG cos φ

ẏ = vG sin φ

φ̇ = vG/L tan θ (31)

where vG denotes the velocity vector at the center of the moving platform, which is con-
strained along the longitudinal axis fixed to the robot due to nonholonomic kinematics.
In the robot fixed coordinate system (xR, yR), a local harmonic potential field Ψ(x, y) is
generated [181]. According to Laplace’s equation, this harmonic field corresponds to

∇T · ∇Ψ(x, y) =
∂2Ψ(x, y)

∂x2 +
∂2Ψ(x, y)

∂y2 = 0 (32)
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The solution to (32) gives the potential of a singular point of power q at (0,0) in a 2D
Cartesian (x, y):

Ψ(x, y) = q ln
1√

x2 + y2
(33)

and the associated gradient ρ(x, y) ∈ R2:

ρ(x, y) = −gradΨ(x, y) =
q√

x2 + y2

(
x
y

)
(34)

The configuration of the fundamental potential field consists of a negative unit singular
point in the target and a positive singular point of magnitude 0 < q < 1 in the middle of the
obstacle, q = R

R+e , where e is the distance between the target and the center of the obstacle,
and R is the radius of the circular safety zone. As circular obstacle protection zones cannot
be applied directly [181], elliptical safety zones have been designed. Each obstacle has one
safety ellipse, but if there are multiple obstacles, two ellipses are needed on either side of
the selected route. In this case, the two potential fields must somehow be “merged” to
form a single potential field. A good alternative method is to always consider only the
nearest safety ellipse. However, this requires switching potential fields at the intersection
of equidistant lines between ellipses. This switching, as shown in Figure 28, results in a
noncontinuous gradient field.

Figure 28. Gradient lines for switching noncontinuous gradients: (a) noncontinuous switching;
(b) smooth switching [24].

In this case, the sliding surface can be described by the line σeq = 0. When switching
between gradient lines, the scattering appears as oscillations. This effect can be reduced by
smoothing the gradient lines near the equidistance line: in the boundary layer along the
equidistance line between the two safety zones by spatial domain smoothing. The gradient
of the resulting smooth gradient field is the weighted sum of the two gradients. The control
inputs are usually the outputs of some actuator. The gradient ρ(x, y) is implemented
as a velocity field. Kinematics constrains robot motion from three-dimensional to two-
dimensional along the velocity vector. We assume that the state variables x, y, φ and the
kinematic parameters L and W are known. The orientation of the robot’s angle φ must be
controlled to be colinear concerning the gradient ρ(x, y). So the desired orientation at the
point (x, y) is [181]:

φρ = Atan
ρy

ρx
with ρ(x, y) =

(
ρx
ρy

)
∈ R2 (35)

Because speed control is simple, the desired direction of movement β, v = β|v|, where
β is defined by the orientation error4φ, as follows:
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4φ = φρ − φ + 2π ⇒ β = 1 ha − 2π < φρ − φ < −3π

2

4φ = φρ − φ + π ⇒ β = −1 ha − 3π

2
< φρ − φ < −π

2

4φ = φρ − φ⇒ β = 1 ha − π

2
< φρ − φ <

π

2

4φ = φρ − φ− π ⇒ β = −1 ha
π

2
< φρ − φ <

3π

2

4φ = φρ − φ− 2π ⇒ β = 1 ha
3π

2
< φρ − φ < −2π (36)

The sliding surface of the orientation error is defined as follows:

σ = β4φ (37)

A sliding mode along the σ = 0 surface is created, but at the same time, the direction
of motion is changed, and changing the sign of β should be avoided. This can be avoided by
monotonically decreasing4φ by controlling the value of φ [181]. The Lyapunov function
in this case is V = 1

2 σTσ. Differentiating this function along the trajectories of the system:

σT σ̇ = σTv(S cos θ − 1
L
) (38)

where S(x, y, φ) describes the rate of change in the curvature of the gradient along the track
lines, φ = arctan SL, and the θ is

θ = ϕ +
π

2
sign4φ (39)

4.4. Other Examples

Just a few more examples of hybrid algorithms are provided below:

• Ref. [182] presents a hybrid path-planning algorithm based on improved A* and an
artificial potential field for unmanned surface vehicle formations.

• Researchers have also exploited GA hybridization with other approaches to MR
navigation for better results in route planning problems, such as GA-PSO [183], GA-
FL [184], and GA-ANN [185].

• In [186], a hybrid genetic algorithm (HGA)-based approach applied to the image
denoising problem is presented. HGA provides the dynamic mutation rate and
a switchable global-local search method for the mutation operator of the ordinary
genetic algorithm [187].

• In [188], the dynamic modeling of the impact of polymer insulators in polluted condi-
tions based on the HGA-PSO algorithm is presented

• Ref. [189] used a Voronoi diagram and the particle swarm optimization algorithm to
achieve multirobot navigation and obstacle avoidance.

• Ref. [190] presents a UGV routing algorithm based on an improved A* with an
improved artificial potential field.

• Ref. [43] used VFH*, combining the VFH+ local obstacle avoidance algorithm and the
A* path planning algorithm.

5. Comparison of the Algorithms Discussed in This Paper

The advantages and disadvantages of the classical and heuristic algorithms and the
convergence and computation time requirements are summarized in Tables 1–5. Conver-
gence time and computation time are expressed in different units and scales. Data are
approximate values only and may vary depending on circumstances.
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Table 1. Summary table of the classical algorithms in the thesis. Part 1.

Algorithm Advantages Disadvantages Convergence
Time

Calculation
Time References

Dijkstra
Robust and reliable operation;

Ensuring accurate route
planning

Not adaptable to
dynamically changing

environments
Long High [5]

FW Find the shortest route
between all pair nodes

High memory requirements
for large graphs; O(n3)
running time, which is

inefficient for large graphs

Medium High [19]

BF
Ability to handle negative
weights; Detects negative

cycles

Slower than Dijkstra for
positive weight graphs;

O(nṁ) running time
Medium Medium

[20–22]

APF
Simple and intuitive method;
Ability to handle both static

and dynamic obstacles

The robot can get stuck in
local minima; Difficult to

use in more complex
environments

Medium High [23]

Bug
Simple and easy to implement
algorithm; Good for avoiding

static obstacles

No guarantee of the shortest
route; Less effective for

more complex or dynamic
obstacles

Short Low [33,34]

Table 2. Summary table of the classical algorithms in the thesis. Part 2.

Algorithm Advantages Disadvantages Convergence
Time

Calculation
Time References

FGM Very effective on narrow or
fragmented gaps

Not effective on every
obstacle; Difficult to use in

confined maps or with large
robots

Short Low [37,38]

VFH Flexibility and adaptability;

Time- and
computation-intensive,

especially for large maps;
Complex parameterization

Medium High [41,43]

CD
It effectively bypasses local

minima to help find globally
optimal solutions

High computational
demand and memory
requirements; Proper
parameterization and

fine-tuning can be critical
for efficiency

High High [46]

PRM Integrate sensory data and
probabilistic information

High computational and
memory demand; Complex

parameterization and
fine-tuning

Medium High [48,52]

RRT

Suitable for solving the route
planning problem in dynamic
and multi obstacle conditions;

applicable to the route
planning problem in

high-dimensional
environments

The route is randomly
generated, the route is

biased; The convergence
speed is slow, and the
search efficiency is low

High High [56,58,60]
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Table 3. Summary table of the heuristic algorithms in the thesis. Part 1.

Algorithm Advantages Disadvantages Convergence
Time

Calculation
Time References

A* Direct search; No preprocessing
required

Large amount of calculation;
Optimal solution not

guaranteed
Medium Medium [63]

FL A flexible and adaptable; React to
uncertainties and foggy information

High memory requirements; the
rules and parameters largely
require human intervention

Medium High [69,75]

GA Strong global searching ability Slow convergence; Poor local
optimization; Poor stability Long High [50,79]

SA Good for global optimization; ability
to avoid local minima

Global optimum is not
guaranteed; Depends on

cooling schedule
Medium-Long Medium [88,90]

TS Ability to avoid local minima; can be
used for complex problems

High memory requirements
due to the taboo list;
parameter-sensitive

Medium Medium-High [88]

PSO Fast search time; high convergence
speed in early-stage

Slow convergence speed in later
period; easy to fall into local

optimum
Medium High [92–94]

CSA
Simple and easy to implement;

efficient exploration and optimization
of space

No guarantee of a global
optimal solution; Less effective

for more complex or large
problems

Medium Medium [102–104]

ABC Flexible and adaptable; finding global
optimal solutions for larger systems;

Parameterization and
fine-tuning is time-consuming;

High memory requirements
High High [109,110,112]

ACO
Strong global searching ability; high

efficiency; high convergence speed in
later period

Slow convergence speed in
early stage High High [80,120]

Table 4. Summary table of the heuristic algorithms in the thesis. Part 2.

Algorithm Advantages Disadvantages Convergence
Time

Calculation
Time References

DWA
Fast response times in real-time

applications; efficient local
obstacle avoidance

Finding only local solutions;
global optimum is not

guaranteed
Low Low [165–167]

GJO Powerful global search capability;
ability to avoid local minima

Requires significant computing
resources; sometimes slower

convergence
Medium-Long High [169,170]

GWO
Powerful global search capability;

handles multidimensional
optimization problems well

Possible early convergence;
depends on fine-tuning of

parameters
Long Medium [172,173]

GSA
Good global search capability;

robust for different types of
problems

Slow convergence; requires
significant computing resources Long High [177,178]

ANN
Ability to learn and adapt; robust
and able to handle large amounts

of data

High memory requirements;
during the learning phase, large

data sets are needed
Long High [125,126]

MPC
Forward-looking optimization;

ability to manage the limitations
of systems

High computing resources;
complex implementation Medium-Long High [154]

DRL
Complex problem solving;

autonomous learning; good
generalization ability

High computational demand;
high data demand Long High [124]
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Table 5. Summary table of the hybrid algorithms in the thesis.

Algorithm Advantages Disadvantages Convergence
Time

Calculation
Time References

NHNA

Integrate the benefits of multiple
algorithms; improved accuracy

and efficiency in different
environments

More complex implementation;
high calculation demand Medium Medium-High [25]

HNA
Better route optimization; more

flexibility in dealing with
obstacles

Requires significant computing
resources; complex parameter

tuning
Medium Medium-High [44,179]

SM Robust in unknown dynamic
environments; fast reaction time

Sensitive to noise and
discontinuities; Precise

modeling required
Short-Medium Medium [181]

6. Discussions and Future Trends

Navigation and route planning are the central difficulties of mobile robots and have
been the subject of decades of research. As a result, several methodologies have been
presented and applied to the problem of route planning for mobile robots. Strategies for
mobile robot optimization can be classified into deterministic or classical approaches and
nondeterministic or heuristic approaches. Traditional algorithms execute a given task step
by step according to predefined instructions, and their results are exact and deterministic.
(One of the simplest algorithms is the Pythagorean theorem, which determines a third
parameter in an identical way given two input parameters, and the term heuristic is derived
from the Greek word heuresis, which means to find.) Theoretically, constructing an exact
solution procedure would make it possible to calculate how to reach the goal based on
the robot’s current position and by analyzing all possible paths. The problem is that the
situation becomes too complex above a given complexity of the environment. A heuristic
algorithm does not consider all possible steps but only decides according to some logic
based on a particular part of the problem space. A considerable advantage of heuristic
algorithms is that they can deliver results relatively quickly for high-complexity problems
with little computation. However, they have the disadvantage that the optimal solution
cannot be guaranteed completely. They are helpful when the solution to a problem cannot
be found within a foreseeable time by a conventional method that provides an exact
solution. They can also provide an optimal or approximate solution for large problem
sizes. Among the earliest developed error avoidance algorithms, they are straightforward
to calibrate but time-intensive. These methods are not goal-oriented; they trace edges
without considering the ultimate objective [37]. The Dijkstra algorithm is a graph search
algorithm designed to find paths and determine the shortest paths [5]. The Floyd-Warshall
(FW) algorithm uses a weighted and directed graph and can compute opposing weighted
edges. The solutions are derived from the previous results, and multiple solutions can be
generated [191]. This algorithm finds the shortest path between each pair of nodes and
is particularly useful when the distance between all pair nodes of the graph needs to be
determined. However, it is inefficient for large graphs due to its high memory and time
requirements. The Bellman-Ford (BF) algorithm can find the shortest path from one peak
to another, which is simple and does not require complex data structures to apply. The
algorithm iteratively extends the search to all nodes, not just along the current shortest
path. For this reason, it can be slower than Dijkstra’s algorithm for positive-weight graphs
but can handle graphs with negative weights, whereas Dijkstra’s algorithm cannot. If there
is a negative cycle in the graph, the Dijkstra algorithm would run the cycle infinitely, as
this would theoretically result in an infinitely negative cost. In contrast, the BF algorithm
would detect this and terminate [192]. This algorithm can handle opposing weight edges
and detect negative cycles, an advantage for specific problems. Likewise, artificial potential
field (APF) is a simple technique for avoiding obstacles, but robots following this principle
can get stuck in so-called local minima [37,42]. This is a time-consuming algorithm, as the
robot can stop before the obstacle until it moves. The Bug algorithm is also an early version
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of the obstacle avoidance algorithm used in robot navigation [34]. The gap tracking method
(FGM) is another early obstacle avoidance algorithm used in environments where the robot
must navigate narrow spaces. Still, it can not avoid U-shaped obstacles [37,193].

Fuzzy logic (FL) has been developed among the heuristic algorithms for various
applications, including obstacle avoidance robotics [71,72]. Since their initial research,
genetic algorithms (GAs) have been widely applied to solve various optimization problems,
including obstacle avoidance algorithms [79]. Simulated annealing (SA) and Tabu search
(TS) have proven to be very effective and robust in solving a wide range of problems across
various applications. They are also helpful in dealing with issues where specific parameters
are not known in advance. These properties are missing in all conventional optimization
techniques [88]. They apply an appropriate cost function to give feedback to the algorithm
on the progress of the search. The difference in principle is how and where domain-specific
knowledge is used. For example, SA obtains such information mainly from the cost function.
The disturbed items are selected randomly, and the acceptance or rejection of disturbances
is based on the Metropolis criterion, which is a function of cost. The cooling schedule also
has a significant impact on the algorithm’s performance. It must be carefully tailored to the
problem domain and the specific problem instance. TS differs from GA and SA because
it has an explicit memory component. At each iteration, the neighborhood of the current
solution is partially explored, and the move is made toward the best nontaboo solution in
that neighborhood. The neighborhood function and the size and content of the Tabu list
are problem-specific. Memory structures also influence the direction of the search. Particle
swarm optimization (PSO) is a population-based heuristic optimization method derived
from standing wave theory [48]. The cuckoo search algorithm (CSA) was introduced as an
efficient and straightforward global search technique among evolutionary algorithms [194].
The Artificial Bee Colony (ABC) algorithm was developed to model the behavior of living
organisms and is one of the evolutionary algorithms [109]. While machine learning requires
human intervention, deep learning can learn from mistakes. Deep learning requires a
more significant amount of data, which demands higher computational power. In deep
learning, algorithms learn autonomously by analyzing large amounts of data. In contrast,
reinforcement learning requires feedback from the agent to know what actions lead to the
desired outcome. Significant developments in neural networks occurred in the 1980s and
beyond and have been applied to obstacle avoidance robotics [125]. In control systems,
the star of reinforcement learning solutions is now gone, replaced by data-driven MPC
solutions that can provide theoretical guarantees of performance [195]. It is questionable
whether a suitable fitness function can solve all our problems, not to mention the theoretical
guarantees of stability or convergence. Nevertheless, it is worth using machine learning
algorithms in engineering because, presumably, they will be able to solve more and more
routine tasks for us. Furthermore, there is also the question of how data-driven MPC
algorithms solve all control theory problems. Specifically, where is the space left for
model-based robust control? The Hybrid Navigation Algorithm (HNA) with wandering
trails combines different methods and techniques for optimal route planning, which has
been applied to a partially known environment [179]. Recent developments have resulted
in a New Hybrid Navigation Algorithm (NHNA) similar to the HNA. It is a complete
algorithm that uses several approaches to achieve efficient and stable robot navigation.
However, it cannot be used in unknown environments as it requires prior environmental
information [25,193]. Sliding mode (SM) algorithms employ several methods and have seen
significant development and application, especially in robotics and control systems [181].

Essential characteristics of algorithms are convergence time, computation time, and
memory requirements. The convergence time is required for the algorithm to reach con-
vergence, i.e., to achieve a stable or desired state. This time may vary depending on the
algorithm type, the task’s nature, and the initial conditions. The goal is to make the algo-
rithm converge as fast as possible to solve the task or problem efficiently. Computation
time and memory requirements are closely related. The more complex the environment in
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which we want to navigate the robot, the more data and more complex computations are
needed to find the optimum.

Among the previously developed methods, heuristic approaches are relatively new
and have significant applications in mobile robot navigation. Contemporary research
increasingly focuses on optimizing algorithms through hybridization to achieve superior
performance. Historically, classical methodologies were prevalent but faced limitations
such as susceptibility to local minima and high computational demands. In response,
researchers have shifted towards heuristic methods, particularly effective in uncertain or
unknown environments. These heuristic approaches, often enhanced by hybridization
with classical methods, have proven successful in complex three-dimensional workspaces,
such as those encountered by underwater, unmanned aerial vehicles, and humanoid robots.
This shift underscores the improved adaptability and efficiency of heuristic strategies over
classical approaches in dynamic settings.

As technology advances and robotics becomes increasingly integrated into various
aspects of our lives, obstacle avoidance algorithms are poised to undergo significant devel-
opments to meet the demands of emerging applications. With the proliferation of machine
learning techniques, we can expect obstacle avoidance algorithms to incorporate more
advanced learning-based approaches. These algorithms will be capable of adapting and
improving their performance over time through experience and feedback, leading to more
efficient and robust obstacle avoidance in dynamic environments. Future obstacle avoid-
ance systems will rely on sophisticated sensor fusion techniques to integrate data from
multiple sensors, such as LIDAR, cameras, radar, and ultrasonic sensors. By combining
information from diverse sources, these algorithms will achieve a more comprehensive
understanding of the environment, enhancing their ability to detect and avoid obstacles
accurately. Future obstacle avoidance algorithms prioritize real-time adaptive planning
to navigate complex and dynamic environments effectively. These algorithms will contin-
uously analyze sensor data and adjust robot trajectories to avoid obstacles and navigate
changing scenarios in real-time, unreal-time, and efficient robot operation. Collaborative
obstacle avoidance algorithms will become increasingly important in environments where
multiple robots or autonomous vehicles operate concurrently. These algorithms will enable
robots to communicate and coordinate their movements to avoid collisions and optimize
path planning, leading to smoother and more efficient operations in shared spaces. Drawing
inspiration from nature, future obstacle avoidance algorithms may incorporate bio-inspired
principles, such as swarm intelligence or mimicry of animal behavior. These approaches
could lead to innovative solutions for navigating challenging environments, leveraging
the collective intelligence of swarms, or mimicking the agility and adaptability of animals
in natural habitats. As robots become more prevalent, ethical considerations regarding
obstacle avoidance will gain prominence. Future algorithms must balance efficiency with
moral considerations, prioritizing human safety and well-being in crowded environments.
Additionally, human-robot interaction will play a crucial role, with obstacle avoidance algo-
rithms designed to anticipate and respond effectively to human intentions and behaviors.
With these exciting developments, researchers and engineers can pave the way for safer,
more efficient, and more adaptive robotic systems in various applications.
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Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
ACO Ant Colony Optimization
AGV Automated Guided Vehicle
APF Artificial Potential Field
ANN Artificial Neural Network
AUV Autonomous Underwater Vehicle
BF Bellman–Ford Algorithm
CD Cell Decomposition
CSA Cuckoo Search Algorithm
DL Deep Learning
DRL Deep Reinforcement Learning
FGM Follow Gap Method
FL Fuzzy Logic
FW Floyd–Warshall Algorithm
GA Genetic Algorithm
HGA Hybrid Genetic Algorithm
HNA Hybrid Navigation Algorithm
LIDAR Light Detection And Ranging
MAV Micro Aerial Vehicle
MPC Model Predictive Control
NHNA New Hybrid Navigation Algorithm
PRM Probabilistic Roadmap Method
PSO Particle Swarm Optimization
RL Reinforcement Learning
SM Sliding Mode Method
UAV Unmanned Aerial Vehicle
UCAV Unmanned Combat Aerial Vehicle
USV Unmanned Surface Vehicle
VFH Vector Field Histogram
VPS Vehicle Routing Problems
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Abstract: Interactions between mobile robots and human operators in common areas require a
high level of safety, especially in terms of trajectory planning, obstacle avoidance and mutual
cooperation. In this connection, the crossings of planned trajectories and their uncertainty based on
model fluctuations, system noise and sensor noise play an outstanding role. This paper discusses
the calculation of the expected areas of interactions during human–robot navigation with respect to
fuzzy and noisy information. The expected crossing points of the possible trajectories are nonlinearly
associated with the positions and orientations of the robots and humans. The nonlinear transformation
of a noisy system input, such as the directions of the motion of humans and robots, to a system
output, the expected area of intersection of their trajectories, is performed by two methods: statistical
linearization and the sigma-point transformation. For both approaches, fuzzy approximations are
presented and the inverse problem is discussed where the input distribution parameters are computed
from the given output distribution parameters.

Keywords: human–robot interaction; Gaussian noise; sigma-point transformation; unscented Kalman
filter

1. Introduction

The planning and performing of mobile robot tasks in the presence of human operators
while sharing the same workspace requires a high level of stability and safety. Research
activities regarding navigation, obstacle avoidance, adaptation and collaboration between
robots and human agents have been widely reported [1,2]. Multiple target tracking for
robots using higher control levels in a control hierarchy are discussed in [3,4]. A human-
friendly interaction between robots and humans can be obtained by human-like sensor
systems [5]. A prominent role in robot navigation is the trajectory-crossing problem of
robots and humans [6,7] and corresponding fuzzy solutions [8]. Motivations for a fuzzy
solution of the intersection problem are manifold. One point is an uncertain measurement
of the position and orientation of the human agent, because of which the use of a fuzzy
signal and an adequate fuzzy processing seems natural [9,10]. Another aspect is the need
for decreasing the computing effort in the case of complex calculations during a very
small time interval. System uncertainties and observation noise lead to uncertainties of the
intersection estimations.

The objective of this work is the formulation of the crossing/intersection problem by
taking into account the uncertainties in human–robot systems, including sensors and motor
characteristics. An important aspect is to define permissible uncertainties in a human–robot
system for a given uncertainty at a possible intersection of their trajectories. Taking into
account the nonlinearities, this is performed by the differential approach and a following
analysis of the regarding Gaussian distributions. This approach is compared with the
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sigma-point transformation, which represents a simplification of the computation and a
qualitative extension of the analysis regarding the statistics of the random variables. For
broader areas of possible intersections, both methods are extended to fuzzy regions together
with different numbers and shapes of fuzzy sets. The most important contributions are
as follows:

• An investigation of uncertainties of possible intersection areas originating from sensor
noise or system uncertainties.

• A direct and inverse transformation of the error variables at the intersection areas for
two input variables (orientation angles) and two output variables (intersection coordinates).

• An extension of the method from two to six input variables (two orientation angles
and four position coordinates).

• An exploration of the formulations of fuzzy versions.
• A formulation of the problem by the sigma-point transformation and corresponding

comparison of the two methods.

This paper deals with the one-robot one-human trajectory-crossing problem, where
small uncertainties in the position and orientation may lead to high uncertainties at the
intersection points. The position and orientation of the human and robot are nonlinearly
coupled but can be linearized. In the following, the linear part of the nonlinear system is
considered in the analysis reported for small variations in the input [11]. Then, the “direct
task” is described, meaning that the parameters of the input distribution are transformed to
the output distribution parameters. The “inverse task” is also solved, meaning that for the
defined output distribution parameters the input parameters are calculated. In this paper,
two methods are outlined:

1. The statistical linearization, which linearizes the nonlinearity around the operating area at
the intersection. The means and standard deviations on the input parameters positions
(orientations) are transformed through the linearized nonlinear system to obtain the
means and standard deviations of the output parameters (the position of intersection).

2. The sigma-point transformation, which calculates the so-called sigma points of the input
distribution, including the mean and covariance of the input. The sigma points are
directly propagated through the nonlinear system [12–14] to obtain the means and
covariance of the output and, with this, the standard deviations of the output (the
position of intersection). The advantage of the sigma-point transformation is that
it captures the first- and second-order statistics of a random variable, whereas the
statistical linearization approximates a random variable only by its first order. How-
ever, the computational complexity of the extended Kalman filter (EKF, differential
approach) and unscented Kalman filter (UKF, sigma-point approach) is of the same
order [13].

This paper is organized as follows. Section 2 describes the related work already
conducted on unscented Kalman filters in mobile robot applications. In Section 3, the
general intersection problem and its analytical approach is described. Section 4 deals
with the transformation/conversion of Gaussian distributions for a two-input–two-output
system and for a six-input–two-output system plus the corresponding inverse and fuzzy
solutions. In Section 5, the sigma-point approach plus inverse and fuzzy solutions are
addressed. Section 6 presents simulations of the statistical linearization and the sigma-point
transformation to show the quality of the input–output conversion of the distributions and
the impact of different resolutions of fuzzy approximations on the accuracy of the random
variable intersection. Finally, Section 7 concludes this paper with a discussion of the two
different approaches and a comparison of the methods.

2. Related Work

The crossing problem for mobile robots has been especially dealt with by [6,7]. Both
publications deal with the so-called rendezvous problem whereby the key point is the
trajectory planning under time constraints, taking into account the dynamics of the con-
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tributing robots. Uncertainties of possible intersection areas that come from sensor noise or
system uncertainties are not discussed deeply. A fuzzy-adaptive extended Kalman filter
(FAEKF) for the real-time attitude estimation of a mobile robot is proposed in [15] where
fuzzy IF–THEN rules-based adaption laws modify the noise covariance matrices of the
filter. However, the use of unscented Kalman filters or sigma-point transformation has
not been discussed. For the estimation of landmarks, a simultaneous localization and
mapping (SLAM) method is presented by [16] where an iterated sigma-point FastSLAM
(ISP-FastSLAM) algorithm is proposed to minimize statistical linearization errors through
the Gaussian–Newton iteration. A further application is presented by [17] where a walking
robot uses sigma-point transformation for state estimation to guarantee stability in the sys-
tem’s hybrid dynamics, which contains continuous and switching parts during movement.
In [18], a vision-based SLAM system uses both extended Kalman filters (EKFs) and sigma-
point Kalman filter (SPKF) algorithms and showed its superiority over the EKF. The pose
estimation of mobile robots is discussed in [19] whereby several filter techniques like the
Kalman filter (EKF), the unscented Kalman filter (UKF) and several variants of the particle
filter (PF) are compared. It turns out that the UKF (also the sigma-point approach) exhibits
almost the same computational cost. In [20], the inter-robot and robot–target correlations
are discussed, and unscented transformation-based collaborative self-localization and a
target tracking algorithm between robots are proposed. A tutorial on different approaches
to exploit the structure of a system’s state and measurement models to reduce the computa-
tional demand of the algorithms is presented by [21]. In this publication, the computational
complexity of different state estimation algorithms is presented, showing the superiority of
the sigma-point transformation algorithms.

In all these publications, the problem of obstacle avoidance and/or the crossing
problem in the presence of human actors are not taken into account, because of which the
present paper is a further contribution to the robot–human interaction problem.

3. Computation of Intersections

The problem can be stated as follows:
A robot and human agent move in a common area according to their tasks or intentions.

To avoid collisions, possible intersections of the paths of the agents should be predicted
for both the trajectory planning and on-line interactions. To accomplish this, the positions,
orientations and intended movements of the robot and human should be estimated as
accurately as needed.

In this connection, uncertainties and noise on the random variables’ position/orientation
xR, xH , φR and φH of the robot and human have a great impact on the calculation of the
expected intersection position xc. The random variable xc is calculated as the crossing
point of the extension of the orientation or velocity vectors of the robot and human, which
may change during motion depending on the task and current interaction. The task is to
calculate the intersection and its uncertainty in the presence of the known uncertainties of
the acting agent robot and human.

System noise wR and wH for the robot and human can be obtained from experiments.
The noise wc of the “virtual” intersection is composed of the nonlinear transformed noise
wR and wH and some additional noise vc that may come from uncertainties of the nonlinear
computation of the intersection position xc (see Figure 1). In the following, the geometrical
relations are described as well as the fuzzy approximations and nonlinear transformations
of the random variables xR, xH , φR and φH .
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Figure 1. Intersection principle.

3.1. Geometrical Relations

Let the y-axis of the mobile coordinate frame of the robot and human be aligned
with their directions of motion. Furthermore, let the orientation angles φR and φH of the
robot and human be measured from the x-axis of the base frame counterclockwise. Let the
intersection (xc, yc) of the two linear trajectories xR(t) and xH(t) in a plane be described by
the following relations (see Figure 2):

xH = xR + dRH cos(φR + δR)

yH = yR + dRH sin(φR + δR) (1)

xR = xH + dRH cos(φH + δH)

yR = yH + dRH sin(φH + δH)

where xH = (xH , yH) and xR = (xR, yR) are the positions of the human and robot and
φH and φR are their orientation angles, and δH and δR are the positive angles measured
from the y coordinates counterclockwise. The angle at the intersection is β̃ = π − δR − δH .
The variables xH , xR, φR, φH δH and φH δR; distance dRH ; and angle γ are assumed to be
measurable. Angle γ is a bearing angle for the robot-to-human direction measured in base
coordinates. If φH is not directly measurable, then it can be computed by

φH = arcsin((yH − yR)/dRH)− δH + π (2)

The coordinates xc and yc of the intersection are computed straightforwardly by [8]

xc =
A− B

tan φR − tan φH

yc =
A tan φH − B tan φR

tan φR − tan φH
(3)

A = xR tan φR − yR

B = xH tan φH − yH

Rewriting (3) leads to

xc =

(
xR

tan φR
G

− yR
1
G

)
−
(

xH
tan φH

G
− yH

1
G

)

yc =

(
xR

tan φR tan φH
G

− yR
tan φH

G

)

−
(

xH
tan φH tan φR

G
− yH

tan φR
G

)
(4)

G = tan φR − tan φH
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After rearranging (4), we observe that xc = (xc, yc)T is linear in xRH = (xR, yR, xH , yH)
T

xc = ARH · xRH (5)

where

ARH = f (φR, φH) =

1
G

(
tan φR −1 − tan φH 1

tan φR tan φH − tan φH − tan φR tan φH tan φR

)

This notation is of advantage for further computations, such as the fuzzification of the
intersection problem and the transformation of the error distributions.

Figure 2. Human–robot scenario: geometry.

3.2. Computation of Intersections—Fuzzy Approach

The fuzzy solution presented in the following is a combination of classical analyti-
cal (crisp) methods and rule-based methods in the sense of a Takagi–Sugeno fuzzy rule
base. An appropriate choice of the number of fuzzy sets and corresponding fuzzy rules
depends strongly on the specific application. In the present case, fuzzy sets are used as the
approximation of nonlinear functions. In the following, we introduce a fuzzy rule-based
approximation of (5) with n× n fuzzy rules Ri,j

Ri,j : IF φR = ΦRi AND φH = ΦH j (6)

THEN xc = ARHi,j · xRH

n—the number of fuzzy terms, ΦRi and ΦHj for φR and φH , with the result

xc = ∑
i,j

wi(φR)wj(φH) · ARHi,j · xRH (7)

i, j = 1 . . . n, wi(φR), wj(φH) ∈ [0, 1] are normalized membership functions with ∑i wi(φR) = 1
and ∑j wj(φH) = 1.

Let the universes of discourse for φR and φH be φR, φH ∈ [0, 360]. Furthermore, let
these universes of discourse be divided into n partitions (for example, 6) of 60, which leads
to 6× 6 fuzzy rules. The corresponding membership functions are shown in Figure 3. It

52



Sensors 2024, 24, 3303

turns out that this resolution leads to a poor fuzzy approximation. The approximation
quality can be improved by increasing the number of fuzzy sets, which however results
in a quadratic increase in the number of fuzzy rules. To avoid an “explosion” of the
number of fuzzy rules being computed in one time step, a set of sub-areas covering a
small number of rules for each sub-area is defined. Based on the measurements of φR and
φH , the appropriate sub-area is selected together with a corresponding set of rules (see
Figure 4, sub-area AR, AH). With this, the number of rules to be activated at one time step
of calculation is low, although the total number of rules can be high. At the borderlines
between the sub-areas, abrupt changes may occur, which can be avoided by overlapping
the sub-areas.

Figure 3. Membership functions for ∆φR, ∆φH = 0− 360◦.

Figure 4. Fuzzy sectors.

3.3. Differential Approach

The positions and orientations of robots and humans are usually corrupted with
noise originated from system uncertainties, sensor errors and motor characteristics. These
uncertainties become apparent in uncertainties in the crossing/intersection areas of the
trajectories of the robot and human. The analysis of uncertainty and noise at xc generated
by the noise at φR, φH and xRH = (xR, yR, xH , yH)

T requires a linearization of (4) around
the operating points and with this a differential strategy. Let, for simplification, only
the orientation angles φR and φH be corrupted with noise. In Section 4.3, the positions
xRH = (xR, yR, xH , yH)

T are taken into account, too.
Differentiating (4) with xRH = const. yields

dxc = J̃ · dŒ

dŒ = (dφR dφH)T ; J̃ =
(

J̃11 J̃12
J̃21 J̃22

)
(8)
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where

J̃11 =
(
− tan φH 1 tan φH −1

) xRH
G2 · cos2 φR

J̃12 =
(

tan φR −1 − tan φR 1
) xRH

G2 · cos2 φH

J̃21 = J̃11 · tan φH

J̃22 = J̃12 · tan φR

The following sections deal with the accuracy of the computed intersection in the case
of noisy orientation information (see Figure 5).

Figure 5. Intersection with noisy orientations.

4. Transformation of Gaussian Distributions
4.1. General Assumptions

Consider a nonlinear system

z = F(x) (9)

where the random variables x = (x1, x2)
T denote the input, z = (z1, z2)

T denotes the
output and F denotes a nonlinear transformation. The distribution of the uncorrelated
Gaussian distributed components x1 and x2 is described by

fx1,x2 =
1

2πσx1 σx2

exp(−1
2
(

e2
x1

σ2
x1

+
e2

x2

σ2
x2

)) (10)

where ex1 = x1 − x̄1, with x̄1—the mean (x1) and σx1—the standard deviation x1, and
ex2 = x2 − x̄2, with x̄2—the mean (x2) and σx2—the standard deviation x2.

The goal is as follows: Given the nonlinear transformation (9) and the distribution (10),
compute the output signals z1 and z2 and their distributions together with their standard
deviations and the correlation coefficient. Linear systems transform Gaussian distributions
linearly such that the output signals are also Gaussian-distributed. This does not apply for
nonlinear systems, but if the input standard deviation is small enough, then a local linear
transfer function can be built for which the outputs are Gaussian-distributed. Suppose the
input standard deviations are small with respect to the nonlinear function, then the output
distribution can be written as follows:
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fz1,z2 =
1

2πσz1 σz2

√
1− ρ2

z12

· (11)

exp(− 1
2(1− ρ2

z12 )
(

e2
z1

σ2
z1

+
e2

z2

σ2
z2

− 2ρz12 ez1 ez2

σz1 σz2

))

ρz12 —the correlation coefficient.

4.2. Statistical Linearization, Two Inputs–Two Outputs
Let the nonlinear transformation F be described by two smooth transfer functions (see

block scheme Figure 6)

z1 = f1(x1, x2)

z2 = f2(x1, x2) (12)

where (x1, x2) = (φR, φH) and (z1, z2) = (xc, yc).
The linearization of (12) yields

dz = J̃ · dx or ez = J̃ · ex (13)

with

ez = (ez1 , ez2 )
T and ex = (ex1 , ex2 )

T (14)

dz = (dz1, dz2)
T and dx = (dx1, dx2)

T

J̃ =
(

∂ f1/∂x1, ∂ f1/∂x2
∂ f2/∂x1, ∂ f2/∂x2

)
(15)

Figure 6. Differential transformation.

4.2.1. Output Distribution

To obtain the density fz1,z2 (11) of the output signal, we invert (15) and substitute the
entries of ex into (10). J̃ is invertible if it is positive definite with | J̃| > 0. Otherwise, there
exist singularities due to different constellations of the position vector xRH and/or the
orientations φR and φH . To find all the singularities requires a further analysis, which is not
the content of this paper. However, a simple heuristic leads us to some obvious situations:
If φR = φH or φR = φH + π, then the human and robot would move in parallel either
in the same or the opposite direction. On the other hand, one may also obtain diverging
trajectories with no crossing.

ex = J · ez (16)

with J = J̃−1 and

J =
(

J11 J12
J21 J22

)
=

(
jxz
jyz

)
(17)

where jxz = (J11, J12) and jyz = (J21, J22). The entries Jij are the result of the inversion of J̃.
From this substitution, we obtain
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fx1,x2 = Kx1,x2 ·

exp(−1
2
· ez

T · (jx1 ,z
T , jx2 ,z

T) · S−1
x ·

(
jx1 ,z
jx2 ,z

)
· ez) (18)

where Kx1,x2 = 1
2πσx1 σx2

and

S−1
x =




1
σ2

x1
, 0

0, 1
σ2

x2


 (19)

The exponent of (18) is rewritten into

xpo = −
1
2
· ( 1

σ2
x1

(ez1 J11 + ez2 J12)
2

+
1

σ2
x2

(ez1 J21 + ez2 J22)
2) (20)

and furthermore

xpo = −1
2
· [e2

z1
(

J2
11

σ2
x1

+
J2
21

σ2
x2

) + e2
z2
(

J2
12

σ2
x1

+
J2
22

σ2
x2

) +

2 · ez1 ez2 (
J11 J12

σ2
x1

+
J21 J22

σ2
x2

)] (21)

Let

A = (
J2
11

σ2
x1

+
J2
21

σ2
x2

); B = (
J2
12

σ2
x1

+
J2
22

σ2
x2

)

C = (
J11 J12

σ2
x1

+
J21 J22

σ2
x2

) (22)

then a comparison of xpo in (21) and the exponent in (11) yields

1
(1− ρ2

z12 )

1
σ2

z1

= A;
1

(1− ρ2
z12 )

1
σ2

z2

= B

−2ρz12

(1− ρ2
z12 )

1
σz1 σz2

= 2C (23)

The standard deviations σz1 and σz2 and the correlation coefficient ρz12 yield

ρz12 = −
C√
AB

1
σ2

z1

= A− C2

B
;

1
σ2

z2

= B− C2

A
(24)

The result is as follows: If the parameter of the input distribution and the transfer
function F(x, y) are known, then the output distribution parameters can be computed
straightforwardly.

4.2.2. Fuzzy Solution

To save computing costs in real time, we create a TS fuzzy model that is represented
by the rules Rij.
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Rij : (25)

IF x1 = X1i AND x2 = X2i

THEN ρz12 = − Cij√
AijBij

AND
1

σ2
z1

= Aij −
C2

ij

Bij
;

AND
1

σ2
z2

= Bij −
C2

ij

Aij

where X1i, X2i are fuzzy terms for x1, x2, and Aij, Bij, Cij are functions of the predefined
variables x1 = x1i and x2 = x2i.

From (25), we derive

ρz12 = −∑
ij

wi(x1)wj(x2)
Cij√
AijBij

1
σ2

z1

= ∑
ij

wi(x1)wj(x2)(Aij −
C2

ij

Bij
) (26)

1
σ2

z2

= ∑
ij

wi(x1)wj(x2)(Bij −
C2

ij

Aij
)

wi(x1) ∈ [0, 1] and wj(x2) ∈ [0, 1] are the weighting functions with ∑i wi(x1) = 1,
∑j wj(x2) = 1.

4.2.3. Inverse Solution

The previous paragraph discussed the direct transformation task: Let the distribution
parameters of the input variable be defined and find the corresponding output parameters.
However, it might also be useful to solve the inverse task: Given the output parameters
(standard deviation and correlation coefficient), find the corresponding input parameters.
This solution of the inverse task is similar to those discussed in Section 4.2. The starting
points are equations (10) and (11), which describe the distributions of the inputs and
outputs, respectively. Then, we substitute (13) into (10) and rename the resulting exponent
xpoz into xpox and discuss the exponent xpox

xpox =
−1

2(1− ρ2
z12

)
(ex

T J̃TS−1
z J̃ex −

2ρz12 ez1 ez2

σz1 σz2

) (27)

with

S−1
x =




1
σ2

z1
, 0

0, 1
σ2

z2




Now, comparing (27) with the exponent of (10) of the input density, we find that the
mixed term in (27) must be zero, from which we obtain the correlation coefficient ρz12 and
with this the standard deviations of the inputs
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ρz12 = (
J̃11 J̃12

σ2
z1

+
J̃21 J̃22

σ2
z2

)
σz1 σz2

( J̃11 J̃22 + J̃12 J̃21)

1
σ2

x
= (

J̃2
11

σ2
z1

+
J̃2
21

σ2
z2

− 2ρz12

σz1 σz2

J̃11 J̃21)/(1− ρ2
z12

) (28)

1
σ2

y
= (

J̃2
12

σ2
z1

+
J̃2
22

σ2
z2

− 2ρz12

σz1 σz2

J̃12 J̃22)/(1− ρ2
z12

)

The detailed development can be found in [22].

4.3. Six Inputs–Two Outputs

Consider again the nonlinear system

xc = F(x) (29)

In the previous subsections, we assumed the positions xR and xH not to be cor-
rupted with noise. However, taking into account the positions to be random variables,
the number of inputs is 6 so that the input vector yields x = (x1, x2, x3, x4, x5, x6)

T or
x = (φR, φH , xR, yR, xH , yH) with the output vector xc = (xc, yc)T .

Furthermore, let the uncorrelated Gaussian-distributed inputs x1 . . . x6 be described
by the 6-dim density

fxi =
1

(2π)6/2|Sx|1/2 exp(−1
2
(ex

TSx
−1ex)) (30)

where ex = (ex1, ex2, . . . , ex6)
T ; ex = x− x̄, x̄—the mean(x) and Sx—the covariance matrix.

Sx =




σ2
x1

0 . . . 0
0 σ2

x2
. . . 0

. . . . . . . . . . . .
0 . . . 0 σ2

x6




According to (11), the output density is described by

fxc ,yc =
1

2πσxc σyc

√
1− ρ2

· (31)

exp(− 1
2(1− ρ2)

(eT
xc Sc

−1exc −
2ρexc eyc

σxc σyc

))

ρ—the correlation coefficient, exc = (exc , eyc)
T .

After some calculations [23], we find for ρ, 1
σ2

xc
and 1

σ2
yc

ρ = − C√
AD

1
σ2

xc

= A− C2

D
;

1
σ2

yc

= D− C2

A
(32)

with

A =
6

∑
i=1

1
σ2

xi

J2
i1; B =

6

∑
i=1

1
σ2

xi

Ji1 Ji2 (33)

C =
6

∑
i=1

1
σ2

xi

Ji1 Ji2; D =
6

∑
i=1

1
σ2

xi

J2
i2
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This is the counterpart to the 2-dim input case (24).

4.3.1. Inverse Solution

An inverse solution cannot be uniquely computed due to the undetermined character
of the 6-input–2-output system. Therefore, from the required variances at the intersection
position (output), the corresponding variances for the positions and orientations of the
robot–human or robot–robot (input) cannot be concluded.

4.3.2. Fuzzy Approach

The steps to the fuzzy approach are very similar to those of the 2-input case:

- Define the operation points xi = (x1, x2, x3, x4, x5, x6)
T
i ;

- Compute Ai, Bi and Ci at xi = (x1, x2, x3, x4, x5, x6)
T
i from (33);

- Formulate the fuzzy rules Ri according to (25) and (26), i = 1 . . . n.

The number n of rules is computed as follows:
With l = 6—the number of fuzzy terms and k = 6—the number of inputs, we obtain

n = lk = 66—the number of rules.
This number of rules is unacceptably high. To limit n to an adequate number, one has

to limit the number of inputs and/or fuzzy terms to look for the most influential variables
either in a heuristic or systematic way [24]. This however is not the issue to be discussed in
this paper.

5. Sigma-Point Transformation

In the following, the estimation/identification of the standard deviations of possible
intersection coordinates of trajectories for both the robot–robot and human–robot com-
binations by means of the sigma-point technique is discussed. The following method
is based on the unscented Kalman filter technique where the intersections cannot be di-
rectly measured but predicted/computed only. Nevertheless, it is possible to compute
the variance of the predicted events, such as possible collisions or planned rendezvous
situations, by a direct propagation of statistical parameters—the sigma points—through
the nonlinear geometrical relation, which is a result of the crossing of two trajectories.
Let x = (x1, x2)

T—the input vector and xc = (xc1, xc2)
T—the output vector where for

the special case (x1, x2)
T = (φR, φH)

T and (xc1, xc2)
T = (xc, yc)T . The nonlinear relation

between x and xc is given by (34)
xc = F(x) (34)

For the discrete case, we obtain for the state xc

xc(k) = F(x(k− 1) + w(k− 1)) (35)

and for the measured output zc(k)

zc(k) = h(xc)(k) + v(k)) (36)

where w and v are the system noise and measurement noise, respectively. h(xc) is the
output nonlinearity. Furthermore, let there be the following:

x̄(k)—the mean at time tk;
P(k)—the covariance matrix;
x0—the initial state with the known mean µ0 = E(x0);
P0(k) = E[(x0 − µ0)(x0 − µ0)

T ].

5.1. Selection of Sigma Points

Sigma points are the selected parameters of a given error distribution of a random
variable. Sigma points lie along the major eigen-axes of the covariance matrix of the random
variable. The height of each sigma point (see Figure 7) represents its relative weight W j

used in the following selection procedure.
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Figure 7. Sigma points for a 2-dim Gaussian random variable.

Let X(k− 1) be a set of 2n + 1 sigma points where n is the dimension of the state space
(in our example, n = 2).

X(k− 1) = {(xj(k− 1), W j)|j = 0 . . . 2n} (37)

Consider the following selection of sigma points

x0(k− 1) = x̄(k− 1)

−1 < W0 < 1 (38)

W0 =
λ

n + λ
; λ = α2(n + κ)− n

xi(k− 1) = x̄(k− 1) +
√
(

n
1−W0 P(k− 1)); i = 1 . . . n

xi(k− 1) = x̄(k− 1)−
√
(

n
1−W0 P(k− 1)); i = (n + 1) . . . 2n

W j =
1−W0

2n
(39)

under the following condition
2n

∑
j=0

W j = 1 (40)

α and κ are scaling factors. A usual choice is α = 10−2 and κ = 0.
√

n
1−W0 P(k− 1) is

the row/column of the matrix square root of n
1−W0 P. The square root of a matrix P is the

solution S for P = S · S, which is obtained by Cholesky factorization.

5.2. Model Forecast Step

To go on with the UKF, the following step is devoted to the model forecast. In this
way, the sigma points xj(k) are propagated through the nonlinear process model

x f ,j
c (k) = F(xj(k− 1)) (41)

where the superscript f means “forecast”. From these transformed and forecasted sigma
points, the mean and covariance for the forecast value of xc(k) are

x f
c (k) =

2n

∑
j=0

W jx f ,j
c (k)

P f (k) =
2n

∑
j=0

W j(x f ,j
c (k)− x f

c (k))(x
f ,j
c (k)− x f

c (k))T (42)
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5.3. Measurement Update Step

In this step, the sigma points are propagated through the nonlinear observation model

z f ,j
c (k) = h(xj

c(k− 1)) (43)

from which we obtain the mean and covariance (innovation covariance)

z f
c (k− 1) =

2n

∑
j=0

W jz f ,j
c (k− 1)

Cov(z̃ f
c (k− 1)) = (44)

2n

∑
j=0

W j(z f ,j
c (k− 1)− z f

c (k− 1))×

(z f ,j
c (k− 1)− z f

c (k− 1))T + R(k)

and the cross-covariance

Cov(x̃ f
c (k), z̃ f

c (k− 1)) =
2n

∑
j=0

W j(x f ,j
c (k)− x f

c (k))(z
f ,j
c (k− 1)− z f

c (k− 1))T (45)

5.4. Data Assimilation Step

In this step, the forecast information is combined with the new information from the
output z(k) from which we obtain, with the Kalman filter, gain K

x̂c(k) = x f
c (k) + K(k)(zc(k)− z f

c (k− 1)) (46)

The gain K is given by

K(k) = Cov(x̃ f
c (k), z̃ f

c (k− 1)) · Cov−1(z̃ f
c (k− 1)) (47)

and the posterior covariance is updated by

P(k) = P f (k)−K(k) · Cov(z̃ f
c (k− 1))KT(k) (48)

Usually, it is sufficient to compute the mean and variance for the output/state xc of
the nonlinear static system F(x). In this case, it is possible to stop further computing at
Equation (42), meaning to rather calculate the transformed sigma points x f ,j

c and develop
the specific output means and variances from (41) and (42). In this connection, it is enough
to substitute the covariance matrix Q into (38) instead of P. One advantage of the sigma-
point approach prior to statistical linearization is the easy scalability to multi-dimensional
random variables.

For the intersection problem, there are 2 cases:

1. The 2 inputs, 2 outputs (2 orientation angles and 2 crossing coordinates);
2. The 6 inputs, 2 outputs (2 orientation angles and 4 position coordinates, and 2 crossing

coordinates).

For the statistical linearization (method 1), the step from the 2 inputs–2 outputs case
to the (6,2)-case is computationally more costly than that for the sigma-point approach
(method 2), (see Equations (20)–(24) versus Equations (37) and (40)–(42)).

5.5. Sigma Points—Fuzzy Solutions

In order to lower the computing effort, the application of the TS fuzzy interpolation
may be a solution, which will be shown in the following. Having a look at the two-
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dimensional problem, we can see a nonlinear propagation of the input sigma points
through a nonlinear function F. Let xj be the two-dimensional “input” sigma points

xj = (xj
1, xj

2)
T (49)

or for the special case “intersection”

xj = (φ
j
R, φ

j
H)

T (50)

The propagation through F leads to the “output” sigma points

x f ,j
c (k) = F(xj(k− 1)) (51)

or for the special case

x f ,j
c (k) = F(xj

1(k− 1), xj
2(k− 1)) =

F(φj
R(k− 1), φ

j
H(k− 1)) (52)

The special nonlinear function F is described by (see (5))

xc = ARH(φR, φH) · xRH (53)

where ARH is a nonlinear matrix (6) linearly combined with the position vector
xRH = (xR, yR, xH , yH)

T .
A fuzzification aims at ARH :

F f uzz(φR, φH) = A f uzz
RH · xRH =

m

∑
l1,l2

wl1(φR)wl2(φH) ·ARH(φ
l1
R , φl2

H) · xRH (54)

Applied to the sigma points (φj
R, φ

j
H), we obtain a TS fuzzy model described by the

following rules Rl1,l2

Rl1,l2 : (55)

IF φ
j
R = Φj

Rl1
AND φ

j
H = Φj

Hl2

THEN x f ,j
c = ARH(φ

l1,j
R , φ

l2,j
H ) · xRH

where Φj
Rl1

, Φj
Hl2

are fuzzy terms for φ
j
R, φ

j
H ; the matrices ARH are functions of the prede-

fined variables φ
j
R and φ

j
H . This set of rules leads to the result

x f ,j
c = F f uzz(φ

j
R, φ

j
H) =

m

∑
l1,l2

wl1(φ
j
R)w

l2(φ
j
H) ·ARH(φ

l1,j
R , φ

l2,j
H ) · xRH (56)

62



Sensors 2024, 24, 3303

wl1(φ
j
R) ∈ [0, 1] and wl2(φ

j
H) ∈ [0, 1] are weighting functions with ∑l1 wl1 = 1, ∑l2 wl2 = 1.

The advantage of this approach is that the l1 × l2 matrices Al1,l2,j
RH = ARH(φ

l1,j
R , φ

l2,j
H ) can be

computed off-line. Then, the calculation of the mean and covariance matrix is obtained by

x f
c (k) =

2n

∑
j=0

Wjx f ,j
c (k)

P f (k) =
2n

∑
j=0

Wjx̃ f ,j
c (k)(x̃ f ,j

c (k))T (57)

x̃ f ,j
c = x f ,j

c − x f
c

From the covariance P f , the variances σcxx, σcyy, σcxy can be obtained

σcxx = E((x f
c − x̄ f

c )
2))

σcyy = E((y f
c − ȳ f

c )
2)) (58)

σcxy = σcyx = E((x f
c − x̄ f

c ) · (y f
c − ȳ f

c ))

5.6. Inverse Solution

The inverse solution for the sigma-point approach is much easier to obtain than
that for the statistical linearization method. Starting from Equation (34), we build the
inverse function

x = F−1(xc) (59)

on the condition that F−1 exists. Then, the covariance matrix P is defined in correspon-
dence to the required variances σcxx, σcyy and σcxy. The following steps correspond to
Equations (34)–(42). The position vector xRH is assumed to be known. The inversion of F
requires a linearization of xRH and a starting point to obtain a stable convergence to the
inverse F−1. The result is the mean x and the covariance Q at the input. A reliable inversion
is only possible for the 2-input–2-output case.

5.7. Six-Inputs–Two-Outputs

This case works exactly as the 2-input–2-output case along with Equations (34)–(42)
due to the fact that the computation of the sigma points (38)–(40) and the propagation
through the nonlinearity F automatically include the input and output dimensions.

6. Simulation Results

The following simulations show the results of the uncertainties of the predicted
intersections based on statistical linearization and sigma-point transformation. For both
methods, identical parameters are employed for comparison reasons (see Figure 2). The
position/orientation of the robot and human are given by the following:

xR = (xR, yR)
T = (2, 0)Tm;

xH = (xH , yH)
T = (4, 10)Tm;

φR = 1.78 rad = 102◦;
φH = 3.69 rad = 212◦.
φR and φH are corrupted by Gaussian noise with standard deviations (std) of σφR = σx1 = 0.02
rad, (= 1.1◦), and σφH = σx2 = 0.02 rad, (=1.1◦) .

6.1. Statistical Linearization

Table 1 shows a comparison of the non-fuzzy method with the fuzzy approach using
sectors of 60◦, 30◦, 15◦, 7.5◦ of the unit circle for the orientations of the robot and human.
The notations in Table 2 are as follows: σxc—std-computed, σxm—std-measured, etc. As
expected, we see that higher resolutions lead to a better match between the fuzzy and

63



Sensors 2024, 24, 3303

analytical approach. Furthermore, the match between the measured and calculated values
depends on the form of membership functions (MFS). For example, low input standard
deviations (0.02 rad) show a better match for Gaussian membership functions, and higher
input standard deviations (0.05 rad = 2.9◦) require Gaussian bell-shaped membership
functions, which comes from different smoothing effects (see columns 4 and 5 in Table 2).

A comparison of the control surfaces and corresponding measurements xcm, ycm (black
and red dots) is depicted in Figures 8–10. Figure 8 shows the control surface of xc and yc
for the non-fuzzy case (4). The control surfaces of the fuzzy approximations (7) for the 30◦

and 7.5◦ sectors are shown in Figures 9 and 10. The resolution 30◦ (Figure 9) shows a very
high deviation compared to the non-fuzzy approach (Figure 8), which decreases further
down to the resolution 7.5◦ (Figure 10). This explains the high differences between the
measured and computed standard deviations and correlation coefficients, in particular for
sector sizes of 30◦ and higher.

Table 1. Standard deviations and fuzzy and non-fuzzy results.

Input Std 0.02 Gauss, Bell Shaped (GB) Gauss 0.05 GB

sector size/ ◦ 60◦ 30◦ 15◦ 7.5◦ 7.5◦ 7.5◦

non-fuzz σxc 0.143 0.140 0.138 0.125 0.144 0.366

fuzz σxc 0.220 0.184 0.140 0.126 0.144 0.367

non-fuzz σxm 0.160 0.144 0.138 0.126 0.142 0.368

fuzz σxm 0.555 0.224 0.061 0.225 0.164 0.381

non-fuzz σyc 0.128 0.132 0.123 0.114 0.124 0.303

fuzz σyc 0.092 0.087 0.120 0.112 0.122 0.299

non-fuzz σym 0.134 0.120 0.123 0.113 0.129 0.310

fuzz σym 0.599 0.171 0.034 0.154 0.139 0.325

non-fuzz ρxyc 0.576 0.541 0.588 0.561 0.623 0.669

fuzz ρxyc −0.263 0.272 0.478 0.506 0.592 0.592

non-fuzz ρxym 0.572 0.459 0.586 0.549 0.660 0.667

fuzz ρxym 0.380 0.575 0.990 0.711 0.635 0.592

Figure 8. Control surface non-fuzzy, units of φR and φH in rad.
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Figure 9. Control surface fuzzy, 30◦, units of φR and φH in rad.

Figure 10. Control surface fuzzy, 7.5◦, units of φR and φH in rad.

6.2. Sigma-Point Method

Two-inputs–two-outputs:
The simulation of the sigma-point method is based on a Matlab implementation of an

unscented Kalman filter by [25]. The first example deals with the 2-inputs–2-outputs case
in which only the orientations are taken into account, but the disturbances of the positions
of the robot and human are not part of the sigma-point calculation. A comparison between
the computed and measured covariance shows a very good match. The same holds for the
standard deviations σxc, σyc. A comparison with the statistical linearization shows a good
match as well (see Table 2, rows 1 and 2).

A view at the sigma points presents the following results: Figure 11 shows the two-
dimensional distribution of the orientation angles (φR, φH) and the corresponding sigma
points s1, . . . , s5 where s1 denotes the mean value. Figure 12 shows the two-dimensional dis-
tribution of the intersection coordinates (xc, yc) with the sigma points S1, . . . , S5. S1 denotes
the mean value and S1, . . . , S5 are distributed in such a way that the si are transformed
into Si, i = 1 . . . 5. From both figures, an optimal selection of both s1, . . . , s5 and S1, . . . , S5
can be observed, which results in a good match of the computed and measured standard
deviations σxc .
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Figure 11. Sigma points, input, units of φR and φH in rad.

Figure 12. Sigma points, output.

Six-inputs–two-outputs:
The 6-inputs–2-outputs example shows that the additional consideration of 4 input

position coordinates with σxR = 0.02 leads to similar results both for the computed and mea-
sured covariances and between the sigma-point method and statistical linearization (see
P(7, 7) = σx

2
c , P(8, 8) = σy

2
c and covar(7, 7) = σx

2
m, covar(8, 8) = σy

2
m, and σx

2
c —computed,

and σx
2
m—the measured variation). Table 2 shows the covariance submatrix considering

the output positions only.

Computed covariance:

P = 10−1 ×




0.004 −0.000 −0.000 0.000 −0.000 −0.000 −0.030 −0.018
−0.000 0.004 0.000 −0.000 −0.000 −0.000 0.003 −0.017
−0.000 0.000 0.004 0.000 −0.000 −0.000 0.004 0.002
0.000 −0.000 0.000 0.004 −0.000 −0.000 0.001 0.000
−0.000 −0.000 −0.000 −0.000 0.004 0.000 0.000 −0.002
−0.000 −0.000 −0.000 −0.000 0.000 0.004 −0.001 0.004
−0.030 0.003 0.004 0.001 0.000 −0.001 0.235 0.127
−0.018 −0.017 0.002 0.000 −0.002 0.004 0.127 0.165




(60)

σxc = 0.153, σyc = 0.122
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Measured covariance:

covar = 10−1 ×




0.004 0.000 0.000 0.000 0.000 −0.000 −0.028 −0.020
0.000 0.004 0.000 0.001 0.000 −0.000 0.000 −0.020
0.000 0.000 0.004 −0.000 0.001 −0.001 0.003 0.001
0.000 0.001 −0.000 0.004 −0.000 −0.000 −0.000 −0.003
0.000 0.000 0.001 −0.000 0.005 −0.000 −0.001 −0.006
−0.000 −0.000 −0.001 −0.000 −0.000 0.005 −0.000 0.005
−0.028 0.000 0.003 −0.000 −0.001 −0.000 0.213 0.131
−0.020 −0.020 0.001 −0.003 −0.006 0.005 0.131 0.182




(61)

σxc = 0.145, σyc = 0.134

Two-inputs–two-outputs, direct and inverse solution
The next example shows the computation of the direct and inverse cases. In the direct

case, we obtain again similar values between the computed and measured covariances and,
with this, the standard deviations. The results of the inverse solution lead to similar values
of the original inputs (orientations x1 = φR, x2 = φH) (see Table 2). The simulations of the
fuzzy versions showed the same similarities and can therefore be left out here.

Table 2. Covariances, standard deviations—computed and measured.

Outputs Covariance,
Computed Covariance, Measured σxc, Comp/Meas σyc, Comp/Meas

2 inputs P =

(
0.0213 0.0114
0.0114 0.0159

)
covar =

(
0.0264 0.0146
0.0146 0.0166

)
0.145/0.144 0.126/0.134

2 inputs, stat. lin. - - 0.144/0.142 0.124/0.129

6 inputs P =

(
0.0235 0.0127
0.0127 0.0165

)
covar =

(
0.0213 0.0131
0.0131 0.0182

)
0.135/0.145 0.122/0.134

Direct solution P =

(
0.0234 0.0133
0.0133 0.0151

)
covar =

(
0.0264 0.0146
0.0146 0.0166

)
0.152/0.162 0.128/128

Inverse solution P = 10−3 ×
(

0.4666 0.0522
0.0522 0.4744

)
covar = 10−3 ×

(
0.4841 −0.0190
−0.0190 0.396

)
0.0215/0.0220 0.0217/0.0190

Two-inputs–two-outputs, moving robot–human
The next example deals with the robot and human in motion. Figure 13 shows the

positions and orientations of the robot and human at selected time steps t1 . . . t5 and the
development of the corresponding intersections xc.

Figure 13. Moving robot and human.
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Figure 14 shows the corresponding time plot. The time steps t1 . . . t5 are taken at 0.58 s,
. . . , 4.58 s with a time distance of 1 s, which is 25 time steps of 0.04 s each. The robot and
human start at

xR = (xR, yR)
T = (2, 0)Tm

xH = (xH , yH)
T = (4, 10)Tm

with the velocities
ẋR(k) = −0.21 m/s;
ẏR(1) = +0.24 m/s;
ẋH(k) = −0.26 m/s;
ẏH(1) = −0.24 m/s.
k is the time step.

The x components of the velocities ẋR(k) and ẋH(k) stay constant during the
whole simulation.

The y components change their velocities with constant factors

ẏR(k + 1) = KR · ẏR(k)

ẏH(k + 1) = KH · ẏH(k)

where KR = 1.2 and KH = 0.9. The orientation angles start with the following:

φR = 1.78 rad;
φH = 3.69 rad.

They change their values every second according to the direction of motion.
From both plots, one observes an expected decrease in the output standard deviations

for a mutual decrease in their distances to the specific intersection and a good match
between the computed and measured values xc (see Table 3). With the information about
the distance of the robot and the standard deviation from and at the expected intersection,
respectively, it becomes possible to plan either an avoidance strategy or mutual cooperation
between the robot and human.

Figure 14. Time plot, robot and human.

Table 3. Covariances, standard deviations—computed and measured, moving robot–human.

Outputs Covariance,
Computed Covariance, Measured σxc, Comp/Meas σyc, Comp/Meas

t1 P =

(
0.0220 0.0017
0.0017 0.0163

)
covar =

(
0.0246 −0.0002
−0.0002 0.0202

)
0.148/0.156 0.127/0.142

t2 P =

(
0.0198 0.0023
0.0023 0.0138

)
covar =

(
0.0222 0.0018
0.0018 0.0153

)
0.140/0.148 0.117/0.123

t3 P =

(
0.0168 0.0030
0.0030 0.0107

)
covar =

(
0.0140 0.0040
0.0040 0.0088

)
0.129/0.118 0.103/0.093

t4 P =

(
0.0151 0.0029
0.0029 0.0083

)
covar =

(
0.0127 0.0014
0.0014 0.0073

)
0.122/0.112 0.091/0.085

t5 P =

(
0.0125 0.0023
0.0023 0.0061

)
covar =

(
0.0102 0.0030
0.0030 0.0056

)
0.112/0.101 0.078/0.074
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7. Summary and Conclusions

The content of this work is the prediction of encounter situations of mobile robots and
human agents in shared areas by analyzing planned/intended trajectories in the presence of
uncertainties and system and observation noise. In this context, the problem of intersections
of trajectories with respect to system uncertainties and Gaussian noise of the position
and orientation of the agents involved is discussed. The problem is addressed by two
methods: the statistical linearization of distributions and the sigma-point transformation
of the distribution parameters. The positions and orientations of the robot and human
are corrupted with Gaussian noise represented by the parameters’ mean and standard
deviation. The goal is to calculate the mean and standard deviation/variation at the
intersection via the nonlinear relation between the positions/orientations of the robot and
human, on the one hand, and the position of the intersection of their intended trajectories,
on the other hand.

This analysis is realized by the statistical linearization of the nonlinear relation between
the statistics of the robot and human (input) and the statistics of the intersection (output).
The output results are the mean and standard deviation of the intersection as functions
of the input parameters’ mean and standard deviation of the positions and orientations
of robot and human. This work is first carried out for two-input–two-output relations
(two orientations of the robot–human and two intersection coordinates) and then for six
inputs–two outputs (two orientations and four position coordinates of the robot–human
and two intersection coordinates). These cases were extended to their fuzzy versions by
different Takagi–Sugeno (TS) fuzzy approximations and compared with the non-fuzzy
case. Up to a certain resolution, the approximation works as accurately as the original non-
fuzzy version. For the two-input–two-output case, an inverse solution is derived, except
for the six-input–two-output case because of the undetermined nature of the differential
input–output relation.

The sigma-point transformation aims at transforming/propagating distribution
parameters—the sigma points—directly through nonlinearities. The transformed sigma
points are then converted into the distribution parameters’ mean and covariance matrix.
The sigma-point transformation is closely connected to the unscented Kalman filter, which
is used in the example of the robot and human in motion. The specialty of the example
is a computed virtual system output (“observation”)—the intersection of two intended
trajectories—where the corresponding output uncertainty is a sum of the transformed posi-
tion/orientation noise and the computational uncertainty from the fuzzy approximation.
In total, the comparison between the computed and measured covariances shows a very
good match and the comparison with the statistical linearization shows good coincidences
as well. Both the sigma-point transformation and the differential statistical linearization
scales for more than two variables linearly. Their computational complexity is in the same
order [13]. However, if the model is nonlinear, then the differential linearization (EKF)
serves as the first-order or second-order approximating estimator. If the system is highly
nonlinear, the EKF may diverge and the sigma-point approach produces typically better
results. In summary, a prediction of the accuracy of human–robot trajectories using the
methods presented in this work increases the performance of human–robot collaboration
and human safety. In future work, this method can be used for robot–human scenarios
in factory workshops and for robots working in complicated environments like rescue
operations in cooperation with human operators.
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Abstract: This paper proposes a robust tracking control method for wheeled mobile robot (WMR)
against uncertainties, including wind disturbances and slipping. Through the application of the
differential flatness methodology, the under-actuated WMR model is transformed into a linear
canonical form, simplifying the design of a stabilizing feedback controller. To handle uncertainties
from wheel slip and wind disturbances, the proposed feedback controller uses sliding mode control
(SMC). However, increased uncertainties lead to chattering in the SMC approach due to higher
control inputs. To mitigate this, a boundary layer around the switching surface is introduced,
implementing a continuous control law to reduce chattering. Although increasing the boundary
layer thickness reduces chattering, it may compromise the robustness achieved by SMC. To address
this challenge, an active disturbance rejection control (ADRC) is integrated with boundary layer
sliding mode control. ADRC estimates lumped uncertainties via an extended state observer and
eliminates them within the feedback loop. This combined feedback control method aims to achieve
practical control and robust tracking performance. Stability properties of the closed-loop system are
established using the Lyapunov theory. Finally, simulations and experimental results are conducted to
compare and evaluate the efficiency of the proposed robust tracking controller against other existing
control methods.

Keywords: differential flatness; sliding mode control; active disturbance rejection control; extended
state observer; wheeled mobile robot

1. Introduction

The domain of robotics finds mobile robots to be particularly intriguing, attracting
considerable fascination and study. Designed to operate in dynamic settings, be it indoors
or outdoors, these robots demonstrate the capacity to navigate autonomously or with
minimal human input. Central to their functionality is their mobility, achieved through
diverse locomotion methods, such as wheels, tracks, or legs. This mobility empowers
them to traverse diverse terrains, overcoming obstacles encountered during their journeys.
Recently, mobile robots have been used in various domains, including civilian, industrial,
and military, to carry out diverse tasks such as surveillance [1], transportation [2], agri-
cultural operations [3], and exploration [4]. Given the broad application spectrum and
critical nature of tasks involving mobile robots, there exists an urgent need to develop
performance tracking controllers to execute proposed missions with exceptional accuracy.
However, achieving this objective remains a significant challenge due to the inherent
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under-actuation and nonlinearity in WMRs, constrained by nonholonomic limitations.
Consequently, researchers have directed their efforts towards investigating the control of
mobile robotic systems.

In the past few decades, substantial progress has been made in the field of tracking
control for wheeled mobile robots (WMR) through the application of nonlinear control
theory [5–7]. Among these control methodologies, linearization controllers, such as the
flatness controller [8], have risen as a popular approach that can significantly simplify
the controller design process. The flatness property is a technique used to define the
dynamic behavior of nonlinear underactuated models by identifying a set of core system
variables known as flat outputs. This perspective has significant implications for control
systems, as will be demonstrated. The first step in flatness control involves generating
a desired realizable trajectory that implicitly incorporates the system model. Following
that, the nonlinear WMR model can be linearized, resulting in the canonical Brunovsky
form [9,10]. This special form simplifies the concept of a feedback controller capable
of achieving exact trajectory tracking. In fact, controlling a linear system is easier than
controlling an underactuated nonlinear system, and this feature has encouraged researchers
to use the properties of flatness in several application domains, such as the control of
hydraulic systems [11], exoskeleton robots [12], microgrid [13], underwater robot [14],
and quadrotor [15,16].

Numerous research studies on WMR have utilized the concept of flatness control.
Abadi [17] introduced an approach for optimal path planning for WMR using the collo-
cation method, flatness control, and spline curves. This method effectively reduces the
time needed to compute optimal robot trajectories during navigation, which is crucial
for real-world applications. Kaniche [18] proposed a flatness visual servoing control for
WMR subjected to disturbances. Salah [19] developed an approach to generate the upper
coverage trajectory of a mobile robot by leveraging flatness. Yakovlev [20] combined flat-
ness control with predictive control to enable safe navigation of a WMR among static and
dynamic obstacles.

There is always is a difference between the mathematical model describing the move-
ment of WMR and reality. This difference is due to environmental phenomena neglected
during modeling, such as wind, slipping, etc. The question that arises is how flatness
control applied to WMR can ensure the accurate tracking of a desired trajectory despite the
presence of uncertainties. To resolve this problem, a robust feedback controller must be
combined with flatness, taking into account the impact of uncertainties to the model. Up to
the present, there have been limited methods in the literature concerning the robustness
issues of flatness systems. Among these approaches, the sliding mode control (SMC) has
been successfully utilized in a variety of systems [21–23].

SMC is a robust control technique used to manage dynamic systems in the presence of
uncertainties and disturbances. At its core, SMC aims to drive the system state onto a des-
ignated sliding surface within the state space. Once on this surface, the system’s behavior
is constrained, allowing for effective regulation. SMC achieves this through discontinuous
control actions, known as switching control, which dynamically alternate between different
control laws. This switching mechanism ensures that the system remains on the sliding
surface, enhancing robustness against external influences. Despite its effectiveness, SMC
is associated with a phenomenon called chattering [24], characterized by rapid switching
between control actions near the sliding surface. While chattering can theoretically improve
tracking accuracy, it can lead to practical issues such as mechanical wear and high-frequency
oscillations. To resolve this problem, numerous approaches have been suggested in the
existing literature, such as high-order SMC [25], boundary layer [26], and active adaptive
continuous nonsingular terminal sliding mode algorithm [27]. A frequently utilized ap-
proach for mitigating the chattering phenomenon involves incorporating the boundary
layer technique within SMC. This entails replacing the sign function with a smooth function.
However, this strategy presents its own set of challenges. Firstly, there exists a trade-off
between the size of the boundary layer and the performance of SMC, which impacts the
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effectiveness of chattering reduction. Secondly, the robustness and accuracy of the system
may not always be guaranteed within the boundary layer. Additionally, beyond addressing
the chattering issue, achieving precise control of a robotic system necessitates knowledge
about its state, typically obtained through real instruments, which can incur high costs
and complicate the system’s structure. Moreover, in many instances, directly measuring
certain system parameters may be impractical. To overcome these limitations, one potential
solution involves implementing software sensors or observers, commonly referred to as vir-
tual sensors. Therefore, to tackle both the reduced robustness resulting from the boundary
layer approach and the challenge of state estimation, we propose a novel robust feedback
controller that integrates the boundary layer sliding method with a disturbance observer.

In recent times, disturbance observers have emerged as potent tools for handling
consolidated uncertainties, closely tied to disturbance-observer-based control. Within the
domain of nonlinear disturbance observers, two notable approaches stand out: the uncer-
tainty and disturbance estimator (UDE) [28] and the active disturbance rejection control [29]
based on the extended state observer (ESO). In the UDE, only the disturbance is estimated,
though in general, the observer equations depend on system states and inputs. Thus, a state
observer is necessary unless all states are measurable. The idea of the ESO is to extend the
original state vector by the disturbance vector and possibly, some of its time-derivatives,
and then design a state observer for the extended system. ESO distinguishes itself by incor-
porating a dynamic model of disturbances or uncertainties into its estimation methodology,
enabling it to identify and mitigate uncertainties not explicitly accounted for in the system
model. The design of ESO is distinguished by its minimal dependence on system data
and its freedom from the traditional system model, which simplifies its implementation
process. Furthermore, several other types of disturbance observers are available, such as
the nonlinear extended state observer (NLESO) [30], the adaptive extended state observer
(AESO) [31], and the extended high-gain observer (EHGO) [32]. EHGO, part of the ESO
family, stands out in two key aspects: it does not necessitate slow variations in disturbances,
and it estimates a matched disturbance term originating from model uncertainty and exter-
nal disturbances. Given the advantages offered by ESO, considerable research effort has
been devoted to developing advanced controls for robotic systems.

In Ref. [33], Xie introduced a controller that integrates the backstepping technique
with ESO to improve tracking performance for underwater robots. Additionally, Qi [34]
improved the bandwidth of ESO to achieve more accurate disturbance estimation. Subse-
quently, they utilized a simple feedback controller to ensure attitude stabilization over a 3D
hovering quadrotor system. In the work by Aole [35], an improved ADRC methodology
for controlling lower limb exoskeletons is presented. The proposed approach integrates
Linear ESO with a tracking differentiator, nonlinear state error feedback, and a proportional
controller. Simulation results demonstrate the effectiveness of the suggested ADRC in effi-
ciently regulating the hip and knee movements of the robot in the presence of disturbances.
Hu [36] integrated a predictive control technique with ESO for unmanned underwater
vehicles, offering a solution to concurrently handle external disturbances and system mea-
surement noises. Based on this observation, the main contributions of our research can be
summarized as follows:

1. The kinematic model for WMR is structured in a standard format that systematically
tackles underactuation and transforms nonmatching disturbances into matching ones
through a flatness-based approach;

2. The designated trajectory is feasible in practice because of the concept of differential
flatness, which equates differential flatness with controllability, ensuring its physi-
cal achievability;

3. Continuous sliding mode control (SMC) is employed to eliminate chattering, an es-
sential necessity for the efficient application of control in real-world scenarios;

4. SMC is integrated with ESO for the uncertain kinematic WMR model. This strategy
seeks to improve the practicality and resilience of the tracking controller by reducing
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chattering through boundary layer SMC and estimating the lumped disturbance
affecting the WMRs via ESO, which is then employed as a feedforward compensation;

5. The proposed control method was compared with several other control methods,
including traditional flatness control, backstepping tracking control flatness-based
sliding control, and flatness active disturbance rejection control and backstepping slid-
ing active disturbance rejection control. These comparisons were validated through
simulations conducted in Matlab/Simulink and experiments carried out on the Turtle-
Bot WMR.

The structure of the remaining sections of this article is outlined as follows. Section 2
provides a thorough overview of the flatness control technique for WMR. Section 3 elabo-
rates on the concept of flatness-based sliding mode tracking control of WMRs. The proposed
robust tracking controller is delineated in Section 4. Sections 5 and 6 present and discuss
the results of simulations and experiments. Finally, Section 7 concludes the paper by
summarizing the key findings and suggesting potential future directions.

2. Flatness-Based Tracking Control

In our study, we analyzed a differential two-wheeled mobile robot (see Figure 1) that
consists of two independent active wheels and a third passive wheel (a standard freewheel).
This robotic system is widely regarded as an effective trade-off between control ease and the
degrees of freedom that enable the robot to meet mobility requirements. The configuration
of the mobile robot with wheels can be described by the vector qr = [x, y, θ]. In this notation,
x and y represent the coordinates of the robot’s center position in the stationary frame
(O, X, Y), while θ represents the orientation angle of the robot. The state equation of the
WMR kinematic model, neglecting uncertainties, is represented as follows:

ẋ = cos(θ)v
ẏ = sin(θ)v
θ̇ = w

(1)

Figure 1. Two-wheeled mobile robot.

The robot’s translational and rotational velocities are denoted by v and w, respectively.
The angular velocities of the right and left wheels (wr and wl) can be defined as functions
of the robot’s translational and rotational velocities as follows:

v = (
wr + wl

2
)r (2)
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w = (
wr − wl

2b
)r (3)

where the variables r and 2b represent the radius and distance between the wheels, respec-
tively. The nonholonomic limitation is defined as follows, based on the nonslip requirement:

ẋsinθ − ẏcosθ = 0 (4)

The accuracy of the tracking will be guaranteed through the flatness property, which
involves describing all system states and inputs, as well as their finite time derivatives,
within the framework of a flat output. Considering the following nonlinear system:

ẋ = f (x, u) (5)

where x ∈ Rn and u ∈ Rm represent the state and the input vector.
The nonlinear system (5) is differentially flat if there exists an output λ in the

following form:
λ = ξ(x, u, u̇, . . . , u(c)) ∈ Rm (6)

such that the state and the input can be expressed as follows:

x = κ1(λ, λ̇, λ̈ . . . , λ(a)) (7)

u = κ2(λ, λ̇, λ̈ . . . , λ(a+1)) (8)

where a and c are finite multi-indices, and ξ, κ1, and κ2 are smooth vector functions of
the output vector λ and its derivatives. By introducing the functions κ1 and κ2, this flat
output is composed of a set of variables that enable the parameterization of all other system
variables: the state, the command, and also the output λ. Indeed, if the output of the system
is defined by a relation of the form λ = Ξ(x, u, u̇, . . . , u(p)), then necessarily, the quantities
described in Equations (7) and (8) make it possible to affirm that there exists an integer c
such that:

f = Ξ(λ, λ̇, λ̈ . . . , λ(c)) (9)

The flat output combines all unconstrained variables of the system since the compo-
nents of λ are differentially independent. Alternatively, based on Equation (9), we can argue
that the flat output λ solely relies on the state and the command. This would make it an
endogenous variable of the system, in contrast to the state of an observer, which would be
an example of an exogenous variable of the observed system. In addition, Lie–Bäcklund’s
notion of differential equivalence [8] shows that the number of components of λ is the same
as the number of components of the control:

dimλ = dimu (10)

This fundamental characteristic allows us to determine the requisite number of inde-
pendent variables needed in a model to establish its flatness. A key benefit of the flatness
property lies in its facilitation of various transformations, such as diffeomorphism and
feedback linearization. These transformations enable the conversion of a nonlinear system
into a controllable linear system, where the flat outputs represent the state vector.

Several studies in the literature, including Ref. [37], have shown that the WMR kine-
matic modeling can be defined as a differentially flat model, where the positional coordi-
nates denoted as λ = [λ11, λ21]

T = [x, y]T serve as the flat outputs. Therefore, the entire set
of state and control components pertaining to the WMR system are expressed using the flat
variable λ and its derivatives, as demonstrated below:

θ = arctan
λ̇21

λ̇11
(11)
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v =
√

λ̇2
11 + λ̇2

21 (12)

w =
λ̇11λ̈21 − λ̈11λ̇21

λ̇2
11 + λ̇2

21
(13)

The differentially flat nature of the WMR’s kinematic model has been demonstrated in
the literature by various researchers [37]. This implies that all the states and controls of the
kinematic WMR model can be expressed as functions of λ and its derivatives. However,
the noninvertible relationship between the control input vectors w and v and the highest
derivatives of the flat output limits the development of static feedback linearization for
the nonlinear WMR. To address this constraint, we incorporate the control input v into the
kinematic model defined by Equation (1) by treating it as an additional state. As a result,
we obtain a revised system that can be defined as follows:

ẋ = cos(θ)v
ẏ = sin(θ)v
v̇ = ur1
θ̇ = ur2

(14)

The state and control inputs of the modified system defined by Equation (14) are
represented by Xr = [x, y, v, θ]T and ur1 = v̇ and ur2 = w. In order to establish a bijective
relationship between the inputs ur1, ur2, and higher-order derivatives of λ11 = x, λ21 = y,
we apply successive differentiations to the flat outputs until at least one of the input
variables appears in the resulting expressions, as illustrated below:

[
λ̈11
λ̈21

]
= Brob

[
ur1
ur2

]
(15)

where Brob is described as follows:

Brob =

[
cos(θ) −vsin(θ)
sin(θ) vcos(θ)

]
(16)

The matrix Brob is not singular if v 6= 0. In this case, we can define the control
as follows: [

ur1
ur2

]
= B−1

rob

[
λ̈11
λ̈21

]
(17)

To arrive at the linearized system, referred to as the Burnovsky Form (BF), we can
substitute the control input (17) into Equation (15). This substitution yields the following
modified expression:

(BF1)





λ̇11 = λ12

λ̇12 = v1

Y1 = λ11 = x

(BF2)





λ̇21 = λ22

λ̇22 = v2

Y2 = λ21 = y

(18)

where v1 and v2 represent a suitable feedback controller defined as follows:

v1 = λ̈xd − σx2(λ12 − λ̇xd)− σx1(λ11 − λxd) (19)

v2 = λ̈yd − σy2(λ22 − λ̇yd)− σy1(λ21 − λyd) (20)
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where λxd and λyd denote the desired trajectories for the flat output λ11 and λ21, respectively.
Meanwhile, the controller gains are represented by σx1, σx2, σy1, and σy2. The polynomial
of the Burnovsky system (18) can be defined as follows:

s2 + σx2s + σx1 = s2 + 2mxεxc + ε2
xc (21)

s2 + σy2s + σy1 = s2 + 2myεyc + ε2
yc (22)

where the parameters mx and my are the damping coefficients, and εxc and εyc are the
frequencies in Equations (21) and (22). We can calculate the controller gain as follows:

σx1 = ε2
xc, σx2 = 2mxεxc, σy1 = ε2

yc, σy2 = 2myεyc (23)

By integrating the feedback law, as described in Equations (19) and (20), into the
system (17), we can express the flatness-based tracking control (FBTC) utilized for the
mobile robot in the following manner:

[
uFBTCx
uFBTCy

]
= B−1

rob

[
λ̈xd − σx2 ė1 − σx1e1
λ̈yd − σy2 ė2 − σy1e2

]
(24)

where e1 = λ11 − λxd and e2 = λ21 − λyd.
In ideal conditions where uncertainties such as wind and wheel slip are negligible in

the kinematic model of the WMR, the control input defined by Equation (24) can achieve
satisfactory tracking performance for the desired trajectory. However, it is practically
impossible to have a model that accurately represents the real-world movement of the robot
in all environmental conditions. As a result, the following section will focus on developing
a robust tracking control for a WMR kinematic model that is subject to uncertainties.

3. Flatness-Based Sliding Tracking Control

In order to account for real-world conditions, we consider uncertainties such as
slippage and external environmental disturbances when describing the kinematic model of
WMR (Figure 2). As a result, the model is defined differently, as shown below.

Figure 2. Two-wheeled mobile robot subject to uncertainties.

(Uncertain Kinematic Model)





ẋ = cos(θ)v + vtcos(θ) + vssin(θ) + px

ẏ = sin(θ)v + vtsin(θ)− vscos(θ) + py

θ̇ = w + ws

(25)
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where the variables px and py represent the external environmental disturbances, indicating
the potential influences from the surrounding conditions. On the other hand, vt and vs
represent the slip velocities, where vt denotes the slip velocity along the forward direction
and vs represents the slip velocity normal to it. Additionally, ws denotes the angular slip
velocity. According to [37], it is assumed that the slippage phenomenon can be defined and
bounded as follows:

vt(t) = vs(t) = ws(t) = κ1v(t) (26)

||vt|| ≤ ε1||v||, ||vs|| ≤ ε2||v||, ||ws|| ≤ ε3 (27)

where κ1, ε1, ε2 and ε3 are positive constants.
Assuming that λxd and λyd are the reference trajectories for λ11 and λ21, respectively,

we can define the error dynamics as ei = λi1 − λid for i = 1, 2. To achieve convergence of
the tracking error ei to zero in the presence of uncertainties, we employ a sliding mode
control approach that relies on the principles of the flatness law. By incorporating this
control strategy, we aim to ensure robust and accurate tracking performance even in the
face of system uncertainties. The design of the sliding mode control involves two essential
stages: the choice of the sliding surface and the development of the control law. These
steps play a crucial role in establishing an effective and stable sliding mode control strategy.
The selection of the sliding surface determines the desired system behavior and convergence
properties, while the design of the control law focuses on generating control signals that
guide the system towards the desired sliding surface and ensure its maintenance on that
surface. In the context of the tracking example for the WMR, we make use of the sliding
variable σr = [sx, sy]T to represent the tracking error. To define the sliding surface, we
consider the desired tracking behavior and express it as follows, taking into account the
specific requirements of the system:

sx = ė1 + β1e1 (28)

sy = ė2 + β2e2 (29)

where the gains β1 and β2 can be selected using pole-placement techniques to ensure the
asymptotic convergence of the tracking errors e1 = λ11 − λxd and e2 = λ21 − λyd to zero.
In this tracking example, the sliding variable σr = [sx, sy]T is chosen as the tracking error.
Therefore, the sliding surface for the WMR can be defined as follows:

ė1 + β1e1 = 0 (30)

ė2 + β2e2 = 0 (31)

As suggested by Mauledoux [38], to guarantee that the sliding surface σr = 0 is
attractive, we can enforce the dynamics of σr as follows:

σ̇r = −kisgn(σr) (32)

where the standard signum function is denoted by sgn, and ki (i = 1, 2) is a constant. One ap-
proach to proving the error dynamics stability is to analyze the following Lyapunov function:

Vs =
1
2

σ2
r (33)

The derivative of Vs is defined as follows:

V̇s = σrσ̇r (34)
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We can conclude that Vs is a positive function and its derivative V̇s is negative or
zero. Hence, the system exhibits asymptotic Lyapunov stability. Using Equations (28), (29)
and (32) we obtain:

−k1sign(sx) = ë1 + β1 ė1 (35)

−k2sign(sy) = ë2 + β2 ė2 (36)

As a result, by using Equations (35) and (36), we can obtain:

λ̈11 = λ̈xd − β1 ė1 − k1sgn(sx) (37)

λ̈21 = λ̈yd − β2 ė2 − k2sgn(sy) (38)

Substituting λ̈11 and λ̈21 with their new expressions defined by Equations (35) and (36)
in the control defined by (17), the flatness-based sliding mode tracking controller (FSMC)
applied to WMR is defined as follows:

[
uFSMCx
uFSMCy

]
= B−1

rob

[
λ̈xd − β1 ė1 − k1sgn(sx)
λ̈yd − β2 ė2 − k2sgn(sy)

]
(39)

The FSMC defined by Equation (39) contains a discontinuous control term due to the
function sgn(σ). Although selecting sufficiently large values for k1 and k2 can achieve con-
vergence to sliding variable in limited time and provide robustness against perturbations, it
also causes the phenomenon of chattering. Thus, to avoid this problem, the function sgn(σ)
can be replaced by the function Sat defined as follows:

Sat(σr)

{
σr
as

i f |σr| ≤ as

sgn(σr) i f |σr| > as
(40)

where as is the width of the threshold of the saturation function.
The thickness of the boundary layer, denoted as as, within the saturation function

stands as a pivotal parameter influencing the efficacy of the sliding mode controller. As the
value of as increases, the approximation diverges more from the ideal sgn function, resulting
in enhanced reduction of chattering. However, this improvement comes at the cost of
diminished robustness. Conversely, if the value of the parameter as is reduced, the change
of the control signal will be too frequent, which leads to inevitable chatter of the control
signal. Therefore, a variable-thickness boundary layer as is tailored to strike a balance
between mitigating chattering and upholding system robustness amid uncertainties. In
the upcoming section, the FSMC described by Equation (39) will be integrated with active
disturbance rejection control to enhance the robustness lost by the Sat function and maintain
the advantage of reducing chattering.

4. Proposed Robust Tracking Controller

In this section, we introduce a novel cascade control strategy that utilizes a combination
of flatness property, active disturbance rejection control (ADRC), and boundary layer
sliding mode control to solve the problem of reduced robustness obtained when replacing
the function sgn by the function sat in the FSMC defined by Equation (39). Given the
uncertain kinematic model (25), we can obtain the following relationship by differentiating
λ11 and λ21 until the input terms u1 and u2 become evident:

[
λ̈11
λ̈21

]
= Brob

[
ur1
ur2

]
+ Crob + Drob

[
ur1
ur2

]
(41)

where Crob and Drob are defined as follows:
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Crob =

[
cos(θ)(vsws + v̇t) + sin(θ)(v̇s − vws − vtws) + ṗx
sin(θ)(vsws + v̇t)− cos(θ)(v̇s − vws − vtws) + ṗy

]
, Drob =

[
0 −vtsin(θ) + vscos(θ)
0 vtcos(θ) + vssin(θ)

]
(42)

By utilizing the control input described in Equation (17) on system (41), we achieve:

λ̈ = v + δ (43)

where λ̈ = [λ̈11, λ̈21]
T ,v = [v1, v2]

T and δ = [δ1, δ2]
T = drobB−1

robv + Crob.
Rewriting Equation (43) in terms of two linear integrator systems subject to perturba-

tion yields the following expressions:

MBF1





λ̇11 = λ12

λ̇12 = v1 + δ1

Y1 = λ11

MBF2





λ̇21 = λ22

λ̇22 = v2 + δ2

Y2 = λ21

(44)

Consider ∆1 and ∆2 as the differentials of δ1 and δ2 with respect to time t, respectively.
We assume that both δi and ∆i (i = 1, 2) are bounded. In practical applications, determining
the actual values of the lumped disturbances δ1 and δ2 that affect the system is considered
a challenging problem. Hence, an observer is required to estimate these values.

4.1. ESO Design

The extended state observer (ESO) plays a vital role in system control by simultane-
ously estimating the system states and uncertainties. This capability enables the ESO to
effectively reject or compensate for disturbances, enhancing the system’s robustness and
performance. The ESO takes into account all factors that affect the system and treats param-
eter uncertainties and external perturbations as a single observed disturbance. The ESO is
named as such because it estimates uncertainties as an extended state. Its benefits include
not being reliant on the mathematical model of the system, as well as having a straightfor-
ward implementation and demonstrating good performance. Consider λ13 = δ1, α23 = δ2
as an extended state for system (44). The latter can be expressed as follows:





λ̇11 = λ12

λ̇12 = λ13 + v1

λ̇13 = ∆1

Y1 = λ11





λ̇21 = λ22

λ̇22 = λ23 + v2

λ̇23 = ∆2

Y1 = λ21

(45)

We can express systems (45) in matrix form as follows:
{

λ̇1 = Axλ1 + Bxv1 + Ex∆1

Y1 = Cxλ1
(46)

{
λ̇2 = Ayλ2 + Byv2 + Ey∆2

Y2 = Cyλ2
(47)

where λ1 = [λ11, λ12, λ13]
T , λ2 = [λ21, λ22, λ23]

T , Ax = Ay =




0 1 0
0 0 1
0 0 0


, Bx = By =




0
1
0


,

Cx = Cy =
[
1 0 0

]
, Ex = Ey =

[
0 0 1

]T . The expression for the Extended State
Observer (ESO) corresponding to each extended system (46) and (47) can be given as follows:

˙̂λ1 = Axλ̂1 + Bxvx + αgxCx(λ1 − λ̂1) (48)
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˙̂λ2 = Ayλ̂2 + Byvy + αgyCy(λ2 − λ̂2) (49)

where αgx = [α11, α12, α13]
T , αgy = [α21, α22, α23]

T . To determine the observer gains αij
(i = 1, 2, 3), (j = 1, 2, 3), we can adopt the methodology proposed by Gao [39] outlined in
the following manner:

s3 + α11s2 + α12s + α13 = (s + γxo)
3 (50)

s3 + α21s2 + α22s + α23 = (s + γyo)
3 (51)

The choice of γxo and γyo is made to ensure that Equations (50) and (51) form Hurwitz
polynomials with respect to the complex variable. The observer gain can be formulated as a
function of the ESO bandwidth by utilizing Equations (50) and (51), as demonstrated below:

α11 = 3γxo, α12 = 3γ2
xo, α13 = γ3

xo

α21 = 3γyo, α22 = 3γ2
yo, α23 = γ3

yo.
(52)

The observer error associated with each ESO can be defined by employing
Equations (46)–(49) as follows:

˙̂ex = λ̇1 − ˙̂λ1 = (Ax − αgxCx)êx + Ex∆1 (53)

˙̂ey = λ̇2 − ˙̂λ2 = (Ay − αgyCy)êy + Ey∆2 (54)

It is possible to express Equations (53) and (54) in matrix form as shown below:

˙̂e = Ĥê + Ed (55)

where ê = [êx, ˙̂ex, ¨̂ex, êy, ˙̂ey, ¨̂ey]T , Ĥ =

[
Ĥ1 03
03 ˆH2

]
, Ĥ1 =



−α11 1 0
−α12 0 1
−α13 0 0


, Ĥ2 =



−α21 1 0
−α22 0 1
−α23 0 0




, Ed =
[
0 0 ∆1 0 0 ∆2

]T.

Lemma 1. In Equation (55), the boundedness of limt→∞ ê(t) can be guaranteed if at least one of
the following two conditions is satisfied:

• δi < n1, i = 1, 2 for all time t;
• ∆i < n2, i = 1, 2 for all time t.

Asymptotic stability of the estimated error dynamics can be achieved when the values of
δi, i = 1, 2, are either directly obtained or assumed to be constant, leading to ∆i = 0, i = 1, 2.
In this scenario, the positive constants n1 and n2 play a vital role in ensuring the system’s sta-
bility. Lemma 1, as stated in Zhang et al. [40] , establishes that the roots of the matrix Ĥ in
Equation (55) reside in the left half plane. This result is ensured by the nonnegativity of the band-
widths γxo and γyo. Consequently, it can be deduced that the estimated error dynamics described by
Equations (53) and (54) are asymptotically stable.

4.2. New Robust Feedback Controller

The feedback controller presented in Equations (19) and (20) relies on state measure-
ments, but except for λ11 and λ21, the remaining states cannot be accurately measured.
To solve this problem, the state estimation obtained through the two ESOs defined in
Equations (48) and (49) are used instead. Furthermore, in order to simplify the compen-
sation of the lumped disturbances δ1 and δ2, they are replaced by their approximations,
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δ̂1 and δ̂2. By incorporating the results of the extended state observers (ESOs), a robust
feedback controller can be developed in the following manner:

vSADRCx = λ̈xd − β1 ˙̂e1 − k1sat(ŝx)− δ̂1 (56)

vSADRCy = λ̈yd − β2 ˙̂e2 − k2sat(ŝy)− δ̂2 (57)

according to the sliding mode active disturbance rejection control feedback given in
Equations (56) and (57), we can obtain the new robust tracking controller named Flatness-
Sliding-Active-Disturbance-Rejection Control (FSADRC), defined as follows:

[
uFSADRCx
uFSADRCy

]
= B−1

r

[
λ̈xd − β1 ˙̂e1 − k1sat(ŝx)− δ̂1
λ̈yd − β2 ˙̂e2 − k2sat(ŝy)− δ̂2

]
(58)

where êr1 = λ̂11 − λxd and êr2 = λ̂21 − λyd. The schematic diagram presented in Figure 3
illustrates the principle of trajectory tracking control for a mobile robot.

Figure 3. Mobile robot trajectory tracking control principle scheme.

4.3. Stability Analysis of the Closed-Loop System

This section will address the stability analysis of the tracking error systems for x and
y, utilizing the estimation error defined by Equations (53) and (54). In order to prove the
stability of the error dynamics of position x, Lyapunov’s function is chosen as follows:

Vsx =
1
2

s2
x (59)

where sx = ė1 + β1e1 = λ̇11 − λ̇xd + β1(λ11 − λxd), λ11 = x, λxd = xd.
We can define the derivative of the Lyapunov function Vsx as follows:

V̇sx = sx ṡx = sx(λ̈11 − λ̈xd + β1(λ̇11 − λ̇xd)) (60)

When replacing λ̈11 by its Equation (44) defined by λ̇11 = v1 + δ1, we obtain:

V̇sx = sx ṡx = sx(v1 + δ1 − λ̈xd + β1(λ̇11 − λ̇xd)) (61)
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When v1 represents the feedback controller, substituting it with the proposed robust
feedback tracking control, denoted as vSADRCx defined by Equation (56), yields:

V̇sx = sx ṡx = sx(λ̈xd − β1(
˙̂λ11 − λ̇xd)− k1sat(ŝx)− δ̂1 + δ1 − λ̈xd + β1(λ̇11 − λ̇xd))

V̇sx = sx ṡx = sx(β1(λ̇11 − ˙̂λ11) + δ1 − δ̂1 − k1sat(ŝx))

(62)

where sx is defined as follows:

Sat(sx) =

{
sx
asx

i f |sx| ≤ asx

sgn(sx) i f |sx| > asx
(63)

Concerning the stability and boundedness of the ESO defined by Equation (53), it can
be achieved by choosing αgx in such a way that the eigenvalues of Ax − αgxCx are negative,
indicating poles in the left-hand plane, and ensuring that uncertainty is bounded. As a
result, the error ˙̂ex → 0. This implies that λ̂11→ λ11, δ̂1 → δ1, and ŝx → sx. In this scenario,
the Lyapunov function defined by Equation (62) is formulated as follows:

V̇sx = −sx(k1sat(sx)) (64)

Since Sat(sx), defined by Equation (63), is divided into two segments, the proof process
will be analyzed in two cases. In the first scenario, when the saturation function is defined
as described by:

Sat(sx) =
sx

asx
(65)

Moreover, the Lyapunov function is defined as follows:

V̇sx = − k
asx

(s2
x) ≤ 0 (66)

Alternatively, when the saturation function is given by:

Sat(sx) = sgn(sx) (67)

the Lyapunov function takes the form:

V̇sx = −k1sxsgn(sx) ≤ 0 (68)

Thus, based on Equations (66) and (68), it can be concluded that the Lyapunov function
V̇sx is negative regardless of the definition of the function Sat(sx). As a result, the tracking
error of the position x is stable. Similarly, the same conclusions about the stability of the
closed-loop system y can be drawn.

5. Simulation Results

This section presents simulation tests to validate the efficacy and superiority of the
suggested controller, flatness sliding active disturbance rejection control (FSADRC), as de-
fined by Equation (58). The proposed control is evaluated against flatness sliding mode
control (FSMC), represented by Equation (39), and flatness-based tracking control (FBTC),
as defined in Equation (24), using computer simulation results. The parameters of the WMR
are r = 0.1 m, b = 0.15 m. To enhance the observation and comparison of the simulation
results, we have chosen two types of reference trajectories: a circular path and a Bézier
curve. Additionally, we also consider two different scenarios of perturbation. The controller
design parameters of FBTC, FSMC, and FSADRC are chosen as mx = my = 1, εxc = εyc = 2,
β1 = β2 = 5, and k1 = k2 = 10. As suggested by Gao [39], it is advisable to select the
observer bandwidth to be sufficiently higher than the controller bandwidth. This ensures
that the observer dynamics remain faster than the system dynamics, enabling effective dis-
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turbance estimation and compensation. In our case, we have chosen observer bandwidths
of γxo = γyo = 6 rad/s to fulfill this requirement and ensure robust performance of the
control system. To ensure that the sliding mode control system achieves both satisfactory
dynamic and steady-state performance, and to prevent chatter in the control signal, the cut
and dry method is frequently employed to establish the thickness of the boundary layer.
Specifically, in this case, asx = asy = 0.3 is chosen.

5.1. First Scenario

In this simulation, we consider that slip velocities vt and vs can be up to 30% of the
forward speed. Thus, κ1 = 0.3. In addition, the WMR is subjected to constant wind
perturbation defined as follows:

px = py = 3 m/s, ws = 0.5 rad/s (69)

The reference trajectory considered in this scenario is a circle, which is defined by the
following equation:

xr = cos(t), yr = sin(t) (70)

The performance of the uncertain WMR systems under different control strategies,
namely FBTC, FSMC, and FSADRC, is depicted in Figure 4. Figure 5 shows the results
of the estimated lumped disturbance affecting the x and y channels obtained using the
extended state observer (ESO). Figure 6 illustrates the control input applied to the wheeled
mobile robot under the conditions of the first scenario. The simulation results indicate
that the uncertainty caused by slow wind perturbation and slip decreases the tracking
performance in trajectory following, rendering FBTC ineffective as a controller. On the other
hand, both FSMC and FSADRC demonstrate robustness in handling the overall disturbance
affecting the WMR model. These controllers exhibit the ability to mitigate disturbances and
successfully maintain the desired trajectory of the WMR system. Consequently, it can be
inferred that controllers that disregard uncertain models, despite being feedback controllers,
may exhibit unsatisfactory performance. The fundamental distinction between the FSMC
and FSADRC controllers lies in their design methodologies and approaches. FSMC relies
on finely-tuned gains to achieve disturbance rejection, which can lead to chattering due
to the relatively high gain values. In contrast, FSADRC combines the advantages of the
boundary layer method to minimize chattering and an ESO to estimate and eliminate
lumped disturbance.
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Figure 4. Simulation tracking results of the wheeled mobile robot under the conditions of the
first scenario.
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Figure 5. Lumped disturbance affecting the x and y position channels in the context of the
first scenario.
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Figure 6. Control input applied to the wheeled mobile robot under the conditions of the first scenario.

5.2. Second Scenario

The objective of this simulation is to create and follow a trajectory for a robot, start-
ing from an initial state where x(0) = y(0) = 0, and reaching a final state specified by
x(10) = 3.5 and y(10) = 5. This trajectory must navigate through a room containing ob-
stacles, while also considering time-varying wind disturbances and slipping. The desired
trajectory should meet the following criteria: minimizing energy consumption, maneu-
vering around static obstacles, and adhering to the specified state constraints as follows:

0 m ≤ λxd ≤ 4 m, 0 m ≤ λyd ≤ 6 m (71)

The optimal trajectory generation method proposed in [17] offers a solution to obtain
the desired trajectory by solving a nonlinear optimization problem. By integrating the
principles of flatness, the collocation method, and B-spline functions, this method efficiently
generates trajectories while guaranteeing constraint satisfaction. To ensure consistency in
the simulation results, the parameters for all three controllers remain unchanged from the
previous simulations. Considering an uncertain initial condition of x̂(0) = 1 and ŷ(0) = 1
for the wheeled mobile robot (WMR), we further specify that the slip velocities vt and vs
can potentially reach up to 50% to 70%. In addition, we take into account the influence of
sinusoidal wind disturbances. In contrast to the initial scenario, the disturbance signals
consist of combinations of multi-frequency sinusoidal signals representing time-varying
disturbances, particularly wind, defined as follows:

px = py = 1.5 + 2.5sin(4t) + 4.5cos(2t), ws = 1.5 + 3cos(2t) (72)

The simulation results regarding trajectory tracking performance of the second sce-
nario are depicted in Figure 7. Based on these figures, it can be observed that the WMR
system experiences significant divergence from the desired trajectory when affected by
slippage and external disturbances, rendering FBTC ineffective as a controller. The FSMC
controller’s intervention through the sliding mode’s discontinuous term eliminates uncer-
tainty effects and maintains the stability of the closed-loop control. However, as shown
in Figure 8, the presence of chattering in the FSMC control signals negatively impacts the
system’s behavior. Hence, it can be inferred that while FSMC is a robust control approach,
its practical applicability is quite restricted. Therefore, developing a control approach
capable of mitigating the chattering effect while maintaining the robustness advantage
provided by SMC is necessary. The results of the lumped disturbance estimation for this
simulation are illustrated in Figure 9. According to the simulation findings, the mobile
robot satisfactory trajectory tracking performance when confronted with model distur-
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bances and uncertain initial conditions while employing the FSADRC controller. Of greater
significance, the proposed control methodology achieves superior tracking of the desired
trajectory, devoid of the chattering phenomenon, and enhances tracking performance
against aggressive disturbances.
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Figure 7. Simulation tracking results of the wheeled mobile robot in the conditions of the
second scenario.
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Figure 9. Lumped disturbance affecting the x and y position channels in the context of the
second scenario.

6. Tracking the Experimental Results of a Wheeled Mobile Robot

This section outlines experiments conducted with the TurtleBot3, a Wheeled Mobile
Robot (WMR), to evaluate a proposed methodology. The TurtleBot provides a cost-effective
platform for researchers to explore and validate control algorithms without requiring expen-
sive robotic systems. Its compatibility with the Robot Operating System (ROS) enhances its
functionalities, offering resources for algorithm development and experimentation. With Li-
DAR, IMU, and wheel encoders onboard, the TurtleBot3 provides precise environmental
feedback, facilitating algorithm optimization. Researchers can augment the system with
additional sensors or hardware components to evaluate various control algorithms across
diverse scenarios. To facilitate the observation and comparison of experimental results,
we have selected two types of reference trajectories: an eight-shaped path and a Bézier
curve. Additionally, we have considered two different scenarios of perturbation: the first in-
volves slowly time-varying disturbances, while the second entails aggressive time-varying
disturbances. For further validation, the performance of the proposed control method
is compared with other state-of-the-art control techniques such as backstepping tracking
control (BTC) [41], flatness active disturbance rejection control (FADRC) introduced in [42],
flatness-based tracking control (FBTC) as defined by Equation (39), and backstepping slid-
ing active disturbance rejection control (BSADRC) [43]. The controller design parameters
selected for the experimental results are identical to those chosen for the simulation results.

6.1. First Experiment with Slowly Time-Varying Disturbances

In this experiment, eight shapes were chosen for the reference trajectory, as
outlined below:

xr = 2cos(t), yr = −2sin(t) (73)

To replicate real-world navigation conditions for the WMR, high-speed fans are uti-
lized in the laboratory to simulate windy environments. Additionally, a stick is employed
to disturb the castors of the WMR, creating slipping incidents, thus adding further realism
to the testing environment. Figure 10 illustrates the real-time tracking of the eight-shaped
reference trajectory of the WMR using the proposed control method described in this paper.
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Figure 10. Real-time trajectory tracking experiment.

Simulation of the experiment under identical conditions reveal tracking trajectories in
Figure 11. Figure 12 illustrates lumped disturbance estimation, while Figure 13 displays
control torques. Based on the experimental results shown in Figure 11, it is evident that
FADRC, FSADRC, and BSADRC methods excel at tracking trajectories even in the face
of genuine uncertainty. Conversely, the FBTC and BTC methods demonstrate significant
shortcomings when it comes to handling uncertainties. To assess the superiority of the pro-
posed control, we will conduct a thorough study in the subsequent section. This study will
include a quantitative analysis of the controllers under more severe disturbance conditions.
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Figure 11. Results of the wheeled mobile robot’s tracking under the conditions of the first experi-
ment scenario.
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Figure 12. Estimation values of the lumped disturbances under the conditions of the first experi-
ment scenario.
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Figure 13. Control torques applied to the right and left wheels to track the eight-shaped
reference trajectory.

6.2. Second Experiment with Aggressive Time-Varying Disturbances

In this experiment, we intensify the frequency of disturbance variation generated by
the industrial ventilator and subject the robot to aggressive impacts with a stick to assess
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the effectiveness of the proposed controller. Additionally, we adopt the eighth-order Bézier
curve as a reference trajectory for both the x and y positions, defined as follows:

λxd = xr = Px0(1− t)8 + 8Px1(1− t)7t + 28Px2(1− t)6t2P + 56Px3(1− t)5t3 + . . .
70Px4(1− t)4t4 + 56Px5(1− t)3t5 + 28Px6(1− t)2t6 + 8Px7(1− t)t7 + Px8t8.

λyd = yr = Py0(1− t)8 + 8Py1(1− t)7t + 28Py2(1− t)6t2P + 56Py3(1− t)5t3 + . . .
70Py4(1− t)4t4 + 56Py5(1− t)3t5 + 28Py6(1− t)2t6 + 8Py7(1− t)t7 + Py8t8.

(74)

where Pxj, Pyj, and j = 0 . . . 8 represent the control parameters of the reference trajectory.
These parameters may vary depending on several factors, including the robot’s initial
position, the desired final position, and constraints such as obstacle avoidance. As an
example, we select control parameters that allow the WMR to transition from its initial
state qr(0) = [0, 0, 0]T to the desired final state qr(20) = [2, 2, 0]T . The tracking experiment
results of the WMR under aggressive time-varying disturbances are depicted in Figure 14.
In Figure 15, the lumped disturbance affecting the WMR within the context of the second
experimental scenario is displayed. Similarly, Figure 16 illustrates the proposed control
input applied to the wheeled mobile robot within the same context.
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Figure 14. Results of the wheeled mobile robot’s tracking under the conditions of the second
experiment scenario.
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Figure 15. Estimated values of the lumped disturbances under the conditions of the second experi-
ment scenario.
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Figure 16. Control torques applied to the right and left wheels to track the Bézier reference trajectory.

To quantitatively assess the tracking performance of the WMR, we employed the
integral absolute error (IAE) and the control effort performance index as comparison
metrics. The IAE is computed for each of the control strategies in the following manner:

IAEi =
∫ t f

0
|ei(t)|dt. ei(t) = λi(t)− λid(t), (75)

where t f is the total simulation duration and i = 1, 2, represents the position in the x and y
direction, respectively. The control effort is given as follows:

Pavg =
1
N

N

∑
k=1

u2(k) (76)

where N indicates the total count of samples. The associated key performance indicators
IAE and Pavg for both strategies are provided in Table 1.

Table 1. Performance indexes IAE and Pavg.

Index BTC FBTC FADRC FSADRC BSADRC

IAE 5.5351 4.2654 0.07 0.0127 0.02
Pavg 2.5351 0.261 0.1266 0.13 1.253
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Examining the data in Table 1, it is evident that the FSADRC controller outperforms
the BTC, FBTC, FADRC, and FSMC methods in terms of tracking performance. Although its
tracking performance is nearly comparable to that of the BSADRC, the FSADRC requires
minimal effort to accomplish its task compared to the BSADRC. This characteristic is
particularly crucial in contexts where energy resources are limited, such as in mobile or
autonomous applications. The enhanced efficiency of the FSADRC over the BSADRC
is explained by the advantage of flatness control, which simplifies controller design by
transforming the nonlinear system into a linear one. This feature makes all control based
on the concept of flatness less complex than control based on backstepping. Ultimately,
the experiment and table findings show that the disturbance rejection function simplifies the
system model by addressing real-time modeling uncertainties. Consequently, the FSADRC
method relies less on an exact analytical model description, treating unknown dynamics
as internal disturbances compensated for by the rejection function. This enhances the
robustness of FSADRC, which also incorporates the boundary layer technique to alleviate
chattering effects.

7. Conclusions

This paper aims to introduce a robust control methodology for uncertain wheeled
mobile robots (WMR). By employing flatness-based control, the nonlinear kinematic model
of the WMR undergoes transformation into a canonical form, enabling the implementation
of a robust feedback controller that incorporates boundary layer sliding mode control and
extended state observer techniques. Simulation results conducted under various scenarios
of uncertainties illustrate the effectiveness of FSADRC in enhancing the trajectory tracking
performance of the WMR when compared to BTC, FBTC, and FADRC, even amid varia-
tions in slipping and external wind disturbances. Furthermore, within the same context,
FSADRC demonstrates comparable efficiency to BSADRC in terms of trajectory tracking,
while exhibiting an advantage in effort usage due to its flatness property. The smooth
operation of FSADRC, coupled with its resilience against parameter variations and external
disturbances, renders it a practical choice for real-world applications. Moreover, exper-
imental findings using the TurtleBot3 validate the efficacy of the proposed FSADRC in
real-world navigational tasks. In future studies, the application of FSADRC will extend to
other robotic systems, such as quadrotors and arm manipulators, to assess its effectiveness
and explore its potential for broader deployment.
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Abstract: Large language models have found utility in the domain of robot task planning and
task decomposition. Nevertheless, the direct application of these models for instructing robots
in task execution is not without its challenges. Limitations arise in handling more intricate tasks,
encountering difficulties in effective interaction with the environment, and facing constraints in the
practical executability of machine control instructions directly generated by such models. In response
to these challenges, this research advocates for the implementation of a multi-layer large language
model to augment a robot’s proficiency in handling complex tasks. The proposed model facilitates a
meticulous layer-by-layer decomposition of tasks through the integration of multiple large language
models, with the overarching goal of enhancing the accuracy of task planning. Within the task
decomposition process, a visual language model is introduced as a sensor for environment perception.
The outcomes of this perception process are subsequently assimilated into the large language model,
thereby amalgamating the task objectives with environmental information. This integration, in
turn, results in the generation of robot motion planning tailored to the specific characteristics of
the current environment. Furthermore, to enhance the executability of task planning outputs from
the large language model, a semantic alignment method is introduced. This method aligns task
planning descriptions with the functional requirements of robot motion, thereby refining the overall
compatibility and coherence of the generated instructions. To validate the efficacy of the proposed
approach, an experimental platform is established utilizing an intelligent unmanned vehicle. This
platform serves as a means to empirically verify the proficiency of the multi-layer large language
model in addressing the intricate challenges associated with both robot task planning and execution.

Keywords: robots; large language models; natural language; semantic alignment method

1. Introduction

Grounded in experiential learning and knowledge accumulation, humans demon-
strate a remarkable ability to comprehend intricate tasks through simple communication.
Large language models (LLMs), when subjected to extensive and diverse datasets during
training, possess the capability to emulate human-like language understanding and the
discernment of human intentions. Exploiting the inherent augmentation capability within
large language models enables the decomposition of tasks into multiple subtasks of reduced
complexity [1]. This distinctive feature can be harnessed for task planning within robotic
systems, ultimately leading to more efficient and seamless human–robot interactions.

The current state of research on robotic task planning, grounded in large language
models, remains at its nascent stage. Prevailing studies have predominantly concentrated
on tasks characterized by low complexity, such as robotic arm trajectory planning and
robotic object handling. While these investigations have contributed significantly to es-
tablishing a theoretical framework for large-model-based robot control, they fall short
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in addressing tasks of elevated complexity. Illustratively, consider the task wherein Bob
requests a drink of water from Sam. Sam translates this request into a series of small tasks,
encompassing finding a cup, locating a water source, filling the cup, returning to Bob’s
location, and passing him the cup. The significance of hydration is often underestimated,
and the subdivision of such high-complexity tasks into smaller, manageable components is
pivotal. Each subtask should be designed to be straightforward, executed through muscle
memory. However, prevailing research has predominantly fixated on smaller and more
basic tasks. To navigate the intricacies of more complex tasks [2], the employment of a
large language model for robotic task planning on a macro level becomes imperative. Fur-
thermore, the expansion into more intricate tasks necessitates the robot’s ability to adeptly
handle and integrate complex environmental information into the task planning process.

In tackling this challenge, our investigation reveals that the direct generation of a robot
control code using a large language model (LLM) is impractical, leading to considerable
latency and errors. A comprehensive examination of cognitive processes underscores
that the precision of outcomes produced by a step-by-step model exceeds that of directly
generated results [3]. Consequently, it is advisable for the large language model to transition
to a step-by-step mode for optimizing the effectiveness of robot motion planning.

Recognizing the superior aptitude of large language models (LLMs) in understanding
semantic-level information and delivering accurate feedback, this paper introduces a
multi-layer task decomposition architecture employing large language models. The initial
step involves breaking down a complex task into a sequence of low-complexity tasks,
resembling a common-sense-like progression, aimed at mitigating the overall complexity
and execution difficulty of the task [4]. However, these task sequences remain impractical
for direct execution by the robot due to the absence of essential environmental information.

To address this limitation, a visual language model is constructed to sense the physical
attributes of environmental information. This model interacts with the information through
the large language model, thereby acquiring localized environmental information [5]. Sub-
sequently, a subsequent round of task decomposition ensues, generating fine-grained tasks
by amalgamating the acquired environment information with low-complexity tasks. To en-
able effective robot control, alignment between the decomposed tasks and robot commands
is achieved at the semantic level. This alignment ensures that the output of the LLM corre-
sponds seamlessly with the semantic requirements of the robot task commands, achieved
through feature vector alignment [6]. Consequently, the large language model can output
tasks at the semantic level that precisely control the robot to execute the corresponding
actions. The methodology outlined in Figure 1 provides a comprehensive overview of the
proposed approach in this paper.

We devised a two-dimensional computable space through the implementation of the
“heat map algorithm”. This methodology involves the mapping of visual information onto
a 2D computable space, offering insights into the relative positions of objects. The resultant
mapping guides the robot’s movements by generating dense, point-like trajectories within
the heat map. The real-time generation of this image-level mapping allows for dynamic
trajectory adjustments in response to changes in the environment.

It is pertinent to highlight that our approach incorporates the sensing of environmental
information through a visual language model, which subsequently feeds this information
into a large language model [7]. This collaborative interaction facilitates the generation
of environment-specific policies by the large language model, diverging from the reliance
on pre-trained policies derived from extensive robot data. As a result, our methodology
achieves zero-sample robot control within an open instruction set. The integration of the
heat map algorithm into a planning framework, encompassing multiple large language
models and visual language models, empowers the robot to comprehend abstract semantic
information [8]. This integration not only facilitates accurate task execution but also enables
free-form natural language control of robots for tasks of heightened complexity. Concur-
rently, we substantiate the efficacy of our approach in natural language understanding and
the guidance of robot behavior.
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Our contributions can be succinctly summarized as follows:
(1) Multi-Layer Task Decomposition: Our architecture uses large language models to

guide robot behaviors through natural language, enhancing control in complex tasks.
(2) Integration of Environmental Perception: We employ a visual language model to

input environmental information into the large language model, enabling task customization.
(3) Semantic Alignment for Task Control: Using semantic similarity methods, we align

natural language descriptions with robot control instructions.
(4) Heat Map Navigation Algorithm: Our novel algorithm generates motion trajecto-

ries in a 2D space, guiding realistic robot behaviors.
The remainder of the paper is structured as follows: Section 2 provides an overview of

related work; Section 3 delineates the architectural design and methodological principles;
and Section 4 expounds upon the experimental methodology and presents an analysis of
the results, while Sections 5 and 6 delve into discussions and summarize the methodology
elucidated in this paper.

2. Related Work

Natural Language Interaction: Natural languages have been extensively researched for
instruction extraction and robot control, where the language is able to make constraints and
give behavioral specifications for robot behavior. Tellex et al. [9] described core aspects of
language use in robots, including understanding natural language requests, using language
to drive learning about the physical world, and engaging in collaborative dialogue with
humans. These linguistic specifications can be used to reason about intermediate processes
in natural language [10]. Micheli et al. [11] introduced a two-stage process and enhanced
the performance of model training by interacting with the environment. Previous work

99



Sensors 2024, 24, 1687

has used classical methods for task sequence extraction, such as lexical analysis and formal
logic to disassemble tasks. Thomason et al. [12] designed a mobile robotic dialogue agent
that understands human commands through semantic analysis. More often than not, the
focus of existing research has shifted from online to offline control of robot motion, with
the help of local arithmetic enhancements, capable of executing local end-to-end behavioral
patterns [13,14]. Brown et al. [15] trained GPT-3 and demonstrated that large language
models can greatly improve the correctness of zero-sample recognition. A great deal of
work has revolved around giving robot data the form of building robot datasets through
natural language annotation. Model learning as we know it with imitation learning to
reinforcement learning, all of these methods require a large amount of data in the form of
natural language to generate a model with the robot’s data, and the control of the robot
can only be realized by interacting with a large amount of data Jiang et al. [16] argued
that the combinatorial nature of language is crucial for learning different sub-skills and
systematically generalizing them to new ones. The model of controlling a predictor for
behavioral interaction with a robot through linguistic commands is closer to our ideas.
Sharma et al. [17] optimized the predictor’s model through supervised learning while
generating collision-free trajectories in planar computable space. Huang et al. [18] used
the code generation and language interaction capabilities of a pre-trained large language
model to introduce the knowledge of the large language model into a three-dimensional
computational space to instruct a machine to perform precision actions. In contrast, our
work focuses on using the semantic understanding capability of the large language model
to align instructions at the semantic level, solving the problem of difficulty in matching the
task output from the large language model with the robot control instructions.

Language Models for Robotics: The use of large amounts of robotic data to train
language models for solving real-world problems in the physical world is a popular field. A
large amount of work has focused on the ability of models to understand natural language
and interact with it. Zeng et al. [19] showed that such pre-trained micromodels have generic
knowledge and that such models are capable of storing different forms of knowledge from
a variety of domains. As a carrier of generic knowledge, the large language model needs
to be combined with local scenario information to generate specialized knowledge, and
a large amount of work has focused on combining environmental information with the
macrolanguage model to enable the model to interact with the environment. Liang et al. [20]
demonstrated that the large language model is capable of generating policy code from
document strings, and they proposed a hierarchical code generation approach to enable the
generation of complex code. Huang et al. [21] implemented robot behaviors by constructing
action sequences using the general common sense of the large language model. After
obtaining the environment information, the large language model is able to understand
the environment information, but still lacks the ability to act, and executing the ability to
act requires the large language model to invoke robot motion control commands, which
often requires the provision of pre-generated libraries of action commands. Wu et al. [22]
found that the large language model has excellent summarization and inductive capabilities
and that the large language model summarizes user preferences, generates corresponding
motion strategies, and invokes the mechanical base and robotic arm to perform the task
of item summarization. In contrast, our focus is on improving the correctness of the
large language model in controlling the robot’s behavior so that the robot can understand
complex semantic information and perform more complex tasks.

3. Method

First, we constructed a multi-layer large language model task decomposition archi-
tecture, describing in detail the design details and working principles of the architecture
(Section 3.1). We then intervened in the process of fine-grained task decomposition by
means of a semantic similarity approach to align the sequence of subtasks of the task
decomposition with the atomic tasks we set out to perform (Section 3.2). We then demon-
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strated the generation of trajectories in 2D space to guide realistic robot behavior by sensing
environmental information through visual and linguistic models (Section 3.3).

3.1. Multi-Layer Large Language Model Architecture for Task Decomposition

In our architectural framework, we incorporated two large language models, as
depicted in Figure 2. The first large language model is responsible for comprehending
human instructions and subsequently generating an executable coarse-grained plan for the
robot. This process involves task decomposition at the level of common sense. However, it
is essential to note that the task sequences produced by the first large language model may
not precisely reflect the robot’s behaviors [23]. This discrepancy arises from the inherent
limitation of common sense, as it lacks environmental information. Consequently, the
task sequences resulting from coarse-grained task decomposition exhibit a deficiency in
incorporating the capability for interaction with the physical world environment.
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To enhance the adaptability of the generalized knowledge within the large language
model across diverse environments, the outcomes of the coarse-grained task decomposition
were input into the subsequent functional module. This functional module comprises a
large language model and a visual model. The visual model is equipped with an extensive
repository of pre-trained a priori knowledge, enabling it to discern the categories of items
within an image and thereby acquire information about the items in the environment [24].
It is worth mentioning that both LLMs used in this paper were based on ChatGPT 3.5.
Additionally, the VLM, which interacts with the environment, is the OWL-ViT model
developed by Google and released as open source. We utilized the APIs of ChatGPT 3.5
and OWL-ViT separately to facilitate information exchange among the various models. The
large language model interacts with the visual model to extract environmental information
perceived by the latter. Subsequently, it engages in a refined task decomposition process,
incorporating the environment information. This iterative decomposition yields more
precise fine-grained tasks, aligning with the specific nuances of the environment [25]. The
generation of a sequence of fine-grained tasks is achieved by organizing these tasks based
on the general knowledge embedded in the large language model.

While these tasks provide a precise linguistic description of the robot’s motion, they
encounter a challenge in controlling the robot’s movement due to a misalignment issue
between the generated task sequences and the robot’s motion instructions. To facilitate
the invocation of robot motion by the large language model, we employed a semantic
similarity evaluation method to align task sequences with instruction sequences at the
vector level. In this process, the text is first vectorized to represent tasks and instructions
in a numerical format [26]. Subsequently, vector normalization is applied to mitigate the

101



Sensors 2024, 24, 1687

influence of text length on the vectors. Finally, at the vector level, tasks and instructions are
aligned, ensuring semantic consistency. This alignment process allowed the fine-grained
tasks generated by the large language model to be effectively mapped to the robot control
instructions, overcoming the challenge of controlling the robot’s motion.

Our approach involved transmitting the video captured by the camera to the visual
model for processing, enabling the robot to execute appropriate behaviors upon receiving
a command, such as navigating to single or multiple target locations [27]. Based on the
recognition results derived from the visual information, a two-dimensional planar heat
map is generated. In this heat map, the target location is characterized by a high heat value,
while the remaining objects exhibited lower heat values. These heat values diverged toward
the periphery, forming a comprehensive heat map. Specifically, in this experiment, the robot
is represented in the heat map as solid red and blue blocks. Areas with high heat values
are depicted as blocks with a red gradient, while non-target locations are represented by
blocks with a blue gradient. Utilizing the principles of a greedy algorithm, we can calculate
a trajectory to the target location with the highest heat value. The proposed thermal map is
designed for real-time updating, ensuring prompt responsiveness to changes in environ-
mental information [28]. Consequently, the navigation method based on the thermal map
can quickly adapt and generate corresponding navigation instructions as the environmental
context evolves.

3.2. Semantic Similarity-Based Alignment of Task Descriptions with Robot Control Instructions

Controlling robot motion through natural language strategies poses a significant
challenge due to potential discrepancies between the task planning output from the large
language model and the corresponding motion control functions of the robot. The content
of the task planning output by the large language model exhibits variations in specific
descriptions, introducing ambiguity in the understanding of the specific actions the robot
needs to perform. To address this challenge, we employed semantic similarity, emphasizing
semantic alignment rather than textual similarity [29], to correlate the task planning with
the robot motion control instructions. Recognizing that some fine-grained tasks may
require further decomposition to reach a machine-executable level, we proposed a cyclic
semantic alignment method. This method aims to iteratively refine the alignment process,
enhancing the correspondence between the nuanced task descriptions and the robot’s
motion control instructions.

In executable task planning, the task description output from the large language model
and the robot control instruction are essentially two semantically similar texts, and we
usually used cosine similarity to judge when measuring the similarity of the two texts. The
semantic similarity can be computed by first embedding the text in the feature space, and
then performing the similarity computation in the feature space [30]. Specifically, this paper
used cosine similarity to compute semantic similarity.

We vectorized the text, assuming that the task output from the large language model
is text A and the robot control command is text B. We first represented them as vectors
vA and vB, which are vectorized using the word embedding method, and these vectors
represent the position of the text in the vector space.

vA = (wA1, wA2, . . . , wAn)
vB = (wB1, wB2, . . . , wBm)

(1)

where n and m denote the size of the vocabulary in texts A and B, respectively, and wAi
and wBi are the corresponding vocabulary weights.

In order to remove the effect of text length, the text vector can be normalized. The
normalized vectors are denoted as uA and uB:

uA = vA
‖vA‖

uB = vB
‖vB‖

(2)
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In Equation (2), uA and uB represent the normalized text vectors, while ‖ vA ‖ and
‖ vB ‖ represent the norms of vectors vA and vB, respectively. The normalization operation
essentially involves dividing each element in the vector by the vector’s norm.

The effect of doing this is that, regardless of the original length of the text vector, the
normalized text vectors all have unit lengths. As a result, when computing distances or
comparing similarities between text vectors, they are not affected by the length of the text,
thus allowing for better comparison of text similarities.

Cosine similarity is measured by calculating the dot product of two vectors and
dividing by the product of the norms of the two vectors. The cosine similarity formula is
as follows:

Similarity(uA, uB) =
uA·uB

‖ uA ‖ · ‖ uB ‖
(3)

Similarity(uA, uB) =

n
∑

i=1
wAi·wBi

√
∑n

i=1 w2
Ai·
√

∑m
i=1 w2

Bi

(4)

With text similarity matching, we were able to perform alignment between tasks and
instructions. The detailed procedure is in Algorithm 1.

In the process of generating task plans, one situation that may occur is that the tasks
generated by the large language model in conjunction with the environmental information
are incorrect, and this error results in the semantics of the tasks not being able to be aligned
with the semantics of the commands, leading to the inability to invoke the robot control
commands [31]. For text that cannot be aligned at the semantic level, we fed the task output
from the large language model back into the model for a new round of decomposition to
re-generate the task sequence, and this process continued until the latest coarse-grained
task is fed into the model [32].

Algorithm 1: Semantic Information Vector Space Alignment Methods
Cosine similarity vector alignment (outline)

1. Input: text message
2. quantitative:

3.
vA = (wA1, wA2, . . . , wAn)
vB = (wB1, wB2, . . . , wBm)

//vectorization and location information

4. normalization:

5.
uA = vA

‖vA‖
uB = vB

‖vB‖
//vector normalization

6. cosine similarity:
7. Similarity(uA, uB) =

uA·uB
‖uA‖·‖uB‖ //Text Similarity Determination

8. Similarity(uA, uB) =
∑n

i=1 wAi·wBi√
∑n

i=1 w2
Ai·
√

∑m
i=1 w2

Bi
//Alignment of text A and text B

9. Determining text similarity: (−1 to 1) The closer to 1 the vectors are, the more similar they are.

3.3. Robot Heatmap Navigation Algorithm for Open Environment Awareness

Based on Sections 3.1 and 3.2, we modeled the behavior of a robot controlled by
an open natural language `, e.g., by having the robot go first to location A and then to
location B. However, generating a robot trajectory based on ` is very difficult because the
information in ` is too granular and lacks the detailed process of the task and, at the same
time, lacks information about the environment [32]. Considering that the environment in
which the robot works is not static, it is necessary to allow the robot to consider real-time
environmental information when performing tasks. Assuming that the large language
model decomposes ` into several subtasks (`1, `2, . . . , `n), at this stage of task generation,
we concentrated on the real-time environment to create detailed tasks `i to generate motion
control commands that the robot can execute [33]. The above approach decomposes
complex tasks into subtasks of lower complexity and senses the environment for each of
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the low-complexity tasks. The core problem of this subsection is how to make full use of
the environment information to generate the motion trajectory τr

i for the robot for each
task `i. In this paper, the real robots that execute the motion trajectory τr

i are multiple
McNamee-wheeled unmanned vehicles, and with reference to the work of voxposer [18],
we combined the environment information with the trajectory generation problem and
summarized the problem as follows:

minτr
i
{Ftask(Ti, `i) +Fcontrol(τ

r
i )} subject to C(Ti) (5)

where Ti is an environmental sensing information, τr
i ⊆ Ti is the trajectory of the unmanned

cart in the dynamic environment, C(Ti) denotes the constraints of the unmanned cart in
the dynamic environment, F task(Ti, `i) denotes the completion of the corresponding task
within the confines of the dynamic environment, and F control

(
τr

i
)

specifies the control cost
desired by the shortest path or the least task execution time.

It is very difficult to compute F task(Ti, `i) based on open natural language, on the
one hand because of the problem of difficult alignment between the natural language and
the robot task `i, and on the other hand, because of the lack of dynamic environment
information and real-time robot position. In this regard, we provided a 2D computable
space describing the relative position information of objects in a dynamic environment
V ∈ Rw×h. We called it a calorific heatmap. It reflects objects in the environment that we
are interested in or not interested in [34]; for objects of interest, we defined a high heat
value for them, and objects that are not of interest are reflected in the heat map as low
heat values. It directs the movement of objects with high heat values in the environment,
creating trajectory curves between the robot and the objects of interest. The heat map
assigns heat values to various objects in the surroundings. Using sub-tasks defined by the
large language model, the task objective is labeled with a high heat value, attracting the
robot toward the target area. Objects not of interest have low heat values on the heat map,
repelling the robot and guiding it away from non-target areas.

We denoted the high calorific heat target as e and the robot trajectory as τe. For the
subtask `i in F task(Ti, `i), we can numericalize the task in the two-dimensional space
V ∈ Rw×h by means of a calorific heatmap. The corresponding task F task in the environ-
ment can be approximated by the continuous accumulation of e in the two-dimensional
space V ∈ Rw×h. The formula is as follows:

F task = −∑|τe
i |

j=1 V
(

pe
j

)
, where pe

j ∈ N2 is e discrete position (x, y) in step j. (6)

Large language models (LLMs) exhibit the capability to adapt their output in response
to contextual information. We can influence the LLM to generate content aligning with
our preferences through a prompting approach. In this study, prompt engineering is
implemented through question-and-answer pairs, comprising questions and results, along
with related objects and corresponding questions [35]. Illustrated in Figure 3, for the
robot’s shortest path-planning problem, we integrated information about objects in the
environment. Using a second LLM, we decomposed the problem into a fine-grained
task sequence. The resulting task sequences incorporated environmental information,
empowering the robot to execute tasks in a real-world setting.
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The prompt-engineered large language model is capable of recognizing objects of
interest and understanding the relative spatial information in order to generate motion
strategies [36]. Specifically, it can (1) perceive the environmental information by calling
the visual model Application Programming Interface (API) to obtain the relative position
information of the scene objects; (2) generate the task for the specialized scene based on
the perceived environmental information combined with the generic knowledge of the
first large language model; and (3) input the tasks into the heat map module through code
form to generate the robot motion trajectory τe corresponding to each step of the task
`i. The heat map Vt

i = heatmap
(
ot, `i

)
can be further obtained, where ot is the camera

observation at the moment t and `i is the task being executed.
In order to be able to generate a smooth trajectory for the robot to travel to the target

area, we represented each step of the task as a mathematical problem F task(Ti, `i). The
motion trajectory can now be planned through the problem defined in Equation (1). The
heat map reveals item properties and their positions in the scene. Objects of interest have
high heat values, drawing the robot toward them, while non-target items are seen as
obstacles with low heat values, pushing the robot away. All positions in the heat map
have computable heat values. Our goal is to create a trajectory with the highest heat value,
capable of reaching specified subtask locations. We defined the path’s “heat value” as the
sum of heat values of all nodes on the path.

R(P) =
k

∑
i=1

H(vi) (7)

where k denotes the path length and H(v) denotes the heat value of node v. We wished to
find a path P that maximises the value of R(P). A greedy idea was used to select the next
node vi in each step such that H(vi) is maximal, which can be expressed as:

vi = argmaxv∈N(vi−1)
H(v) (8)

where N(vi−1) denotes the set of neighbouring nodes of node vi−1. In this way, we can
find a path P = {v1, v2, . . . , vk}, where v1 is the starting point, and vi chosen at each
step makes H(vi) maximal until the node with the highest calorific value is reached. We
provided dense rewards in the space to generate a planning path. During robot operation,

105



Sensors 2024, 24, 1687

because 2D visual information does not contain complete spatial information, it provides
a positional relationship between the robot and the environment relative to each other.
The robot continuously approximates our generated motion trajectory through this real-
time feedback of the heat map [37]. Specifically, the process of updating the environment
information in real time provides continuous feedback to control the robot motion nodes
so that the robot’s motion profile continuously approaches our generated path trajectory,
and when the robot’s behavior is shifted, it is possible to replan the real robot motion
trajectory through this feedback. Please refer to Algorithm 2 for more specific details about
the algorithm.

Algorithm 2: Dynamic navigation algorithms for calorific heat maps
Environmental Interaction and Mathematical Representation (outline)

1. Input: natural language representation task `
2. Breakdown of tasks:
3. (`1, `2, . . . , `n)
4. The problem is reduced to the optimization equation
5. minτr

i

{F task(Ti, `i) +F control
(
τr

i
)}

subject to C(Ti)

6. Constructing a mathematical representation of F task

7. F task = −∑
|τe

i |
j=1 V

(
pe

j

)
, where pe

j ∈ N2

8. Construct a two-dimensional space: V ∈ Rw×h

9. Constructing calorific heat maps:
10. Vt

i = heatmap
(
ot, `i

)

11. Define a high calorific value path:
12. R(P) = ∑k

i=1 H(vi)//We define the heat value of a path as the sum of the heat values of all
nodes on the path.
13. Path generation:
14. vi = argmaxv∈N(vi−1)H(v)//N(vi−1) denotes the set of neighbouring nodes of node vi−1
15. Output: P = {v1, v2, . . . , vk} //Path with the highest calorific value

4. Experiments and Analyses

We first discuss the design and execution of the holistic experiment and implement the
holistic experiment in a real-world environment (Section 4.1). In order to make the holistic
task planning more interpretable, we added an intermediate process of task planning, which
allows humans to intervene in the intermediate process if the results do not meet human
expectations (Section 4.2). We conducted semantic similarity-based feedback experiments
and discussed the optimal number of loops (Section 4.3). We presented some failed cases
from the experiment and conducted discussions and analyses on these cases (Section 4.4).

4.1. Experimental Design

In this experiment, we constructed a real-world experimental platform to support
the theory proposed in this paper, and the large language model and the visual model
were deployed in the server to extract the generic knowledge by calling API [38]. In this
experiment, we used three unmanned carts and a drone to achieve the motion control of
the robots through the Ros system. Specifically, the drone provides visual information; the
visual information is transmitted back to the server to perceive the environment informa-
tion through the visual model; and the large language model combines the environment
information with the generic knowledge to generate the robot motion scheme to cope with
the environment [39] and then generates the optimized trajectory through the heat map
algorithm to guide the robots to complete the corresponding tasks as shown in Figure 4.
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five tasks are types of robot navigation tasks. We progressively increased the complexity 
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Figure 4. Overall structure of the experiment. In the figure we have used VLM to recognize real
images and determined three different categories of target objects, robots, and obstacles, and mapped
these categories of objects differently so that they are represented differently in the heat map.

In Figure 5, we present a detailed design of the experiment, illustrating the intermedi-
ate process from the task given in natural language to the generation of heat maps depicting
the movement trajectories of robotic; As depicted in Figure 5, the video is captured by the
camera mounted on the UAV, providing a global view. Extracting environment information
by intercepting images from the video allows us to discern details about the items in the
surroundings. The large-scale language model receives a natural language task from a
human and, in conjunction with the information extracted by the visual model, decom-
poses the task and collaboratively generates a sequence of subtasks [40]. This process
breaks down the complex task into steps executable by the robot and performs semantic
similarity matching in vector space to align with the robot instructions. Trajectories for
each task step are generated in a heat map, enabling the robot to approach the target using
relative position information provided by these trajectories. Continuous correction of offset
through visual information feedback ensures successful execution of the navigation task.
For clarity, we used color blocks to cover the unmanned vehicle throughout the experiment,
facilitating observation. In the task illustrated in Figure 5, the objective is for the vehicle
to initially reach the area where the yellow color block is located and subsequently reach
the area where the green color block is situated. To enhance visual representation of the
experimental flow, the vehicle is covered with red color blocks in this particular task.
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Figure 6 displays five tasks of varying difficulty levels designed by us. We described
these five tasks using natural language and employed the framework proposed in this
paper to enable the robot to accomplish navigation tasks. It is worth mentioning that all
five tasks are types of robot navigation tasks. We progressively increased the complexity of
navigation tasks from simple to complex. These tasks required the LLMs to understand
natural language and make accurate judgments. In the navigation tasks, we introduced
obstacle detection conditions and multi-robot multi-target navigation, covering various
difficulty levels of the experimental scenarios. We (1) had the robot arrive at two specified
target locations in succession; (2) had the robot arrive at three specified target locations in
succession; (3) planned the shortest path through the human-specified locations, focusing
on judging whether the strategy generated by the large language model is consistent with
the robot’s execution; (4) determined whether there is a human-specified marker in the
field and travelled to a specified location A if there is, and to a specified location B if
there is not; and (5) designed a task rich in complex semantic information that instructs
three unmanned vehicles to perform multi-robot, multi-objective navigation tasks that
incorporate and temporally sequence task judgment conditions. Specifically, unmanned
vehicle A and unmanned vehicle B each travel to a different human-specified location,
and unmanned vehicle C judges that vehicle A has arrived at the specified location before
starting to travel to a new location. It is worth noting that all of the above tasks can be
interacted with real robots using natural language, and dynamic feedback can be provided
in real time to reduce interference caused by changes in environmental information. We
successfully completed the above five experiments in a real environment, and the images
in Figure 6 were all captured during the actual experimental process. The experiments
show that the task decomposition of the large language model, with the addition of
environmental awareness and semantic alignment, can control the robots to perform tasks
of higher complexity.
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Figure 6. The 5 experiments are designed to include tasks of varying complexity. The flow of the
5 experiments is described, including our process of target recognition from raw image information
to finally generating a heat map.
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4.2. Intermediate Process of Task Planning

We used Figure 7 to visually illustrate the output formats of the two LLMs. This enables
controllability of each module’s output, allowing for manual intervention in a specific
module to generate results that align with our expectations. Introducing an intermediate
step of task planning can enhance the interpretability of the overall task planning process.
Simultaneously, this intermediate step opens up the opportunity for human intervention
in the task planning process, particularly when the generated results deviate from the
intended human task execution process [40]. Human intervention is facilitated across three
dimensions: coarse-grained task decomposition, fine-grained task decomposition, and
motion control instructions [41]. Foreseeably, by controlling the robot through a human-in-
the-loop model built upon the foundation laid in this paper, we can enhance the reliability
and safety of the robot’s control.
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Figure 7. Example of the intermediate process of task planning.

Figure 7 illustrates an example of the intermediate task planning process, wherein
the given problem involves selecting a robot to traverse all yellow objects. The task is
decomposed, and a detailed intermediate process is displayed. Initially, the first large lan-
guage model (LLM) conducts a coarse-grained decomposition of the problem, generating
a sequence of tasks devoid of environmental information. These tasks involve finding
the yellow objects and locating the robot to execute the tasks, followed by sequential
movements of the robots to the positions of the yellow objects. In this process, lacking
environmental information, these decomposed tasks are answered based on the informa-
tion contained in the question. The second LLM utilizes environmental information and
incorporates the fine-grained task breakdown from sequences produced by the first LLM.
This integration results in new task sequences enriched with scene information. It is evident
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that the LLM can generate more realistic task sequences by incorporating environmental
information. Subsequently, by aligning with corresponding motion control commands, a
motion trajectory is generated in the heat map to guide the robot in executing the task.

4.3. Feedback Experiments Based on Semantic Similarity

The output of semantically similar results by the large language model indicates its
ability to comprehend the problem and generate relatively accurate results, which are
already acceptable at the semantic level [42]. We facilitated the mapping of the results
generated by the large language model to robot control commands through vector align-
ment. It is noteworthy that when alignment is conducted at the semantic level, the large
language model is proficient in decomposing semantically correct tasks [43]. Consequently,
these tasks can be successfully mapped to corresponding motion commands through
semantic-level alignment.

We conducted a feedback experiment based on semantic similarity and explored the
optimal number of iterations. Throughout the experimentation process, we observed that
the results generated by the large language model are not consistently optimal. This incon-
sistency stems from the fact that the process of prompting the large language model does
not encompass all working conditions [44]. Consequently, when describing certain complex
tasks with detailed natural language, the large language model may face challenges in
understanding, leading to difficulties in comprehending intricate task nuances [45]. As a
result of the understanding deviation in the problem formulation process, the output results
of the large language model may occasionally deviate from our anticipated direction [46].

As shown in Figure 8, we provide feedback on the tasks that posed challenges in
aligning at the semantic level. Subsequently, we reintroduced the erroneous task sequences
into the second macro-language model for a new round of task decomposition. This
iterative process serves to semantically bias the macro-language model toward our cue
words by incorporating feedback information about the erroneous tasks [47]. Given that the
cue words encompass robot motion instructions, this bias encourages the macro-language
model to generate natural language that aligns with the correct instructions enriched
with semantic information. This approach enhances the likelihood of outputting correct
command results at the semantic level.
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To illustrate this process in detail, as shown in Figure 9, we present an example of
prompts for the second LLM. This segment indicates that when the LLM receives feedback
indicating semantic mismatch, the next output will prefer the format of prompt words we
designed. This pattern is advantageous for the LLM to generate outputs biased toward our
desired expectations.
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As indicated in Table 1, the feedback proves advantageous in improving the success
rate of task execution. By informing the large language model about the inaccuracies in task
decompositions through feedback, it effectively reduces information uncertainty and steers
the decomposition preference toward our cue words [48,49]. The experimental results reveal
that the correctness rate reaches 78% after the third feedback. From the fourth feedback
onwards, the increase in task success becomes slow. We considered three or four iterations
as the optimal number of feedback attempts, demonstrating high system efficiency.

Table 1. In the middle of the two steps of task decomposition and vector alignment, different
numbers of feedback attempts were set, and five tasks were performed to compare mandated
execution success rates.

Task Feedback 0 Feedback 1 Feedback 2 Feedback 3 Feedback 4 Feedback 5

Task 1: Travel to two target sites 4/10 7/10 8/10 9/10 10/10 10/10
Task 2: Travel to three target sites 3/10 6/10 8/10 8/10 8/10 8/10

Task 3: Planning the shortest route 3/10 6/10 7/10 8/10 8/10 8/10
Task 4: Self-determination of target location 4/10 5/10 7/10 7/10 7/10 7/10
Task 5: Multi-robot to multi-objective tasks 2/10 5/10 6/10 7/10 7/10 7/10

total 32% 58% 72% 78% 80% 80%

4.4. Discussion and Analysis of Failed Cases

During the experiment, there may be reasons leading to the failure of the experiment,
specifically when the robot fails to execute the correct tasks. We analyzed these failed
cases, which resulted from either the LLMs misinterpreting natural language or the VLM
detecting targets incorrectly during the environmental perception process. Because the
motion command is aimed at directing the robot to a specific location, which is relatively
simple natural language, errors in semantic similarity modules often occur due to incor-
rect semantic information provided by the LLMs and VLM or incorrect target detections.
Therefore, we focused on discussing the failures caused by these two modules, the LLMs
and VLM.
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When transmitting natural language to the LLMs, it is essential for the LLMs to
correctly understand the semantics of the natural language and generate the correct strategy.
However, the LLMs cannot always produce accurate results. As shown in Figure 10, when
given a task like “Select a robot to pass through all yellow-colored blocks,” the correct task
decomposition logic should be for the robot to pass through blocks it has not reached yet.
However, the LLMs occasionally generate confused task decomposition processes, such
as generating a task to go to a yellow-colored block, which is obviously incorrect. Such
logical errors in the task decomposition process can result in the robot failing to execute the
task successfully.
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5. Discussion

In this work, we achieved semantic-level alignment between the output of the large
language model and the robot control commands and experimentally validated that the
approach is capable of controlling a robot using natural language for tasks of higher
complexity [50]. The method proposed in this paper enables easier human–robot interaction
to accomplish corresponding tasks in the real world, without requiring extensive expertise
or skills. Humans can describe task requirements in natural language, and using the
framework designed in this paper, the tasks can be understood at the semantic level
and translated into task sequences that the robot can execute, thereby driving the robot
to achieve task goals. Importantly, this method, through the form of multi-layer task
decomposition and interaction with the environment, enables robots to understand and
complete tasks with complex semantic information. Compared to traditional natural
language-controlled robot technologies that can only handle relatively simple tasks, this
method enables robots to perform more complex and abstract tasks.

This work has some limitations. First, this experiment relies on the environment
perception module to obtain environment information, which will be limited by the per-
ception module when the visual language model analyzes the object properties. Second,
this work performs a numerical analysis in a two-dimensional computable space, which
does not provide the robot with high-precision environmental information and constrains
the robot from performing more detailed tasks [51]. The third point is that this work
designs a feedback mechanism during the task decomposition process, although it solves
the problem of aligning the task decomposition with the robot control instructions. But it
does not guarantee that the results generated by the large language model do not have logic
problems [52]. The robot displacement caused by such logic errors can only be adjusted by
the real-time feedback of visual information, and the system will make the robot re-plan
the correct trajectory through subsequent task sequences. This process increases the time
for task execution.

We can enhance the specificity of the model output through fine-tuning. Specifically,
we can use the self-instruct method [53] to generate corpora for each model in the multi-
layered large model architecture. We can then fine-tune the respective models using these
corpora to improve the accuracy of task decomposition.

We can utilize additional environmental perception modules, which will help to better
transform the open environment into a computable space for guiding precise robot actions.
Because we are currently only using cameras, in the future, we can enhance the complexity
of numerical space by adding different sensors, such as LiDAR and depth cameras, and
fusing multimodal sensor information.

In future work, firstly, we can add the multi-environmental sensing module, which can
obtain more three-dimensional and rich environmental information through multi-modal
environmental sensing. Secondly, we can construct more complex numerical spaces to
optimize the motion control strategy so that the robot can perform more delicate tasks.
Finally, we will also design prompt words with more semantic information and use prompt
engineering to reduce the number of cycles in the task decomposition process and optimize
the model system.

6. Conclusions

In this research, we present a novel methodology that integrates a large language
model (LLM) with a visual language model (VLM) and a calorific heat map. This approach
facilitated a multi-layer decomposition of tasks, thereby elevating the precision of task
decomposition. Additionally, we introduced an intermediate task planning process to
bolster the reliability of robot control. To ensure alignment between LLM outputs and
motion control instructions, a vector alignment method is employed. Through rigorous
testing and evaluation in a real-world robot scenario, our findings substantiate that the
proposed methodology enhances the LLM’s proficiency in comprehending intricate real-
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world tasks. Furthermore, it amplifies the likelihood of aligning the LLM outputs with
motion control commands.
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Abstract: This study explores the kinematic model of the popular RHex hexapod robots which have
garnered considerable interest for their locomotion capabilities. We study the influence of tripod
trajectory parameters on the RHex robot’s movement, aiming to craft a precise kinematic model
that enhances walking mechanisms. This model serves as a cornerstone for refining robot control
strategies, enabling tailored performance enhancements or specific motion patterns. Validation
conducted on a bespoke test bed confirms the model’s efficacy in predicting spatial movements,
albeit with minor deviations due to motor load variations and control system dynamics. In particular,
the derived kinematic framework offers valuable insights for advancing control logic, particularly
navigating in flat terrains, thereby broadening the RHex robot’s application spectrum.

Keywords: C-legged hexapod; mobile robot; walking robot; kinematics modeling; simulation

1. Introduction

The domain of mobile robotics has witnessed a notable evolution in recent years,
driven by technological advancements and an ever-evolving array of applications across
various contexts. This evolution has been paralleled by substantial research endeavors
aimed at mitigating electronic costs [1], harnessing the augmented computational ca-
pabilities of microchips, and revolutionizing intelligent and adaptable manufacturing
processes [2]. Considerable endeavors extend to the refinement of sophisticated control
strategies [3] and the enhancement of autonomous navigation capabilities, alongside the
development of measurement techniques and sensors resilient to noise interference [4,5].
Furthermore, the integration of a broad spectrum of artificial intelligence methodologies,
encompassing machine learning and neuromorphic control systems, is being pursued
at multiple tiers within the robot’s architecture [6,7]. Mobile robots, classified accord-
ing to their operational domains: ground (Unmanned Ground Vehicles, UGVs), aerial
(Unmanned Aerial Vehicles, UAVs), aquatic—submersible (Autonomous Underwater Ve-
hicles, AUVs), and surface-based (Unmanned Surface Vehicles, USVs) [8], have extended
their applicability beyond traditional settings, adeptly adapting to intricate terrains and
even modifying their morphology and locomotion to optimize efficiency [9]. The 1980s
marked a turning point with the introduction of dynamic locomotion in robots, significantly
advanced by research at Tokyo University and MIT’s LegLab [10,11]. The field further
evolved with Honda’s P2 humanoid in the 1990s, demonstrating greater versatility and
leading to broader commercial and research interest. Recent decades have focused on
enhancing the dynamic walking and running capabilities of legged robots, with ongoing
challenges in improving efficiency, speed, and robustness [12,13].

Within the realm of land-based robotics, the distinction among wheeled, tracked, and
legged configurations underscores a trade-off between velocity and terrain adaptability.
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Wheeled robots exhibit superior speed and energy efficiency on well-defined terrains, yet
encounter challenges in rugged, obstacle-laden environments where legged robots, with
their capacity to navigate discrete footholds and utilize additional appendages for stability,
excel [14]. Despite the inherent complexities associated with their intricate mechanics [15],
propulsion [16], and control systems [17], legged robots offer unparalleled versatility in nat-
ural and unstructured environments, drawing inspiration from various animal locomotion
mechanisms to achieve dynamic stability and mobility [18,19]. Single-legged robots are
inspired by saltatorial animals (animals that locomote by jumping) [20], two-legged robots
by humanoids [21], four legs on quadrupeds [22], and more than four legs are inspired by
insects [23–25].

This paper delves into the hexapod configuration, particularly focusing on the RHex
robot, which embodies a fusion of stability and adaptability. Hexapod robots, celebrated for
their static stability and versatility, exemplify the ongoing research pursuit to harmonize
mobility, efficiency, and intricacy [26]. Through an examination of the RHex robot, this
study contributes to a nuanced comprehension of legged robotics, proposing innovations
in leg design and control methodologies to enhance its functionality across diverse terrains,
including aquatic environments, as demonstrated by the flapped-paddle amphibian variant-
FLHex [27]. Our exploration of the kinematics and control mechanisms of the RHex robot
endeavors to push the boundaries of attainable feats in legged robotics, thereby establishing
a new standard for adaptability and performance in mobile robotic applications.

The RHex hexapod robot introduces an innovative departure from the traditional
multi-segmented, multi-degree-of-freedom leg configuration commonly found in legged
robots, opting instead for a singular C-shaped leg with a solitary degree of freedom per
leg [23,28]. This design ingeniously strikes a balance between the intricacies of legged
locomotion and the efficiency of wheeled mobility, endowing the RHex with the capability
to traverse uneven terrains with remarkable stability and resilience. The robot’s legs,
capable of high-speed synchronized rotations, facilitate a broad spectrum of mobility tasks,
encompassing navigating slopes [29] and stairs [30,31], overcoming obstacles [27], and
executing intricate maneuvers such as flipping [32].

Among the array of gaits employed by RHex robots, the alternating tripod gait emerges
as particularly notable for its efficiency and dynamic stability, drawing inspiration from
the locomotive patterns observed in insects such as cockroaches and beetles. This gait
organizes the robot’s legs into two tripods—front and rear legs on one side paired with the
middle leg on the opposite side—ensuring continuous ground contact for one tripod while
the other repositions for the subsequent step [33]. This methodology not only facilitates
efficient forward movement but also enhances the robot’s dynamic stability, as depicted by
the support triangle illustrated in Figure 1B. The utilization of the alternating tripod gait
ensures the continued placement of the robot’s center of gravity inside the support triangle,
as demonstrated in Figure 2.

Figure 1. A flapped-paddle amphibian variant of the RHex robot, FLHex (Video [34]) showing
(A) center of mass and coordinate axes of the robot and (B) alternating tripod pairs where tripod legs
that are in contact with ground define a support triangle S.
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Figure 2. FLHex robot tripods acting as virtual legs.

Further simplifying the complex design of the RHex, the concept of ’virtual legs’
combines the physical legs within each tripod, effectively transforming the robot’s structure
into a body flanked by two composite legs. This abstraction plays a pivotal role in the
development of control algorithms and mathematical models for the RHex, streamlining the
approach to robot dynamics and control [35]. The adaptability and efficiency demonstrated
by the RHex’s gait, validated through practical implementations and captured in video
demonstrations [34], underscore the advanced design of the robot and its potential for
diverse applications.

The principal objective of this investigation is to elucidate the dynamics governing
the motion of the RHex robot, particularly when employing the alternating tripod gait—a
gait of considerable significance and prevalence among RHex robots. We undertake an
in-depth exploration into the development of a kinematic model specifically tailored to this
gait, detailing the impact of various parameters on the robot’s spatial displacement for a
predetermined number of steps. This model serves as a fundamental tool for refining the
control and navigation of the RHex robot, offering insights into its operational capabilities.

The structure of this manuscript is organized to facilitate the comprehension of our
findings and methodologies. Section 2 introduces an incremental model that focuses on a
single C-shaped leg, mirroring the crawling gait of the RHex robot. Subsequently, Section 3
delves into the temporal facets of the leg trajectories integral to the alternating tripod gait.
In Section 4, we extend the model to incorporate dual C-shaped legs, reflecting the walking
gait of the RHex robot. Section 5 is devoted to the empirical validation of our model,
drawing upon data derived from rigorous testing conducted on a specially constructed
experimental setup. The ensuing analysis in Section 6 leverages the model to dissect how
the intricacies of tripod trajectories and the nuances of the robot’s design influence a single
gait cycle. This analysis culminates in the formulation of a comprehensive set of design
principles aimed at optimizing the control of RHex robots. The manuscript concludes in
Section 7, wherein we delineate our findings and discuss their implications for the field.

2. The Kinematics of a Single RHex Robot Leg

Let us start by considering a simplified system of one of the legs of RHex robots shown
in Figure 3. The square represents the chassis of the robot, connected to the end of the
robot’s leg (C-shaped curve) at its point of rotation located in the middle of the square
(Point A in Figure 3). The leg shown as a circular arc with radius r and central angle
180◦ + α, where α describes the elongated part of the leg, with α ∈ [0◦, 90◦]. In most RHex
robots, the legs are in the shape of a semicircle (α = 0◦) [1]. However, there are RHex robot
designs with an extended leg (α > 0◦) or even a fully circular leg that is used to increase
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the smoothness of the robot’s movement [35]. The chassis has only two degrees of freedom
and it can displace only in the X-axis and Y-axis directions. The position of the robot’s
leg is described by the angle θ ∈ [−180◦, 180◦] between the leg’s diameter at its current
position and the leg’s diameter in the upright position of the leg (see Figure 3a). The system
describing the absolute position of the leg is shown in Figure 3b.

Figure 3. RHex robot C-leg kinematics (a) when positioned in the most upright position, (b) with
varying value of θ as the leg rotates.

The maximum position on the Y-axis corresponds to the leg’s most upright position,
equivalent to the leg’s diameter. The minimum position on the Y-axis is the distance from
the robot’s leg rotational joint (pivot) to the bottom of the chassis represented by lc. When
the Y-axis position of the pivot is lc, the robot’s chassis is in contact with the ground, the legs
rotate in the air, and the system becomes stationary, as illustrated in Figure 4. The system,
consisting of a body equipped with a single rotating C-shaped leg, initiates movement
when the leg makes contact with the ground at position θstart and returns to a stationary
state when the leg breaks contact with the ground at position θend. These positions, θstart
and θend, are depicted in Figure 4. We see their dependence on the design parameters of the
robot and its leg. The value of θstart is determined by r, lc and the value of θend is influenced
by r, lc, and α. These can be calculated using the equations shown below.

Figure 4. The robot leg positions at θstart, and θend showing when the leg-ground contact changes.

For θstart

1 + cos (θstart ) =
lc
r

(1)

cos
(

θstart

2

)
= ±

√
lc
2r

(2)

where ± becomes − due to the leg being located in the II or III quadrant of the coordinate
system (see Figure 3b), so
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cos
(

θstart

2

)
= −

√
lc
2r

(3)

θstart = 90◦ − 2 arccos

(√
lc
2r

)
(4)

Similarly, for θend it holds

lc = 2r cos(α) cos(θend − α) (5)

θend = α + arccos
(

lc
2r cos α

)
, α 6= ±90◦ (6)

The variation of θstart and θend with varying r, lc and α are shown in Figure 5. It can be
seen that changing any of these parameters has a significant impact on the leg surface that
will participate in movement.

Figure 5. The influence of RHex leg parameters α, r, lc on θstart and θend.
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We consider the crawling gait where the legs alter their positions in a cyclic manner
over time, denoted by θ(t), by rotating at a constant velocity. This rotation propels the
robot’s body along the X-axis (parallel to the ground in the direction the robot traverses) and
the Y-axis (perpendicular to the ground, aligned with the direction of gravitational pull).
The locomotion of the body with a single C-shaped leg through one complete revolution of
the leg is depicted for α = 0◦ and α ∈ [0, 90◦] in Figure 6.

Figure 6. Framed motion of a single RHex robot leg for (a) α = 0◦ and (b) α = 20◦.

In the first case (see Figure 6a for α = 0◦), the system starts at the position where the
contact point of the leg with the ground is located at the tip of the leg and the system pivots
around the contact point until the chassis is in contact with the ground at leg position θend.
In that pivoting movement for θ ∈ [0◦, θend ], the position x(θ) of the robot in the X-axis
and y(θ) in the Y-axis are described by:

x(θ) = 2r sin θ(tn) (7)

y(θ) = 2r cos θ(tn) (8)

where time tn = nT, n ∈ N, resulting from the sampling process with the period T and
t0 = 0, θ ∈ [0, θend], x(0◦) = 0, y(0◦) = 2r. The position of the center of mass (Point A in
Figure 3a) as a discrete signal can be described as

[
x(tn)
y(tn)

]
=

[
x(tn − tn-1) + 2r sin θ(tn)− 2r sin θ(tn − tn-1)

2r cos θ(tn)

]
(9)

The pivoting motion ends when the chassis of the robot comes into contact with
the ground and the robot’s leg detaches from the ground (as the leg rotates, see Point
A in Figure 6a). The leg is then rotated over the robot body and leans on the ground in
front of the chassis. It then starts another motion of the center of mass. When the robot
leg is detached from the ground for θ ∈ [−180◦, θstart] ∪ [θend , 180◦], the system becomes
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stationary in the so-called aerial phase. After making ground contact following the aerial
phase, further rotation of the leg drives the system into a second ground phase with an
ascending type of motion that corresponds to a cycloid (contact point of the leg with the
ground is moving through the surface of the C-shaped leg towards its tip). Therefore,
positions x(θ) and y(θ) can be described as

x(θ) = r
(

θ(tn) + 180◦ − sin
(
θ(tn) + 180◦

))
= r
(

θ(tn) + 180◦ + sin θ(tn)
)

(10)

y(θ) = r
(

1− cos
(
θ(tn) + 180◦

))
= r
(

1 + cos θ(tn)
)

(11)

In that ascending movement for θ ∈ [θstart , 0◦], the position x(θ) of the robot in the
X-axis and y(θ) in Y-axis are described as a discrete signal with a sampling period T using

[
x(tn)
y(tn)

]
=

[
x(tn − tn-1) + r

(
θ(tn)− θ(tn − tn-1) + sin θ(tn)− sin θ(tn − tn-1)

)

r + r cos θ(tn)

]
(12)

At the end of that phase (θ = 0◦), the whole process is repeated. Thus, one rotation
of the leg in the single-leg system for α = 0◦ can be divided into an aerial phase for
θ ∈ [−180◦, θstart] ∪ [θend, 180◦] and a ground phase for θ ∈ [θstart, θend]. The ground phase
can be further divided into a descending (pivoting) and ascending (cycloid) motion where
the transition between them occurs at θ = 0◦.

For the second case with α > 0◦ (see Figure 6b), the sequence is slightly changed.
At the start it is not the tip of the leg that makes contact with the ground but it is the
leg surface. The rotation of the leg causes a descending movement that corresponds to a
cycloid. For θ = 2α, the leg-ground contact point reaches the leg’s tip moving the system in
a pivoting style of motion similar to when α = 0◦ but the pivoting is with a smaller radius
due to the enlarged part of the leg. After this point, the rest of the movement is identical
to the first case. The descending cycloidal movement at the start and ascending cycloidal
movement at the end phase of the cycle are fragments of the same cycloid.

By comparing both cases, one can observe that the basic types of the movements in
both cases are the same and the only difference lies in the ranges of leg position at which
specific types of motion occur. To be more specific, in both cases, the transition between the
pivoting and cycloid type of motion in the ground phase occurs at θ = 2α. By combining
the obtained information, the X and Y axis crawling gait displacement of the center of mass
of the RHex robot (after discretization with the sampling period T) can be described using

[
x(tn)
y(tn)

]
=





[
x(tn − tn-1) + r

(
θ(tn)− θ(tn − tn-1) + sin θ(tn)− sin θ(tn − tn-1)

)

r + r cos θ(tn − tn-1)

]
if θ(tn) ∈ [θstart, 2α)


 x(tn − tn-1) + 2r cos α

(
sin(θ(tn)− α)− sin

(
θ(tn − tn-1)− α

))

2r cos α cos(θ(tn)− α)


 if θ(tn) ∈ [2α, θend]

[
x(tn − tn-1)

lc

]
if θ(tn) ∈ (−180◦, θstart) ∪ (θend, 180◦]

(13)

3. RHex Tripods Motion Profile For Walking/Running Scenario

For the RHex robot, various locomotion modes such as walking, running, turning,
and climbing are achieved through the employment of predetermined periodic leg posi-
tion setpoint functions. These functions are synchronized for each leg within one tripod
(comprising legs 1-4-5 or 2-3-6, as illustrated in Figure 1A) and an alternated version for the
opposite tripod. This coordination is widely recognized as the tripod gait, characterized
by the robot maintaining a minimum of three points of contact with the ground at any
given time. These contact points form a support triangle S (Figure 1B), which invariably
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encompasses the projection of the RHex robot’s center of mass (Figure 2), ensuring both
dynamic and static stability. The rotation of both tripods is unidirectional, following a
specific cyclic pattern. Within a single walking cycle, every leg of the RHex robot completes
a full rotation, encompassing slow and fast swing phases. The slow swing phase facilitates
the execution of a step, whereas the fast swing phase repositions the leg in preparation for
the subsequent step. This alternating tripod stepping mechanism culminates in a stable
walking pattern for the RHex robot. The alteration in position θ(t) of the RHex robot’s
tripods (as depicted in Figure 1) during the slow swing phase induces a displacement akin
to that described in Section 2. A notable distinction, however, lies in the variable rotation
speed of the legs and the implementation of alternating motion profiles, which precludes
any chassis–ground contact.

In the tripod gait, the legs of each corresponding tripod adjust their positions according
to a cyclic time function θ(t), with a single cycle depicted in Figure 7. These leg position
trajectories, often referred to as the ‘Buehler clock’ or ‘motion profiles of tripods’, define the
robot’s kinematic behavior [33]. The trajectory θ(t) is characterized by several parameters:
the period of the motion profiles tc, the duty factor of each tripod within a cycle ts, the angle
covered during the slow swing phase φs, with φs ∈ [0, 180◦], and the motion profile offsets
φo. Typically, ts ∈ (0, tc], but for faster movement, a duty factor in the range ts ∈

[
tc
2 , tc

]

is advised. Each tripod undergoes slow and fast swing phases within a cycle, spanning
angles φs and 360◦ − φs, respectively, to complete a full rotation.

The optimal walking gait of the RHex robot can be attained through precise control of
the parameters tc, ts, φs, and φo. Manipulating these values allows for the adjustment of the
distance covered in a single walking cycle, modulation of the robot’s body turbulence along
the Y-axis (as shown in Figure 1), and the timing of the double support phase (td shown in
Figure 7), where all six legs potentially make simultaneous ground contact during the slow
swing phase. The extent of the double support phase td is contingent upon the duty factors
of the two tripods. A scenario with ts =

tc
2 eliminates the double support phase entirely

(td = 0). The implementation of double support is particularly beneficial under conditions
of heightened load on the leg drive motor or when enhanced stability is necessary, such
as during transport of a payload by the robot. Nonetheless, prolonging the dual support
phase inversely affects the robot’s locomotive speed, a detail further explored later in this
study. The motion profile offset, denoted by φo, adjusts the trajectory relative to the vertical
(Figure 7) and is typically set to 0◦ in most applications.
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Figure 7. The motion profiles and essential parameters for the left and right tripods in a single
walking cycle.

Based on motion profiles presented in Figure 7 the rotation speed in fast swing (in the
aerial phase) can be calculated as

θ̇F(t) =
360◦ − φs

tc − ts
(14)

And is the for the rotation speed in slow swing (ground phase):

θ̇S(t) =
φs

ts
(15)

Thus, the rotation speed in time θ̇L(t) for the left and rotation speed in time θ̇R(t) for
the right tripod in one cycle of the tripod gait can be presented, respectively, as:

θ̇R(t) =

{
θ̇S(t), t ∈ [p00 , p20 ] ∪ [p40 , p60 ]

θ̇F(t), t ∈ (p20 , p40)
(16)

θ̇L(t) =

{
θ̇S(t), t ∈ (p10 , p50)

θ̇F(t), t ∈ [p00 , p10 ] ∪ [p50 , p60 ]
(17)

where pi0, i = 1, . . . , 6 are time stamps of the pi phase end and pi+1 phase start (see
Figure 7).

In Table 1, a single Buehler clock cycle is segmented into six distinct phases, labeled
as pi, i = 1, . . . , 6 in Figure 7. The duration of phases p1, p3, p4, p6 is set at tc−ts

2 , whereas
phases p2, p5 span a timeframe of ts − tc

2 . This configuration establishes the temporal
markers pi0, i = 1, . . . , 6 that signify the conclusion of phase pi and the commencement of
phase pi+1 within a single walking cycle. Observations from a recorded RHex robot tripod
gait, as documented in [34], reveal variations in the rotation speed of the tripods between
successive movement phases. Specifically, the fast swing phases are attributed to the aerial
phase, while the slow swing phases correlate with the ground contact phase of the tripod’s
motion. Additionally, Table 1 delineates the type of movement along the Y-axis for the
corresponding phases as witnessed in the recordings.
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Table 1. Motion phases pi, i = 1, 2, . . . , 6 of the RHex robot in tripod alternating gait for walking cycle
(nj, j = 0, 1, . . .).

Phase pi of
Motion

Left Tripod
Motion Type

Right Tripod
Motion Type

Tripod
Responsible
for Movement

Robot
Movement
in Y Axis

Time Stamp of
Phase End pi0 for
Each Walking
Cycle

p1 Fast swing Slow swing Right Descending njtc + (tc − ts)/2

p2 Slow swing Slow swing Transition from
right to left

From
descending
to ascending

njtc + ts/2

p3 Slow swing Fast swing Left Ascending njtc + tc/2

p4 Slow swing Fast swing Left Descending (nj + 1)tc − ts/2

p5 Slow swing Slow swing Transition from
left to right

From
descending
to ascending

njtc + (tc + ts)/2

p6 Fast swing Slow swing Right Ascending (nj + 1)tc

By analyzing Figure 7 and Table 1, the movement phases can be categorized into
pairs {p1; p6}, {p3; p4}, and {p2; p5}. Within these pairs, both the rotation speed of the
specific tripods and the duration of the phases are identical. The pairs {p1; p6} and {p3; p4}
facilitate the slow swing for the right and left tripods, respectively, with the primary
distinction being the tripod that is active during each phase. Conversely, phases p2 and
p5 correspond to the double support phases, during which both tripods engage in a slow
swing and may simultaneously make contact with the ground.

Note that the left and right tripod in tripod gait rotate in the same direction (see
Figure 7) to cause a forward displacement of the RHex robot. The direction of rotation of
the tripods can be reversed to achieve a backward motion. However, it is not as optimal
and stable as forward running and can be harmful to the leg drive motor because of sudden
load increase when the leg starts to touch the ground.

4. RHex Incremental Kinematic Model For Walking in Flat Terrain

To obtain an incremental kinematic model of the RHex robot for walking gaits in flat
terrain that uses alternating tripod motion profiles, some simplifying assumptions have
been made:

• The leg has no mass—the RHex robot’s legs are a very small fraction of the total mass
of the robot. Therefore, assuming a massless leg will not largely impact the motion
mechanics of the system.

• No bending of the leg—in this analysis the C-shaped leg is considered to be a rigid
body, despite the potential for leg deformation under load that can improve the
robot’s mobility by functioning as a form of suspension. This aspect is particularly
relevant for running gaits, where the RHex robot’s vertical (Y-axis) motion may exhibit
distinctive characteristics. For instance, at high leg rotation speeds, the system may
predominantly engage in ascending motion phases, where the combined effects of
momentum and gravitational forces enable the robot to execute a series of jumps,
minimizing the descending motion phases. However, in walking gaits, where the
forces involved are considerably lower, the compliance of the legs does not significantly
alter the system’s fundamental motion patterns. By modeling the legs as rigid bodies,
the robot’s movement can be simplified to a combination of pivoting and cycloidal
motions, which will be further explored as representing the foundational movement
patterns of the RHex robot.

• No slipping between the robot’s legs and the ground.
• No change in the system mass.
• φs ∈ (0◦, 360◦], ts ∈ [ tc

2 , tc].
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Within the framework of the tripod gait, the RHex robot can be conceptually simplified
to a two-degree-of-freedom rigid body, outfitted with two semicircular legs that share a
common axis of rotation. Each leg in this model epitomizes one half of the robot’s bipartite
tripod mechanism. This reduction is justified by the dynamic stability inherent to the tripod
gait, which, during locomotion across flat terrains, restricts the robot’s body displacement
to the X and Y axes, as illustrated in Figure 1. The synchronized movement of the legs
forming each tripod (effectively acting as a ’virtual leg’) consistently maintains three points
of contact with the ground, effectively nullifying any rotational movement of the body.
Consequently, it is reasonable to posit that the center of mass displacement in the actual
RHex robot, when employing the tripod gait, mirrors that of its simplified counterpart.

We develop a simplified model as depicted in Figure 8a, that serves as a partial
representation of the RHex robot. This model comprises a square chassis, symbolizing
the robot’s body, and a pair of C-shaped legs, each originating from a different tripod.
The initial leg positions correspond to those outlined in the motion profiles (refer to
Figure 7). The leg’s pivot point—where it attaches to the motor—is situated at Point A in
Figure 8a. It’s crucial to note that for the model to be applicable, all legs of the RHex
robot must share a common Y-axis level at their pivoting points. The blue dot in the figure
denotes the contact point where the leg meets the ground, represented by a solid black
line at zero meters elevation. The X-axis, running horizontally and parallel to the ground,
signifies the direction of the robot’s forward and backward traversal, while the Y-axis,
perpendicular to the ground, aligns with the gravitational pull. These axes align with those
presented in Figure 1.

Figure 8. Kinematics of the simplified RHex robot with C-shaped leg for α = 0◦ showing the (a) initial
position of the legs in each cycle and (b) the position θ of the legs.

As the leg rotates clockwise (as shown in Figure 8b), the ground contact point shifts,
prompting the system to displace. The construction attributes of the RHex robot, such
as the leg radius r, the distance lc from the leg’s pivot Point A to the chassis bottom, and
the leg extension α, are described using the same parameters introduced in Section 2. The
range θ(tn) ∈ [θstart, θend] within which the robot’s leg maintains ground contact is defined
in a manner analogous to that in Section 2.

Initial positions of the right and left leg (each represent corresponding tripod of the
RHex robot) in the simplified system can be described using:

θR(t0) = 0 (18)

θL(t0) = −180◦ (19)
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Using the initial position of the legs, the initial position of the robot’s center of mass is
determined as:

x(t0) = x0 = 0 (20)

y(t0) = y0 = 2r (21)

To prevent the robot’s chassis from contacting the ground during the tripod gait,
alternating motion profiles are employed. The trajectories for t ∈ (0, tc

2 ) and t ∈ ( tc
2 , tc),

as illustrated in Figure 7, mirror each other irrespective of the specific tripod in action,
rendering them as odd functions. Consequently, the robot’s movement is characterized by
a series of half-cycle displacements. Furthermore, as elucidated in Section 2, the locomotion
of the RHex robot when operating with a single leg encompasses both pivoting and
cycloidal motions, as delineated by Equations (9) and (12), respectively, [1]. Building on
these observations, it can be inferred that the movement of a bipedal configuration in the
RHex robot consists of a cyclic pattern of ascending and descending motions. To gain a
clearer understanding of the RHex robot’s displacement during a half-cycle of the tripod
gait, a detailed visualization is provided in Figure 9. For the initial leg positions depicted
in Figure 8a, the legs adjust their positions following the trajectory outlined in Figure 7,
with parameters set to r = 5 cm, α = 0◦, φs = 90◦ and ts =

tc
2 .

Initially, the system pivots on the right leg while the left leg rotates freely in the air. At
a certain instance, both legs momentarily make contact with the ground, as depicted in the
visualization at the lowest central position. Subsequently, the right leg loses ground contact,
and the system’s progression is driven by the left leg’s motion, albeit in a cycloidal fashion.
By the conclusion of the half-cycle’s visualization, the system reverts to a state akin to the
initial condition, albeit with the left and right legs’ positions interchanged. This sequence
recurs twice within a single tripod gait cycle, culminating with the legs reverting to their
original positions (θL(t = tc) = 180◦ and θR(t = tc) = 360◦). The determining factor of
which tripod is engaged with the ground, thereby facilitating displacement, hinges on the
greater value of d(t)—the distance from the leg’s pivot point (illustrated by the purple dot
in Figure 9) to the leg’s furthest extremity toward the ground along the Y-axis. For each
tripod, d(t) is contingent upon the current position of its ’virtual leg’ θ(t), and thus, is
time-dependent. A leg is considered in contact with the ground when its d(t) is equal to or
surpasses that of the alternate virtual leg. The distance d(tn) resulting from the sampling
process with the period T for each virtual leg is defined as follows:

d(tn) =





r− r cos θ(tn) if θ(tn) ∈ [θstart , 2α]

2r cos (α) arccos
(
θ(tn)− α

)
if θ(tn) ∈ (2α, θend ]

lc if θ(tn) ∈ (−180◦, θstart ) ∪ (θend , 180◦]

(22)
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Figure 9. Tripod gait half cycle visualization for r = 5 cm, α = 0◦, φs = 90◦ and ts =
tc
2 .

Designation of the tripod responsible for the movement and its current position at any
given time is derived from comparing the distance d(tn) of both legs as

θG(tn) =

{
θL(tn), if dR(tn) 6 dL(tn)

θR(tn), if dR(tn) > dL(tn)
(23)

where θL(tn) is the current position of the legs in the left tripod with distance dL(tn), θR(tn)
is the current position of the legs in the right tripod with distance dR(tn), see Figure 9.
By combining Equation (13) of one-legged RHex robot system with Equation (23), the X and
Y displacement of the center of mass of the RHex robot (after discretization with sampling
period T) for tripod gait can be described as

[
x(tn)
y(tn)

]
=






 x(tn-tn-1)+r

(
θG(tn)-θG(tn-tn-1)+ sin θG(tn)- sin θG(tn-tn-1)

)

r+r cos θG(tn)


 if θG(tn) ∈ [θstart , 2α)


 x(tn-tn-1)+2r cos α

(
sin
(
θG(tn)-α

)
- sin

(
θG(tn-tn-1)-α

))

2r cos α cos
(
θG(tn)-α

)


 if θG(tn) ∈ [2α, θend ]

[
x(tn-tn-1)

lc

]
if θG(tn) ∈ (−180◦, θstart ) ∪ (θend , 180◦]

(24)

The developed model featuring α = 0◦, variable ts, r, and φs was simulated to evaluate
the impact of these parameters on the robot’s locomotion. The results are presented in
Figure 10. Consistent with the model’s premises, the robot’s displacement embodies the
movement types previously delineated. Notably, the displacement along the X-axis and
Y-axis is directly influenced by the leg’s radius, highlighting that even minor adjustments
to the leg’s radius can significantly affect the robot’s operational range—a crucial factor in
defining its potential applications.
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Figure 10. Comparison of robot displacement in X and Y axis for different r, ts and φs.

To alter the robot’s walking, adjustments to other parameters are necessary. For
instance, augmenting ts within the motion profile diminishes the X-axis displacement while
concurrently reducing the oscillation amplitude of the robot’s virtual center of mass along
the Y-axis. This reduction is particularly advantageous when employing optical sensors.
Similar effects are observed with a decrease in φs. Therefore, by simultaneously increasing
ts and decreasing φs, comparable walking can be achieved through diverse motion profiles.
This interdependency offers valuable insights for designing varied gaits tailored to specific
tasks such as running or load-bearing, where the duration of double support phases may
necessitate adjustment.

5. Experimental Validation of the RHex Walking Model

To corroborate the kinematic model presented in the preceding section, the creation of
an experimental test bed congruent with the model’s premises was imperative. A critical
aspect of this setup was the constriction of the system’s degrees of freedom exclusively
in the X and Y axes. This limitation was essential to ensure no extraneous resistance was
introduced, thereby allowing for an accurate emulation of the motion of the mobile robot’s
center of mass.

For the validation of the kinematic model, the experimental test bed depicted in
Figure 11 was meticulously designed and fabricated. The test bed incorporates a dual set of
linear guideway blocks and rails, commonly found in CNC machinery, configured to permit
motion along the X- and Y-axes while constraining movement and rotation across other axes.
To ensure minimal resistance and friction, lubricants and bearings were integrated within
the blocks. A subsystem comprising a pair of RHex robot legs, representing the mobile
robot, was mounted onto this bespoke structure. To faithfully replicate the robot’s control
mechanisms, components identical to those utilized in the FLHex robot, as documented
in [27], were employed. This setup includes an Arduino Mega 2560 (Arduino.cc Corp.)
microcontroller and a Pololu VNH5019 (Pololu Corp., Las Vegas, NV, USA) motor driver for
control, a high-torque 12V DC motor Pololu 37Dx70L (Pololu Corp., Las Vegas, NV, USA)
series with a 50:1 gearbox for actuation, and a quadrature magnetic encoder for position
sensing. The leg position control system of the RHex robot is governed by a fractional-order
PID (FOPID) controller with optimally derived coefficients [36] and aims to maintain the
leg positions in tight alignment with the predefined motion profiles through a series of
carefully executed steps.
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Figure 11. Experimental test bed fabricated to emulate and validate the kinematic model.

The leg center positions during rotation were estimated using analog optical distance
sensors: a Sharp GP2Y0A41SK0F (Sharp Corp., Osaka, Japan) for the Y-axis and a Sharp
GP2Y0A21YK0F (Sharp Corp., Osaka, Japan) for the X-axis. To mitigate sensor noise,
a quadratic regression was applied over a 100-sample window. Both sensors were interfaced
with an Arduino Mega, which was collecting and filtering this data. Arduino board was
receiving FOPID controller outputs from a laptop running MATLAB 2022b where horizontal
and vertical legs positions were calculated and visualized. For these experiments, the leg
radius was set at 5 cm, designed to meet the model’s stipulated requirements. As shown in
Figure 11, the motor shaft and leg end form a semicircle. A sandpaper was used as a walking
surface to prevent slippage. Additionally, the leg was engineered to minimize bending.

Experimental results are juxtaposed with model predictions for legs with parameters
r = 5 cm, φs = 60◦ in Figure 12, and with parameter φs = 90◦ in Figure 13. The results are
with varying ts. Each figure delineates the horizontal and vertical displacements alongside
the corresponding leg positions over time. Notably, the most significant discrepancies were
observed in height changes, although these deviations were minimal relative to the leg’s
size. These differences could partially result from friction between the guideway block and
rail or errors in optical distance measurement. Some degree of unavoidable leg bending
may also contribute to these discrepancies. Crucially, the experimental travel distances
align with the model’s predictions, affirming the kinematic model’s applicability to the
walking/running control logic of the robot and its overall accuracy.
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Figure 12. Experimental validation of model for tc = 2.5 s, φo = 0◦, φs = 60◦ with varying ts.

Figure 13. Experimental validation of model for tc = 2.5 s, φo = 0◦, φs = 90◦ with varying ts.
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6. Results and Discussion

A significant observation in both the experimental tests and kinematic model pre-
diction for ts = 0.5tc is the abrupt increase in both horizontal and vertical displacements
observed immediately following the transition between tripod sets during ground contact
(shifting from the declining phase of one tripod’s step to the ascending phase of the other).
This transition results in an augmented displacement for the robot over a larger number of
steps to some degree.

To delve deeper into the cause of this phenomenon, further visualizations were con-
ducted for a leg with parameters r = 5 cm, α = 0◦, tc = 2.5 s, and varying ts. The
visualizations are showcased in Figures 14–16 and depict the robot’s displacement during a
single step cycle in the walking gait for ts = 0.5tc, ts = 0.625tc, and ts = 0.75tc, respectively,
with the leg positions visualized at equal time intervals of t = 0.03125tc. Notably, Figure 14
illustrates that around the 1.8-second, the points are significantly more spaced out com-
pared to other instances, indicating a higher velocity during these periods as evidenced in
Figures 12 and 13. Upon examination of the visualized leg positions, it becomes apparent
that in this scenario, the tripod designated for the aerial fast swing phase inadvertently
makes ground contact, while the other tripod, which is supposed to propel the system
through its motion and maintain ground contact, is detached. Such an occurrence is unde-
sirable, as it prevents the leg from executing its intended function during that movement
phase. Furthermore, an increased rotation speed of the leg upon ground contact may pose
a risk of damage or accelerated wear to the robot’s drive components.

Figure 14. Displacement of the robot for ts = 0.5tc.
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Figure 15. Displacement of the robot for ts = 0.625tc.

Figure 16. Displacement of the robot for ts = 0.75tc.
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To ascertain which aspects of the robot’s design or motion profiles might lead to the
aforementioned undesirable occurrences, additional simulations were conducted. The
initial focus was on specific parameters, setting α = 0◦ while varying r, ts, and φs. The
robot’s displacement along the X-axis during a single walking gait cycle served as the
criterion for identifying instances of the undesired event, as such occurrences would typi-
cally manifest as a noticeable increase in displacement. The findings are documented in
Figure 17. In all scenarios with α = 0◦, variations in r or φs resulted in a linear alteration
of the X-axis displacement per cycle. Conversely, a non-linear response was observed
for ts, particularly when ts < 0.585tc, where the X-axis displacement significantly in-
creased, confirming the presence of the undesired event upon reviewing the leg positions in
these instances.

Figure 17. Comparison of the influence of ts and φs on the distance traveled by the robot for different
leg radius.

However, the situation grows more intricate with α > 0◦, revealing that the likelihood
of the undesired event is influenced by a combination of α, ts, and φs. To circumvent this
event, reference to a supplementary graph, illustrated in Figure 18, is recommended.
Utilizing this graph involves selecting α and ts values such that their corresponding
point on the graph resides on or above the line designated for the chosen φs within the
motion profile.

Figure 18. Minimal value of α for specified dependency of ts
tc

where legs in aerial phase do not make
contact with the ground.
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7. Conclusions

In this study, we have comprehensively delineated the gait of RHex-type robots, high-
lighting the pivotal parameters influencing their locomotion. The investigative efforts
culminated in the formulation of a kinematic iterative model, tailored for the gait control
of such hexapod robots. This model’s fidelity was substantiated through rigorous experi-
mental validations conducted on a specially designed test bench. Comparative analyses
between the model and experimental outcomes revealed the manifestation of specific
undesired phenomena under certain conditions dictated by the robot’s leg design and
motion profile parameters. Crucially, these insights facilitated the creation of a heuristic
graph, poised to guide the optimization of the RHex robot’s running gaits in forthcoming
control strategies. By judiciously adjusting the gait parameters, it becomes feasible to tailor
the kinematics to suit varying double support duration, catering to the robot’s immediate
operational requirements. Nonetheless, it is imperative to acknowledge a fundamental com-
promise: enhancing the robot’s velocity, particularly in running gaits, invariably introduces
increased oscillations along the Y-axis. This phenomenon could potentially compromise the
accuracy of concurrent measurements, underscoring a critical consideration in the pursuit
of elevated movement speeds. The forthcoming phase of this research will be dedicated to
a comprehensive analysis of the RHex robot’s locomotion across terrains of heterogeneous
characteristics, encompassing surfaces such as sand and the transitional zones from shore-
lines to aquatic environments. A focal point of the investigation will be the exploration of
how the robot’s leg material properties influence the incidence of slippage between the leg
and the terrain, thereby affecting the robot’s dynamic performance. Particular attention
will be given to the impact of the flexibility and texture of the robot’s C-shaped legs, which
play a pivotal role in its movement, on its interaction with diverse ground conditions.
This in-depth examination aims to elucidate the intricate relationship between the robot’s
structural design and its adaptability to complex environmental challenges. The authors
have also initiated the integration of a neuromorphic walking controller into the robotic
framework described within the article.
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Abstract: Autonomous mobile robots have become integral to daily life, providing crucial services
across diverse domains. This paper focuses on path following, a fundamental technology and
critical element in achieving autonomous mobility. Existing methods predominantly address tracking
through steering control, neglecting velocity control or relying on path-specific reference velocities,
thereby constraining their generality. In this paper, we propose a novel approach that integrates
the conventional pure pursuit algorithm with deep reinforcement learning for a nonholonomic
mobile robot. Our methodology employs pure pursuit for steering control and utilizes the soft actor-
critic algorithm to train a velocity control strategy within randomly generated path environments.
Through simulation and experimental validation, our approach exhibits notable advancements in
path convergence and adaptive velocity adjustments to accommodate paths with varying curvatures.
Furthermore, this method holds the potential for broader applicability to vehicles adhering to
nonholonomic constraints beyond the specific model examined in this paper. In summary, our study
contributes to the progression of autonomous mobility by harmonizing conventional algorithms with
cutting-edge deep reinforcement learning techniques, enhancing the robustness of path following.

Keywords: autonomous mobile robot; path following; velocity control; deep reinforcement learning;
soft actor-critic

1. Introduction

Autonomous Mobile Robots (AMRs) refer to robotic systems designed to exhibit
minimal or no human intervention in their movement [1]. These robots are engineered
to autonomously follow a predefined path, whether in indoor or outdoor environments.
AMRs are increasingly appreciated for their expanding applications across diverse do-
mains, including logistics transportation [2], security surveillance [3], and robotic cleaning
services [4]. Within the customer service industry, an escalating number of AMRs are
being deployed to enhance customer experiences by providing daily life conveniences [5,6].
Moreover, the agricultural industry is increasingly expressing interest in AMRs, driven by
their ability to address issues such as labor shortages, natural phenomena, and economic
challenges that have the potential to significantly diminish opportunities in farming [7].

The challenge of following a predetermined path has long been a focal point in the control
engineering community. Path following involves a vehicle navigating a globally defined
geometric path with loose time constraints and can be divided into control theory-based
methods and geometric methods [8]. Control theory-based methods, such as Proportional–
Integral–Derivative (PID) controllers, face challenges in finding optimal parameters [9]. Fuzzy
controllers rely on expert experience or prior knowledge [10], while model predictive controllers
require consideration of computational costs and precise modeling for reliable results [11]. In
comparison to control theory-based methods, geometric methods have become more popular
due to their simplicity, robustness, and suitability for real-time control. The Pure Pursuit (PP)
controller, proposed as the earliest geometric approach for path following, fits a circle through
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the vehicle’s current position to a point on the path ahead of the vehicle by a look-ahead
distance [8,12]. It was first discussed in [13] and later formally elaborated in [14], where the
PP strategy and its applications were introduced. The straightforward nature of this strategy
has contributed to its popularity in various applications. Notably, the PP controller has been
employed in two vehicles during the DARPA Grand Challenge [15] and three vehicles in the
DARPA Urban Challenge [16]. However, this approach assumes that the vehicle is operating
at a constant speed and the path is free of curvature, leading to degraded performance on
curved paths [12,17]. Additionally, especially when the vehicle deviates from the path, and
the distance between the vehicle and the path exceeds the look-ahead distance, there is no
corresponding control law.

In recent years, Reinforcement Learning (RL) has achieved remarkable success in
various fields, particularly in robotics, garnering increased attention and widespread recog-
nition [18]. RL is a machine learning method that addresses the challenge of enabling a
decision-making agent to learn optimal actions within an environment. The introduction of
Deep Neural Networks (DNNs) into RL, owing to their outstanding ability to approximate
nonlinear functions and extract relevant features from raw inputs, has given rise to the ad-
vent of Deep Reinforcement Learning (DRL). This approach excels in tasks such as defeating
the world champion in the game of Go [19] and mastering intricate robotics manipulation
tasks [20]. Naturally, DRL has found applications in path following. Liu et al. [21] intro-
duced a multiple kernel feature learning framework for value function approximation,
addressing the challenges of feature representation and online learning ability in RL. Their
simulation results demonstrated better performance in tracking precision and smoothness.
Chen et al. [22] proposed a steering control approach that combines PID control and PP
control. In this setup, RL is employed to learn the weights of the two controllers, balancing
the trade-off between smooth control and tracking error. Subsequently, they extended
their work by updating the constant speed control to a new speed adaptation method
using fuzzy logic [23]. This modification allows the original approach to be applicable
not only to low-speed urban environments, but also to high-speed scenarios, reaching
speeds of up to 80 km/h. Chen et al. [24] presented a hybrid approach combining DRL
and PP control. Similarly, the steering output is a combination of the outputs from both,
treating DRL as a compensatory mechanism for PP control. The previously mentioned
methods primarily emphasize steering control, with many adopting constant speed control,
which lacks generality. Moreover, in certain instances, manual design of reference speeds is
adopted, demanding additional optimization efforts.

In this paper, our focus is on exploring the combination of PP control and DRL to
address the challenges in path following. PP is responsible for steering control, while
DRL, specifically employing the Soft Actor-Critic (SAC) algorithm, takes charge of velocity
control, creating a complementary relationship between the two. We believe that the imple-
mentation of PP, being an easily deployable method, can compensate for the shortcomings
of the algorithm itself through adaptive velocity adjustment, resulting in improved path
convergence. Simulation and experimental results, validated using a nonholonomic mobile
robot, demonstrate the ease of training for our proposed approach and its superiority in
tracking paths with varying curvatures.

2. Problem Formulation

In this section, we introduce the problem of path following for nonholonomic mobile
robots in a planar environment.

2.1. Kinematics Modeling

Nonholonomic mobile robots constitute a category of mobile robots with constrained
mobility, unlike typical holonomic mobile robots that can move freely in a plane. Steering
in nonholonomic mobile robots is accomplished by independently controlling the speed of
the wheels on each side of the vehicle. When the speeds of the wheels on both sides are not
equal, the vehicle will turn [25]. Basic differential steering robots are equipped with two driven

140



Sensors 2024, 24, 561

wheels and a front and rear caster for added stability, as illustrated in Figure 1. In the context
of a mobile robot situated on a 2D plane with a defined global Cartesian coordinate system
{O}, the robot possesses three degrees of freedom represented by its posture,

x =




x
y
ψ


 (1)

where (x, y) represents the robot’s current position in the global coordinate system, and ψ
represents the heading angle, measured counterclockwise from the x-axis.

Figure 1. A two-wheeled independently driven nonholonomic mobile robot with the definition of
the global coordinate frame {O} and the body coordinate frame {Q}.

The mobile robot’s motion is controlled by its linear velocity v and rotational velocity
ω, as their positive directions are defined in Figure 1. The mobile robot’s kinematics is then
defined as follows [25–27]:

ẋ =




ẋ
ẏ
ψ̇


 =




cos ψ 0
sin ψ 0

0 1


u (2)

where u = [v, ω]T ∈ U ⊂ R2 define input constraints. Path following of such a non-
holonomic wheeled mobile robot involves the design of algorithms to generate reference
commands for u.

Let vmax represent the maximum linear velocity achievable by the mobile robot. It
is crucial to account for the condition that, even when the robot simultaneously moves
forward at a linear velocity v and rotates at an angular velocity ω, the velocity of the outer
wheel should not exceed the maximum allowed velocity [27]. Therefore, the following
constraint is applied:

v̂ +
b
2

ω̂ ≤ vmax (3)

where v̂ and ω̂ represent the set maximum velocities in practical use, and b denotes the
wheelbase, which is the distance between the centers of the wheels. The experimental robot
in the paper is tested to move at a maximum velocity slightly exceeding 0.5 m/s. Through
the constraint outlined in Equation (3), the maximum values are determined and presented
in Table 1.
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Table 1. Mobile robot parameters.

Symbol Description Value

v̂ Set maximum linear velocity 0.4 m/s
ω̂ Set maximum angular velocity 1.0 rad/s
b Wheelbase 0.172 m

2.2. Path Following

The objective of path following is to design a controller, such that the mobile robot
follows an arc-length parametrized reference path [11],

P = {p ∈ R2|p = pr(λ), ∀λ ≥ 0}. (4)

For any given parameter λ, a local reference coordinate system {R} centered at pr(λ)
can be defined, denoted by the subscript r. The relative angle δr between the global
coordinate system {O} and the local reference coordinate system {R} can be calculated
with Equation (5).

δr(λ) = atan2(y
′
r(λ), x

′
r(λ)) (5)

where the function atan2 used here is the four-quadrant version of arctan, which calculates
the angle between the positive x-axis and the robot position [xr, yr]T in the Cartesian plane,
with a positive counterclockwise direction. x

′
r and y

′
r are the first order derivatives. Moreover,

it is clear that the parametrized reference path must exhibit continuous differentiability.
Considering the robot’s posture at time t as [x(t), y(t), ψ(t)], the error in path following,

commonly referred to as the cross-track error, is determined by Equation (6), which is a
cross product between two vectors [12]. The control objective is to guarantee that the
cross-track error converges such that lim

t→∞
ep(t) = 0.

ep(t) = dy t̂x − dx t̂y (6)

where d = (dx, dy) is the tracking error vector and t̂ = (t̂x, t̂y) is the unit tangent vector to
the reference path at λ(t), as defined in Equations (7) and (8), respectively.

d = (x(t), y(t))− (xr(λ(t)), yr(λ(t))) (7)

t̂ =
(x
′
r(λ(t)), y

′
r(λ(t)))∥∥(x′r(λ(t)), y′r(λ(t)))

∥∥ (8)

The orientation error ψe(t) between the robot and the reference path at time t is
determined by Equation (9), which is frequently incorporated and is typically treated as a
secondary objective, or used to assist in the elimination of the cross-track error. It indicates
moving towards or away from the direction of the path.

ψe(t) = ψ(t)− δr(λ(t))

ψe(t) = atan2(sin(ψe(t)), cos(ψe(t)))
(9)

where ψe(t) is normalized within the range of [−π, π]. While the trigonometric operations
remain unchanged, constraining the range to this specific interval aids in reducing the observa-
tion space. A graphic representation of the path following errors is illustrated in Figure 2.

To determine the point along the reference path for calculating the cross-track error,
the point nearest to the robot is selected [12,28]. It leads to an optimization problem of
finding the parameter λ that minimizes the distance between the robot’s position and
the reference path. The optimization problem can be expressed as in Equation (10), with
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a preference for the squared Euclidean distance due to its equivalence with the original
optimization problem and computational convenience.

λ(t) = arg min
λ

‖(x(t), y(t))− (xr(λ), yr(λ))‖2 (10)

A common approach for updating the path variable λ involves iteratively computing
the value that minimizes the distance between the robot and the reference path. This
process can be accomplished through the application of the conjugate gradient method,
which is highly efficient when solving quadratic convex optimization problems, often
converging to the optimal solution within a finite number of steps [29]. Furthermore, the
feature of guaranteeing only a local optimum serves to prevent abrupt jumps in the path
parameter, ensuring stability in the optimization process. Further implementation details
can be found in [29,30].

Figure 2. Schematic representation of cross-track error ep and heading error ψe with respect to the
reference path pr(λ).

In the end, the proposed path-following control system is illustrated in Figure 3. In
this system, the path following algorithm utilizes both path information and model states
as inputs to compute errors. Subsequently, the commands for linear velocity and angular
velocity are generated by the DRL and PP, respectively. The actual current velocities
undergo saturation processing and are related through transfer functions as inputs to the
kinematics model. Here, we consider the relationship between the velocity command and
velocity as an identity transform to simplify the upcoming analysis. This consideration is
also made to fulfill the Markov property, where the future evolution of a process depends
solely on the present state and not on past history.

Figure 3. Separate longitudinal and latitudinal control structure of the proposed path-following
control system.
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3. Design and Implementation

In this section, we introduce our proposal for path following based on DRL. Firstly,
we present a variant of PP utilized in steering control. The aim of this variant is to better
align with our proposal and address an inherent issue in PP. Following that, we delve
into the application of SAC and the design of a training environment with the objective of
minimizing cross-track error while encouraging the maximization of linear velocity. Finally,
we discuss implementation details.

3.1. Pure Pursuit Steering Control

The original pure pursuit algorithm fits a circle between the robot’s position and a
look-ahead point on the reference path, assuming that the robot moves along this trajectory.
The conventional selection for the look-ahead point is a point on the reference path such that
‖(x, y)− (xr(λ), yr(λ))‖ = L, representing a distance L from the robot’s current position.
Since there are potentially multiple points fulfilling this criterion, the one with the highest
value of the parameter λ is selected. The main issue with this selection method is that
when the robot deviates from the path by more than the distance L, the control law is
not defined [12]. Consequently, the failure to stay within the distance L results in the
optimization problem’s failure.

In this paper, a variant is proposed with the primary objective of addressing the
aforementioned issues. Leveraging an arc-length parameterized path, an enhancement can
be achieved by choosing a point situated at an arc length of d forward along the reference
path from the point closest to the robot’s current position relative to the path, denoted as
[xr(λ), yr(λ)]. This newly selected point, denoted as [xr(λ + d), yr(λ + d)], is then assigned
as the look-ahead point, as illustrated in Figure 4. The look-ahead distance is subsequently
calculated as L = ‖(x, y)− (xr(λ + d), yr(λ + d))‖. Another advantage accompanying
such a choice is that we only need to solve the optimization problem once, specifically for
the nearest point.

Figure 4. Geometry of the variant pure pursuit algorithm, which ensures defined control at arbi-
trary positions.

Eventually, the commanded heading rate ω∗ for a robot traveling at linear velocity v
is defined as per Equation (11).

ω∗ =
2v sin αl

L
(11)
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where the look-ahead angle αl is given by

αl = arctan(
yr(λ + d)− y
xr(λ + d)− x

)− ψ. (12)

3.2. Soft Actor-Critic in Velocity Control

A Markov Decision Process (MDP) is characterized by a sequential decision process
that is fully observable, operates in a stochastic environment, and possesses a transition
model adhering to the Markov property [31]. The MDP can be concisely represented as a
tuple (S ,A, p, r), where S represents the set of all states called the state space; A denotes
the actions available to the agent called the action space; p : S × S ×A → [0, 1] denotes
the transition probability p(s′|s, a), representing the likelihood that action a in state s will
result in state s′; and r : S ×A represents the immediate reward received after transitioning
from state s to state s′ as a result of action a.

Detailed knowledge and the algorithm of SAC can be referenced from [32,33]. Here,
we introduce only the essential components used in the proposed system. SAC is a RL
algorithm built upon the Maximum Entropy RL (MERL) framework, which generalizes
the objective of standard RL by introducing a regularization term. This regularization
term ensures that the optimal policy π∗ maximizes both expected return and entropy
simultaneously as follows:

π∗ = arg max
π

∑
t
E(st , at)∼ρπ [r(st, at) + αH(π(·|st))] (13)

where ρπ represents the trajectory of state-action pairs that the agent encounters under
the control policy π, andH(π(·|st)) is the entropy associated with the parameter α. This
parameter acts as the temperature, influencing the balance between the entropy term and
the reward.

The soft Q-function is formulated to evaluate state-action pairs, as outlined in Equation (14).

Q(st, at) = r(st, at) + γEst+1∼p[V(st+1)] (14)

where γ represents the discount rate for preventing the infinitely large return, and the soft
state-value function V(st) based on MERL is defined by

V(st) = Eat∼π [Q(st, at)− α log π(at|st)] (15)

The optimization is performed for function approximators of both the soft Q-function
and the policy. The soft Q-function is parameterized by θ ∈ Rn, representing a vector of
n parameters, and can be effectively modeled using a DNN. The optimization of the soft
Q-function is achieved by employing a policy evaluation algorithm, such as Temporal-
Difference (TD) learning. The parameters of the soft Q-function can be optimized by
minimizing the mean squared loss given by Equation (16). The loss is approximated using
state-action pairs stored in the experience replay buffer, denoted by D.

LQ(θ) = Est ,at∼D [(Qθ(st, at)− yt)
2] (16)

where yt given in Equation (17) is the TD target that the soft Q-function is updating towards.
The update makes use of a target soft Q-function with parameters θ̄, where i = 1, 2 denotes
the double Q-function approximators, referred to as the clipped double-Q trick [34].

yt = r(st, at) + γEst+1∼p[min
i=1,2

Qθ̄i
(st+1, at+1)− α log π(at+1|st+1)] (17)

Similarly, the policy, parameterized by φ ∈ Rm, is modeled as a Gaussian with a mean
and a standard deviation determined by a DNN. The objective for updating the policy
parameters is defined by maximizing the expected return and the entropy, as depicted
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in Equation (18). Due to the challenges in directly sampling latent action and computing
gradients, the policy is reparameterized such that at = fφ(ξt; st) = tanh(µφ(st) + σφ(st)�
ξt) within a finite bound. Here, µφ and σφ represent the mean and standard deviation of
the action, respectively, and ξt ∼ N (0, I) is an input noise vector. The reparameterized
sample is thus differentiable.

Jπ(φ) = Est∼D, ξt∼N [min
i=1,2

Qθi (st, fφ(ξt; st))− α log πφ( fφ(ξt; st)|st)] (18)

where πφ is implicitly defined in relation to fφ.
In practice, the temperature α is adjusted automatically to constrain the average

entropy of the policy, allowing for variability in entropy at different states. The objective
of discovering a stochastic policy with maximal expected return, satisfying a minimum
expected entropy constraint, is presented in Equation (19).

J(α) = Eat∼πt [−α log πt(at|st)− αH̄] (19)

where the entropy target H̄ is set to be the negative of the action space dimension.
The overall architecture of the SAC-based controller is depicted in Figure 5. It employs a

pair of neural networks—one specifically designed for learning the policy and the other for
learning the value function. To mitigate bias in value estimation, target networks are introduced.
Following the optimization of the networks, the parameters of the target networks undergo an
update using a soft update strategy, denoted by Equation (20). Specifically, a fraction of the
updated network parameters is blended with the target network parameters.

Figure 5. The optimization process of SAC-based controller at each time-step. In order to explicitly
distinguish between different sources, a′ represents an action that is resampled from the current
policy, rather than being drawn from prior experiences.

146



Sensors 2024, 24, 561

θ̄ ← τθ + (1− τ)θ̄ (20)

where parameter τ indicates how fast the update is carried on and the update is performed
at each step after optimizing the online critic networks.

Moreover, an experience replay buffer D for storing and replaying samples, effectively
reducing sample correlation, enhancing sample efficiency, and improving the learning
capability of the algorithm is integrated. Through interaction with the training environment,
the mobile robot, acting as the agent, takes an action at based on the current policy according
to observed states st, receives immediate rewards rt, and transitions to the next state st+1.
This experience is stored in the replay buffer. During each optimization step, a mini-batch
sample B is randomly drawn from the buffer to approximate the required expected values.
The detailed description of the designed training environment is provided below.

3.2.1. Observation Space and Action Space

The observation s, which serves as the input to the velocity controller for path follow-
ing, is designed as follows:

s = {ep, ψe, v, ω, ψe2} (21)

where ep is the cross-track error, ψe ∈ [−π, π] is the normalized orientation error between
the path and the mobile robot, v and ω are the current linear velocity and rotational velocity
of the robot, respectively. ψe2, selected from the look-ahead point as discussed in the
previous section, functions as an augmented observation that provides information about
the curvature of the path in the future.

A graphical explanation is presented in Figure 6. Through trial and adjustment, the
arc-length divergence parameter d, which serves both steering control and the observations
in this paper, is set to 0.2 m. In configuring this parameter, our primary consideration is
on selecting a look-ahead point that ensures the robot quickly regains the path. A small
value of d makes the robot approach the path rapidly, but it may result in overshooting and
oscillations along the reference path. Conversely, a large d reduces oscillations but might
increase cross-track errors, especially around corners.

Figure 6. Observations concerning a predetermined reference path.

The action, denoted as a(t) = π(s(t)|φ), represents the rate of linear velocity v̇
normalized by the velocity itself. This selection is adopted to mitigate undesired rapid
changes. Adopting an incremental control input for the robot makes it easier to achieve
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smooth motions without the need for additional rewards or penalties for excessive velocity
changes. Furthermore, constraining the velocity rate within a specified range, i.e., v̇ ∈
[v̇min, v̇max], provides a better stability. The linear velocity command v∗(t) after saturation
operation for the mobile robot at each time step is calculated using Equation (22).

a(t) = tanh(µφ(s(t)) + σφ(s(t))� ξ(t))

v̇∗(t) = ka(t) + b

v∗(t) = clip(v(t) + v̇∗(t)∆t, vmin, vmax)

(22)

where k = (v̇max − v̇min)/2 and b = (v̇max + v̇min)/2 are the scale and bias, respectively, to
recover the normalized action to the range of the desired action. The range of linear velocity
rate is designed as [−0.5, 0.3] m/s2. The exploration space for deceleration is slightly larger
than that for acceleration, addressing situations requiring urgent braking.

3.2.2. Reward Function

The reward function is designed to penalize the robot when it deviates from the path,
while rewarding the robot’s velocity as much as possible, as depicted in Equation (23).

r(t) = −k1|ep(t)|+ k2v(t)
(

1− 1
etol
|ep(t)|

)
− k3F(t) (23)

where k1, k2, and k3 are positive constants that define the importance of each term. etol is
the tolerance for cross-track error within which the robot receives positive velocity rewards.
Based on intuitive considerations, it is desirable for the robot to decrease its velocity when
deviating from the path to prevent further error expansion. To achieve this, a segmented
penalty approach is also introduced. When the cross-track error exceeds a critical threshold,
the penalty on velocity increases accordingly. This design ensures that the policy receives
velocity rewards only when the cross-track error is within the critical threshold.

The reward function with the first two terms is visualized in Figure 7, with the range
of [−etol , etol ]. Within this range, the reward at each step ranges from a maximum value of
1, indicating perfect tracking of the path at maximum speed, to a minimum value of −1.
Due to improvements in the pure pursuit algorithm, the mobile robot can consistently track
the point ahead of itself on the path at any lateral distance. In this scenario, it is sufficient
to solely investigate the reward associated with the robot traveling along the path.

Figure 7. Reward function for path following within the ep range of [−0.2, 0.2] m.
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Additionally, it has been observed in experiments that the agent may choose to discon-
tinue forward movement at challenging turns to avoid potential penalties. To address this
situation, a flag F defined as

F(t) =

{
1 if v(t) < ε,
0 otherwise.

indicating a stationary state has been introduced, where ε is an extremely small value such
as 1× 10−6 for numerical stability. The parameters for the reward function are designed as
follows: k1 = 5.0, k2 = 2.5, k3 = 0.2, and etol = 0.2 m.

3.2.3. Environment and Details

The training environment encompasses the kinematics of the robot itself and a ref-
erence path. Ensuring the adaptability of the policy to various challenges is crucial, as it
cultivates the ability to handle generalized scenarios, thereby reducing the risk of overfit-
ting to specific paths. We employed a stochastic path generation algorithm proposed in
our previous work [35], randomly generating a reference path for the robot to follow at the
beginning of each episode. In this paper, the parameters of the stochastic path generation
algorithm is defined with Nw = 5, Lmin = 0.5 m, and Lmax = 2.0 m. Straight paths with
a generation probability of 0.1 are also introduced into the training. The straight path is
achieved by setting Nw = 2 and Lw = 2.5 m. The example of randomly generated curved
paths is illustrated in Figure 8.

Figure 8. Example of randomly generated reference paths.

After the generation of a reference path, the initial posture of the robot is randomly
sampled from a uniform distribution, with a position error range of [−0.1, 0.1] meters for
both the global x-axis and y-axis, and a heading error range of [−0.0873, 0.08723] radians
with respect to the reference path. A warm-up strategy is also implemented to gather
completely random experiences. During the initial training phase, the agent takes random
actions uniformly sampled from the action space. Each episode terminates when the
robot reaches the endpoint, or when reaching 400 time steps. The summarized training
parameters are presented in Table 2.

The actor and critic neural networks are both structured with two hidden layers.
Each layer is equipped with Rectified Linear Unit (ReLU) activation function, featuring
256 neurons in both hidden layers. The actor’s final layer outputs the mean µφ(st) and
standard deviation σφ(st) of a distribution, facilitating the sampling of a valid action.
Subsequently, the action undergoes a tanh transformation to confine its range, as outlined
in Equation (22). In the critic network, the action and state are concatenated to form an
input. For the optimization of neural networks, the Adam optimizer [36] is utilized with a

149



Sensors 2024, 24, 561

minibatch size of 256. Subsequently, training is conducted five times separately, allowing for
an assessment of the algorithm’s effectiveness and stability. Each training utilizes a distinct
random seed to control factors such as path generation parameters and the initial posture of
the robot. This approach ensures the reproducibility of the experiments. Hyperparameters
are summarized in Table 3.

Table 2. Hyperparameters in training the SAC for path following.

Description Value

Sampling period 0.05 s
Target soft update rate 0.005

Discount factor 0.99
Entropy target −1

Maximum time steps per episode 4× 102

Warm-up time steps 5× 103

Maximum time steps 5× 105

Experience replay buffer size 5× 105

Table 3. Hyperparameters of both actor and critic networks for path following.

Description Value

Number of hidden layers 2
Number of neurons per layers 256

Activation function ReLU
Optimizer Adam

Learning rate 3× 10−4

Minibatch size 256

4. Results and Analysis

In this section, we discuss the achievements attained by the path following control of the
proposed method. We first analyze the training process and then introduce two evaluation
criteria, failure rate and completion rate, to assess the advantages of the proposed method
over PP control in the majority of samples. Finally, we test and analyze the superiority of the
proposed method over PP control in both simulation and experimental environments.

4.1. Training Process

The learning curves of average return and average velocity for the path following
problem are depicted in Figure 9. In the initial stage, where the average velocity consistently
increases, the learned policy exhibits a relatively high average velocity but with lower
rewards obtained. This suggests that the learned policy prioritizes speed improvement
while neglecting the reduction in the cross-tracking error. Additionally, the initial stage of
the five trials demonstrates a remarkably high level of consistency, with minimal standard
deviation (noted by the absence of shaded regions in the figures). Subsequently, the average
velocity noticeably decreases, while rewards, on the contrary, increase. This indicates that
the policy starts learning how to decelerate to handle curves, especially challenging bends,
resulting in a certain degree of over-deceleration.

After progressing halfway through the learning process, a more suitable policy is
identified that balances both velocity and cross-track error. For all five trials, the overall
training tends to stabilize. Moreover, compared to other OpenAI Gym RL tasks [37] that
often require steps in the order of tens of millions [32,33], our approach converges with
fewer steps, confirming the ease and stability of algorithm convergence.
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Figure 9. Learning curves for path following over 5 trials: (a) average return; (b) average velocity.
The solid line represents the mean, while the shaded area corresponds to the confidence interval
represented by the standard deviation.

4.2. Simulation Results
4.2.1. Quantitative Evaluation

The performance of both the PP control and the proposed method is assessed across
1000 paths generated using the same algorithm employed during training. Performance
is evaluated by checking whether the cross-track error surpasses a predefined threshold
within a specified number of time steps, set at 400 steps, aligning with the duration used for
training the SAC-based controller per episode. In each path-following task, if this threshold
is exceeded, the task is marked as a failure, and the execution of the task is terminated. The
failure rate is then defined as the proportion of failures out of the total 1000 tasks.

failure rate =
N f ailure [sample]
Ntotal [sample]

(24)

where N f ailure represents the number of failed samples. Additionally, the overall completion
of the path is evaluated at that specific moment.

With the path parameterized by arc length, the completion rate is defined as the ratio
of the path parameter at which the robot concludes the task to the parameter of the path’s
endpoint, as expressed in Equation (25). This parameterization allows for a meaningful
measure of how much of the path has been covered when the robot finishes its trajectory.

completion rate =
λn [m]

λend [m]
(25)

where λn denotes the arc length parameter of the nearest point as in Equation (10), while
λend represents the arc length parameter of the path’s endpoint.

Firstly, the performance of the PP control is evaluated. The results of failure rate and
completion rate for three different thresholds of cross-track error (0.1, 0.2, and 0.3 m) are
summarized in Tables 4 and 5, respectively. From the perspective of failure rate, it is certain
that a higher threshold leads to a lower failure rate for any given velocity. Within the same
threshold criteria, as reference velocity increases, the failure rate also increases, primarily
due to poor performance at high velocities in turns. Conversely, from the perspective of
completion rate, lower velocities may result in minimal failure in path following, but the
overall completion rate is not high. Increasing velocity is associated with an improvement
in completion rate, but beyond a certain velocity, the completion rate decreases due to
premature failures caused by excessive velocity. Moreover, the higher the velocity, the
greater the variation in completion rates across different paths.
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Table 4. Failure rates of the PP control at various reference velocities for three cross-track error thresholds.

Velocity [m/s]
Threshold [m]

0.1 0.2 0.3

0.10 0.000 0.000 0.000
0.15 0.075 0.000 0.000
0.20 0.276 0.053 0.002
0.25 0.486 0.257 0.043
0.30 0.606 0.431 0.238
0.35 0.698 0.562 0.394
0.40 0.767 0.643 0.516

Table 5. Completion rates of the PP control at various reference velocities for three cross-track error
thresholds. For instance, the value 0.400± 0.077 indicates the mean result with a standard deviation
range, derived from 1000 tasks.

Velocity [m/s]
Threshold [m]

0.1 0.2 0.3

0.10 0.400± 0.077 0.400± 0.077 0.400± 0.077
0.15 0.578± 0.132 0.597± 0.112 0.597± 0.112
0.20 0.678± 0.215 0.758± 0.150 0.776± 0.122
0.25 0.699± 0.279 0.803± 0.234 0.893± 0.130
0.30 0.671± 0.312 0.773± 0.287 0.865± 0.237
0.35 0.619± 0.314 0.710± 0.307 0.802± 0.281
0.40 0.571± 0.307 0.662± 0.312 0.739± 0.300

Secondly, the five trained policies are evaluated on the same set of 1000 paths. The
trained policies exhibit significant improvements in both the failure rate and completion
rate. At the most stringent threshold of 0.1 m, there is a low failure rate. Despite these
failures, the completion rate reaches as high as 0.873, representing the average result of the
five policies. Beyond the 0.2 m threshold, the absence of failures and the path completion
rate approaching 1 imply that, after training the velocity control ensures a reduction in
cross-track error while maximizing velocity in regions with low curvature. In other words,
it allows for higher velocities when possible and slows down where necessary. The reason
for not reaching 1 is that some randomly generated paths have a substantial arc length, and
they cannot be fully completed within the 400-step limit. At the same time, it is evident that
the performance among the five policies is quite similar, indirectly indicating the stability of
the learning process and outcomes. More detailed results are summarized in Tables 6 and 7.

Table 6. Failure rates of proposed SAC-based path following control for three cross-track error thresholds.

Method
Threshold [m]

0.1 0.2 0.3

Policy 1 0.155 0.004 0.000
Policy 2 0.114 0.005 0.000
Policy 3 0.157 0.005 0.000
Policy 4 0.118 0.005 0.000
Policy 5 0.262 0.008 0.000
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Table 7. Completion rates of proposed SAC-based path following control for three cross-track error
thresholds. For instance, the value 0.883± 0.284 indicates the mean result with a standard deviation
range, derived from 1000 tasks.

Method
Threshold [m]

0.1 0.2 0.3

Policy 1 0.883± 0.284 0.984± 0.070 0.987± 0.070
Policy 2 0.891± 0.285 0.972± 0.124 0.975± 0.124
Policy 3 0.880± 0.286 0.981± 0.080 0.985± 0.080
Policy 4 0.892± 0.277 0.975± 0.099 0.978± 0.099
Policy 5 0.817± 0.326 0.968± 0.140 0.971± 0.140

In conclusion, the results above confirm that under constant-speed control, PP control
is insufficient to handle diverse path scenarios. However, the outcomes of our proposed
method demonstrate that without a path-specific designed reference velocity, an adaptive
velocity control strategy is learned and greatly enhances path following performance under
the two criteria we examined.

4.2.2. Path Convergence and Adaptive Velocity

The test path is an eight-shaped curve that is widely used for testing path following
algorithm, as defined in Equation (26). It includes straight segments as well as curves
with varying degrees of curvature, representing commonly encountered scenarios in real-
world applications. {

x = a sin(λ)
y = a sin(λ) cos(λ)

(26)

where a is a constant that determines the size and shape of the curve, set as 1.0. Notably,
despite the provided parameterization equation for the path here, it is still necessary
to undergo arc-length parameterization, as referenced in [38]. Moreover, based on the
algorithm for generating random paths and multiple tests, as examined in Figure 8, this
specific path is highly unlikely to occur in the training environment.

The trajectory and cross-track error results for tracking the eight-shaped curve using
PP control and the proposed SAC-based control are illustrated in Figure 10, with velocity
comparisons presented in Figure 11. As a comparison, the results of the PP control are
based on a velocity command of 0.4 m/s. Since our proposed method aims to maximize
velocity, and considering that we can view this specific path as a kind of randomly gen-
erated trajectory, we are uncertain about how to set a reference velocity for PP control
in this particular scenario. The initial posture is set to a randomly generated value of
[0.009,−0.044, 0.736] for both methods.

Figure 10. Path following comparison of the eight-shaped path in simulation: (a) trajectories results;
(b) cross-track error results.
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Figure 11. Velocity comparison for the eight-shaped path in simulation: (a) linear velocity results;
(b) angular velocity results.

It is noteworthy that, due to the differing time consumption of the two methods, utilizing
time as the horizontal axis for comparing cross-track errors and velocity changes may not yield
a clear comparison. The use of λ as the horizontal axis allows for a more accurate comparison
of the two methods at the same path curvature. Subsequent graphical comparisons will follow
the same principle.

The results of the PP control indicates poor performance in curved sections, due to ex-
cessively high velocity and saturated angular velocities, resulting in insufficient turning. On
the other hand, our proposed method, specifically policy 4 in the figure, can achieve minimal
cross-track error due to adaptive velocity adjustment. This significantly improves the success
rate of path following and prevents entering the saturation area of angular velocity. Specific
comparative results are summarized in Table 8, where ēp represents the root mean squared
cross-track error, |ep|max represents the maximum absolute error occurred, and v̄ represents
the average velocity. Both path convergence and velocity performance are consistently demon-
strated across the five trained policies. A more intuitive visualization is presented in a trajectory
scatter plot plotted using velocity magnitude, as shown in Figure 12.

Table 8. Results for one lap of the eight-shaped path in simulation.

Method ēp [m] |ep|max [m] v̄ [m/s]

Pure Pursuit 0.0593 0.1311 0.4000
Policy 1 0.0117 0.0385 0.2868
Policy 2 0.0118 0.0385 0.2793
Policy 3 0.0119 0.0384 0.2819
Policy 4 0.0115 0.0385 0.2688
Policy 5 0.0121 0.0385 0.2958

Figure 12. Linear velocities along the trajectory for the eight-shaped path in simulation.
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It is evident that the proposed method can adjust velocity in a smooth way, deceler-
ating before entering a curve, accelerating when exiting a curve rapidly, and maintaining
maximum velocity on relatively straight segments. Smooth variations in linear velocity are
also evident in this representation.

4.3. Experimental Results
4.3.1. Experimental Setup

The experimental nonholonomic wheeled mobile robot, as depicted in Figure 13,
features the placement of the active wheel at the center of the chassis, with an additional
omnidirectional wheel at both the front and rear. The wheelbase, measured and calibrated
to 0.172 m, corresponds precisely to the parameter employed in simulation. The overall
dimensions of the robot measure 216× 216× 171 mm.

At the top layer of the robot, a 360 Degree Laser Scanner, utilizing Laser imaging,
Detection, and Ranging (LiDAR), is configured for subsequent mapping and localization
functions. This setup serves the purpose of perceiving the robot’s posture. The middle layer
comprises the main control Raspberry Pi 4 Model B, motor control module, and battery.
Although an RGB camera is also configured, it was not utilized in this paper.

Figure 13. Configuration of the experimental nonholonomic wheeled mobile robot.

The Raspberry Pi operates on the Ubuntu 20.04 system to support the execution of the
Robot Operating System (ROS), a set of software libraries and tools designed to facilitate
the development of robot applications. This content specifically utilizes the ROS Noetic
version. Figure 14 illustrates the robot’s connectivity and communication. This necessitates
that the laptop and the Raspberry Pi system be within the same local area network for
effective communication, with the ROS facilitating the connection and interaction.

Figure 14. Diagram of the robot’s connectivity and communication.

The primary focus of this paper is path following; therefore, the methods for obtaining
the real-world posture of the robot are briefly summarized. Given that a robot equipped
with LiDAR has already been configured, the experiments are conducted indoors. The
mapping component utilizes Gmapping [39], a Simultaneous Localization and Mapping
(SLAM) algorithm based on 2D laser range data for constructing 2D grid maps. After
obtaining the map, during the execution of the path following algorithm, the robot’s
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posture is determined using Adaptive Monte Carlo Localization (AMCL) [40], which
employs a particle filter to track the robot’s posture against a known map.

Due to the fact that the policy for velocity control is trained using PyTorch modules,
in order to use it on the Raspberry Pi, we have converted it to the Open Neural Network
Exchange (ONNX) format. In one control cycle, the measured and computed observations,
obtained through the robot’s posture via AMCL, are input into the ONNX model. The re-
sulting velocity commands are then published at a frequency of 20 Hz. Table 9 summarizes
the parameter count, Floating-Point Operations (FLOPs), and the inference time during
actual operation of our model. The results highlight the remarkable lightweight nature and
computational efficiency of our model, perfectly fulfilling our control objectives.

Table 9. Computational cost in real-time, where the inference time is an average of 100 inferences.

Parameters FLOPs Inference Time

67,842 67,328 97.8 µs

4.3.2. Path Convergence and Adaptive Velocity

The trained policies were found to be capable of tracking paths with small cross-track
errors in experimental testing, similar to simulation results. However, the actual velocity
was observed to be lower in reality compared to simulation. We attribute this difference
in velocity tracking to delays in input–output caused by communication issues inherent
in real-world robots. This phenomenon has also been identified and discussed in [41,42].
In this paper, we employ the method of modifying the control dynamics of the robot by
scaling the output of the policy as used in [42] for its simplicity. After testing, an appropriate
scaling factor in experiment was determined to be 2.2.

The trajectory and cross-track error results for tracking the eight-shaped path are
shown in Figure 15, demonstrating consistent results with the simulation. Specifically, the
results in the figure represent the outcomes of policy 2. The acceleration of the policy in
the experiment appears more cautious, attributed to the transfer relationship and delay
between input and output of motor wheels. Setting aside this aspect, the consistency of
the policies has been validated, and a noticeable deceleration is observed in the curved
segments. Similarly, the proposed method’s angular velocity avoids the shortcomings
of PP control, preventing steering from entering the saturation region. The results of
the five experiments are summarized in Table 10. The experimental results for the five
policies consistently outperform traditional PP control in both RMSE and maximum error.
However, due to the slower velocity on straight segments in the middle portion compared
to the simulated speed (see Figure 16), there is a slight overall decrease in average velocity.
Video S1, which is an experimental recording captured from a bird’s-eye view perspective,
can be found in the supplementary materials for reference.

Figure 15. Path following comparison of the eight-shaped path in experiment: (a) trajectories results;
(b) cross-track error results.
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Figure 16. Velocity comparison for the eight-shaped path in experiment: (a) linear velocity results;
(b) angular velocity results.

Table 10. Results for one lap of the eight-shaped path in experiment.

Method ēp [m] |ep|max [m] v̄ [m/s]

Pure Pursuit 0.0674 0.1386 0.3949
Policy 1 0.0207 0.0493 0.2317
Policy 2 0.0146 0.0410 0.2257
Policy 3 0.0108 0.0314 0.2444
Policy 4 0.0134 0.0376 0.2097
Policy 5 0.0117 0.0368 0.2090

Velocities along the trajectory in the experiment are visualized in Figure 17. Similar
performance to the simulation is confirmed, with deceleration observed before entering a
curve and rapid acceleration when exiting the curve. This behavior ensures reduction in
cross-track error and success in steering.

Figure 17. Linear velocities along the trajectory for the eight-shaped path in experiment.

5. Conclusions

In this paper, we propose a path-following control method that combines traditional
steering control with DRL. Through interactive learning in a stochastic environment, the
proposed method is demonstrated to have learned an adaptive velocity control strategy
capable of addressing various path scenarios. It is quantitatively evaluated using two
criteria: failure rate and completion rate. The results show a significant out-performance in
both criteria compared to constant speed control under PP control. Notably, our method
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demonstrates robustness across diverse paths without the need for repeated design of
reference velocities. Both simulation and experimental tests on an eight-shaped path
confirm the learned control strategy’s ability to reduce cross-track error and achieve smooth
velocity adjustments. This is manifested by deceleration before entering a curve, rapid
acceleration when exiting a curve, and maintaining maximum velocity on relatively straight
segments. The entire approach underscores the powerful capabilities of DRL in addressing
path-following challenges.

Despite the achievements we have made, we discovered that directly applying the
trained policies in experiments, while successful in path-following tasks with minimal
cross-track error, exhibits differences in velocity tracking compared to simulation. This
discrepancy is primarily attributed to the additional uncertainties in the control dynamics
of the real-world robot, including input–output delays caused by communication. Re-
cent research has delved into RL in delayed environments, suggesting the potential to
enhance velocity tracking performance and bridge the gap between simulation and the real
world [41]. On the other hand, safety considerations, which are often crucial in practical
robot scenarios, were not taken into account when formulating the problem. Exceeding
a certain threshold of cross-track error may be deemed unsafe. Incorporating control
barrier functions [43] into the problem has been proven as an effective and successful
approach when safety control becomes a necessary consideration [44,45]. We will address
the aforementioned shortcomings in future work.

In conclusion, our proposal contributes to the advancement of autonomous mobility by
integrating conventional algorithm with state-of-the-art DRL techniques, thereby enhancing
the robustness of path following. Moreover, we believe its potential for broader application
to vehicles constrained by nonholonomic principles, extending beyond the specific model
studied in this paper.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24020561/s1, Video S1: Path following comparison of the eight-
shaped path in experiment.
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RL Reinforcement Learning
DNN Deep Neural Network
DRL Deep Reinforcement Learning
SAC Soft Actor-Critic
MDP Markov Decision Process
MERL Maximum Entropy Reinforcement Learning
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TD Temporal-Difference
ReLU Rectified Linear Unit
LiDAR Laser imaging, Detection, and Ranging
ROS Robot Operating System
SLAM Simultaneous Localization and Mapping
AMCL Adaptive Monte Carlo Localization
ONNX Open Neural Network Exchange
FLOP Floating-Point Operation
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Abstract: This paper presents the design and synthesis of a dynamic output feedback neural network
controller for a non-holonomic mobile robot. First, the dynamic model of a non-holonomic mobile
robot is presented, in which these constraints are considered for the mathematical derivation of a
feasible representation of this kind of robot. Then, two control strategies are provided based on
kinematic control for this kind of robot. The first control strategy is based on driftless control; this
means that considering that the velocity vector of the mobile robot is orthogonal to its restriction,
a dynamic output feedback and neural network controller is designed so that the control action
would be zero only when the velocity of the mobile robot is zero. The Lyapunov stability theorem is
implemented in order to find a suitable control law. Then, another control strategy is designed for
trajectory-tracking purposes, in which similar to the driftless controller, a kinematic control scheme is
provided that is suitable to implement in more sophisticated hardware. In both control strategies,
a dynamic control law is provided along with a feedforward neural network controller, so in this
way, by the Lyapunov theory, the stability and convergence to the origin of the mobile robot position
coordinates are ensured. Finally, two numerical experiments are presented in order to validate the
theoretical results synthesized in this research study. Discussions and conclusions are provided in
order to analyze the results found in this research study.

Keywords: mobile robot; non-holonomy; driftless control

1. Introduction

Mobile robots have been widely implemented since their introduction several decades
ago due to the vast applications of these kinds of robots. It is important to mention also that
mobile robots have been implemented for several tasks in military and civil missions. For
these reasons, it is important to design and synthesize several kinds of control strategies
for these robots, taking into consideration the imperatives for trajectory-tracking, path
following, leader–follower missions, etc. Due to the simplicity of the mobile robot dynamics
and their implementation in hardware platforms, it is important to remark that kinematic
control is abundant for these kinds of robots. The control strategies for robots are diverse;
among these control strategies are the strategies based on robust control, sliding mode
control, fuzzy control, and neural control, among others. Restriction in the dynamics of
mobile robots which are found commonly are of non-holonomic type. These kinds of
restrictions are based considering the kinematic and dynamics properties of the mobile
robot. That is why these restrictions provide a way to develop driftless control strategies in
order to provide an easy way to implement these control approaches.

Taking into consideration that the dynamic modeling of mobile robots is very impor-
tant to this research study, it is crucial to mention the following research papers in which
this topic is considered. So, for example, in papers like [1], the dynamic modeling with its
uncertainties is shown. Then, in [2], a non-holonomic wheeled mobile robot with unknown
dynamics is represented mathematically for control purposes. Then, in [3], a non-holonomic
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Sensors 2023, 23, 6875

mobile robot is modeled with unknown dynamics. In [4], a remarkable paper which is very
important for this research study, the researchers analyze the dynamics of a lightweight
mobile robot for longitudinal motion. Meanwhile, in [5], the dynamic modeling and sliding
mode control of a tractor mobile robot is presented. Then, in [6], a complete book chapter
about the dynamic modeling of mobile robots is presented considering the longitudinal
and lateral slip. All these research studies consider the dynamic modeling of a mobile robot.
However, it is important to mention that while in general, the dynamics of mobile robots is
quite simple, sometimes, in order to obtain the mathematical representation of a mobile
robot’s dynamics, it is important to consider unmodeled and unknown dynamics. The
studies the literature have yet to clarify that the dynamic controllers and neural controllers
are sufficiently robust for kinds of mobile robots.

Holonomic constraints are crucial to mention in this research study, taking into consid-
eration that these kinds of constraints, especially the non-holonomic constraints, are found
in mobile robots. These constraints are related to the velocity vector field of the mobile
robot, and the mathematical explanations of these kind of constraints are mentioned in the
content of this research paper. For these reasons, it is important to mention the following
research papers found in the literature. For example, in papers like [7], non-holonomic
constraints for geometric control theory are explained. Meanwhile, in [8], an interesting
research paper about the singularities of holonomic and non-holonomic robotic systems
is presented. In [9], the researchers studied holonomic and non-holonomic deformations
in the AB equations, which are useful for atmospheric fluid modeling. Then, in [10], the
dynamical invariant-based quantum gates are presented. In [11,12], researchers presented
the model predictive control of a holonomic mobile robot and an adaptive robust controller
for mechanical systems with non-holonomic trajectories, respectively.

A mobile robot’s dynamic model constraints allow us a way to obtain efficient control
strategies by the driftless control method. The driftless control method consists of obtaining
a zero control effort only if the velocity of the mobile robot is equal to zero. In the literature,
there are different driftless control techniques for different kinds of robots or mechanisms,
so for example, in [13], the calculation of the control effort of two input driftless control
systems is presented. Then, in [14], the switched driftless control of a kind of non-holonomic
system is shown. Meanwhile, in [15], a driftless oscillation control for a nonlinear systems
is provided. Then, in [16], the researchers studied the controllability of a driftless nonlinear
time-delayed system. In [17,18], the involutive flows of a nonlinear driftless control system
and the asymptotic control for wheeled mobile robot with driftless constraints are evinced,
respectively.

One of the most important theoretical fundamentals for this research study is the de-
sign and implementation of dynamic output feedback controllers, taking into consideration
that a hybrid control strategy based on dynamic output feedback control is implemented
for these kinds of mobile robots. In papers like [19], a dynamic output feedback control
for a switched affine system based on L−∞ control is presented. It is important to men-
tion [20,21], in which the dynamic output feedback control of a networked control system
is presented and a mixed dynamic output feedback control for an active suspension system
with actuator saturation and time delays are presented, respectively. It is important to men-
tion that in the second paper, a hybrid control strategy with dynamic output feedback and
fuzzy type-2 controllers is implemented, taking into consideration that this control strategy
provides an optimal framework for the present research study. In [22], the dynamic output
feedback control of a Luré system is proposed. Then, in [23,24], the consensus of a linear
multi-agent system by reduced order dynamic output feedback and the robust stabilization
for an uncertain singular Markovian-jump system via dynamic output feedback control
is achieved.

It is important to mention that neural control is a suitable control strategy taking into
consideration that a hybrid control strategy for a mobile non-holonomic robot is presented.
For example, in [25], a neural fault-tolerant controller with input constraints for an output
manipulator with output constraints is presented. Meanwhile, in [26], indirect neural
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control for an unmanned surface vessel is presented considering injection and deception
attacks. Then, in [27,28], a quasi-optimal neural control for solar thermal systems and
neural-based fixed optimal control for the attitude tracking of a space vehicle with output
constraints are evinced, respectively. Finally, in [29,30], a space manipulator neural output
constrained control for a space manipulator using a Lyapunov tan-barrier functional and
the neural network control of nuclear plants are evinced, respectively.

It is also important to mention two phenomena found in practice in mobile robotics
regarding the control, stabilization and trajectory tracking of mobile robots in the presence
of input saturation and time delays. It is important to consider the following references
regarding the trajectory tracking control of mobile robots with input saturation. For exam-
ple, in [31], the adaptive stabilization and control of mobile robots with input saturation
is shown. This paper is important for this present research study considering that non-
holonomic constraints are included in the development of the control strategy. In this
paper, input saturation is not considered because of the design of driftless and non-driftless
control approaches, which are novel. In [32], the input saturation is considered for the
control allocation of a mobile robot. Then, in [33], the visual tracking of a mobile robot is
performed with the saturated inputs of velocity and acceleration. In [34], the robust control
tracking design of a mobile robot with input saturation is presented.

The time-delay phenomenon is found in many kinds of linear and nonlinear dynamic
systems. Mobile robots are not the exception in which time delays are found. It is important
to mention the following references regarding this topic. For example, in [35], the control
synchronization of mobile robots with input time delays is evinced. Meanwhile, in [36], the
control of mobile robots with time delays is presented. Then, in [37], a predictive control
for mobile robots with time delays is presented. Finally, in [38], the control of mobile robots
with time-varying delays and noise attenuation is shown.

It is good to clarify that all the numerical simulations were performed in GNU Oc-
tave 4.2.2. The implementation of multibody dynamics commercial software or a real-time
experimental setup will be implemented as a future direction of this research study. Despite
this, it is important to mention the following references regarding the multibody dynamics
simulation implementing commercial software. It is found in references like [39], where
an 8 × 8 vehicle is simulated by the implementation of multibody dynamics commercial
software. Meanwhile, in [40], a railway vehicle is simulated by the implementation of the
previous mentioned commercial software. Finally, in [41,42], the researchers explained
other multibody analyses for different kinds of mechanisms or vehicles.

This paper presents the implementation of a hybrid control strategy which consists of
a neural and dynamic output feedback controller for a non-holonomic mobile robot. We
show two control strategies: the first one is a driftless control system based on the dynamic
output feedback and neural controller, and the second one is a full controller based also
on neural and feedback output control. The dynamic output feedback and neural control
are designed implementing a Lyapunov functional suitable to obtain the control law in
both cases. The neural network implemented in this research study is a feedforward neural
network in order to facilitate the controller design. The two control strategies ensure the
stability for trajectory tracking purposes and the convergence to zero for the error variable,
which comprise the difference between the desired trajectory and the measured trajectory.
It is important to mention that two numerical experiments are provided in order to validate
the theoretical results of this research study. Discussion and conclusions are provided at
the end of this research study.

It is important to remark that the main contribution of this research study is that
non-holonomy is one of the complexities found in some kinds of mobile and robotics
systems. So, for this reason, this research study provides two control approaches related
to non-holonomy in mobile robotic systems. The first approach consists of a driftless
controller that is simple and easy to implement in specific in available hardware in many
research laboratories in the world. The driftless control strategy provides the easiness of
being implemented in mobile robotics due to its compactness and low computational effort.
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In addition, the driftless control strategy provides the important characteristic that when
the control input is zero, the mobile robot’s velocity is zero. Meanwhile, the non driftless
control strategy is more adequate when a robust and compact strategy is necessary for
the trajectory tracking of the mobile robot. The neural networks are tuned offline, so the
implementation of this control strategy is straightforward due to the implementation in
real-time hardware only requiring matricial and vectorial operations, making the controller
adequate for a more viable control strategy for these kinds of mobile robots.

It is important to mention that the neural controller component of this hybrid con-
trol strategy comprises a standard feedforward neural network. The difference between
the neural network implemented in this research study and the neural network used for
comparison purposes is that the latest one is tuned and implemented standalone in com-
parison with the dynamic and neural network controller. It is important to mention that the
neural network implemented for comparison purposes is marginally stable in comparison
with the neural network which comprises the proposed hybrid control strategy, which is
asymptotically stable.

The strengths of the proposed control strategy rely on the improvements of the per-
formance in comparison that other control strategies found in the literature, such as PID
control, sliding mode control and neural network control when these strategies are imple-
mented standalone in comparison to when these strategies are implemented as a hybrid
control strategy. It is important to mention that the theoretical results are validated nu-
merically, corroborating that this control strategy surpasses other control strategies found
in the literature. It is worthwhile to mention that one advantage of the proposed control
strategy is that the neural network controller is tuned offline in order to obtain the optimal
performance; meanwhile, as long as the neural network controller component meets the
stability results, the closed-loop stability is ensured. It is worthwhile to mention that the
dynamic controller part along with the neural controller part improves the closed-loop
performance in comparison with other control techniques. Finally, it is observed that a
novelty of this research study is that the proposed controller is designed for driftless and
non-driftless control.

2. Related Work

In this section, some related work that is worthwhile to mention in this research study
is presented. This literature review consists of the following items related to non-holonomic
mobile robots and their control:

• Kinematics of mobile robots.
• Non-holonomic mobile robots.
• Dynamic output feedback of mobile robots.
• Neural control of mobile robots.
• Miscellaneous control strategies for mobile robots.

It is important to mention the following references related to the kinematics of mobile
robots because they are crucial for this research study. For example, in [43], a kinematic
Lyapunov-based controller is presented for mobile robots. Then, in [44], a kinematic-
based control strategy for a spherical mobile robot driven by a 2D pendulum is shown.
Meanwhile, in [45], a singularity free kinematic model of a degenerated mobile robot is
obtained. Meanwhile, in the following references [46–48], the kinematic control and two
kinematic models of mobile robots are presented.

In this section, it is important to mention the following research study taking into
consideration that a kinematic and dynamic model design for non-holonomic mobile robots
is important for this research study. Among these research studies, we found the following.
In [49], the distance-based control of a non-holomic mobile robot swarm is presented.
Meanwhile, in [50], the motion and force control of mobile robots is presented by means
of a fuzzy wavelet neural network controller. Then, in [51], the distributed formation
control for a swarm of mobile robots is presented, taking into consideration the velocity
constraints and iterative learning. Meanwhile, in [11,52], a model predictive path following
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the control strategy for holonomic mobile robots and the real-time identification of different
types of non-holonomic mobile robots are presented, respectively. In [53], the trajectory
tracking of a non-holonomic mobile robot is presented by means of sliding mode control
with disturbances.

Dynamic output feedback control has been implemented specifically for mobile robots.
For this reason, it is important to mention the following control strategies, which are found
in the literature considering the importance that they have for this research study. In [54,55],
the researchers mentioned the cooperative output control of a mobile flexible manipulator
and also the distributed output feedback control of non-holonomic mobile robots with only
the leader’s position measurement. Then, in [56,57], an output trajectory tracking of mobile
robots and an adaptive tracking control by means of output feedback for mobile robots
are presented, respectively. Then, in [58], an output tracking of a non-holonomic mobile
robot with fractional order visual feedback is evinced. In [59], a finite-time output feedback
tracking control of a non-holonomic mobile robot is presented.

It is important to mention in this research study some neural robot control strategies
which are found in the literature. So, for example, in papers like [60], a vision approach
with deep neural networks to control autonomous mobile robots is presented. Meanwhile,
in [61], the kinematics of a cable-driven parallel robot is achieved by the implementation
of neural networks. Then, in [62], the trajectory tracking of a self-balancing robot by
adaptive neural networks is performed. Then, in [63], a fault diagnosis for the harmonic
reducer of industrial robots is achieved by means of neural networks. Other examples
of the implementation of neural networks are found in [64,65] in which in the first case,
the integrated consensus control of multi-robots using neural model predictive control is
outlined. Meanwhile, in the second reference, a neural control for a robotic manipulator
with an input deadzone is presented.

To finalize this section, the following references are related to miscellaneous robot
control strategies related in any other way to mobile robot control. In papers like [66,67],
model predictive and model control are implemented for the control of different kinds
of robots. Then, in [68,69], two control strategies are presented for the trajectory tracking
of mobile robots. Finally, in [11,70], model predictive and adaptive full state constrained
tracking control for mobile robots are presented, respectively.

3. Notation

In this section, the notations used in this research study are presented in order to
facilitate the paper’s readiness and clarify the theoretical results obtained in this research
study. All the operators used in this research study are evinced in this section in order to
elucidate the mathematical background used.

1. 〈., .〉 is the inner product defined in a Hilbert space.

2. [ f , g] = ∂g
∂x f − ∂ f

∂x g is the Lie bracket.

3. ∂ f
∂x =




∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xn


 is the Jacobian of a vector field.

4. ‖.‖ is the 2-norm defined in a Euclidean space.

4. Problem Formulation

In this section, the kinematic model of the mobile robot is presented. It is important
to mention that only a generic mobile robot is implemented in this research study. The
intention is to drive the robot according to a pre-specified trajectory. The kinematics of the
mobile robot is given by the following equations:

sin(θ)ẋ− cos(θ)ẏ = 0

sin(θ + φ)ẋ− cos(θ + φ)ẏ = 0 (1)
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As can be noticed in Figure 1, the coordinates and mobile robot length are defined
as shown in the figure. In order to facilitate the mathematical tractability of this kine-
matic model in order to obtain the proposed control strategies, the following equivalent
kinematic model is obtained, as shown in [71]. Consider the following change of variable
q = [x, y, θ, φ]T , so (1) can be obtained as:

〈ω1, q̇〉 =
[

sin(θ) cos(θ) 0 0
]
q̇ = 0

〈ω2, q̇〉 =
[

sin(θ + φ) −cos(θ + φ) −dcos(φ) 0
]
q̇ = 0 (2)

Figure 1. Schematic drawing of the mobile robot used in this research study.

In order to verify the holonomy of the previous mentioned system, the following
definition is needed [71]:

Definition 1. Consider two vector fields given by f ∈ Rn and g ∈ Rn, so the Lie brackets between
these two vectors are given by:

[ f , g] =
∂g
∂x

f − ∂ f
∂x

g (3)

In which x = [x1, x2, . . . , xn]T in which:

∂ f
∂x

=




∂ f1
∂x1

. . . ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

. . . ∂ fn
∂xn


 (4)

So, by defining the following vector fields:

g1 =




0
0
0
1


 g2 =




−cos(φ)
−sin(φ)
− 1

d
sin(θ)
cos(θ)
0


 (5)
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Somehow, the Lie bracket of g1 and g2 is given by:

[g1, g2] =




−sin(φ)
−cos(φ)

− 1
d cos(θ)sin(φ)cotan(φ)


 (6)

So, the previous Lie bracket does not span the set of g1 and g2 and the system is
non-holonomic [71].

5. Control Strategies Definitions

In this section, we define the two control strategies proposed in this research study.
This section is divided into the following subsections in order to evince the main theoretical
results:

• Neural controller definition.
• Driftless control strategy.
• Non-Driftless control strategy.

5.1. Neural Controller Structure

The neural controller structure consists of the following components:

ỹj =
n

∑
i=1

(
wjiσ(p + θi) + θj

)
(7)

In which wji represents the hidden unit weights of the neural network, θi represents
the input weights, θj represents the bias of the neural network, and σ(.) is the activation
function, which in this case is a sigmoidal function, and p = ∑k

r=1 qr for the inputs qr and
the j output. The neural network (7) can be written in vector matrix form as follow:

ỹ =
n

∑
i=1

[
w1i
w2i

]

︸ ︷︷ ︸
wi

σ(p + θi) +

[
θ1
θ2

]

︸ ︷︷ ︸
θ

ỹ =
n

∑
i=1

wiσ(p + θi) + θ (8)

In which wi ∈ R2 is the hidden unit weights and θ ∈ R2 is the bias vector.

5.2. Driftless Control of the Mobile Robot

For the dynamic neural network control of the mobile robot, consider the following
dynamic neural controller:

ẋc = K1e + K2xc +
n

∑
i=1

wiσ(p + θi) + θ (9)

In which xc ∈ R2 is the controller variable, K1 ∈ R2×2 and K2 ∈ R2×2 are the gain
matrices and p is the neural network controller input. In order to establish the driftless
control system, the following scheme is implemented:

q̇ = g1u1 + g2u2 =
[

g1 g2
]

︸ ︷︷ ︸
G

[
u1
u2

]

︸ ︷︷ ︸
U

(10)

In the following theorem, we define the driftless control law for the mobile robot:
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Theorem 1. The driftless dynamic system (10) is stabilized by the following control law:

U = −G−1 q
α‖q‖2 ηxT

c K1e− G−1 q
α‖q‖2 ηxT

c K2xc

− q
α‖q‖2 ηxT

c

[
n

∑
i

wiσ(p + θi) + θ

]
− G−1q (11)

in which η ∈ R+ and αη ∈ R+ are positive gain constants and e = qd − q is the error variable in
which qd is the desired trajectory of the mobile robot.

Proof. Consider the following Lyapunov function:

V =
η

2
xT

c xc +
α

2
qTq (12)

Obtaining the first time derivative of the previous Lyapunov function yields:

V̇ = ηxT
c ẋc + αqT q̇ (13)

Now, making the required substitution in the previous equation yields:

V̇ = ηxT
c K1e + ηxT

c K2xc

+ ηxT
c

[
n

∑
i

wiσ(p + θi) + θ

]
+ αqTGU (14)

So, making the required substitutions of (11) into the previous equation yields:

V̇ = −αqTq < 0 (15)

and the proof is completed.

5.3. Non Driftless Control of the Mobile Robot

To achieve this, it is necessary to define the dynamic model of the mobile robot in the
following way:

[
sin(θ) −cos(θ) 0 0

sin(θ + φ) −cos(θ + φ) −dcos(φ) 0

]

︸ ︷︷ ︸
G




ẋ
ẏ
θ̇
φ̇




︸ ︷︷ ︸
q̇

=

[
u1
u2

]

︸ ︷︷ ︸
U

(16)

in which U ∈ R2 is the control input. Now, consider the following neural dynamic
controller:

ẋc = K1e + K2xc +
n

∑
i=1

wiσ(p + θi) + θ (17)

In which K1 ∈ R4 and K2 ∈ R4 are appropriate gain matrices. Meanwhile ė = q̇d − q̇ is
the error dynamics and qd ∈ R4 is the desired trajectory of the mobile robot. The following
theorem evinces how the dynamics of the mobile robot can be stabilized.

Theorem 2. The dynamic system of the mobile robot (16) is stabilized by the following control law
as shown in:
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U = Gq̇d − G
e

β‖e‖2 ρxT
c K1e− G

e
β‖e‖2 ρxT

c K2xc

− G
e

β‖e‖2 ρxT
c

[
n

∑
i=1

wiσ(p + θi) + θ

]
+ Ge (18)

In which ρ ∈ R+ and β ∈ R+ are appropriate control parameters.

Proof. Consider the following Lyapunov functional:

V =
ρ

2
xT

c xc +
β

2
eTe (19)

So, taking the derivative of the previous Lyapunov function and making the appropri-
ate substitutions yields:

V̇ = ρxT
c

[
K1e + K2xc +

n

∑
i=1

wiσ(p + θi) + θ

]

+ βeT
[
q̇d − G−1U

]
(20)

Now by substituting (18) into the previous equation yields:

V̇ = −βeTe < 0 (21)

So the system is globally stable, and the proof is complete.

6. Numerical Experiments

In this section, two numerical experiments are performed to test and validate the
theoretical results found in this research study. The numerical experiments conducted in
this research study are intended to verify the following performance indicators:

• Minimization of the tracking error.
• Speed of response of the controller.
• Improvement in comparison with other control strategies.

The experiments performed in this research study are the following:

• Driftless control strategy.
• Non-driftless control strategy.

The conditions in which these experiments are performed is basically d = 0.5 m taking
into consideration that these control strategies are intended for kinematic control purposes.

6.1. Numerical Experiment 1

For this experiment, the following gain constants are implemented: η = 1× 10−6,
α = 1× 10−6. Now, consider the neural network parameters defined as:

Wi =
[

0.084825 0.087038 0.073776 0.098989
]

θi =




0.071581 0.096176 0.026009 0.086780
0.048502 0.041201 0.083732 0.015706
0.044176 0.037104 0.033042 0.024069
0.081635 0.010157 0.035023 0.089209




θ =




0.080926
0.066993
0.044356
0.046736


 (22)
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The experiment consists of driving the position variables x and y to the origin starting
from an initial condition in order to obtain the maximum accuracy until the final desired
value must be reached to obtain the maximum performance.

In Figures 2 and 3 present the evolution in time of the mobile robot when it is driven
from the initial condition to the origin in finite time. It is important to notice that the action
of the controller drives these variables to the origin in approximately 1 s proving that the
controller is effective despite the conditions in which the experiment is performed.

Meanwhile, Figures 4 and 5 show the evolution in time of the angles of the mobile
robot in order to drive the position variables x and y to the desired final value in finite time.
The action of the neural controller and the dynamic surface controller are demonstrated to
be fast and accurate in order to follow a predefined trajectory.

Meanwhile, Figure 6 shows the trajectory of the mobile robot in 3D. It is corroborated
in this figure how the trajectory is completed considering not only the position of the mobile
robot but also the orientation of the mobile robot.

Finally, Figures 7 and 8 show the evolution in time of the control inputs U1 and U2. It
is verified that a small control input is necessary to drive the position and orientation of the
mobile robot in finite time.

Figure 2. Position of the mobile robot in the x frame.

Figure 3. Position of the mobile robot in the y frame.
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Figure 4. Evolution in time of the variable φ.

Figure 5. Evolution in time of the variable θ.

Figure 6. Evolution in time of the mobile robot trajectory.
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Figure 7. Evolution in time of the variable U1.

Figure 8. Evolution in time of the variable U2.

6.2. Numerical Experiment 2

In this numerical experiment, we tested and validated the theoretical results regarding
the synthesis of a non-driftless control of a mobile robot. This strategy, similar to the
first experiment, consists of designing a neural-dynamic controller for trajectory-tracking
purposes. In this experiment, the proposed control strategy is compared with the following
strategies:

• Neural controller.
• Neural proportional-derivative PD controller.

The simulation parameters are the following; ρ = 0.1, β = 0.1, K1 = 1× 10−1, K2 =
1× 10−8. Meanwhile, the neural controller component has the following weights:

Wi =
[

1.1557× 10−2 7.6815× 10−3 7.8527× 10−2 7.4791× 10−2 ]

θi =




0.083379 0.02538 0.051005 0.092401
0.018102 0.090383 0.044346 0.067841
0.063258 0.062726 0.079339 0.090871

0.0421146 0.01078 0.006508 0.0038533




θ =




0.044756
0.083565
0.041632
0.076618


 (23)
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Figures 9 and 10 show the evolution in time of the position variables x and y of the
mobile robot. It is evinced that the controller synthetized with the proposed control strategy
is more accurate in comparison with the neural and neural PD controllers. The proposed
control strategy is more accurate in comparison with the strategies used as a comparative
benchmark. The reason is because of the addition of a dynamic controller component that
makes this control strategy more accurate and faster than the other control strategies.

Meanwhile, Figures 11 and 12 corroborate how the error variables reach the origin in
finite time. As evinced in the previous figures, it is verified that the error variables yielded
by the proposed control strategies reach the origin faster and more accurately than the
neural and neural PD control strategies.

Figure 9. Position of the mobile robot in the x frame.

Figure 10. Position of the mobile robot in the y frame.
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Figure 11. Evolution in time of the error variable e1.

Figure 12. Evolution in time of the error variable e2.

Then, Figure 13 presents the trajectory of the mobile robot in 3D. It is evinced that the
trajectory tracked by proposed controller is significantly better than the neural and neural
PD controllers.

Figure 13. Evolution in time of the mobile robot trajectory.
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Finally, Figures 14 and 15 show the evolution in time of the control efforts for the
variables U1 and U2. It is important to notice that the control effort for both control inputs
is significantly smaller in comparison with the control effort generated by the neural and
neural PD control strategies. This is an advantage when the controller is implemented
in a real experimental setup. If the control effort is smaller, then unwanted effects like
saturation are avoided.

Figure 14. Evolution in time of the variable U1.

Figure 15. Evolution in time of the variable U2.

7. Discussion

According to the theoretical and experimental results of this research paper, it is
important to mention and discuss some important results and findings obtained. First,
considering that the driftless control strategies with neural networks have not been reported
extensively in the literature, in this research study, we proposed a combined neural network
and dynamic controller for the trajectory tracking of mobile robots. We verified that the
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driftless control strategy is less costly in terms of control effort in comparison with other
control strategies. In addition, the driftless control strategy presented in this research paper
is useful for non-holonomic dynamics, which in this case is a mobile robot.

This paper demonstrates that the driftless control strategy provides an efficient mobile
robot navigation strategy that is fast, reliable and accurate. It is worthwhile to mention
that the neural network component of the proposed strategy provides an adequate control
strategy that can be implemented and tuned relatively easily. The weights of the neural
network do not need to be tuned offline by training methods like the Newton or Gaussian
method, but it is important to remark that the neural networks used in this research
study can be tuned by different optimization algorithms with less computational effort.
The stable trajectory tracking of the mobile robot by implementing the neural network
controller component ensured a precise stabilization by meeting the appropriate weight
requirements, so several training and optimization algorithms can be implemented.

The dynamic controller part ensures that the stability of the driftless controller must be
accurate and fast by meeting the adequate requirements of closed loop global stability. The
controller was synthesized by selecting an appropriate Lyapunov function and obtaining
the adequate control law. It is important to remark that the controller was carefully
designed in order to be implemented in hardware easily, so the proposed control approach
was relatively simple, considering also that the dynamics of the mobile robot is relatively
simple but recognizing the complexity of non-holonomy of the mobile robot dynamics.
This control strategy provides a smaller computational effort taking into consideration
that the proposed controller is compact and the neural network controller only requires
matricial and vectorial operations.

Meanwhile, the non-driftless controller is also reliable, accurate and fast, taking into
consideration that this dynamic controller is more robust but requires slightly higher control
effort than the driftless control system, but it is even more adequate for trajectory tracking
in comparison with the driftless control system. It is important to notice that depending on
the application of the mobile robot, one of these two control strategies is suitable. For this
reason, in this research study, both strategies are investigated, taking into consideration that
the control effort in some cases is required to be smaller to avoid some effects like saturation
that can produce unwanted effects. In cases where the required hardware is available, the
non-driftless control strategy is more adequate, so the driftless control strategy is suitable
when the adequate hardware is not available.

8. Conclusions

This research paper presents a driftless and non-driftless control strategy based on
neural dynamic controllers for the trajectory tracking of a mobile robot. Considering the
non-holonomic characteristics of the mobile robot dynamics, an appropriate, relatively
simple and implementable control strategy is provided in order for these results would be
implementable in real-time hardware. The Lyapunov stability theorem is implemented for
the design of the two control approaches in order to obtain a globally closed-loop stable
system. Numerical examples validate the theoretical results obtained in this research study,
proving that the theoretical results yield an appropriate performance of the mobile robot in
order to track a predefined trajectory.

As a future direction, the next steps are to design a robust controller for the mobile
robot considering different types of uncertainty for dynamic and kinematic control. Con-
sidering that uncertainties are found in real systems in practice, the dynamic modeling
and design of a robust control strategy will be proposed. Besides, the consideration of
disturbances and the implementation in a real experimental setup will be proposed in the
future. The design of a novel disturbance rejection control will be also considered.
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Abstract: Forestry operations have become of great importance for a sustainable environment in
the past few decades due to the increasing toll induced by rural abandonment and climate change.
Robotics presents a promising solution to this problem; however, gathering the necessary data for
developing and testing algorithms can be challenging. This work proposes a portable multi-sensor
apparatus to collect relevant data generated by several onboard sensors. The system incorporates
Laser Imaging, Detection and Ranging (LiDAR), two stereo depth cameras and a dedicated inertial
measurement unit (IMU) to obtain environmental data, which are coupled with an Android app
that extracts Global Navigation Satellite System (GNSS) information from a cell phone. Acquired
data can then be used for a myriad of perception-based applications, such as localization and
mapping, flammable material identification, traversability analysis, path planning and/or semantic
segmentation toward (semi-)automated forestry actuation. The modular architecture proposed is
built on Robot Operating System (ROS) and Docker to facilitate data collection and the upgradability
of the system. We validate the apparatus’ effectiveness in collecting datasets and its flexibility by
carrying out a case study for Simultaneous Localization and Mapping (SLAM) in a challenging
woodland environment, thus allowing us to compare fundamentally different methods with the
multimodal system proposed.

Keywords: multi-sensor apparatus; multimodal dataset collection; forestry robotics; LiDAR; inertial
measurement unit; depth cameras; GNSS

1. Introduction

Forest and woodland maintenance are crucial and challenging tasks that require
monitoring forests, planting trees, and removing invasive species. These tasks can be
physically demanding and time-consuming for human workers, posing significant safety
risks. While autonomous robots have the potential to revolutionize forestry maintenance,
the existing technology has limitations that prevent widespread adoption. One of the most
important of these tasks, landscape maintenance, has become particularly relevant as forest
fires have become increasingly prevalent in recent decades.

Current forestry robots [1,2] often lack the flexibility needed to easily navigate through
complex and dynamic forest environments, making data acquisition slow and cumbersome.
Forest areas are characterized by various obstacles, such as dense vegetation, uneven
terrains, and dynamic changes due to growth and decay. Conventional forestry robots may
struggle to maneuver through these challenging conditions, leading to limited coverage
and incomplete data acquisition [3]. The lack of flexibility in conventional forestry robots
also hampers their ability to access hard-to-reach areas.

To overcome existing limitations, this paper proposes the development of a lightweight
and portable LiDAR-Camera-Inertial-GNSS apparatus with an onboard computer for
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acquiring datasets in forests and woodlands. The apparatus, illustrated in Figure 1, collects
multiple sensor modalities such as accelerometer, gyroscope and magnetometer data from
an Inertial Measurement Unit (IMU), RGB and 3D Depth information from two cameras,
3D Light Detection and Ranging (LiDAR) scans, and Global Navigation Satellite System
(GNSS) information to create detailed and accurate datasets of forest environments.

The apparatus aims to solve the critical challenge of data acquisition, facilitating the
planning, testing and deployment of autonomous robots for forestry maintenance, and it has
key potential benefits, including improving the safety and efficiency of acquiring datasets
and reducing costs associated with deploying an automated vehicle in the field. This paper
also presents an experimental evaluation of the system in a real forest environment, where
Simultaneous Localization and Mapping (SLAM) implementations have been tested as a
case study, demonstrating the feasibility, flexibility and potential of the system proposed.

By proposing a lightweight and portable multi-sensor apparatus, this study provides
significant contributions to the field of forestry robotics, such as a publicly available ready-
to-use dataset [4] that enables researchers to analyze forest environments in depth, and
developing and testing perception-based methods with real-world data. In addition to the
apparatus design description and important lessons learned, the architecture developed
to record and store datasets also represents an important contribution, bringing a novel,
modular, and user-friendly architecture for acquiring multisensory outdoor datasets, allow-
ing different sensor configurations to be used with minor adjustments. Moreover, we also
contribute with an in-house developed Android App for easily exposing smartphone GNSS
data with ROS for use in Robotics [5]. As such, this work has the potential to pave the way
for a more widespread use of autonomous robots in forests and woodland scenarios.

(a) (b)

Figure 1. Illustration of the LiDAR-Camera-Inertial-GNSS apparatus proposed for dataset collection.
(a) Operator carrying the apparatus backpack. (b) Close-up view of the sensors.

2. Use Case Scenario

Simultaneous Localization And Mapping, commonly referred to as SLAM, is the action
of progressively building a map of an environment perceived by a moving entity (e.g., a
robot) while persistently localizing in that map as the entity moves through space [6,7].
SLAM algorithms play a crucial role in enabling autonomous robots to navigate and
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perceive unknown environments in real time. However, the complex and dynamic nature
of forest environments presents particularly significant challenges, making it essential to
evaluate and refine SLAM methods offline using realistic datasets.

Below, we formulate a potential use case scenario to clarify our motivations and
demonstrate how the collection of datasets can be used to test methods for artificial percep-
tion in Forestry Robotics as well as for localization and mapping in particular:

In this use case, a research engineer undertakes a data collection mission in a remote forest
area using an in-house developed multi-sensor apparatus. The mission aims to gather a diverse
range of multimodal data, such as LiDAR, IMU, Depth and RGB cameras, and GNSS, to support
research efforts.

He follows a systematic circular route through the dense vegetation of the forest while equipped
with the multi-sensor apparatus worn as a backpack. The LiDAR sensor accurately measures the
three-dimensional structure of trees and vegetation, while the IMU tracks the backpack’s orientation,
including magnetic heading. Depth cameras and RGB images provide visual details of the forest,
and GPS records positioning data throughout the entire journey.

Upon completing the route and returning to the starting point, he concludes the data collection
process and disconnects the apparatus. Before sharing the data, he transfers the acquired dataset to
his laptop as a ROS bag file and performs initial assessments as well as functional checks to ensure
the quality of the dataset.

The shared dataset becomes a valuable resource for the Forestry Robotics community. For
instance, a PhD student utilizes the collected data to test and refine SLAM algorithms, aiming
to improve the precision and efficiency of robots in mapping and navigating forest environments,
and contributing to the progress of forestry management and conservation practices by harnessing
technological advancements.

3. Background and Related Work

In this section, we start with an analysis of previous multi-sensor apparatuses de-
signed for dataset collection, including those specifically tailored for SLAM and forestry
applications, followed by a review of seminal work on 3D SLAM for a better understanding
of existing state-of-the-art methods.

In the past, a few portable and light sensing apparatuses designed to collect data from
the environment around us have already been proposed. To the best of our knowledge,
Oveland et al. [8] was the first to develop a portable apparatus to be used in a forest
environment. They compared different methodologies to study the Diameter at Breast
Height (DBH), an important feature in forestry inventory, reaching the conclusion that
a portable apparatus with multiple sensors, such as LiDAR and an IMU, is a viable al-
ternative to perform forest inventory. In Proudman et al.’s work [9], a portable system
was designed for estimating the DBH of trees in forestry applications. However, their
choice of using a metal stick instead of a backpack introduces the issue of user fatigue.
This design may lead to excessive variations in stick position, resulting in unintelligible
and uncontrolled movements, which can negatively impact data collection. While their
system had the benefit of a built-in display for real-time data visualization, the design
limitation raises concerns about the accuracy and consistency of the measurements. On
the other hand, Su et al. [10] and Xiao et al. [10] developed an accurate backpack system
with two orthogonally positioned LiDARs. Their backpack design overcomes the user
fatigue issue associated with the metal stick approach, allowing for more stable movements
during data acquisition. Since Su et al. aimed to measure DBH, their paper lacks effective
metrics to assess the precision of localization. In contrast, Xiao et al. present the Relative
Translation Error metric, introduced in [11], but they lack RGB-D and stereo information.
Jelavic et al. developed a system for forestry-harvesting missions [2]. Their system aims to
acquire a dataset to generate an a priori map of the deployment location for an autonomous
harvesting excavator. While their implementation shares similarities with the present
study by providing metrics to evaluate the precision of the SLAM algorithm used, it falls
short in incorporating RGB-D and GNSS information. Sier et. al [12] designed a very
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complete apparatus on top of a cart wheel with the objective of comparing the performance
of six different LiDARs in GNSS denied environments. LiDARs with both spinning and
solid-state technologies were considered as well as a stereo fish-eye camera. The authors
compare different state-of-the-art SLAM methods with different LiDAR configurations to
assess the most appropriate combination. For forest environments, the authors concluded
that the most robust combinations are the FAST-LIO [13] implementation using the more
precise Ouster spinning LiDARs and the Livox Horizon using a LIO-based SLAM design
for the Livox Horizon. In a recent study conducted by Faitli et al. [14], a new measurement
setup was developed to collect LiDAR and IMU data for localization and mapping using a
LIO-SAM-based method. While the system design shares similarities with the previous
work of Proudman et al. [9], Faitli et al. focused more on evaluating the performance of their
SLAM algorithm specifically designed for forest environments. However, it is important
to note that their dataset did not include RGB information, which restricts the potential
applications of their dataset. Another recent study by Li et al. [15] presented a new sensing
kit that collected LiDAR-IMU datasets in multiple GNSS-denied scenarios, including a
forest environment. Instead of using a backpack or a handheld design, the authors chose to
develop a helmet that integrated the sensors, such as LiDAR, IMU, and GNSS, while storing
the rest of the hardware in a backpack. According to the authors, the motion characteristics
of the helmet approach were similar to those found in the handheld counterpart, involving
quick shifting and shaking, whereas the backpack design only accounted for quick shifting.
However, the level of fatigue that would result from supporting a 1.5 Kg load on top of the
operator’s head remains uncertain. Once again, the datasets produced in this study lacked
RGB-D information, which hinders the potential use cases of the collected datasets.

One of the most popular implementations of SLAM is Real-Time Appearance-Based
Mapping (RTAB-Map) [16]. RTAB-Map is a graph-based SLAM system that relies on an
image loop closure detector, offering several options for the back-end, namely GTSAM
(default) [17], g2o [18] and TORO [19]. The loop closure detector uses a bag-of-words
approach to determine the likelihood that a new image was taken from a previous or
a new location. It can estimate odometry from IMU and wheel encoders, but it also
supports Visual and LiDAR odometry as optional odometry sources. When executing loop
closure, RTAB-Map reuses the features that were previously matched in Visual or LiDAR
Odometry, which improves the overall performance. RTAB-Map can generate both 2D and
3D Occupancy grids.

Several LiDAR-based methods derive from LiDAR Odometry And Mapping, which is
commonly known as LOAM. Although LOAM can create highly accurate maps, it usually
performs poorly in places with few landmarks, such as long corridors. LeGO-LOAM [20]
adds two additional modules to the LOAM technique: point cloud segmentation and
loop closure. These extra components allow an improvement in computing performance
and drift reduction over long distances but does not improve the results when used in
a featureless environment. LeGO-LOAM uses the naive ICP algorithm to perform loop
closure, but a more robust approach based on a point cloud descriptor is implemented in
SC-LeGO-LOAM [20,21]. To help improve the performance in a low features environment,
researchers have been recently adding an IMU to similar systems in a tightly coupled
approach (see [13,22,23]), giving rise to the term LiDAR Inertial Odometry (LIO). For
instance, the LIO-SAM [24] approach proposes a tightly coupled LiDAR framework atop
of a factor graph. The implementation considers four different factors, namely IMU
preintegration, LiDAR odometry, GPS and a loop closure factor, making it ideal for multi-
sensor fusion and global optimization. Lately, several methods based on similar principles
have been proposed [25–32].

Cartographer is Google’s implementation to solve the SLAM problem [33]. It is also
a LiDAR-based graph SLAM divided into two main components: local SLAM (the front
end) and global SLAM (the back-end). This approach takes input of a range-finding sensor,
e.g., a LiDAR, and applies a band-pass filter to the input data. IMU can also be used to
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help figure out the robot rotation and to provide information on gravity direction, which is
used in the 3D variant.

In order to evaluate SLAM systems, vital metrics such as Relative Translation Error
(RTE) and Absolute Position Error (APE) were introduced in [11]. RTE measures the ac-
curacy of estimating the relative translation between two positions. If the two positions
are taken from the same location, a lower RTE implies a more precise localization estimate.
On the other hand, APE quantifies the accuracy of absolute position estimation by com-
paring the estimated positions with ground truth values. A smaller APE indicates better
localization accuracy.

The systems reviewed in this section provide valuable insights into the challenges and
opportunities in the development of a portable apparatus for forestry applications. Table 1
presents a comparison between the reviewed systems and the SLAM algorithms tested
using the data collected with each of these frameworks. Some systems focus on the forest
application inventory, and other applications are particularly focused on determining the
DBH of trees. Key metrics are missing in some works, making it difficult to effectively
evaluate their performance for SLAM. The majority of the apparatuses reviewed in this
study lack RGB-colored images of the environment. RGB information plays a crucial role
in various artificial perception algorithms and methods, and its absence limits the potential
use cases for both the apparatus and the dataset it generates. It is imperative to include
RGB information in recorded datasets to enable a wider range of use cases. Furthermore,
these systems are typically expensive, which is primarily due to the high costs associated
with the prevalent LiDAR technology incorporated in them.

Table 1. Comparison table between previously mentioned systems.

Work IMU LiDAR GNSS Stereo RGB-D SLAM Method Error (m) Forestry Structure 1 Cost (USD)

Oveland et al. [8], 2018 X X X — — GeoSLAM (proprietary) [34] N/A X Backpack $13,500

Proudman et al. [9], 2021 X X X — X
Factor-Graph LIO [35] +

Elevation Mapping [36]
0.11 (RTE) X Handheld $19,000

Su et al. [10], 2021 X X — — —
Custom LiDAR-SLAM

inspired by [37,38]
N/A X Backpack $9000

Jelavic et al. [2], 2021 X X — X — Cartographer [33] 0.41 (APE) X Handheld $10,500

Xiao et al. [39], 2022 X X X — — LIO-SAM [24] 0.03 (RTE) — Backpack $10,000

Sier et al. [12], 2022 X X X X —
FAST-LIO [13]

LIO-Livox [40]
0.05 (APE) X Wheeled Cart $43,000

Faitli et al. [14], 2023 X X X — — LIO-SAM-based [24] 0.02-0.16 (APE) X Handheld $34,000

Li et al. [15], 2023 X X X — —

FAST-LIO [13]

LOAM [41]

LIO-LIVOX [40]

0.13-0.35 (APE) X Helmet $41,000

Our solution X X X X X
RTAB-Map [16]

Cartographer [33]
0.09-0.28 (RTE) X Backpack $4000

1 The estimated costs outlined represent a lower bound value for the examined systems.

An estimate of the overall value of the above-mentioned works has been included in
Table 1. While some costs are provided by the authors, most are estimated based on the
current unit price of the sensors that make up the various apparatus systems.
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By building upon the lessons learned from previous works, we have built an appara-
tus that combines multiple sensor modalities into a single lightweight, inexpensive and
portable backpack system. The integration of multiple sensors allows for comprehensive
data acquisition, which in turn enables a detailed and accurate perception of the forest envi-
ronments. The apparatus presented in this study overcomes the limitations of prior systems
by providing a wider range of sensory information. Additionally, the collected datasets
are made publicly available, including high accuracy pose estimation off the shelf, with
applicability potential beyond localization and mapping algorithms, as we demonstrate
later on.

4. System Description

Among the reviewed approaches, the use of a wheel cart system, as demonstrated
in [12], offers the most ergonomic solution. However, this approach significantly hampers
the maneuverability of the apparatus. Forest environments present several challenges and
obstacles such as uneven terrain, rocky surfaces, and dense vegetation, making wheeled
vehicles generally impractical for navigation. On the other hand, mounting the entire
system on a metal rod held firmly in the operator’s hands greatly enhances maneuverability,
facilitating precise pointing and feature capture. Nonetheless, this approach comes with its
limitations. The human operator may experience fatigue over time, resulting in reduced
stability when holding the system and ultimately affecting the quality of the dataset.

The backpack method strikes a balance between ergonomics and maneuverability. It
offers easier portability and improved stabilization during extended distances compared to
the rod approach while remaining highly adaptable to uneven terrains. Taking into account
the unique demands of forestry scenarios, the backpack method emerges as the most
practical compromise, enabling operators to navigate through the challenging environments
while maintaining stability and minimizing fatigue. Therefore, as seen in Figure 1, we
decided on a backpack-based design for the apparatus proposed.

Our objective emphasizes the importance of collecting datasets that encompass a
diverse range of sensory information from different sensor types. In mapping applications,
accurate depth sensors play a crucial role, with LiDAR being widely recognized as the pre-
dominant sensor in this field. By incorporating an RGB-D camera, the datasets we generate
become more versatile and can be utilized for various applications, such as segmentation
and fuel identification algorithms. Unfortunately, this important component lacks in most
of the reviewed literature. The inclusion of an IMU and GNSS information in the datasets
enables a more efficient exploration and testing of sensor fusion algorithms and localiza-
tion methods. By encompassing these different sensor modalities, our datasets become
comprehensive resources for advancing research and development in various domains.

Alongside the sensor possibilities, there are additional requirements that must be
fulfilled to ensure a competent working solution. Firstly, it is critical that the system can
run continuously for a minimum of two hours so that longer expeditions and/or multiple
consecutive datasets can be collected without recharging its batteries. Additionally, the
software should be well integrated using a commonly used middleware for Robotics
applications such as ROS (Robot Operating System), and the system should be able to
endure high outdoor temperatures to allow working under most weather conditions. This
includes considering appropriate cooling solutions to avoid the sensors to go beyond their
maximum operating temperature. Other important requirements include modularity for
adding, swapping, or removing sensors and processing nodes and real-time notification of
sensor malfunctions during startup and runtime. These characteristics are mainly achieved
through ROS and Docker—further explained later on—and highly improve the system’s
robustness and potential for adoption in different scenarios. In addition, the apparatus
should be affordable (below $4500), and its weight should be kept to a minimum so as not
to cause discomfort to the user. Naturally, multiple sensors and a small-factor onboard
computer must be incorporated to achieve the proposed goals, and all sensors must be kept
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fixed in the apparatus structure with a well-known geometrical relationship between them
at all times.

As shown in Figure 2a, the system comprises the following components: a Xsens MTi
IMU, a Mid-70 Livox LiDAR, a Mynt Eye S1030 stereo camera, and an Intel Realsense D435i
RGB-D camera. The LiDAR publishes point clouds at 50 Hz with precise measurements and
a maximum range of 90 m. However, the LiDAR’s limited circular Field of View (FoV) of
70.4◦ restricts the amount of information it can capture. To complement the LiDAR data, the
Mynt Eye provides point clouds with a larger horizontal FoV of 146◦. The Intel Realsense
D435i camera not only provides additional depth information but also serves as the single
source of RGB and infrared information, which is useful for identifying relevant forest
entities, such as flammable material [3]. The system also contains an onboard computer,
the Udoo Bolt V3, that is responsible for receiving and recording data from every sensor.
The onboard computer is equipped with a high-speed M.2 NVMe Solid-State Drive (SSD)
to allow the simultaneous recording of high volumes of data acquired by the different
sensors. The entire system is powered by a 14.8 V Turnigy battery with 10,000 mAh, which
can provide approximately 4 h of continuous operation. For further clarification, a diagram
showing how the various modules are physically interconnected and powered is presented
in Figure 2b.

Livox Mid-
70

Mynt Eye
S1030

Intel Realsense
D435i Xsens IMU

(a)

Udoo
Bolt

Step-up
19V

Turnigy 14.8V
10,000mAh

Battery

Step-down
12V

Step-down
5V

Xsens
IMU

Realsense
D435i

Livox
LiDAR Fans

USB Hub

 

Mynt Eye
S1030

14.8V

5V 12V19V

U
SB 3.1

Type A

USB 3.1
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Ethernet

Sensor Box

Backpack

Sensor
Component
Computer
Battery
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Figure 2. A closer look at the multiple sensors incorporated in the system and their connectivity and
power management. (a) Sensor framework. (b) Physical system block diagram.

To ensure durability and functionality, the physical structure of the apparatus was
divided into two distinct components: “sensor box” and “backpack”. The sensor box
houses the sensors, while the backpack accommodates the computer, battery, and voltage
regulators (cf. Figure 2b). The system is intended for use in outdoor environments, where
ambient temperatures can reach over 35 °C for extended periods of time, and sensors
experience increased heating. In such conditions, the use of some plastic materials such as
Polylactic Acid (PLA) are not suitable due to their potential to deform or degrade. Given
that the host computer can reach high temperatures, the structure inside the backpack
is made of Acrylonitrile Butadiene Styrene (ABS), which can withstand temperatures of
about 80 ◦C without significant degradation [42]. The sensor box, on the other hand, is
built using polyethylene terephthalate glycol (PETG), which is a material that has a glass
transition temperature at around 75 ◦C [43] but offers more adequate ultraviolet resistance,
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which is important considering that this is the most exposed part of the apparatus. To
mitigate potential thermal issues in the sensor box, several fans are set up to blow fresh
air into the cameras, which tend to heat up after long periods of operation. A heat sink is
also attached to back of the Realsense D435i camera to improve heat dissipation. These
measures not only help maintain optimal performance but also ensure that the temperature
of the sensors remains within safe limits, minimizing any potential safety risks to the
operator. Moreover, to facilitate future upgrades, the Livox LiDAR is mounted on top,
allowing for easy replacement with a LiDAR with a larger horizontal FoV in the mid-term
future. Since the primary purpose of the Mynt Eye is to increase the FoV for mapping, the
mount that holds it in place was designed to allow easy rotation around the yaw axis. This
enables users to adjust the extent to which the Mynt Eye’s data overlaps with the FoV of
the LiDAR and the D435i as needed in their specific application.

Sensor poses are known in a common frame of reference from the Computer-Aided
Design (CAD) of the system with the exception of the yaw angle of the Mynt Eye due to its
adjustable nature. Sensor registration is completed manually using the transformations
provided by CAD. Once the Mynt Eye is physically set by the user in its final orientation,
its pose is passed as an input parameter of the system by visually comparing the 3D
intersection of the different sensor point clouds. From our experience, this procedure yields
appropriate results in general. Yet in the future, we intend to work on more precise and
automated extrinsic calibration of the apparatus’ sensors.

We use a software platform for packaging and running applications in isolated con-
tainers, since the sensor drivers run in different, not fully cross-compatible versions of ROS.
Therefore, the project’s complete architecture for the dataset recording process, as depicted
in Figure 3, is designed around Docker. It includes containers for the different ROS versions
needed as well as a container running a ROS bridge server, which exposes port 9090 on
the host computer to receive GNSS information from an in-house developed Android
Sensor ROS application (see [5] for more information). Additionally, another container is
responsible for writing the dataset into the rosbag format, and a debugging node runs on a
System Diagnostic container, recording a separate rosbag dataset with various useful moni-
toring information, such as sensor acquisition frequencies and CPU temperature. The use of
Docker also enables easy replication of the architecture for different apparatuses with sensor
configurations specific to each use case. The codebase for the complete system architecture
can be accessed at https://github.com/Forestry-Robotics-UC/fruc_dataset_apparatus,
accessed on 12 June 2023.
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(Noetic)Record ROS Bridge

ROS
Noetic

ROS
Melodic

System
Diagnostic

Host

Livox
Mid 70

Realsense
D435i

Mynt Eye
S1030
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IMU
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StreamerWeb Socket

RGB @30Hz
Depth @30Hz
Accel @63Hz
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Point Cloud @50Hz
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USB A

USB A

USB C
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Docker Container
Android Application
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Figure 3. Complete system architecture, highlighting the different sensors, devices and Docker containers.
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5. Experimental Procedure

A dataset [4] was collected at the Choupal National Woods (40◦13′13.3′′N; 8◦26′38.1′′W)
in Coimbra, Portugal, with the specific aim of evaluating the apparatus’ effectiveness in
challenging outdoor conditions. The dataset was collected on a sunny day, where the
user performed two circular loop laps, amounting to a distance of approximately 800 m
(as depicted in Figure 4) with a duration of 15 min 33 s. Throughout the experiment, the
smartphone collecting GNSS information was kept in a fixed position in relation to the
apparatus, with the android application running in the foreground with the phone’s screen
actively on. The phone was connected to a network carrier, and the cellular data plan was
activated to improve the Assisted GNSS estimation. The woodland environment featured a
diverse range of visual elements, including tree trunks, trees, bushes, and leaves, providing
rich features for evaluation.

(a)
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7

4

100 m

(b)

Figure 4. Aerial/top views of the navigated path at the experimental site in the Choupal National
Woods. (a) Route map [44]. (b) Satellite view (Google Earth).

The dataset entails a diverse range of ROS sensor data acquired at different frequencies.
The stored data includes IMU readings, i.e., 3D orientation, angular velocity and linear
acceleration; magnetic field readings and its internal temperature values (all at 99.26 Hz).
The Livox LiDAR provides 3D point clouds at 49.88 Hz, while the smartphone provides
Assisted GNSS (A-GNSS) fix data (latitude, longitude, etc.) at 1.05 Hz. Left and right
monochromatic stereo images are obtained by the Mynt Eye camera at 19.82 Hz, while the
Intel Realsense acquires RGB and depth images at 29.68 Hz, together with accelerometer
(63.33 Hz) and gyroscope (197.90 Hz) measurements from the internal IMU. The data
captured offer a comprehensive view of the environment, enabling extensive analysis and
facilitating research and development for numerous applications.

In order to assess the quality of the collected dataset, we employ different SLAM
methods to obtain reliable localization data. Localization plays a critical role in various
applications that involve navigation, such as map building and transversability analysis.
It serves as the foundation for perception-based algorithms to operate effectively, and
therefore, it is paramount to provide localization information alongside raw data in a
dataset to increase the potential use cases. In addition, SLAM algorithms can also serve
as a valuable means to evaluate the quality of the dataset. For instance, if an RGB feature-
matching algorithm in SLAM performs well and successfully maps and recognizes loop
closures, it suggests that the images captured by the RGB-D camera possess sufficient
quality for other algorithms like metric-semantic mapping. The same logic can be applied
for the LiDAR scans. The utilization of various types of SLAM methods and the subsequent
evaluation of their performance enables us to gauge the dataset’s overall quality and its
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suitability for a wide range of applications. This showcases the flexibility and usability
potential of the dataset provided. For this, we focus on two prominent, distinct and
proven open-source ROS-based SLAM algorithms: Cartographer and RTAB-Map. These
are compared and evaluated based on a decoupled multimodal architecture, as illustrated
in Figure 5.

LiDAR
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Filter

Simultaneous
Localization
and Mapping
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Fused
Odometry

Map

Absolute, map-referenced
localization

GNSS Fix Data
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Stereo
Odometry
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RGBD
Odometry
EstimationImage Data

Point Cloud
Data

Odometry

Odometry

Odometry

IMU Data Filtered IMU Data

Pre-Processing module
Data Fusion module
SLAM module

Navsat
Transform

Odometry

Figure 5. High-level diagram of the process to acquire a map of the environment and an absolute,
map-referenced localization using the data from the available sensors. Dashed arrows represent
optional connections.

Relevant raw data collected with the diverse sensors have been processed using
dedicated ROS nodes to convert sensory information into odometry motion estimates.
LiDAR odometry from the Livox Mid 70 is computed using the livox_mapping [45] ROS
package, which extracts feature points from point clouds to obtain relative poses via frame
matching and is especially tailored for the Livox LiDAR series.

Odometry estimation from the Intel Realsense D435i’s RGB-D images is obtained using
rgbd_odometry, which is part of the RTAB-Map ROS package. The node computes visual
features and depth information from depth images; then, it applies feature correspondences
between images and Random Sample Consensus (RANSAC) to extract the most likely
transformation between consecutive images. For stereo images from the Mynt Eye S1030
camera, we use the stereo_odometry node, which is also included in the RTAB-Map ROS
package. The node computes visual features extracted from the left images with their depth
information computed by finding the same features on the right images. Then, it also uses
feature correspondences and a RANSAC approach to extract the most likely transformation
between the consecutive left images.

GNSS Fix data can also be converted into an odometry input for late fusion with the
remaining estimates of relative pose. For this, one can use the navsat_transform_node
included in the robot_localization ROS package. In our architecture, we set this input
as optional, given the limited capabilities of GNSS in the woodland scenario where the
experiments were performed due to tall trees and large canopies that can obstruct the line
of sight between the GNSS receiver and the satellites, and introduce multipath interference,
thus leading to a degradation of GNSS positioning.

The odometry estimates derived are then fused with the IMU measurements. For this,
the angular velocities, linear accelerations, and magnetic readings from the XSens MTi
IMU are firstly fused using a Madgwick Filter (see [46] and imu_filter_madgwick ROS
package). This provides a 3D orientation estimate that is passed on as an additional input
together with the odometry estimates into the data-fusion module to provide a 6D fused
odometry input (3D position and 3D orientation) to the SLAM method.
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The fusion node uses an Unscented Kalman Filter implementation from [47], which is
available in the robot_localization ROS package. The resulting fused odometry, along
with sensor point clouds and filtered IMU measurements feed either the Cartographer or the
RTAB-Map SLAM methods to generate a map and an absolute map-referenced localization.

It is important to note, however, that the dataset collected as described above is
unlabeled and also lacks ground-truth reference localization information. Therefore, a set
of quantitative and qualitative metrics need to be defined for algorithm evaluation and/or
training. For SLAM, in particular, since in this experiment, the user’s start pose matches
their final pose, the quantitative RTE and Relative Angular Error (RAE) metrics can be
computed as:

RTE =
√
(x f inal − xstart)2 + (y f inal − ystart)2 + (z f inal − zstart)2, (1)

and

RAE =
√
(φ f inal − φstart)2 + (θ f inal − θstart)2 + (ψ f inal − ψstart)2, (2)

where φ, θ, and ψ represent the Euler angles (roll, pitch, and yaw respectively).
To assess the alignment and consistency of the SLAM algorithm outputs with the real-

world environment, a qualitative metric was employed. This metric involves overlaying
the localization onto a map of the Choupal National Woods, which was generated by O-
Solutions [44] through the human practice of cartography. This visual comparison provides
clear insights into the alignment and consistency of the SLAM algorithms’ outputs with
respect to the real-world environment.

6. Results and Discussion

The experimental evaluation results reveal distinct characteristics of the two SLAM
methods tested. Cartographer and RTAB-Map employ different sensor modalities to es-
timate their respective localizations. RTAB-Map utilizes Odometry, IMU, and RGB-D
information, while Cartographer leverages Odometry, IMU, and LiDAR data. The versatil-
ity of the recorded dataset and the apparatus becomes evident in supporting these diverse
sensor configurations, showcasing its adaptability and effectiveness to accommodate SLAM
approaches with distinct assumptions.

Figures 6 and 7 illustrate the localization results of adopting the SLAM techniques
along the navigated path followed by the user while carrying the apparatus on his back.
It can be observed that both methods are able to continuously localize the system with
different levels of success when applied to the data collected.

Since the methods are based on GraphSLAM, special attention is placed on loop
closure identification and its impact on the overall results. RTAB-Map uses visual features
for loop closure, while Cartographer is supported by LiDAR-based loop closure. Both
approaches successfully identify loop closures along the path (see Figures 6 and 7), which
helps to significantly reduce the RTE and RAE for the two methods, as shown in Table 2.
This indicates that the dataset has enough distinct features from multiple modalities for
the SLAM implementations to recognize previously visited locations and enhance the
overall mapping accuracy. However, the RTAB-Map with loop closure exhibits a noticeable
negative variation along the Z-axis, despite the dataset being collected in a relatively flat
terrain. This is not observed when RTAB-Map operates without loop closure, as illustrated
in Figure 7c. This suggests that the Z-axis variation issue is primarily related to the back-
end graph optimization of the SLAM algorithm. In woodland and forest scenarios, visual
similarities and locations that look alike are common, which may cause false positives in
loop closure. This can also be caused by sensor noise and/or lighting changes, and it is
more likely to occur if visual features are used, as in the case of RTAB-Map. Moreover, we
made use of the default graph optimization approach GTSAM [48] in RTAB-Map. Yet, it
also supports TORO [19] and g2o [18]. We hypothesize that further tuning of the back-end
parameters could eventually enhance the Z-axis variation and the overall trajectory accuracy
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for RTAB-Map. In contrast, Cartographer demonstrates higher localization precision, with
the back-end successfully optimizing large sparse pose graphs with the Ceres Solver [49]
while keeping the trajectory on leveled ground (refer to Figure 7c). As a result, it achieves
superior overall localization performance as shown in Figure 8 when compared to RTAB-
Map, overlaying accurately on top of the reference route map from [44], as illustrated in
Figure 8a.

(a)

(b) (c)

Figure 6. Absolute map referenced localization of the traveled path computed with and without loop
closure by Cartographer. (a) Top view. (b) 3D isometric perspective. (c) Side view.

Table 2. Relative Pose Error (Translation and Rotation) of the SLAM methods tested at the same start
and end pose.

Method RTE (m) RAE (rad)

RTAB-Map 0.089 0.25

RTAB-Map without loop closure 77.10 1.18

Cartographer 0.28 0.069

Cartographer without loop closure 17.10 0.21

191



Sensors 2023, 23, 6676

(a)

(b) (c)

Figure 7. Absolute map referenced localization of the traveled path computed with and without loop
closure by RTAB-Map. (a) Top view. (b) 3D isometric perspective. (c) Side view.

The A-GNSS data recorded from the smartphone did not yield satisfactory results in
terms of accuracy and trajectory representation, as illustrated in Figure 9. While the two
loops followed by the user are discernible, the overall shape of the trajectory is not con-
sistent with the navigated path. The woodland environment, with its tall trees and dense
canopies, poses significant challenges for acquiring reliable GNSS data. The obstructed
visibility of satellites in such an environment hampers the quality and reliability of the
A-GNSS measurements. Even though the proposed architecture supports GNSS input and
this is provided in the dataset for further study, recognizing the sub-optimal nature of
these measurements, we have decided not to include them in the sensor fusion node. This
decision avoids the potential degradation of localization performance in both SLAM algo-
rithms, as the incorporation of unreliable data could introduce errors and inconsistencies
into the fusion process.

The maps built when executing the two SLAM methods are significantly different.
RTAB-Map supports the generation of 3D point clouds [50] or a 3D octomap [51] of the
environment, while Cartographer produces a 2D occupancy grid [52]. To allow for a side-
by-side comparison, one can use the localization yielded by the SLAM method together
with a mapping framework that reconstructs a comprehensive 3D RGB map utilizing the
RGB-D information contained in the dataset. In this work, we employ these SLAM methods
alongside the UFOMap 3D mapping framework [53] to build consistent and optimized 3D
colored octree maps of the environment, as depicted in Figure 10. Comparing the generated
maps with an image (Figure 10a) captured from a similar vantage point, it is evident that
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both maps exhibit consistency. The distinct features of the path are clearly discernible
amidst the surrounding vegetation, including small bushes and grass, highlighting the
accuracy and fidelity of the reconstructed map.

Traveled Path
RTAB-Map

Cartographer

(a) (b)

(c)

Figure 8. Absolute map referenced localization of the traveled path computed with loop closure by
Cartographer and RTAB-Map. (a) Overlay of RTAB-Map and Cartographer localization with the
route map of Figure 4a. (b) 3D isometric perspective. (c) Side view.
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Figure 9. Assisted GNSS (A-GNSS) positioning from a smartphone integrated in the apparatus.
(a) A-GNSS data during first (blue) and second (orange) laps of the navigated path (Google Maps).
(b) Satellite view (Google Earth) of the navigated path. Replicated from Figure 4b for comparison.
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(a)

(b) (c)

Figure 10. Octree maps generated by using each method’s localization with loop closure correction
and the RGB-D outputs as inputs to the UFOMap package [53]. (a) Reference RGB image. (b) Scene
reconstruction using Cartographer. (c) Scene reconstruction using RTAB-Map.

In the above discussion, we have used the RGB-D camera data to build the 3D colored
octree map of the environment. However, another representation of the environment can
be accomplished by registering the colorless point clouds obtained from the 3D LiDAR
sensor using the localization data derived from the SLAM methods. This is illustrated
in Figure 11. This approach allows for the inclusion of more distant features in the map
due to the extended range of the LiDAR. The resulting map is consistent and provides
clear identification of salient features such as trees and the borders of the path. When
examining the map from a close-up of a 3rd person view of the apparatus shown in
Figure 11a, individual trees are reconstructed with a high level of detail, showcasing the
dataset’s ability to capture fine details. Figure 11b,c provide isometric perspectives on the
complete maps generated by the Cartographer and RTAB-Map localizations, respectively.
Although both maps demonstrate consistency, it is evident that the Cartographer map
exhibits significantly sharper details as the features on Figure 11c appear more blurred. A
video of the data acquired with the generation of the maps using the dataset is available
at https://youtu.be/9EXIwiExvWs, accessed on 16 June 2023. This detailed and precise
representation of the environment enables researchers to gain valuable insights into the
environment, facilitating tasks such as path planning and traversability analysis, and
further analysis of the forest landscape, for instance through semantic segmentation or
metric-semantic mapping.

As a final, bonus example going beyond our use case scenario, Figure 12 shows the
mechanical effort-based traversability technique proposed by Carvalho et al. [54] running
with the data provided in our dataset. It uses point clouds to infer terrain gradient and
the location of obstacles in space, and from there, it generates a global 2D costmap with
mechanical effort information to guide the agent from one place to another in a way that
minimizes the mechanical effort it is subject to and potentially its energy/fuel consumption.
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The rich and accurate data extraction procedure also highlights the utility of acquiring
multimodal datasets with the proposed apparatus, enabling a deeper understanding of the
forest’s structural characteristics through robust perception capabilities.

(a)

(b) (c)

Figure 11. Livox LiDAR point clouds registered into a map using the 6D localization computed by
Cartographer and RTAB-Map, with both methods using loop closure correction. In this representation,
colors represent the LiDAR intensity, i.e., the strength of the backscattered echo at each point.
(a) Close-up view of registered point clouds while traversing the navigated path with localization
extracted from Cartographer. (b) 3D reconstruction of travelled path in isometric perspective using
Cartographer localization. (c) 3D reconstruction of travelled path in isometric perspective using
RTAB-Map localization.

Figure 12. Mechanical effort costmap generated by the method presented in [54] with data from our
dataset, in which lighter values in the grayscale represent easier to traverse areas and vice versa.
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7. Conclusions

In this study, we propose the development of a portable, lightweight and inexpensive
apparatus for collecting multisensory data considering the requirements for forest and
woodland environments while also allowing for the collection of datasets in any type of
environment. Through experimental evaluation, providing insights into the performance of
state-of-the-art SLAM implementations on the collected data, we demonstrate the versatility,
feasibility and potential of the proposed approach in facilitating the planning, testing, and
deployment of autonomous robots for forestry maintenance.

The dataset generated by the multi-sensor apparatus, openly available in [4], presents
a contribution to the field of forestry robotics, as it provides the bulk of data required
by researchers to analyze forest environments in depth, obtain an a priori map for robot
operations, and label and train segmentation algorithms. The novel architecture developed
for recording and storing the dataset provides a modular and user-friendly solution for
acquiring extensive and dense datasets, seamlessly integrating into diverse platforms with
various sensor combinations. Moreover, we also contribute to the community with an
Android mobile app implementation, available in [5], which delivers GNSS/A-GNSS data
for ROS systems out-of-the-box.

This opens up new possibilities for a more widespread adoption of autonomous robots
in the field, improving the efficiency of data acquisition and reducing costs associated with
automated vehicle deployment. Our study lays the foundation for future research and
development in autonomous forestry maintenance, ultimately leading to safer and more
efficient practices in forestry management.

Looking ahead, we plan to integrate a GNSS Real-Time Kinematic (RTK) station in our
multi-sensor apparatus to facilitate reliable comparison between localization and/or SLAM
algorithms. GNSS-RTK can deliver absolute gold standard positioning with centimeter-
level precision, which is particularly valuable for localization-dependent algorithms, en-
abling more precise and refined results in these areas of research. Future datasets will be
collected in various forest environments, with a particular focus on locations that have
significant terrain variations. The current dataset lacks annotated images, but this limita-
tion can be turned into an opportunity for users to apply their domain knowledge and
expertise in annotating the images according to their specific needs, making the dataset
more adaptable.
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Abbreviations
The following abbreviations are used in this manuscript:

A-GNSS Assisted Global Navigation Satellite System
ABS Acrylonitrile Butadiene Styrene
APE Absolute Position Error
CAD Computer-Aided Design
CPU Central Processing Unit
DBH Diameter at Breast Height
FoV Field of View
g2o General Graph Optimization
GNSS Global Navigation Satellite System
GPS Global Positioning System
GraphSLAM Graph-based Simultaneous Localization and Mapping
GTSAM Georgia Tech Smoothing and Mapping
ICP Iterative Closest Point
IMU Inertial Measurement Unit
LIO LiDAR-Inertial Odometry
LIO-SAM LiDAR-Inertial Odometry with Smoothing and Mapping

LiDAR Light Detection And Ranging
LeGO-LOAM Lightweight and Ground-Optimized LiDAR Odometry and Mapping
LOAM LiDAR Odometry and Mapping
PETG Polyethylene Terephthalate Glycol
RANSAC Random Sample Consensus
RGB-D Red, Green, Blue and Depth channels/sensor
ROS Robot Operating System
RTAB-Map Real-Time Appearance-Based Mapping
RAE Relative Angular Error
RTE Relative Translation Error
RTK Real-Time Kinematics
SC-LeGO-LOAM Scan Context Lightweight and Ground-Optimized LOAM
SLAM Simultaneous Localization And Mapping
SSD Solid-State Drive
TORO Tree-based netwORk Optimizer
UFOMap Unknown Free Occupied Map
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Abstract: Acoustic and optical sensing modalities represent two of the primary sensing methods
within underwater environments, and both have been researched extensively in previous works.
Acoustic sensing is the premier method due to its high transmissivity in water and its relative
immunity to environmental factors such as water clarity. Optical sensing is, however, valuable
for many operational and inspection tasks and is readily understood by human operators. In
this work, we quantify and compare the operational characteristics and environmental effects of
turbidity and illumination on two commercial-off-the-shelf sensors and an additional augmented
optical method, including: a high-frequency, forward-looking inspection sonar, a stereo camera
with built-in stereo depth estimation, and color imaging, where a laser has been added for distance
triangulation. The sensors have been compared in a controlled underwater environment with known
target objects to ascertain quantitative operation performance, and it is shown that optical stereo
depth estimation and laser triangulation operate satisfactorily at low and medium turbidites up to
a distance of approximately one meter, with an error below 2 cm and 12 cm, respectively; acoustic
measurements are almost completely unaffected up to two meters under high turbidity, with an
error below 5 cm. Moreover, the stereo vision algorithm is slightly more robust than laser-line
triangulation across turbidity and lighting conditions. Future work will concern the improvement of
the stereo reconstruction and laser triangulation by algorithm enhancement and the fusion of the two
sensing modalities.

Keywords: sensor testing and evaluation; multiple-sensor systems; imaging sensors; acoustic sensors;
sonar measurements; stereo vision; laser triangulation; illumination; turbidity

1. Introduction

Just as in the case above water [1–3], a large variety of motivating applications and
solution algorithms exist for the use of sensor information in many operational contexts,
such as localization and inspection, including 2D/3D reconstruction of underwater objects
and scenes [4]. Acoustic sensing is the premier sensing modality used in underwater envi-
ronments due to the high speed of sound and low attenuation in water [5]. Simultaneously,
many underwater sensing tasks such as inspection are advantageously performed using
optical cameras because they deliver high sensing resolution and are easily interpreted by
operators [6]. However, optical sensing is considerably affected by turbidity, attenuation,
and lighting (both natural sunlight and artificial illumination), factors which do not signifi-
cantly affect acoustic methods [7,8]. Hence, the sensing modalities have complementary
advantages; combined sensing solutions lead to a robust solution which is often required
for use in automated solutions, as noted in [9,10].

Given these complementary sensing effects, it is desirable to quantify the effects
of environmental influences such as turbidity on sensing performance to elucidate the
operational limitations for each sensing modality.
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The contribution of this work is to reproduce and expand on previous works con-
cerning the effect of environmental turbidity and lighting on target reconstruction by the
precise control of target distance using a 3D servo-driven gantry; the recording of simulta-
neous stereo, color image, laser-triangulation, and acoustic imaging in the same controlled
experiment; and quantitative evaluation of sensor noise and accuracy by conversion to
real-world-unit point clouds for each sensor.

The hypotheses are that optical sensing accuracy will be negatively affected as a
function of increasing turbidity; that an optimum illumination level that provides the
best performance exists; and that it will break down when exceeding a certain turbidity
and target distance; contrarily, the acoustic sensor should be negligibly affected by these
environmental parameters.

The rest of the paper is organized as follows: firstly, related works are outlined;
secondly, the materials and methods applied in the experiments are described, including
the chosen commercial sensors and experimental facility; thirdly, the results from the
sensor’s raw measurements are evaluated for their operating limits and accuracy, with
examples of measurements additionally illustrated; finally, the discussion summarizes the
qualitative and quantitative behavior of the sensors.

2. Related Work

Previous investigations have focused on different objectives: for example, the recon-
struction of undistorted and clear visual images from subsea images for the purposes of
presentation to operators and the reconstruction of 2D/3D objects for the purposes of
object detection, segmentation, classification, and structural damage detection [4] have
been studied. Both qualitative and quantitative investigations of this nature have been
performed in recent years.

In O’Byrne et al. [11], an image repository was created with various target objects under
varying turbidites using a setup with two waterproof cameras to test stereo reconstruction
algorithms. Some algorithms for 3D reconstruction and damage detection were demonstrated
on this dataset in O’Byrne et al. [12–14]. Just as the case above water, structured light can be
added to the scene to aid in reconstruction, demonstrated by Aykin et al. [15], Bruno et al. [16].

In Mai et al. [17], the fidelity was evaluated for high-frequency sonar, stereo vision,
and time-of-flight (ToF) cameras of determining distance to and shape of a target object,
with a focus on the comparison of sensor accuracy and noise. It was shown that stereo vision
delivers the highest measurement fidelity, followed by the ToF camera; finally, sonar has
the lowest measurement fidelity. A ToF camera was also investigated in Risholm et al. [18],
wherein the camera used a range-gated strategy to successfully reduce backscatter from
turbidity, in this case, to monitor fish in turbid environments.

An example of using optical and acoustic sensing modalities together is shown in Roman
et al. [19], where a high-frequency sonar, stereo imaging, and a laser triangulation method
were compared for archeological 3D measurements in the Aegean Sea. It was shown that the
sensing modalities all provide useable fidelity in the given environment; however, turbidity
and other environmental influences were not measured. In Yang et al. [20], the emphasis
was on examining sharpness and color reproduction under varying turbidity and lighting
conditions using a monocular color camera. A ColorChecker and SFR chart were used to
estimate the image quality and color reproduction.

More recently, in Scott and Marburg [21], the quantitative effects of turbidity on various
stereo reconstruction methods showed that stereo vision depth estimation is possible
with usable robustness under low (17NTU) and medium (20NTU) turbidity conditions.
Apart from inspection tasks, visual sensors can also be used for concurrent localization,
such as those described in Concha et al. [22], where localization and dense mapping are
demonstrated from a monocular camera sequence.

201



Sensors 2023, 23, 6575

3. Materials and Methods

To perform the experiments, a commercial sensor was selected to embody each of the
sensing modalities; then, these sensors were mounted in a rigid aluminum frame to fix
the extrinsics between the sensors themselves and the target objects. First, we describe
the selected sensors and their specifications; then, we describe the experimental setup,
including the data acquisition and the selected target objects used in the performance
evaluation; and finally, we describe the experimental procedure.

3.1. Sensors

For each sensing modality, a commercial-off-the-shelf (COTS) sensor was selected
based on the maximum sensing distance which was used in the experiments, 2 m, while
maintaining a high sensing fidelity under the given distance range. The stereo and color
camera modalities were both embodied by the Intel D435i camera [23], and the acoustic
modality was embodied by the BluePrint subsea M3000d sonar [24].

3.1.1. Stereo and Color Camera

A COTS stereo camera, the Intel D435i [23], embodied the optical sensing modality.
This camera was chosen based on having a minimum 2 megapixel resolution color imager
as well as on-board stereo imaging; in particular, it had built-in stereo depth estimation
processing (to reduce the need for external computation in an end-use application). The
stereo camera sensor specifications are given in Table 1. For the Intel D435i, the color
imaging sensor was the OmniVision OV2740, while the stereo imaging sensors were
OmniVision OV9282s. Since the stereo depth estimation is a built-in function of the camera,
the main stereo-sensing specifications are listed in Table 2.

Table 1. Intel D435i imaging sensor manufacturer specifications in air.

Parameter Stereo Imager Color Imager

Resolution 1280 px × 800 px 1920 px × 1080 px

Shutter type Global shutter Rolling shutter

Data format 10-bit RAW 10-bit RAW RGB

Horizontal FOV 91 ± 1° 69 ± 1°

Vertical FOV 66 ± 1° 42 ± 1°

Diagonal FOV 101 ± 1° 77 ± 1°

Table 2. Intel D435i stereo depth estimation manufacturer specifications at a 2 m distance, recom-
mended settings, in air.

Parameter Value

Resolution 848 px × 480 px

Frame rate (max) 90 FPS

Data format 16-bit (1 mm/LSB)

Horizontal FOV 86 ± 3°

Vertical FOV 57 ± 3°

Diagonal FOV 94 ± 3°

Min. distance 195 mm

Depth accuracy ≤2%

RMS error ≤2%

Temporal noise ≤1%

Fill rate ≥99%
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3.1.2. Forward-Looking Imaging Sonar

The acoustic sensing modality was similarly embodied by a COTS forward-looking
imaging sonar, the BluePrint subsea M3000d [24]; this sonar was selected for its small range
resolution <1 cm and small angular resolution <1° with a suitable minimum distance of
≤0.1 m and a maximum distance of ≥1 m. The forward-looking imaging sonar sensing
specifications are given in Table 3. For the purposes of this work, the sonar was used
exclusively in the high-frequency mode shown on the right.

Table 3. Oculus m3000d sonar manufacturer specifications, * indicates range-dependent specification.

Common parameters

Update rate max * 40 Hz

Number of beams (max) 512

Range (min) 0.1 m

Vertical aperture 20°

Mode parameters Low-frequency mode High-frequency mode

Operating frequency 1.2 MHz 3.0 MHz

Range (max) 30 m 5 m

Range resolution * 2.5 mm 2 mm

Horizontal aperture 130° 40°

Angular resolution 0.6° 0.4°

Beam separation 0.25° 0.1°

3.1.3. Laser-Line Augmentation

The laser specifications are given in Table 4. The laser was fitted with a line-generation
lens immediately after the focusing lens and was mounted in a waterproof enclosure with
a flat port acrylic window. The laser was focused at approximately 2 m and was mounted
to be within view of the color camera at both the minimum and maximum test distances.
The closest observable distance was determined by the intersection of the laser plane
with the lower plane of the camera field-of-view (FOV), and the maximum distance was
determined by the intersection with the upper plane of the FOV, as shown in Figure 1.

Camera 
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Lin
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e
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r

Camera

Closest

dist.

Furthest

dist.

Figure 1. Laser (green) and camera field-of-view geometry (dashed lines).

Table 4. Laser-line specifications.

Parameter Value

Laser type Diode laser

Laser wavelength 532 nm

Beam class Class 3B
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3.1.4. Turbidity Sensor

The turbidity sensor was an optical nephelometric sensor, model Aanderaa Turbidity
Sensor 4296 [25]. The sensor was mounted to measure the turbidity in the forward direction
towards the target into an unoccluded volume to avoid reflections from the pool’s interior
surfaces and the water surface. The turbidity sensor’s main specifications are given in
Table 5.

Table 5. Aanderaa Turbidity Sensor 4296 [25].

Parameter Value

Range 0 FTU to 25 FTU

Resolution 0.1%

Accuracy ±3% of range

3.2. Experimental Setup

The experimental setup consisted of three overall parts: the sensors being tested,
the test pool filled with test medium, and the test targets mounted on a 3D gantry (traverse).
To ensure the extrinsics were fixed between the sensors, they were mounted on a rigid
frame made of aluminum profiles, shown in Figure 2.

Stereo camera

Sonar

Laser

Turbidity
Sensor

Light

Light

Light

Light

Figure 2. Image of the sensor frame. Upper right: stereo camera, lower right: sonar, center: laser,
lower left: turbidity sensor; exterior of frame: 4 pcs. LED lights.

The test pool was filled with tap water, and Kaolin [26] was used to control the
turbidity. The test targets were mounted on a 3D gantry which allowed them to be moved
with respect to the sensor frame, such that the distance between the target and the sensor
reference planes could be varied. The complete experimental setup is shown in Figure 3.
To prevent disturbances from external light sources, the experiments were conducted in a
laser-safety-rated laboratory where external lighting could be reduced to near zero levels.
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Figure 3. Image of the experimental setup. Left: target object on the gantry. Right: sensor frame with
lights. Lower right: mixer. Pool dimensions: 180 cm by 260 cm.

3.3. Target Objects

Two target objects were used during the experimental measurements: an ISO 12233:2017
edge spatial frequency response chart (eSFR chart) [27] used for image quality analysis—this
eSFR target was printed in a 16:9 format and was printed with near-infrared and visible
reflective inkjet technology—and a metal cylinder that resembles part of an offshore structure.
The eSFR chart was glued to an aluminum sandwich backing plate and is shown in Figure 4a;
the metal cylinder is shown in Figure 4b.

(a) (b)
Figure 4. Pictures of target objects, eSFR, and metal cylinder. (a) eSFR target object [27]. (b) Cylinder
target object (vertical during experiments). Material: aluminium, diameter: 10 cm, wall thickness:
5 mm.

3.4. Data Acquisition

The data acquisition was performed using the Robot Operating System (ROS) Noetic
built on Ubuntu 20.04, running on an NVIDIA Jetson Xavier NX, which is located within
the stereo camera submersible enclosure. The Xavier NX was connected through serial
communication (RS232) to the turbidity and conductivity sensors, by USB 3.1 to the stereo
camera, and by gigabit ethernet to a switch outside the experimental tank. The Xavier NX
and sensors were powered using power-over-ethernet (PoE) from the switch, apart from the
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sonar, which had a separate power supply and ethernet connection. The interconnection
between the sensor components and the data capture equipment are shown in brief in
Figure 5. See also Figure 2 for the physical layout of the sensors.

Xavier NX w.
Carrier Board

RS232

RS232

USB2

Gigabit Ethernet 
switch w. PoE

GigE

GigE

Control PC

GigE

Conductivity sensorConductivity sensor

Turbidity sensorTurbidity sensor

SonarSonar

USB3.1

RS232 x 2
Converter board

RS232 x 2
Converter board

Stereo cameraStereo camera

Figure 5. Block diagram of the data acquisition setup. The inner box denotes components in the
transparent submersible container, wherein the stereo camera is mounted.

3.5. Experimental Parameters

The experiments were conducted at a set of turbidities, target distances, and illu-
mination settings. Table 6a lists the desired and achieved turbidities for the experiment
series, including the standard deviation as given by fluctuations in the turbidity sensor
measurement. Table 6b lists the desired and achieved distances for the experiment se-
ries, including the measurement uncertainty; note that when transitioning to/from the
far distances, the sensor frame was moved within the pool and the target distance was
re-initialized using an external laser distance meter. The used lighting levels are shown in
Table 6c.

Table 6. Experimental conditions.

(a) Experimental turbidities.

Desired Turbidity Average Measured Turbidity with
Standard Deviation

0 FTU 0.31 ± 0.02 FTU
1 FTU 1.03 ± 0.11 FTU
2 FTU 2.11 ± 0.22 FTU
6 FTU 5.99 ± 0.66 FTU

(b) Experimental target distances.

Set Target Distances with Uncertainty

Close 43, 48, 53, 58, 63 cm ± 1.5‰
Medium 73, 83, 93, 103 cm ± 1.5‰

Far 140, 170, 200 cm ± 1.5‰

(c) Experimental lighting settings.

Light Settings

25, 50, 75, 100%

3.6. Experimental Procedure

The experiments were conducted using a repetitive procedure which is also illustrated
in Figure 6. The inner loop corresponds to light level variations; the intermediate loop
corresponds to distance variations; and the outer loop corresponds to turbidity variations.
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The procedure was designed to have the least experimental disturbances during variable
changes since light changes cause no physical movements, whereas the control of Kaolin
content is additive in nature.

1. The sensor frame is placed within the test pool.
2. The test target is reset, and the base distance is measured using a laser distance meter.
3. Measurements are performed at each distance:

(a) Measurements are performed at each light level:

i. Light level is set at the selected percentage: see Table 6c
ii. The experiment is allowed to settle for 10 s.
iii. Sensor data are recorded in ROSbag format; then, point (i) is repeated.

(b) The distance is changed by control of the gantry: see Table 6b; then, point (a)
is repeated

4. Kaolin is added until the desired turbidity is reached—see Table 6a—as measured by
the turbidity sensor; then, point 3 is repeated.

Setup sensor frameSetup sensor frame
Measure base 

(starting) distance
Measure base 

(starting) distance

Let experiment 
settle

(10 sec)

Let experiment 
settle

(10 sec)
Record dataRecord dataSet light levelSet light level

Add Kaolin until 
desired turbidity
Add Kaolin until 
desired turbidity

Move gantry to 
target distance
Move gantry to 
target distance

Until all turbidity executed

Until all distance executed

Until all light level executed

Figure 6. Block diagram of the experimental procedure. Black lines denote experimental flow, blue
lines denote experimental repetitions.

4. Results

Using the ROSbags generated through the experiments, the performance of three
sensing modalities has been evaluated: stereo depth estimation based on the built-in
algorithm of the Intel camera—see Appendix A.3; laser triangulation implemented through
the color camera and the MATLAB triangulation algorithm—see Appendix A.1; and the
high-frequency imaging sonar—see Appendix A.2. For all modalities, the measurement
accuracy has been analyzed through MATLAB, as described in the Appendix A.

4.1. Illumination Effects

The light level naturally influences the results for the optical methods, influencing both
stereo depth estimation and laser-line triangulation. By review of the sensor measurements,
it is evident that for both visual methods, the optimal light level in the experiments is 50%,
with an example illustrated in Figure 7b. Less illumination, 25%, results in less clear features
for stereo estimation and increased laser glare, shown in Figure 7a, while illumination
levels of 75% to 100%, shown in Figure 7c,d, results in reduced contrast for the laser as well
as increased backscatter, which reduces visual features in the resulting images.
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(a) (b) (c) (d)

Figure 7. Color images of eSFR target at 1.03 m under varying light levels. (a) RGB image at light
level of 25%, (b) RGB image at light level of 50%, (c) RGB image at light level of 75%, (d) RGB image
at light level of 100%.

4.2. Stereo Depth Estimation

For the stereo camera, the performance has been evaluated for a rectangular region
of interest (ROI) in the central 20% of the depth image frame, as illustrated in Figure 8.
To determine the operational limits, the cut-off for valid distance measurements has been
set at 50% valid pixels within the ROI, i.e., a pixel fill rate of >50% is considered as valid.
The measurement accuracy as analyzed with Appendix A.3 is shown in Table 7 and
Figures 9–11 while an example of the depth image is illustrated in Figure 8. Note how the
background of the pool is still estimated at 0.3 FTU, Figure 8a, but begins to disappear at
2.1 FTU, Figure 8b, while the target remains valid in both cases. For the cylinder geometry
estimation, the results show a very high deviation, which most likely stems from an
insufficient quality of stereo intrinsic calibration, since it is evident that the eSFR plate
behind the cylinder is also heavily distorted, as illustrated in Figure 12.

Table 7. Stereo depth accuracy and operation limits; dash “-” denotes no valid measurement.
∆ denotes mean deviation from ground truth distance, shown with ±standard devation.

Target Dist. ∆ at 0.3 FTU ∆ at 1.0 FTU ∆ at 1.4 FTU ∆ at 2.1 FTU ∆ at 6.0 FTU

43.00 cm ± 1.5‰ 11.30 (1.16) cm 11.80 (2.12) cm 11.76 (1.38) cm 11.58 (1.00) cm 12.12 (0.68) cm

48.00 cm ± 1.5‰ 12.18 (1.27) cm 12.62 (1.17) cm 12.48 (0.93) cm 12.22 (0.90) cm 12.72 (0.91) cm

53.00 cm ± 1.5‰ 12.42 (1.82) cm 12.78 (1.09) cm 12.70 (1.03) cm 12.64 (1.08) cm 13.34 (1.38) cm

58.00 cm ± 1.5‰ 13.16 (1.41) cm 13.10 (1.33) cm 13.22 (1.11) cm 13.24 (1.30) cm 13.74 (1.60) cm

63.00 cm ± 1.5‰ 13.36 (1.43) cm 13.74 (1.58) cm 13.64 (1.34) cm 13.64 (1.37) cm 13.92 (2.13) cm

73.00 cm ± 1.5‰ 13.22 (11.08) cm 13.84 (1.87) cm 14.44 (2.65) cm 14.06 (1.77) cm -

83.00 cm ± 1.5‰ 12.58 (11.68) cm 13.64 (2.48) cm 13.54 (2.28) cm 13.44 (4.15) cm -

93.00 cm ± 1.5‰ 13.00 (2.77) cm 13.00 (2.81) cm 13.56 (3.06) cm 12.80 (2.74) cm -

103.00 cm ± 1.5‰ 10.38 (3.02) cm 11.12 (3.11) cm 10.40 (3.28) cm 11.14 (3.04) cm -

140.00 cm ± 1.5‰ 1.22 (6.47) cm 3.52 (5.76) cm −0.32 (7.01) cm 0.46 (9.62) cm -

170.00 cm ± 1.5‰ −10.98 (8.41) cm −10.58 (9.34) cm −13.82 (14.72) cm −15.52 (19.36) cm -

200.00 cm ± 1.5‰ −36.20 (23.68) cm −33.30 (14.78) cm - - -
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Figure 8. Depth images of eSFR target at 1.03 m. (a) Depth image of eSFR target at 0.3 FTU, (b) Depth
image of eSFR target at 2.1 FTU, (c) Depth image of eSFR target at 6.0 FTU.
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Figure 9. Graph showing the measuring accuracy at 0.3 FTU for stereo depth estimation.

Figure 10. Graph showing the measuring accuracy at 2.1 FTU for imaging sonar.
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Figure 11. Graph showing the measuring accuracy at 6.0 FTU for imaging sonar.

(a) (b)
Figure 12. Circlefits of cylinder target at 0.3 FTU. (a) Circlefit of cylinder target at 0.64 m to eSFR target.
(b) Circlefit of cylinder target at 0.84 m to eSFR target.

4.3. Laser Triangulation

The laser triangulation is performed by detecting the laser-line and projection as
described in Appendix A.1, with examples shown on Figure 13 and results shown in Table 8
and Figures 14–16. The laser triangulation has an accuracy of a single centimeter up to a
range of about 50 cm, increasing to an error of 3 cm at a range of 200 cm. The behavior
of the deviation over distance seems to indicate some remaining uncompensated error in
the camera intrinsics calibration since the error is non-monotonic with respect to the target
distance. The sensing functions up to a distance of 103 cm for turbidities of ≤2.1 FTU—see
Figures 14 and 15—and drops to 43 cm at 6 FTU: only very close range sensing is possible
at this high turbidity; see Figures 13c and 16. The laser-line is naturally much easier to
detect due to the improved contrast at low turbidities, which is evident from Figure 13a,b.
For the cylindrical target, the geometric reproduction accuracy is shown in Figure 17, where
the detected circle has a radius close to the actual value of 5 cm; the main outliers stem from
the specular reflection along the long axis of the cylinder. The deviation is increased as the
distance to the cylinder target is increased, as shown in Figure 17c. Overall, the fidelity of
the geometric reproduction is satisfactory at close distances.
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Table 8. Laser triangulation accuracy and operation limits; dash “-” denotes no valid measurement.
∆ denotes mean deviation from ground truth distance, shown with ±standard devation.

Target Dist. ∆ at 0.3 FTU ∆ at 1.0 FTU ∆ at 2.1 FTU ∆ at 6.0 FTU

43.00 cm ± 1.5‰ 0.59 (0.70) cm 0.96 (0.73) cm 0.54 (0.30) cm 0.90 (0.22) cm

48.00 cm ± 1.5‰ 0.33 (0.64) cm 0.49 (0.38) cm 0.61 (0.53) cm -

53.00 cm ± 1.5‰ 0.29 (0.89) cm 0.27 (0.42) cm 0.79 (1.19) cm -

58.00 cm ± 1.5‰ 0.20 (1.11) cm 0.28 (0.65) cm 0.21 (0.44) cm -

63.00 cm ± 1.5‰ −0.05 (1.28) cm −0.09 (0.40) cm 0.01 (0.84) cm -

73.00 cm ± 1.5‰ −0.51 (1.30) cm −0.62 (0.42) cm −0.38 (3.11) cm -

83.00 cm ± 1.5‰ −0.87 (1.14) cm −1.00 (0.63) cm −0.62 (0.49) cm -

93.00 cm ± 1.5‰ −1.50 (0.73) cm −1.40 (0.52) cm −0.73 (0.71) cm -

103.00 cm ± 1.5‰ −1.21 (2.00) cm −1.54 (0.90) cm −1.39 (0.98) cm -

140.00 cm ± 1.5‰ 0.42 (2.61) cm - - -

170.00 cm ± 1.5‰ 1.24 (2.79) cm - - -

200.00 cm ± 1.5‰ 2.64 (3.41) cm - - -

(a) Image of eSFR target at 0.3 FTU. (b) Image of eSFR target at 2.1 FTU. (c) Image of eSFR target at 6.0 FTU.

Figure 13. Images of eSFR target at 1.03 m.
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Figure 14. Graph showing the measuring accuracy at 0.3 FTU for laser triangulation.
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Figure 15. Graph showing the measuring accuracy at 2.1 FTU for laser triangulation.
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Figure 16. Graph showing the measuring accuracy at 6.0 FTU for laser triangulation.

4.4. Acoustic (Sonar)

The sonar data have been processed using the program described in Appendix A.2,
with examples shown on Figure 18 and results summarized in Table 9 and Figures 19–21.
The sonar target object distances show excellent linearity >0.98% and consistent monotonic
error for all turbidities. Of particular note in the resulting images is the specular acoustic
artifact arising at close distances, which creates a radial high-intensity echo tangential
to the plane of the target object. The cylindrical target information is illustrated with a
binarized image in Figure 22, where it is clear that the cylinder is detected; however, there
is a substantial amount of noise at the front and rear boundaries of the cylinder.
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Figure 17. Circlefits of cylinder target at 0.3 FTU. (a) Circlefit of cylinder target at 0.44 m to eSFR
target. (b) Circlefit of cylinder target at 0.64 m to eSFR target. (c) Circlefit of cylinder target at 0.84 m
to eSFR target.

Table 9. Imaging sonar accuracy and operation limits. ∆ denotes mean deviation from ground truth
distance, shown with ±standard devation.

Target Dist. ∆ at 0.3 FTU ∆ at 1.0 FTU ∆ at 1.4 FTU ∆ at 2.1 FTU ∆ at 6.0 FTU

43.00 cm ± 1.5‰ 1.61 (2.18) cm 2.06 (2.10) cm 1.92 (2.41) cm 1.81 (2.05) cm 2.16 (2.41) cm

48.00 cm ± 1.5‰ 1.80 (2.30) cm 2.36 (2.33) cm 1.81 (2.57) cm 2.10 (2.25) cm 1.97 (2.28) cm

53.00 cm ± 1.5‰ 2.07 (2.41) cm 2.26 (2.30) cm 1.86 (2.82) cm 2.08 (2.17) cm 2.33 (2.28) cm

58.00 cm ± 1.5‰ 2.18 (2.74) cm 2.40 (2.43) cm 2.14 (2.86) cm 2.29 (2.53) cm 2.62 (2.46) cm

63.00 cm ± 1.5‰ 2.14 (2.55) cm 2.70 (2.10) cm 2.42 (2.90) cm 2.59 (2.34) cm 2.67 (2.00) cm

73.00 cm ± 1.5‰ 2.21 (3.26) cm 2.74 (2.68) cm 2.51 (3.16) cm 2.47 (3.51) cm 3.08 (2.47) cm

83.00 cm ± 1.5‰ 2.68 (3.92) cm 2.63 (3.13) cm 2.76 (4.60) cm 2.44 (3.94) cm 3.50 (3.82) cm

93.00 cm ± 1.5‰ 2.51 (4.73) cm 2.83 (4.14) cm 3.24 (5.17) cm 2.49 (4.28) cm 2.97 (4.29) cm

103.00 cm ± 1.5‰ 2.74 (5.13) cm 2.88 (4.47) cm 2.94 (5.54) cm 2.53 (4.70) cm 3.38 (4.57) cm

140.00 cm ± 1.5‰ 5.94 (6.58) cm 4.25 (4.58) cm 2.23 (6.06) cm 2.42 (6.02) cm 3.06 (6.24) cm

170.00 cm ± 1.5‰ 2.90 (5.68) cm 3.84 (4.28) cm 2.50 (5.58) cm 2.75 (5.32) cm 3.59 (5.52) cm

200.00 cm ± 1.5‰ 3.06 (4.03) cm 4.05 (4.19) cm 2.38 (3.53) cm 2.81 (3.57) cm 3.57 (3.26) cm
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Figure 18. Sonar images of eSFR target at 1.03 m. (a) Sonar image of eSFR target at 0.3 FTU. (b) Sonar
image of eSFR target at 2.1 FTU. (c) Sonar image of eSFR target at 6.0 FTU.
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Figure 19. Graph showing the measuring accuracy at 0.3 FTU for imaging sonar.

Figure 20. Graph showing the measuring accuracy at 2.1 FTU for imaging sonar.
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Figure 21. Graph showing the measuring accuracy at 6.0 FTU for imaging sonar.
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Figure 22. Circlefit of cylinder target at 0.3 FTU. (a) Circlefit of cylinder target at 0.44 m to eSFR target.
(b) Circlefit of cylinder target at 0.64 m to eSFR target. (c) Circlefit of cylinder target at 0.84 m to
eSFR target.

5. Discussion

In general, acoustic sensing is mostly stable across operating conditions; however,
stereo vision and laser-line triangulation can also operate successfully under low and
medium turbidity conditions: 0.3 FTU to 2.1 FTU at ranges of up to 100 cm. For laser
triangulation, the accuracy is relatively constant in the range of 0.3 FTU to 2.1 FTU, with a
total maximum mode deviation of 1.54 (0.90) cm at a range of 103 cm. Stereo depth esti-
mation suffers from some non-linearity and increased deviation up to 36 cm—though, it
is lower, ≤15 cm, at a distance below 140 cm; this most likely related to an insufficient
quality of the intrinsic parameter calibration in particular, which warrants further work.
At 6 FTU, the operating range is severely limited for the optical methods (laser-line and
stereo depth estimation) but still usable up to distances ≤43 cm for laser distance measure-
ments and up to ≤63 cm for stereo depth estimations. For all of the sensors, it is possible
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to detect and estimate the cylinder targets’ geometry within 10% of the actual dimensions
at distances closer than 63 cm. However, accuracy is substantially worse at longer dis-
tances. The operating depth for the considered approaches is generally limited by the
manufacturer constraints for the commercial sensors as noted in their specifications; for the
laser triangulation, the operating depth is additionally limited by the amount of ambient
light; operating very close to the surface would not be possible. For the stereo camera,
a large distortion still remains after the execution of the built-in calibration procedures:
this would most likely need to be further corrected in a real application, depending on the
particular application requirements. For acoustic sensing, other environmental parameters
such as salinity or suspended particulate matter of large sizes may be more interesting
to investigate since these are more likely to affect performance and operating limits with
respect to the target distance. In summary, this work entails that these optical methods
are usable even under relatively high turbidities if they are used for operations where
only short-range measurements are needed; the useful operating range increases with
decreasing turbidites, up until a maximum experimental distance of 200 cm. Contrarily,
ranging using the acoustic sensor is, for the purpose of detecting used target objects under
the given distances and environmental effects, unaffected, even at the highest turbidity and
target distance.

6. Concluding Remarks

The experimental evaluation confirms the hypotheses that these optical methods
provide great spatial details of the target objects and that increased turbidity affects their ac-
curacy negatively. However, even at some substantial turbidity levels, i.e., 2.1 FTU, they still
provide reasonable target object information at close ranges. Conversely, the sonar is not
affected to a notable degree by turbidities of up to 6 FTU, but it provides the least amount
of spatial information. In summary, this warrants investigation of sensor fusion where
the complementary advantages of the different modalities can be fully exploited. Other
future work includes the possible improvement of the laser-line distance measurement
algorithm to improve the operating range and rejection of specular reflections. Alterna-
tively, a modulated or rotational laser approach can also be investigated. Improvement of
the stereo camera calibration to lower the distortion or external processing of the stereo
camera information can be studied in order to ascertain whether larger operating conditions
are achievable with other algorithms; this can be performed in extension to or completely
replace the built-in stereo depth estimation. The addition of other environmental influences,
such as salinity and suspended particulate matter, may lead to additional effects worth
investigating, particularly for acoustic sensing.
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Appendix A. Data Processing Code

For each of the sensors, MATLAB code has been used to process the detected targets as
described in the following sections. The data from the experiments are represented in the
data tables “ColorTable**FTU.mat”, “SonarTable**FTU.mat”, and “StereoTable**FTU.mat”
as referenced in the code, for the color images, sonar, and stereo data, respectively. The data
are available on request in both the raw ROSbag format and the MATLAB mat files.

Appendix A.1. Laser-Line Triangulation MATLAB Code

First, the projective tomography, denoted laserTform, was derived. This was achieved
by detecting the laser-line on a distinct set of calibration images. For these images, the laser-
line points were projected into 2D world coordinates [X, Y] using the camera intrinsics,
and the corresponding Z distance to the laser-line was set using a separate laser-distance
meter measurement, thus yielding a set of points [X, Y, Z] which represent the laser-line
position in real-world coordinates. From these world-coordinate points and the correspond-
ing image plane coordinates, the projective homography was calculated. Subsequently,
in other test images, the detected laser-line can be transformed into world-coordinates
using the 2D projective homography to yield the target distances, as shown in the code
Listing A1.

Listing A1. Code for laser processing.

1 % Load data for each turbidity
2 ColorTable {1} = {" ColorTable00FTU.mat"; 0.312};
3 ColorTable {2} = {" ColorTable05FTU.mat"; 0.520};
4 ColorTable {3} = {" ColorTable15FTU.mat"; 1.034};
5 ColorTable {4} = {" ColorTable10FTU.mat"; 1.404};
6 ColorTable {5} = {" ColorTable20FTU.mat"; 2.107};
7 ColorTable {6} = {" ColorTable60FTU.mat"; 5.988};
8
9 % Load the RGB camera calibration parameters.

10 load(" intelCameraParams.mat")
11 load(" laserTForm_projective_V2.mat")
12
13 numOfPics = 5; % Choose the number of pictures to average over

.
14 for bb = 1:numel(ColorTable)
15 % Clear terminal and not specified variables
16 clc
17 close all
18 clearvars -except ColorTable intelCameraParams laserTform

numOfPics bb
19
20 % Load data for specified turbidity level
21 load(ColorTable{bb }{1})
22
23 % Get ground truth distances for dataset
24 Dists = unique(dataTableColor.TrueDistance) '/1000;
25 numOfDists = numel(Dists);
26
27 for iii = 1: numOfDists
28 for ii = 1: numOfPics
29 % Load image and undistort it.
30 im_raw = loadImageData(dataTableColor ,ii ,"eSFR",

Dists(iii) ,50,"color ");
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31 im_undist = undistortImage(im_raw ,
intelCameraParams);

32 im_rgb = imrotate(im_undist ,180);
33
34 % Process color image and generate point cloud

from line laser
35 sigma = 700;
36 RGB = imflatfield(im_rgb ,sigma);
37 [maxline ,centroidline ,j] = getLaserLine(RGB ,false)

;
38 test_imagePoints (:,:) = [j.',centroidline ];
39 test_imagePoints(any(isnan(test_imagePoints), 2),

:) = [];
40 worldPointsTest = transformPointsForward(

laserTform , test_imagePoints);
41 worldPointsTest = [worldPointsTest (:,1) zeros(size

(test_imagePoints ,1) ,1) worldPointsTest (:,2)];
42 PC_Laser = pointCloud(worldPointsTest);
43 % Extract 400 points closes to the center at the

ground truth distance
44 [indX ,~] = findNearestNeighbors(PC_Laser ,[0.0 ,0.0 ,

Dists(iii)],400);
45 NearstPoints = PC_Laser.Location(indX ,:);
46
47 pcLaser(iii ,ii).X = PC_Laser.Location (:,1);
48 pcLaser(iii ,ii).Y = PC_Laser.Location (:,2);
49 pcLaser(iii ,ii).Z = PC_Laser.Location (:,3);
50 pcLaser(iii ,ii).NearstPoints = PC_Laser.Location(

indX ,3);
51
52 % Check if points are found and calculate mode and

std for image
53 if(size(pcLaser(iii ,ii).NearstPoints ,1) >0)
54 mode_laser(iii ,ii) = mode(pcLaser(iii ,ii).

NearstPoints);
55 std_laser(iii ,ii) = std(pcLaser(iii ,ii).

NearstPoints);
56 else
57 mode_laser(iii ,ii) = NaN;
58 std_laser(iii ,ii) = NaN;
59 end
60 end
61 actual_laser(iii) = Dists(iii); % Same as Dists if all

distances are used.
62 end
63 modes_laser = mean(sonar_mode ,2) ';
64 stds_laser = mean(sonar_std ,2) ';
65 end

Appendix A.2. Sonar Target Detection MATLAB Code

For the sonar data, the sonar image was first binarized with a threshold of 0.3 (normal-
ized). Then, the sonar points were projected into 2D coordinates, followed by projection
into 3D. The 100 closest points within 10% of the ground truth target distance to the origin
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were found and used to calculate the mode and std.dev. of the target distance measurement,
as shown in Listing A2.

Listing A2. Code for sonar processing.

1 % Load data for each turbidity
2 SonarTable {1} = {" SonarTable00FTU.mat"; 0.312};
3 SonarTable {2} = {" SonarTable05FTU.mat"; 0.520};
4 SonarTable {3} = {" SonarTable10FTU.mat"; 1.034};
5 SonarTable {4} = {" SonarTable15FTU.mat"; 1.404};
6 SonarTable {5} = {" SonarTable20FTU.mat"; 2.107};
7 SonarTable {6} = {" SonarTable60FTU.mat"; 5.988};
8
9 numOfPics = 5; % Choose the number of pictures to average over

.
10 for bb = 1:numel(SonarTable)
11 % Clear terminal and not specified variables
12 clc
13 close all
14 clearvars -except SonarTable numOfPics bb
15
16 % Load data for specified turbidity level
17 load(SonarTable{bb }{1})
18
19 % Get ground truth distances for dataset
20 Dists = unique(dataTableSonar.TrueDistance) '/1000;
21 numOfDists = numel(Dists);
22
23 for iii = 1: numOfDists
24 for ii = 1: numOfPics
25
26 %Load image
27 [sonar_data ,dist] = loadImageData(dataTableSonar ,

ii ,"eSFR",Dists(iii) ,50,"sonar");
28
29 % Process sonar image and generate point cloud
30 sonar_drawn_sonar = sonar_data.Image_rectified;
31 BW = imbinarize(sonar_drawn_sonar ,0.3);
32 sonar_binary = BW(:,:,1);
33 xWorldLimits = [-sin(deg2rad (130/2)) sin(deg2rad

(130/2))];
34 yWorldLimits = [0 2];
35 RA = imref2d(size(sonar_binary),xWorldLimits ,

yWorldLimits);
36 aa = 1;
37 for y = 1:size(sonar_binary , 1) % for number of

rows of the image
38 for x = 1:size(sonar_binary , 2) % for

number of columns of the image
39 if(sonar_binary(y,x))
40 [xWorld , yWorld] = intrinsicToWorld(

sonar_data.SpacialReference ,x,y);
41 xyzPoints(aa ,:) = [xWorld , yWorld ,0];
42 aa = aa + 1;
43 end
44 end
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45 end
46 PC_sonar {1} = pointCloud(xyzPoints);
47
48 % Define region of interest (ROI) and extract

points with ROI
49 roi = [-0.65 0.3 dist *0.95 dist *1.05 -0.2 0.2];
50 sampleIndices = findPointsInROI(PC_sonar {1},roi);
51 PC_sonar_cropped {1} = select(PC_sonar {1},

sampleIndices);
52
53 % Calculate mode and std for image
54 sonar_mode(iii ,ii) = mode(PC_sonar_cropped {1}.

Location (:,2));
55 sonar_std(iii ,ii) = std(PC_sonar_cropped {1}.

Location (:,2));
56 end
57 actual_sonar(iii) = dist; % Same as Dists if all

distances are used.
58 end
59 modes_sonar = mean(sonar_mode ,2) ';
60 stds_sonar = mean(sonar_std ,2) ';
61 end

Appendix A.3. Stereo Depth MATLAB Code

For the stereo depth images, a centered ROI corresponding to 20% of the image width
and height was cropped for evaluation. The points of the central ROI was transformed to a
point cloud, and the Z-axis was extracted to calculate the distance measurement mode and
standard deviation. The code for used for evaluation is given in Listing A3.

Listing A3. Code for stereo processing.

1 % Load data for each turbidity
2 DepthTable {1} = {" DepthTable00FTU.mat"; 0.312};
3 DepthTable {2} = {" DepthTable05FTU.mat"; 0.520};
4 DepthTable {3} = {" DepthTable10FTU.mat"; 1.034};
5 DepthTable {4} = {" DepthTable15FTU.mat"; 1.404};
6 DepthTable {5} = {" DepthTable20FTU.mat"; 2.107};
7 DepthTable {6} = {" DepthTable60FTU.mat"; 5.988};
8
9 % Load the depth camera intrinsics.

10 load(" depthIntrinsics.mat")
11
12 numOfPics = 5; % Choose the number of pictures to average over

.
13 for bb = 1:numel(DepthTable)
14 % Clear terminal and not specified variables
15 clc
16 close all
17 clearvars -except DepthTable intrinsics numOfPics bb
18
19 % Load data for specified turbidity level
20 load(DepthTable{bb }{1})
21
22 % Get ground truth distances for dataset
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23 Dists = unique(dataTableDepth.TrueDistance) '/1000;
24 numOfDists = numel(Dists);
25
26 for iii = 1: numOfDists
27 for ii = 1: numOfPics
28 [depthImage ,dist] = loadImageData(dataTableDepth ,

ii ,target ,Dists(iii) ,50,"depth");
29 % Full Image Point Cloud
30 ptCloud = pcfromdepth(depthImage ,depthScaleFactor ,

intrinsics);
31
32 % ROI Point Cloud
33 ROI = [848*0.4 ,480*0.4 ,848*0.2 ,480*0.2];
34 h = images.roi.Rectangle(gca ,'Position ',ROI ,'

StripeColor ','r');
35 depthImageROI = double(imcrop(depthImage ,h.

Position));
36 depthImageROI(depthImageROI == 0) = NaN;
37 ptCloudROI = pcfromdepth(depthImageROI ,

depthScaleFactor ,intrinsics);
38
39 % Get depth measurement of point cloud
40 B = ptCloudROI.Location (:,:,3) ';
41 B = double(B(:) ');
42
43 % Check if valid points are found and coverage is

more than 50%
44 % and calculate mode and std for image
45 if(mean(B," omitnan ") <0 || sum(isnan(B))>numel(B)

*0.5)
46 depth_mode(iii ,ii) = NaN;
47 depth_std(iii ,ii) = NaN;
48 else
49 depth_mode(iii ,ii) = mode(B);
50 depth_std(iii ,ii) = std(B," omitnan ");
51 end
52 end
53 actual_depth(iii) = dist; % Same as Dists if all

distances are used.
54 end
55 modes_depth = mean(depth_mode ,2) ';
56 stds_depth = mean(depth_std ,2) ';
57 end
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Abstract: The presence of sinkholes has been widely studied due to their potential risk to infrastruc-
ture and to the lives of inhabitants and rescuers in urban disaster areas, which is generally addressed
in geotechnics and geophysics. In recent years, robotics has gained importance for the inspection and
assessment of areas of potential risk for sinkhole formation, as well as for environmental exploration
and post-disaster assistance. From the mobile robotics approach, this paper proposes RUDE-AL
(Roped UGV DEployment ALgorithm), a methodology for deploying a Mobile Cable-Driven Paral-
lel Robot (MCDPR) composed of four mobile robots and a cable-driven parallel robot (CDPR) for
sinkhole exploration tasks and assistance to potential trapped victims. The deployment of the fleet is
organized with node-edge formation during the mission’s first stage, positioning itself around the
area of interest and acting as anchors for the subsequent release of the cable robot. One of the relevant
issues considered in this work is the selection of target points for mobile robots (anchors) considering
the constraints of a roped fleet, avoiding the collision of the cables with positive obstacles through a
fitting function that maximizes the area covered of the zone to explore and minimizes the cost of the
route distance performed by the fleet using genetic algorithms, generating feasible target routes for
each mobile robot with a configurable balance between the parameters of the fitness function. The
main results show a robust method whose adjustment function is affected by the number of positive
obstacles near the area of interest and the shape characteristics of the sinkhole.

Keywords: genetic algorithms; multi-robot system; CDPR; MCDPR; ROS; roped fleet; navigation

1. Introduction

Sinkholes are hollows in the ground surface formed by the dissolution of limestone or
geological features, considered closed cavities drained due to subsoil dissolution in karst
rocks [1]. This land subsidence and collapse represents a major hazard that substantially
impacts economic and human losses [2], as well as in nearby infrastructures [3]. In the last
decade, several karst collapses have taken place, causing the collapse of roads and buildings
in urban areas , causing safety risks to residents [4]. Different natural storms have caused
sinkholes such as in Guatemala (Guatemala City—2010) [5], USA (Florida—2004) [6].

Pressure wireless sensor network (WSN) technologies and neural network learning
databases use UAVs and thermal cameras for sinkhole detection and monitoring [7]. There
are also approaches for the use of robotic total stations (RTS) together with total stations (TS)
to calculate the horizontal and vertical displacement of the earth for sinkhole detection [8],
opening the line of integration of mobile robots and their application for monitoring,
exploration, and assistance for search and rescue (SAR) tasks.

The success of search and rescue (SAR) missions depends on the performance of
robotic platforms individually [9]. However, search and exploration tasks can be enhanced
through cooperative systems using multiple unmanned ground vehicles (UGVs) [10]. There
are several types of cooperative systems used in urban search and rescue (USAR) [11],
wilderness search and rescue (WiSAR) [12] and air-sea rescue (ASR) operations [13].
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Regarding deployment of robot fleets in disaster environments, [14] details of thirty-
four official deployments have been reported and analyzed, where UGVs have been used
in twenty-two incidents. In contrast, UAVs and unmanned aquatic vehicles (UMVs) in
eight incidents [15], mainly at the subway level in mining environments, building collapse,
earthquakes, and hurricanes, due to their potential to save lives by offering faster response
times [16], support in hazardous environments [17], real-time monitoring [18], and area
mapping [19].

The most important robotic challenges in subway environments are the limitation of
wireless communications and detection task such as toxic gas analysis. Robots used for
WiSAR tasks must be prepared for difficult weather conditions and interfere minimally
with environmental data acquisition [20], so robots with mobile base cables with robust
situational awareness are currently proposed for autonomous navigation, where environ-
mental monitoring sensors are mounted for gas discrimination [21], air quality sensing, or
gas concentration [22], with which information assistance is provided to rescue personnel
for hazardous area detection.

In terms of SAR tasks using mobile robots, these systems can be considered cooperative
Cable-Driven Parallel Robots (CDPR), where each robot represents an anchor point for
the wires. This configuration is a major challenge for base localization in the environment,
obstacle avoidance, and adaptive control of payload position and orientation [23].

This work is part of a Robotics and Cybernetics Group (ROBCIB) of the Polytechnic
University of Madrid (UPM) project, which main objective is to perform the deployment of a
Mobile Cable-Driven Parallel Robot (MCDPR) inside a sinkhole automatically, considering
mobile robots as mobile bases that will release a parallel cable-driven robot in the region
of interest. Therefore, challenges are related to the deployment of the mobile robots
(mobile bases) and relative localization of the CDPR. Accordingly, the strategy is focused
on two stages: first, the traversability of a path for the mobile bases from the base station
to the surroundings of the sinkhole, considering that the mobile bases of the MCDPR
will be attached by ropes; then, the release of the CDPR, avoiding contact with positive
obstacles. Regarding the relative localization challenge, in order to get a good precision of
portable localization systems (radar, infrared, UWB), using trilateration methods, a first
approach presents the use of a fleet of four mobile robots and a CDPR carried on top of
one of the mobile platforms, applying two physical configurations: node-edge fleet and
roped individual.

This paper’s main contribution is RUDE-AL (Roped UGV Deployment Algorithm),
an algorithm for the autonomous selection of anchoring points of a mobile robot fleet for
sinkhole exploration through computer vision techniques to filter positive and negative
obstacles, and genetic algorithms for solving optimization problems.

The mission comprises two stages: the first one consists of finding a feasible fleet
trajectory in a node-edge configuration with four nodes and three edges; the second
corresponds to the deployment of each robot to its corresponding vertex.

For this purpose, multiple tests were carried out on 2D images representing 2.5D
maps, which were generated manually (using image edition tools) and automatically
(images containing splines generated using Bézier curves), evaluating the behavior of the
algorithm to produce feasible roped navigation paths for environments with different
physical characteristics.

Implementing a heuristic method (genetic algorithms) considerably reduces compu-
tational time, allowing to adjust the weights of the variables to be optimized through a
weighted fitness function for multi-objective optimization. The algorithm is applied to the
navigation of a fleet of four simulated robots in Gazebo.

The work is made up of the following sections. Section 2 presents the state of the art
and related works. Section 3 details the problem formulation and the proposal. Section 4
describes the generation of the different environments for testing and description of the
performed experiments. Section 5 shows the results obtained by the target point selection
algorithm. Finally, Section 6 presents the conclusions obtained.
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2. Related Work
2.1. Mobile CDPRs

CDPRs are emerging as an attractive proposition due to their advantages in covering
large volumes with fast movements while maintaining a balance between light weight and
high durability [24].

CDPR-related research has been reported since 1984, originally for underwater appli-
cations. The RoboCrane project [25], developed under the Defense Advanced Research
Project Agency (DARPA), extended CDPR applications to land, sea, air, and space. CDPRs
show high load-to-weight ratio, while relying on stable configurations, flexibility, and
maneuverability over rough terrain surfaces.

An example of mobile CDPRs are the so-called extended-crane systems, which rep-
resent a combination between a cable robot and a conventional crane, where the robotic
configuration is intended to separate positioning and balancing tasks. Another example
of a reconfigurable structure for cable robots is found in agricultural applications, adding
mobile pillars to transport winches while controlling the position of the mobile platform.

In terms of CDPR applications, the IPAnema family of robots [26] is used for industrial
inspection, handling, and assembly tasks, heavy lifting, CoGiro [27], motion simulators,
CableRobot [28], and recreation of underwater environments [29]; in logistics warehousing
tasks, CABLAR [30] and FASTKIT [31], and in search and rescue operations, the MARI-
ONET family of robots [32].

At conceptual level, the MoPick prototype [33] presents an approach to parallel ca-
ble robots with mobile bases (MCDPR) for pick and place tasks. A parallel cable robot
for multiple mobile cranes (CPRMCs) is proposed by [34], detailing the design and a
multilateration-based localization algorithm, whose global planning is performed with
a grid-based artificial potential field method. It also uses sensors for cooperative obsta-
cle avoidance, integrating autonomous level control for the platform, together with a
co-simulation by using Matlab and Labview.

A CDPR with three mobile cranes for search and rescue operations is shown by [35],
where each mobile base consists of a reconfigurable telescopic boom that can rotate
(Figure 1a). The cable is mounted from the tip of the telescopic arm to the end effec-
tor. Although the cranes are fixed, the system can be reconfigured to increase the working
space and keep the system in static equilibrium. The objective of this study is to compare
the stress distribution and the size of the working space when applying payloads.

Considering strategies for motion planning of a fleet of mobile robots for deployment
of a cable robot, ref. [36] proposes a modular CDPR carried by a rover for inspection and
light manipulation tasks on celestial bodies (Figure 1b), whose applications focus on solar
panel inspection and maintenance, as well as lava cave exploration (Figure 2).

(a) (b)
Figure 1. MCDPR system configurations and deployment. (a) Schematic of CDPR with mobile cranes.
Source: Authors. (b) Deployment procedure of a rover. Obtained from [36].
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(a) (b)
Figure 2. Applications of modular CDPR. (a) Maintenance of large ground solar array. Obtained
from [36]. (b) Exploration of lava tubes on celestial bodies. Obtained from [36].

In the related works described in Table 1, no strategies for the implementation of a
self-contained portable CDPR have been found.

Table 1. Comparison of state-of-the-art CDPR prototypes.

Reference Robot Name Mobile Bases Application Environment Physical
Implementation

Number of
Robotic Platforms

Degrees of
Freedom

[25] Robocrane YES Research Indoor/Outdoor YES 3 6
[26] IPAnema NO Industry Indoor YES 1 6
[27] CoGiro NO Research Indoor YES 1 6
[28] CableRobot NO Research Indoor YES 1 6
[29] - NO Research Indoor YES 1 6
[30] CABLAR NO Logistics Indoor YES 1 6
[31] FASTKIT YES Logistics Indoor YES 2 6
[32] MARIONET-CRANE YES Rescue Outdoor YES 1 6
[33] MoPick YES Logistics Indoor YES 4 3
[34] - YES Research Outdoor NO 4 4
[35] - YES Research Outdoor NO 3 3
[36] - YES Research Outdoor NO 3 3

2.2. Multi-Objective Optimization

State-of-the-art path planning methods are commonly formulated based on a single-
objective optimization for distance cost [37]. However, more factors need to be considered in
real-world applications, which turns the study problem into a multi-objective optimization
method applicable for multi-robot fleet path planning [38]. Common approaches use
methods such as summing the weights of each objective as a function, known as the
scalarized approach or weighted sum method [39], whose importance lies in correctly
deciding the weight coefficients based on empirical checks.

The use of multi-objective genetic algorithms has been widely studied in building
design [40], balancing of operations in hydroelectric reservoirs [41], sizing of microgrid
systems [42], and sustainable mechanization allocation for spraying and harvesting sys-
tems [43]. It has been shown relevant in robotics for trajectory optimization [44,45], con-
troller design [46], industrial robotic arm design [47], and cloud robotic platform service
scheduling [48], and for multi-robot trajectory planning for area coverage [49].

On the application of evolutionary algorithms (EA) for target selection in multi-robot
systems, ref. [50] proposes the use of an evolutionary algorithm with Indirect Represen-
tation and Extended Nearest Neighbor (IREANN) with a simple mutation operator for
GTSPC (Generalized Travelling Salesman Problem with Coverage). The trajectory op-
timization for MDCPR of the MoPick platform using direct transcription optimization
method where the optimization task adds the CDPR constraints in planning, and direct
transcription increases the confidence of the data, is studied by [51].

3. Methodology
3.1. Problem Statement

As explained in Section 1, the strategy proposed to perform the deployment of the
MCDPR must assure the traversability of a path for the mobile bases from a start point
to the surrounds of the sinkhole, considering that the robots are attached by ropes that
cannot pass through positive obstacles. After that, using optimization techniques, a feasible
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configuration that minimizes the fleet path distance cost and maximizes the area of the
region of interest (ROI) to be covered must be found.

For the conceptualization of the problem, the starting point is a 2D map of free space,
positive and negative obstacles. Figure 3a shows positive obstacles (gray) which block
the traversability of mobile robots and ropes, while negative obstacles (black) block the
traversability of mobile robots, but allow the passage of ropes. The figure is the actual
image used as an input for the proposed algorithm.

Posi ve obstacles

Nega ve 

obstacle

(a)

Posi ve 

obstacles

Nega ve 

obstacle

(b)
Figure 3. Map representation of environment. (a) A 2.5D map representation. (b) A 3D map repre-
sentation. Source: Authors.

Figure 3b shows a Gazebo representation of a structured environment, where the
undercut corresponds to a negative obstacle.

Physically, the self-contained CDPR is on top of one of the mobile robots (Figure 4).
However, the scope of the proposed algorithm is in two dimensions, so the corded fleet as
seen from the top plane is four robots with one node from which the cables are projected.

Figure 4. Physical configuration of the fleet. Source: Authors.

Before performing path planning, the possibility of finding nearby positive obstacles
that affect feasible target points for fleet route planning or deployment route must be
considered. For these cases, a range of up to two nearby positive obstacles affecting the
planning is defined, dividing into zones of interest where the user selects which area to
explore.

Once the feasible candidates are available, the fleet route planning is performed for
each candidate point, calculating the distance cost of each route. Then, candidate point
ranges are defined for each mobile robot, where for each combination of candidate points
the area covered is calculated. The distance cost of the minimum fleet route is minimized
and the area covered is maximized for each combination of candidate points using a
weighted fit function.

Through the optimization of the fitness function, the target points are obtained,
with which the deployment routes between them are planned (Figure 5a); subsequently,
the feasible deployment routes are evaluated, avoiding collisions of the ropes with positive
obstacles near the sinkhole to be explored (Figure 5b). Finally, the mission is executed in
the simulator, adding a 2D display of the roped fleet.
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FLEET PATH

DEPLOYMENT 

PATHS

(a)

FLEET PATH

FEASIBLE 

DEPLOYMENT 

PATH

(b)
Figure 5. Deployment procedure, (a) definition of fleet path (red) in node-edge configuration and
deployment path (blue) in individual configuration, (b) feasible deployment configuration with
roped restrictions. Source: Authors.

3.2. RUDE-AL Algorithm

The main contribution of this article is the Roped UGV fleet DEployment ALgorithm
(RUDE-AL), designed to provide a feasible goal selection based on the minimization of
distance cost of fleet deployment and maximization of covered area, considering rope
contact restrictions for negative and positive obstacles. It has been divided into two phases
and three stages:

• Phase 1. Node-edge fleet configuration

– Map, obstacle, and start selection for offline planning
– Definition, sorting, and choosing of feasible goal candidates based on area cover-

age and distance cost of fleet deployment

• Phase 2. Roped individual configuration

– Goal local planning and establishment of deployment configuration based on
rope restrictions

The flow diagram of the process of RUDE-AL is shown in Figure 6.

RUDE-AL

NODE-EDGE 
CONFIGURATION

ROPED INDIVIDUAL 
CONFIGURATION

              

        

        

                              

Detection of contour
of ROI

Filter no feasible
candidates

Plan fleet route
for candidates

Definition of goal
candidates

Maximize ROI covered area
and minimize fleet route

Planning of deployment
routes

Feasible configuration Fleet route and deployment
configuration

START

Figure 6. RUDE-AL algorithm procedure. Source: Authors.

3.2.1. Phase 1. Node-Edge Fleet Configuration

In this phase, the four robots are formed in a worm configuration consisting of
four nodes and three edges (Figure 7). For navigation, the strategy used is to assign
the front robot as the leader, and the others as followers. Each robot is assigned the fleet
route, and minimum distance constraints are added to avoid collisions between them.

LeaderFollowerFollowerFollower

Node 1Node 2Node 3Node 4

Edge 1Edge 2Edge 3

Figure 7. Node-edge configuration with cable robot on the leader robot. Source: Authors.
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Map, Obstacle, and Start Selection for Offline Planning

In this stage, computer vision techniques are used to generate two-dimensional maps
of positive and negative obstacles, separating them into individual masks for individual
processing. Table 2 shows the associated color coding, as well as land navigation conditions
and roped fleet restrictions for traversability.

Table 2. RGB color definition used in 2D maps for RUDE-AL. Source: Authors.

Tipo RGB Color UGVs Navigation Allowed Cable Cross Allowed

Free space (255, 255, 255) YES YES
Positive obstacle (136, 138, 133) NO NO
Negative obstacle (0, 0, 0) NO YES

OpenCV tools are used for contour detection, obstacle inflation (erode and dilate tools),
and graphical representation of the algorithm. The starting point of the mission and the
negative obstacle to be explored are manually selected. The existence of positive obstacles
near the undercut that affect the roped deployment process is evaluated, and a group of
candidate points is automatically obtained. Figure 8 shows the candidate point selection
process for maps with several positive obstacles and one negative obstacle.

(a) (b) (c) (d)
Figure 8. First stage candidate points with no nearby positive obstacles, (a) obstacle selection,
(b) contour candidates, (c) evaluation of feasible and non-feasible candidates (red feasible, blue no
feasible, (d) first stage candidate points (green). Source: Authors.

Figure 9 shows the process for selecting candidate points with a positive obstacle close
to the zone of interest.

(a) (b) (c) (d)

Figure 9. First stage candidate points with one nearby positive obstacles, (a) obstacle selection,
(b) contour candidates, (c) evaluation of feasible and non-feasible candidates (red feasible, blue no
feasible, (d) first stage candidate points (green). Source: Authors.

Figure 10 shows the selection of candidate points when there are two positive obstacles
close to the area of interest.

229



Sensors 2023, 23, 6487

(a) (b) (c) (d) (e)

Figure 10. First stage candidate points with two nearby positive obstacles, (a) obstacle selection,
(b) contour candidates, (c) evaluation of feasible and non-feasible candidates (red feasible, blue
no feasible), (d) selection of available areas to explore, (e) first stage candidate points (green).
Source: Authors.

Then, path planning is performed with a multi-query planner, in this case, a proba-
bilistic roadmap (PRM), in order to obtain the candidate fleet routes from the starting point
to the candidate target points of the first stage (Figure 11).

Figure 11. Multiple goal path planning for different scenarios. Source: Authors.

Algorithm 1 shows the pseudocode implemented for this stage, using as input vari-
ables: the required map, which is an RGB image in png format with a resolution of
1000 × 1000 pixels, whose colors correspond to the requirements of Table 2, and the value
of the starting point start. The following functions explain the processes:

• Erode (line 12), Dilate (line 13), Range (line 14), Contours (line 16) and Centroids
(line 18): are OpenCV functions used to inflate regions of images, define masks, and
get characteristics of contours.

• Remove_dup (line 28): is a function to delete the multiple occurrences of an object in
a list.

• Line(line 35): is a function that returns the slope and the constant “b” for a y = mx + b
line between two input points

• Check_click (line 51): is a function that determines where the user clicks and returns
the selected zone to explore (options are 1 or 2).

• Route (line 51) is a function that performs the prm path planning between two points.
Returns the feasible path between them.
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Algorithm 1 Fleet Planning
Input: map,start
Output: cpoint, cpath

1: //init_candidates: set of initial candidate points
2: //cpoint: set of candidate points
3: //cpath: set of candidate paths
4: //index_roi: index of the negative obstacle to explore
5: //index_pos_obst: list of index of positive obstacles close to ROI
6: //m: slope of line between two points
7: //b: constant of line between two points
8: //y_sup: bool that defines if “y” coordinate of a point is greater that the one described by equation constants
9: //upper_c: candidate points greater that line defined between two near positive obstacles

10: //lower_c: candidate points lower that line defined between two near positive obstacles
11: map← gray(map)
12: erodedn_m← Erode(map)
13: erodedp_m← Dilate(map)
14: black_m← Range(erodedn_m, 0, 10)
15: gray_m← Range(erodedp_m, 50, 150)
16: neg_contours← Contours(black_m)
17: pos_contours← Contours(gray_m)
18: pos_centroids← Centroids(pos_contours)
19: cpoint ← neg_contours[index_roi]
20: for j ∈ pos_centroids do
21: for j ∈ negcontours do
22: if gray_m[c_point[i]] == 1 then
23: Delete from c_point this neg_contours [i]
24: Append in index_pos_obst this j
25: end if
26: end for
27: end for
28: index_pos_obst← Remove_dup[index_pos_obst]
29: if length(index_pos_obst) == 1 then
30: for i ∈ cpoint do
31: cpath = Route(start, i)
32: end for
33: end if
34: if length(index_pos_obst) == 2 then
35: m, b← Line(pos_centroid[index_pos_obst[0]], pos_centroid[index_pos_obst[1]])
36: for i ∈ cpoint do
37: ysup ← check_line(cpoint, m, b)
38: if y_sup == true then
39: Append in upper_c this cpoint[i]
40: else
41: Append in lower_c this cpoint[i]
42: end if
43: end for
44: zone=Check_click()
45: if zone == 1 then
46: cpoint = upper_c
47: else
48: cpoint = lower_c
49: end if
50: for i ∈ cpoint do
51: cpath[i] = Route(start, i)
52: end for
53: end if
54: return cpoint, cpath

Definition, Sorting, and Choice of Feasible Goal Candidates Based on Area Coverage and
Distance Cost of Fleet Deployment

At this stage, the distance cost of the fleet route is minimized and the area covered by
the polygon formed by the combination of four points corresponding to the position of
the mobile robots is maximized. The candidate points are defined as c1, c2, c3, c4. Initially,
to reduce the number of combinations to be processed, a minimum distance criterion is
applied between subsequent points, defining minimum and maximum indices for each
point in the general list of candidates, as shown in Figure 12, from which different vectors
are obtained for each candidate point.
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Figure 12. Definition of minimum and maximum index for each candidate point. Source: Authors.

The calculation of the area covered by the combination of the candidate points is made
with the sum of the areas of the triangles that form the quadrilateral 1-2-3-4, shown in
Figure 13, with the Equation (1):

acov =
1
2
|~a×~b|+ 1

2
|~b×~c| (1)

where:

• acov: covered area by points
• ~a: vector between points 1–4
• ~b: vector between points 1–3
• ~c: vector between points 1–2

c

3

2

1

4

Figure 13. Vectors to calculate covered area. Source: Authors.

For the calculation of the distance cost, in each fleet route associated to each candidate
point (Figure 11), the Equation (2) is used:

croute =
i=n

∑
i=1

d(pi, pi−1) (2)

where:

• croute: accumulated distance cost of route
• d: euclidean distance between points

The cost values associated to each candidate route are normalized with respect to
the maximum distance cost. Since the aim is to maximize the fitness function, and the
area covered calculated with respect to the area of the obstacle obtained with OpenCV,
a weighted fitness function is defined using the scalarized approach (weighted sum method)
with the Equation (3):

f f itness =
warea ∗ acandidate

aobstacle
+ wroute ∗max(inv_route_costcandidates) (3)

where:

• f f itness: fitness function
• warea: weight applied for area coverage
• acandidate: weight applied for path distance cost
• aobstacle: covered by 4-candidate points combination
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• wroute: area of obstacle obtained from contours
• inv_route_costcandidates: vector of inverse normalized route cost for candidate points

To estimate candidates that maximize the fitness function while reducing the computa-
tional cost, genetic algorithms, implemented with the PyGAD package [52], are used. To use
the package, it is necessary to adapt the problem to the structure of a genetic algorithm.

A combination of four candidate points is sought, whose coordinates are defined with
values of type “integer”, where each candidate point is contained in a pool of feasible
solutions, and has an associated fleet path cost value. For the application of PyGAD to
the problem, the indices of the lists of each candidate point are used as solutions, having
as objective the maximization of the f f itness function, delimiting the maximum values of
mutation range to the length of the vector of each feasible candidate. The data type is of
type “int”. For the generation of the instance, the parameters described in Table 3 are set.

Table 3. Parameters defined in PyGAD instance.

Parameter Definition Value

num_generations Number of generations 1200

mutation_num_genes Number of genes por instance
random_mutation() 4

num_parents_mating Number of solutions to be selected
as parents 2

sol_per_pop Number of solutions in the population 70
num_genes Number of genes in each solution 4
fitness_function Fitness function f f itness

init_range_low Lower value of random range where
initial population is selected. 0

init_range_high Upper value of random range where
initial population is selected. len(candidate1)/2

crossover_type Type of crossover operation. “single_point”

random_mutation_min_val
Start value of the range from
which a random value is selected
to be added to the gene.

1

random_mutation_max_val
End value of the range from
which a random value is selected
to be added to the gene.

100

mutation_type Type of mutation operation “random”

gene_space
Specify the posible values for
each gene in order to restrict
the gene values.

[range (0, len(candidate1)),
range (0, len(candidate2)),
range (0, len(candidate3)),
range (0, len(candidate4)) ]

gene_type Gene type (numeric data type) int

The value of warea is 2, and wroute is 3, prioritizing the minimization of the fleet
route distance cost, which represents the process with the highest energy cost due to the
relationship with the number of robots in the fleet.

Algorithm 2 takes as input variables the candidate points cpoint, and the paths of each
candidate cpath. The following functions explain the process:

• Get_area (line 13) is a function that gets the area of the contour made by a list of points.
The output is the area of the contour.

• Route_cost (line 14) is a function that calculates the accumulated individual distance
cost for a list of paths.

• Index_range (line 15) is a function that defines the lower and upper limit indexes for
each candidate point according to a minimum distance between points. The output is
a range of index for each of the four candidate points.

• Get_candidates (line 16) is a function that defines independent lists of candidate points
of a main list according to the given limits. The output is four lists of points.
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• Fitness_function (line 17) is a function that iterates testing different combinations
according to Ga_instance parameters. It includes the Area_calc() in order to calculate
area for every iteration different combination of points.

• Area_calc (line 17) is a function that calculates the area described between four points
according to cross product and sum of areas described in Equation (1).

• Ga_instance (line 18) is pygad instance to configure the genetic algorithm that include
the parameters described in Table 2. The instance must run using Ga_instance.run.
The output of Ga_instance.best_solution() is the best combination of four points
according to the fitness function.

Algorithm 2 Points Selection
Input: cpoint, cpath
Output: sol_points,fleet_path

1: //roi_area: area on negative obstacle in pixels2

2: //cpoint: set of candidate points
3: //cpath: set of candidate paths
4: //range_c_points: 2x4 matrix of range of points for candidates 1, 2, 3, 4
5: //c1: list of candidate 1 points
6: //c2: list of candidate 2 points
7: //c3: list of candidate 3 points
8: //c4: list of candidate 4 points
9: //sol_points: solution of four points

10: //fit_function: fitness function used in pygad instance
11: //sol_paths: fleet paths for solution points
12: //path_cost: list of distance costs related to the input cpath
13: roi_area← Get_area(cpoint)
14: path_cost=Route_cost(cpath)
15: range_c1, range_c2, range_c3, range_c4=Index_range(cpoint)
16: c1, c2, c3, c4=Get_candidates(range_c_points, cpoint)
17: fit_function=fitness_function(c1,c2,c3,c4, roi_area, path_cost, Area_calc())
18: ga_instance(fit_function, range_c_points)
19: sol_points=ga_instance.best_solution()
20: for i ∈ sol_points do
21: sol_paths[i]=cpath[sol_points[i]]
22: end for
23: fleet_path=min(sol_paths)
24: return sol_points,fleet_path

3.2.2. Phase 2. Roped Individual Configuration

In this phase, the robots are freed from the constraints of the worm configuration,
where each mobile robot is attached by a rope to the parallel cable robot (Figure 14). In this
phase, it is important to note that the lead robot will not always carry the wire robot, as the
robot to carry will be defined by obtaining the feasible deployment configuration. Each
robot in the fleet will have its own route, added to the fleet route from the previous phase.

Leader
Follower

Follower

Follower

Figure 14. Roped individual configuration. Source: Authors.
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Goal Local Planning and Establishment of Deployment Configuration Based on
Rope Restrictions

After having selected the best feasible candidate points, a route planning is performed
between the selected points to obtain the deployment routes and propose a feasible de-
ployment configuration considering the roped fleet constraints (Table 2). By having one
fleet route and several deployment routes, different combinations of possible routes can be
generated, shown in Figure 15.
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Figure 15. Candidate deployment configurations, (a) available deployment paths, (b) deployment
path without A-B route, (c) deployment path without A-D route, (d) deployment path without B-C
route, (e) deployment path without C-D route. Source: Authors.

The point corresponding to the fleet robot carrying the cable robot is also taken into
account since, in addition to generating a feasible deployment path for UGV navigation,
corded fleet constraints for positive obstacles must be considered; see Figure 16.
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(b)
Figure 16. Cable robot position, (a) At point A (no roped feasible configuration because of collision),
(b) At point B (roped feasible configuration). Source: Authors.

In addition to the previous considerations, it must be evaluated that at each instant of
the deployment, there is a rope connecting each mobile robot with the cable robot, where
contact with positive obstacles must be avoided; see Figure 17.

START

A

B

C

D

FLEET PATH

DEPLOYMENT 

PATH CABLES

Figure 17. Evaluation of rope contact with positive obstacles at interpolated path for follower robot
at A-D candidate route. Source: Authors.

Table 4 details the conditions considered to obtain feasible paths and feasible configu-
rations for possible situations using different start positions.
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Table 4. Feasible configuration for deployment path.

Point 1st Feasible Path 2nd Feasible Path 3rd Feasible Path Feasible Configuration

A

R1 R2 R3 A →(R1,R2,R3)
R1 R2 R4 A →(R1,R2,R4)
R1 R3 R4 A →(R1,R3,R4)
R1 R3 R4 A →(R2,R3,R4)

B

R1 R2 R3 B →(R1,R2,R3)
R1 R2 R4 B →(R1,R2,R4)
R1 R3 R4 B →(R1,R3,R4)
R1 R3 R4 B →(R2,R3,R4)

C

R1 R2 R3 C →(R1,R2,R3)
R1 R2 R4 C →(R1,R2,R4)
R1 R3 R4 C →(R1,R3,R4)
R1 R3 R4 C →(R2,R3,R4)

D

R1 R2 R3 D →(R1,R2,R3)
R1 R2 R4 D →(R1,R2,R4)
R1 R3 R4 D →(R1,R3,R4)
R1 R3 R4 D →(R2,R3,R4)

Finally, the routes of each robot are defined according to the possible configurations
for fleet deployment (Figure 18), using the criteria defined in Table 5.

Table 5. Definition of individual robot paths for feasible deployment path configurations.

Principal Node Point Feasible Configuration Robot 1 Path Robot 2 Path Robot 3 Path Robot 4 Path

A

type 1 FP+ADCB FP + ADC FP + AD FP
type 2 FP + ABCD FP + ABC FP + AB FP
type 3 FP + ADC FP + AD FP + AB FP
type 4 FP + ABC FP + AB FP + AD FP

B

type 1 FP + BADC FP + BAD FP + BA FP
type 2 FP + BCDA FP + BCD FP + BC FP
type 3 FP + BAD FP + BA FP + BC FP
type 4 FP + BCD FP + BC FP + BA FP

C

type 1 FP + CBAD FP + CBA FP + CB FP
type 2 FP + CDAB FP + CDA FP + CD FP
type 3 FP + CBA FP + CB FP + CD FP
type 4 FP + CDA FP + CD FP + CB FP

D

type 1 FP + DCBA FP + DCB FP + DC FP
type 2 FP + DABC FP + DAB FP + DA FP
type 3 FP + DCB FP + DC FP + DA FP
type 4 FP + DAB FP + DA FP + DC FP

The criterion for selecting robot routes is to apply the longest route to the leader robot,
progressively descending to the shortest route to follower robot 3, in type 1 and type 2
configurations. For type 3 and type 4 configurations, the path to the longest boundary node
is assigned to the leader robot, the shortest leg of the path from the leader robot to follower
robot 1, the path to the shortest boundary node to follower robot 2, and the shortest path to
follower robot 3.

The pseudocode is detailed in Algorithm 3. The functions that help to understand this
section are:

• Route (line: 10) is a function that performs the PRM path planning between two points.
It returns the feasible path between them.

• Route_check (line: 14) is a function that creates an interpolated line between input
point and every interpolated point of the input route, and checks if there are collisions
between the interpolated line (rope) and a positive obstacle. Output is a Boolean true
if there is collision, and false if there is no collisions.

236



Sensors 2023, 23, 6487

• GetRobotPaths (line: 35) is a function in which input is feasibility of each path of
the roped configuration deployment check, and it returns the path for each robot
according to Table 5.
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Figure 18. Feasible deployment path configuration using point A as principal node. (a) Type 1. (b)
Type 2. (c) Type 3. (d) Type 4. Source: Authors.

Algorithm 3 Roped deployment
Input: sol_points, f leet_path, map
Output: f leet_path, r1_path, r2_path, r3_path, r4_path

1: //init_candidates: set of initial candidate points
2: //check_path: is a Boolean that indicates if the path is feasible to navigate with roped fleet conditions (true=no valid,

false=valid)
3: //p1_check: is a list that contains boolean values related to a feasible path between point 1 and a route
4: //p2_check: is a list that contains boolean values related to a feasible path between point 2 and a route
5: //p3_check: is a list that contains boolean values related to a feasible path between point 3 and a route
6: //p4_check: is a list that contains boolean values related to a feasible path between point 4 and a route
7: map← gray(map)
8: gray_m← Range(map, 50, 150)
9: for i ∈ (sol_points− 1) do

10: deployment_paths[i]=Route(sol_points[i],sol_points[i+1])
11: end for
12: for i ∈ (sol_points) do
13: for j ∈ deploymentpaths do
14: check_path=Route_check(sol_points[i],deployment_paths[j])
15: if check_path == true then
16: if i == 1 then
17: Append in p1_check this check_path
18: break
19: end if
20: if i == 2 then
21: Append in p2_check this check_path
22: break
23: end if
24: if i == 3 then
25: Append in p3_check this check_path
26: break
27: end if
28: if i == 4 then
29: Append in p4_check this check_path
30: break
31: end if
32: end if
33: end for
34: end for
35: robot1_path, robot2_path, robot3_path, robot4_path=GetRobotPaths(p1_check, p2_check, p3_check, p4_check)
36: return robot1_path, robot2_path, robot3_path, robot4_path

4. Experiments

In order to test the performance of the algorithm on environments with different
characteristics, two groups of environments are defined. The first, GLOBAL TEST, is
intended to test different combinations of environments with various positive and negative
obstacles, to test the robustness of the fleet in node-edge configuration; this group consists
of manual generation of maps, using combinations associated with the characteristics of
the fleet environment. The second group, SHAPE TEST, modifies the shape features of
the region of interest to be explored, in order to test the robustness of the algorithm and
identify the mission characteristics (shape of ROI, number of positive obstacles near the
ROI, start point) that can affect the performance.
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For GLOBAL TEST, the experiments are performed on six maps with the characteristics
shown in Table 6.

Table 6. Characteristics of GLOBAL TEST environment maps.

Map Number of Positive Obstacles Number of Negative Obstacles Number of Positive Obstacles around ROI Shape of Negative Obstacle

1 0 1 0 Irregular
2 4 1 1 Irregular
3 5 1 2 Irregular
4 8 1 0 Ellipse
5 12 6 0 Ellipse
6 17 34 0 Irregular ellipse

For each map, feasible fleet paths are obtained just once to get the feasible fleet
candidate path cost, because the main goal is evaluating the performance of algorithm, not
to be a PRM path planner.

For GLOBAL TEST, the maps shown in Figure 19 are used with the characteristics
described in Table 6.

(a) (b) (c)

(d) (e) (f)
Figure 19. Manually generated maps for GLOBAL TEST, (a) map 1, (b) map 2, (c) map 3, (d) map 4,
(e) map 5, (f) map 6. Source: Authors.

For SHAPE TEST, thirty types of maps are automatically generated for each number of
positive obstacles around the area of interest, varying the shape of the sinkhole. These maps
are generated through a point connection script using cubic Bezier curves [53]. The criteria
for autogeneration of the maps are explained in Table 7.

Table 7. Characteristics for automatic generated maps.

Maps Number of Positive Obstacles around ROI Cprad Smoothness Nrandom Scale

1–10 0–2 0.2 0.05 6 500
11–20 0–2 0.3 0.08 7 250
21–30 0–2 0.1 0.1 8 300

Where:
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• Maps: The range of maps that are auto-generated with the indicated characteristics.
• Nrandom: number of random points to connect to generate the Bezier curve.
• Cprad: radius around the points where control points are. A larger radius means a

sharper feature.
• Smoothness: Parameter to define the smoothness of the curve.
• Scale: X and Y pixel rectangle size where the random points will be generated.

The total number of generated maps is 90. Tests are performed by planning the routes
from four start points ([100,100], [100,900], [800,100], [800,800]), with a total of 360 tests of
the algorithm.

The 1000 × 1000 pixel resolution maps have a scale of 0.1 m per pixel, thus, the size
range of the generated sinkholes goes from 20 m to 50 m approximately. The reference
mobile robot size is the SummitXL (0.7 m length, 0.6 m width, 0.45 m height).

Some of the used maps are shown in Figure 20.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20. Automatic generated maps for SHAPE TEST, (a) maps 1–10 with 0 nearby positive
obstacles, (b) maps 1–10 with 1 nearby positive obstacles, (c) maps 1-10 with 2 nearby positive
obstacles, (d) maps 11–20 with 0 nearby positive obstacles, (e) maps 11–20 with 1 nearby positive
obstacles, (f) maps 11–20 with 2 nearby positive obstacles, (g) maps 21–30 with 0 nearby positive
obstacles, (h) maps 21–30 with 1 nearby positive obstacles, (i) maps 21–30 with 2 nearby positive
obstacles. Source: Authors.

All experiments were carried on Intel Core i7-9750H PC with 16GB RAM, under the
ROS Noetic operating system and Python 3.8, on a computer running Ubuntu 20.04. For
simulation, Gazebo is used through Robotnik Stack for Summit-XL [54], using mobile
platforms of four wheels with differential locomotion.

5. Results

This chapter presents the results of the experiments. Table 8 shows the summary of
the results obtained, detailing the exceptions for SHAPE TEST, which are explained in the
following sections. The results are encouraging, allowing us to identify the circumstances
of the map that caused incorrect results.
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Table 8. Summary of results.

Experiment Number of Maps Number of Experiments Number of Successful Experiments Successful Rate

Global TEST 6 24 24 100%
SHAPE TEST
(feasible paths) 90 360 357 99.16%

SHAPE TEST
(feasible paths with
workspace limitation)

90 360 352 97.78%

SHAPE TEST
(feasible paths with
collision risk)

90 360 350 97.2%

SHAPE TEST
(feasible paths with
exceptions)

90 360 354 98.33%

SHAPE TEST 90 360 333 92.5%

Tests are performed from the starting point [100,100], obtaining a feasible fleet route,
deployment routes, and cable layout. Figures 21–26.

Figure 21. GLOBAL TEST procedure for Map 1. Source: Authors.

Figure 22. GLOBAL TEST procedure for Map 2. Source: Authors.

Figure 23. GLOBAL TEST procedure for Map 3. Source: Authors.
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Figure 24. GLOBAL TEST procedure for Map 4. Source: Authors.

Figure 25. GLOBAL TEST procedure for Map 5. Source: Authors.

Figure 26. GLOBAL TEST procedure for Map 6. Source: Authors.

In GLOBAL TEST experiments, the algorithm finds feasible solutions for 100% of
the cases.

In SHAPE TEST experiments, maps with the features in Table 7 are tested. Figure 27
shows some of the results obtained by the algorithm in the experiments performed in the
SHAPE TEST environment.

Figure 27. Feasible fleet and deployment paths tested in SHAPE TEST generated environment.
Source: Authors.

For the 360 tests, the algorithm returns feasible routes in 357, representing 99.16%
efficiency for fleet route and deployment route generation.
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Since the scope of the paper is delimited to point selection and feasible route generation
for a fleet of corded robots, the workspace of the effector mounted on one of the robots
is not considered. However, post-fleet navigation issues are discussed, through caveats
defined in two groups: limitations of the corded robot workspace, and risk of collision of
the cords in the release of the end effector.

Selected points representing a limitation to the workspace are obtained eight times
(Figure 28), i.e., 2.22%, while the risk of cable collision with positive obstacles occurs
10 times (Figure 29), 2.78% of the time.

Figure 28. Selected points for feasible fleet and deployment paths that limit the release of the CDPR.
Source: Authors.

Figure 29. Selected points for feasible fleet and deployment paths close to hit positive obstacles
during release of cable drive robot. Source: Authors.

There are also exceptional cases where navigation and deployment of the fleet is
feasible, but the release of the effector would present an error. These cases occur in
six occasions (1.67%), shown in Figure 30.

Figure 30. Selected feasible points that present problems during the release of the cable driven robot.
Source: Authors.

5.1. Fitness

In order to analyze statistical significance, box and whisker plots associated with the
relationships between the fit variables (fitness, weighted fleet route distance cost, weighted
area covered) and map characteristics (number of positive obstacles in the ROI, shape
characteristics for map generation, starting points) are presented.

Figure 31 shows the box and whisker plots of fitness and map characteristics. The one-
way analysis of variance (ANOVA) shows that there are significant differences with α = 0.05
of fitness vs. number of positive obstacles in the ROI (F = 305.53, p = 0), fitness vs. shape
(F = 4.04, p = 0.0184), and that there are no significant differences of fitness vs. starting
point data (F = 1.08, p = 0.3588).
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(a) (b) (c)
Figure 31. Box and whiskers diagrams for fitness and its variables, (a) fitness vs. number of positive
obstacles on ROI, (b) fitness vs. automatic generated shapes, (c) fitness vs. start points. Source:
Authors.

Figure 32 collects the plots for the weighted cost of the area covered and the map
features. Analysis of variance indicates significant differences with α = 0.05 of area weighted
cost vs. number of positive obstacles in the ROI (F = 266.65, p = 0), area weighted cost vs.
shape (F = 3.4, p = 0.0345), and that there are no significant differences of area weighted
cost vs. start point data (F = 0.07, p = 0.9748).

(a) (b) (c)
Figure 32. Box and whiskers diagrams for weighted normalized covered area and its variables,
(a) weighted normalized covered area vs. number of positive obstacles on ROI, (b) weighted normal-
ized covered area vs. automatic generated shapes, (c) weighted normalized covered area vs. start
points. Source: Authors.

Figure 33 points out the plots for the weighted fleet route distance cost and map
features. Analysis of variance reveals significant differences with α = 0.05 of weighted fleet
route distance cost vs. number of positive obstacles in the ROI (F = 9.64, p = 0), weighted
fleet route distance cost vs. shape (F = 5.98, p = 0.0028), and that there are no significant
differences of fleet route distance vs. start point data (F = 1.64, p = 0.1791).

(a) (b) (c)
Figure 33. Box and whiskers diagrams for weighted normalized fleet path cost and its variables,
(a) weighted normalized fleet path cost vs. number of positive obstacles on ROI, (b) weighted
normalized fleet path cost vs. automatic generated shapes, (c) weighted normalized fleet path cost vs.
start points. Source: Authors.

In summary, it can be said that the fitness value obtained as a result of the algorithm
is mainly affected by the number of positive obstacles close to the ROI, and secondarily,
by the shape of the land depression to be explored. The starting point does not affect in a
relevant way the fitness function value.
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5.2. Algorithm Complexity

The complexity of an algorithm is usually calculated based on the Big-O notation,
divided into time complexity, referring to the execution time of the algorithm, and space
complexity, the amount of memory used by an algorithm [55]. In this section, the temporal
complexity of the genetic algorithm is discussed. The amount of data processed by an
algorithm is represented by N. If the algorithm does not depend on N, it has a constant
complexity, represented by the notation O(1). If the algorithm depends on N, the complexity
is represented as a function of this variable with the notations O(N), O(N2), O(log N), O(N
log N), O(2N), O(N!). Figure 34 shows the evolution of the execution time of the genetic
algorithm as a function of the number of samples. Input range goes from 76 to 806, with a
maximum time of 16.55 s, and an average time of 9.48 s. A linear regression is performed
to estimate the fit to the measured time data, obtaining the Equation (4):

time = 0.0101 ∗ ninputs + 5.8094 (4)

With a value of R2 of 0.5523, the algorithm has a proportional behaviour, understood
in the Big-O notation as O(n), considered a fair complexity.
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Figure 34. Execution time of GA algorithm. Source: Authors.

5.3. Test on Gazebo Simulator

For the fleet navigation simulation, the Summit XL robot ROS package is adapted
to use four robots. The 3D environments are developed by approximating the splines
of the generated maps and exporting to a compatible format for import into the Gazebo
environment. A script is implemented to track the trajectories of each robot, and a viewer
is set up parallel to the execution of the mission. Figure 35 shows the operation of the
algorithm and the navigation of the robot fleet. The size scale used is 0.1 m per pixel for the
map, so the sinkhole is approximately 50 m long, 30 m wide, and 20 m deep.

Figure 35. Gazebo simulation of navigation and deployment of the robot fleet around a sinkhole.
Source: Authors.
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6. Conclusions

In this work, the use of a fleet of UGV land mobile robots is proposed for the deploy-
ment of a mobile cable-driven parallel robot to perform the exploration of sinkholes.

For the positioning of the mobile bases of the MCDPR, fleet route planning and corded
deployment are performed using maps with different characteristics, generated either
manually or automatically.

Several experiments have been performed by varying the fleet route environment and
the features of the sinkhole to explore. The results of the experiments show the robustness
of the algorithm for the generation of feasible routes, in addition to corroborating that
both the shape of the sinkhole and the number of positive obstacles in the ROI region of
interest present significant differences for the cost function fit. The validity of the routes in
a simulation model in Gazebo has been also evaluated.

The use of evolutionary algorithms considerably reduces the calculation time of the
algorithm. However, parameter settings should be tailored for each task, so it is important
to initially consider the scope and scalability of the proposed solution.

Future work should focus on optimization of fleet routes, smoothing of planned routes
to improve navigation, consideration of physical characteristics of ropes, and integration
into real roped robotic fleets. For real-world scenarios, navigation can be improved with
the addition of local planning techniques to avoid dynamic obstacles. Simulation can focus
on testing the algorithm on rope capable simulators considering the dynamical restrictions
of the real roped robotic fleet. In addition, the workspace of the released CDPR as part of
the proposed weighted fitness function should be analyzed.
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GA Genetic Algorithms
MCDPR Mobile Cable-Driven Parallel Robot
PRM Probabilistic Roadmap
ROI Region of Interest
RTS Robotic Total Station
RUDE-AL Roped UGV fleet Deployment ALgorithm
SAR Search and Rescue
TS Total Station
UGV Unmanned Ground Vehicle
USAR Urban Search and Rescue
WiSAR Wilderness SAR

Appendix A

Link to the video RUDE-AL: Roped UGV deployment algorithm of a MCDPR for
sinkhole exploration: (accesed on 30 May 2023). https://youtu.be/2yYPXLVhq2I.

Appendix B

The obtained results can be found on https://github.com/davidorbea92/rude_al
(accesed on 30 May 2023).
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Abstract: When the magnitude of a gaze is too large, human beings change the orientation of their
head or body to assist their eyes in tracking targets because saccade alone is insufficient to keep
a target at the center region of the retina. To make a robot gaze at targets rapidly and stably (as a
human does), it is necessary to design a body–head–eye coordinated motion control strategy. A robot
system equipped with eyes and a head is designed in this paper. Gaze point tracking problems are
divided into two sub-problems: in situ gaze point tracking and approaching gaze point tracking.
In the in situ gaze tracking state, the desired positions of the eye, head and body are calculated on
the basis of minimizing resource consumption and maximizing stability. In the approaching gaze
point tracking state, the robot is expected to approach the object at a zero angle. In the process of
tracking, the three-dimensional (3D) coordinates of the object are obtained by the bionic eye and
then converted to the head coordinate system and the mobile robot coordinate system. The desired
positions of the head, eyes and body are obtained according to the object’s 3D coordinates. Then,
using sophisticated motor control methods, the head, eyes and body are controlled to the desired
position. This method avoids the complex process of adjusting control parameters and does not
require the design of complex control algorithms. Based on this strategy, in situ gaze point tracking
and approaching gaze point tracking experiments are performed by the robot. The experimental
results show that body–head–eye coordination gaze point tracking based on the 3D coordinates of an
object is feasible. This paper provides a new method that differs from the traditional two-dimensional
image-based method for robotic body–head–eye gaze point tracking.

Keywords: bionic eyes; gaze point tracking; gaze point approaching; body–eye–head coordination;
3D coordinates

1. Introduction

When the magnitude of a gaze is too large, human beings change the orientation of
their head or body to assist their eyes in tracking targets because saccade alone is insufficient
to keep a target at the center region of the retina. Studies on body–head–eye coordination
gaze point tracking are still rare because the body–head–eye coordination mechanism of
humans is prohibitively complex. Multiple researchers have investigated the eye–head
coordination mechanism, binocular coordination mechanism and bionic eye movement
control. In addition, researchers have validated the eye–head coordination models on
eye–head systems. This work is significant for the development of intelligent robots for
human–robot interaction. However, most of these methods are based on the principle of
neurology, and their further developments and applications may be limited by people’s
understanding of human processes. However, binocular coordination based on the 3D
coordinates of an object is simple and practical, as verified by our previous paper [1].
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When the fixation point transfers greatly, the head and eyes should move in coor-
dination to accurately shift the gaze to the target. Multiple studies have built models of
eye–head coordination based on the physiological characteristics of humans. For example,
Kardamakis A A et al. [2] researched eye–head movement and gaze shifting. The best
balance between eye movement speed and the duration time was sought, and the optimal
control method was used to minimize the loss of motion. Freedman E G et al. [3] studied
the physiological mechanism of coordinated eye–head movement. However, they did
not establish an engineering model. Nakashima et al. [4] proposed a method for gaze
prediction that combines information on the head direction with a saliency map. In another
study [5], the authors presented a robotic head for social robots to attend to scene saliency
with bio-inspired saccadic behaviors. The scene saliency was determined by measuring
low-level static scene information, motion, and prior object knowledge. Law et al. [6]
described a biologically constrained architecture for developmental learning of eye–head
gaze control on an iCub robot. They also identified stages in the development of infant
gaze control and proposed a framework of artificial constraints to shape the learning of the
robot in a similar manner. Other studies have investigated the mechanisms of eye–head
movement for robots and achieved satisfactory performance [7,8].

Some application studies based on coordinated eye–head movement have been car-
ried out in addition to the mechanism research. For example, Kuang et al. [9] developed a
method for egocentric distance estimation based on the parallax that emerges during com-
pensatory head–eye movements. This method was tested in a robotic platform equipped
with an anthropomorphic neck and two binocular pan–tilt units. Reference [10]’s model
is capable of reaching static targets posed at a starting distance of 1.2 m in approximately
250 control steps. Hülse et al. [11] introduced a computational framework that integrates
robotic active vision and reaching. Essential elements of this framework are sensorimotor
mappings that link three different computational domains relating to visual data, gaze
control and reaching.

Some researchers have applied the combined movement of the eyes, head and body
in mobile robots. In one study [12], large reorientations of the line of sight, involving
combined rotations of the eyes, head, trunk and lower extremities, were executed either as
fast single-step or as slow multiple-step gaze transfers. Daye et al. [13] proposed a novel
approach for the control of linked systems with feedback loops for each part. The proximal
parts had separate goals. In addition, an efficient and robust human tracker for a humanoid
robot was implemented and experimentally evaluated in another study [14].

On the one hand, human eyes can obtain three-dimensional (3D) information from
objects. This 3D information is useful for humans to make decisions. Human can shift
their gaze stably and approach a target using the 3D information of the object. When the
human gaze shifts to a moving target, the eyes first rotate to the target, and then the head
and even the body rotate if the target leaves the sight of the eyes [15]. Therefore, the eyes,
head and body move in coordination to shift the gaze to the target with minimal energy
expenditure. On the other hand, when a human approaches a target, the eyes, head and
body rotate to face the target and the body moves toward the target. The two movements
are typically executed with the eyes, head and body acting in conjunction. A robot that can
execute these two functions will be more intelligent. Such a robot would need to exploit
the smooth pursuit of eyes [16], coordinated eye–head movement [17], target detection and
the combined movement of the eyes, head and robot body to carry out these two functions.
Studies have achieved many positive results in these aspects.

Mobile robots can track and locate objects according to 3D information. Some spe-
cial cameras such as deep cameras and 3D lasers have been applied to obtain the 3D
information of the environment and target. In one study [18], a nonholonomic under-
actuated robot with bounded control was described that travels within a 3D region. A
single sensor provided the value of an unknown scalar field at the current location of the
robot. Nefti-Meziani S et al. [19] presented the implementation of a stereo-vision system
integrated in a humanoid robot. The low cost of the vision system is one of the main
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aims, avoiding expensive investment in hardware when used in robotics for 3D perception.
Namavari A et al. [20] presented an automatic system for the gauging and digitalization of
3D indoor environments. The configuration consisted of an autonomous mobile robot, a
reliable 3D laser rangefinder and three elaborated software modules.

The main forms of motion of bionic eyes include saccade [1], smooth pursuit, ver-
gence [21], vestibule–ocular reflex (VOR) [22] and optokinetic reflex (OKR) [23]. Saccade
and smooth pursuit are the two most important functions of the human eye. Saccade is
used to move eyes voluntarily from one point to another by rapid jumping, while smooth
pursuit can be applied to track moving targets. In addition, binocular coordination and
eye–head coordination are of high importance to realize object tracking and gaze control.

It is of great significance for robots to be able change their fixation point quickly. In
control models, the saccade control system should be implemented using a position servo
controller to change and keep the target at the center region of the retina with minimum
time consumption. Researchers have been studying the implementation of saccade on
robots over the last twenty years. For example, in 1997, Bruske et al. [24] incorporated
saccadic control into a binocular vision system by using the feedback error learning (FEL)
strategy. In 2013, Wang et al. [25] designed an active vision system that can imitate saccade
and other eye movements. The saccadic movements were implemented with an open-loop
controller, which ensures faster saccadic eye movements than a closed-loop controller
can accommodate. In 2015, Antonelli et al. [26] achieved saccadic movements on a robot
head by using a model called recurrent architecture (RA). In this model, the cerebellum is
regarded as an adaptive element used to learn an internal model, while the brainstem is
regarded as a fixed-inverse model. The experimental results on the robot showed that this
model is more accurate and less sensitive to the choice of the inverse model relative to the
FEL model.

The smooth pursuit system acts as a velocity servo controller to rotate eyes at the same
angular rate as the target while keeping them oriented toward the desired position or in
the desired region. In Robinson’s model of smooth pursuit [27], the input is the velocity of
the target’s image across the retina. The velocity deviation is taken as the major stimulus
to pursue and is transformed into an eye velocity command. Based on Robinson’s model,
Brown [28] added a smooth predictor to accommodate time delays. Deno et al. [29] applied
a dynamic neural network, which unified two apparently disparate models of smooth
pursuit and dynamic element organization to the smooth pursuit system. The dynamic
neural network can compensate for delays from the sensory input to the motor response.
Lunghi et al. [30] introduced a neural adaptive predictor that was previously trained to
accomplish smooth pursuit. This model can explain a human’s ability to compensate for the
130 ms physiological delay when they follow external targets with their eyes. Lee et al. [31]
applied a bilateral OCS model on a robot head and established rudimentary prediction
mechanisms for both slow and fast phases. Avni et al. [32] presented a framework for
visual scanning and target tracking with a set of independent pan–tilt cameras based on
model predictive control (MPC). In another study [33], the authors implemented smooth
pursuit eye movement with prediction and learning in addition to solving the problem of
time delays in the visual pathways. In addition, some saccade and smooth pursuit models
have been validated on bionic eye systems [34–37]. Santini F et al. [34] showed that the
oculomotor strategies by which humans scan visual scenes produce parallaxes that provide
an accurate estimation of distance. Other studies have realized the coordinated control
of eye and arm movements through configuration and training [35]. Song Y et al. [36]
proposed a binocular control model, which was derived from a neural pathway, for smooth
pursuit. In their smooth pursuit experiments, the maximum retinal error was less than 2.2◦,
which is sufficient to keep a target in the field of view accurately. An autonomous mobile
manipulation system was developed in the form of a modified image-based visual servo
(IBVS) controller in a study [37].

The above-mentioned work is significant for the development of intelligent robots.
However, there are some shortcomings. First, most of the existing methods are based on

251



Sensors 2023, 23, 6299

the principle of neurology, and further developments and applications may be limited
by people’s understanding aimed at humans. Second, only two-dimensional (2D) image
information is applied when gaze shifts to targets are implemented, while 3D information
is ignored. Third, the studies of smooth pursuit [16], eye–head coordination [17], gaze
shift and approach are independent and have not been integrated. Fourth, bionic eyes are
different from human eyes; for example, some of them are two eyes that are fixed without
movement or move with only 1 DOF, whereas some of them use special cameras or a
single camera. Fifth, the movements of bionic eyes and heads are performed separately,
without coordination.

To overcome the shortcomings mentioned above to a certain extent, a novel control
method that implements the gaze shift and approach of a robot according to 3D coordinates
is proposed in this paper. A robot system equipped with bionic eyes, a head and a mobile
robot is designed to help nurses deliver medicine in hospitals. In this system, both the pan
and each eye have 2 DOF (namely, tilt and pan [38]), and the mobile robot can rotate and
move forward over the ground. When the robot gaze shifts to the target, the 3D coordinates
of the target are acquired by the bionic eyes and transferred to the eye coordination system,
head coordination system and robot coordination system. The desired position of the eye,
head and robot are calculated based on the 3D information of the target. Then, the eye, head
and mobile robot are driven to the desired positions. When the robot approaches the target,
the eye, head and mobile robot first rotate to the target and then move to the target. This
method allows the robot to achieve the above-mentioned functions with minimal resource
consumption and can separate the control of the eye, head and mobile robot, which can
improve the interactions between robots, human beings and the environment.

The rest of the paper is organized as follows. In Section 2, the robot system platform
is introduced, and the control system is presented. In Section 3, the desired position is
discussed and calculated. Robot pose control is described in Section 4. The experimental
results are given and discussed in Section 5; finally, conclusions are drawn in Section 6.

2. Platform and Control System

To study the gaze point tracking of the robot, this paper designs a robot experiment
platform including the eye–head subsystem and the mobile robot subsystem.

2.1. Robot Platform

The physical object of the robot is shown in Figure 1. With the mobile robot as a carrier,
a head with two degrees of freedom is fixed on the mobile robot, and the horizontal and
vertical rotations of the head are controlled by Mhu and Mhd, respectively. The bionic eye
system is fixed to the head. The mobile robot is driven by two wheels, each of which is
individually controlled by a servo motor. The angle and displacement of the robot platform
can be determined by controlling the distance and speed of each wheel’s movement. The
output shaft of each stepper motor of the head and eye is equipped with a rotary encoder
to detect the position of the motor. Using the frequency multiplication technique, the
resolution of the rotary encoder is 0.036◦. The purpose of using a rotary encoder is to
prevent the effects of lost motor motion on the 3D coordinate calculations. The movement
of each motor is limited by a limit switch. The initial positioning of the eye system is based
on the visual positioning plate [39].

The robot system includes two eyes and one mobile robot. To simulate the eyes and
the head, six DOFs are designed in this system. The left eye’s pan and tilt are controlled
by motors Mlu and Mld, respectively. The right eye’s pan and tilt are controlled by motors
Mru and Mrd, respectively. The head’s pan and tilt are controlled by motors Mhu and
Mhd, respectively. The mobile robot has two driving wheels and can perform rotation and
forward movement. When the mobile robot needs to rotate, two wheels are set to turn
the same amount in different directions. When the mobile robot needs to go forward, two
wheels are set to turn the same amount in the same direction.
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Figure 1. Physical implementation of the robot system. (a) The front side. (b) The left side. (c) The
right side.

A diagram of the robot system’s organization is shown in Figure 2. The host computer
and the mobile robot motion controller, the head motion controller and the eye motion
controller all communicate through the serial ports. For satisfactory communication quality
and stability, the baud rate of serial communication is 9600 bps. The camera communicates
with the host computer via a GigE Gigabit Network. The camera’s native resolution is
1600 × 1200 pixels. To increase the calculation speed, the system uses an image downsam-
pled to 400 × 300 pixels.
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Figure 2. Robot system’s organization diagram.

2.2. Control System

Figure 3 shows the control block diagram of the gaze point tracking of the mobile robot.
First, based on binocular stereo-vision perception, the binocular pose and the left and right
images are used to calculate the 3D coordinates of the target [40], and the coordinates of the
target in the eye coordinate system are converted to the head and mobile robot coordinate
system. Then, the desired poses of the eyes, head and mobile robot are calculated according
to the 3D coordinates of the target. Finally, according to the desired pose, the motor is
controlled to move to the desired position, and the change in the position of the motor is
converted into changes in the eyes, head and mobile robot.
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Figure 3. Block diagram of the gaze point tracking control system.

The tracking and approaching motion control problem based on the target 3D coordi-
nates [1] is equivalent to solving the index J minimization problem of Equation (1), where
f i is the current state vector of the joint pose of the eye, head and mobile robot and f q is the
desired state vector:

J =
∥∥∥fi − fq

∥∥∥ (1)

where J is the indicator function.
Figure 4a shows the definition of each coordinate system of the robot. The coordinate

system of the eye is OeXeYeZe, which coincides with the left motion module’s base coor-
dinate system at the initial position. The head coordinate system is OhXhYhZh, and the
coordinates Ph (xh, yh, zh) of the point P in the head coordinate system can be calculated
using the coordinates Pe (xe, ye, ze) in the eye coordinate system. The definitions of dx and
dy are shown in Figure 4b. The robot coordinate system OwXwYwZw coincides with the
head coordinate system of the initial position. In the bionic eye system, the axis of rotation
of the robot approximately coincides with Yw.
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Figure 4b,c show the definition of each system parameter. lθp and lθt are the pan and
tilt of the left eye, respectively. rθp and rθt are the pan and tilt of the right eye, respectively.
hθp and hθt are the pan and tilt of the head, respectively. The angle of the robot that rotates
around the Yw axis is wθp. The robot can not only rotate around Yw but can also shift in the
XwOwZw plane. When the robot moves, the robot coordinate system at time i is the base
coordinate system, and the position of the robot at time i + 1 relative to the base coordinate
system is wPm (wxm, wzm). When the robot performs gaze point tracking or approaches
the target, the 3D coordinates of the target are first calculated at time i, and then the desired
posture f q of each part of the robot at time i + 1 is calculated according to the 3D coordinates
of the target. When the current pose f i of the robot system is equal to the desired pose, the
robot maintains the current pose; when not equal, the system controls the various parts
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of the robot to move to the desired pose. The current pose vector of the robot system is
f i = (wxmi, wzmi, wθpi, hθpi, hθti, lθpi, lθti, rθpi, rθti), and the desired pose is f q = (wxmq, wzmq,
wθpq, hθpq, hθtq, lθpq, lθtq, rθpq, rθtq). When performing in situ gaze point tracking, the
robot performs only pure rotation and does not move forward. When the robot approaches
the target, it first turns to the target and then moves straight toward the target. Therefore,
the definition of f q in the two tasks is different. Let gf q be the desired pose when the gaze
point is tracked and af q be the desired pose of the robot when approaching the target.

After analyzing the control system, we found that the most important step in solving
this control problem is to determine the desired pose.

3. Desired Pose Calculation

When performing in situ gaze point tracking, the robot performs only pure rotation
and does not move forward. When the robot approaches the target, it first turns to the
target and then moves straight toward the target. Therefore, the calculation of the desired
pose can be divided into two sub-problems: (1) desired pose calculation for in situ gaze
point tracking and (2) desired pose calculation for approaching gaze point tracking.

The optimal observation position is used for the accurate acquisition of 3D coordinates.
The 3D coordinate accuracy is related to the baseline, time difference and image distor-
tion. In the bionic eye platform, the baseline is changed with the changes in the cameras’
positions because the optical center is not coincident with the center of rotation. The 3D
coordinate error of the target is smaller when the baseline of the two cameras is longer.
Therefore, it is necessary to keep the baseline unchanged. On the other hand, there is a
time difference caused by unstick synchronization between image acquisition and camera
position acquisition. In addition, it is necessary to keep the target in the center areas of the
two camera images to obtain accurate 3D coordinates of the target.

3.1. Optimal Observation Position of Eyes

In the desired pose of the robot, the most important aspect is the expected pose of the
bionic eye [40]. Following the definition of this parameter, the calculation of the desired
pose of the robot system is greatly simplified; thus, we present an engineering definition
here of the desired pose of the bionic eye.

As shown in Figure 5, lmi (lui, lvi) and r(rui, rvi) are the image coordinates of point eP
in the camera at time i. lmo and rmo are the image centers of the left and right cameras,
respectively. lP is the vertical point of eP along the line lOc

lZc, and rP is the vertical point
of eP along the line rOc

rZc. l∆m is the distance between lm and lmo. r∆m is the distance
between rm and rmo. Db is the baseline length. The pan angles of the left and right cameras
in the optimal observation position are lθp and rθp, respectively. The tilt angles of the left
and right cameras in the optimal observation position are lθt and rθt, respectively. Pob (lθp,
lθt, rθp, rθt) is the optimal observation position.
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When the two eyeballs of the bionic eye move relative to each other, the 3D coordinates
of the target obtained by the bionic eye produces a large error. To characterize this error,
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we give a detailed analysis of its origins in Appendix A. Through analysis, we obtain the
following conclusions to reduce the measurement error of the bionic eye:

(1) Make the length of Db long enough, and maintain as much length as possible
during the movement;

(2) Try to observe the target closer to the target so that the depth error is as small as
possible;

(3) During the movement of the bionic eye, control the two cameras so that they move
at the same angular velocity;

(4) Try to keep the target symmetrical, and make l∆m and r∆m as equal as possible in
the left and right camera images.

Based on these four methods, the motion strategy of the motor is designed, and the
measurement accuracy of the target’s 3D information can be effectively improved.

According to the conclusion, we can define a definition of the optimal observed pose
of the bionic eye to reduce the measurement error.

The optimal observation position needed to meet the conditions is listed in Equation (2).
When the target is very close to the eyes, the target’s optimal observation position cannot
be obtained because the image position of the target can be kept at the image center
region. It is challenging to obtain the optimal solution of the observation position based
on Equation (12). However, a suboptimal solution can be obtained by using a simplified
calculation method. First, lθt and rθt are calculated in the case that lθt and rθt are equal to
zero; then, lθt and rθt are calculated while lθt and rθt are kept equal to the calculated value.
Trial-and-error methods can be used to obtain the optimal solution when the suboptimal
solution is obtained. 




lθpq = rθpq = θp
lθtq = rθtq = θt
l∆m = −r∆m

(2)

where
l∆m =

( l∆u
l∆v

)
=

(lui − lu0
lvi − lv0

)
(3)

r∆m =

( r∆u
r∆v

)
=

(rui − ru0
rvi − rv0

)
(4)

3.2. Desired Pose Calculation for In Situ Gaze Point Tracking

When the range of target motion is large and the desired posture of the eyeball exceeds
its reachable posture, the head and mobile robot move to keep the target in the center
region of the image. In robotic systems, eye movements tend to consume the least amount
of resources and do not have much impact on the stability of the head and mobile robot
during exercise. Head rotation consumes more resources than the eyeball but consumes
fewer resources than trunk rotation. At the same time, the rotation of the head affects
the stability of the eyeball but does not have much impact on the stability of the trunk.
Mobile robot rotation consumes the most resources and has a large impact on the stability
of the head and eyeball. When tracking the target, one needs only to keep the target in the
center region of the binocular image. Therefore, when performing gaze point tracking, the
movement mechanism of the head, eyes and mobile robot are designed with the principle
of minimal resource consumption and maximum system stability. When the eyeball can
perceive the 3D coordinates of the target in the reachable and optimal viewing posture,
only the eye is rotated; otherwise, the head is rotated. The head also has an attainable range
of poses. When the desired pose exceeds this range, the mobile robot needs to be turned
so that the bionic eye always perceives the 3D coordinates of the target in the optimal
viewing position. Let hγp and hγt be the angles between the head and the gaze point in the
XhOhZh and YhOhZh planes, respectively. The range of binocular rotation in the horizontal
direction is [−eθpmax, eθpmax], and the range of binocular rotation in the vertical direction
is [−eθtmax, eθtmax]. The range of head rotation in the horizontal direction is [−hθpmax,
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hθpmax], and the range of head rotation in the vertical direction is [−hθtmax, hθtmax]. For
the convenience of calculation, the angles between the head and the fixation point in the
horizontal direction and the vertical direction are designated as [−hγpmax, hγpmax] and
[−hγtmax, hγtmax], respectively. When the angle between the head and the target exceeds a
set threshold, the head needs to be rotated to the hθ′p and hθ′t positions in the horizontal
and vertical directions, respectively. When hθ′p exceeds the angle that the head can attain,
the angle at which the mobile robot needs to be compensated is wθp. In the in situ gaze
point tracking task, the cart does not need to translate in the XwOwZw plane, so xw = 0,
and zw = 0. Furthermore, according to the definition of the optimal observation pose of the
bionic eye, the conditions that gf q should satisfy are

gfq =




wxmq = 0
wzmq = 0
wθpq =

{
θ |
∣∣∣θ
∣∣∣≤ 2π, hθpq + θ = hθ′p

}

hθpq =
{

θ |
∣∣θ
∣∣≤ hθpmax,

∣∣hγp
∣∣≤h γpmax

}
hθtq =

{
θ |
∣∣θ
∣∣≤ hθtmax,

∣∣hγt
∣∣≤h γtmax

}
lθpq = rθpq =

{
θ |
∣∣θ
∣∣≤ eθpmax, l∆ml = −∆mr

}
lθtq = rθtq = {θ | |θ|≤ eθtmax, ∆ml = −∆mr}




(5)

The desired pose needs to be calculated based on the 3D coordinates of the target.
Therefore, to obtain the desired pose, it is necessary to acquire the 3D coordinates of the
target according to the current pose of the robot.

3.2.1. Three-Dimensional Coordinate Calculation

The mechanical structure and coordinate settings of the system are shown in Figure 6a.
The principle of binocular stereoscopic 3D perception is shown in Figure 6b. E is the eye
coordinate system, El is the left motion module’s end coordinate system, Er is the right
motion module’s end coordinate system, Bl is the left motion module’s base coordinate
system, Br is the right motion module’s base coordinate system, Cl is the left camera
coordinate system and Cr is the right camera coordinate system. In the initial position, El
coincides with Bl, and Er overlaps with Br. When the binocular system moves, the base
coordinate system does not change. lT represents the transformation matrix of the eye
coordinate system E to the left motion module’s base coordinate system Bl, rT represents
the transformation matrix of E to Br, lTe represents the transformation matrix of Bl to
El, rTe represents the transformation matrix of Br to Er and lTm represents the leftward
motion. The module end coordinate system corresponds to the transformation matrix
of the left camera coordinate system, and rTm represents the transformation matrix of
the right motion module’s end coordinate system to the right camera coordinate system.
lTr represents the transformation matrix of the right camera coordinate system to the left
camera coordinate system at the initial position.

The origin lOc of Cl lies at the optical center of the left camera, the lZc axis points
in the direction of the object parallel to the optical axis of the camera, the lXc axis points
horizontally to the right along the image plane and the lYc axis points vertically downward
along the image plane. The origin rOc of Cr lies at the optical center of the right camera,
rZc is aligned with the direction of the object parallel to the optical axis of the camera, rXc
points horizontally to the right along the image plane and rYc points vertically downward
along the image plane. El’s origin lOe is set at the intersection of the two rotation axes of
the left motion module, lZe is perpendicular to the two rotation axes and points to the front
of the platform, lXe coincides with the vertical rotation axis and lYe coincides with the
horizontal rotation axis. Similarly, the origin rOe of the coordinate system Er is set at the
intersection of the two rotation axes of the right motion module, rZe is perpendicular to
the two rotation axes and points toward the front of the platform, rXe coincides with the
vertical rotation axis and rYe coincides with the horizontal rotation axis.
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Figure 6. (a) Mechanical structure and coordinate systems of the bionic eye platform and (b) binocular
3D perception principle of bionic eyes.

The left motion module’s base coordinates system Bl coincides with the eye coordinate
system E; thus, lT consists of an identity matrix. To calculate the 3D coordinates of the
feature points in real time from the camera pose, it is necessary to calculate rT. At the
initial position of the system, the external parameters lTr of the left and right cameras are
calibrated offline, as are the hand–eye parameters of the left–right motion module to the
camera coordinate system.

When the system is in its initial configuration, the coordinates of point P in the eye
coordinate system are Pe (xe, ye, ze). Its coordinates in Bl are lPe (lxe, lye, lze), and its
coordinates lPc (lxc, lyc, lzc) in Cl are

lPc =
lT−1

m Pe (6)

The coordinates rPe (rxe, rye, rze) of point P in Br are

rPe = rTPe (7)

The coordinates rPc (rxc, ryc, rzc) of point P in Cr are

rPc =
rT−1

m
rTPe (8)

The point in Cr is transformed into Cl:

lPc =
lTr

rT−1
m

rTPe (9)

Based on the Equations (6) and (9), rT is available:

rT = rTm
lT−1

r
lT−1

m (10)

During the movement of the system, when the left motion module rotates by lθp and
lθt in the horizontal and vertical directions, respectively, the transformation relationship
between Bl and El is

lTe =

(
Rot(Y, lθp)Rot(X, lθt) 0

0 1

)
(11)

The coordinates of point P in Cl are

lPe = lT−1
m

lTePw = lTdPe (12)
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Assume that

lTd =




lnx
lox

lax
l px

lny
loy

lay
l py

lnz
loz

laz
l pz

0 0 0 1


 (13)

The point lP1c (lx1c, ly1c) at which line PlOc intersects lZc = 1 is

(lx1c
ly1c

)
=




lnx xe+loxye+laxze+l px
lnzxe+lozye+lazze+l pz
lnyxe+loyye+layze+l py
lnzxe+lozye+lazze+l pz


 (14)

The image coordinates of lP1c in the left camera are ml (ul, vl), (lx1c, ly1c) and (ul, vl)
and can be converted by the parameters of the camera. According to the camera’s internal
parameter model, the following can be obtained:




lx1c
ly1c

1


 = lM−1

in




ul
vl
1


 (15)

where lMin is the internal parameter matrix of the left camera. The value of (lx1c, ly1c) can
be obtained by the image coordinates of lP1c, and the parameters of the left camera can be
obtained by substituting (15) into (14):

{
(lnx − lx1c

lnz)xe + (lox − lx1c
loz)ye + (lax − lx1c

laz)ze + l px − lx1c
l pz = 0

(lny − ly1c
lnz)xe + (loy − ly1c

loz)ye + (lay − ly1c
laz)ze + l py − ly1c

l pz = 0
(16)

During the motion of the system, when the right motion module rotates through rθp
and rθt in the horizontal and vertical directions, respectively, the transformation relationship
between Br and Er is

rTe =

(
Rot(Y, rθp)Rot(X, rθt) 0

0 1

)
(17)

The coordinates of point P in Cr are

rPe = rT−1
m

rTe
rTPe = rTdPe (18)

Assume that

rTd =




rnx
rox

rax
r px

rny
roy

ray
r py

rnz
roz

raz
r pz

0 0 0 1


 (19)

The point lP1c (rx1c, ry1c) at which line PrOc intersects rZc = 1 is

(rx1c
ry1c

)
=




rnx xe+roxye+raxze+r px
rnzxe+rozye+razze+r pz
rnyxe+royye+rayze+r py
rnzxe+rozye+razze+r pz


 (20)

The image coordinates of rP1c in the camera, namely, mr (ur, vr), (rx1c, ry1c) and (ur, vr),
can be converted using the parameters of the camera. According to the camera’s internal
parameter model, the following can be obtained:




rx1c
ry1c

1


 = lM−1

in




ur
vr
1


 (21)
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where rMin is the inner parameter matrix of the right camera. The value of (rx1c, ry1c) can
be obtained by the image coordinates of rP1c and the parameters in the camera, and the
following can be obtained by substituting (21) into (20):
{

(rnx − rx1c
rnz)xe + (rox − rx1c

roz)ye + (rax − rx1c
raz)ze + r px − rx1c

r pz = 0
(rny − ry1c

rnz)xe + (roy − ry1c
roz)ye + (ray − ry1c

raz)ze + r py − ry1c
r pz = 0

(22)

Four equations can be obtained from Equations (16) and (22) for xe, ye and ze, and the
3D coordinates of point Pe can be calculated by the least squares method.

The 3D coordinates Ph (xh, yh, zh) in the head coordinate system can be obtained by
Equation (23). dx and dy are illustrated in Figure 4.




xh
yh
zh


 =




xe − dx
ye − dy

ze


 (23)

Let the angles at which the current moment of the head rotate relative to the initial
position be hθpi and hθti; the coordinates of the target in the robot coordinate system are




wxm
wym
wzm

1


 =

(
Rot(X,h θti)Rot(Y,h θpi

)
0

0 1

)−1




xh
yh
zh
1


 (24)

According to the 3D coordinates of the target in the head coordinate system, the angle
between the target and Zh in the horizontal direction and the vertical direction can be
obtained as follows:

hγp = arctan(
xh
zh

) (25)

hγt = arctan(
yh
zh

) (26)

When hγp and hγt exceed a set threshold, the head needs to rotate. To leave a certain
margin for the rotation of the eyeball and for the convenience of calculation, the angles
required for the head to rotate in the horizontal direction and the vertical direction are
calculated by the principle shown in Figure 7a,b, respectively. Figure 7a shows the calcula-
tion principle of the horizontal direction angle when the target’s x coordinates of the head
coordinate system is greater than zero. After the head is rotated to hθ′p, the target point
is on the lZe axis of the left motion module end coordinate system, and the left motion
module reaches the maximum rotatable threshold eθpmax. Figure 7b shows the calculation
principle of the vertical direction when the target’s y coordinates of the head coordinate
system are greater than dy. After the head is rotated to hθ′t, the target point is on the Ze axis
of the eye coordinate system, and the eye reaches the maximum threshold eθtmax that can
be rotated.
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Therefore, 
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The coordinates of the target in the new eye coordinate system are 
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Simplifying Equation (30), we have 
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Figure 7. Principle of head rotation calculation in fixation point tracking: (a) horizontal rotation angle
and (b) vertical rotation angle.

3.2.2. Horizontal Rotation Angle Calculation

Let the current angle of the head in the horizontal direction be hθpi. When the head is
rotated in the horizontal direction to hθ′p, the 3D coordinates of the target in the new head
coordinate system are




x′h
y′h
z′h
1


 =




cos(hθ′p −h θpi) 0 − sin(hθ′p −h θpi) 0
0 1 0 0

sin(hθ′p −h θpi) 0 cos(hθ′p −h θpi) 0
0 0 0 1







xh
yh
zh
1


 (27)

Therefore,




x′h
y′h
z′h


 =




xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)

yh
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)


 (28)

The coordinates of the target in the new eye coordinate system are




ex′h
ey′h
ez′h


 =




dx + xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)

yh + dy
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)


 (29)

After turning, the left motion module reaches the maximum threshold eθpmax that can
be rotated, so that

tan(eθpmax) =
ez′h
ex′h

=
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)

dx + xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)
(30)

Simplifying Equation (30), we have

sin(hθ′p −h θpi) =
dx tan(eθqmax)

xh + zh tan(eθqmax)
+

xh tan(eθqmax)− zh

xh + zh tan(eθqmax)
cos(hθ′p −h θpi) (31)

Assume that 



k1 =
xh tan(eθqmax)−zh
xh+zh tan(eθqmax)

k2 =
dx tan(eθqmax)

xh+zh tan(eθqmax)

(32)

According to the triangular relationship,

[k1 cos(hθ′p −h θpi) + k2]
2
+ cos2(hθ′p −h θpi) = 1 (33)
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The solution of Equation (33) is

cos(hθ′p −h θpi) =
−k1k2 ±

√
k2

1 − k2
2 + 1

k2
1 + 1

(34)

Therefore,

hθ′p =h θpi + arccos(
−k1k2 ±

√
k2

1 − k2
2 + 1

k2
1 + 1

) (35)

Equation (35) has two solutions; therefore, we choose the solution in which the devia-
tion e of Equation (36) is minimized:

e =

∣∣∣∣∣tan(eθqmax)−
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)

dx + xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)

∣∣∣∣∣ (36)

When the obtained hθ′p is outside of the range [−hθpmax, hθpmax], the value of hθpq is

hθpq =





hθpmax , hθ′p ≥h θpmax

−hθpmax , hθ′p ≤ −hθpmax
hθ′p , else

(37)

Finally, one can obtain the wθpq value:

wθpq =





hθ′p −h θpmax , hθ′p >h θpmax
hθ′p +h θpmax , hθ′p < −hθpmax

0 , else
(38)

Based on the same principle, when the x coordinate of the target in the head coordi-
nate system is less than 0, the coordinates of the target in the right motion module base
coordinate system after the rotation are




rx′e
ry′e
rz′e
1


 =




xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)− dx

yh + dy
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)

1


 (39)

After turning, the right motion module reaches −eθpmax, and the following can be
obtained:

tan(−eθqmax) =
rz′e
rx′e

=
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)

xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)− dx
(40)

We simplify Equation (40) as follows:

sin(hθ′p −h θpi) =
dx tan(eθqmax)

xh − zh tan(eθqmax)
− xh tan(eθqmax) + zh

xh − zh tan(eθqmax)
cos(hθ′p −h θpi) (41)

Let 



k′1 = − xh tan(eθqmax)+zh
xh−zh tan(eθqmax)

k′2 =
dx tan(eθqmax)

xh−zh tan(eθqmax)

(42)
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The same two solutions are available:

hθ′p =h θpi + arccos(
−k′1k′2 ±

√
(k′1)

2 − (k′2)
2 + 1

(k′1)
2 + 1

) (43)

Select the solution in which the deviation e of Equation (44) is minimized:

e =

∣∣∣∣∣− tan(eθqmax)−
xh sin(hθ′p −h θpi) + zh cos(hθ′p −h θpi)

xh cos(hθ′p −h θpi)− zh sin(hθ′p −h θpi)− dx

∣∣∣∣∣ (44)

Using Equations (37) and (38), hθpq and wθpq can be obtained.

3.2.3. Vertical Rotation Angle Calculation

When the target’s y coordinate in the head coordinate system is greater than dy, the
current angle of the head in the vertical direction is hθti, and when the head is rotated
in the vertical direction to hθ′t, the target is in the new head coordinate system. The 3D
coordinates are




x′h
y′h
z′h
1


 =




1 0 0 0
0 cos(hθ′t −h θti) sin(hθ′t −h θti) 0
0 − sin(hθ′t −h θti) cos(hθ′t −h θti) 0
0 0 0 1







xh
yh
zh
1


 (45)

Therefore,



x′h
y′h
z′h


 =




xh
yh cos(hθ′t −h θti) + zh sin(hθ′t −h θti)
zh cos(hθ′t −h θti)− yh sin(hθ′t −h θti)


 (46)

Using Equation (29), the coordinates of the eye coordinate system after the rotation of
the target can be calculated:




ex′h
ey′h
ez′h


 =




dx + xh
yh cos(hθ′t −h θti) + zh sin(hθ′t −h θti) + dy

zh cos(hθ′t −h θti)− yh sin(hθ′t −h θti)


 (47)

After rotation, the left and right motion modules reach the rotatable maximum value
eθtmax in the vertical direction, so that

tan(eθtmax) =
ey′h
ez′h

=
yh cos(hθ′t −h θti) + zh sin(hθ′t −h θti) + dy

zh cos(hθ′t −h θti)− yh sin(hθ′t −h θti)
(48)

Simplifying Equation (48), we obtain

sin(hθ′t −h θti) =
zh tan(eθtmax)− yh
zh + yh tan(eθtmax)

cos(hθ′t −h θti)−
dy

zh + yh tan(eθtmax)
(49)

Let 



k1 = zh tan(eθtmax)−yh
zh+yh tan(eθtmax)

k2 = − dy
zh+yh tan(eθtmax)

(50)

Therefore,

hθ′t =
h θti + arccos(

−k1k2 ±
√

k2
1 − k2

2 + 1

k2
1 + 1

) (51)
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Equation (51) has two solutions; therefore, we choose the solution in which the devia-
tion e of Equation (52) is minimized:

e =

∣∣∣∣∣tan(eθtmax)−
yh cos(hθ′t −h θti) + zh sin(hθ′t −h θti) + dy

zh cos(hθ′t −h θti)− yh sin(hθ′t −h θti)

∣∣∣∣∣ (52)

Similarly, when the target’s y coordinates in the head coordinate system are less than
dy, we have

tan(−eθtmax) =
ey′h
ez′h

=
yh cos(hθ′t −h θti) + zh sin(hθ′t −h θti) + dy

zh cos(hθ′t −h θti)− yh sin(hθ′t −h θti)
(53)

sin(hθ′t −h θti) = −
zh tan(eθtmax) + yh
zh − yh tan(eθtmax)

cos(hθ′t −h θti)−
dy

zh − yh tan(eθtmax)
(54)





k1 = − zh tan(eθtmax)+yh
zh−yh tan(eθtmax)

k2 = − dy
zh−yh tan(eθtmax)

(55)

e =

∣∣∣∣∣− tan(eθtmax)−
yh cos(hθ′t −h θti) + zh sin(hθ′t −h θti) + dy

zh cos(hθ′t −h θti)− yh sin(hθ′t −h θti)

∣∣∣∣∣ (56)

When the obtained hθ′t is outside of the range [−hθtmax, hθtmax], the value of hθtq is

hθtq =





hθtmax , hθ′t ≥h θtmax
−hθtmax , hθ′t ≤ −hθtmax
hθ′t , else

(57)

After obtaining hθpq, hθtq and wθpq, P′e(x′e, y′e, z′e) are the coordinates of the target in
the eye coordinate system after the mobile robot and the head are rotated:




x′e
y′e
z′e
1


 =

(
Rot(X,h θtq)Rot(Y,h θpq

)
0

0 1

)(
Rot(Y,w θpq

)
0

0 1

)



xw
yw
zw

1


+




dx
dy
0
0


 (58)

The desired observation pose of the eye, characterized by lθtq, lθpq, rθtq and rθpq, can
be obtained using the method described in the following section.

3.2.4. Calculation of the Desired Observation Poses of the Eye

According to Formula (2), lθtq = rθtq = θt, and lθpq = rθpq = θp.
The inverse of the hand–eye matrix of the left camera and left motion module end

coordinate system is

lT−1
m =




lnx
lox

lax
l px

lny
loy

lay
l py

lnz
loz

laz
l pz

0 0 0 1


 (59)

The coordinate lPc (lxc, lyc, lzc) of P′e(x′e, y′e, z′e) in the left camera coordinate system
satisfies the following relationship:

(lPc
1

)
= lT−1

m

(
Rot(X,−lθt) 0

0 1

)(
Rot(Y,−lθp) 0

0 1

)(
P′e
1

)
(60)
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According to the small hole imaging model, the imaging coordinates of the P′e(x′e, y′e, z′e)
point in the left camera are




lu
lv
1


 = lMin

lP1c =




lkx 0 lu0
0 lky

lv0
0 0 1






lxc/lzc
lyc/lzc

1


 =




lkx
lxc/lzc + lu0

lky
lyc/lzc + lv0

1


 (61)

Substituting Equation (61) into Equation (2), we obtain

(l∆u
l∆v

)
=




lkx
lxc/lzc

lky
lyc/lzc

1


 (62)

Based on the same principle, the coordinate rPc (rxc, ryc, rzc) of P′e(x′e, y′e, z′e) in the
right camera coordinate system is

(rPc
1

)
= rT−1

m

(
Rot(X,−rθt) 0

0 1

)(
Rot(Y,−rθp) 0

0 1

)
rTe

(
P′e
1

)
(63)

The imaging coordinates of point P′e(x′e, y′e, z′e) in the right camera are




ru
rv
1


 = rMin

rP1c =




rkx 0 ru0
0 rky

rv0
0 0 1






rxc/rzc
ryc/rzc

1


 =




rkx
rxc/rzc + ru0

rky
ryc/rzc + rv0

1


 (64)

(r∆u
r∆v

)
=




rkx
rxc/rzc

rky
ryc/rzc

1


 (65)

By Equations (2), (62) and (65), two equations related to θt and θp (see Appendix C
for the complete equations) can be obtained. It is challenging to calculate the values of
θt and θp directly from these two equations, however. To obtain a solution, we consider
a suboptimal observation pose and use this pose as the initial value; then, we use the
trial-and-error method to obtain the optimal observation pose. When θt is calculated, let
θp = 0; the solution of θt can then be obtained by ∆vl = −∆vr. When θp is calculated, the
solution of θp is solved by ∆ul = −∆ur. The solution Pob (θt, θt, θp, θp) is a suboptimal
observed pose. Based on the suboptimal observation pose, the trial-and-error method can
be used to obtain the optimal solution with the smallest error. The range of θt is [−θtmax,
θtmax]. The range of θp is [−θpmax, θpmax].

According to Equations (60) and (63), let θp be equal to 0 to obtain

(lPc
1

)
= (lTm)

−1
(

Rot(X,−θt) 0
0 1

)
lTe

(
P′e
1

)
(66)

The following result is also available:
(rPc

1

)
= (rTm)−1

(
Rot(X,−θt) 0

0 1

)
rTe

(
P′e
1

)
(67)

The base coordinate system of the left motion module is the world coordinate system.
Therefore, lTw is a unit matrix. To simplify the calculation, we have

(rPe
1

)
=




rx′e
ry′e
rz′e
1


 = rTe

(
P′e
1

)
(68)
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According to the calculation principle of Section 3.2.1, we have the following:





∆ul =
l fx

(loxy′e+laxz′e) cos θt+(loxz′e−laxy′e) sin θt+(l px+lnx x′e)
(lozy′e+lazz′e) cos θt+(lozz′e−lazy′e) sin θt+(l pz+lnzx′e)

∆vl =
l fy

(loyy′e+layz′e) cos θt+(loyz′e−layy′e) sin θt+(l py+lnyx′e)
(lozy′e+lazz′e) cos θt+(lozz′e−lazy′e) sin θt+(l pz+lnzx′e)

(69)





∆ur = r fx
(rox

ry′e+rax
rz′e) cos θt+(rox

rz′e−rax
ry′e) sin θt+(r px+rnx

rx′e)
(rozry′e+razrz′e) cos θt+(rozz′e−razry′e) sin θt+(r pz+rnzrx′e)

∆vr = r fy
(roy

ry′e+ray
rz′e) cos θt+(roy

rz′e−ray
ry′e) sin θt+(r py+rny

rx′e)
(rozry′e+razrz′e) cos θt+(rozrz′e−razry′e) sin θt+(r pz+rnzrx′e)

(70)

Assume the following:
Esv = |∆vl|+ |∆vr| (71)

The solution to θt that keeps the target at the center of the two cameras needs to satisfy
the following conditions: 




∆vl + ∆vr = 0
−θtmax ≤ θt ≤ θtmax
θt = argmin(Esv)

(72)

Substituting the second equation of Equations (69) and (70) into Equation (72) and
solving the equation, we have

k1 cos2 θt + k2 sin2 θt + k3 sin θt cos θt + k4 cos θt + k5 sin θt + k6 = 0 (73)

where k1, k2, k3, k4, k5 are

k1 = l fy(
loyy′e +

layz′e)(
roz

ry′e +
raz

rz′e) +
r fy(

lozy′e +
lazz′e)(

roy
ry′e +

ray
rz′e) (74)

k2 = l fy(
loyz′e − layy′e)(

roz
rz′e − raz

ry′e) +
r fy(

lozz′e − lazy′e)(
roy

rz′e − ray
ry′e) (75)

k3 = l fy(loyy′e + layz′e)(roz
rz′e − raz

ry′e) + l fy(loyz′e − layy′e)(roz
ry′e + raz

rz′e)
+r fy(lozy′e + lazz′e)(roy

rz′e − ray
ry′e) + r fy(lozz′e − lazy′e)(roy

ry′e + ray
rz′e)

(76)

k4 = l fy(loyy′e + layz′e)(r pz + rnz
rx′e) + l fy(l py + lnyx′e)(roz

ry′e + raz
rz′e)

+r fy(lozy′e + lazz′e)(r py + rny
rx′e) + r fy(l pz + lnzx′e)(roy

ry′e + ray
rz′e)

(77)

k5 = l fy(loyz′e − layy′e)(r pz + rnz
rx′e) + l fy(l py + lnyx′e)(roz

rz′e − raz
ry′e)

+r fy(lozz′e − lazy′e)(r py + rny
rx′e) + r fy(l pz + lnzx′e)(roy

rz′e − ray
ry′e)

(78)

k6 = l fy(
l py +

lnyx′e)(
r pz +

rnz
rx′e) +

r fy(
l pz +

lnzx′e)(
r py +

rny
rx′e) (79)

According to the triangle relationship, we have

cos2 θt + sin2 θt = 1 (80)

Replacing cosθt in Equation (73) with sinθt, we obtain the following:

k′1 sin4 θt + k′2 sin3 θt + k′3 sin2 θt + k′4 sin θt + k′5 = 0 (81)

where k1, k2, k3, k4, k5 are
k′1 = (k2 − k1)

2 + k2
3 (82)

k′2 = 2(k2 − k1)k5 + 2k3k4 (83)

k′3 = 2(k2 − k1)k6 + k2
5 + k2

4 − k2
3 (84)
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k′4 = 2k5k6 − 2k3k4 (85)

k′5 = k2
6 − k2

4 (86)

Four solutions can be obtained using Equation (81). The optimal solution is a real
number, and the most suitable solution can be selected by the condition of Equation (72).

After θt is obtained, θp can be solved based on the obtained θt.
According to Equations (60) and (63), θt is the solution obtained in Section 3.2.2, so

that (lPc
1

)
= (lTm)

−1
(

Rot(X,−θt) 0
0 1

)(
Rot(Y,−lθp) 0

0 1

)
lTe

(
P′e
1

)
(87)

The following result is also available:

(rPc
1

)
= (rTm)−1

(
Rot(X,−θt) 0

0 1

)(
Rot(Y,−lθp) 0

0 1

)
rTe

(
P′e
1

)
(88)

Since θt is known, for convenience of calculation, we set

lT′m = (lTm)
−1
(

Rot(X,−θt) 0
0 1

)
=




ln′x lo′x la′x l p′x
ln′y lo′y la′y l p′y
ln′z lo′z la′z l p′z
0 0 0 1


 (89)

rT′m = (rTm)−1
(

Rot(X,−θt) 0
0 1

)
=




rn′x ro′x ra′x r p′x
rn′y ro′y ra′y r p′y
rn′z ro′z ra′z r p′z
0 0 0 1


 (90)

The following results are obtained:




∆ul =
l fx

(ln′x x′e+la′xz′e) cos θp+(la′x x′e−ln′xz′e) sin θp+(l p′x+lo′xy′e)
(ln′zx′e+la′zz′e) cos θp+(la′zx′e−ln′zz′e) sin θp+(l p′z+lo′zy′e)

∆vl =
l fy

(ln′yx′e+la′yz′e) cos θp+(la′yx′e−ln′yz′e) sin θp+(l p′y+lo′yy′e)
(ln′zx′e+la′zz′e) cos θp+(la′zx′e−ln′zz′e) sin θp+(l p′z+lo′zy′e)

(91)





∆ur = r fx
(rn′xrx′e+ra′xrz′e) cos θp+(ra′xrx′e−rn′xrz′e) sin θp+(r p′x+ro′xry′e)
(rn′zrx′e+ra′zrz′e) cos θp+(ra′zrx′e−rn′zrz′e) sin θp+(r p′z+ro′zry′e)

∆vr = r fy
(rn′yrx′e+ra′yrz′e) cos θp+(ra′yrx′e−rn′yrz′e) sin θp+(r p′y+ro′yry′e)
(rn′zrx′e+ra′zrz′e) cos θp+(ra′zrx′e−rn′zrz′e) sin θp+(r p′z+ro′zry′e)

(92)

Assume that
Esu = |∆ul|+ |∆ur| (93)

The solution to θp that keeps the target at the center of the two cameras needs to satisfy
the following conditions: 




∆ul + ∆ur = 0
−θpmax ≤ θp ≤ θpmax
θp = argmin(Esu)

(94)

Substituting the second equation of Equations (91) and (92) into Equation (94) and
solving the available equation, we obtain

k1 cos2 θp + k2 sin2 θp + k3 sin θp cos θp + k4 cos θp + k5 sin θp + k6 = 0 (95)

where

k1 = l fx(
ln′xx′e +

la′xz′e)(
rn′z

rx′e +
ra′z

rz′e) +
r fx(

rn′x
rx′e +

ra′x
rz′e)(

ln′zx′e +
la′zz′e) (96)
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k2 = l fx(
ln′xz′e − la′xx′e)(

rn′z
rz′e − ra′z

rx′e) +
r fx(

rn′x
rz′e − ra′x

rx′e)(
ln′zz′e − la′zx′e) (97)

k3 = l fx(ln′xx′e + la′xz′e)(rn′zrz′e − ra′zrx′e) + l fx(ln′xz′e − la′xx′e)(rn′zrx′e + ra′zrz′e)
+r fx(rn′xrz′e − ra′xrx′e)(ln′zx′e + la′zz′e) + r fx(rn′xrx′e + ra′xrz′e)(ln′zz′e − la′zx′e)

(98)

k4 = l fx(ln′xx′e + la′xz′e)(ro′zry′e + r p′z) + l fx(lo′xy′e + l p′x)(rn′zrx′e + ra′zrz′e)
+r fx(ro′xry′e + r p′x)(ln′zx′e + la′zz′e) + r fx(rn′xrx′e + ra′xrz′e)(lo′zy′e + l p′z)

(99)

k5 = l fx(ln′xz′e − la′xx′e)(ro′zry′e + r p′z) + l fx(lo′xy′e + l p′x)(rn′zrz′e − ra′zrx′e)
+r fx(ro′xry′e + r p′x)(ln′zz′e − la′zx′e) + r fx(rn′xrz′e − ra′xrx′e)(lo′zy′e + l p′z)

(100)

k6 = l fx(
lo′xy′e +

l p′x)(
ro′z

ry′e +
r p′z) +

r fx(
ro′x

ry′e +
r p′x)(

lo′zy′e +
l p′z) (101)

Replacing cosθp in Equation (73) with sinθp, we obtain

k′1 sin4 θp + k′2 sin3 θp + k′3 sin2 θp + k′4 sin θp + k′5 = 0 (102)

where
k′1 = (k2 − k1)

2 + (k3)
2 (103)

k′2 = 2(k2 − k1)k5 + 2k3k4 (104)

k′3 = 2(k2 − k1)k6 + (k5)
2 + (k4)

2 − (k3)
2 (105)

k′4 = 2k5k6 − 2k3k4 (106)

k′5 = (k6)
2 − (k4)

2 (107)

Four solutions can be obtained using Equation (102). The optimal solution must
be a real number, and the most suitable solution can be selected using the condition of
Equation (94). For the case where the four solutions cannot satisfy Equation (94), the
position of the target is beyond the position that the bionic eye can reach. In this case,
compensation is required through the head or torso. θt and θp obtained at this time are
suboptimal solutions close to the optimal solution. θt and θp are the optimal solutions.

Through the above steps, the desired observation pose can be calculated. The calcula-
tion steps of gf q can be summarized by the flow chart shown in Figure 8.

3.3. Desired Pose Calculation for Approaching Gaze Point Tracking

The mobile robot approaches the target in two steps: the first step is that the robot and
the head rotate in the horizontal direction until the robot and the head are facing the target,
and the second step is that the robot moves straight toward the target. The desired position
of the approaching motion should satisfy the following conditions: (1) the target should
be on the Z axis of the robot and the head coordinate system, (2) the distance between the
target and the robot should be less than the set threshold DT and (3) the eye should be in
the optimal observation position. af q can be defined as
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a fq =




wxmq = 0
wzmq = {z | 0 < wzm − z ≤ DT}
wθpq =

{
θ |
∣∣θ
∣∣≤ 2π,w γp = 0

}
hθpq = 0
hθtq =

{
θ |
∣∣θ
∣∣≤ hθtmax,

∣∣hγt
∣∣≤h γtmax

}
lθpq = rθpq =

{
θ |
∣∣θ
∣∣≤ eθpmax, ∆ml = −∆mr

}
lθtq = rθtq = {θ | |θ|≤ eθtmax, ∆ml = −∆mr}




(108)
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Figure 8. Steps for calculating the desired pose of the fixation point.

The desired rotation angle wθpq of the moving robot is the same as the angle bγp
between the robot and the target and can be obtained by

wθpq = wγp = arctan(
wzm
wxm

) (109)

hθtq can be obtained using the method described in Section 3.2. The optimal observation
pose described in Section 3.2.4 can be used to obtain lθtq, lθpq, rθtq and rθpq.

4. Robot Pose Control

After obtaining the desired pose of the robot system, the control block diagram shown
in Figure 9 is used to control the robot to move to the desired pose.
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The desired pose is converted to the desired position of the motor. ∆θlt, ∆θlp, ∆θrt,
∆θrp, ∆θht and ∆θhp are deviations of the desired angle from the current angle of motor
Mlu, motor Mld, motor Mru, motor Mrd, motor Mhu and motor Mhd, respectively. lθm and
rθm are the angles at which each wheel of the moving robot needs to be rotated. During
the in situ gaze point tracking process, the moving robot performs only the rotation of
the original position, and the angle of the robot movement can be calculated according to
the desired angle of the robot. When the robot rotates, the two wheels move in opposite
directions at the same speed. Let the distance between the two wheels of the moving robot
be Dr; when the robot rotates around an angle wθpq, the distance that each wheel needs to
move is

S = wθpq
Dr

2
(110)

The diameter of each wheel is dw, and the angle of rotation of each wheel is (where
counterclockwise is positive)

rθm = −lθm =
2S
dw

(111)

In the process of approaching the target, the moving robot follows a straight line, and
the angle of rotation of each wheel is

rθm = lθm =
2wzmq

dw
(112)

The movement of the moving robot is achieved by controlling the rotation of each
wheel. Each wheel is equipped with a DC brushless motor, and a DSP2000 controller is used
to control the movement of the DC brushless motor. Position servo control is implemented
in the DSP2000 controller.

In the robot system, the weight of the camera and lens is approximately 80 g, the
weight of the camera and the fixed mechanical parts is approximately 50 g and the motor
that controls the vertical rotation of the camera (rotating around the horizontal axis of
rotation) and the corresponding encoder weighs approximately 250 g. The mechanical parts
of the fixed vertical rotating motor and encoder weigh approximately 100 g. The radius of
the rotation of the camera in the vertical direction is approximately 1 cm, and the rotation
in the horizontal direction (rotation about the vertical axis of rotation) has a radius of
approximately 2 cm. Therefore, when the gravitational acceleration is 9.8 m/s2, the torque
required for the vertical rotating electric machine is approximately 0.013 N·m, and the
torque required for the horizontal rotating electric machine is approximately 0.043 N·m. The
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vertical rotating motor uses a 28BYG5401 stepping motor with a holding torque of 0.1 N·m
and a positioning torque of 0.008 N·m. The driver is HSM20403A. The horizontal rotating
motor is a 57BYGH301 stepping motor with a holding torque of 1.5 N·m, a positioning
torque of 0.07 N·m and drive model HSM20504A. The four stepping motors of the eye have
a step angle of 1.8◦ and are all subdivided by 25, so the actual step angle of each motor
is 0.072◦, and the minimum pulse width that the driver can receive is 2.5 µs. The stepper
motor has a maximum angular velocity of 200◦/s.

The head vertical rotary motor uses a 57BYGH401 stepper motor with a holding torque
of 2.2 N·m, a positioning torque of 0.098 N·m and drive model HSM20504A. The head
horizontal rotary motor is an 86BYG350B three-phase AC stepping motor with a holding
torque of 5 N·m, a positioning torque of 0.3 N-m and an HSM30860M driver. The step
angle of the head motor after subdivision is also 0.072◦. The head vertical motor has a load
of approximately 5 kg and a radius of rotation of less than 1 cm. The head horizontal rotary
motor has a load of approximately 9.5 kg and a radius of rotation of approximately 5 cm.
In the experiment, we found that the maximum horizontal pulse frequency that the head
horizontal rotary motor can receive is 0.6 Kpps. Its maximum angular velocity is 43.2◦/s.

5. Experiments and Discussion

Using the robot platform introduced in Section 2, experiments on in situ gaze point
tracking and approaching gaze point tracking were performed

Each camera has a resolution of 400 × 300 pixels. The directions of rotation are
[−45◦, 45◦]. The range of rotation of the head is [−30◦, 30◦]. dx and dy are 150 mm and
200 mm, respectively. The internal and external parameters, distortion parameters, initial
position parameters and left- and right-hand–eye parameters of the dual purpose method
are calibrated as follows:

lMin =




341.58 0 201.6
0 341.97 147.62
0 0 1


 (113)

Kl =
(
−0.1905 0.2171 −0.0018 −0.0005 −0.0823

)
(114)

lTm =




1.0 0.0078 −0.0022 58.4172
0.0001 0.9954 0.0959 3.6042
0.0013 −0.0959 0.9954 51.9366

0 0 0 1


 (115)

rMin =




335.13 0 184.32
0 335.5 141.26
0 0 1


 (116)

Kr =
(
−0.1861 0.1987 −0.004 −0.0011 −0.0739

)
(117)

rTm =




0.9999 −0.0086 −0.0125 −45.0147
0.0190 −0.9969 −0.0782 −24.5528
0.0097 −0.0784 0.9970 42.9270

0 0 0 1


 (118)

lTr =




0.9998 −0.0099 −0.0193 189.5922
0.0095 0.9997 −0.0215 −0.0426
0.0195 0.0213 0.9996 8.9671

0 0 0 1


 (119)

The experimental in situ gaze point tracking scene is shown in Figure 10, with a
checkerboard target used as the target. For in situ gaze point tracking, the target is held by
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a person. In the approaching target gaze tracking experiment, the target is fixed in front of
the robot.
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the binocular vision can always perceive the 3D coordinates of the target at the optimal 
observation posture. This experiment prompts the robot to find the target and gaze at it. 
In the gaze point tracking process, binocular stereo vision is used to calculate the 3D co-
ordinates of the target in the eye coordinate system in real time. Through the positional 
relationship between the eye and the head, the coordinate system of the target in the eye 
can be converted to the head coordinate system. Similarly, the 3D coordinates of the target 
in the robot coordinate system can be obtained. Through the 3D coordinates, the desired 
poses of the eyes, head and mobile robot are calculated according to the method proposed 
in this paper. Then, the camera is controlled to the desired position by the stepping motor; 
after reaching the desired position, the image and the motor position information are col-
lected again, and the 3D coordinates of the target are calculated.  

In the experiment, the angles between the head and the target, hγpmax and hγpmax, are 
each 30°. The method described in Section 3 is used to calculate the desired pose of each 
joint of the robot based on the 3D coordinates of the target. In the experiment, the actual 
coordinate position and desired coordinate position of the target in the binocular image 
space, the actual position and desired position of the eye and head motor, the angle be-
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Figure 10. Experimental in situ gaze point tracking scene.

5.1. In Situ Gaze Point Tracking Experiment

In the in situ gaze experiment, the target moves at a low speed within a certain range,
and the robot combines the movement of the eye, the head and the mobile robot so that
the binocular vision can always perceive the 3D coordinates of the target at the optimal
observation posture. This experiment prompts the robot to find the target and gaze at
it. In the gaze point tracking process, binocular stereo vision is used to calculate the 3D
coordinates of the target in the eye coordinate system in real time. Through the positional
relationship between the eye and the head, the coordinate system of the target in the eye can
be converted to the head coordinate system. Similarly, the 3D coordinates of the target in
the robot coordinate system can be obtained. Through the 3D coordinates, the desired poses
of the eyes, head and mobile robot are calculated according to the method proposed in this
paper. Then, the camera is controlled to the desired position by the stepping motor; after
reaching the desired position, the image and the motor position information are collected
again, and the 3D coordinates of the target are calculated.

In the experiment, the angles between the head and the target, hγpmax and hγpmax,
are each 30◦. The method described in Section 3 is used to calculate the desired pose of
each joint of the robot based on the 3D coordinates of the target. In the experiment, the
actual coordinate position and desired coordinate position of the target in the binocular
image space, the actual position and desired position of the eye and head motor, the angle
between the head and the robot and the target, and the target in the robot coordinate
system are stored. Figure 11a,b show the u and v coordinates of the target on the left
image, respectively, and Figure 11c,d show the u and v coordinates of the target on the right
image, respectively. The desired image coordinates are recalculated based on the optimal
observation position. Figure 11e–h show the positions of the tilt motor (Mlu) of the left eye,
the pan motor (Mld) of the left eye, the tilt motor (Mru) of the right eye and the pan motor
(Mrd) of the right eye, respectively. Figure 11i shows the positions of the pan motor (Mhd)
of the head. Since the target moves in the vertical direction with small amplitude, the motor
Mhu does not rotate, and the case is similar to the motion principle of the motor Mhd, so the
motor position of the head only provides the result of the motor Mhd. Figure 11j shows the
angle deviation and rotation. In this figure, T-h is the angle between the head and target,
T-r is the angle between the robot and target, R-r is the angle of the robot rotation from the
origin location and T-o is the angle of the target to the origin location. Figure 11k shows
the coordinates (wx, wz) of the target in the world coordinate system. Figure 11l shows the
coordinates (ox, oz) of the target in the world coordinate system of the origin location.
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Figure 11. Experimental results of gaze shifting to the target: (a) U coordinates of the target on the
left image. (b) V coordinates of the target on the left image. (c) U coordinates of the target on the
right image. (d) V coordinates of the target on the right image. (e) Left camera tilt. (f) Left camera
pan. (g) Right camera tilt. (h) Right camera pan. (i) Head pan. (j) Angle deviation and rotation.
(k) Coordinates (wx, wz) of the target in the world coordinate system. (l) Coordinates (ox, oz) of the
target in the world coordinate system based on the origin location. The “+” in the subfigures (k,l)
represents the position of the target in the coordinate system, and the “
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” represents the position of
the robot in the coordinate system.

As shown in Figure 11, the image coordinate of the target is substantially within
±40 pixels in the central region of the left and right images in the x direction. These
coordinates are kept within ±10 pixels of the center region of the left and right images in
the y direction. Throughout the experiment, the target was rotated approximately 200◦

around the robot. The robot moved approximately 140◦, the head rotated 30◦ and the target
could be kept in the center region of the binocular images. The motor position curve shows
that the motor’s operating position can track the desired position very well. The angle
variation curve shows that the angle between the target and the head and the robot changes
and that the robot turning angles are suitably consistent. The coordinates of the target
shown in Figure 11 in the robot coordinate system and the coordinates of the target in the
initial position of the world coordinate system are very close to the actual position change
in the target’s position.

Through the above analysis, we can determine the following: (1) It is feasible to realize
gaze point tracking of a robot based on 3D coordinates. (2) Using the movement of the
head, eyes and mobile robot used in this paper, it is possible to achieve gaze point tracking
of the target while ensuring minimum resource consumption.

5.2. Approaching Gaze Point Tracking Experiment

The approaching gaze point tracking experimental scene is shown in Figure 12.
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Figure 12. Experimental approaching gaze point tracking scene.

The robot approaches the target without obstacles and reaches the area in which the
robot can operate on the target. The target can be grasped or carefully observed. In the
approaching gaze experiment, a target is fixed at a position 2.2 m from the robot, and when
the robot moves to a position where the distance from the target to robot is 0.6 m, the
motion is stopped, and the maximum speed of the moving robot is 1 m/s. The experiment
realizes the approaching movement to the target in two steps: first, the head, the eye and
the moving robot chassis are rotated so that the head and the moving robot are facing the
target, and the head observes the target in the optimal observation posture; second, the
movement is controlled. The robot moves linearly in the target’s direction. During the
movement, the angles of the head and the eye are fine-tuned, and the 3D coordinates of the
target are detected in real time until the z coordinate of the target in the robot coordinate
system is less than the threshold set to stop the motion.

Figure 13 shows the results of the approaching gaze point tracking experiment.
Figure 13a,b show the u and v coordinates of the target on the left image, respectively, and
Figure 13c,d show the u and v coordinates of the target on the right image, respectively.
The desired image coordinates are recalculated based on the optimal observation position.
Figure 13e–h show the positions of the tilt motor (Mlu) of the left eye, the pan motor (Mld)
of the left eye, the tilt motor (Mru) of the right eye and the pan motor (Mrd) of the right eye,
respectively. Figure 13i shows the positions of the pan motor (Mhd) of the head. Figure 13j
shows the angle deviation and rotation. T-h is the angle between the head and the target,
T-r is the angle between the robot and the target, R-r is the angle of the robot’s rotation from
the origin location and T-o is the angle of the target to the origin location. Figure 13k shows
the coordinates (wx, wz) of the target in the world coordinate system. Figure 13l shows the
robot’s forward distance and the distance between the target and the robot.

The change in the image’s coordinate curve indicates that the coordinates of the target
in the left and right images move from the initial position to the central region of the image
and stabilize in the center region of the image during the approach process. In the process
of turning towards the target in the first step, the target coordinates in the image fluctuate
because the head motor rotates a large amount and is accompanied by a certain vibration
during the rotation, which can be avoided by using a system with better stability. The
variety curve of the motor position in Figure 13 shows that the motion of the motor can track
the target well with the desired pose, and the prediction of the 3D coordinates is not used
during the tracking process, so this prediction is accompanied by a cycle lag. The changes
in angle in Figure 13 show that the robot system achieves the task of steering toward the
target in the first few control cycles and then moves toward the target at a stable angle.
Figure 13a shows the change in the coordinates of the target in the robot coordinate system.
When the robot rotates, fluctuations arise around the measured x coordinate, mainly due to
the measurement error caused by the shaking of the system. The experimental results in
Figure 13b show that the robot’s movement toward the target is very consistent. During
the approach process, the target can be kept within ±50 pixels of the desired position in
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the horizontal direction of the image while being within ±20 pixels of the desired position
in the vertical direction of the image. The eye motor achieves fast tracking of the target in
1.5 s. The angle between the target and the head is reduced from 20◦ to 0◦, and the angle
between the target and the robot is reduced from 35◦ to 0◦. The robot then over-turns. At
34◦, the target changes by 34◦ from the initial position.

1 
 

 

Figure 13. Experimental results of gaze shifting to the target: (a) U coordinates of the target on the
left image. (b) V coordinates of the target on the left image. (c) U coordinates of the target on the
right image. (d) V coordinates of the target on the right image. (e) Left camera tilt. (f) Left camera
pan. (g) Right camera tilt. (h) Right camera pan. (i) Head pan. (j) Angular deviation and rotation.
(k) Coordinates (wx, wz) of the target in the world coordinate system. (l) Robot forward distance and
the distance between the target and robot.

Through the above analysis, it can be found that by using the combination of the
head, the eye and the trunk in the present method, the approach toward the target can be
achieved while ensuring that the robot is gazing at the target.

6. Conclusions

This study achieved gaze point tracking based on the 3D coordinates of the target. First,
a robot experiment platform was designed. Based on the bionic eye experiment platform, a
head with two degrees of freedom was added, using the mobile robot as a carrier.

Based on the characteristics of the robot platform, this paper proposed a method of
gaze point tracking. To achieve in situ gaze point tracking, the combination of the eyes,
head and trunk is designed based on the principles of minimum resource consumption
and maximum system stability. Eye rotation consumes the least amount of resources and
has minimal impact on the stability of the overall system during the exercise. The head
rotation consumes more resources than the eyeball but fewer than the trunk rotation. At
the same time, the rotation of the head affects the stability of the eyeball but only minimally
affects the stability of the entire robotic system. The resources consumed by the rotation of
the trunk generally predominate, and the rotation of the trunk tends to affect the stability
of the head and the eye. Therefore, when the eye can observe the target in the optimal
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observation posture, only the eye is rotated; otherwise, the head is rotated, and when the
angle at which the head needs to move exceeds its threshold, the mobile robot rotates.
When approaching gaze point tracking is performed, the robot and head first face the
target and then move straight toward the vicinity of the target. Based on the proposed gaze
point tracking method, this paper provides an expected pose calculation method for the
horizontal rotation angle and the vertical rotation angle.

Based on the experimental robot platform, a series of experiments was performed, and
the effectiveness of the gaze point tracking method was verified. In our future works, a prac-
tical task of delivering medicine in a hospital and more detailed comparative experiments,
as well as discussions with other similar studies, will be implemented.
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Appendix A. Measurement Error Analysis of Binocular Stereo Vision

It is assumed that the angle at which the left motion module rotates in the horizontal
direction with respect to the initial position is lθp and that the angle at which the right
motion module rotates in the horizontal direction with respect to the initial position is
rθp. When using the bionic eye platform for 3D coordinate calculation, we find that when
lθp = rθp, the measured three-dimensional coordinate ratio is higher than lθp > 0 and rθp < 0,
which is more accurate, as shown in Figure A1a,b. In this case, the measurement accuracy
is higher than that in the case shown in Figure A1c. This chapter analyzes the measurement
error of three-dimensional coordinates, explains the reason for this phenomenon and
proposes a method to improve the accuracy of three-dimensional coordinate measurement.
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left camera coordinate system. lRw can be expressed as  

Figure A1. Binocular motion mode, (a) initial position lθp = rθp, (b) lθp= rθp, (c) lθp > 0 and rθp < 0.

For the convenience of calculation, according to the characteristics of the bionic eye
platform, the binocular stereo vision measurement model shown in Figure A2 is used to
analyze the error of the three-dimensional coordinate measurement.
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Appendix A.1. Vision System of Bionic Eyes

Two cameras are used to imitate human eyes and the principle of the vision system of
bionic eyes is shown in Figure 1. We suppose that the optical axes of two cameras used to
imitate human eyes are coplanar. As shown in Figure 1, OwXwZw is the world coordinate
system, the Xw axis is along the baseline of two cameras and the Zw axis is in the plane ∏,
which consists of the two cameras’ optical axes. lOc

lXc
lZc is the coordinate system of the

left camera, where lZc is along the optical axis of the left camera and lXc axis is in the plane
∏. rOc

rXc
rZc is the coordinate system of the right camera, rZc is along the optical axis of

the right camera and rXc axis is in the plane ∏. The two cameras can move cooperatively
to imitate the movement of human eyes.

Appendix A.2. Depth Measurement Model

In Figure A2, the position vector of point lOc in OwXwZw is wOl = [−di/2, 0]T and the
position vector of point rOc in OwXwZw is wOr = [di/2, 0]T. di is the length of the baseline.
Let lP = [xl, zl]T and rP = [xr, zr]T be the position vectors of the object point P in the left and
right camera coordinate systems, respectively. Let wP = [xw, zw]T be the position vector of
point P in OwXwZw; then, lP can be obtained as follows:

lP = lRw(
wP− wOl) (A1)

where lRw is the rotation transformation matrix from the world coordinate system to the
left camera coordinate system. lRw can be expressed as

lRw =

[
cos θl sin θl
− sin θl cos θl

]
(A2)

where θl is the rotation angle which is defined as the angle between camera optical axis
and the Zw axis.

Based on the same principle, we can obtain

rP = rRw(
wP− wOr) (A3)

where
rRw =

[
cos θr sin θr
− sin θr cos θr

]
(A4)

As shown in Figure 1, Pl1 is the intersection point of the line lOcP and the normalized
image plane of the left camera, and Pr1 is the intersection point of the line rOcP and the
normalized image plane of the right camera. From the geometric relationship as shown in
Figure 1, the position vector of point Pl1 in lOc

lXc
lZc can be expressed as lPl1 = [xl/zl, 1]T,

and the position vector of point Pr1 in rOc
rXc

rZc can be expressed as rPr1 = [xr/zr, 1]. Let
wPl1 = [wxl1, wzl1]T be the position vector of point Pl1 in OwXwZw and wPr1 = [wxr1, wzr1]T
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be the position vector of point Pr1 in OwXwZw. wPl1 and wPr1 can be calculated in (A5) and
(A6) by coordinate transformation according to (A1) and (A3).

wPl1 =
(

lRw

)−1lPl1 +
wOl (A5)

wPr1 = (rRw)
−1rPr1 +

wOr (A6)

From Equations (99) and (100), we can obtain

wPl1 =

[wxl1
wzl1

]
=

[
xl
zl

cos θl − sin θl − di
2

xl
zl

sin θl + cos θl

]
(A7)

wPr1 =

[wxr1
wzr1

]
=

[
xr
zr

cos θr − sin θr +
di
2

xr
zr

sin θr + cos θr

]
(A8)

According to wOl = [−di/2, 0]T and Equation (A7), the line lOcP can be expressed as
Equation (A9) in the world coordinate system OwXwZw.

z =
wzl1

di
2 + wxl1

x +
wzr1 × di

2
di
2 + wxl1

(A9)

Based on wOr = [di/2, 0]T and Equation (A8), the line rOcP in the world coordinate
system OwXwZw can be expressed as follows:

z = −
wzr1

di
2 − wxr1

x +
wzr1 × di

2
di
2 − wxl1

(A10)

The intersection point of the lines rOcP and lOcP is the point P, so the depth zw of point
P can be obtained by Equations (A9) and (A10).

zw =
−di

wzr1
wzr1

wxr1
wzl1 − wzl1

di
2 − wzr1

di
2 − wxl1

wzr1
(A11)

Appendix A.3. Measurement Error Analysis

In the real situation, there are the eyes’ rotation angle errors (usually caused by time
difference between image acquisition and motor angle acquisition when the two cameras
move, the stepper motor’s clearance error and the encoder’s resolution) and image errors
(usually caused by image distortion, image resolution and image feature extraction error).
Let ∆ml and ∆mr be the image errors of the two cameras, respectively, then lPl1= [xl/zl, 1]T

and rPr1= [xr/zr, 1] can be revised as lP′l1 = [xl/zl + ∆ml , 1]T and rP′r1 = [xr/zr + ∆mr, 1].
Let ∆θl and ∆θr be the errors of two cameras’ rotation angles, respectively. Therefore, we
can rewrite Equations (A7) and (A8) as follows:

wP′l1 =

[wx′l1
wz′l1

]
=



(

xl
zl
+ ∆ml

)
cos(θl + ∆θl)− sin(θl + ∆θl)− di

2(
xl
zl
+ ∆ml

)
sin(θl + ∆θl) + cos(θl + ∆θl)


 (A12)

wP′r1 =

[wx′r1
wz′r1

]
=



(

xr
zr
+ ∆mr

)
cos(θr + ∆θr)− sin(θr + ∆θr) +

di
2(

xr
zr
+ ∆mr

)
sin(θr + ∆θr) + cos(θr + ∆θr)


 (A13)
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Based on the same principle, the revised depth z′w of point P can be obtained as follows:

z′w =
−di

wz′l1
wz′r1

wx′r1
wz′l1 − wz′l1

di
2 − wz′r1

di
2 − wx′l1

wz′r1

(A14)

According to the cooperative movement pattern of human eyes, the absolute values of
θl and θr are restricted to a limited range and assumed to be equal as follows:

−θl = θr = θ s.t. 0 ≤ θ <
π

2
(A15)

Since ∆mr, ∆ml, ∆θl and ∆θr are usually close to 0, the simplified expression of the
error ∆z between the actual value zw and measurement value z′w can be derived from (A7),
(A8) and (A11)–(A14).

∆z = z′w − zw ≈ −zw
zw(∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr)

di + zw(∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr)
(A16)

In addition, the relative error of zw is

∆zr =
∆z
zw
≈ − zw(∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr)

di + zw(∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr)
(A17)

Let
ε = ∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr (A18)

In practice, ε has very small value and zwε < < di, so ∆zr can be simplified as follows:

∆zr ≈ −
zwε

di
(A19)

From Equation (A19), it can be known that relative error of zw is proportional to zwε
and inversely proportional to di. Thus, we can adopt the following strategies to reduce the
error of depth:

(1) Keep di long enough and constant when the bionic eyes move.
(2) Observe the target as close as possible since the depth error is smaller when bionic

eyes observe target in a close distance.
(3) Control the two cameras of the bionic eyes with the same angular velocity during

the process of the eyes’ movement. In this way, ∆θl and ∆θr will be approximately equal to
each other, and ε can be reduced.

(4) Keep the target on the Zw axis if possible, so that ∆ml and ∆mr are close to each other.
These strategies can be used to design effective motion control methods so that bionic

eyes can perceive the target’s 3D information accurately.

Appendix B. Proof of Equation (100)

Let
a = −di

wz′l1
wz′r1 (A20)

b = wx′r1
wz′l1 − wz′l1

di
2
− wz′r1

di
2
− wx′l1

wz′r1 (A21)

Then, z′w in Equation (A14) can be expressed as

z′w =
a
b

(A22)
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From Equations (A7) and (A8), we can obtain

wz′l1 = (
xl
zl

+ ∆ml) sin(θl + ∆θl) + cos(θl + ∆θl) (A23)

wz′r1 = (
xr

zr
+ ∆mr) sin(θr + ∆θr) + cos(θr + ∆θr) (A24)

From (A10), (A23) and (A24), we can obtain

a = −di
xr
zr

xl
zl
[sin θr cos ∆θr + cos θr sin ∆θr][sin θl cos ∆θl + cos θl sin ∆θl ]

−di
xr
zr
[sin θr cos ∆θr + cos θr sin ∆θr][sin θl cos ∆θl + cos θl sin ∆θl ]∆ml

−di
xr
zr
[sin θr cos ∆θr + cos θr sin ∆θr][cos θl cos ∆θl − sin θl sin ∆θl ]

−di
xl
zl
[sin θr cos ∆θr + cos θr sin ∆θr][sin θl cos ∆θl + cos θl sin ∆θl ]∆mr

−di[sin θr cos ∆θr + cos θr sin ∆θr][sin θl cos ∆θl + cos θl sin ∆θl ]∆ml∆mr
−di[sin θr cos ∆θr + cos θr sin ∆θr][cos θl cos ∆θl − sin θl sin ∆θl ]∆mr
−di

xl
zl
[sin θl cos ∆θl + cos θl sin ∆θl ][cos θr cos ∆θr − sin θr sin ∆θr]

−di[sin θl cos ∆θl + cos θl sin ∆θl ][cos θr cos ∆θr − sin θr sin ∆θr]∆ml
−di[cos θr cos ∆θr − sin θr sin ∆θr][cos θl cos ∆θl − sin θl sin ∆θl ]

(A25)

∆mr, ∆ml, ∆θl and ∆θr are usually close to 0, so





cos ∆θr ≈ 1
cos ∆θl ≈ 1
sin ∆θr sin ∆θl ≈ 0
∆ml∆mr ≈ 0
∆ml sin ∆θl ≈ 0
∆mr sin ∆θl ≈ 0
∆ml sin ∆θr ≈ 0
∆mr sin ∆θr ≈ 0

(A26)

From (A25) and (A26), we can obtain

a ≈ di
1

zrzl
[−xl xr sin θl sin θr − xrzl cos θl sin θr − xlzr sin θl cos θr − zrzl cos θr cos θl

+ sin ∆θl(−xl xr sin θr cos θl + xrzl sin θr sin θl − xlzr cos θr cos θl + zrzl cos θr sin θl)
+ sin ∆θr(xlzr sin θl sin θr + zrzl cos θl sin θr − xl xr sin θl cos θr − xrzl cos θl cos θr)
−∆ml(xrzl sin θl sin θrl + zrzl sin θl cos θr)− ∆mr(xlzr sin θr sin θl − zrzl sin θr cos θl)]

(A27)

From (A7), (A8) and (A19), we can obtain




xl = (xw + di
2 ) cos θ − zw sin θ

zl = −(xw + di
2 ) sin θ + zw cos θ

xr = (xw − di
2 ) cos θ + zw sin θ

zr = (xw − di
2 ) sin θ + zw cos θ

(A28)

Equation (A19) can be derived from (A19), (A27) and (A28):

a ≈ z2
w
−di+[

di
2 sin 2θ+

di(xw+
di
2 ) sin2 θ

zw ]∆ml
zlzr

+ z2
w
[

di(xw−
di
2 ) sin2 θ

zw − di
2 sin 2θ]∆mr

zl zr

+z2
w

−di(xw+
di
2 ) sin ∆θl

zw +
di(xw−

di
2 ) sin ∆θr

zw
zl zr

(A29)

∆mr, ∆ml, ∆θl and ∆θr are usually close to 0, xw � zw, and di � zw. Thus,

a ≈ z2
w
−di
zlzr

(A30)
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From (A21), (A23) and (A24), we can obtain

b = xl
zl

xr
zr
(sin θl cos ∆θl + cos θl sin ∆θl)(cos θr cos ∆θrr − sin θr sin ∆θr)

+ xl
zl
(sin θl cos ∆θl + cos θl sin ∆θl)(cos θr cos ∆θr − sin θr sin ∆θr)∆mr

− xl
zl
(sin θl cos ∆θl + cos θl sin ∆θl)(sin θr cos ∆θr + cos θr sin ∆θr)

+ xr
zr
(sin θl cos ∆θl + cos θl sin ∆θl)(cos θr cos ∆θr − sin θr sin ∆θr)∆ml

+(sin θl cos ∆θl + cos θl sin ∆θl)(cos θr cos ∆θr − sin θr sin ∆θr)∆ml∆mr
−(sin θl cos ∆θl + cos θl sin ∆θl)(sin θr cos ∆θr + cos θr sin ∆θr)∆ml
+ xr

zr
(cos θl cos ∆θl − sin θl sin ∆θl)(cos θr cos ∆θr − sin θr sin ∆θr)

+(cos θl cos ∆θl − sin θl sin ∆θl)(cos θr cos ∆θr − sin θr sin ∆θr)∆mr
−(cos θl cos ∆θl − sin θl sin ∆θl)(sin θr cos ∆θr + cos θr sin ∆θr)
− xr

zr

xl
zl
(sin θr cos ∆θr + cos θr sin ∆θr)(cos θl cos ∆θl − sin θl sin ∆θl)

− xr
zr
(sin θr cos ∆θr + cos θr sin ∆θr)(cos θl cos ∆θl − sin θl sin ∆θl)∆ml

+ xr
zr
(sin θr cos ∆θr + cos θr sin ∆θr)(sin θl cos ∆θl + cos θl sin ∆θl)

− xl
zl
(sin θr cos ∆θr + cos θr sin ∆θr)(cos θl cos ∆θl − sin θl sin ∆θl)∆mr

−(sin θr cos ∆θr + cos θr sin ∆θr)(cos θl cos ∆θl − sin θl sin ∆θl)∆ml∆mr
+(sin θr cos ∆θr + cos θr sin ∆θr)(sin θl cos ∆θl + cos θl sin ∆θl)∆mr
− xl

zl
(cos θr cos ∆θr − sin θr sin ∆θr)(cos θl cos ∆θl − sin θl sin ∆θl)

−(cos θr cos ∆θr − sin θr sin ∆θr)(cos θl cos ∆θl − sin θl sin ∆θl)∆ml
+(cos θr cos ∆θr − sin θr sin ∆θr)(sin θl cos ∆θl + cos θl sin ∆θl)

(A31)

From (A26) and (A31), we can obtain:

b ≈ 1
zlzr

[xl xr sin θl cos θr − xlzr sin θl sin θr + zl xr cos θl cos θr − zlzr cos θl sin θr

−xl xr sin θr cos θl + zlzr sin θl cos θr − xlzr cos θl cos θr + zl xr sin θl sin θr
+ sin ∆θl(xl xr cos θl cos θr − xlzr cos θl sin θr − zl xr cos θr sin θl + xlzr sin θl cos θr
+zlzr cos θr cos θl + zlzr sin θl sin θr + xl xr sin θl sin θr + zl xr sin θr cos θl)
+ sin ∆θr(−xl xr sin θl sin θr − xlzr sin θl cos θr − zl xr cos θl sin θr − zlzr cos θl cos θr
−xl xr cos θl cos θr + zl xr sin θl cos θr + xlzr cos θl sin θr − zlzr sin θl sin θr)
+∆ml(zl xr sin θl cos θr − zlzr sin θl sin θr − zl xr cos θl sin θr − zlzr cos θl cos θr)
+∆mr(xlzr sin θl cos θr + zlzr cos θl cos θr − xlzr cos θl sin θr + zlzr sin θl sin θr)]

(A32)

Equation (A33) can be derived by (A19), (A28) and (A32):

b ≈ zw
−di−∆ml [2xw sin θ cos θ+

(x2
w−

d2
i
4 )

zw sin2 θ+zw cos2 θ]

zlzr

+zw
∆mr [zw cos2 θ+

(x2
w−

d2
i
4 )

zw sin2 θ−2xw sin θ cos θ]

zl zr

+zw
sin ∆θl [zw+

x2
w−

d2
i
4

zw ]−sin ∆θr [zw+
x2

w−
d2

i
4

zw ]

zl zr

(A33)

∆mr, ∆ml, ∆θl and ∆θr are usually close to 0, xw � zw, and di � zw. Thus,

b ≈ zw
−di + zw

(
∆mr cos2 θ − ∆ml cos2 θ + sin ∆θl − sin ∆θr

)

zlzr
(A34)

From (A22), (A29) and (A34), we can obtain

z′w ≈
zwdi

di − zw(∆mr cos2 θ − ∆ml cos2 θ + sin ∆θl − sin ∆θr)
(A35)

So,

∆z = z′w − zw ≈ −zw
zw(∆ml cos2 θ − ∆mr cos2 θ − sin ∆θl + sin ∆θr)

di + zw(∆ml cos2 θ − ∆mr cos2 θ − sin ∆θl + sin ∆θr)
(A36)
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∆θl and ∆θr are usually close to 0, so

∆z ≈ −zw
zw(∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr)

di + zw(∆ml cos2 θ − ∆mr cos2 θ − ∆θl + ∆θr)
(A37)

The proof is completed.

Appendix C. Two Equations Related to θt and θp

Substituting Equation (59) into Equation (60), we can obtain:




1xc
1yc
1zc
1


 =




1nx
1ox

1ax
1 px

1ny
1oy

1ay
1 py

1nz
1oz

1az
1 pz

0 0 0 1







1 0 0 0
0 cos1 θt sin1 θt 0
0 − sin1 θt cos1 θt 0
0 0 0 1







cos1 θp 0 − sin1 θp 0
0 1 0 0

sin1 θp 0 cos1 θp 0
0 0 0 1







xw
yw
zw
1


 (A38)

Equation (A38) can be factored out:




1xc
1yc
1zc


 =




lnxxw cos lθp − lnxzw sin lθp + loxxw sin lθp sin lθt
+loxyw cos lθt + loxzw cos lθp sin lθt + laxxw sin lθp cos lθt

−laxyw sin lθt + laxzw cos lθp cos lθt + l px
lnyxw cos lθp − lnyzw sin lθp + loyxw sin lθp sin lθt

+loyyw cos lθt + loyzw cos lθp sin lθt + layxw sin lθp cos lθt
−layyw sin lθt + layzw cos lθp cos lθt + l py

lnzxw cos lθp − lnzzw sin lθp + lozxw sin lθp sin lθt
+lozyw cos lθt + lozzw cos lθp sin lθt + lazxw sin lθp cos lθt

−lazyw sin lθt + lazzw cos lθp cos lθt + l pz




(A39)

Substituting Equation (A39) into Equation (62), we can obtain:

(
∆ul
∆vl

)
=




(lkx
lnxxw cos lθp − lkx

lnxzw sin lθp + lkx
loxxw sin lθp sin lθt

+lkx
loxyw cos lθt + lkx

loxzw cos lθp sin lθt + lkx
laxxw sin lθp cos lθt

−lkx
laxyw sin lθt + lkx

laxzw cos lθp cos lθt + lkx
l px)

(lnzxw cos lθp − lnzzw sin lθp + lozxw sin lθp sin lθt
+lozyw cos lθt + lozzw cos lθp sin lθt + lazxw sin lθp cos lθt

−lazyw sin lθt + lazzw cos lθp cos lθt + l pz)
(lky

lnyxw cos lθp − lky
lnyzw sin lθp + lky

loyxw sin lθp sin lθt
+lky

loyyw cos lθt + lky
loyzw cos lθp sin lθt + lky

layxw sin lθp cos lθt
−lky

layyw sin lθt + lky
layzw cos lθp cos lθt + lky

l py)

(lnzxw cos lθp − lnzzw sin lθp + lozxw sin lθp sin lθt
+lozyw cos lθt + lozzw cos lθp sin lθt + lazxw sin lθp cos lθt

−lazyw sin lθt + lazzw cos lθp cos lθt + l pz)




(A40)

Based on the same principle, substituting into each matrix and factoring the value of
∆mr, we can obtain
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(
∆ur
∆vr

)
=




(rkx
rnx

rxw cos rθp − rkx
rnx

rzw sin rθp + rkx
rox

rxw sin rθp sin rθt
+rkx

rox
ryw cos rθt + rkx

rox
rzw cos rθp sin rθt + rkx

rax
rxw sin rθp cos rθt

−rkx
rax

ryw sin rθt + rkx
rax

rzw cos rθp cos rθt + rkx
r px)

(rnz
rxw cos rθp − rnz

rzw sin rθp + roz
rxw sin rθp sin rθt

+roz
ryw cos rθt + roz

rzw cos rθp sin rθt + raz
rxw sin rθp cos rθt

−raz
ryw sin rθt + raz

rzw cos rθp cos rθt + r pz)
(rky

rny
rxw cos rθp − rky

rny
rzw sin rθp + rky

roy
rxw sin rθp sin rθt

+rky
roy

ryw cos rθt + rky
roy

rzw cos rθp sin rθt + rky
ray

rxw sin rθp cos rθt
−rky

ray
ryw sin rθt + rky

ray
rzw cos rθp cos rθt + rky

r py)

(rnz
rxw cos rθp − rnz

rzw sin rθp + roz
rxw sin rθp sin rθt

+roz
ryw cos rθt + roz

rzw cos rθp sin rθt + raz
rxw sin rθp cos rθt

−raz
ryw sin rθt + raz

rzw cos rθp cos rθt + r pz)




(A41)

By Equations (2), (A40) and (A41), Equation (A42) related to θt and θp can be obtained.
It can be found from Equation (A32) that both θt and θp appear in the form of a trigonometric
function, and it is difficult to obtain values of θt and θp directly from these two equations.
In order to obtain the solution available in the project, we firstly obtain a sub-optimal
observation pose and then use the sub-optimal observation pose as the initial value. We
finally use the trial and error method to obtain the optimal observation pose.





(lkx
lnxxw cos θp − lkx

lnxzw sin θp + lkx
loxxw sin θp sin θt

+lkx
loxyw cos θt + lkx

loxzw cos θp sin θt +−lkx
laxyw sin θt

lkx
laxxw sin θp cos θt + lkx

laxzw cos θp cos θt + lkx
l px)

(rnz
rxw cos θp − rnz

rzw sin θp + roz
rxw sin θp sin θt + r pz

+roz
ryw cos θt + roz

rzw cos θp sin θt + raz
rxw sin θp cos θt

−raz
ryw sin θt + raz

rzw cos θp cos θt) = (rkx
rnx

rxw cos θp
−rkx

rnx
rzw sin θp + rkx

rox
rxw sin θp sin θt + rkx

rox
ryw cos θt

+rkx
rox

rzw cos θp sin θt + rkx
rax

rxw sin θp cos θt + rkx
r px

−rkx
rax

ryw sin θt + rkx
rax

rzw cos θp cos θt)(lnzxw cos θp
−lnzzw sin θp + lozxw sin θp sin θt + lozyw cos θt + lozzw cos θp sin θt
+lazxw sin θp cos θt − lazyw sin θt + lazzw cos θp cos θt + l pz)
(lky

lnyxw cos θp − lky
lnyzw sin θp + lky

loyxw sin θp sin θt
+lky

loyyw cos θt + lky
loyzw cos θp sin θt − lky

layyw sin θt
+lky

layxw sin θp cos θt + lky
layzw cos θp cos θt + lky

l py)
(rnz

rxw cos θp − rnz
rzw sin θp + roz

rxw sin θp sin θt + r pz
+roz

ryw cos θt + roz
rzw cos θp sin θt + raz

rxw sin θp cos θt
−raz

ryw sin θt + raz
rzw cos θp cos θt) = (rky

rny
rxw cos θp

−rky
rny

rzw sin θp + rky
roy

rxw sin θp sin θt + rky
roy

ryw cos θt
+rky

roy
rzw cos θp sin θt + rky

ray
rxw sin θp cos θt + rky

r py
−rky

ray
ryw sin θt + rky

ray
rzw cos θp cos θt)(lnzxw cos θp

−lnzzw sin θp + lozxw sin θp sin θt + lozyw cos θt + lozzw cos θp sin θt
+lazxw sin θp cos θt − lazyw sin θt + lazzw cos θp cos θt + l pz)

(A42)
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Abstract: In real-world applications, multiple robots need to be dynamically deployed to their
appropriate locations as teams while the distance cost between robots and goals is minimized, which
is known to be an NP-hard problem. In this paper, a new framework of team-based multi-robot
task allocation and path planning is developed for robot exploration missions through a convex
optimization-based distance optimal model. A new distance optimal model is proposed to minimize
the traveled distance between robots and their goals. The proposed framework fuses task decompo-
sition, allocation, local sub-task allocation, and path planning. To begin, multiple robots are firstly
divided and clustered into a variety of teams considering interrelation and dependencies of robots,
and task decomposition. Secondly, the teams with various arbitrary shape enclosing intercorrelative
robots are approximated and relaxed into circles, which are mathematically formulated to convex
optimization problems to minimize the distance between teams, as well as between a robot and
their goals. Once the robot teams are deployed into their appropriate locations, the robot locations
are further refined by a graph-based Delaunay triangulation method. Thirdly, in the team, a self-
organizing map-based neural network (SOMNN) paradigm is developed to complete the dynamical
sub-task allocation and path planning, in which the robots are dynamically assigned to their nearby
goals locally. Simulation and comparison studies demonstrate the proposed hybrid multi-robot task
allocation and path planning framework is effective and efficient.

Keywords: multi-robot deployment; convex optimization; task allocation; SOM neural networks;
path planning; task decomposition

1. Introduction

Multi-robot deployment is an essential issue in robotics field, which requires mobile
robots to be deployed in the workspace to cooperatively fulfill tasks [1–5]. Dynamic de-
ployment problems in combinatorial optimization consist of finding an optimal solution in
some objectives, such as timing, workload, distance traveled, energy, and deadlines [6–13].
In real-world applications, such as mine detection, environmental exploration, and res-
cue mission, many robots need to be dynamically deployed to goals (targets) while total
distance cost among robots, and between robots and goals is minimized [14–20].

1.1. Related Works

Although there have been many studies on multi-robot deployment via optimization
models, very few existing deployment algorithms focus on distance constraints. Previous re-
search on multi-robot deployment and task allocation may be categorized into various meth-
ods, such as distributed-based [21–24], linear programming [24,25], graph-based [26–28],
market-based [22,29,30], conflict-based search method [31], neural networks [32,33], etc.
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Sung et al. [21] addressed a distributed approach to integrate multi-robot deployment and
multi-target tracking. A local algorithm is adopted to achieving performance close to the
optimal algorithms with limited communication with assistance of distributed approach.
For a heterogeneous multi-robot system, where tasks form disjoint groups and where there
are restrictions on the number of tasks, a robot may accomplish (both within the overall
mission and within each task group), Luo et al. [34] provided a provably-good distributed
task allocation methods. Their goal of task allocation is to maximize (minimize) the total
payout (cost) of the robots, whereby each robot receives a payment (or incurs a cost) for
completing a job. Basil et al. [35] proposed a modular robot to be a morphologically flexible,
autonomous kinematic machines with hundreds or even millions of modules that work
together to exhibit intelligent behavior. The self-reconfiguration process, which seeks to
identify a series of reconfiguration activities to convert robots from an initial form to a
target one, may be enhanced by clustering the modules in modular robots. Luo et al. [24]
extended distributed algorithms by taking deadline into account in multi-robot deployment.
Purohit et al. [26] presented a spanning tree method associated with self-localizing capa-
bility in the graph. However, robot teams are not yet successfully clustered and assigned
to multiple tasks effectively. To efficiently and securely explore and recon a given region
with a large number of robots, Li et al. [36] introduced an enhanced genetic algorithm
(IGA) to tackle the job assignment issue of a multi-robot system. Searching the numerous
identical sections of the specified region is a subtask that must be completed in order to
solve a challenge. Qin et al. [37] formally described the challenge of completing dynamic
tasks with several robots by modeling their interactions as a series of state transitions, or
behavior trees. Through the use of a unique priority system, a framework-associated dis-
tributed algorithms for inter-robot communication, negotiation, and agreement protocols
was provided. Bai et al. [38] investigated the multi-robot task allocation issue, in which
a team of geographically-dispersed robots must effectively move a number of packages
from their originating locations to their respective destinations within a certain amount
of time. A market-based approach is suggested by Rossi et al. [29] for simultaneous task
subdivision and allocation in heterogeneous multi-robot systems. García et al. [30] imple-
mented a behavior-based architecture with many layers allowing the market-based method
to achieve varying degrees of coordination. However, as the number of robots in the team
or the complexity of the problem increases, market-based approaches suffer from scalability
and dynamics issues, which tend to hinder these processes, especially when this happens
in real time.

Neural network (NN) methods have been broadly applied to multi-robot path plan-
ning and task allocation. Luo and Yang [33] developed a neural dynamics model to assign
multiple robots to environmental exploration collaboratively. Multiple robots cooperate to
achieve a common sweeping goal effectively. However, energy consumption of multi-robot
system has not been considered in this paper. Later, Luo et al. [32] extended their research
by addressing the computational complexity and energy efficiency of multi-robot system
with navigation [39]. The energy consumption of multiple tasks for an arbitrary number
of robots is considered, in which a bio-inspired neural networks model for multi-robot
navigation applied to cleaning robots is developed. In this model, multiple robots are as-
signed to complete terrain coverage task cooperatively, extendable to unknown exploration
environments [39]. Distance cost optimization is considered in the recent research. For
instance, Lee et al. [31] suggested a master–slave based multi-robot deployment with time
and distance minimization consideration; however, the distance is not globally optimized.
Some researchers combined a couple of models to take advantage of various benefits.
For instance, Michael et al. [22] effectively integrated distributed algorithm and market-
based method for multi-robot deployment. Motes et al. [40] concatenated path-finding
method and conflict-based search method to multi-robot deployment and navigation with
inter-team conflict avoidance.

The centralization or decentralization of task allocation methods is another essential
characteristic. Using the well-known Kiva warehouse robot as an example [41], both
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task allocation and path planning are conducted centrally; however, this may not be
feasible if the multi-robot system operates in an environment that lacks robust sensing and
computational capabilities. Clustering is a potential middle alternative between centralized
and decentralized methods that aims to balance performance and computational load [42].
Martin et al. [43] proposed an algorithm to group the players into balanced clusters, applied
randomized methods to large problems to relieve the computational load, and assessed
feasibility in a large scenario and contrasted with a genetic approach.

In general, market/auction-based approaches can be solved decentrally [44]. However,
the problem structure must be straightforward enough so that each agent can act as a
bidder and bid on tasks; this can be challenging when some tasks require the cooperation of
multiple agents. Optimization-based methods permit more complex problem structures but
can be challenging to solve decentralized. Bo et al. [45] proposed a stochastic programming
framework, which optimizes the decomposition, allocation, and scheduling of tasks for a
group of agents. The framework enables teams of mobile robots in different locations to
perform different tasks. However, the scalability and dynamics issues arise as the number
of robots in the team or the complexity of the problem increases. Therefore, a framework
based on optimization is proposed in this paper for decentralized task allocation that is
appropriate for complex problem models.

1.2. Proposed Framework and Original Contributions

In this paper, a two-stage team-based decentralized deployment framework through
convex optimization model is developed. It aims for multiple robots scattered in arbitrary
space to minimize distance cost among robots, and between robots and goals so as to reach
all the task locations effectively shown in Figure 1.
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Figure 1. Illustration of an exploration environment with robot teams (swarms) (adapted from
Eklavya 2019 [46]). In this multi-robot deployment problem, a known environment is given with N

target locations, in which some locations are located within the workspace (such as warehouses), but
other locations are in the edges of the workspace. There are varying numbers of robots in each team.

In the first stage, multiple robots in workspace are classified and clustered into a
variety of teams enclosing correlative robots as task decomposition. Robot teams in arbitrary
shape are represented as circles, in order to formulate it into a convex optimization model.
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The relative locations of teams are obtained through this convex optimization model. Then,
the locations of circles are refined in a refinement stage via a Delaunay triangulation method
to clean up the overlaps of teams. In the second stage, within the team, a self-organizing
map (SOM) neural networks (NN) paradigm is considered to complete the dynamical
sub-task allocation and path planning by dynamically assigning them to their nearby goals
locally. The proposed framework couples task decomposition, deployment, local sub-task
allocation and path planning to support cases where the optimal solution depends on robot
interrelation, dependencies, and availability, as well as inter-team conflict avoidance.

The contributions of this paper are summarized as follows:

(1) A two-stage convex-optimization-based framework is proposed for decentralized
multi-robot task allocation and task decomposition.

(2) The first stage of the proposed convex-optimization-based framework is designed to
determine the relative locations of the robot teams. By obtaining data regarding the
robots and the targets, the robots are categorized and aggregated into multiple teams
with respect to the total distance cost.

(3) The second stage of the proposed convex optimization-based framework aims to
locally assign teams of robots to final goals. The local self-organizing map based
neural network (SOMNN) method is developed to subtask allocations and robot path
planning.

(4) A Delaunay triangulation (DT) method is employed to refine the team locations and,
thus, connect the two stages.

The overall workflow of the proposed multi-robot task allocation framework is illus-
trated in Figure 2.

Local Subtask

Allocation

Path Planning

Refinement of

Team Locations

The Positions

of Robots

The Positions

of Targets

Convex Optimization
Self-organizing map based 

Neural Networks (SOMNN)
Delaunay

Triangulation

Tasks

Decomposition

Multi-robot

Deployment

Multi-robot Task

Allocation

Figure 2. The overall workflow of team-based decentralized deployment framework through convex
optimization models.

The rest of this paper is organized as follows. In Section 2, the problem statement and
formulation is presented. In Section 3, the distance optimal-based convex optimization
model for multi-robot deployment is proposed. Section 4 presents the SOMNN sub-
task allocation and path planning approach. Numerical experiments, simulations, and
comparison studies are presented in Section 5. Several important properties of the presented
framework are summarized in Section 6.

2. Problem Statement and Formulation

In this multi-robot deployment problem, a known environment is given with N target
locations, in which some locations are located within the workspace (such as warehouses),
but other locations are in the edges of the workspace (see Figure 1). There are m robots
to be deployed that are classified into g swarms (groups). In every swarm, there are k
robots (k is a variable). Robots are initially located within different irregular shapes as
swarms (see Figure 1). Robots moves as a swarm while maintaining a minimized total
distance cost among robots shown in Figure 3. Interrelated robots are classified into the
same swarm to be deployed in a nearby terrain. Some robots are enclosed in one swarm
in collaboration with the robots in other swarms. Robots with relatively high connections
are arranged close to one another for connectivity. The distance between pairs of robots
with high connection is to be minimized. Likewise, the distance between robots and target
locations is to be minimized.
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Robots

Interconnected Teams / Swarms

Robot Team 1
Robot Team 2

Robot Team 3

Figure 3. Illustration of multi-robot deployment with robot teams. Robots move as a swarm while
minimizing the total distance cost between them. The classification of interrelated robots into the
relevant swarm for deployment on adjacent terrain. Some robots are contained within one swarm in
conjunction with robots from other swarms.

The relative locations of the robot swarms in the known environment are provided by
an attractor–repeller convex optimization algorithm. The robots enclosed in swarms are
deployed into their relative locations in the workspace. Given the relative locations of the
robots, a planar graph and relative location matrix are obtained by a Delaunay triangulation
approach, to enforce no overlap between any two circles, used for the next step. The robots
contained in their swarms are locally assigned to their locations. The robots in a group are
required to have the shortest possible distance from the fixed target location on the edge of
the working environment.

3. Convex Optimization Model

The proposed framework couples task decomposition, deployment, local subtask
allocation and path planning to support scenarios where the optimal solution depends on
robot interrelation, dependencies, and availability, as well as inter-team conflict avoidance.
We introduce an efficient technique that addresses the deployment problem of a team of
heterogeneous robots. For multiple scattered tasks in arbitrary space, the objective to be
solved is to minimize distance for robots to reach all the task locations.

3.1. Convex Optimization Algorithms

Convex optimization algorithms to minimize the total distance cost are described in
this section. There are several definitions of the proposed algorithms.

Definition 1. Team of robots.

The deployment of robot swarms is described as follows:

• Each swarm of robots is labeled 1, 2, ..., M, represented as a circle with radius ri, i = 1,
2, ..., M. The radius ri is determined by the number of robots in this swarm.

• The location of each swarm 1, 2, ..., M is given by the coordinates of its center depicted
as (xi, yi).

• The non-negative cost per unit distance between swarms i and j is denoted by cij,
which is equivalent to the weight between swarms.
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• The distance measured from center to center of swarms i and j by Euclidean distance

(L2 norm) is represented by dij, that is, dij=
√
(xi − xj)2 + (yi − yj)2.

Therefore, the multi-robot deployment problem may be mathematically formulated as
weighted distance minimization model among swarms as follows.

min
(xi ,yj)

∑
1≤i<j≤N

cijdij (1)

s.t. ri + rj − dij ≤ 0, ∀ 1 ≤ i < j ≤ M

The circles containing robots are deployed as close as possible, but they should not
overlap. The objective function ∑

1≤i<j≤M
cijdij attempts to make distance dij as low as

possible, which attracts pairs of circles i and j towards each other so as to function as an
attractor. The constraints, ri + rj ≤ dij(∀ 1 ≤ i < j ≤ M), push any pair of circles away
from each other with no overlapping [47]. Swarms are approximated by circles whose
radii are proportional to the amount of encircled robots. The constraint to prevent circles
from overlapping has the mathematical form: (xi − xj)

2 + (yi − yj)
2 ≥ (ri + rj)

2, where
(xi, yi) and (xj, yj) denote the coordinates of the centers of two circles i and j, whereas ri
and rj represent their corresponding radii, respectively. The distance between circles is
minimized, while they have no overlaps as constraints. This problem may be formulated
as a non-linear optimization model with its superiority of convexity, inspired by a dynamic
spring system [48] as follows.

min
(xi ,yj),wF ,hF

∑
i,j∈M

1
2

cijd2
ij + ∑

i,j∈M
max

{
0, ωij(ri + rj − dij)

}
(2)

s.t.
1
2

wF ≥ xi + ri and
1
2

wF ≥ ri − xi, for all i ∈ M,

1
2

hF ≥ yi + ri and
1
2

hF ≥ ri − yi, for all i ∈ M, (3)

wup
F ≥ wF ≥ wlow

F ,

hup
F ≥ hF ≥ hlow

F ,

where ωij is a constant, ωij > 0. ωij(ri + rj − dij) is penalized in the total energy function
to generate a repulsive force. dij and ri, rj of circles are defined above. If dij < ri + rj, then
circles i and j overlap. dij ≥ ri + rj prevents circles i and j from overlapping each other.

In order to formulate convex optimization model, in which circles enclosing robots are
formulated to have no overlaps, repulsive force is introduced. In addition to this attractive
force, we consider move this max function by introducing repulsive force. Afterwards,
robots as swarms are deployed into their appropriate potions. Target distance concept
employed in this model was initially introduced by Anjos and Vannelli [49]. Let each
swarm of robots i be represented by a circle with radius ri, where ri is proportional to√

ai, the square root of the area of circle i, measured by the amount of robots encircled.
Following [49], the target distance for each pair of circles i, j is defined as tij := α(ri + rj)

2,
where α > 0 is a parameter. To prevent circles from overlapping, the target distance

is enforced by introducing a penalty term f (
Dij
tij
), where f (z) = 1

z − 1 for z > 0, and

Dij = (xi − xj)
2 + (yi − yj)

2. The objective function is thus given by

∑
1≤i<j≤n

cijDij + f (
Dij

tij
). (4)
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The repeller term (i.e., the penalty function) enforced by holding a positive value,
functions as a repulsive force, if ri + rj > dij, to hinder the circles from overlapping.

The attractor in the objective function used to apply an attractive force to the two
circles, makes the two swarms of robots (circles) move closer together (see Figure 4). The
repeller term disappears or becomes a negative value implying that there is no any overlap
between circles, if ri + rj ≤ dij. An attractive force is enforced to the two circles through
the attractor in the objective function enforces, if Dij ≥ tij. In this case, there is no any
overlap between circles and the repeller term is zero or slightly negative. Conversely, the
repeller term is positive, which tends to positive infinity as Dij tends to zero so as to prevent
the circles from overlapping fully, if Dij < tij. There is no force between circles i and j
exactly if D2

ij = tij/cij. The generalized target distance Tij is defined to contribute to this
optimization model.

(a) (b)

Attractive Force

Mobile robots

Repulsive Force

Mobile robots

Figure 4. Two circles with attractive and repulsive forces. (a) Two disconnected circles with attractive
force, ri + rj ≤ dij; (b) Two connected circles with repulsive force, ri + rj > dij.

The model aims to ensure that
Dij
tij

= 1 at optimality, so choosing α < 1 sets a target
value tij that allows some overlap of the respective circles, which means that the non-
overlap requirement is relaxed. In practice, by properly adjusting the value of α we achieve
a reasonable separation between all pairs of circles. Let M and P denote the set of mobile
teams (circles) and the set of targets (goals), respectively. Target distances are applied only
for pairs of mobile robot teams (circles). The complete attractor-repeller (AR) model is

min
(xi ,yi),i∈M,wF ,hF

∑
i,j∈M∪P

cijDij + ∑
i,j∈M

f (
Dij

tij
) (5)

s.t.

xi + ri ≤
1
2

wF and ri − xi ≤
1
2

wF, for all i ∈ M,

yi + ri ≤
1
2

hF and ri − yi ≤
1
2

hF, for all i ∈ M,

wlow
F ≤ wF ≤ wup

F ,

hlow
F ≤ hF ≤ hup

F ,

where (xi, yi) are the coordinates of the centre of circle i as previously defined; wF, hF are
the width and height of the workspace; and wlow

F , wup
F , hlow

F , and hup
F are the lower and

upper bounds on the width and height, respectively. The first two sets of constraints require
that all the circles be entirely contained in the workspace, and the remaining two pairs
of inequalities bound the width and height of the workspace of robots. In particular, for
certain robot environment, we set wlow

F = wup
F = w̄F and hlow

F = hup
F = h̄F, where w̄F and

h̄F are the width and height of the workspace to be explored by robots.

Definition 2. Generalized target distance

Tij :=

√
tij

cij + ε
, (6)
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where ε > 0 is sufficiently small to ensure that Dij ≈
√

tij
cij

if Dij ≈ Tij.

In real-world applications, the distances Dij between the circles should be inversely
proportional to cij representing the weights on the wire-length, and should be proportional
to the relative size of the teams through the value of tij. Hence, a generalized target distance,
Tij, is defined such that Dij ≈ Tij at optimality. Using Tij, a convex version of the AR model
may be described in the following section with the following term.

Fij
(

xi, xj, yi, yj
)

:=

{
cijz +

tij
z − 1, z ≥ Tij

2
√

cijtij − 1, 0 ≤ z < Tij
(7)

with z = (xi − xj)
2 + (yi − yj)

2. It is clear that this problem is convex, and that by construc-
tion Fij attains its minimum value whenever the locations of circles i and j satisfy Dij ≤ Tij.
This includes the case where Dij = 0, i.e., both circles completely overlap. The idea is to
add to the objective function a term of the form − ln

(
Dij/Tij

)
for each pair i, j of circles.

Hence, the model solved in the first stage of our method is

min
(xi ,yj),wF ,hF

∑
1≤i<j≤n

Fij(xi, xj, yi, yj)− βK ln(
Dij

Tij
) (8)

s.t.

xi + ri ≤
1
2

wF and ri − xi ≤
1
2

wF, for all modules i,

yi + ri ≤
1
2

hF and ri − yi ≤
1
2

hF, for all modules i,

wlow
F ≤ wF ≤ wup

F ,

hlow
F ≤ hF ≤ hup

F ,

where β is a parameter selected empirically. K is chosen to reflect the weights of all the
pairs of mobile circles (teams) in the objective function by K = ∑

i<j
cij.

The topological relationships between terms are obtained in this first stage. Without
the term−βK ln

(
Dij/Tij

)
in Equation (8), this problem is convex. By solving it, the solution

of the first stage provides relative locations within the workspace for all the robot teams
(circles) represented by circles. The relative locations of the robot swarms in the known
environment are provided by an attractor–repeller convex optimization algorithm shown
in Figure 5. The team-based convex optimization algorithm for robot deployment is
summarized in Algorithm 1.

Algorithm 1: Team-based convex optimization algorithm for robot deployment
Input: Initial configuration (qs), Goal configuration (qg), and Required cost cij, dij
Output: Path (or sequence of nodes from qs to qg), Robots’ final locations (Lgoal)
Begin
1: Classify m robots into k teams Ti, i ∈ [1, k];
2: Approximate teams Ti to k circles at center of Tj(xj, yj), j ∈ [1, k];
3: Solve the convex optimization model (Equation (8)) having Cj(xj, yj), j ∈ [1, k];
4: Obtain relative locations of teams. New circle locations C̃j(x̃j, ỹj), j ∈ [1, k];
5: Apply SOMNN to subtask allocation to reach g goals G(xl, yl), l ∈ [1, g];
End
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3.2. Refinement of Team Locations

The circles are allowed to overlap in the convex optimization stage and the precise locations
of team have not been determined. The solution of the first stage provides relative locations
for all the circles enclosing robots. In this paper, we consider a relative location matrix to
encode relative locations. Using this technique the non-overlap constraints that are originally
disjunctive, non-linear, and non-convex can be linearized and easily enforced in the second
stage model. We consider the Delaunay triangulation (DT) method for two main reasons, (i) it
spreads out circles thus teams in the workspace and (ii) it transforms the relative location graph
into a planar graph. In this framework, robot deployment resolved by the convex optimization
with relative locations in Figure 5 is refined by the proposed DT method shown in Figure 6.

Teams represented

by dashed circles

Overlapped teams

Robot
Robot

Robot

Interralated

Overlapped teams

WorkspaceW

Robot swarms

Target

Target

Target

Target

Charging station

Target

Figure 5. Robot teams (swarms) deployment initially resolved by the proposed convex optimiza-
tion model.

Team represented

       by a circle

Cleaned up teams Cleaned up teams

Safe team

Safe team

DTVD

Robot

Robot

Interralated

Figure 6. Delaunay triangulation used to linearize and refine the overlapped circles/teams.
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4. SOM Neural Networks for Sub-Task Allocation and Path Planning

In this stage, a swarm of robots are assigned locally as sub-tasks to their goals through
self-organizing map based neural networks (SOMNN) method in static or dynamic envi-
ronments. The principal technical superiority of this SOMNN model is well established,
given that the robot trajectory planning is fused with the sub-task allocation in every team
and their goals. Once the relative locations of teams with robots are defined, the robots
move to their goals in the dynamical environments. In our research, there are k teams,
each of which has a swarm of robots. There are α robots in one team T1(α) in a workspace,
which are assigned to η goals with pre-defined locations, such as recharging pile for au-
tonomous electric vehicles. In this paper, SOM-based neural network model is made up
of two layers of neurons (nodes). The first layer configured as the input layer consists of
two neurons (ui, vi) representing coordinates of the ith goal Gi(ui, vi). The second layer as
the output layer contains α× η neurons, denoted as r1

1, r2
1, . . . , rη

1 , r1
2, r2

2, . . . , rη
2 , r1

α, r2
α, . . . , rη

α ,
representing the locations of the α robots and their trajectories. All locations of goals form
input dataset. Each neuron in the output layer is fully connected to the neurons in the input
layer [50] (see Figure 7).

N
η̇
α̇ ⇐= Ḋ

η̇
α̇ = min{Dη

α |i, i = 1, . . . , α; α̇ = 1, . . . , α
η̇ = 1, . . . , η; and {α̇, η̇} ∈ v} (9)

Dη
α |i = D(Gi, r

η̇
α̇)(1 + P) (10)

D(Gi, r
η̇
α̇)=

∣∣∣Gi − r
η̇
α̇

∣∣∣=
√(

xi − wη̇
α̇(x)

)2
+
(

yi − wη̇
α̇(y)

)2
(11)

In
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Output Layer
Figure 7. SOM-based NN architecture used for subtask allocation.

A weight vector connecting the two input nodes to output nodes is defined as rη̇
α̇ =

〈wη̇
α̇(x), wη̇

α̇(y)〉, where α̇ = 1, 2, · · · , α; η̇ = 1, 2, · · · , η. The weight vectors of the neurons
for each robot are initialized based on the coordinates of the initial robot location. Therefore,
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α robots move to the η goals while following planned path, due to this SOM neural network
algorithm. A winner Nη̇

α̇ is determined in light of the following criterion.

N
η̇
α̇ ⇐= Ḋ

η̇
α̇ = min

{
Dη

α |i, i = 1, . . . , α; α̇ = 1, . . . , α

η̇ = 1, . . . , η; and {α̇, η̇} ∈ v},
(12)

Dη
α |i = D(Gi, r

η̇
α̇)(1 + P), (13)

where N
η̇
α̇ is the α̇-th neuron of the η̇ th in the group of goals. v denotes the set of output

neurons on the η̇ th in the group of goals, which has not yet been a winner. The weighted
distance, Ḋη̇

α̇ , is minimum of Dη
α |i described as follows.

D(Gi, r
η̇
α̇) =

∣∣∣Gi − r
η̇
α̇

∣∣∣=
√(

xi − wη̇
α̇(x)

)2
+
(

yi − wη̇
α̇(y)

)2
(14)

where P is a parameter determining the equitable distribution of sub-task of workload for
robots. |·| represents the Euclidean distance. The parameter P is expressed as

P =
`α̇ − ṼA

1 + ṼA
, (15)

where `α̇ is the trajectory length of the α̇ th robot (α̇ = 1, 2, · · · , α). ṼA is the average
trajectory length of the robots, given by the following Equation (16).

ṼA =
1
α

α

∑
α̇=1

`α̇ (16)

The winner implies the neuron in the group of the output neurons with a lower
workload of that location, and the neuron with the minimum distance toward the input
data. The SOM NN is updated by modifying its weigh vectors rη̇

α̇ = 〈wη̇
α̇(x), wη̇

α̇(y)〉
(α̇ = 1, 2, · · · , α; η̇ = 1, 2, · · · , η), by the following rule (17), until the weight vectors
remain unchanged.

rη̇
α̇(t + 1)

=

{
Gi, if Dη

α |i < µψ

rη̇
α̇(t) + ϑ f

(
dη̇

α̇

)(
Gi − rη̇

α̇(t)
)

, otherwise
(17)

where ϑ is the learning rate. µ is a little constant, usually smaller than 0.5. ψ is the minimum
distance between any two neurons of the goal locations. f (dη̇

α̇) is the neighborhood function,
defined as

f
(

dη̇
α̇

)
=

{
e−(d

η̇
α̇)

2/G2
, if dη̇

α̇ < Λη
0, otherwise

(18)

where Λ is a small constant denoting the range of neighborhood, normally less than 0.4.
dη̇

α̇ is the distance measured between the neuron and the winner neuron, Nη̇
α̇ , from the

group of the output neurons. The gain constant ψ with an initial value of 10 is given by
∆(t + 1) = (1− ψ)∆(t), where ψ is the gain changing rate usually determined empirically.
Usually, the range of ψ is between 0.001 and 0.05. Smaller ψ leads to shorter total trajectory
and longer computational time. t is the number of iterations. The implementation of the
proposed multi-robot deployment method is described in Algorithm 2.
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Algorithm 2: Multi-robot deployment algorithm with distance minimization
Input : Initialized 2D Cartesian workspaceW ;

Coordinates of m robots, and q targets;
Required cij and dij.

Output : Robot location deployed.
Multi-robot deployment with distance minimization;
Multi-robot_Deployment ();
repeat

for each robot G(x, y)⇐ R(xi, yj) ∈ R(x, y)group;
for φ← 1 to m do

// m robots to be deployed
1. Classify m robots to k teams according to their interrelation
T1(α)← r1

1(x1, y1), r2
1(x2, y2), . . . , rα

1(xα, yα);
// α robots are enclosed in Team 1
T2(β)← r1

2(x1, y1), r2
2(x2, y2), . . . , rβ

2 (xβ, yβ);
// β robots are enclosed in Team 2 . . .
Tk(σ)← r1

k(x1, y1), r2
k(x2, y2), . . . , rσ

k (xσ, yσ);
// σ robots are enclosed in Team k
k←− α

⋃
β
⋃

. . .
⋃

σ;
∃ (r1

1)
⋃
(r2

1)
⋃

. . .
⋃
(rα

1) ∈ T1(α);

∃ (r1
2)
⋃
(r2

2)
⋃

. . .
⋃
(rβ

2 ) ∈ T2(β);
∃ (r1

k)
⋃
(r2

k)
⋃

. . .
⋃
(rσ

k ) ∈ Tk(σ);
2. Approximate teams Ti to k circles
T1(α)← 〈 {r1

1}
⋃ {r2

1}
⋃

. . .
⋃ {rα

1} 〉;
T2(β)← 〈 {r1

2}
⋃ {r2

2}
⋃

. . .
⋃ {rβ

2} 〉;
Tk(σ)← 〈 {r1

k}
⋃ {r2

k}
⋃

. . .
⋃ {rσ

k } 〉;
until
rm̄

k̄ |φ ∈ ∅ (k̄ = 1, 2, . . . , k; m̄ = 1, 2, . . . , m) ;
3. Solve the convex optimization model (Equation (8))
C1(α) = {x1, y1},C2(β) = {x2, y2}, . . . ,Ck(σ) = {xk, yk};

// Relative locations of teams are found 4. Refinement of robot swarms by
DT method

˜C1(α) = {x̃1, ỹ1}, ˜C2(β) = {x̃2, ỹ2}, . . . , ˜Ck(σ) = {x̃k, ỹk};
// Robot teams are spread out 5. SOM NN to sub-task allocation
if ∃(m̄, k̄) ∈ Pr(i, j)/PEntireWS, ∀ 1 ≤ m̄ ≤ m, 1 ≤ ≤̄k
s.t. ξ(x, y) ≤ ξ(xc, yc) then

Gη
α |φ ← (xi, yφ) ;

// Mark it as goals discovered

until S(x, y)cov +
⋃nob

l=1OB = P(x, y)EntireWS;
return P(xφ, yφ), ξ(xcφ, yφ) ∈ Gη

α |φ

5. Simulated Experiments and Comparison Studies

In this section, simulation and comparison studies are conducted to validate our
proposed framework.

5.1. Numerical Experiments by Convex Optimization

Numerical experiments are carried out to validate the convex optimization model. In
the first set of experiments, we focus on the multi-robot deployment problem through the
convex optimization model with equal number of robots and goals, summarized in Table 1.
It aims to experimentally verify the correctness of the results obtained from the proposed
algorithm. In this experiment, multiple robots are enclosed in their teams before they are
deployed to their goals. It assumes that number of robots is equal to the goals, except in
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Team 2, 50 robots will be assigned to two goals. The total distance the robots traveled is
calculated. The first set of experimental results are illustrated in Figure 8.

Table 1. The first set of numerical experiments with robot teams.

Teams # of Robots # of Teams # of Goals Length

T1 73 9 73 38.43

T2 50 10 2 42.01

T3 45 11 45 13.18

T4 42 33 42 6.03

T5 75 49 22 68.46
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Figure 8. The first set of numerical experimental results.

In the second set of experiments, multi-robot deployment through the proposed
convex optimization model is obtained with different numbers of robots and goals. The
results are summarized in Table 2. The second set of experimental results are illustrated in
Figure 9.
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Figure 9. The second set of numerical experimental results.
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Table 2. The second set of numerical experiments with robot teams.

Teams # of Robots # of Teams # of Goals Length

T6 69 10 69 37.09

T7 106 30 212 117.23

T8 100 50 209 123.86

T9 167 100 334 19.75

For lack of space, we present our numerical experiments concerning some maps and
scenarios, but our results are representative for a broad range of environments. In the next
section, we will consider two maps obtained from the publicly available papers.

5.2. Evaluation Using Standard Environments

In this section, complex robot allocation experiments in standard environments with
multiple constraints are conducted to further validate the robustness and effectiveness of
our proposed convex optimization framework. Standard environments, such as apte, xerox,
hp, ami33, and ami49, provided by Microelectronics Center of North Carolina (MCNC) are
used in our analyses.

In these scenarios, robots are clustered into predetermined teams. For instance, in the
apte environment, 287 robots are distributed into nine teams (Table 3). They are required to
perform complex task allocation under 97 constraints. Constraints are limitations or rules
that need to be respected by the optimization framework. Several constraints are listed
in Table 4. The first constraint is to ensure that nine robots must reach goal location 37.
These nine robots must be one from each team T1, T2, . . . , T9, respectively, as outlined in
Table 4. The second constraint is to ensure that eight robots reach goal location 55, and each
of these eight robots must be one from each team T1, T2, . . . , T8, respectively. Similarly, the
third constraint is that two robots must reach goal location 17, and these two robots must
be from groups T1 and T2. Some robots in the teams are required to reach specific goals.
In the apte standard environment, 97 such constraints must be respected. The initial apte
environment setting of robots and goals is shown in Figure 10. In this stage, the robots
are clustered into nine teams that are assigned to goals located on the boundary. In such
scenario, our framework identified an optimized solution on an average in 0.69 s where the
average length of all robots path is 425.09 m.

1

2

3 4

5

6

7

8
9

73 Goals

9 Teams

287 Robots

73 Goals

Figure 10. The initial settings of apte standard environment with 287 robots in nine teams. Robots
are assigned to goals located on the boundary.
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Table 3. The average execution time and path length of the proposed convex optimization-based
framework for the standard MCNC environments.

Standard
Environment Goals Teams Robots Constraints Workspace

(m2) Avg_time (s) Avg_length
(m)

apte 73 9 287 97 46.56 0.69 425.09

xerox 2 10 698 203 19.35 1.12 411

hp 45 11 309 83 8.30 1.17 154.84

ami33 42 33 522 123 1.16 14.16 65.31

ami49 22 49 953 408 35.4 9.96 699

Table 4. The constraints in the apte standard environment. 287 robots from nine teams are assigned
to 73 goals.

# of Constraints To # of Goal # of Robots From # of Teams

1 37 9 T1,T2,T3,T4,T5,T6,T7,T8,T9

2 55 8 T1,T2,T3,T4,T5,T6,T7,T8

3 17 2 T1,T2

4 19 2 T1,T2

5 16 2 T1,T2

6 15 2 T1,T2

7 2 8 T1,T2,T3,T4,T5,T6,T7,T8

8 14 2 T1,T5

9 13 2 T1,T5

. . . . . . . . . . . .

Similarly, in the xerox standard environment with 203 constraints, 698 robots were
distributed into 10 teams and were tasked to reach two goals. On average, the optimized
solution in this scenario was discovered in 1.12 s where the average path length of all
robots is 411 m. Likewise, our framework was able to identify optimal solutions in hp,
ami33, and ami49 environments in an average of 1.17, 14.16, and 9.96 s, respectively. As
presented in Table 3, the average path lengths for all environments are 154.84, 65.31, and
699 m, respectively. From Table 3, it can also be observed that though number of constraints
are more in xerox environment compared to apte, the average length discovered by our
framework is smaller in the xerox environment than that of apte. Similar observations can
be made from the results for other environments. This is attributed to the fact that not
all constraints in different environments are similar. Therefore, the execution time taken
by the model and the path length required by the robots to reach, respectively, goals vary
significantly based on the environments.

5.3. Simulations and Comparison Studies

Two test environmental maps are obtained using a SLAM (Simultaneous Localization
and Mapping) algorithm through a publicly available dataset [26]. We used these two
building maps to test our framework by assuming the correlative robots using nodes as
targets. In this building test scenario, we demonstrate our framework is applicable for the
seven-robot deployment. As there are seven nodes corresponding to seven targets, seven
robots will be assigned to these seven rooms illustrated in Figure 11a. In this scenario, the
deployment aims to deploy at least one robot in each of nodes (rooms). Robots are assigned
to seven rooms with minimized travel distance cost, which is formulated to the developed
convex optimization model. As this test case is straightforward with only seven targets, the
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relative locations of solution is obtained from the convex optimization model before they
are refined and spread out. Finally, these seven robots are deployed to seven rooms with
total distance minimized.

A more complicated indoor room environment is depicted in Figure 11b. In this test
scenario, 22 rooms are supposed to be deployed by 22 robots, in which one goal is reached
by at least one robot. Our model initially selects Nodes 7, 9, 10, and 13 as the main teams.
Based on the interconnection depicted in Figure 11b, a team consists of several robots to
be deployed. In this case, Node 7 consists of Robots r1, r2, r3, r4,r5, r6, r11, and r9. Node
10 contains Robots r20, r21, and r22. Node 13 contains Robots r9, r14, and r15. Node 9
contains Robots r12, r16, r17, and r19. Therefore, our developed convex optimization model
creates relative locations of Nodes (Teams) 7, 9, 10, and 13. The total distance cost of among
these nodes/teams is minimized, where the 22-robot swarms are assigned their final goals
in this building.
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Figure 11. Two SLAM building maps used to test our model. (a) Test environment with 7 rooms
(redrawn from Purohit et al. [26] Figure 2). (b) Test environment with 22 rooms (redrawn from
Purohit et al. [26] Figure 3). (c) Formation of 4 teams through proposed convex optimization model.
(d) Spread out teams via Delaunay triangulation (DT).

After applying for the refinement of teams, we obtain their locations of nodes. In each
team, it consists of a few robots, such as Node 7 consists of Robots r1, r2, r3, r4, r5, r6, and
r11. The next stage, these seven robots driven by the SMNN model are navigated to seven
rooms. It is clear that node as team containing robots could be the team member of another
node. For instance, Node 9 is a member but it is contained in Node 7. This is beneficial of
the developed convex optimization able to solve this sort of optimization problem.
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In this test scenario of simulation, these 22 robots are clustered into four teams in task
decomposition according to their interconnection of robots and correlation of teams. There
are four teams, N7 with 10 robots; N9 with 9 robots; N10 with 4 robots; and N13 with 3 robots.
First stage with our convex optimization model creates relative locations of four teams, in
which the total distance cost is minimized shown in Figure 11c. Once the relative locations
of these four teams (circles) are determined, a DT method ia applied to spread out them
to their appropriate locations shown in Figure 11d. The correlation of teams are shown in
Figure 11d. For instance, N7 is assumed to connect with N9 and N10. Robots within their
teams are located in vicinity of their targets (rooms). The SOMNN model is used to assign
members of robots to their targets (rooms). Therefore, the robots are deployed to their final
targets—rooms illustrated in Figure 11b.

Our framework is compared with Hungarian algorithm [51]. Assume that m robots
are assigned to k tasks located at certain goals. The interrelation of robots are assumed. Our
framework clusters these robots into teams before they are assigned to goals. Hungarian
algorithm directly assigns robots to their tasks and goals. We simulate 6, 11, 30, 33, and
49 robots to be deployed to same number of goals. The results show that, in terms of total
path length, our proposed model is 10.14%, 14.26%, 8.69%, 3.96%, and 18.22% lower than
the Hungarian algorithm for 6, 11, 30, 33, and 49 targets, respectively. The distance robots
traveled to goals as a measure is compared with Hungarian algorithm and illustrated in
Figure 12.
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Figure 12. Comparison with Hungarian algorithm in total distance.

6. Conclusions

A new framework of team-based multi-robot deployment is proposed through convex
optimization model. Multiple robots are deployed to their appropriate locations while
the total distance cost is minimized, by the convex optimization mission and robot path
planning. The SOMNN paradigm is used to dynamically fulfill the sub-task allocation task.
The proposed model couples task decomposition, deployment, local subtask allocation and
path planning to support cases where the optimal solution depends on robot interrelation,
dependencies, and availability, as well as inter-team conflict avoidance. Simulation and
comparison studies validate the effectiveness of our proposed framework. This framework
will be implemented on actual robots in the near future work.
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Abstract: In this work, we address the single robot navigation problem within a planar and arbitrarily
connected workspace. In particular, we present an algorithm that transforms any static, compact,
planar workspace of arbitrary connectedness and shape to a disk, where the navigation problem
can be easily solved. Our solution benefits from the fact that it only requires a fine representation
of the workspace boundary (i.e., a set of points), which is easily obtained in practice via SLAM.
The proposed transformation, combined with a workspace decomposition strategy that reduces the
computational complexity, has been exhaustively tested and has shown excellent performance in
complex workspaces. A motion control scheme is also provided for the class of non-holonomic robots
with unicycle kinematics, which are commonly used in most industrial applications. Moreover, the
tuning of the underlying control parameters is rather straightforward as it affects only the shape of
the resulted trajectories and not the critical specifications of collision avoidance and convergence to
the goal position. Finally, we validate the efficacy of the proposed navigation strategy via extensive
simulations and experimental studies.

Keywords: motion and path planning; collision avoidance; autonomous vehicle navigation; artificial
potential fields

1. Introduction

The navigation of autonomous robots in cluttered environments is a widely studied
topic in the field of robotics. Popular methodologies that have been employed in the related
literature to address it include, but are not limited to, configuration space decomposition
approaches [1,2]; probabilistic sampling methods such as rapidly exploring random trees [3,4],
probabilistic roadmaps [5,6] and manifold samples [7,8]; and optimal control strategies
such as receding horizon control [9,10] and path homotopy invariants [11,12]. Apart
from the aforementioned discrete methods regarding the workspace and/or the decision
domain, Artificial Potential Fields (APFs) that were originally introduced in [13] generally
provide a simpler means of encoding collision avoidance specifications, with their negated
gradient functioning as a reference motion direction that drives the robot towards the
desired goal configuration. As shown in [14], despite their intuitive nature, this class
of controllers suffers unavoidably from the presence of unwanted equilibria induced by
the workspace’s topology, whose region of attraction may not be trivial. In their seminal
work [15], Rimon and Koditschek presented a family of APFs called Navigation Functions
(NFs) for point and sphere worlds, as well as a constructive transformation for mapping
workspaces cluttered by sequences of star-shaped obstacles into such worlds. However,
certain design parameters require tedious tuning to eliminate unwanted local minima
and render the transformation a diffeomorphism. In practice, this solution suffers by the
fact that the allowable values of the design parameters may cause both the potential and
the corresponding transformation to vary too abruptly close to the obstacles (the issue
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of “disappearing valleys” [15]), thus pushing the trajectories of the robot very close to
them. Density functions for remedying such drawbacks or adjustable NFs for relaxing
some generally conservative requirements are presented in [16,17]. Additionally, attempts
to extend the NF framework directly to non-sphere worlds can be found in [18,19]. Finally,
a novel approach based on power diagrams which can be used for designing tune-free
vector fields for navigation within convex workspaces is also presented in [20].

Artificial Harmonic Potential Fields (AHPFs) constitute an interesting subclass of APFs,
since they are free of unwanted local minima by construction. However, no simple method
exists for constructing safe (with respect to obstacle avoidance), harmonic potentials even
for simple workspaces. AHPFs suitable for navigation in realistic environments were
originally utilized in [21], where computationally expensive numerical techniques were
employed to solve the associated Dirichlet and Neumann problems. Several extensions of
the aforementioned methodology followed [22,23], addressing issues such as numerical
precision and computation, dynamic environments, etc. The panel method was also
employed in [24–26] to build harmonic potentials to coordinate the motion of single and
multiple robots in polygonal environments. In [27,28], well-known closed-form solutions
of the uncompressed fluid flow around simple geometries was used in order to safely drive
a robot among moving obstacles. Harmonic potential fields have also been used in [29,30]
to address the Simultaneous Localization and Mapping problem (SLAM) by coordinating
the robot motion in unknown environments. Moreover, a methodology based on the
evaluation of the harmonic potential field’s streamlines was used in [31,32] for mapping
a multiply connected workspace to a disk, collapsing inner obstacles to line segments or
arcs. In a recent work [33], the problem of designing closed form harmonic potentials in
sphere worlds was addressed by the introduction of a diffeomorphism [34], which allows
mapping such workspaces to the euclidean plane with some of its points removed. Finally,
extensions of this work addressing topologically complex three-dimensional workspaces or
multi-robot scenarios by introducing appropriate constructive workspace transformations
can be found in [35,36], respectively.

1.1. Contributions

We address the navigation problem for a robot operating within a static, compact,
planar workspace of arbitrary connectedness and shape by designing a control law that
safely drives the robot to a given goal position from almost any initial feasible configu-
ration. The goal of this work is twofold. (A) To cope with the topological complexity of
the workspace, we employed numerical techniques in order to build a transformation that
maps the workspace onto a punctured disk and delved into the respective construction
in detail. We remark that, although the transformation constructed using this method is
an approximation of a harmonic map ideal for navigation, our solution benefits from the
fact that it only needs a sufficiently fine polygonal workspace description that can be easily
acquired in practice (e.g., through SLAM), contrary to [15,34,36] that require an explicit
representation of the workspace boundaries (i.e., as the level sets of sufficiently smooth
functions). Moreover, unlike the solutions proposed in [15,36], our approach does not
require the decomposition of the workspace obstacles into sequences of simpler overlap-
ping shapes and computes the desired transformation in one step. (B) To steer the robot
to its desired configuration, we employed a control law based on closed-form AHPFs
coupled with adaptive laws for their parameters to eliminate the necessity of explicitly
defined local activation neighborhoods around the workspace boundaries for ensuring
collision avoidance. Our approach is reactive (closed loop) since it selects the velocity of
the robot based on the positions of the robot, the desired goal and the workspace bound-
ary. As such, it is more robust against position measurement errors than other open loop
approaches such as configuration space decomposition approaches [2] or probabilistic
sampling methods such as rapidly exploring random trees [4], probabilistic roadmaps [6]
and manifold samples [8], where an open loop path is initially extracted and executed
by a trajectory tracking controller. In this way, even small position errors risk the safe
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execution of the calculated plan. We remark that our overall control scheme only requires
solving a computationally expensive problem once for a given static workspace, indepen-
dent of the robot’s initial and goal configurations, in contrast to the solutions presented
in [21,22]. Finally, we adapt our methodology to the class of differential drive robots,
which are commonly encountered in real-world applications and propose an algorithm that
decomposes the overall workspace into small neighbouring subsets to render the problem
of addressing large workspaces tractable. An overview of the proposed methodology’s
pros and cons compared to alternative transformations and potential fields can be seen in
Tables 1 and 2, respectively.

Preliminary results were included in our conference paper [37]. We have to stress
though that the algorithmic calculation of the harmonic map is given in the present work,
along with a rigorous formulation of the panel method. A modification of the adaptive laws
for the parameters of the underlying potential field is also introduced to simplify the tuning
process by eliminating the necessity of heuristically defined local activation neighborhoods
around the workspace boundaries for ensuring collision avoidance. Moreover, an extension
for tackling the navigation problem under unicycle kinematics is also provided. Finally,
new comparative simulation results are provided to highlight the strong points of the
proposed method with respect to other related works, accompanied by an experiment
employing an actual robot navigating within a complex office workspace.

Table 1. Comparison between the Harmonic Transformation (HM) proposed in this work and the
(i) Star-to-Sphere Transformation (SST) [15], (ii) Multi-Agent Navigation Transformation (MANT) [36]
and (iii) the Navigation Transformation (NT) [34]. Although HMs require global knowledge of the
workspace’s geometry to be constructed, HMs are infinitely differentiable and require the domain to
be represented by closed polygonal curves (which can be easily obtained using SLAM methodologies),
unlike the alternatives that require the domain boundaries to be represented as sets of sufficiently
differentiable implicit equations.

Geometry Representation Global Analytic

HM Points on the boundary Yes Yes
SST Trees of Stars Yes Yes
NT C2-manifolds No No
MANT Trees of C2-manifolds No No

Table 2. Comparison of Adaptive Harmonic Potential Fields (proposed herein) with common
alternatives, specifically Rimon–Koditchek Navigation Functions (RKNF) [15], Harmonic Navigation
Functions [33] and approximate Harmonic Potential Fields obtained using numerical techniques [21].
Unlike RKNFs that require tuning for ensuring convergence to the goal from almost all initial
configurations and HNFs that require tuning for guaranteeing collision avoidance with the workspace
boundaries, the proposed control law enjoys both properties by design.

Convergence Collision Avoidance Computational Cost

AHPF By design By design Cheap
HPF By design By design Expensive
RKNF Requires tuning By design Cheap
HNF By design Requires tuning Cheap

1.2. Preliminaries

We useDr(x) to denote an open disk with radius r > 0 centered at x ∈ R2. Additionally,
D and ∂D denote the closed disk and circle with unit radii centered at the origin of R2,
respectively. Furthermore, let IN , {1, 2, . . . , N} and I?N , {0}⋃ IN . Given sets A, B ⊆ Rn,
we use cl(A), ∂A, int(A) and A to denote the closure, boundary, interior and complement of
A with respect to Rn, respectively, and A \ B to denote the complement of B with respect to
A. Furthermore, we use 0N and 1N to denote the all-zeros and all-ones column vectors of
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length N, respectively, and 0N×M to denote the N ×M zero matrix. We also define 1k
N×M,

k ∈ IM as the N ×M matrix whose k-th column is equal to 1N and every other column
is equal to 0N . Given a vector function f (x), we use ∇x f to denote its Jacobian matrix.
Furthermore, given an arc C, we use |C| to denote its length. We will also say that a set A is
attractive (repulsive) under a potential function ψ when there exists a point p0 /∈ cl(A) such
that if we initialize at p0 and move along the negated gradient of ψ, we will converge (not
converge) to ∂A. Finally, a potential function ψ is called harmonic if it satisfies the Laplace
equation, i.e., ∇2ψ = 0, where ∇2 denotes the Laplacian operator. An important property
of harmonic functions is the principle of superposition, which follows from the linearity of
the Laplace equation. Moreover, the extrema of a non-constant harmonic function occur
on the boundary of the domain of definition, thus excluding any local minima/maxima
within it (a desirable property for motion planning).

2. Problem Formulation

We consider a robot operating within a compact workspace W ⊂ R2 bounded by
a single outer and a finite set of inner disjoint Jordan curves (a Jordan curve is a non-self-
intersecting continuous planar closed curve), which correspond to the boundaries of static
obstacles. It is assumed thatW can be written as:

W =W0 \
⋃

i∈IN

Wi

where Wi, i ∈ I?N denote regions of R2 that the robot cannot occupy (see left subplot
in Figure 1). Particularly, the complement ofW0 is considered to be a bounded, simply
connected region that may also include a strict subset of its own boundary (this corresponds
to cases when we wish to place the robot’s goal configuration on some part of the workspace
outer boundary which is not physically occupied by an actual obstacle, e.g., the door of
a compartment (refer to Section 5.2 for more details)) andW1,W2, . . . ,WN are assumed to
be closed, simply connected compact sets that are contained inW0 and are pairwise disjoint.
Let p = [x, y]T ∈ R2 denote the robot’s position and assume that the robot’s motion is
described by the single integrator model:

ṗ = u (1)

where u ∈ R2 is the corresponding control input vector.

Problem 1. Our goal is to design a control law to successfully drive a robot with kinematics (1)
towards a given goal configuration pd ∈ W from almost any feasible initial configuration pinit ∈ W ,
while ensuring collision avoidance, i.e., p(t) ∈ W for all t ≥ 0.

Remark 1. The results presented in this work can be readily employed for the navigation of
disk robots with radius R > 0 by appropriately augmenting the workspace boundaries with the
robot’s size.

3. Harmonic Maps for Planar Navigation

In this section, we present a methodology that maps the robot’s workspace onto
a punctured unit disk, over which the robot’s control law is designed. Particularly, our
goal is to construct a transformation, T : cl(W) 7→ D, from the closure of the robot’s
configuration space cl(W) onto the unit disk D with the following properties:

1. T(·) maps the outer boundary ∂W0 to the unit circle ∂D;
2. T(·) maps the boundary ∂Wi, i ∈ IN of each obstacle to a distinct point qi = [ui, vi]

T ∈
int(D);

3. T(·) is a diffeomorphism for all p ∈ int(W).
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To that end, we compute a transformation T̃(p) = [ũ(p), ṽ(p)]T , with ũ(p) and ṽ(p)
being harmonic functions with respect to p, by approximating an ideal harmonic map
T that meets the aforementioned properties and the existence of which was proven in
Theorem 2 of [38], accompanied by sufficient conditions that render it a diffeomorphism as
outlined in the corresponding proof.

Figure 1. Transformation of a workspace onto a punctured disk.

Particularly, this theorem implies that given an orientation-preserving, weak home-
omorphism T∂ : ∂W0 → ∂D (such a transformation can be easily obtained for any given
planar Jordan curve C by (1) arbitrarily selecting a point po on C, (2) defining `(p), ∀p ∈ C
as the length of the arc p̃o p, assuming one travels from po to p on C while having the curve’s
interior to its left and (3) choosing T∂(p) = [cos(2π`(p)/L), sin(2π`(p)/L)]T , where L = |C|)
from the workspace outer boundary ∂W0 to the boundary of the unit disk, the harmonic
map T that satisfies the conditions:

T(p) = T∂(p) , [ū(p), v̄(p)]T , ∀p ∈ ∂W0, (2)

∫

∂Wi

∂T
∂np

ds = 0, ∀i ∈ IN (3)

with np denoting the unit vector that is normal to the boundary at the point p ∈ ∂Wi, i ∈ IN ,
is a diffeomorphism that maps cl(W) to the target set and collapses each inner obstacleWi
onto a distinct point qi within its interior (see Figure 1). Note that the coordinates of qi, i.e.,
the images of the internal obstacles, are not explicitly specified but are computed as part of
the solution, such that the aforementioned constraints are satisfied.

Given that closed-form solutions to the aforementioned problem are generally not
available for non-trivial domains, in this work, we employed numerical techniques and
particularly the Panel Method [24,39,40] (similar formulations can be obtained by employ-
ing other numerical techniques such as the Boundary Element Method (BEM), the Finite
Element Method (FEM) or the Finite Differences Method (FDM)) in order to construct
a harmonic map T̃ that sufficiently approximates T. As such, by subdividing separately
the workspace’s outer and inner boundaries into M̃0, M̃1, . . . , M̃N number of elements (see
Figure 2), we define the components of T̃(p) = [ũ(p), ṽ(p)]T as follows:

ũ(p) =
N

∑
i=0

M̃i

∑
j=1

M̃C

∑
l=1

C̃x
ijl H̃ijl(p)

ṽ(p) =
N

∑
i=0

M̃i

∑
j=1

M̃C

∑
l=1

C̃y
ijl H̃ijl(p)
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H̃ijl(p) =
∫

Ẽij

G̃ijl(s) ln(‖p− p̃i,j(s)‖)ds (4)

where M̃C is the number of control parameters per element, Ẽij denotes the j-th element of
the i-th boundary’s approximation, p̃i,j(s) : [0, |Ẽij|] 7→ Ẽij is a bijective parameterization of
Ẽij, G̃ijl : [0, |Ẽij|] 7→ R is the shape function corresponding to the l-th control parameter
of Ẽij and C̃x

ijl , C̃y
ijl ∈ R are control parameters that need to be appropriately selected so

that T̃ satisfies properties 1–3 for all l ∈ IM̃C
, j ∈ IM̃i

and i ∈ I?N . It is worth noting that
for common choices of G̃ijl (e.g., constant or linear shape functions) and simple types of
Ẽij (e.g., line segments), the integral in (4) can be easily evaluated to obtain a closed-form
expression for H̃ijl . As an illustration, for a line segment element Ẽij with two control
parameters (i.e., M̃C = 2), a typical choice for linear shape functions (see Figure 2) is
G̃ij1(s) = s/|Ẽij|, G̃ij2(s) =

Ä
1− s/|Ẽij|

ä
and p̃i,j(s) = p̃i,j,A +

Ä
p̃i,j,B − p̃i,j,A

ä
s/|Ẽij| for the

corresponding parameterization, where p̃i,j,A, p̃i,j,B are the element’s end-points. To obtain
the unknown control parameters as well as the images of the workspace’s inner obstacles,
one needs to solve two independent linear systems of equations:

ÃX̃ = B̃x, ÃỸ = B̃y (5)

for the unknown vectors:

X̃ =
î
C̃x

0,1,1, · · · , C̃x
1,1,1, · · · , C̃x

N,M̃N ,M̃C
, u1, · · · , uN

óT

Ỹ =
î
C̃y

0,1,1, · · · , C̃y
1,1,1, · · · , C̃y

N,M̃N ,M̃C
, v1, · · · , vN

óT
.

The matrix Ã and the right hand side vectors B̃x and B̃y are constructed by selecting
a set of ∑i∈I?

N
m̃i arbitrary points p̃?i,j (a typical strategy is to select the points p̃?i,j uniformly

on the outer and inner boundaries of the given domain) such that a) p̃?i,j ∈ ∂Wi for all
j ∈ Im̃i and i ∈ I?N and b) ∑i∈I?

N
m̃i = M̃C ∑i∈I?

N
M̃i, and evaluating (2) and (3) at those

points as follows:

Ã =




Ã0, 0m̃0×N
Ã1, −11

m̃1×N
...

...
ÃN , −1N

m̃N×N
Ã†, 0N×N




, B̃x =




B̃x,0
0m̃1

...
0m̃N

0N




, B̃y =




B̃y,0
0m̃1

...
0m̃N

0N




Ãk =




H̃0,1,1(p̃?k,1) · · · H̃N,M̃N ,M̃C
(p̃?k,1)

H̃0,1,1(p̃?k,2) · · · H̃N,M̃N ,M̃C
(p̃?k,2)

...
...

...
H̃0,1,1(p̃?k,m̃k

) · · · H̃N,M̃N ,M̃C
(p̃?k,m̃k

)




, ∀k ∈ I?N

Ã† =




∑m̃1
k=1

∂H̃0,1,1
∂n0,1

(p̃?1,k) . . . ∑m̃1
k=1

∂H̃N,M̃N ,M̃C
∂nN,M̃N

(p̃?1,k)

∑m̃2
k=1

∂H̃0,1,1
∂n0,1

(p̃?2,k) . . . ∑m̃2
k=1

∂H̃N,M̃N ,M̃C
∂nN,M̃N

(p̃?2,k)

...
...

...

∑m̃N
k=1

∂H̃0,1,1
∂n0,1

(p̃?N,k) . . . ∑m̃N
k=1

∂H̃N,M̃N ,M̃C
∂nN,M̃N

(p̃?N,k)
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B̃x,0 =




ū(p̃?0,1)
ū(p̃?0,2)

...
ū(p̃?0,m̃0

)




B̃y,0 =




v̄(p̃?0,1)
v̄(p̃?0,2)

...
v̄(p̃?0,m̃0

)




.

Notice that by discretizing the workspace boundaries into a large number of suf-
ficiently small elements, the overall approximation error between the solution T̃ of the
aforementioned linear problem and the exact transformation T can be rendered arbitrarily
small (see [39,40]). However, the complexity of constructing the mapping is of order O(M̄3),
where M̄ denotes the number of total elements of the mapping (i.e., the complexity of the
solution of the dense system of linear Equation (5)). Nevertheless, the construction of the
transformation, which is the main computational bottleneck, is performed only once at the
beginning. Additionally, apart from the straightforward user-defined homeomorphism T∂

on the workspace boundary, no tedious trial and error tuning is needed to extract the dif-
feomorphic transformation T̃, in contrast to other related works such as the Star-to-Sphere
Transformation (SST) [15], the Multi-Agent Navigation Transformation (MANT) [36] and
the Navigation Transformation (NT) [34].

Figure 2. Discretization of a given domain’s boundary using line segment elements. By convention,
the outer boundary is considered to be clockwise oriented, whereas inner boundaries are counter-
clockwise oriented. The normal direction of each element is depicted using green colored vectors.
Furthermore, the values of the two linear shape functions G̃0,3,1 and G̃0,3,2 are plotted along the
associated element Ẽ0,3.

4. Control Design

To address Problem 1, we equip the robot with the aforementioned transformation
q = T(p) from the closure of its configuration spaceW onto the unit disk D and an artificial
potential ψ(q, k) augmented with an adaptive control law k̇ = fk(q, k) for its parameters
k = [kd, k1, k2, . . . , kN]T . The robot velocity control law is calculated as follows:

u = −Kus(q, k)J−1(p)∇qψ(q, k) (6)

where J(p) denotes the Jacobian matrix of T(p), s(q, k) ≥ 0 is a continuously differentiable
gain function given by:

s(q, k) = γσp

Ç
1− ‖q‖

εp

å
+ (1− γ)σv

( (∇qψ
)Tq

εv + ‖∇qψ‖‖q‖

)
(7)
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with

σp(x) =

{
x2(3− 2x), if x ≤ 1
1, if x > 1

,

σv(x) =

{
x2, if x ≥ 0
0, if x < 0

(8)

and Ku, γ, εp and εv are scalar constants such that Ku, εv > 0 and γ, εp ∈ (0, 1). More
specifically, s(q, k) consists of two individual terms, with the first vanishing as the robot
approaches the workspace’s outer boundary (and its distance from the unit circle is less
than εp) and the second vanishing when the robot’s velocity points away from the disk’s
center. The scalar parameter γ can be used for adjusting the contribution of each respective
term of s(q, k). Finally, ψ is a harmonic artificial potential field defined on the image T(W)
of the workspaceW and whose negated gradient −∇qψ(q, k) defines the direction of the
robot’s motion in the real workspaceW via the inverse Jacobian J−1(p). By design, the
resultant vector field precludes collisions between the robot and the workspace’s inner
obstacles and renders the goal configuration almost globally attractive except for a set
of measure zero initial configurations. However, since W0 may not be repulsive under
ψ for an arbitrary, fixed selection of k, we also introduce the adaptive law fk(q, k) which,
along with s(q, k), guarantees forward invariance of the workspace without compromising
the convergence and stability properties of the overall system. The following subsections
elaborate on each component of the proposed control law individually.

4.1. Artificial Harmonic Potential Fields

We construct an artificial harmonic potential field on the disk space D employing
point sources placed at the desired configuration qd = T(pd) as well as at the points
qi = T(∂Wi), ∀i ∈ IN that correspond to the inner obstacles, as follows:

φ(q, k) = kd ln
Å‖q− qd‖

2

ã
−

N

∑
i=1

ki ln
Å‖q− qi‖

2

ã
(9)

where kd > 0 and ki ≥ 0 denote harmonic source strengths which vary according to
adaptive laws that are presented later. An interesting property of the above potential field,
which stems from the maximum principle for harmonic functions, is that, for fixed k, the
only minima of φ are located at qd and, possibly, at infinity. As a direct consequence of this
property, the Hessian∇2

qφ computed at a non-degenerate critical point of φ in our domain’s
interior has one positive and one negative eigenvalue with the same magnitude, e.g., λ and
−λ with λ > 0.

Next, we define a reference potential ψ based on φ, which is given by:

ψ(q, k) =
1 + tanh(φ(q, k)/wφ)

2
(10)

where wφ is a positive scaling constant. Note that ψ maps the extended real line to the
closed interval [0, 1]. As tanh

(
φ/wφ

)
is a strictly increasing function, the only critical points

of ψ are the ones inherited from φ with their indices preserved. Furthermore, the gradient
of ψ with respect to q, given by

∇qψ =
1− (tanh

(
φ/wφ

))2

2wφ
∇qφ, (11)

is well defined and bounded for all q ∈ D.
If the workspace was radially unbounded, selecting k fixed with kd > ∑N

i=1 ki would
render the potential field (10) sufficient for navigation. The author of [33] addresses
bounded workspaces that are diffeomorphic to sphere worlds by simply mapping the

313



Sensors 2023, 23, 4464

outer bounding circle to infinity. In this work, we would like to be able to place qd on
regions of ∂D that are not physically occupied by obstacles (such as passages to other
compartments, see, for example, Section 5.2); thus, we cannot follow the same procedure
since that would render the effect of the sole attractor on the robot null. Instead, we design
appropriate adaptive laws for the parameters k of φ to render the outer boundary repulsive
and establish the forward completeness of the proposed scheme at all times.

Before proceeding with the definition of the adaptive law, we first state two proposi-
tions that will be used in the subsequent analysis, the proofs of which can be found in the
Appendix A.

Proposition 1. Let kd > 0 and q′ ∈ ∂D \ {qd}. There exists k′ > 0 such that if ki < k′, ∀i ∈ IN ,
then q′ is repulsive under ψ.

Proposition 2. If ki are non-negative and bounded, there exists k′d > 0 such that ψ is Morse for
all kd ≥ k′d.

4.2. Adaptive Laws

We now present the adaptive law k̇ = fk(q, k) that updates the parameters of the
potential field ψ. Its primary goal is to render (a) the workspace outer boundary repulsive
and (b) any critical point of φ in the vicinity of the robot non-degenerate, a property that
will be used later in the analysis. In particular, we consider fk of the form:

k̇d = ξ1(λ + ‖∇qφ‖; ε1)

k̇i =
Ä

ki − ki
ä

wi`igi −Kkkihiw0
(
g0 + ξ1(s; ε2)

)
, ∀i ∈ IN

(12)

where wi and gi, i ∈ I?N , as well as hi, i ∈ IN , are functions to be defined later, ki, i ∈ IN are
desired upper bounds for ki, λ denotes the non-negative eigenvalue of∇2

qφ, Kk is a positive
control gain and ε1 and ε2 are small positive constants. The continuously differentiable
switch ξ1(x; ε) and functions `i(q) are, respectively, given by:

ξ1(x; ε) = 1− σp
(
x/ε
)

`i(q) = − Kus(q, k)

ln
( ‖q−qi‖

2

) . (13)

According to Proposition 1, our first requirement can be accomplished by designing
fk to reduce ki as the robot approaches ∂D. To do so without compromising the inherent
inner obstacle collision avoidance properties of φ, we need to also ensure that each ki does
not vanish within some neighborhood of qi for all i ∈ IN . To that end, firstly we define gi,
employing the smoothly vanishing function defined in (8) to serve as pseudo-metrics of
the alignment between the robot’s velocity and the directions towards the goal and inner
obstacles, respectively, given by:

gi = σv
(
gi
)
, ∀i ∈ I?N (14)

with
g0 =

1
4

Å
α‖∇qψ‖‖q− qd‖ −

(∇qψ
)T(q− qd)

ã

gi =
1
2
(∇qψ

)T(q− qi), ∀i ∈ IN

where α ∈ (0, 1] is a fixed constant that is used for selecting the desired alignment between
the robot’s motion and the direction to the goal. We also define the accompanying weights
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wi as follows to ensure that only one term of (12) dominates as the robot approaches
a particular boundary ofW :

w0 =
ξ2(w0; ε3)

w0 + ∑N
j=1 (kjwj)

wi =
wi

w0 + ∑N
j=1 (kjwj)

, ∀i ∈ IN

(15)

with
wi = ri/(ri + ri), ∀i ∈ I?N ,

r0 =
(
1− ‖q‖)2, ri = ‖q− qi‖2, ∀i ∈ IN

ri = m

 
∑
j 6=i

(rj)m, ∀i ∈ IN (16)

ξ2(x; ε) =





0, if x < εÄ
x−ε
1−ε

ä2Ä
3− 2 x−ε

1−ε

ä
, if ε ≤ x ≤ 1

1, otherwise

for a scalar constant ε3 ∈ (0, 1) in (15) and some integer m < −1 in (16) that serves as
a smooth under-approximation of minj 6=i (rj), i ∈ IN . Finally, the weights hi, i ∈ IN are
defined as follows:

hi = 1 +
σv
Ä

hi
ä

1 + ∑j∈IN
σv
Ä

hj
ä

with

hi = ki
Ä

1− (tanh
(
φ/wφ

))2ä2
Ç

qd − q

‖qd − q‖2

åT
qi − q

‖qi − q‖2

whose purpose is to accelerate the decay of those ki that contribute the most to the compo-
nent of ∇qψ that pushes the robot toward the workspace’s outer boundary.

Regarding the second requirement, as shown in Proposition 1, selecting a kd above
a certain threshold is sufficient to render φ free of degenerate equilibria. On the other
hand, for a given ki, increasing kd steers the robot closer to the workspace’s inner obsta-
cles. Nevertheless, since the robot may never actually enter the vicinity of a degenerate
equilibrium, instead of setting kd sufficiently large a priori, the adaptive law for the pa-
rameter kd is introduced to increase kd only when it is actually needed, thus alleviating the
aforementioned shortcoming.

4.3. Stability Analysis

Let us consider the overall system:

ż = fz(z) (17)

where z = (q, k) and fz(z) = ( fq, fk) with fq = Ju. Furthermore, let Ω denote the image of
W under T, i.e., Ω = T(W). Note that Ω consists of int(D), possibly with a subset of ∂D,
with the points qi removed. In this section, we elaborate on the stability properties of (17)
under the proposed control scheme (6) and (12). First, we formalize the safety properties
of the closed-loop system dynamics, which guarantee that our robot does not collide with
any obstacle.

Proposition 3. The workspace W is invariant under the dynamics (17) with control laws (6)
and (12), i.e., p(t) ∈ W for all t ≥ 0.
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Proof. For the proof, refer to the Appendix A.

Having eliminated the possibility of the robot colliding with the workspace’s boundaries,
we proceed by showing that all critical points of ψ, where (17) may converge to, are either
non-degenerate saddles or qd. Additionally, we show that the latter is a stable equilibrium.

Proposition 4. The artificial potential ψ decreases along the trajectories of the closed-loop system
and its time derivative vanishes only at its critical points. Additionally, the preimage of qd is a set of
stable equilibria of (1).

Proof. For the proof, refer to the Appendix A.

Proposition 5. Let z? = (q?, k?) be a critical point of the closed-loop system dynamics with
q? ∈ Ω \ {qd}. Then, q? is a non-degenerate saddle point of ψ.

Proof. For the proof, refer to the Appendix A.

Finally, we conclude this section with the main theoretical findings.

Theorem 1. System (1) under the control law (6) and (12) converges safely to pd, for almost all
initial configurations, thus addressing successfully Problem 1.

Proof. For the proof, refer to the Appendix A.

Remark 2. Owing to the adaptive laws (12) that modify the harmonic source strengths online to
secure the safety and convergence properties at all times, the selection of the fixed control parameters
in the proposed scheme, i.e., Ku, γ, εp, εv, wφ, Kk, ε1, ε2, α and ε3, is straightforward as it affects
only the trajectory evolution within the workspace and not the aforementioned critical properties.
Consequently, their values should be set freely as opposed to NFs, where the selection of the main
parameters severely affects the convergence properties of the adopted scheme and cannot be conducted
constructively for generic workspaces of arbitrary topology.

5. Extensions

In this section, we present certain extensions of the proposed approach to (a) address
the safe navigation problem for unicycle robots which are frequently encountered in
many application domains and (b) tackle computational complexity issues that affect the
numerical computation of the harmonic map presented in Section 3 as the size of the
workspace increases.

5.1. Unicycle Robot Kinematics

In this subsection, we consider robots whose motion is subjected to Pfaffian constraints
of the form:

ṗ = nθv

θ̇ = ω
(18)

where θ ∈ [0, 2π) denotes the robot’s orientation, nθ = [cos(θ), sin(θ)]T , and v, ω ∈ R are
control inputs corresponding to the robot’s linear and angular velocities, respectively. First,
let us define the robot’s kinematics in the image of the configuration space via the proposed
transformation as follows:

q̇ = nθ̂ v̂
˙̂θ = ω̂

. (19)

Note that the orientations θ and θ̂ are related by:

nθ̂ =
Jpnθ

‖Jpnθ‖
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where Jp = J(p). To safely drive the robot to its goal configuration, we consider the
following control laws:

v̂ = −Kvsv(q, θ̂, k)
(
nθ̂

)T∇qψ(q, k)

ω̂ = −Kω

Ä
n⊥

θ̂

äT∇qψ(q, k)
(20)

with Kv,Kω ∈ R positive constant gains, n⊥θ = [− sin(θ), cos(θ)]T and

sv(q, θ̂, k) = γσp

Ç
1− ‖q‖

εp

å
+ (1− γ)σv

Ç (
nθ̂

T∇qψ
)
nθ̂

Tq
εv +

∣∣nθ̂
T∇qψ

∣∣‖q‖

å
.

Additionally, we need to employ a modified version of the adaptive law for the
potential field parameters, which is obtained by substituting s with sv in (12) and (13) and
gi, i ∈ I?N , with

gv,0 =
1
4

Å
α
∣∣∣nθ̂

T∇qψ
∣∣∣‖q− qd‖ −

Ä
nθ̂

T∇qψ
ä

nθ̂
T(q− qd)

ã

gv,i =
1
2

Ä
nθ̂

T∇qψ
ä

nθ̂
T(q− qi), ∀i ∈ IN

respectively, in (14). Finally, by expressing the aforementioned control laws to the robot’s
actual configuration space, we obtain:

v = νv̂

ω = ωdq + ωdθ̂

(21)

where ωdq and ωdθ̂ are terms corresponding to angular velocities induced by translational
and rotational motion of the robot in the workspace’s image, respectively, given by:

ωdq = −v̂ν2
Å(

Jp
[
nθ νn⊥θ

])−1 ∂

∂nθ
Jpnθ

ãTï0
1

ò

ωdθ̂ = ω̂
((

Jp
[
nθ νn⊥θ

])−1n⊥
θ̂

)T
ï
0
1

ò

with ν = ‖J−1
p nθ̂‖ and ∂

∂nθ
Jp denoting the directional derivative of Jp along nθ .

The stability properties of the aforementioned closed-loop system dynamics are for-
malized below.

Theorem 2. The workspaceW is invariant under the dynamics of (18) equipped with the proposed
control law. Additionally, the robot will asymptotically converge either to an interior critical point
of φ or to the pre-image of qd, which is stable.

Proof. For the proof, refer to the Appendix A.

Remark 3. The result of Theorem 2 is weaker compared to that of Theorem 1, since there is no
guarantee that the set of configurations which converge to a critical point of φ (other than the
pre-image of qd) has Lebesgue measure zero.

5.2. Atlas of Harmonic Maps

As the size of the workspace increases, the problem of computing the transformation
T grows in complexity as well, because the resources required by commonly employed
numerical techniques that can solve the problem presented in Section 3 are polynomial
in the number of elements used for representing W . Alternatively, to cope with large
workspaces efficiently, we propose instead the construction of an atlas A , {(Pi, Ti) | i ∈
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INA} obtained by separating the workspaceW into NA overlapping subsets Pi ⊂ W , such
that

⋃
i∈INA

Pi =W and constructing a separate harmonic map Ti for each Pi (see Figure 3).

Figure 3. The partition of a complex workspace into overlapping subsets along with the correspond-
ing graph and the tranformation T2 of the second partition P2.

This essentially allows us to solve many small (and computationally less intensive)
problems instead of a large one, thus reducing the overall resources required for addressing
a given workspace. Therefore, given such a partitioning of W , we define the graph
G = (V , E ), where V = {Pi | i ∈ INA} denotes the set of corresponding nodes (workspace
partitions) and E denotes the set of edges between the elements of V , with each edge
indicating a feasible transition from one partition to another, i.e., (i, j) ∈ E if and only ifÄ

cl(Pi)∩ cl
Ä
Pj
ää
6= ∅. Note that G is undirected by definition, i.e., (i, j) ∈ E only if (j, i) ∈ E .

Additionally, since the workspace is connected, G should also be connected. Thus, for
a given atlas A, an initial configuration pinit and a final configuration pd, we can employ
standard graph search algorithms to obtain a sequence of indices S = {s1, s2, . . . sn}
corresponding to partitions that the robot can tranverse to reach its goal. (In general,
more than one such sequence of partitions may exist connecting the initial and the final
configurations. However, the selection of one that corresponds to some sort of “optimal”
path is beyond the scope of this work.) Additionally, note that since the partitioning ofW
does not need to be fine, the size of G will generally be small, rendering the cost of finding
S negligible.

We now concentrate on how the transition between two consecutive elements of S
is implemented. Let Ci,j , cl(Pi)∩ cl

Ä
Pj
ä

denote the common region of cl(Pi) and cl
Ä
Pj
ä

and let Bi,j , ∂Pi ∩ Pj denote the set of points on the boundary of Pi that also belong to
Pj and are not occupied by obstacles for all i ∈ INA and all j such that (i, j) ∈ E . Without
loss of generality, we assume that A is constructed such that the sets B`,i ∩ B`,j are either
empty or consist of isolated points. We note that in order to successfully complete the
transition between two consecutive nodes Pi and Pj of S , it suffices for the robot to reach
any single point of Bi,j from Pi. We also observe that each Bi,j may consist of one or more
disjoint components B`i,j, ` ∈ L(i, j), with L(i, j) being some valid indexing of those. By
exploiting the fact that Theorem 2 [38] imposes a weak homeomorphism requirement on
Ti, we can construct each Ti such that each disjoint subset of ∂Pi collapses into a separate
point, i.e., Ti(B`i,j) = q`i,j ∈ ∂D (see Figure 3), which, in turn, implies that selecting q`i,j as

an intermediate goal configuration suffices to render the entire B`i,j attractive. Building

upon this fact, for each consecutive pair of Pi and Pj in S , we (arbitrarily) select a B`i,j
and we construct a transformation Ti : Pi 7→ D, with q[i] = Ti(p), and artificial potential
field φi(q[i], k[i]) with goal configuration q[i]

d = q`i,j. Additionally, to smooth the transition
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between consecutive partitions, when they overlap, we propose the following modified
control law for the robot:

u = u[i] + ηc,i,j · ηt,i,j · u[j], ∀p ∈ Ci,j (22)

where u[i] and u[j] denote the control inputs as defined in (6) and evaluated using ψi, Ti and
ψj, Tj, respectively; the function ηt,i,j : Ci,j 7→ [0, 1] is any smooth bump function such that

ηt,i,j(p) =

{
0, if p ∈ Bj,i

1, if p ∈ Bi,j

and

ηc,i,j(p, k[i], k[j]) =





(ζi,j)2

ε4+(ζi,j)2 , if ζi,j ≥ 0

0, if ζi,j < 0

with ζi,j =
(∇pψi

)T ·
Ä
∇pψj

ä
; and ε4 > 0 is a fixed parameter. What this modification

essentially does is incrementally add an extra component, with the direction of ∇pψj, to
the robot’s velocity when that component is cosine similar (two vectors u and v are cosine
similar if their inner product is positive) with∇pψi. We note that ηc,i,j → 1 and ηt,i,j → 1 as
the robot approaches the boundary of the corresponding partition. We also remark that
once the robot has completed its transition to Pj, we do not concern ourselves with u[i]

anymore, i.e., u = u[j] even if p returns to Ci,j. The overall scheme employed for navigating
a holonomic robot to its goal configuration using an altas constructed as described above
can be found in Algorithm 1.

Regarding the stability analysis of the modified system, by following the same proce-
dure as in Section 4.3 and by virtue of ηc,i,j, it is trivial to verify the following statement.

Theorem 3. System (1) equipped with Algorithm 1 converges safely to a given goal configuration
pd ∈ W from almost all initial configurations pinit ∈ W .

Proof. For the proof, refer to the Appendix A.

Algorithm 1 Altas-based motion planning scheme for a holonomic robot

Require: A, pinit, pd
S ←FINDPATHTOGOAL(G, pinit, pd)
Initialize k[s] for all s ∈ S .
for all i in In−1 do

s, s′ ← si, si+1
Select (arbitrary) ` such that ` ∈ L(s, s′).
Place goal configuration of ψs at q`s,s′ .

end for
Place goal configuration of ψsn at Tsn (pd).
`← 1
loop

if ` = n or p ∈ Ps` \ Ps`+1 then
Update p using (6) and k[s`] using (12).

else if p ∈ Cs`,s`+1 then
Update p using (22) with i = s` and j = s`+1.
Update k[s`] and k[s`] using (12).

else
`← `+ 1

end if
end loop
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6. Simulations and Experimental Results

In order to demonstrate the efficacy of the proposed control scheme, we have con-
ducted various simulation and experimental studies, the results of which are presented in
this section. The algorithm that computes the harmonic transformation and its Jacobian
was implemented in C++, while the proposed control protocols were implemented in
Python. Code implementations can be accessed at https://github.com/maxchaos/hntf2d
(accessed on 16 April 2023). All simulations were carried out on a PC with an Intel i5
processor operating at 2.2 Ghz, with 4 GB RAM and running a GNU/Linux operating
system. For more details regarding both simulations and experiments, the reader may
refer to the accompanying video material at https://youtu.be/I6WUS81iDh4 (accessed on
16 April 2023).

6.1. Simulations—Full Workspace Transformation

In the first case study, a single transformation of the entire 8 m × 5 m workspace
(see Figure 3) was constructed and the robot was instructed to navigate to various goal
configurations starting from the same initial position. The initial configuration and the
parameters of our controller were selected such as to better demonstrate the guaranteed
collision avoidance properties of our scheme. Particularly, the initial values for the pa-
rameters of the adaptive law were selected as kd = 20, ki = 1 and ki = 20 for all i ∈ I10.
The values of the remaining parameters were Ku = 100, wφ = 20, Kk = 100, α = 1,
εp = 0.025, εv = 0.1, γ = 0.7, ε1 = 0.01, ε2 = 0.1 and ε3 = 0.1. The goal configurations
and the trajectories executed by the robot, both in the real and transformed workspace, are
illustrated in Figure 4.

The simulations were conducted using the Euler method with 10 ms steps. Regarding
the computational complexity of the control scheme, the construction of the harmonic
transformation for this large workspace that was carried out offline once required 5.4 s to
complete for a sufficient approximation of the workspace boundary with 3680 segments.
Finally, the online computation of the transformation T(p) and its Jacobian J(p) required
an average of 6.0 ms per step.

6.2. Simulations—Atlas of Harmonic Maps

In this case study, we decomposed the aforementioned workspace into separate
partitions (see Figure 3) and constructed a harmonic transformation Ti for each one (we
adopted the door of each room as the common boundary between neighboring partitions).
The robot was initialized at the same position as the previous study and it was instructed
to navigate towards the same set of individual goal configurations. The initial values

selected for the parameters of the adaptive law were k[i] = N[i] + 3, k[i]
j = 1 and k

[i]
j = k[i]

for all j ∈ IN[i] and i ∈ INA , where N[i] denotes the amount of obstacles inside the
corresponding partition. All remaining control parameters were selected as in Section 6.1.
The trajectories of the robot are depicted in Figure 5. The time spent to construct the
corresponding harmonic transformations varied from 0.019s to 0.211s (depending on the
amount of elements required for sufficiently approximating each room, ranging between
320 and 1000 segments) and was significantly much less than the full map construction of
the previous case (5.4 s). Additionally, the online computation of Ti(p) and Ji(p) in each of
these rooms required an average time between 1.0 ms and 2.2 ms per step, respectively.
Finally, it should be noted that in this case, the workspace inner obstacles were mapped to
points further away from the boundaries of the partitions, which is an interesting result as it
alleviates possible numerical issues that may arise in the computation of the transformation
near the obstacles (the condition number of the Jacobian of the transformation is improved).
It should be stressed that the length of the paths in the second case was less (improvement
of 0.5 m on average), owing to the fact that the robot gets closer to the workspace boundary
since the individual transformations in each room obtain a better conditioned Jacobian
(condition number 0.212 against 0.093) and thus are more fine than the first approach,
where a transformation is built for the whole workspace.
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Figure 4. Robot trajectories illustrated with various colors in both the actual workspace (upper
plot) and their image (bottom plot) using a full workspace transformation. The robot starts from
an arbitrary location at the bottom left part of the workspace (black circle) and navigates to different
goal configurations (colored crosses). Note that the ten black dots in the lower plot correspond to the
points where the internal obstacles of the actual workspace have been transformed.
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Figure 5. The resulting robot trajectories for various goal configurations depicted with colored crosses,
using an atlas of the workspace.

6.3. Comparative Study—Workspace Transformation

In this subsection, we provide a comparative study of the harmonic map presented in
this work against readily available workspace transformation methods employed in the
motion planning literature. Particularly, we consider four 4 m × 4 m compact workspaces,
each associated with a pair of initial and goal positions, and construct appropriate trans-
formations for each one by employing the methodology presented in this work (HM), as
well as (i) the Star-to-Sphere Transformation (SST) [15], (ii) the Multi-Agent Navigation
Transformation (MANT) [36] and (iii) the Navigation Transformation (NT) [34] (with the
aforementioned Star-to-Sphere transformation serving as the underlying map). The trajec-
tories of the robot executed while tracing the line segment connecting the initial and goal
configurations in the images of each domain can be seen in Figure 6. We note that manual
tuning of the compared transformations was necessary in order to render each a diffeomor-
phism but without making them too steep around the obstacles. Furthermore, the domain
boundaries considered here had to be sufficiently smooth in order for methodologies such
as MANT to be applicable. Finally, we remark that the trajectories corresponding to the
proposed transformation are, in general, less abrupt compared to the rest, a property at-
tributed to the fact that our approach is global as opposed to the other transformations, i.e.,
the distortion caused by each obstacle is not limited to some narrow neighborhood around
it. The total length, maximum curvature and distance from the obstacles of each executed
trajectory can be seen in Tables 3–5, respectively. We can see from these values that the
actual trajectories yielded using harmonic maps are among the shorter and smoother ones,
although they tend to approach the obstacles more than the rest.

6.4. Comparative Study—Control Law

In this subsection, we provide a comparative study of our control scheme against other
motion planning methodologies.

6.4.1. APF-Based Schemes

To demonstrate the efficacy of the proposed control scheme compared to other APF-
based schemes, we considered the 12 m × 16 m workspace depicted in Figure 7, for
which we constructed a harmonic map as described in Section 3. Next, we equipped
a holonomic robot with three alternative control laws and instructed it to visit four distinct
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goal positions using these controllers, starting each time from a fixed initial configuration.
Particularly, we considered a conventional navigation function-based controller (NF) [15]
augmented by [17], for the selection of its notorious parameter, and a harmonic navigation
function-based controller (HNF) [33], in addition to our adaptive control scheme (AHNF)
described in Section 4. We note that all three control laws considered here make use of the
same underlying harmonic map T constructed as described above in order to drive the
robot to its instructed goal positions. The trajectories executed by the robot can be seen
in Figure 7. We remark that, in general, our approach steers the robot away from inner
obstacles that lie between its initial and goal configurations, unlike “greedy” schemes such
as the conventional NF-based controller, while keeping the traced paths shorter compared
to HNFs with fixed source weights, a property attributed to the proposed adaptive laws (12)
which penalize misalignment between the robot’s velocity and the direction towards the
goal configuration.

(a) (b)

(c) (d)

SST
MANT
NT
HM

Figure 6. Robot trajectories from initial configuration (black circle) straight to the desired configuration
(black cross) by employing various domain transformation methods in each workspace (a–d).
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Table 3. Trajectory lengths (m) executed by employing the four alternative transformations in each
workspace displayed in Figure 6.

a b c d

SST 3.63 4.18 2.12 4.09
MANT 4.26 4.69 2.34 4.45
NT 3.35 4.30 2.18 4.22
HM 3.19 4.21 2.05 4.32

Table 4. Maximum value of curvature (m−1) associated with each trajectory displayed in Figure 6.

a b c d

SST 4.22 5.43 86.93 2.16
MANT 1.23 1.47 13.56 2.06
NT 66.97 25.23 14.89 6.92
HM 2.47 2.49 14.76 2.77

Table 5. Minimum distance (m) between each robot trajectory and the corresponding workspace
boundaries displayed on Figure 6.

a b c d

SST 0.0303 0.0283 0.0159 0.0063
MANT 0.0644 0.1253 0.1870 0.0648
NT 0.1386 0.0506 0.0915 0.0058
HM 0.0335 0.0377 0.0103 0.0181

The total length and distance from the obstacles of each executed trajectory can be seen
in Tables 6 and 7, respectively. First, we have to stress that the length trajectory corresponds
to the travelled path towards the goal configuration and thus needs to be small, whereas the
minimum distance to the workspace boundary refers to the closest point of the trajectory to
the workspace boundary and thus needs to be large to have a safe trajectory. Consequently,
note from Table 6 that the NF scheme yielded shorter path lengths than the proposed
method in two cases (blue and yellow); nevertheless, such paths approach closer to the
workspace boundary as indicated in Table 7, thus resulting in more risky paths. On the
other hand, the Adaptive Harmonic Potential Field yields a good trade-off between path
length and minimum distance to the boundary, since it achieves the shortest paths for
two cases without compromising them, as is the case with the NF. On the other hand, the
HPF tend to travel around the obstacle closer to the outer workspace boundary and hence
exhibit more safe trajectories but they are significantly longer than the other two schemes.

6.4.2. Sampling-Based Scheme

To compare the control scheme proposed in this work against sampling-based meth-
ods, we considered a holonomic point-sized robot positioned inside a 6 m × 8 m compact
workspace and a desired goal configuration. To complete this task, we employed two dif-
ferent controllers, namely the one proposed in this work and an admissible planner based
on an improved probabilistic roadmap method (PRM) [6]. The trajectories executed by the
robot using our control law as well as two of the trajectories generated by the PRM-based
planner can be seen in Figure 8. The construction of the associated transformation took
31 s to complete for a given boundary approximation made of 7842 elements, whereas the
PRM-based planner required approximately 24 s on average over 10 successful runs to
yield a solution (we have to stress that we ran 14 trials to get 10 solutions, since four runs
did not complete as they exceeded the 500 s calculation time), using the same boundary
approximation for collision checking. The robot trajectories exhibited similar lengths in
both algorithms (22.5 m for our method against 21.8 m on average), although no path
optimization was employed in our case. Additionally, the proposed scheme resulted in
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a smoother robot trajectory (based on the resulting sequence of points in both cases, we
calculated the minimum curvature radius as 0.23 m for our method against 0.12 m on
average for the PRM method). On the other hand, note that our approach solves the motion
planning problem for any pair of initial and final configurations within the workspace,
whereas the sampling-based scheme considers only one go-to problem. Thus, a different
initial or final configuration would require a new solution with the PRM method. On the
contrary, the proposed transformation needs to be calculated only once to solve the motion
planning problem for any pair of initial and final configurations. Finally, it should be noted
that for a narrower corridor in Figure 8, the sampling-based approach failed to derive
a solution with a reasonable execution time (no solution was calculated within 500 s), since
the probability of sampling connected points within this snaky passage reduces drastically.
On the contrary, the proposed transformation took 38 s to complete for the same number of
elements (i.e., 7842 elements).

NF

HNF

AHNF

Figure 7. Trajectories of the robot navigating to four distinct goal configurations (black crosses) with
red, green, yellow and blue color starting from the same initial position (black circle) while using
various alternative APF-based controllers.

Table 6. Length of trajectories (m) executed by each controller (Rimon–Koditchek Navigation Func-
tions, Harmonic Navigation Functions and Adaptive Harmonic Potential Fields) in Figure 7.

Red Green Blue Yellow

NF 19.781 20.427 22.090 18.397
HNF 18.224 22.538 26.959 20.062
AHNF 17.874 19.419 23.364 18.595
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Table 7. Minimum distance (m) between the corresponding workspace boundaries and each trajectory
displayed in Figure 7.

Red Green Blue Yellow

NF 0.1158 0.0102 0.1210 0.1103
HNF 0.3347 0.2135 0.2591 0.2166
AHPF 0.1310 0.0352 0.2043 0.1854

AHPF

PRM # 1

PRM # 2

Figure 8. Trajectories of the robot navigating to its goal configuration (black cross) generated using
the proposed control law and a PRM-based planner.

6.5. Experiments

In order to verify the results presented in Section 5.1, real experiments were con-
ducted on a non-holonomic robotic platform (Robotnik Summit-XL) operating within the
10 m × 25 m compact workspace that is depicted in Figures 9 and 10. The boundaries of
the workspace were obtained using readily available SLAM algorithms and were later
augmented with the robot’s shape (approximated by a disk). The workspace was parti-
tioned into six overlapping subsets and the robot was instructed to visit three different goal
configurations, each located in a different room. An off-the-shelf localization algorithm was
employed for estimating the robot’s position and orientation using its on-board sensors
(laser scanners and RBG-D cameras), providing feedback at approximately 5 Hz to the
robot’s linear and angular commanded velocities. The construction of the associated trans-
formations over the six subsets of the workspace took from 1.3 s for the simple and smaller
partitions with 800 elements to 3.1 s for the more complex ones employing 1500 elements.
On the other hand, the evaluation of the mapping as well as its Jacobian took less than
6 ms on average, which was satisfactory given the low position update rate. Note that
our algorithm successfully managed to drive the robot safely (the minimum distance to
the workspace boundary was 0.15 m when passing through the doors) to its specified
goal configurations, as one can verify from the trajectories (see Figure 9, Figure 11 and
the accompanying video material). However, an issue that needs to be pointed out is the
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oscillating behavior that the robot exhibited in the configuration space’s image, particularly
in subsets p1 and p2 as depicted in Figure 11. Such behavior is attributed both to (a) the
relative slow update of the robot’s pose estimation and (b) the inversion of the Jacobian
which is ill-conditioned close to extremely narrow passages of the domain. Nevertheless,
such shortcomings can be alleviated by a better choice of partitions, e.g., by partitioning
the domain into more subsets with less complex shapes. As a future research direction,
we shall investigate whether the condition number of the Jacobian of the transformation
is a fine criterion, since the condition number is usually used to measure how sensitive
a function is to changes or errors in the input, and the output error results from an error in
the input via the Jacobian.

p0

p1

p2

p3

p4

p5

Figure 9. Trajectories of the unicycle-like robot in the real workspace, with each color (red, green
and blue) corresponding to a different goal configuration. Dark gray regions indicate areas where
partitions overlap.
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Figure 10. Snapshots of the robot navigating through the workspace. The figures on the right
illustrate the position and orientation of the robot with respect to the workspace map.
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p0 p1 p2

p3 p4 p5

Figure 11. Robot image trajectories within each partition of the workspace for three experiments in
red, green and blue color.

7. Conclusions and Future Work

In this work, we employed harmonic map theory to devise a transformation of complex
workspaces directly to point worlds that are appropriate for robot navigation. Subsequently,
we presented a novel motion planning control scheme based on closed-form harmonic
potential fields equipped with appropriate adaptive laws for their parameters, which can
safely navigate a robot to its goal state from almost all initial configurations. Additionally,
we extended our approach to accommodate the navigation problem of non-holonomic
robots and kept the numeric computations tractable for large workspaces.

Regarding future directions, our aim is first to increase the applicability of the pro-
posed navigation framework by addressing partially known dynamic workspaces, which
is far from being straightforward. To remedy the issue of calculation time in this case, we
shall adopt a sensitivity analysis approach so that we do not solve the whole problem from
scratch, but find how the solution deviates when a small change in the workspace occurs.
In this way, we envision a reasonable calculation time (except from the first calculation)
that would result in an almost real-time calculation of the transformation and thus allow
us to consider even moving obstacles in dynamic environments. However, critical issues
have to be studied concerning cases where the workspace changes topologically (e.g., in
the case of antagonistically moving obstacles) and this results in significant changes in
the transformation. In the same vein, switching in the transformation output might raise
practical issues such as chattering that have to be carefully considered. Note that the
aforementioned research direction could also serve as a first step towards the solution of
the multi-robot motion planning problem, where for each robot all other robots should
be considered as moving obstacles, operating antagonistically to achieve their goal con-
figurations. Finally, another challenging research direction concerns the extension to 3D
workspaces. Unfortunately, the harmonic maps have been studied only for 2D workspaces,
since they rely heavily on complex analyses. Nevertheless, we propose to decompose the
3D motion planning problem into several 2D sub-problems, where the proposed solution
works, and then combine them (e.g., decompose the motion along the z-axis and on the
x-y plane).
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Appendix A

Appendix A.1. Proof of Proposition 1

By construction, it holds that 1 − (tanh
(
φ/wφ

))2
> 0 for all q ∈ ∂D \ {qd}. The

gradient of φ with respect to q is given by

∇qφ = kd
q− qd

‖q− qd‖2 −
N

∑
i=1

ki
q− qi

‖q− qi‖2 . (A1)

Computing the inner product of ∇qφ and q yields:

(∇qφ
)Tq = kd

‖q‖2 − qT
d q

‖q− qd‖2 −
N

∑
i=1

ki
(q− qi)

Tq

‖q− qi‖2

≥ kd
1− qT

d q

‖q− qd‖2 −max
i

(ki)
N

∑
i=1

1
‖q− qi‖

.

(A2)

Given that all qi lie within int(D), the second term on the right-hand side of (A2) is
finite for all q ∈ ∂D. Similarly, the first term on the right-hand side of (A2) is positive for
all q 6= qd. Let q′ ∈ ∂D \ {qd}. Additionally, the continuity of

(
1− qT

d q
)
/‖q− qd‖2 and

(1− tanh
(
φ/wφ

)2)/(2wφ) implies that there exists a closed neighborhood F (q′) of q′, not
containing qd, where both are positive. Hence, selecting

k′ = kd min
q∈F (q′)

Ñ
1− qT

d q

‖q− qd‖2
1

∑N
i=1

1
‖q−qi‖

é

ensures that (∇qφ)Tq > 0 for all q ∈ F (q′). Moreover, computing the derivative of
d = 1− ‖q‖2 with respect to time for all q ∈ F (q′) and assuming ki < k′, ∀i ∈ IN yields
ḋ = 2Kus∇qψTq > 0; thus, the distance from the workspace boundary increases, which
concludes the proof.

Appendix A.2. Proof of Proposition 2

Similarly to the proof of Proposition 3 in [33], we proceed by defining q̃d , q− qd,
q̃i , q− qi for all i ∈ IN . Let also q̂d , q̃d/‖q̃d‖ and q̂i , q̃i/‖q̃i‖. Accordingly, the Hessian
of φ can be computed by:

∇2
qφ =

kd

‖q̃d‖2

Ä
I2 − 2q̂d q̂T

d

ä
− ∑

i∈IN

ki

‖q̃i‖2

Ä
I2 − 2q̂i q̂T

i

ä
. (A3)
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Note that at a critical point of φ it holds that:

kd
q̂d
‖q̃d‖

= ∑
i∈IN

ki
q̂i
‖q̃i‖

=⇒

k2
d

‖q̃d‖2 q̂d q̂T
d = ∑

i∈IN

k2
i

‖q̃i‖2 q̂i q̂T
i +

∑
i∈IN

∑
j∈IN\{i}

kik j

‖q̃i‖‖q̃j‖
Ä

q̂i q̂T
j + q̂j q̂T

i

ä
.

(A4)

Substituting (A4) into (A3) and re-arranging the terms yields:

∇2
pφ =

(
kd

‖q̃d‖2 − ∑
i∈IN

ki

‖q̃i‖2

)
I + 2

Ç
∑

i∈IN

ki(kd − ki)
kd

1

‖q̃i‖2 q̂i q̂T
i −

1
kd

∑
i∈IN

∑
j∈IN\{i}

kik j

‖q̃i‖‖q̃j‖
Ä

q̂i q̂T
j + q̂j q̂T

i

äå
.

Next, we argue that for any given set of radii ρi > 0 such that Dρi (qi), i ∈ IN are
disjoint disks that lie entirely within our domain, there exists k′d > 0 such that no critical
point of φ exists within D \ ⋃i∈IN

Dρi (qi) for all kd > k′d. This implies that, by choosing
a sufficiently large kd, each critical point of φ belongs to a single Dρi (qi). Let q? be a critical
point and ` = argmini∈IN

‖q? − qi‖. To show that ∇2
qφ(q?) is not degenerate, it suffices

to show that its eigenvalue λ(q?) is positive. We recall that λ is lower bounded by the
quadratic form x̂T∇2

qφx̂ for all ‖x̂‖ = 1. By considering the direction of q̃` and after some
tedious calculations, we obtain:

q̂T
`∇2

qφ(q?)q̂` =
kd

‖q̃d‖2 − ∑
i∈IN\{`}

ki

‖q̃i‖2

+
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‖q̃`‖2

Ñ
kd − 2k`

kd
− 4
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‖q̃i‖

2(q̂T
` q̂i)

é

+ 2 ∑
i∈IN\{`}

ki(kd − ki)
kd

1

‖q̃i‖2

Ä
q̂T
` q̂i
ä2

− 2
kd

∑
i∈IN\{`}

∑
j∈IN\{i,`}

kik j

‖q̃i‖‖q̃j‖
2(q̂T

` q̂i)(q̂T
` q̂j).

(A5)

The first right-hand side term of (A5) is strictly positive. Since all ki are bounded and
non-negative, choosing a sufficiently large kd renders the second and third right-hand side
terms non-negative. Furthermore, note that the fourth and fifth right-hand side terms are
bounded for all q? ∈ Dρ` (q`). Thus, by choosing a sufficiently large kd, the first three terms
of (A5) can be made dominant, thus rendering q̂T

`∇2
qφq̂` positive at q?, which concludes

the proof.

Appendix A.3. Proof of Proposition 3

Firstly, we will show that the robot cannot escape through the workspace’s outer
boundary. Let us assume that q → q′ ∈ ∂D \ {qd}. Then, q̇ → 0 by virtue of (7), since
s(q, k) = 0 for all ‖q‖ = 1 with

(∇qφ
)Tq ≤ 0. Additionally, w0 → 1 and wi → 0, for all

i ∈ IN . Thus, k̇i < 0 holds within a neighborhood of ∂D, while ki > 0, which implies that
ki → 0 for all i ∈ IN . Moreover, Proposition 1 dictates that there exists k′ > 0 for which any
point in ∂D \ {qd} is repulsive under ψ. Since (12) dictates that all ki become less than k′ in
finite time, this contradicts our supposition.
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Next, we consider collision avoidance between the robot and the inner obstacles. Let
us assume that the robot approaches obstacle i. By construction, wi → 1 while ∇qψ → 0
and wj → 0 for all j ∈ I?N \ {i}. Note that there exists a neighborhood Ni of qi such that
w0 = 0 for all q ∈ Ni due to continuity of w0 and ξ2(w0; ε3). Additionally, since the robot is
assumed to approach qi, q̇T(q− qi) cannot be identically zero inside Ni. As such, as long as
ki < ki, k̇i ≥ 0 inside Ni without k̇i = 0 for all q ∈ Ni. This implies that ki 6→ 0 as q → qi,
thus rendering qi a local maximum of ψ. Thus, there exists a neighborhood of qi inside
which (∇qψ)T(q− qi) > 0, which contradicts our assumption.

Appendix A.4. Proof of Proposition 4

Let V , ψ(q, k), as defined in (10), be a candidate Lyapunov function, which is
non-negative and vanishes only when q = qd. Differentiating V along the system’s trajecto-
ries yields:

V̇ =
1− tanh

(
φ/wφ

)2

2wφ

(
(∇qφ

)T q̇ + ln
Å‖q− qd‖

2

ã
k̇d − ∑

i∈IN

ln
Å‖q− qi‖

2

ã
k̇i

)
. (A6)

Given that q̇ = J ṗ, the first term of (A6) can be further expanded as follows:

(∇qφ
)T q̇ = −Kus

1− tanh
(
φ/wφ

)2

2wφ
‖JT∇qφ‖2

, (A7)

which is non-positive for all q ∈ Ω and becomes zero only at the critical points of ψ. The
second term of (A6) is non-positive since k̇d ≥ 0 by construction and invariance ofW (see

Proposition 3) implies ‖q− qd‖ ≤ 2 which, in turn, implies ln
( ‖q−qd‖

2

)
≤ 0. Similarly,

the sign of each term of the sum is determined solely by the sign of the corresponding k̇i.
Substituting (12) yields:

− ∑
i∈IN

ln
Å‖q− qi‖

2

ã
k̇i ≤ − ∑

i∈IN

ln
Å‖q− qi‖

2

ãÄ
ki − ki

ä
wi`igi. (A8)

Given that gi ≤ ‖∇qψ‖2 and ∑i∈IN
kiwi ≤ 1 by construction, expanding `i into the

right-hand side of (A8) leads to:

− ∑
i∈IN

ln
Å‖q− qi‖

2

ãÄ
ki − ki

ä
wi`igi ≤ Kus‖∇qψ‖2 ∑

i∈IN

Ä
ki − ki

ä
wi

≤ Kus
1− tanh

(
φ/wφ

)2

2wφ
‖∇qφ‖2.

(A9)

Thus, (A6) is non-positive. Therefore, by invoking Lyapunov’s Stability Theorem
(Theorem 3.1 [41]) we may conclude that qd is stable. Finally, LaSalle’s Theorem (Theo-
rem 3.4 [41]) dictates that the system will converge to the largest invariant set, which, in
our case, consists of the critical points of ψ, thus concluding the proof.

Appendix A.5. Proof of Proposition 5

At the critical point z? of system (17), the Hessian ∇2
qφ of φ is non-degenerate, since

otherwise k̇d 6= 0. Additionally, q? ∈ Ω \ {qd} implies that 1 − (tanh
(
φ/wφ

))2 6= 0.
These two facts mean that ∇2

qψ has two eigenvalues at z?, namely λ and −λ, with λ > 0.
Computing the Jacobian of fq with respect to q at z? yields:

∇q fq = −Ku
(∇qψ

)T∇qs−Kus∇2
qψ

= −Kus∇2
qψ
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since ∇qψ(q?) = 0. Furthermore, by construction of the adaptive law (12), the Jacobian of
fk with respect to z at z? is 0(1+N)×(3+N). Thus, linearization of the system fz at z? yields

∇z fz(z?) = −Kus
1− tanh

(
φ/wφ

)2

2wφ

ñ
∇2

qφ
∂φ
∂kd

∂φ
∂k1

. . . ∂φ
∂kN

0(1+N)×(3+N)

ô
.

Since the top-left block∇2
qφ is invertible at z?, using the well-known property of block

matrix determinants, we can see that ∇z? fz has two non-zero eigenvalues, particularly
the eigenvalues of ∇2

qψ and a zero eigenvalue with multiplicity 1 + N. Thus, ∇z fz(z?) has
exactly one positive eigenvalue, rendering z? a saddle point of (17) (Theorem 3.7 [41]).

Appendix A.6. Proof of Theorem 1

In Proposition 4, we have proven that ψ̇ < 0 for all q ∈ Ω \ {qd}, except for the critical
points of φ that lie in it. Lasalle’s Invariance Theorem (Theorem 3.4 [41]) dictates that
system (17) will converge to either (a) the desired configuration qd, (b) the obstacles qi or
(c) a critical point z? = (q?, k?) with q? ∈ Ω \ {qd}. We know from Proposition 3 that the
critical points of case (b) are repulsive; therefore, no trajectory of the system may converge
to them. Regarding the critical point z? corresponding to case (c), Proposition 5 dictates
that it must be a non-isolated, degenerate equilibrium of the whole of system (17), since
∇z fz has one positive, one negative and several zero eigenvalues. Let kd be the upper
bound of kd that the closed-loop system can possibly attain, as indicated by Proposition 2.
In order to prove that the set of initial conditions leading to these points has zero Lebesgue
measure, we will study the properties of the gradient-like system (by definition, a gradient-
like system is a pair of a scalar cost functions and a dynamical system for which each
non-equilibrium initial condition moves the state towards a new one whose cost is less
than that of the initial state) (ψ(z), Fz,τ(z)) in the domain Sz, where the scalar potential ψ(z)
is treated as a function to be minimized, the map Fz,τ(z) : Sz 7→ RN+3 is given by

Fz,τ(z(t)) , z(t + τ) = z(t) +
∫ t+τ

t
fz(z(s))ds

for any τ > 0 and Sz , D × [1, kd]× [0, k1]× . . . [0, kN]. Note that Sz is convex and closed.
Additionally, the map Fz,τ(z) is a locally Lipschitz diffeomorphism in Sz and Sz is forward
invariant under Fz,τ(z) (by virtue of Proposition 3 and design of adaptive law (12)) for all
τ > 0. Furthermore, the unwanted equilibria of Fz,τ are strict saddles. Thus, following
similar arguments as the proof of Theorem 3 in [42], we conclude that the set of all initial
conditions that converge to these saddles has zero Lebesgue measure, which implies that
almost every trajectory of the system converges to qd, i.e., the only stable equilibrium of (17),
thus completing the proof.

Appendix A.7. Proof of Theorem 2

We begin by noting that, by virtue of (21), we only need to study the trajectories of (19)
in the workspace’s image, since that motion is traced exactly by our robot. Considering
the first part of the Theorem 2, we note that by following the same arguments as in
the proof of Proposition 3, we may conclude that the robot cannot escape throught the
workspace’s outer boundary. Likewise, assuming that q → qi for some i ∈ IN implies
that (nθ

T JT∇qψ)Tnθ̂
T(q− qi) cannot be identically zero in a neighborhood of qi. As such,

since k̇i ≥ 0 in the neighborhood of qi, ki cannot vanish as the robot approaches qi, which
contradicts our original supposition.

To prove the second part of the Theorem 2, first we show that the only equilibria of
the closed-loop system coincide with the critical points of ψ. Assuming that sv 6= 0, it is
readily seen that both inner products in (20) vanish simultaneously only when ∇qψ = 0.
Considering now the case when sv 6= 0, we note that this can only happen when q ∈ ∂D
and nθ̂ is tangent to ∂D. For ω̂ to also vanish when sv 6= 0, the gradient∇qψ should also be
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tangent to ∂D. Recalling that the adaptive laws for k ensure that ∇qψ will eventually point
inwards, we conclude that no equilibria other than the critical points of ψ exist.

Next, we consider ψ as a lyapunov candidate function, whose derivative along the
systems trajectories is given by (A6) (note that ψ does not depend on θ). Substituting (20)
into the first term of (A6) yields:

(∇qφ
)T q̇ = −Kvsv

1− tanh
(
φ/wφ

)2

2wφ

Ä(
nθ̂

)T∇qφ
ä2

. (A10)

Regarding the remaining terms of (A6), given that gv,i ≤
(
nθ̂

T∇qψ
)2, one can readily

verify that:

− ∑
i∈IN

ln
Å‖q− qi‖

2

ã
k̇i ≤ −Kvsv

1− tanh
(
φ/wφ

)2

2wφ

Ä(
nθ̂

)T∇qφ
ä2

. (A11)

Thus, invoking Lyapunov’s Stability Theorem (Theorem 3.1 [41]) and LaSalle’s Theo-
rem (Theorem 3.4 [41]) concludes the proof similarly to Proposition 4.

Appendix A.8. Proof of Theorem 3

Regarding the robot’s safety under the closed-loop system, we note that when p ∈
Ps` \ Ps`+1 or p ∈ Psn for all ` < n, the individual control laws render every point on the
corresponding partition boundaries repulsive. When p ∈ Cs`,s`+1 , we note that, by construc-
tion, both u[s`] and u[s`+1] vanish when the robot approaches any point of ∂Ps` ∩ ∂Ps`+1 ,
preventing the robot from escaping. Additionally, the adaptive laws of each individual
potential field will eventually render both ∇pψs` and ∇pψs`+1 inward-looking with respect
toW , rendering ∂Ps` ∩ ∂Ps`+1 repulsive.

While p ∈ Ps` , we consider V , ψs` as a Lyapunov function candidate and we
examine its time derivative along the system’s trajectories when p ∈ Cs`,s`+1 :

V̇ =
(∇pψs`

)T ṗ +
Ä
∇k[s`] ψs`

äT
k̇[s`]

=
(∇pψs`

)TÄu[s`] + ηc,s`,s`+1 ηt,s`,s`+1 u[s`+1]
ä
+
Ä
∇k̇[s`] ψs`

äT
k[s`]

=
(∇pψs`

)Tu[s`] +
Ä
∇k̇[s`] ψs`

äT
k[s`] + ηc,s`,s`+1 ηt,s`,s`+1

(∇pψs`
)Tu[s`+1].

(A12)

We recall that the first two right-hand side terms of (A12) are non-positive, as shown
in Proposition 4. Likewise, the last term is rendered non-positive by virtue of ηc,s`,s`+1 .
Additionally, we note that the equilibrium points of the system in p ∈ Cs`,s`+1 correspond
only to critical points of ψs` . By virtue of ηc,s`,s`+1 , which vanishes at a critical point of ψs` ,
along with its derivative, one can easily verify that the Jacobian of (22) is equal to the one of
u[s`], whose properties were studied in Proposition 2. Finally, following a similar procedure
as in the proof of Theorem 1, we conclude that the system will converge to the specified
goal configuration for almost all initial configurations.
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Abstract: Deep reinforcement learning has produced many success stories in recent years. Some
example fields in which these successes have taken place include mathematics, games, health care,
and robotics. In this paper, we are especially interested in multi-agent deep reinforcement learning,
where multiple agents present in the environment not only learn from their own experiences but
also from each other and its applications in multi-robot systems. In many real-world scenarios, one
robot might not be enough to complete the given task on its own, and, therefore, we might need
to deploy multiple robots who work together towards a common global objective of finishing the
task. Although multi-agent deep reinforcement learning and its applications in multi-robot systems
are of tremendous significance from theoretical and applied standpoints, the latest survey in this
domain dates to 2004 albeit for traditional learning applications as deep reinforcement learning was
not invented. We classify the reviewed papers in our survey primarily based on their multi-robot
applications. Our survey also discusses a few challenges that the current research in this domain faces
and provides a potential list of future applications involving multi-robot systems that can benefit
from advances in multi-agent deep reinforcement learning.

Keywords: deep reinforcement learning; multi-robot systems; multi-agent learning; survey

1. Introduction

In a multi-robot application, several robots are usually deployed in the same environ-
ment [1–3]. Over time, they interact with each other via radio communication, for example,
and coordinate to complete a task. Application areas include precision agriculture, space
exploration, and ocean monitoring, among others. However, in all such real-world ap-
plications, many situations might arise that have not been thought of before deployment,
and, therefore, the robots must need to plan online based on their past experiences. Rein-
forcement learning (RL) is one computing principle that we can use to tackle such dynamic
and non-deterministic scenarios. Its primary foundation is trial and error—in a single-
agent setting, the agent takes an action in a particular state of the environment, receives
a corresponding reward, and transitions to a new state [4]. Over time, the agent learns
which state–action pairs are worth re-experiencing based on the received rewards and
which ones are not [5]. However, the number of state–action pairs becomes intractable,
even for smallish computational problems. This has led to the technique known as deep
reinforcement learning (DRL), where the expected utilities of the state–action pairs are
approximated using deep neural networks [6]. Such deep networks can have hundreds
of hidden layers [7]. Deep reinforcement learning has recently been used in finding a
faster matrix multiplication solution [8], for drug discovery [9], to beat humans in Go [10],
play Atari [6], and for routing in communication networks [11], among others. Robotics
is no different—DRL has been used in applications ranging from path planning [12] and
coverage [13] to locomotion learning [14] and manipulation [15].

Going one step further, if we introduce multiple agents to the environment, this
increases the complexity [16]. Now, the agents not only need to learn from their own
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observations in the environment but also be mindful of other agents’ transitions. This
essentially means that one agent’s reward may now be influenced by the actions of other
agents, and this might lead to a non-stationary system. Although inherently more diffi-
cult, the use of multiple robots and, consequently, a multi-agent reinforcement learning
framework for the robots is significant [17]. Such learning multi-robot systems (MRS) may
be used for precision agriculture [18], underwater exploration [19], search and rescue [20],
and space missions [21]. Robots’ onboard sensors play a significant role in such applica-
tions. For example, the state space of the robots might include the current discovered map
of the environment, which could be created by the robots’ laser scanners [22]. The state
might also include locations and velocities, for which the robot might need sensory in-
formation from GPS or an overhead camera [23]. Furthermore, vision systems, such as
regular or multi-spectral cameras, can be used by the robots to observe the current state
of the environment, and data collected by such cameras can be used for robot-to-robot
coordination [24]. Therefore, designing deep reinforcement learning algorithms, potentially
lightweight and sample-efficient, that will properly utilize such sensory information, is
not only of interest to the artificial intelligence research community but to robotics as well.
However, the last survey that reviewed the relevant multi-robot system application papers
that use multi-agent reinforcement learning techniques was conducted by Yang and Gu in
2004 [17]. Note that the entire sub-field of DRL was not invented until 2015 [6].

In this paper, we fill this significant void by reviewing and documenting relevant
MRS papers that specifically use multi-agent deep reinforcement learning (MADRL). Since
today’s robotic applications can have a large state space and, potentially, large action
spaces, we believe that reviewing only the DRL-based approaches, and not the classic
RL frameworks, is of interest to the relevant communities. The primary contribution of
this article is that, to the best of our knowledge, this is the only study that surveys multi-
robot applications via multi-agent deep reinforcement learning technologies. This survey
provides a foundation for future researchers to build upon in order to develop state-of-the-
art multi-robot solutions, for applications ranging from task allocation and swarm behavior
modeling to path planning and object transportation. An illustration of this is shown in
Figure 1.

Multi-robot 
Application

Deep 
RL

Multi-
agent 

Learning

Figure 1. The main contribution of this article is that we have reviewed the latest multi-robot
application papers that use multi-agent learning techniques via deep reinforcement learning. Readers
will be able to find out how these three concepts are used together in the discussed studies and this
survey will provide them with insight into possible future developments in this field, which, in turn,
will advance the state-of-the-art.

We first provide a brief technical background and introduce terminologies necessary
to understand some of the concepts and algorithms described in the reviewed papers
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(Section 2). In Section 3, we categorize the multi-robot applications into (1) coverage,
(2) path planning, (3) swarm behavior, (4) task allocation, (5) information collection, (6)
pursuit–evasion, (7) object transportation, and (8) construction. We identify and discuss a
list of crucial challenges that, in our opinion, the current studies in the literature face in
Section 4, and then, finally, we conclude.

2. Background

In this section, we provide technical backgrounds on relevant computing principles.

2.1. MDP and Q-Learning

Let S and A denote the set of all states and actions available to an agent. Let R:
S× A→ R denote a reward function that gives the agent a virtual reward for taking action
a ∈ A in state s ∈ S. Let T denote the transition function. In a deterministic world, T:
S× A→ S, i.e., the actions of the agent is deterministic, whereas in a stochastic world, these
actions might be probabilistic—T: S× A→ prob(S). We can use a Markov Decision Process
(MDP) to model such a stochastic environment, which is defined as a tuple 〈S, A, T, R〉.
The objective is to find a (optimal) policy π: S→ A that maximizes the expected cumulative
reward. To give higher preference to the immediate rewards than to the future ones, we
discount the future reward values. The sum of the discounted rewards is called value.
Therefore, to solve an MDP, we will maximize the expected value (V) over all possible
sequences of states. Thus, the expected utility in a state s ∈ S can be recursively defined
as follows:

V(s) = R(s, a) + γ max
a′∈A

∑
s′

P(s′|s, a)V(s′) (1)

The above is called the Bellman equation, where P(s′|s, a) is the probability of transitioning
into s′ from s by taking an action a. We can use value or policy iteration algorithms to solve
an MDP.

However, in a situation where the R and T functions are unknown, the agent will have
to try out different actions in every state to know which states are good and what action it
should take in a particular state to maximize its utility. This leads to the idea of reinforce-
ment learning (RL) where the agent will execute a in state s of the environment, and will
receive a reward signal R from the environment as a result. Over time, the agent will learn
the optimal policy based on this interaction between the agent and the environment [25].
An illustration is shown in Figure 2. In a model-based RL, the agent learns an empirical
MDP by using estimated transition and reward functions. Note that these functions are
approximated by interacting with the environment as mentioned earlier. Next, similar
to an MDP, value or policy iteration algorithm can be employed to solve this empirical
MDP model. In a model-free RL, the agent does not have access to T and R. This is true for
numerous robotic applications in the real world. Therefore, most of the robotics papers we
review in this survey use model-free RL techniques. This is also true for RL algorithms
in general.

The goal of RL is to find a policy that maximizes the expected reward of the agent.
Temporal difference learning is one of the most popular approach in model-free RL to
learn learn the optimal utility values of each state. Q-learning is one such model-free RL
technique, where the Q-value of a state–action pair (s, a) indicate the expected usefulness
of that pair, which is updated as follows.

Q(s, a) = (1− α)Q(s, a) + α(R(s, a) + γ max
a′∈A

Q(s′, a′)) (2)

α is the learning rate that weighs the new observations against the old. It is off-policy
learning and converges to an optimal policy π∗ following

π∗(s) = arg max
a∈A

Q(s, a) (3)
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An excellent overview of classic RL applications in robotics can be found in [26].
Keeping track of Q-values for all possible state–action pairs in such an RL setting becomes
infeasible with, for example, a million such combinations. In recent years, artificial neural
networks have been used to approximate the optimal Q-values instead of storing the values
in a table. This has given birth to the domain of deep reinforcement learning.

Agent

Environment

a in ss′ R(s, a)

Figure 2. Illustration of Reinforcement Learning.

2.2. Multi-Agent Q-Learning

Assuming that the state space S is shared among n agents N and that there exists
a common transition function T, an MDP for N is represented by the following tuple
〈N, S, A, O, T, R〉, where the joint action space is denoted by A ← A1 × A2 · · · × An;
the joint reward is denoted by R ← R1 × R2 · · · × Rn; and O denotes the joint obser-
vation of the agents, O ← O1 ×O2 · · · ×On. As there is more than one agent present,
the action of one agent can potentially affect the reward and the consequent actions of
the other agents. Therefore, the goal is to find a joint policy π∗. However, due to the
non-stationary environment and, consequently, the removal of the Markov property, con-
vergence cannot be guaranteed unlike the single-agent setting [27]. One of the earliest
approaches to learning a joint policy for two competitive agents is due to Littman [28]. It
was modeled as a zero-sum two-player stochastic game (SG). It is also known as Markov
Game in game theory. In SG, the goal is to find the Nash equilibrium, assuming the R and
T functions are known. In a Nash equilibrium, the agents (or the players) will not have
any incentive to change their adopted strategies. We slightly abuse the notation here and
denote the strategy of agent Ni with πi. Therefore, in a Nash equilibrium, the following
is true

V
π∗i ,π∗−i
i (s) ≥ V

π,
iπ
∗
−i

i (s), ∀πi (4)

where V(s) denotes the value of state s ∈ S to the i-th agent and π−i is the strategy of the
other players. Here, we assume the agents to be rational, and, therefore, all the agents
always follow their optimal strategies. This general SG setting can now be used to solve
multi-agent reinforcement learning (MARL) problems.

In a cooperative setting, the agents have a common goal in mind. Most of the studies
in the robotics literature that use MARL use such a cooperative setting. In this case,
the agents have the same reward function, R. Given this, all the agents in N will have
the same value function, and, consequently, the same Q-function. The Nash equilibrium
will be the optimal solution for this problem. Two main types of learning frameworks are
prevalent—independent and joint learners. In an independent learning scenario, each agent
ignores the presence of other agents in the environment and considers their influence as
noise. The biggest advantage is that each agent/robot can implement its own RL algorithm
and there is no need for coordination and, consequently, a joint policy calculation [16,27].
Independent classic Q-learners have shown promising results in AI [29,30], as well as in
robotics [31,32]. On the other hand, the joint learners aim to learn the joint optimal policy
from O and A. Typically, an explicit coordination, potentially via communication in an
MRS, is in place and the agents learn a better joint policy compared to the independent
learners [16,27]. However, the complexity increases exponentially with the number of
agents causing these not to scale very well. The joint Q-learning algorithms are also
popular in robotics [24,33,34], as well as in general AI [28,35]. A comprehensive survey for
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MARL techniques can be found in [27,36]. The authors in [36] also discuss the application
domains for MARL, which includes multi-robot teams. A specific relevant example that is
discussed is multi-robot object transportation.

2.3. (Multi-Agent) Deep Q-Learning

As the state and the action spaces increase in size, maintaining a table for the Q-values
for all possible state–action pairs might be infeasible. To tackle this challenge, Mnih et al. [6]
have proposed a neural network-based approach to approximate the Q-values directly
from the sensory inputs. This has given birth of ‘deep’ Q-learning, as the Q-values of the
state–action pairs are updated using a deep neural network.

2.3.1. Q-Networks

In their seminal paper, Mnih et al. [6] have proposed DQN—a convolutional neural
network (CNN) to approximate the Q-values for a single agent. This is called the Q-network,
which is parameterized by θ. The current state st is passed as an input to the network that
outputs the Q-values for all the possible actions. An action is chosen next based on the
highest Q-value, i.e.,

a∗ = arg max
a∈A

Q(st, a) (5)

To ensure that the agent explores the state space enough, a∗ is chosen with probability
ε and the agent takes a random action with (1− ε) probability. Due to this action, the state
transitions to st+1. To avoid instability, a target network is maintained—it is identical to
the Q network, but the parameter set θ is periodically copied to the parameters of this
target network, θ−. The state transitions are maintained in an experience replay buffer D.
Mini-batches from D are selected and target Q-values are predicted. θ is regressed toward
the target values by finding the gradient descent of the following temporal loss function

L = E[(yt −Q(st, at))
2] (6)

yt = R + γQ(st+1, arg max Q(st+1, at+1)) (7)

One of the most popular extensions of DQN is Double DQN (DDQN) [37], which re-
duces overestimation in Q-learning. DDQN uses the Q-network for action selection follow-
ing the ε-greedy policy, as mentioned above, but uses the target network for the evaluation
of the state–action values. DQN and DDQN are extremely popular in robotics [13,38–41].
A visual working procedure of the generic DQN algorithm is presented in Figure 3.

Experience 
Replay

Environment

Minimize Loss

Random Sample

Target Network

Policy Network

Q-value

Q-value

Target Update

Generate 
Samples

Input state st

st+1

Reward R

Figure 3. An illustration of the DQN architecture with a target network and an experience replay.

341



Sensors 2023, 23, 3625

2.3.2. Policy Optimization Techniques

In policy optimization methods, the neural network outputs the probability distribu-
tion of these actions instead of outputting the Q-values of the available actions. Instead
of using something like the ε-greedy strategy to derive a policy from the Q-values, the ac-
tions with higher probability outputs from the network will have higher chances of being
selected. Let us denote a θ-parameterized policy by πθ . The objective is to maximize the
cumulative discounted reward

J(θ) = E[R|πθ ] (8)

whereR is the finite-horizon discounted cumulative reward. By optimizing the parameter
set θ, e.g., by following the gradient of the policy, we aim to maximize the expected reward.
Similar to the Q-networks, the learning happens in episodes. In general, the parameters in
episode i + 1, θi+1, will be an optimized version of θi as the following standard gradient
ascent formula

θi+1 = θi + α
δJ(θi)

δθi
. (9)

In the vanilla form, similar to the Q-networks, the mean square error between the
value of the policy (usually approximated using a neural network) and the reward-to-go
(i.e., the sum of rewards received after every state transition so far) is calculated and the
approximate value function parameters are regressed. Some of the popular policy optimiza-
tion techniques include Deep Deterministic Policy Gradient (DDPG) [42], Proximal Policy
Optimization (PPO) [43], Trust Region Policy Optimization (TRPO) [44], and Asynchronous
Advantage Actor–Critic (A3C) [45], among others. Among these, DDPG is one of the most
widely used for multi-robot applications [46–50]. It learns a Q-function similar to DQN
and uses that to learn a policy. The policy DDPG learns is deterministic and the objective
of this is to find actions that maximize the Q-values. As the action space A is assumed to
be continuous, the Q-function is differentiable. To optimize θ and update the policy, we
perform one-step policy ascent as follows:

max
θ

Es∈D [Q(s, πθ(s))]. (10)

DDPG uses a sophisticated technique called actor–critic to achieve the successful com-
bination of these two types of deep Q-learning. The actor essentially represents the policy
and the critic represents the value network, respectively. The actor is updated towards the
target and the critic is regressed by minimizing the error with the target [51]. The difference
between the expected state value and the Q-value for an action a is called the advantage.
One of the most popular algorithms that uses such an actor–critic framework is A3C [45].
In this algorithm, parallel actors explore the state space via different trajectories making the
algorithm asynchronous; therefore, it does not require maintaining an experience replay.
Another popular algorithm in the multi-robot domain is PPO, potentially because of its
relatively simple implementation [43]. PPO-clip and PPO-penalty are its two primary
variants that are used in robotics [52–57].

2.3.3. Extensions to Multi-Agent

As described earlier, in independent learning frameworks, any of the previously
mentioned deep RL techniques, such as DQN, DDPG, A3C, or PPO, can be implemented
on each agent. Note that no coordination mechanism is needed to be implemented for
this [16,27,58].

For multi-agent DQN, a common experience memory can be used, which will combine
the transitions of all the agents, and, consequently, they will learn from their global experi-
ences while virtually emulating a stationary environment. Each agent can have its own
network that will lead it to take an action from its Q-values [59]. Yang et al. [60] have pro-
posed a mean field Q-learning algorithm for large-scale multi-agent learning applications.
A mean-field formulation essentially brings down the complexity of an n-agent learning
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problem to a 2-agent learning problem by creating a virtual mean agent from the other
(n− 1) agents in the environment. In [61], the authors have introduced the multi-agent
extension of DDPG (MADDPG). Here, the actor remains decentralized, but the critic is
centralized. Therefore, the critic needs information on the actions, observations, and target
policies of all of the agents to evaluate the quality of the joint actions. Figure 4 shows an
illustration of this process. Yu et al. [62] have proposed a multi-agent extension of PPO in
cooperative settings (MAPPO). Similar to MADDPG, it uses centralized training with a
decentralized execution strategy.

Policy Policy Policy

O A O O AA

Q Q Q

Training 

Execution

…

Figure 4. Illustration of multi-agent DDPG (MADDPG) [61].

Another approach to extending a single-agent DRL algorithm to a multi-agent setting
is to model it as a centralized RL, where all the information from agents is input together.
This might create an infeasibly large state and action space for the joint agent. To allevi-
ate this, researchers have looked into how to find each agent’s contribution to the joint
reward. This is named Value Function Factorization. VDN [63] is one such algorithm for
cooperative settings where the joint Q-value is the addition of the local Q-values of the
agents. A summary of the main types of RL algorithms used in multi-robot applications
is presented in Table 1. The reader is referred to [64,65] for recent comprehensive surveys
on state-of-the-art MADRL techniques and challenges. Furthermore, Oroojlooy and Ha-
jinezhad [66] have recently published a survey paper reviewing the state-of-the-art MADRL
algorithms specifically for cooperative multi-agent systems. As in most of the scenarios,
the robots in an MRS work together towards solving a common problem, we believe that
the survey in [66] would be a valuable asset for the robotics community.

Table 1. Types of deep RL algorithms used in the surveyed papers are listed. If a popular algorithm
is used as a foundation, the algorithm’s name is also mentioned within parentheses.

Q-Networks Policy Gradients

DDPG PPO Other

[23,24,39,40,59,67–92]
(QMIX), [38] (DDQN),

[93] (DDQN), [94]
(DDQN), [95] (DQN),

[96] (DQN)

[46–50,97–106], [22,52–57,107–128]

[86,88,129–140]
(TRPO), [141] (TRPO),

[81] (TRPO), [142]
(TD3), [143] (SAC),

[144] (SAC)

3. Multi-Robot System Applications of Multi-Agent Deep Reinforcement Learning

A summary of the discussed multi-robot applications is presented in Figure 5.
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Applications

Coverage Navigation Information 
Collection Swarm 

Behavior
Pursuit‐
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Object 
Transportation

Task 
Allocation Construction

Figure 5. Multi-robot system applications that primarily use MADRL techniques.

3.1. Coverage and Exploration

The goal of an MRS in a coverage path planning (CPP) application is that every point
in the environment is visited by at least one robot while some constraints are satisfied (e.g.,
no collision among the robots) and user-defined criteria are optimized (e.g., minimizing
the travel time) [145]. CPP is one of the most popular topics in robotics. For multi-
robot coverage, several popular algorithms exist even with performance guarantees and
worst-case time bounds [146–149]. In exploration, however, the objective might not be
the same as the multi-robot CPP problem. It is assumed that the sensor radius r > 0,
and, therefore, the robots do not need to visit all the points on the plane. For example,
the robots might be equipped with magnetic, acoustic, or infrared sensors in ground
and aerial applications whereas a group of underwater vehicles might be equipped with
water temperature and current measuring sensors. The robots will need GPS for outdoor
localization. Such exploration can be used for mapping and searching applications among
others [150–152]. Constraints such as maintaining wireless connectivity for robots with
limited communication ranges might be present [153]. Inter-robot communication can be
achieved via ZigBee or Wi-Fi. An example is shown in Figure 6.

Mou et al. [68] studied area coverage problems and proposed deep reinforcement
learning for UAV swarms to efficiently cover irregular three-dimensional terrain. The basis
of their UAV swarm structure is with the leader and the follower UAVs. The authors
implement an observation history model based on convolutional neural networks and a
mean embedding method to address limited communication. Li et al. [69] proposed the use
of DDQN to train individual agents in a simulated grid-world environment. Then during
the decision-making stage, where previously trained agents are placed in a test environment,
the authors use their proposed multi-robot deduction method, which has foundations
in Monte Carlo Tree Search. Zhou et al. [154] have developed a multi-robot coverage
path planning mechanism that incorporates four different modules: (1) a map module,
(2) a communication module, (3) a motion control module, and (4) a path generation
module. They implement an actor–critic framework and natural gradient for updating
the network. Up to three robots have been used in a simulation for testing the proposed
coverage technique in a grid world. The two cornerstones of the study by Hu et al. [155]
are (1) Voronoi partitioning-based area assignment to the robots and (2) the proposed
DDPG-based DRL technique for the robots to have a collision-avoidance policy and evade
objects in the field. The control of the robots is provided by the underlying neural network.
The authors use a Prioritised Experience Replay (PER) [156] to store human demonstrations.
The simulation was performed within Gazebo [157] and three Turtlebot3 Waffle Pi mobile
robots were used to explore an unknown room during validation. Bromo [53], in his
thesis, used MADRL on a team of UAVs using a modified version of PPO to map an area.
During training, the policy function is shared among the robots and updated based on their
current paths.
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Figure 6. A multi-robot coverage scenario under continuous connectivity: the black, orange,
and white cells represent the unvisited, previously visited, and the current cells of robots, respectively.
The dotted lines represent the available communication channels among the robots. The goal is to
cover the entire environment while maintaining a connected communication network throughout
the mission.

For multi-UAV coverage, Tolstaya et al. [110] use graph neural networks (GNNs) [158]
as a way for the robots to learn the environment through the abstractions of nodes and
edges. GNNs have been successfully used in various coordination problems for multi-robot
systems, and more recently, Graph Convolution Networks (GCNs) have been used [158].
The authors in this paper use “behavior cloning” as a heuristic to train the GNN on robots’
previous experiences. In order for the individual UAVs to learn information distant from
their position, they use up to 19 graph operation layers. PPO is the base DRL algorithm
in this paper. Aydemir and Cetin [159] proposed a distributed system for the multi-
UAV coverage in partially observable environments using DRL. Only the nearby robots
share their state information and observations with each other. Blumenkamp et al. [111]
developed a framework for decentralized coordination of an MRS. The RL aspect of their
system uses GNNs and PPO. The agents train and develop a policy within a simulated
environment and then the physical implementation of the policy with the robots occurs
in a test environment. The authors also compare centralized control and communication
levels to decentralized decision-making.

Similarly, Zhang et al. [160] have also proposed to employ graph neural networks for
multi-robot exploration. The authors emphasize the “coarse-to-fine” exploration method of
the robots, where the graph representation of the state space to be explored is explored in
“hops” of greater detail. Simulation experiments involved up to 100 robots. Exploration
can also be used for searching for a target asset. Liu et al. [84] have proposed a novel
algorithm for cooperative search missions with a group of unmanned surface vehicles.
Their algorithm makes use of two modules based on a divide-and-conquer architecture:
an environmental sense module that utilizes sensing information and a policy module
that is responsible for the optimal policy of the robots. Gao and Zhang [161] study a
cooperative search problem while using MADRL as the solution method. The authors
use independent learners on the robots to find the Nash equilibrium solution with the
incomplete information available to the robots. Setyawan et al. [101] also use MADRL for
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multi-robot search and exploration. Unlike the previously mentioned studies, the authors
have adopted a hierarchical RL approach, where they break down an abstraction of the
global problem space into smaller sub-problem levels in order for the robot system to
more efficiently learn in an actor–critic style. The lowest level in this order decides the
robots’ motor actions in the field. Sheng et al. [162] propose a novel probability density
factorized multi-agent DRL method for solving the multi-robot reliable search problem.
According to this study, when each robot follows its own policy to maximize its own
reliability metric (e.g., probability of finding the target), the global reliability metric is also
maximized. The authors implement the proposed technique on multiple simulated search
environments including offices and museums, as well as on real robots. Another study
in a similar application domain is done by Xia et al. [127]. Specifically, the authors have
used MADRL for the multi-agent multi-target hunting problem. The authors make use of
a feature embedding block to extract features from the agents’ observations. The neural
network architecture uses fully connected layers and a Gated Recurrent Unit (GRU) [163].
Simulation experiments included up to 24 robots and 12 targets. Caccavale et al. [96]
proposed a DRL framework for a multi-robot system to clean and sanitize a railway station
by coordinating the robots’ efforts for maximum coverage. Their approach is decentralized
where each robot runs its own CNN and the foundation of their technique is DQN. Note
that the robots learn to cooperate online while taking the presence of the passengers
into account.

Not only with the ground and aerial vehicles, but MADRL has also been used for ocean
monitoring with a team of floating buoys as well. Kouzehgar et al. [105] proposed two area
coverage approaches for such monitoring: (1) swarm-based (i.e., the robots follow simple
swarming rules [164]) and (2) coverage-range-based (i.e., the robots with fixed sensing
radius). The swarm-based model was trained using MADDPG and the latter model MARL
was trained using a modified (consisting of eliminating reward sharing, collective reward,
sensing their own share of the reward function, and independence based on individual
reward) MADDPG algorithm.

Communication is one of the most important methods of coordination among a group
of robots. More often than not, when and with whom the communication will happen is
pre-defined. However, if the robots are non-cooperative, such an assumption does not work.
Blumenkamp and Prorok [118] propose a learning model based on reinforcement learning
that allows individual, potentially non-cooperative, agents to manipulate communication
policies while the robots share a differentiable communication channel. The authors use
GNN with PPO in their method. The proposed technique has also been successfully
employed for multi-robot path planning. Along a similar path, Liang et al. [165] proposed
the use of DRL to learn a high-level communication strategy. The authors presume the
environment to be partially observable and they take a hierarchical learning approach.
The implemented application is a cooperative patrolling field with moving targets. Meng
and Kan [102] also put multi-robot communication at the forefront of their study while
tackling the coverage problem. The goal of the robots has to cover an entire environment
while maintaining connectivity in the team, e.g., via a tree topology. The authors use a
modified version of MADDPG to solve the stated problem.

MADRL has also been used for sensor coverage, alongside area coverage [166].
In sensor-based coverage, the objective is to cover all the points in an environment with
a sensor footprint. An example of this is communication coverage, where the goal of a
team of UAVs is to provide Wi-Fi access to all the locations in a particular region. This
might be extremely valuable after losing communication in a natural disaster, for example.
The authors in [167] presented a solution for UAV coverage using mean field games [168].
This study was targeted toward UAVs that provide network coverage when network
availability is down due to natural disasters. The authors constructed the Hamilton–Jacobi–
Bellman [169] and Fokker–Planck–Kolmogorov [170] equations via mean field games. Their
proposed neural network-based learning method is a modification of TRPO [44] and named
mean-field trust region policy optimization (MFTRPO). Liu et al. [104] proposed a coverage

346



Sensors 2023, 23, 3625

method to have a system of UAVs cover an area and provide communication connectiv-
ity while maintaining energy efficiency and fairness of coverage. The authors utilize an
actor–critic-based DDPG algorithm. Simulation experiments were carried out with up to
10 UAVs. Similar to these, Nemer et al. [171] proposed a DDPG-based MADRL framework
for multi-UAV systems to provide better coverage, efficiency, and fairness for network cov-
erage of an area. One of the key differentiating factors of this paper is that the authors also
model energy-efficient controls of the UAVs to reduce the overall energy consumption by
them during the mission. For a similar communication coverage application, Liu et al. [172]
proposed that the UAVs have their own actor-critic networks for a fully-distributed control
framework to maximize temporal mean coverage reward.

3.2. Path Planning and Navigation

In multi-robot path planning (or path finding), each robot is given a unique start and a
goal location. Their objective is to plan a set of joint paths from the start to the goal, such that
some pre-defined criteria, such as time and/or distance, are optimized and the robots avoid
colliding with each other while following the paths. An illustration is presented in Figure 7.
Planning such paths optimally has been proven to be NP-complete [173]. Like A∗ [174],
which is used for single-agent path planning in a discreet space, M∗ [175] can be used
for an MRS. Unfortunately, M∗ lacks scalability. There exist numerous heuristic solutions
for such multi-robot planning that scale well [176–179]. Overhead cameras and GPS can
be used to localize the robots in indoor and outdoor applications, respectively. In GPS
and communication-denied environments, vision systems can be used as a proxy [180].
Recently, researchers have started looking into deep reinforcement learning solutions to
solve this notoriously difficult problem.

Figure 7. An illustration of multi-robot path planning with 4 e-puck robots, where the starting
positions are shown and each robot’s goal position is its orthogonal robot’s starting location. The boxes
represent the obstacles in the environment.

One of the most popular works that use MADRL for collision avoidance is due to
Long et al. [22]. They propose a decentralized method using PPO while using CNNs to
train the robots, which use their onboard sensors to detect obstacles. Up to 100 robots were
trained and tested via simulation. Lin et al. [109] proposed a novel approach for centralized
training and decentralized execution for a team of robots that need to concurrently reach
a destination while avoiding objects in the environment. The authors implement their
method using CNNs and PPO as well. The learned policy maps LiDAR measurements to
the controls of the robots. Bae et al. [72] also use CNNs to train multiple robots to plan
paths. The environment is treated as an image where the CNN extracts the features from
the environment, and the robots share the network parameters.
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Fan et al. [107] have proposed a DRL model technique using the policy gradient
method to train the robots to avoid collisions with each other while navigating in an
environment. The authors use LiDAR data for training, and, during testing, this drives
the decision-making process to avoid collisions. The authors then transfer the learned
policy to physical robots for real-world feasibility testing. The simulation included up to
100 robots with the objective of avoiding collisions with each other, static objects, and, finally,
pedestrians. It builds on their previous work from 2018 [131]. Wang et al. [181] also
use CNNs for multi-robot collision avoidance and coordination. The authors also use a
recurrent module, namely Long Short Term Memory (LSTM) [182] to memorize the actions
of the robots to smooth the trajectories. The authors have shown that the combined use of
CNN and LSTM can produce smoother paths for the robots in a continuous domain.

Yang et al. [71] use a priori knowledge to augment the DDQN algorithm to improve
the learning efficiency in multi-robot path planning. To avoid random exploration at
the beginning of the learning process, the authors have used A∗ [174] paths for single
robots in static environments. This provides better preliminary Q-values to the networks,
and, thus, the overall learning process converges relatively quickly. Wang and Deng [39]
propose a novel neural network structure for task assignment and path planning where one
network processes a top–down view of the environment and another network processes
the first-person view of the robot. The foundation of the algorithm is also based on DQN.
Na et al. [49] have used MADRL for collision avoidance among autonomous vehicles
via modeling virtual pheromones inspired by nature. The authors also used a similar
pheromone-based technique, along with a modified version of PPO in [55] for the same
objective. Ourari et al. [123] also used a biologically-inspired method (specifically from the
behavior of flocks of starlings) for multi-robot collision avoidance while a DRL method,
namely PPO, is at its foundation. Their method is executed in a distributed manner and
each robot incorporates information from k-nearest neighbors.

For multi-robot target assignment and navigation, Han, Chen, and Hao [117] pro-
posed to train the policy in a simulated environment using randomization to decrease the
performance transfer from simulation to the real world. The architecture they developed
utilized communication amongst the robots to share experiences. They also developed a
training algorithm for navigation policy, target allocation, and collision avoidance. It uses
PPO as a foundation. Moon et al. [38] used MADRL for the coordination of multiple UAVs
that track first responders in an emergency response situation. One of the key ideas behind
their method is the inclusion of the Cramér–Rao lower bound into the learning process.
The intent of the authors was to use the DRL-based UAV control algorithm to accurately
track the target(s) of the UAV system. They used DDQN as their foundation technique.

Marchesini and Farinelli [74] extended their work in [75] by incorporating an Evo-
lutionary Policy Search (EPS) for multi-robot navigation. It had two main components:
navigation (reaching a target) and avoiding collisions. They extended their prior work [75]
(using DDQN and LSTM at its core) by incorporating the EPS, which integrated random-
ization and genetic learning into the MARL technique to enhance the ability for the policy
to explore and help the robots learn to navigate better.

Lin et al. [112] developed a novel deep reinforcement learning approach for coordinat-
ing the movements of an MRS such that the geometric center of the robots reached a target
destination while maintaining a connected communication graph throughout the mission.
Similarly, Li et al. [183] proposed a DRL method for multi-robot navigation while main-
taining connectivity among the robots. The presented technique used constrained policy
optimization [184] and behavior cloning. Real-world experiments with five ground robots
show the efficacy of the proposed method. Maintaining such connectivity has previously
been studied in an information collection application [185] applied to precision agriculture,
albeit from a combinatorial optimization perspective [18].

On the other hand, Huang et al. [167] proposed a deep Q-learning method for main-
taining connectivity between leader and follower robots. Interestingly, the authors do not
use CNNs, instead, they rely only on dense fully connected layers in their network. Similar
to these, Challita et al. [167] developed a novel DRL framework for UAVs to learn an opti-
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mal joint path while maintaining cellular connectivity. Their main contribution is founded
in game theory. The authors used an Echo State Network (ESN), a type of recurrent neural
network. In a similar setting, the authors’ other work [186] studied minimizing interference
from the cellular network using MADRL. Wang et al. [187] proposed to incorporate envi-
ronmental spatiotemporal information. The proposed method used a global path planning
algorithm with reinforcement learning at the local level via DDQN combined with an LSTM
module. Choi et al. [92] also used a recurrent module, namely GRU along with CNN for
the multi-agent path planning problem in an autonomous warehouse setting. The base of
their work was the popular QMIX [188] algorithm, a form of value function factorization
algorithm similar to VDN [63]. Another study of multi-robot path planning for warehouse
production scenarios was carried out by Li and Guo [128]. They proposed a supervised
DRL approach efficient path planning and collision avoidance. More specifically, using
imitation learning and PPO, Li and Guo aimed to increase the learning performance of the
vehicles in object transportation tasks.

Yao et al. [115] developed a map-based deep reinforcement learning approach for
multi-robot collision avoidance, where the robots do not communicate with one another
for coordination. The authors used an egocentric map as the basis of information that the
robots use to avoid collisions. Three robots have been used for real-world implementations.
Similar to this, Chen et al. [189] also did not rely on inter-robot communication for multi-
robot coordinated path planning and collision avoidance while also navigating around
pedestrians. Chen et al. [94]’s study on multi-robot path planning also considered non-
communicating and decentralized agents using DDQN. Simulation experiments involved
up to 96 robots.

Tan et al. [116] have developed a novel algorithm, called DeepMNavigate that uses
local and global map information, PPO, and CNNs for navigation and collision avoidance
learning. Their algorithm also makes use of multi-staged training for robots. Simulation
experiments involved up to 90 robots. Chen et al. [190] proposed a method of using DRL
in order for robots to learn human social patterns to better avoid collisions. As human
behaviors are difficult to model mathematically, the authors noted that social rules usually
emerge from local interactions, which drives the formulation of the problem. Chen et al. [87]
proposed a novel DRL framework using hot-supervised contrastive loss (via supervised
contrastive learning) combined with DRL loss for pathfinding. The robots do not use
communication. They also incorporated a self-attention mechanism in the training. Their
network structure used CNNs with DQN while up to 64 agents have been used for testing
the approach in simulation. Navigation control using MADRL was also studied in [88],
where the authors showed that the robots could recover from reaching a dead end. Alon
and Zhou [135] have proposed a multi-critic architecture that also included multiple value
networks. Path planning is also important in delivering products to the correct destinations.
Ding et al. [91] have proposed a DQN-based MADRL technique for this specific application
while combining it with a classic search technique, namely the Warshall–Floyd algorithm.

Transfer learning and federated deep learning have also been used for multi-robot
path planning. In transfer learning, the assumption that the training and the testing data
come from the same domain does not need to hold, which makes it attractive in many
real-world scenarios, including robotics [191]. The objective here is to transfer the learning
from one or more source domains to a potentially different target domain. Wen et al. [133]
developed two novel reinforcement learning frameworks that extend the PPO algorithm
and incorporate transfer learning via meta-learning for path planning. The robots learn
policies in the source environments and obtain their policies following the proposed training
algorithm. Next, this learning is then transferred to target environments, which might
have more complex obstacle configurations. This increases the efficiency of finding the
solutions in the target environments. The authors used LSTM in their neural network for
memorizing the history of robot actions. In federated deep learning, training data might
still be limited similar to the transfer learning applications. In this case, each agent has its
own training data instead of using data shared by a central observer [192]. For example,
each robot might have access to a portion of the environment, and they are not allowed to
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share the local images with each other, where the objective is still to train a high-quality
global model. Luo et al. [193] have employed such a federated deep RL technique for
multi-robot communication. The authors, in this paper, avoid blockages in communication
signals due to large obstacles while avoiding inter-robot collisions. It has been shown
that the proposed semi-distributed optimization technique is 86% more efficient than a
central RL technique. Another federated learning-based path planning technique can be
found in [130]. To reduce the volume of exchanged data between a central server and
an individual robot, the proposed technique only shares the weights and biases of the
networks from each agent. This might be significant in scenarios where the communication
bandwidth is limited. The authors show that the presented technique in their paper offers
higher robustness than a centralized training model.

PRIMAL is a multi-agent path-finding framework that uses MADRL and is proposed
by Sartoretti et al. [194]. PRIMAL used the A3C [45] algorithm and an LSTM module.
It also makes use of imitation learning whereby each agent can be given a copy of the
centrally trained policy by an expert [195]. One of the highlights of this paper is that the
proposed technique could scale up to 1024 robots albeit in simulation. PRIMAL2 [196] is the
advanced version of PRIMAL and was proposed by Damani et al. in 2021. It also uses A3C
as its predecessor, offers real-time path re-planning, and scales up to 2048 robots—double
that which PRIMAL could do.

Curriculum learning [197] has also been used for multi-robot path planning in [198],
where the path planning is modeled as a lesson, going from easy to hard difficulty levels.
An end-to-end MADRL system for multi-UAV collision avoidance using PPO has been
proposed by Wang et al. [57]. Asayesh et al. [137] proposed a novel module for safety
control of a system of robots to avoid collisions. The authors use LSTM and a Variational
Auto-Encoder [199]. Li [200] has proposed using a lightweight decentralized learning
framework for multi-agent collision avoidance by using only a two-layer neural network.
Thumiger and Deghat [56] used PPO with an LSTM module for multi-UAV decentralized
collision avoidance. Along the same line, Han et al. [54] used GRUs and their proposed
reward function used reciprocal velocity obstacle for distributed collision avoidance.

For collaborative motion planning with multiple manipulators, Zhao et al. [108]
proposed a PPO-based technique. The manipulators learned from their own experiences,
and then, a common policy was updated while the arms continued to learn from individual
experiences. This created differences in accuracy or actuator ability among the manipulators.
Similarly, Gu et al. [50] proposed a method for asynchronous training of manipulator arms
using DDPG and Normalized Advantage Function (NAF). Real-world experiments were
carried out with two manipulators. Prianto et al. [143] proposed the use of the Soft Actor–
Critic (SAC) algorithm [14] due to its efficiency in exploring large state spaces for path
planning with a multi-arm manipulator system, i.e., each arm has its own unique start
and goal configurations. Unlike the previous works in this domain, the authors used
Hindsight Experience Replay (HER) [201] for sample-efficient training. On the other hand,
Cao et al. [144] proposed a DRL framework for a multi-arm manipulator to track trajectories.
Similarly to [143], Cao et al. also used SAC as their base algorithm. The main distinguishing
factor of this study is that the multiple manipulator arms were capturing a non-cooperative
object. Results show that the dual-arm manipulator can capture a rotating object in space
with variable rotating speeds. An illustration of such a dual-arm manipulation application
is shown in Figure 8.

Everett et al. [202] have proposed to use LSTM and extend their previous DRL al-
gorithm [189] for multi-robot path planning to enhance the ability of the robots to avoid
collisions. Semnani et al. [203] proposed an extension of the work proposed in [202] by
using a new reward function for multi-agent motion planning in three-dimensional dense
spaces. They used a hybrid control framework by combining DRL and force-based motion
planning. Khan et al. [136] have proposed using GCN and a DRL algorithm called Graph
Policy Gradients [134] for unlabeled motion planning of a system of robots. The multi-robot
system must find the goal assignments while optimizing their trajectories.
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Song et al. [90] designed a new actor–critic algorithm and a method for extracting the
state features via a local-and-global attention module for a more robust MADRL method
with an increasing number of agents present in the environment. The simulated experi-
ments used dynamic environments with simulated pedestrians. Zhang et al. [204] proposed
a method for using a place-timed Petri net and DRL for the multi-vehicle path planning
problem. They used a curriculum-based DRL model. Huang et al. [205] proposed a vision-
based decentralized policy for path planning. The authors use Soft Actor–Critic with auto
encoders [206] as their deep RL technique for training a multi-UAV system. The 3D images
captured by the UAVs and their inertial measurement values were used as inputs, whereas
the control commands were rejected by the neural network. Simulation experiments with
up to 14 UAVs were performed within the Airsim simulator. Jeon et al. [207] proposed
to use MADRL to improve the energy efficiency of coordinating multiple UAVs within a
logistic delivery service. The authors show that their model performs better in terms of
consumed energy while delivering similar numbers of goods.

Figure 8. An illustration of dual-arm manipulation is shown using a Baxter robot where each arm
might act as an RL agent.

MADRL has also found its way into coordinating multiple autonomous vehicles.
The authors in [208] provide a solution to the “double merge” scenario for autonomous
driving cars that consists of three primary contributions in this field: (1) the variance of
the gradient estimate can be minimized without Markovian assumptions, (2) trajectory
planning with hard constraints to maintain the safety of the maneuver [209], and (3)
introduction of a hierarchical temporal abstraction [25] that they call an “Option Graph”
to reduce the effective horizon which ultimately reduces the variance of the gradient
estimation [210,211]. Similar to this, Liang et al. [212] have modeled the cooperative lane
changing problem among autonomous cars as a multi-agent cooperation problem and
solved it via MADRL. Specifically, the authors have used a hierarchical DRL method that
breaks down the problem into “high-level option selection” and “low-level control” of the
agent. Real-world experiments were performed using a robotic test track with four robots,
where two of them performed the cooperative lane change.

Finally, Sivanathan et al. [119] proposed a decentralized motion planning framework
and a Unity-based simulator specifically for a multi-robot system that uses DRL. The simu-
lator can handle both independent learners and common policies. The simulator was tested
with up to four cooperative non-holonomic robots that shared limited information. PPO
was used as the base algorithm to train the policies.

3.3. Swarm Behavior Modeling

Navigation of a swarm of robots through a complex environment is one of the most
researched topics in swarm robotics. To have a stable formation, each robot should be aware
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of the positions of the nearby robots. A swarm consisting of miniature robots might not have
a sophisticated set of sensors available. For example, a compass can be used to know the
heading of the robot. Additionally, range and bearing sensors can also be available [213,214].
Infrared sensors can be used for communication in such a swarm system [215]. Inspired by
swarms of birds or schools of fish, robots usually follow three simple rules to maintain such
formations: cohesion, collision avoidance, and velocity alignment [164]. It is no surprise
that multi-agent deep reinforcement learning techniques have been extensively employed
to mimic such swarm behaviors and solve similar problems. An illustration of forming a
circle with a swarm of five e-puck robots is presented in Figure 9.

Figure 9. An illustration of pattern (circle) formation with five e-puck robots which are guarding a
box in the center.

Zhu et al. [216] proposed a novel algorithm for multi-robot flocking. The algorithm
builds on MADDPG and uses PER. Results from three robots show that the proposed
algorithm improves over the standard MADDPG. Similarly, Salimi and Pasquier [106] have
proposed the use of DDPG with centralized training and a decentralized execution mecha-
nism to train the flocking policy for a system of UAVs. Such flocking with UAVs might be
challenging due to complex kinematics. The authors show that the UAVs reach the flocking
formation using a leader–follower technique without any parameter tuning. Lan et al. [217]
developed a control scheme for the cooperative behavior of a swarm. The basis of their
control scheme is pulled from joint multi-agent reinforcement learning theory, where the
robots not only share state information, but also a performance index designed by the
authors. Notably, the convergence of the policy and the value networks is theoretically
guaranteed. Following the above-mentioned works, Kheawkhem and Khuankrue [99] also
proposed using MADDPG to solve the multi-agent flocking control problem.

Qiu et al. [100] used MADRL to improve sample efficiency, reduce overfitting, and al-
low better performance, even when agents had little or “bad” sample data in a flocking
application. The main idea was to train a swarm offline with demonstration data for pre-
training. The presented method is based on MADDPG. Not only for coverage as described
earlier, but GNNs are also popular in general for coordination in a swarm system, especially
in spatial domains. For example, Kortvelesy and Prorok [218] developed a framework,
called ModGNN, which aimed to provide a generalized, neural network framework, that
can be applied to varying multi-robot applications. The architecture is modular in nature.
They tested the framework for a UAV flocking application with 32 simulated robots.

Yan et al. [219] studied flocking in a swarm of fixed-wing UAVs operating in a contin-
uous space. Similar studies on flocking can also be found in more recent papers from these
authors [83,220]. Similar to Yan et al.’s body of work, Wang et al. [142] proposed a TD3-
based [221] solution for a similar application—flocking with fixed-wing UAVs where the au-
thors test the method with up to 30 simulated UAVs. Not strictly for swarms, Lyu et al. [47]
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addressed the multi-agent flocking control problem specifically for a multi-vehicle system
using DDPG with centralized training and decentralized execution. Notably, the authors
take connectivity preservation into account while designing their reward function—the
maximum distance could not go beyond the communication range and the minimum
distance was kept at ds, a physically safe distance between two vehicles. Interestingly,
the mission waypoints are pre-defined in this paper. Bezcioglu et al. [48] also study flocking
in a swarm system using DDPG and CNN, and tested it with up to 100 robots. The authors
have used bio-inspired self-organizing dynamics for the joint motion of the robots.

Wang et al. [113] used MADRL to organize a swarm in specific patterns using auto-
encoders [222] to learn compressed versions of the states and they tested the presented
solution with up to 20 robots. Li et al. [46] proposed using a policy gradient method,
namely MADDPG, with an actor–critic structure for circle formation control with a swarm
of quad-rotors. Although circle formation is a popular application [223–226], this is one of
the few studies that employed MADRL techniques. Sadhukhan and Selmic [121] have used
PPO in order to train a multi-robot system to navigate through narrow spaces and reform
into a designated formation. They used two reward schemes (one individual to the agents
and one depending on the contributions to the team) and the system was centrally trained.
In [125], Sadhukhan and Selmic extended their prior works by proposing a bearing-based
reward function for training the swarm system, which utilizes a single policy shared among
the robots.

Chen et al. [97] have developed an improved DDPG to enhance the ability of a robot
to learn human intuition-style navigation without using a map. Furthermore, they create a
parallel version of DDPG to extend their algorithm to a multi-robot application. Thereby,
providing the robots with a method of sharing information/experiences in order to maintain
formation, navigate an indoor environment, and avoid collisions. Qamar et al. [138]
proposed novel reward functions and an island policy-based optimization framework
for multiple target tracking using a swarm system. Along a similar line, Ma et al. [98]
developed a DDPG-based algorithm for multi-robot formation control around a target,
particularly in a circle around a designated object. The algorithm allows the robots to
independently control their actions using local teammates’ information.

Recently, Zhang et al. [124] have also proposed a target encirclement solution that
uses a decentralized DRL technique. The main contribution of their work is the use of
three relational graphs among the robots and other entities in the system designed using a
graph attention network [227]. In their simulation experiments, the authors use six robots
encircling two targets. Similarly, Khan et al. [134] have used a graph representation of the
robot formation and proposed using graph convolutional neural networks [158,228,229]
to extract features, i.e., local features of robot formations, for policy learning. Simulation
policies were trained on three robots and then the policy is transferred to over 100 robots for
testing. The robots are initialized to certain positions and are to form a specific formation
while reaching an end goal.

Zhou et al. [230] recognized the problem of computational complexity with existing
MADRL methods for multi-UAV multi-target tracking while proposing a decentralized
solution. Their proposed solution has its root in the reciprocal altruism mechanism of
cooperation theory [231]. The experience replay is shared among the UAVs in this work.
Zhou et al. [139] also study target tracking with a swarm of UAVs. Not only do they learn
to track a target, but the robots also learn to communicate better (i.e., the content of the
message) for such tracking following the proposed policy gradient technique.

Yasuda and Ohkura [78] used a shared replay memory along with DQN to accelerate
the training process for the swarm with regard to path planning. By using more robots
contributing their individual experiences to the replay memory, the swarm system was able
to learn the joint policy faster. Communication is an important aspect of swarm systems.
Usually, researchers use pre-defined communication protocols for coordination among
the swarm robots. Hüttenrauch et al. [140] proposed a histogram-based communication
protocol for swarm coordination, where the robots use DRL to learn decentralized policies
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using TRPO [44]. An example task is graph building formation, where the robots aim
to cover a certain area through coordination. Another considered task is establishing a
communication link between the robots and connecting two points on a map. Along
the same line, in 2019, Hüttenrauch et al. [141] used TRPO again to find MADRL-based
solutions for rendezvous and pursuit–evasion in a swarm system. The main contribution
of their work is the incorporation of Mean Embedding [232] into the DRL method they use
to simplify the state information each agent obtains from other agents. Up to 100 robots
were used in simulation experiments.

3.4. Pursuit-Evasion

In a pursuit–evasion game, usually, multiple pursuers try to capture potentially multi-
ple evaders. When all the evaders are captured or a given maximum time elapses, the game
finishes [233–235]. For a detailed taxonomy of such problems, the reader is referred to [233].
Some of the sensors that the robots might use in this application include sonar, LiDAR, and
3D cameras, among others. A unified model to analyze data from a suit of sensors can also
be used [236]. An illustration is shown in Figure 10.

Egorov [59] proposed a solution for the classic pursuit–evasion problem [233] using
an extension of single-agent DQN, called multi-agent DQN (MADQN). The state space
is represented as a four-channel image consisting of a map, opponent location(s), ally
location(s), and a self-channel. Yu et al. [40] proposed the use of a decentralized training
method for pursuit evasion where each agent learns its policy individually and used limited
communication with other agents during the training process. This is unlike traditional
MADRL techniques where the training is centralized. The execution of the policy for each
agent is also decentralized.

Figure 10. An illustration of multi-robot pursuit–evasion scenario where UAVs 1 and 2 have captured
and “grounded” UAV 3, which is an evader robot.

Wang et al. [23] proposed to extend a MARL algorithm called cooperative double
Q-learning (Co-DQL) for the multi-UAV pursuit–evasion problem. The foundation of
Co-DQL is Q-networks with multi-layer perceptrons. Unlike traditional applications where
the evader might move around randomly, in this paper, the authors assume that the target
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also learns to move intelligently up to a certain degree via RL. In [237], the authors consider
a setup with one superior evader and multiple pursuers. They use a centralized critic
model, where the actors are distributed. Unlike traditional broadcasting techniques, the au-
thors smartly use a leader–follower line topology network for inter-robot communication
that reduces the communication cost drastically. Although not strictly pursuit-evasion,
Zhang et al. [76] use MADRL for coordinated territory defense, which is modeled as a game
where two defender robots coordinate to block an intruder from entering a target zone.

Gupta et al. [81] argue that instead of using a centralized multi-agent DRL framework,
where the model learns joint actions from joint states and observations, a more sophisticated
parameter-sharing approach can be used. A drawback of the centralized learning system
is that the complexity grows exponentially with the number of agents. The authors use
TRPO as their base algorithm and the policy is trained with the experiences of all agents
simultaneously via parameter sharing. The multi-agent scenarios they use for testing
the quality of the proposed solution are pursuit–evasion and a multi-walker system with
bipedal walkers.

3.5. Information Collection

The objective of information gathering about an ambient phenomenon (e.g., temper-
ature monitoring or weed mapping) using a group of mobile robots is to explore parts
of an unknown environment, such that uncertainty about the unseen locations is mini-
mized. Relevant sensors for information gathering include RGB, Normalized Difference
Vegetation Index (NDVI), or multi-spectral cameras, and thermal and humidity sensors,
among others. This is unlike coverage, where the goal is to visit all the locations. There
are two main reasons for this: (1) information (e.g., temperature measurements) in nearby
points are highly correlated, and, therefore, the robots do not need to go to all the locations
within a neighborhood [238]; and (2) the robot might not have enough battery power to
cover the entire environment. This is especially true in precision agriculture, where the
fields are usually too large to cover [18]. An illustration is shown in Figure 11, where the
robots are tasked with collecting information from their unique sub-regions, and through
communication, they will need to learn the underlying model.

Figure 11. An illustration of multi-robot information collection. The environment is divided into four
sub-regions and the underlying heatmap represents measures of soil acidity in parts of the USA [239].
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Viseras and Garcia [240] have developed a novel DRL algorithm based on the popular
A3C [45] algorithm. They also provide a model-based version of their original algorithm
for gathering information, which uses CNNs. Said et al. [241] have proposed a mean
field-based DRL technique that uses an LSTM module—a type of recurrent neural net-
work for multi-robot information collection about an unknown ambient phenomenon.
The robots are battery-powered with limited travel ranges. Recently, Wei and Zheng [67]
also used MADRL for multi-robot informative path planning. They develop two strategies
for cooperative learning: (1) independent Q-learning with credit assignment [4], and (2)
sequential rollout using a GRU. Along the same line, Viseras et al. [85] have proposed using
a MADRL framework for a multi-robot team to monitor a wildfire front. The two main
components in this framework are (1) individually-trained Q-learning robots and (2) value
decomposition networks. The authors have used up to 9 UAVs for testing the efficiency of
their presented work.

3.6. Task Allocation

Multi-robot task allocation (MRTA) is a combinatorial optimization problem. Given a
set of n robots and m tasks, the goal is to allocate the robots to the tasks such that a given
utility function is optimized. Now, if multiple robots need to form a team to complete
a single task, then it is a single-task, multi-robot allocation problem. On the other hand,
if one robot can offer its services to multiple tasks, then it is called a single-robot, multi-task
allocation problem. The robots might be connected to a central server via Wi-Fi, e.g., in a
warehouse setting, and can receive information about tasks and other robots. Similarly,
communication can happen with other robots via this central server using Wi-Fi as well.
Overhead cameras or tracking systems can be used for robot localization in such a scenario.
Comprehensive reviews about such MRTA concepts and solutions can be found in [242,243].
An example task allocation scenario is presented in Figure 12.

Figure 12. An illustration of multi-robot task allocation: there are 3 iRobot Roombas (r1–r3) and
3 rooms to clean. In a one-to-one matching scenario, the objective would be to assign one Roomba to
a certain room. However, as room 2 is larger in size, two robots might be needed to clean it, whereas
the third robot (r3) might be assigned to rooms 1 and 3.
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Elfakharany and Ismail [132] developed a novel multi-robot task allocation and naviga-
tion method. This is the first work to propose a MADRL method to tackle task allocation, as
well as the navigation problem. They use PPO with actor–critic. Their centralized training
and decentralized execution method uses CNNs. Paul et al. [129] proposed to use DRL for
multi-robot task allocation. They proposed a neural network architecture that they called
a Capsule Attention-based Mechanism, which contains a Graph Capsule Convolutional
Neural Network (GCapCN) [244] and a Multi-head Attention mechanism (MHA) [245,246].
The underlying architecture is a GNN. The task graph is encoded using GCapCN and
combined with the context, which contains information on the robot, time, and neighbor-
ing robots. This information is then decoded with the MHA. Although not strictly task
assignment, MADRL has been used for forming teams of heterogeneous agents (such as
ambulance and fire brigade in a rescue operation) to complete a given task by Goyal [86].
Goyal has applied this technique for training a team of fire brigades to collaboratively
extinguish a fire in a city within the Robocup Rescue Simulator.

Devin et al. [247] developed a novel method of compartmentalizing a trained deep
reinforcement learning model into task-specific and robot-specific components. Due to
this, the policies can be transferred between robots and/or tasks. Park et al. [114] propose
a PPO-based DRL technique for task allocation. Their solution is tested with single-task,
multi-robot, and time-extended assignments. They use an encoder–decoder architecture
to represent robots and tasks, where a cross-attention layer is used to derive the relative
importance of the tasks for the robots.

Scheduling tasks is another important aspect of task planning. Wang and Gombo-
lay [82] used GNNs and imitation learning for a multi-robot system to learn a policy for task
scheduling. The proposed model is based on graph attention networks [227]. The schedul-
ing policy is first learned using a Q-network with two fully-connected layers. Imitation
learning is then used to train the network from an expert dataset that contains schedules
from other solutions. On the other hand, Johnson et al. [93] study the problem of dynamic
flexible job shop scheduling, where an assembly line of robots must dynamically change
tasks for a new job series over time. The robots learn to coordinate their actions in the
assembly line. Agrawal et al. [52] performed a case study on a DRL approach to handling a
homogeneous multi-robot system that can communicate while operating in an industry
setting. PPO is used as the foundation algorithm. The objective of this work is to train the
robots to work with each other to increase throughput and minimize the travel distances to
the allocated tasks while taking the current states of the robots and the machines on the
floor into account.

One of the most recent studies on deep RL-based MRTA is due to [89], which aims
to use DRL for the parallelization of processing tasks for MRTA. The authors base their
method on Branching Dueling Q-Network [248] with respect to multi-robot search and
rescue tasks. In such a network, multiple branches of a network shares a common decision-
making module where each branch handles one action dimension. This helps to reduce
the curse of dimensionality in the action space. In total, 20 robots have been used within a
simulation to test the feasibility of the proposed technique.

A very different and interesting task assignment application in defense systems is
studied by Liu et al. [120]. The authors presented a DRL framework for multi-agent
task allocation for weapon target assignment in air defense systems. They use PPO-clip
along with a multi-head attention mechanism for task assignments of a (army) general
and multiple narrow agents. The neural network architecture uses fully connected layers
and a GRU. The major aim of this work is to increase processing efficiency and solution
speed of the multi-agent task assignment problem at a large scale. Simulation experiments
were carried out in a virtual digital battlefield. The experimental setup includes offensive
forces and defensive forces. The defensive forces have places to protect and need to make
real-time task allocation decisions for defense purposes. The defensive forces are tested
with 12 and the offensive forces are tested with a total of 32 agents.
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3.7. Object Transportation

To transport an object using two or more cooperative mobile robots, the goal is to
design a strategy where the robots’ actions are highly coordinated. Communication among
the robots may or may not be possible. The robots can use depth cameras or laser scanners
for avoiding obstacles. On the other hand, an optic-flow sensor can be used to determine if
the pushing force from the robot has resulted in any object movement or not [249]. A force-
torque sensor can be used on the robot to measure the force amount placed on the object.
For a comprehensive review of this topic, please refer to [250]. An illustration is shown in
Figure 13.

Zhang et al. [73] have used a modified version of DQN that controls each robot
individually without a centralized controller or a decision maker. To quantitatively measure
how well the robots are working together, they use the absolute error of estimated state–
action values. The main idea is to use DQN to have homogeneous robots carry a rod
to a target location. Each robot acts independently with neither leading nor following.
Niwa et al. [251] proposed a MADRL-based solution to the cooperative transportation and
obstacle removal problem. The basis of their solution is to use MARL to train individual
robots’ decentralized policies in a virtual environment. The policies are trained using
MADDPG [61]. The authors then use the trained policies on real teams of robots to validate
the effectiveness. The robots are supposed to push a target object to a final waypoint
while moving a physical barrier out of the way to accomplish the task. Manko et al. [77]
used CNN-based DRL architecture for multi-robot collaborative transportation where
the objective is to carry an object from the start to the goal location. Eoh and Park [79]
proposed a curriculum-based deep reinforcement learning method for training robots to
cooperatively transport an object. In a curriculum-based RL, past experiences are organized
and sorted to improve training efficiency [252]. In this paper, a region-based curriculum
starts by training robots in a smaller area, before transitioning to a larger area and a single-
robot to multi-robot curriculum begins by training a single robot to move an object, then
transferring that learned policy to multiple robots for multi-robot transportation.

Figure 13. An illustration of multi-robot object transportation is presented where 2 iRobot Create
robots carry a cardboard box and plan to go through a door in front of them.

3.8. Collective Construction

In a collective construction setup, multiple cooperative mobile robots are required.
The robots might have heterogeneous properties [253]. The robots can follow simple rules
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and only rely on local information [254]. In the popular TERMES project from Harvard
University [254], a large number of simple robots collect, carry, and place building blocks
to develop a user-specified 3D structure. The robots might use onboard vision systems to
access the progress in construction. A force sensor-equipped gripper can be used for holding
the materials. Furthermore, a distance sensor, e.g., sonar can be used for maintaining a safe
distance from the construction as well as other robots [255].

Sartoretti et al. [256] developed a framework using A3C to train robots to coordinate
the construction of a user-defined structure. The proposed neural network architecture
includes CNNs and an LSTM module. Each robot runs its own copy of the policy without
communicating with other agents during testing.

A summary of the state and action spaces and reward functions used in some of the
papers reviewed in this article are listed in Table 2.

Table 2. Examples of state and action spaces and reward functions used in prior studies.

Refs. State Action Reward

[59] Map of the environment and robots’ locations with 4
channels Discreet Based on the locations of the robots

[67] Robot locations and budgets Discreet Based on collected sensor data

[68] Position of the leader UAVs, the coverage map, and the
connection network Discreet Based on the overall coverage and connectivity of the

Leader UAVs.

[69] Map with obstacles and the coverage area Discreet Based on the robot reaching a coverage region within
its task area.

[24] Map with covered area Discreet Based on robot coverage.

[71] Map of the environment Discreet Based on the robot movements and reaching the target
without collisions.

[70] Map with robots’ positions Discreet Based on the herding pattern.

[72] Map with robots’ positions and target locations Discreet Distance from the goal and collision status.

[39] Map with robots’ positions and target locations Discreet Distance from the goal and collision status.

[40] Pursuer and evader positions Discreet Collision status and time to capture the predator.

[73] The map, locations, and orientations of the robots, and the
objects the robots are connected to Discreet Based on the position of the object and the robots

hitting the boundaries.

[74] The map, and the locations of the robots Discreet Based on distance from the target and collisions.

[76] The regions of the robots, positions of the defender and the
attacker UAVs and the intruder Discreet Based on distance.

[77]
The distance from the MRS center to the goal,

the difference in orientation of the direction of MRS to the
goal, and the distance between the robots

Discreet
Based on the distance to the goal, orientation to the

goal, proximity of obstacles, and the distance between
the robots.

[78] Sensor input information that includes distance to other
robots and the target landmarks Discreet Based on becoming closer to the target landmark.

[79] Spatial information on the robots, the object, and the goal Discreet Based on the object reaching the goal while
avoiding collisions.

[80] Robot position and velocity Discreet Based on the robots being within sensing range of
one another.

[38] The positions and speed of the first responders and UAVs Discreet Based on the Cramér–Rao lower bound (CRLB) for the
whole system.

[93] The agents’ positions, types, and remaining jobs Discreet Based on minimizing the makespan.

[83] The position and direction of the leader and the followers Discreet Based on the distance from followers to leaders and
collision status.

[84] Information on the target, other agents, maps,
and collisions Discreet Based on finding targets and avoiding obstacles.

[85] The robot’s position, position relative to other robots,
and angle and direction of the robots Discreet Based on covering a location on fire.
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Table 2. Cont.

Ref. State Action Reward

[23] The positions, velocities, and distances between UAVs Discreet Determined by the distance from the target and the
evader being reached by the pursuer.

[87] Consists of static obstacle locations and the locations of
other agents Discreet Based on the robots’ movements toward the goal while

avoiding collisions.

[94] Contains the sensor data for the location of the target
relative to the robot and the last action done by the robot Discreet

Determined by the robot reaching the goal, reducing
the number of direction changes,

and avoiding collisions.

[95] A map that includes the agent’s locations, empty cells,
obstacle cells, and the location of the tasks Discreet Determined by laying pieces of flooring in the

installation area.

[110] Map of the environment represented with waypoints,
locations of the UAVs, and points of interest Discreet Based on the coverage of the team of robots.

[114] The positions and tasks of the robots, the state of the robot Discreet Based on minimizing the number of timesteps in
an episode.

[96]
Map of the area to be sterilized and the positions of the

agents, the cleaning priority, size, and area of the cleaning
zone

Discreet Based on the agents cleaning priority areas
for sanitation.

[86] Temperature and “fieryness” of a building, location of the
robots, water in the tanks, and busy or idle status Discreet Based on keeping the fires to a minimum “fieryness”

level.

[53] Sensory information on obstacles Discreet Based on the UAV’s coverage of the area.

[52] Robots’ positions and velocities and the machine status Discreet
Determined by robots completing machine jobs to
meet the throughput goal, and their motions while

avoiding collisions.

[107] Includes the laser readings of the robots, the goal position,
and the robot’s velocity Continuous Based on the smooth movements of the robots while

avoiding collisions.

[22] Includes the laser readings of the robots, the goal position,
and the robot’s velocity Continuous Based on the time to reach the target while

avoiding collisions.

[108] An environment that includes the coordinates of the
manipulator arm gripper Continuous Based on reaching the target object.

[109] Laser measurements of the robots and their velocities Continuous Based on the centroid of the robot team reaching
the goal.

[117] The state of the robot, other robots, obstacles, and the target
position Continuous Based on the robots’ relative distance from the

target location.

[97] Sensed LiDAR data Continuous
Based on the robot approaching and arriving at the

target, avoiding collisions and the formation of
the robots.

[132] Consists of the goal positions, the robots’ positions, past
observations Continuous Based on the robot moving towards the goal in the

shortest amount of time.

[133] Contains laser data, speeds and positions of the robots,
and the target position Continuous Based on arriving at the target, avoiding collisions,

and relative position to other robots.

[113] The position information of other robots (three consecutive
frames) Continuous Based on time for formation, collisions, and the

formation progress.

[115] The most recent three frames of the map, local goals that
include positions and directions Continuous Based on minimizing the arrival time of each robot

while avoiding collisions.

[116] Map of the environment, robot positions and velocities,
and laser scans Continuous Based on the arrival time of the robot to the destination,

avoiding collisions, and smoothness of travel.

[104] The coverage score and coverage state for each point of
interest and the energy consumption of each UAV Continuous Defined by coverage score, connectivity fairness,

and energy consumption.

[134] Robot’s relative position to the goal and its velocity Continuous Based on the robots having collisions.

[88] Robot motion parameters, relative distance and orientation
to the goal, and their laser scanner data

Discreet/
Continuous

Determined by reaching the goal without timing out
and avoiding collisions.

4. Challenges and Discussion

Although we find that a plethora of studies have used multi-agent deep reinforcement
learning techniques in recent years, a number of challenges remain before we can expect
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wide adaptation of them in academia as well as commercially. One of the biggest challenges
that we identify is scalability. Most of the papers reviewed in this article do not scale
beyond tens of robots. This limits real-world adaptation. Although this is an issue with
multi-robot systems in general, the data-hungry nature of most of today’s DRL techniques
makes the situation worse. In the future, the research community needs to come up with
lightweight techniques that potentially are inspired by nature, such as swarming in biology
or particle physics while making necessary changes to the underlying RL technique to fit
these appropriately.

The second drawback we found in most of the studies is the lack of resources to make
them reproducible. One of the overarching goals of academic research is that researchers
across the world should be able to reproduce the results reported in one paper and propose
a novel technique that potentially advances the field. In the current setup, most papers
employing MADRL use their own (simulation) environments for their robots, which makes
it extremely difficult for others to reproduce the results. As a community, we need to
come up with an accepted set of benchmarks and/or simulators that the majority of the
researchers can use for method design and experiments, which, in turn, will advance
the field.

The next challenge is to transfer the learned models to real robots and real-world
applications. We find that most experiments in the literature are conducted virtually,
i.e., in simulation, rather than with physical robots. This leads to a gap in understanding
the feasibility. This corroborates the finding by Liang et al. [257]. Unless we can readily
use the learned models on real robots in real-world situations, we might not be able
to widely adopt such techniques. It is tied up with the previously-mentioned issue of
scalability. Additionally, in the deployment phase, the algorithms need to be lightweight
while considering the bandwidth limitation for communication among the robots.

Software plays a significant role in developing and testing novel techniques in any
robotic domain and applications of MADRL are no different. Here, we discuss some
software that are popularly used for testing the feasibility of the proposed techniques
in simulation.

• VMAS: Vectorized Multi-Agent Simulator for Collective Robot Learning (VMAS)
is an open-source software for multi-robot application benchmarking [258]. Some
applications that are part of the software include swarm behaviors, such as flocking
and dispersion, as well as object transportation and multi-robot football. Note that it
is a 2D physics simulator powered by PyTorch [259].

• MultiRoboLearn: Similar to VMAS, this is an open-source framework for multi-
robot deep reinforcement learning applications [260]. The authors aim to unify the
simulation and the real-world experiments with multiple robots via this presented
software tool, which is accomplished by integrating ROS into the simulator. Mostly
multi-robot navigation scenarios were tested. It would be interesting to extend this
software to other multi-robot applications, especially where the robots might be static.

• MARLlib: Although not strictly built for robots, Multi-Agent RLlib (MARLlib) [261]
is a multi-agent DRL software framework that is built upon Ray [262] and its toolkit
RLlib [263]. This is a rich open-source software that follows Open AI Gym standards
and provides frameworks for not only cooperative tasks, but for competitive multi-
robot applications as well. Currently, ten environments are supported by MARLlib
among which the grid world environment might be the most relevant one to the
multi-robot researchers. Many baseline algorithms including the ones that are highly
popular among roboticists, e.g., DDPG, PPO, and TRPO are available as baselines.
The authors also show that this software is much more versatile than some of the
existing ones including [264,265].

Not only these specialized ones, but other traditional robot simulators, such as We-
bots [266], V-rep [267], and Gazebo [157], can also be used for training and testing multiple
robots. These established software platforms provide close-to-reality simulation models for
many popular robot platforms. This is especially useful for robotics researchers as we have
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seen in this survey that MADRL applications range from aerial and ground robots to un-
derwater robots and manipulators. Table 3 summarizes the main types of robots that have
been used for MADRL applications. Not only software development, but another challenge
is training data. As most of the state-of-the-art algorithms rely on massive amounts of
training data, it is not always easy to train a robot with sufficient data. Dasari et al. [268]
have created an open-source database for sharing robotic experiences. It contains 15 million
video frames from 7 different robot manipulators including Baxter, Sawyer, Kuka, and Fetch
arms. Researchers can use this dataset for efficient training while adding new experiences
from their experiments to the dataset itself.

Table 3. Types of robots in the reviewed papers. If the type is not specified in the paper, it is not
listed here.

Aerial Robots Ground Robots Manipulators

[23,24,38,46,53,56,57,68,76,83,85,91,104,106,110,110,
120,123,134,135,138,139,141,142,161,167,171,172,186,

205,207,218–220,230,240,269]

[22,39,49,52,54,55,59,70,71,73–75,77–
79,82,87,90,92,97,107,109,111,112,115,117,120,124,128,
130,132,133,137,155,162,183,189,190,194,202,212,251]

[50,93,108,131,143,144]

As we have seen, sensors play a major role in creating the perception about the
environment, as well as aiding the robots with communication capabilities. The robots
might need to collect multi-modal sensor data and fuse them for better perceptions. These
sensory observations about the environment can then be used as state inputs to the deep
neural networks. Modern sensors have high sampling rates, e.g., standard LiDAR samples
over 1 million data points per second. Without state-of-art learning mechanisms, it would
have been almost infeasible to process and extract meaningful information from such large
amounts of data (for tasks such as target recognition, classification, and semantic feature
analysis, among others).

Although many robotic applications are utilizing the progress in multi-agent rein-
forcement learning, we have not seen any paper on modular self-reconfigurable robotics
(MSRs) [270–273] where MADRL has been utilized. We believe that the field of modular
robots can benefit from these developments especially given the fact that MSRs can change
their shapes and the new shape might not have been pre-defined. Therefore, its control is
undefined as well and it might need to learn to move around and complete tasks on-the-fly
using techniques, such as MADRL, where each module acts as an intelligent agent.

On the other hand, we have found MADRL-based solutions for manipulation and mo-
tion separately. The next question that should be answered is how one can simultaneously
learn those two actions where they might affect each other. For example, in a scenario,
where multiple UAVs are learning to maintain a formation while manipulating an object
with their onboard manipulators. This task would potentially require the robots to learn
two actions simultaneously. The research question then would be how to best model the
agents, their goals, and the rewards in this complex scenario.

5. Conclusions

In this paper, we have reviewed state-of-the-art studies that use multi-agent deep
reinforcement learning techniques for multi-robot system applications. The types of such
applications range from exploration and path planning to manipulation and object trans-
portation. The types of robots that have been used encompass ground, aerial, and un-
derwater applications. Although most applications involve mobile robots, we reviewed
a few papers that use non-mobile (manipulator) robots as well. Most of the reviewed
papers have used convolutional neural networks, potentially combining them with fully
connected layers, recurrent layers, and/or graph neural networks. It is worth investigating
such reinforcement learning techniques for robotics as they have the potential to learn
high-level causal relationships among the robots, as well as between the robots and their
environment, which might have been extremely difficult to model using a non-learning
approach. As better hardware is available on a smaller scale and at a lower price, we expect
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to see significant growth in novel multi-robot system applications that use multi-agent
reinforcement learning techniques. Furthermore, with the progress of the field of artificial
intelligence in general, we expect that more studies will have theoretical underpinnings
along with their showcased empirical advancements. Although a number of challenges
remain to be solved, we are perhaps not too far away from seeing autonomous robots
tightly integrated into our daily lives.
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192. Konečnỳ, J.; McMahan, B.; Ramage, D. Federated optimization: Distributed optimization beyond the datacenter. arXiv 2015,

arXiv:1511.03575.
193. Luo, R.; Ni, W.; Tian, H.; Cheng, J. Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication

Systems. IEEE Trans. Veh. Technol. 2022, 71, 12321–12326. [CrossRef]
194. Sartoretti, G.; Kerr, J.; Shi, Y.; Wagner, G.; Kumar, T.S.; Koenig, S.; Choset, H. Primal: Pathfinding via reinforcement and imitation

multi-agent learning. IEEE Robot. Autom. Lett. 2019, 4, 2378–2385. [CrossRef]
195. Ross, S.; Gordon, G.; Bagnell, D. A reduction of imitation learning and structured prediction to no-regret online learning.

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference
Proceedings, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 627–635.

196. Damani, M.; Luo, Z.; Wenzel, E.; Sartoretti, G. PRIMAL _2: Pathfinding via reinforcement and imitation multi-agent learning-
lifelong. IEEE Robot. Autom. Lett. 2021, 6, 2666–2673. [CrossRef]

197. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 41–48.

198. Sun, L.; Yan, J.; Qin, W. Path planning for multiple agents in an unknown environment using soft actor critic and curriculum
learning. Comput. Animat. Virtual Worlds 2023, 34, e2113. [CrossRef]

199. Pu, Y.; Gan, Z.; Henao, R.; Yuan, X.; Li, C.; Stevens, A.; Carin, L. Variational autoencoder for deep learning of images, labels and
captions. In Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, Barcelona,
Spain, 5–10 December 2016; Volume 29.

200. Li, H. Decentralized Multi-Agent Collision Avoidance and Reinforcement Learning. Ph.D. Thesis, The Ohio State University,
Columbus, OH, USA, 2021.

201. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.; Zaremba, W.
Hindsight experience replay. Adv. Neural Inf. Process. Syst. 2017, 30, 5048–5058.

202. Everett, M.; Chen, Y.F.; How, J.P. Motion planning among dynamic, decision-making agents with deep reinforcement learning.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–
5 October 2018; pp. 3052–3059.

203. Semnani, S.H.; Liu, H.; Everett, M.; De Ruiter, A.; How, J.P. Multi-agent motion planning for dense and dynamic environments
via deep reinforcement learning. IEEE Robot. Autom. Lett. 2020, 5, 3221–3226. [CrossRef]

204. Zhang, H.; Luo, J.; Lin, X.; Tan, K.; Pan, C. Dispatching and Path Planning of Automated Guided Vehicles based on Petri Nets and
Deep Reinforcement Learning. In Proceedings of the 2021 IEEE International Conference on Networking, Sensing and Control
(ICNSC), Xiamen, China, 3–5 December 2021; Volume 1, pp. 1–6.

205. Huang, H.; Zhu, G.; Fan, Z.; Zhai, H.; Cai, Y.; Shi, Z.; Dong, Z.; Hao, Z. Vision-based Distributed Multi-UAV Collision Avoidance
via Deep Reinforcement Learning for Navigation. arXiv 2022, arXiv:2203.02650.

370



Sensors 2023, 23, 3625

206. Yarats, D.; Zhang, A.; Kostrikov, I.; Amos, B.; Pineau, J.; Fergus, R. Improving sample efficiency in model-free reinforcement
learning from images. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35,
pp. 10674–10681.

207. Jeon, S.; Lee, H.; Kaliappan, V.K.; Nguyen, T.A.; Jo, H.; Cho, H.; Min, D. Multiagent Reinforcement Learning Based on
Fusion-Multiactor-Attention-Critic for Multiple-Unmanned-Aerial-Vehicle Navigation Control. Energies 2022, 15, 7426. [CrossRef]

208. Shalev-Shwartz, S.; Shammah, S.; Shashua, A. Safe, multi-agent, reinforcement learning for autonomous driving. arXiv 2016,
arXiv:1610.03295.

209. Ammar, H.B.; Tutunov, R.; Eaton, E. Safe policy search for lifelong reinforcement learning with sublinear regret. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 2361–2369.

210. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage
estimation. arXiv 2015, arXiv:1506.02438.

211. Taskar, B.; Chatalbashev, V.; Koller, D.; Guestrin, C. Learning structured prediction models: A large margin approach. In Proceed-
ings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005; pp. 896–903.

212. Liang, Z.; Cao, J.; Jiang, S.; Saxena, D.; Xu, H. Hierarchical Reinforcement Learning with Opponent Modeling for Distributed
Multi-agent Cooperation. arXiv 2022, arXiv:2206.12718.

213. Farrow, N.; Klingner, J.; Reishus, D.; Correll, N. Miniature six-channel range and bearing system: Algorithm, analysis and
experimental validation. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, 31 May–7 June 2014; pp. 6180–6185.

214. Shiell, N.; Vardy, A. A bearing-only pattern formation algorithm for swarm robotics. In Proceedings of the Swarm Intelligence:
10th International Conference, ANTS 2016, Brussels, Belgium, 7–9 September 2016; pp. 3–14.

215. Rubenstein, M.; Cornejo, A.; Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 2014, 345, 795–799.
[CrossRef]

216. Zhu, P.; Dai, W.; Yao, W.; Ma, J.; Zeng, Z.; Lu, H. Multi-robot flocking control based on deep reinforcement learning. IEEE Access
2020, 8, 150397–150406. [CrossRef]

217. Lan, X.; Liu, Y.; Zhao, Z. Cooperative control for swarming systems based on reinforcement learning in unknown dynamic
environment. Neurocomputing 2020, 410, 410–418. [CrossRef]

218. Kortvelesy, R.; Prorok, A. ModGNN: Expert policy approximation in multi-agent systems with a modular graph neural network
architecture. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China,
30 May–5 June 2021; pp. 9161–9167.

219. Yan, C.; Xiang, X.; Wang, C. Fixed-Wing UAVs flocking in continuous spaces: A deep reinforcement learning approach. Robot.
Auton. Syst. 2020, 131, 103594. [CrossRef]

220. Yan, C.; Xiang, X.; Wang, C.; Lan, Z. Flocking and Collision Avoidance for a Dynamic Squad of Fixed-Wing UAVs Using Deep
Reinforcement Learning. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 4738–4744.

221. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

222. Ng, A. Sparse Autoencoder. CS294A Lecture Notes. 2011; Volume 72, pp. 1–19.
223. Bhagat, S.; Das, B.; Chakraborty, A.; Mukhopadhyaya, K. k-Circle Formation and k-epf by Asynchronous Robots. Algorithms

2021, 14, 62. [CrossRef]
224. Datta, S.; Dutta, A.; Gan Chaudhuri, S.; Mukhopadhyaya, K. Circle formation by asynchronous transparent fat robots. In Proceed-

ings of the International Conference on Distributed Computing and Internet Technology; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 195–207.

225. Dutta, A.; Gan Chaudhuri, S.; Datta, S.; Mukhopadhyaya, K. Circle formation by asynchronous fat robots with limited visibility. In
Proceedings of the International Conference on Distributed Computing and Internet Technology; Springer: Berlin/Heidelberg, Germany,
2012; pp. 83–93.

226. Flocchini, P.; Prencipe, G.; Santoro, N.; Viglietta, G. Distributed computing by mobile robots: Uniform circle formation. Distrib.
Comput. 2017, 30, 413–457. [CrossRef]
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Abstract: To deal with the problem of optimal path planning in 2D space, this paper introduces a
new toolbox named “Navigation with Polytopes” and explains the algorithms behind it. The toolbox
allows one to create a polytopic map from a standard grid map, search for an optimal corridor, and
plan a safe B-spline reference path used for mobile robot navigation. Specifically, the B-spline path
is converted into its equivalent Bézier representation via a novel calculation method in order to
reduce the conservativeness of the constrained path planning problem. The conversion can handle
the differences between the curve intervals and allows for efficient computation. Furthermore, two
different constraint formulations used for enforcing a B-spline path to stay within the sequence of
connected polytopes are proposed, one with a guaranteed solution. The toolbox was extensively
validated through simulations and experiments.

Keywords: path planner; B-spline; Bézier; polytopes; optimization; navigation with polytopes toolbox

1. Introduction

Motion planning is an important component of the technology stack for enabling
the autonomous navigation of unmanned vehicles [1]. It involves the computation of an
admissible path or trajectory from the current position/configuration of the robot to a target
area/point on a given map with obstacles. The difficulty of a motion planning task depends
on the particular setup and problem formulation. It may involve complications such as
kinodynamic constraints, uncertainties, and dynamic obstacles. Almost all approaches
currently used in robotics involve a spatial discretization of the given map, called a grid map
or occupancy grid. Important planning methods comprise graph search algorithms, such as
Dijkstra, A*, and variants thereof, and sampling-based methods such as rapidly exploring
random trees (RRT) [2–4]. These have been successfully applied in various works, such
as for the development of a hybrid path planning algorithm and a bio-inspired control
for an omni-directional mobile robot [5], or the control of a nonholonomic vehicle in tight
environments [6]. They have an important drawback, however, in that the complexity of
the planning problem increases rapidly with the dimensions of the map as well as the
resolution of the grid map. Moreover, the grid map is an artificial construct that may
complicate the path planning problem, e.g., over large empty areas or for kinodynamic
constraints, and lead to unsafe or conservative results.

For this reason, this paper touts the idea of continuous motion planning and makes
several contributions toward turning it into a competitive alternative. Several algorithms
are proposed for efficient continuous motion planning, including the generation of a polytope
map and a spline-based planner. They are described in detail in this paper and a ready-to-use
implementation is provided as a Python-based toolbox, called Navigation with Polytopes.

In previous work, continuous motion planners using spline-based interpolations have
been combined with the standard discrete frameworks [7–9]. In [7], the movement of
a system between two exact discrete moments was studied, which relaxed some of the
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stringent requirements for optimal controller design in drones. In [8,9], a standard grid
map, obtained with existing mapping tools such as gmapping [10], was transformed into a
polytope map, in which the feasible area was decomposed into a finite number of (convex)
polytopes, called feasible polytopes. The polytope map allows the computation of B-spline
paths that completely stay inside the feasible area and, hence, the free space of the grid map.
B-splines have been chosen for their local convexity: Each interval is bounded by the convex
hull of the local control points [8,11,12]. This leads to the simple rule that the B-spline control
boundary, i.e., the convex hull of the B-spline control point, must be fully contained inside
the feasible area of the polytope map [13–15]. The rule has been applied widely in the
literature to solve different types of motion planning problems. For example, in [16], the
authors generalize the methods for motion planning with B-spline curves for constrained
flatness systems. Reference [17] proposed a path planner using a B-spline curve with an
obstacle avoidance property for heavy mining vehicles while [18] introduced the solution
for the same problem but for Maritime autonomous surface ships. In [19], the authors
further ensured the constraints on the B-spline path’s curvature for autonomous cars.

The approach of using B-spline parametrization, however, is conservative, as illus-
trated in Figure 1, which has been obtained with the Navigation with Polytopes toolbox
(https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes, accessed on 19
February 2023). Here, the green area depicts the control boundary for the second-degree
B-spline curve in red, with a portion of it highlighted in yellow. Even though the entire
curve does not leave the feasible area, the control boundary is not fully contained in the
feasible area. In other words, this path, despite being safe, cannot be represented with a
feasible B-spline. Generally speaking, the control boundaries for B-spline control points are
relatively large compared to the area covered by the curve itself.

B-spline reference path Interval of the curve B-spline control boundary
Bézier control boundary B-spline control points Bézier control points

Figure 1. B-spline path planned within a polytope map with the Navigation with Polytopes
(https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes, accessed on 19 February
2023) toolbox.

This conservatism can be reduced based on prior work in the computer-aided design
(CAD) community regarding the conversion between B-splines and equivalent Bézier
curves [20,21]. As shown in Figure 1 with the magenta triangle, the control boundary of the
corresponding Bézier curve is fully contained inside the feasible region of the polytopic map.
In fact, for the same curve, the control boundary of the Bézier curve (magenta triangle)
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is only one-quarter the size of the original B-spline control boundary (green triangle).
Thus, the usage of equivalent Bézier control points allows the design of the geometrical
constraints for the computed curve to be more flexible.

A new constraint formulation for a B-spline path to stay within the feasible region of
the polytope map was derived in [8]. However, the calculation of the B-spline-to-Bézier
conversion parameters is not easy and is usually inefficient to compute via recursive
functions, due to the original recursive formulation of the B-spline curve. For example,
in [20], the authors can only derive a calculation of the conversion parameters within some
middle intervals of a B-spline curve when having a sufficiently large number of control
points while neglecting the rest (for more details, see Remark 1).

Sharing the line of research with the existing works [8,9] and serving as their extensions,
this paper concentrates on applying two efficient tools: the polytope map of the surrounding
environment and the equivalent Bézier format of a B-spline curve to solve the path planning
problem for mobile robots. In particular, the following novelties are presented compared to
the current state of the literature:

1. A complete procedure to construct the polytope map from a standard occupancy grid
map and seek an appropriate corridor (sequence of connected polytopes), leading to
the destination.

2. A new algorithm to calculate the B-spline-to-Bézier conversion matrix of a uniform
B-spline curve: It takes into account the differences between each interval of the whole
curve and the dependencies on the total number of control points as well as the degree
of the curve.

3. New path planning constraints for a B-spline path to stay inside a sequence of
connected polytopes in 2D. The equivalent Bézier representation is introduced in
two variants:

(a) Constraints that use the minimal number of control points [8];
(b) Constraints that guarantee the existence of a valid path by providing an alge-

braic solution [9].

4. Navigation with Polytopes (https://gitlab.rob.uni-luebeck.de/robPublic/navigation_
with_polytopes, accessed on 19 February 2023) toolbox: It comes as a complete
Python package and serves as a framework for direct and quick implementation
of existing polytope-based navigation control techniques on a realistic grid map of
the environment with ROS (robot operating system) compatibility (c.f. Figure 1). It
provides the following features:

(a) Construction of a polytope map from a standard grid map with consideration
of the robot’s dimension and possible noises.

(b) Search for a sequence of connected polytopes (i.e., a polytopic corridor) con-
necting two given points with minimal distance.

(c) Optimal B-spline path planning algorithm using the B-spline-to-Bézier conver-
sion with multiple choices of algorithms [8,9].

(d) Library for calculating and storing the B-spline-to-Bézier conversion matrix.

The remainder of the paper is organized as follows. The path planning problem and
relevant details are formulated in Section 2. Next, Section 3 introduces the process of
constructing a polytope map from a grid map. Section 4 introduces the notions of B-splines
and its equivalent Bézier representation as well as the calculation of the B-spline-to-Bézier
conversion matrix. Different path-planning constraint formulations are detailed in Section 5.
Then, Section 6 introduces the Navigation with Polytopes toolbox. The results of the validation
process using simulations and experiments are presented in Section 7 and further discussed
in Section 8. Finally, Section 9 presents the conclusions and remarks on future work.

2. Problem Description

This paper addresses the problem of planning a 2D optimal reference path for a
mobile robot to navigate between two points given the standard occupancy grid map of the
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surrounding environment. More specifically, the principal tool in our work is the polytope
map, which describes the safety region with non-overlapping convex polytopes. It was
created from the grid map via a decomposition algorithm. Within the polytope map, an
appropriate sequence of connected polytopes connecting the two end-points was selected
by using a graph-search algorithm. The sequence is denoted as follows:

S , S1 ∪ S2 ∪ · · · ∪ Sq, (1)

where {S1, . . . , Sq} is an ordered list of q ≥ 2 connected polytopes. Any pair of two
consecutively connected polytopes (Si, Si+1) share a common edge denoted by Ei:

Ei = Si ∩ Si+1. (2)

It is also assumed that the starting and ending poses (Ps, Pf ) belong to the first and
last polytopes, respectively:

Ps ∈ S1, Pf ∈ Sq. (3)

This allows for safe travel from Ps to Pf by staying inside the set S . Given the sequence
polytopes, a smooth geometric path p(t) (with t being the curve variable, which can
represent the path length, pseudo-time increment, etc.) was generated:

p(t) : [ts, t f ]→ R2, (4)

which is required to satisfy the end-point constraints as well as the safety condition

p(ts) = Ps, p(t f ) = Pf , (5)

p(t) ∈ S , ∀t ∈ [ts, t f ]. (6)

In this work, the geometrical properties of B-spline curves are exploited (i.e., endpoint
interpolation and local convexity) in order to generate a reference B-spline path satisfying
the aforementioned constraints (5) and (6). Furthermore, the equivalent Bézier represen-
tation of a B-spline curve was used to reduce the conservativeness of the path planning
problem. The whole planning process will be detailed sequentially throughout the rest of
the paper, while the next section begins with the construction of the polytope map from a
grid map.

3. Polytope Map

This section focuses on modeling the free space environment by describing it as a
continuous polytope map. Contrary to the discrete-based occupancy grid representation,
the polytope map is a continuous representation of the environment. It is defined as a
list of connected 2D convex polytopes within the free space of an environment. A general
convention of each polytope involves a list of ordered vertices.

3.1. Construction of Polytope Map from an Occupancy Grid Map

This section presents an algorithm for the conversion of a standard grid map into a
polytope map. The grid map can either be a binary map or a ternary representation, which
is a common map used in ROS for standard navigation purposes. For example, Figure 2a
shows an occupancy grid map of a simulation environment provided by ROBOTIS for the
TurtleBot3 mobile robot [22]. The map is obtained by using the ROS package gmapping [10].
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(a) (b) (c)

(d) (e) (f)
Figure 2. Illustration of the procedure for creating a polytope map from a standard grid map.
(a) Occupancy grid map; (b) free space boundary extraction; (c) obstacle boundaries extraction;
(d) free region with holes; (e) partition of free region into connected polytopes; (f) polytope map
versus occupancy grid map.

Below, one can find the Python process, which is used to construct the polytope map
from a standard occupancy grid map (with a corresponding illustration on the aforemen-
tioned grid map of TurtleBot3):

1. Extract the outer boundary of the complete map using the function findContours with
the option RETR_EXTERNAL of the OpenCV toolbox (https://opencv.org/, accessed
on 19 February 2023) as shown in Figure 2b.

2. Extract the boundaries for all of the obstacles by using the same function findContours
with the option RETR_LIST as shown in Figure 2c.

3. Simplify the contours obtained using the RDP (Ramer–Douglas–Peucker) algorithm
(https://github.com/biran0079/crdp, accessed on 19 February 2023) with two param-
eters εrdp,o for the outer boundary and εrdp,i for inner obstacles [23].

4. Shrink the outer boundary and enlarge the obstacles by a safety offset op by using
the Gdspy toolbox (https://github.com/heitzmann/gdspy, accessed on 19 February
2023) and apply the Boolean operation to remove obstacles from the outer boundary
polytope, as shown in Figure 2d.

5. Partition the obstacle-free polytope (possibly with holes) into connected polytopes
by using Mark Bayazit’s algorithm (https://github.com/wsilva32/poly_decomp.py,
accessed on 19 February 2023), as shown in Figure 2e.

The result of the entire procedure is the polytope map shown in Figure 2f , where it is
overlaid with the original grid map. It can be seen that the free space in the environment
has shrunk far from the occupied cells (i.e., obstacles) and is divided into smaller and
connected polytopes. In comparison with the usage of the configuration space map in
safe navigation [2], the proposed approach is slightly simpler, i.e., it simply applies an
offset with the safety distance op to all objects within the map. In contrast to this, the
configuration space method requires calculating the Minkowski sums of the robot’s shape
and the objects.

3.2. Finding of Appropriate Sequence of Polytopes for Navigation

After obtaining a polytope map, the next step is to find a sequence of connected
polytopes (i.e., defined as an ordered list of a finite number of polytopes), which forms a
corridor connecting the given initial point to the final goal. Among the sequences, two
consecutive polytopes share a common edge (c.f. Figures 3 and 4). In order to find that
sequence, the first step is to represent the polytope map as a graph, as shown in Figure 3, in
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which each polytope is a node. Two nodes are considered “connected to each other” when
they share a common edge (e.g., the red edge between polytopes A and B). The connection
also evaluates the distance between the two polytopes by using the Euclidean distance
between their center points. Then a graph search can be performed in order to obtain the
shortest sequence connecting two polytopes, which contain the start and end poses. The
complete process of finding such a sequence is as follows:

1. Each pair of polytopes is examined to find out if they share a common edge. If yes,
then they are recognized as a connected pair.

2. From the information, an adjacency graph is created (c.f Figure 3b), which presents all
polytopes as nodes and their connections to other polytopes.

3. Then a weighted graph is created from the adjacency graph by adding the distances
between the center points of any pairs of connected polytopes.

4. Next, there is a search for the starting and ending polytopes by checking which
polytopes contain the points (Ps, Pf ).

5. A graph search algorithm can then be implemented on the weighted graph to obtain
the sequence of polytopes S , S1 ∪ S2 ∪ · · · ∪ Sq with minimal travel distance.

A

B
C D

E

FG H
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JKL

(a)

A

B

C

D

E
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G

H
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J

KL

(b)
Figure 3. Illustration of a polytope map of an environment with four obstacles (black) and its graph
representation. (a) Sample polytope map; (b) graph representation of the polytope map.

3.3. Transition Zone and Extended Polytope

As an intermediate step toward the full navigation task between (Ps, Pf ), consider
the problem of computing a path between two connected polytopes of the sequence S (6).
In order to avoid collisions with obstacles, a so-called transition zone is introduced, which
is a subset of the second polytope and whose union with the first polytope is convex (cf.
Figure 4). Thus, a robot can travel safely from the first polytope to the second one by
adding a transit at the transition zone.

E1

E2

S1 S2 S3 T1 T2 S1 S2 S3 S2,3

Figure 4. Illustration of connected polytopes, transition zones, and extended polytopes, according to
Definitions 1 and 2.
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Definition 1 (Transition zone [8,9]). The transition zone Ti is defined for two connected polytopes
Si and Si+1 from (2) as

Ti = Si+1 ∩ (Si|Ei), (7)

in which Ei is the common edge as defined in (2) and the operation (Si|Ei) gives the (possibly un-
bounded) polytope formed by the half-space representation of Si without the constraint corresponding
to the edge Ei.

Definition 2 (Extended polytope [8,9]). Si,i+1 is defined as the extension of the polytope Si
toward the polytope Si+1:

Si,i+1 = Si ∪ Ti, (8)

with Ti the transition zone defined as in (7).

For consistency, the last extended polytope is also the last polytope, i.e., Sq,q+1 , Sq.
Any extended polytope Si,i+1 as defined in (8) is convex and the transition zone can also be
achieved from the corresponding extended polytopes:

Ti = Si,i+1 ∩ Si+1 = Si,i+1 ∩ Si+1,i+2. (9)

This section presents the search for the sequence of connected polytopes leading to the
goal. The next section introduces an interesting path parametrization, which is called the B-
spline curve, whose geometrical properties allow us to control its shape via intuitive tuning
of the curve parameters and, hence, easily constrain the path to stay within a predefined
sequence of connected polytopes.

4. B-spline and Equivalent Bézier Curves

This section presents the notions of B-spline curves and their equivalent Bézier rep-
resentations. The focus is on their definitions, transformations, and further geometrical
properties, while more details on both types of curves could be found in the literature
[11,12,15,18,20,21]. The same notations as in some of the previous work [8,9] is used
intentionally, for easy reference.

4.1. Definition of B-spline Curves

A clamped uniform B-spline curve z(t) : [ts, t f ] → Rm of degree d is defined with n
control points Pi ∈ Rm (i ∈ {1, . . . , n}, n ≥ d + 1) as

z(t) =
n

∑
i=1

PiBi,d,ξ(t) = PBd,ξ(t), t ∈ [ts, t f ], (10)

with P , [P1 · · · Pn] ∈ Rm×n gathering the control points that control the shape of
the curve and needs to be defined in the path planning problem. The vector Bd,ξ(t) ,
[B1,d,ξ(t) . . . Bn,d,ξ(t)]> : R → Rn contains the B-spline basis functions of the degree d,
whose recursive definition is given by [15,16,24]

Bi,0,ξ(t) =

{
1, for τi ≤ t ≤ τi+1,
0, otherwise ,

∀i ∈ {1, . . . , n + d}, (11)

Bi,d,ξ(t) =
t− τi

τi+d − τi
Bi,d−1,ξ(t) +

τi+d+1 − t
τi+d+1 − τi+1

Bi+1,d−1,ξ(t), ∀d ≥ 1. (12)

Here, the time instances τj are clamped and uniformly distributed in a knot vector ξ:
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ξ = {τ1 ≤ τ2 ≤ · · · ≤ τn+d+1}, (13)

τj =





ts, 1 ≤ j ≤ d,
ts + (j− d− 1)∆, d + 1 ≤ j ≤ n + 1,
t f , n + 2 ≤ j ≤ n + d + 1,

(14)

with ∆ = (t f − ts)/(n − d). The clamped and uniform B-spline curve z(t) from (10) has
exactly (n− d) consecutive intervals equally distributed within [ts, t f ]. The partial curve
within the jth interval (j ∈ {1, . . . , n− d}) is given by

z(j, t) , z(t), t ∈ [ts + (j− 1)∆, ts + j∆). (15)

The B-spline curve z(t) as defined in (10)–(14) possesses the following properties:

(P1) The jth interval z(j, t) of the curve as in (15) only depends on its (d + 1) neighbor
control points. More specifically, z(j, t) stays within their convex hull:

z(j, t) =
j+d

∑
i=j

PiBi,d,ξ(t) ∈ Conv{Pj}, (16)

with Pj , [Pj · · · Pj+d] containing (d + 1) consecutive control points from (10).
(P2) The first and last control points P1 and Pn from (10) are also the starting and ending

points of the curve z(t):
z(ts) = P1, z(t f ) = Pn. (17)

(P3) Derivatives of B-spline basis functions can be expressed as a linear combination of
B-spline basis functions:

∂Bd,ξ(t)
∂t

= Md,d−1Ld,d−1Bd,ξ(t), (18)

with Bd,ξ as in (10). The two matrices Md,d−1 ∈ Rn×(n−1) and Ld,d−1 ∈ R(n−1)×n are
given in Theorems 4.1–4.3 of reference [16].

Various works in the literature have employed the aforementioned properties to
adapt the B-spline framework to the problems of path/trajectory planning with obstacle
avoidance and waypoint constraints. For example, in [11,14], the authors use B-splines
to generate trajectories for a quadcopter system with waypoint constraints. In [13,15,18],
B-spline is introduced as a general framework for obstacle and collision avoidance for more
aerial vehicles. However, the local B-spline control boundary of each interval Conv{Pj} as
in (16) is relatively large in comparison with the curve interval z(j, t) itself (c.f. Figure 1)
[8,20], which causes unnecessary extra conservativeness to the motion planning problems.
This problem is solved in the next section with the introduction of the equivalent Bézier
representation of the B-spline curve, which provides us with a tighter local control boundary
for each section of the curve.

4.2. Local Equivalent Bézier Representation

As proven in various works from the CAD (computer-aided design) community [20,21],
any interval of a B-spline curve, as defined in (10), e.g., z(j, t) from (15), is also a Bézier
curve of the same degree:

z(j, t) =
d+1

∑
i=1

P(j−1)d+iBi,d,ξ j
(t). (19)
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Here, Pk is the Bézier control point (k ∈ {(j− 1)d + 1, . . . , jd + 1}). The formulation
uses the same basis function Bi,d,ξ j

as defined in (11) and (12), but with a new knot vector

ξ j constructed by repeating the start and end of the interval

ξ j = {ts + (j− 1)∆, . . . , ts + (j− 1)∆︸ ︷︷ ︸
d+1 knots

, ts + j∆, . . . , ts + j∆︸ ︷︷ ︸
d+1 knots

}, (20)

with (ts + (j − 1)∆, ts + j∆) as in (15). The Bézier control points Pk (k ∈ {(j − 1)d +
1, . . . , jd + 1}) as used in (19) can be calculated from the (d + 1) original B-spline control
points {Pj, . . . , Pj+d} by using the following matrix transformation:

Pj = Pj A(d, n, j). (21)

Here, Pj , [P(j−1)d+1 · · · Pjd+1] and Pj , [Pj · · · Pj+d] consist of (d + 1) Bézier and B-
spline control points, respectively. The B-spline-to-Bézier conversion matrix
A(d, n, j) ∈ R(d+1)×(d+1) is recursively defined in [20], while a new calculation method for
the matrix is proposed in the next section. More interestingly, every Bézier control point is
a convex combination of the B-spline control points [20]. This means that every column
in the matrix A(d, n, j) adds up to 1. Since the total number of intervals is fixed at (n− d)
from (15), it is possible to calculate A(d, n, j) for all j ∈ [1, . . . , n− d], then reformulate the
transformation between the Bézier and B-spline control points as follows:

P = PA(d, n), (22)

with P , [P1 · · · Pn] consisting of all the Bézier control points and P as in (10). The total
number of Bézier control points needed to express the whole B-spline curve of degree d is

n = (n− d)d + 1, (23)

where n is the number of B-spline control points from (10).
As a Bézier curve is also a B-spline curve, the same properties of a local convex hull

container (16) and endpoint interpolation (17) are applied to any interval of the curve. This
helps to extend the geometrical properties (16)–(17) of the B-spline curve z(t) by applying
(16) and (17) to each jth interval z(j, t) as in (19) of the curve for all j ∈ {1, . . . , n− d}:
(P1*) The jth interval z(j, t) stays within the convex hull of its (d + 1) Bézier control points,

z(j, t) ∈ Conv{Pj} ⊂ Conv{Pj}, (24)

with Pj, Pj being the B-spline and equivalent Bézier control points from (21). The
convexity property (24) is significantly tighter than the standard one in (16), as proven
in [21] and illustrated hereinafter.

(P2*) The B-spline curve z(t) passes through (n− d + 1) waypoints, which can be deter-
mined by using only the B-spline control points (including the first and last control
points as two endpoints):

z(ts + (j− 1)∆) = P(j−1)d+1, (25)

for all j ∈ {1, . . . , n − d + 1}. The Bézier control points P(j−1)d+1 are actually ex-
pressed in terms of the B-spline control points (22). The proof is straightforward
as (P(j−1)d+1, P(j−1)d+1) are the two Bézier control points, which start and end the
jth interval, respectively. Hence, they belong to the curve according to the property
P2 (17).
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The next section introduces the new algorithm used for calculating the local transfor-
mation matrix A(d, n, j) from (21) for the jth interval and the complete matrix A(d, n) as in
(22) for the whole B-spline curve.

4.3. Calculation of B-spline-to-Bézier Conversion Matrix

The core idea of the proposed algorithms is to consider the matrix A(d, n, j) as a
variable to solve for in (21). For the predefined jth interval of a B-spline curve (i.e., of the
degree d and having n control points), a sufficient number of sets consisting of randomly
generated B-spline control points is collected together with their equivalent Bézier control
points. Then, A(d, n, j) is solved by using the linear Equation (21). The process is repeated
for all j ∈ {1, . . . , n − d}, except for some special circumstances (i.e., the repetition of
values of some middle matrices as discussed in Section 4.3.3); the results are gathered
into the complete transformation matrix A(d, n), as in (22). Note that the B-spline curve
is formulated in an m-dimensional space in (10), but only 1D control points are needed to
calculate the matrices. Therefore, this section is restricted to 1D points P , [P1 · · · Pn] ∈
R1×n and 1D function z(t) as in (10).

4.3.1. Equivalent Bézier Control Points of One Interval

It is possible to solve the equivalent Bézier control points Pj of the jth interval of the
B-spline curve z(t) from (10) given the specific values of the B-spline control points P and
the degree d. The idea is to uniformly sample the jth time interval [ts + (j− 1)∆, ts + j∆)
into (d + 1) instants: {(1)tj, . . . ,(d+1) tj} (e.g., by using linespace) and solve the following
linear equation for Pj:

Bd,jPj =




z
(
(1)tj

)

...
z
(
(d+1)tj

)


, (26)

with the square matrix Bd,j ∈ R(d+1)×(d+1) defined as:

Bd,j =




B1,d,ξ j

(
(1)tj

)
. . . Bd+1,d,ξ j

(
(1)tj

)

...
. . .

...
B1,d,ξ j

(
(d+1)tj

)
. . . Bd+1,d,ξ j

(
(d+1)tj

)


.

4.3.2. Conversion Matrix of One Interval

Next, (d + 1) sets of n control points are randomly selected and denoted as (1)P, . . . ,(d+1) P.
We further define (1)Pj, . . . ,(d+1) Pj as the control points of the jth interval taken from
(1)P, . . . ,(d+1) P, respectively. Since the conversion matrix A(d, n, j) remains the same for
different values of the control points (i.e., but not for different numbers of control points),
the following equation holds true:




(1)Pj
...

(d+1)Pj


A(d, n, j) =




(1)Pj
...

(d+1)Pj


, (27)

in which (i)Pj is calculated by using (26). Solving (27) provides the conversion matrix
A(d, n, j) for the jth interval.

Remark 1. In [20], the conversion matrices are calculated by using a recursive definition and
not by directly solving as proposed in (27). Furthermore, the calculation in [20] treats the matrix
A(d, n, j) the same for all the intervals and for all control point numbers (i.e., A(d, n, j) is simplified
to A(d) in [20]), which is not true. The order of j, with respect to the total number of intervals
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(n− d), plays an important role in the calculation; hence, the matrix needs to be considered as
A(d, n, j) as in our work. For more details, the algorithm given in [20] calculates the value of
A(d, n, j) only for j ∈ {d, . . . , n − 2d + 1} and n ≥ 3d − 1. It is just a subset of our general
consideration of (n− d) intervals, i.e., j ∈ {1, . . . , n− d} and n ≥ d + 1, which are due to the
natural definition of a B-spline curve (10).

4.3.3. Conversion Matrix of the Whole Curve

Theoretically, one can repeat solving (27) for all j ∈ {1, . . . , n − d} with the same
sets of control points (1)P, . . . ,(d+1) P in order to obtain (n − d) conversion matrices
A(d, n, j) ∈ R(d+1)×(d+1) for (n− d) intervals. However, according to the analysis in [20],
the values of the conversion matrix A(d, n, j) remain the same for j ∈ {d, . . . , n− 2d + 1}
when n ≥ 3d− 1 (i.e., the domain in which the algorithm given in [20] is validated). There-
fore, if our algorithm runs into these distinguished cases, it does not repeat the computation
but makes use of the previously stored values.

These matrices are then stacked into the complete matrix A(d, n) ∈ Rn×n with n
number of equivalent Bézier control points (23). The ending point of an interval is also
the starting point of the next one and these points should not be repeated in the complete
conversion matrix. The reader is referred to Figure 3 in reference [20] for an illustrative
example of how to stack these matrices.

4.3.4. Evaluation of the B-spline-to-Bézier Conversion Algorithm

Figure 5 shows the calculation time (in milliseconds) of our proposed algorithm
(implemented in Python on a normal personal computer). The complete conversion matrix
A(d, n) from (22) is computed with the curve degrees d ∈ {2, 3, 4} and with the number of
control points n up to 50. It can be observed that a higher degree requires more computation
time. More interestingly, when increasing the number of control points n, the computation
time grows at the beginning but then seems to be steady. The reason is due to the special
case of n ≥ 3d − 1 in which the algorithm can make use of the repeated value of the
conversion matrix without a recalculation, as mentioned in Section 4.3.3. Even though the
calculation time is only up to a maximum of {20, 10, 4} milliseconds for the {4, 3, 2}-degree
cases, respectively, in practice, it is recommended to calculate these conversion matrices
beforehand for a predicted range of n (e.g., up to hundreds) and a specific value of degree d,
and then store them for online usage with real-time applications. During the online process,
the calculation of A(d, n) is only performed when a new value is needed, and the result
can be stored in a bank for future usage.
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Figure 5. Computation time of the B-spline-to-Bézier conversion algorithm with respect to the
number of control points and the curve’s degree.

4.4. Application of B-spline-to-Bézier Conversion on 2D Path Planning

This section presents an application of the B-spline-to-Bézier conversion on 2D path
planning for mobile robots in simulation. A case study of path planning in a polytopic
corridor with waypoint constraints is further discussed, in which the advantages of using
the B-spline-to-Bézier conversion are clearly demonstrated.
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Figure 6 presents the path planning result with the B-spline-to-Bézier conversion
method proposed in Section 4.3. The reference B-spline path (plotted in a solid green line)
is required to stay entirely within the polytopic corridor and pass through three waypoints
W = {(0, 3), (2, 3), (0.5, 2)}, which are intentionally chosen to be inside the corridor.

The first step is to convert the B-spline control points (10) to the equivalent Bézier
points (22) and then apply Variant 1 introduced in Section 5.1 for placing the Bézier points,
such that the curve stays inside the connected polytopes. It includes the ending point
constraints, i.e., the first and last control points equal to the first and last waypoints,
respectively. Finally, the extended property P2* (25) is applied to constrain the 9th Bézier
control point to be the middle waypoint (2, 3).
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Figure 6. Path planning results in a polytopic corridor using fourth-order B-spline curves and a
comparison between B-spline versus Bézier boundaries.

In Figure 6, the B-spline control points are plotted with square marks while the
equivalent Bézier control points are plotted with circle marks. The fourth interval and
its B-spline control points are highlighted in blue, which shows that the B-spline control
boundary is relatively large in comparison with the curve itself and violates the safety
constraint. On the other hand, the Bézier control boundary of this interval (plotted with
red circle marks and filled with pink) is significantly smaller and completely stays inside
the corridor. The 9th Bézier control point (marked with a red flag) is placed exactly at
(2, 3), which enforces the path to pass through this waypoint and, hence, satisfies all of
the requirements.

The next section introduces the constraint formulations that make use of the equivalent
Bézier representation for solving the path planning problem in a sequence of polytopes.
The benefits of using the Bézier format over the original B-spline formulation are also
highlighted via two variants of constraints.

5. B-spline Path Planning Algorithms in a Sequence of Connected Polytopes

This section presents our approaches for optimally placing the control points {P1, . . . , Pn},
such that the B-spline curve z(t), as defined in (10), satisfies all of the requirements of our
path generation problem (4)–(6) and has a minimal length. For a quick summary, the curve
needs to start at a point Ps, end at another point Pf , and completely stay inside the safe
region S :

z(ts) = Ps, z(t f ) = Pf , z(t) ∈ S , (28)
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with S = S1 ∪ S2 ∪ · · · ∪ Sq (q ≥ 2) from (6) and {Ps, Pf } the start and end poses from (17).
Hereinafter, two different formulations of constraints are introduced in order to tackle the
aforementioned problems, one using a minimal number of control points and the other
requiring more control points but guaranteeing the existence of a solution.

5.1. Variant 1: Constraint Formulation with a Minimal Number of Control Points

Proposition 1. The requirements (28) are satisfied if the following conditions are guaranteed:

(C1) Number of control points:
n = q + d. (29)

(C2) Start and end points:
P1 = Ps, Pq+d = Pf . (30)

(C3) All the Bézier control points in one interval belong to one extended polytope (8):

Pk ∈ Sj,j+1, ∀ Pk ∈ Pj and ∀ j ∈ {1, . . . , q}, (31)

with Pj consisting of (d + 1) Bézier control points given in terms of (d + 1) B-spline control
points Pj as in (21); Sj,j+1 is the extended polytope as in (8).

Proof. At first, the starting and ending constraints from (28) are satisfied by condition C2
(37) due to the endpoint interpolation property (17) of the B-spline curves.

Next, by using n = d + q control points as in (29), the curve z(t) from (10) has q
intervals. Within each interval j, j ∈ {1, . . . , q}, the following equation holds:

z(j, t) ∈ Conv{Pj} ⊆ Sj,j+1, (32)

in which the convexity property is given in (24) and the latter is due to the fact that all
(d + 1) points in Pj stay inside Sj,j+1 as constrained by (31). The result in (32) leads to:

z(t) ∈
q⋃

j=1

Sj,j+1 ≡ S , t ∈ [ts, t f ]. (33)

This completes the proof.

Remark 2. Using the Bézier representation (19) allows us to formulate the constraint (31), such
that it is possible to enforce “each interval z(j, t) to be inside each extended polytope” as proven in
(32). This cannot be done if the original B-spline convexity property (16) is employed instead. The
reason is that two consecutive B-spline boundaries share d common points (e.g., Pj = [Pj · · · Pj+d]
and Pj+1 = [Pj+1 · · · Pj+d+1] from (16)). This leads to the fact that if the B-spline control points
are employed in condition C3 (31), i.e., Pk ∈ Sj,j+1, ∀Pk ∈ Pj, ∀j ∈ {1, . . . , q}, then, the following
necessary condition is required:

j+d⋂

i=j
Si,i+1 6= ∅, ∀j ∈ {1, . . . , q}, (34)

which is clearly not guaranteed for the extended polytopes defined in (8).
On the other hand, there is only one common point for the Bézier representation (24) (e.g., Pj

and Pj+1 share one common point Pjd+1). Therefore, the necessary condition for the solution of (31)
to exist is already satisfied, i.e.,

Sj,j+1 ∩ Sj+1,j+2 6= ∅, ∀j ∈ {1, . . . , q− 1}, (35)

with Sj,j+1 ∩ Sj+1,j+2 = Tj as defined in (7) and (8).
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This approach exploits the property of the equivalent Bézier representation, which
allows formulating the control points for each interval independently, as in (26). Therefore,
it is possible to impose the constraint of “each interval within each extended polytope”,
which appears to be the choice with the minimum number of control points in our analysis.
However, the existence of the solution for the set of constraints (29)–(31) is not always
guaranteed. This issue, unfortunately, may cause bugs and become stuck during online
deployment. Therefore, we introduce another approach that requires more control points
(i.e., more decision variables and heavier computation) but provides a guaranteed solution.

5.2. Variant 2: Constraint Formulation with Guaranteed Solution

Proposition 2. The requirements (28) are satisfied if the B-spline control points of z(t) are chosen
according to the following conditions:

(C1) Number of B-spline control points:

n = d(q− 1) + 2, (36)

which allows the curve to have d(q− 2) + 2 intervals as given in (15).
(C2) Start and end points:

P1 = Ps, Pn = Pf . (37)

with n as in (36).
(C3) First and last intervals stay in the first and last (i.e., Sq,q+1 ≡ Sq) extended polytopes (8),

respectively:
P1 ∈ S1,2, Pd(q−1)+2 ∈ Sq,q+1, (38)

(C4) and every other extended polytope contains d consecutive intervals:

Pj ∈ Sk,k+1,∀j ∈ {d(k− 2) + 2, . . . , d(k− 1) + 1},
∀k ∈ {2, . . . , q− 1}, (39)

with Pj consisting of (d + 1) Bézier control points (which control the jth interval) given in
terms of (d + 1) B-spline control points Pj as in (21) and Sk,k+1 as the extended polytope in
(8).

Proof. The proof is similar to the one in Proposition 1, except for the existence of a feasible
solution. Therefore, only its sketch is presented hereinafter:

(1) Condition C2 (37) helps to ensure the start and end points of the path.
(2) Condition C1 provides a sufficient number of intervals of the curve for the existence

of a feasible solution. All of the intervals are then constrained to stay within the
safe region S by two conditions C3–C4 because each Bézier control boundary (i.e.,
the convex hull of the corresponding (d + 1) Bézier control points (24)) is inside one
extended polytope.

(3) Solutions for the complete problem (36)–(39) always exist. One can be found by
placing the d(q− 1) + 2 original B-spline control points according to two conditions:

(i) The first and last points chosen according to (37).
(ii) Having d points in every transition zone Tk:

{P(k−1)d+2, . . . , Pkd+1} ∈ Tk, ∀k ∈ {1, . . . , q− 1}, (40)

which is feasible since the transition Tk is not empty for all k ∈ {1, . . . , q− 1} as defined
in (7). The next step is to prove that condition (40) ensures the satisfaction of the two
conditions C3–C4 (38)–(39) on the Bézier control points.

For C3, regarding the first interval of the curve, it is true that P1 = Ps ∈ S1,2 from (37)
and {P2, . . . , Pd+1} ∈ T1 ⊆ S1,2 which ensure P1 ∈ S1,2 as Conv{P1} ⊂ Conv{P1} from
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(21). A similar argument is applied to the last interval of the curve; together, they lead to
the satisfaction of (37).

Regarding C4, every extended polytope Sk,k+1 with k ∈ {2, . . . , q − 1} contains 2d
B-spline control points:

{P(k−2)d+2, . . . , Pkd+1} ∈ Sk,k+1, (41)

which is due to (40) and the fact that both Tk ⊂ Sk,k+1 and Tk+1 ⊂ Sk,k+1 (7)–(9). Then, for
d consecutive intervals (k− 2)d + 2, . . . , (k− 1)d + 1, their Bézier control points satisfy:

with Pi, Pi as in (21). Note that we have Conv{Pi} ⊂ Sk,k+1 since Pi ∈ Sk,k+1,
∀i ∈ [(k − 2)d + 2, . . . , (k − 1)d + 1] due to (41). Finally, the condition (39) is ensured
and the resulting B-spline path satisfies all of the requirements (28). This also completes
the proof.

Remark 3. In comparison with our approach of using a “minimal number of control points" as in
(29)–(31), Proposition 2 adds d intervals to a middle polytope instead of using only one interval as
in (31). It allows controlling the curve’s shape within each polytope completely and independently
and, thus, always guarantee the existence of the solution. Furthermore, the feasible solution (40) is
built upon the B-spline format. It is obviously only a subset of the Bézier constraints (39), while
both of them can ensure the path planning requirements (28). As a result, we actually gain more
feasibility and flexibility when switching to the equivalent Bézier format.

5.3. Path Generation Problem with Minimal Length

This section presents the complete optimization problem used to solve the B-spline
reference path satisfying the constraints (28) and minimizing the curve’s length. The
property P3 in (18) of the B-spline curve z(t) from (10) is exploited in order to formulate
the length cost into a quadratic function of the control points Pi ∈ R2, i ∈ {1, . . . , n} (with
n, the number of control points, chosen as in (29) or (36)). By denoting P , [P1 · · · Pn] from
(10), the optimization problem is given by:

P∗ = arg min
P

∫ t f

ts
‖ż(t)‖2dt, (42)

subject to constraints (29)–(31) or (36)–(39) depending on the variants.
The property (18) of the B-spline curve leads to:

ż(t) = PMd,d−1Ld,d−1Bd,ξ(t) =
n

∑
i=1

QiBi,d,ξ(t), (43)

with Qi ∈ R2 being the ith column of Q = PMd,d−1Ld,d−1 ∈ R2×2q. Therefore, the optimiza-
tion problem (42) is reformulated into:

P∗ = arg min
P

n

∑
i=1

n

∑
j=1

Q>i Qj

∫ t f

ts
Bi,d,ξ(t)Bj,d,ξ(t)dt, (44)

subject to constraints (29)–(31) or (36)–(39) depending on the variants.
which clearly has a quadratic cost function since the integral terms are independent of the
decision variables P = [P1 · · · Pn].

Finally, the reference path p(t) as required in (4)–(6) is taken as:

p(t) = P∗Bd,ξ(t), (45)

in which the optimal control points P∗ are obtained from solving the optimization problem
(44) and the B-spline basis functions Bd,ξ as used in (10) is defined with [ts, t f ] = [0, 1].

The theoretical background of our path planning algorithms using B-spline parametriza-
tion is complete. The next section will introduce the public repository containing the
implementation of the whole path planning process and its usage guidelines.
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6. Navigation with Polytopes Toolbox

The algorithms discussed throughout this paper were implemented in Python, pub-
lished and maintained as the Navigation with Polytopes (https://gitlab.rob.uni-luebeck.
de/robPublic/navigation_with_polytopes, accessed on 19 February 2023) toolbox. The
toolbox can be used either as stand-alone scripts for research purposes or as a global path
planner that is compatible with ROS (robot operating system) navigation tools. It provides
a framework for the construction of a polytope map from a standard occupancy grid map,
searching for an appropriate sequence of polytopes and planning a minimal-length path
with different options on the B-spline or Bézier characterizations.

6.1. Introduction to the Toolbox

The repository of the toolbox (https://gitlab.rob.uni-luebeck.de/robPublic/navigation_
with_polytopes, accessed on 19 February 2023) is organized in the following structure:

• navigation_with_polytopes—toolbox with source code.
• navigation_with_polytope_ros—integration of the toolbox into ROS.
• Examples–sample python scripts for the illustration of the toolbox.

It provides three main features:

• Constructs a polytope map from a grid map.
• Finds an appropriate sequence of polytopes.
• Plans a B-spline path with different algorithms.

The outcomes of each task can be seen in Figure 7 for a given grid map. Within the
scope of this paper, more details on the feature of planning the reference B-spline path
using the equivalent Bézier representation are presented hereinafter. The toolbox provides
the function bspline_path_planner_polytope_map, which receives five parameters: the starting
and ending points, the polytope map, the degree d of the curve, and the method. Three
options for method have been implemented as follows:

(1) bezier_min calls the Variant 1 algorithm given in Section 5.1, which uses the proposed
B-spline-to-Bézier conversion method with a minimal number of control points [8];

(2) bezier_guarantee (default option) uses the Variant 2 algorithm given in Section 5.2 with
a guaranteed solution [9];

(3) bspline_guarantee returns the algebraic solution (40) of Proposition 2. The whole
calculation is done with the original B-spline format and with a guaranteed solution.

The function returns both the path defined as a list of points, and the B-spline control
points P for constructing the analytical formulation z(t) (10) of the path if needed. The
optimal path planning problem is implemented in Pyomo [25], Python 3, and with the
solver IPOPT [26]. For ease of use, two interfaces are provided: stand-alone scripts for quick
tests and easy modifications as well as a global planner package in ROS for practical usages.

Ps

Pf

(a)

Ps

Pf

(b)

Ps

Pf

(c)

Figure 7. Main tasks of the Navigation with Polytopes toolbox. (a) Polytope map from a grid map;
(b) finding a sequence of polytopes; (c) planning a B-spline reference path.
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6.2. ROS Integration

As part of the toolbox, a ROS1 package that may be used as a global path planner is
also provided for convenience and integration into current projects. Two ROS nodes can be
found in the ROS package navigation with polytopes:

• poly_map_construct—creates a polytope map from a given grid map by using the
procedure outlined in Section 3.1.

• bspline_path_planner_node—given the current pose and goal, the node performs the
whole path planning process. In addition to performing the tasks as the first node,
it searches for the ideal sequence of polytopes and publishes the B-spline path as
mentioned in Section 4.

The bspline_path_planner_node takes several parameters for the creation of a polytope
map-like robot footprint (offset op), RDP inner and outer epsilons, path planner parameters,
such as the B-spline degree, method, etc., and parameters, such as the map frame, base
frame of the robot, etc. The package provides a sample launch file, which contains all of the
necessary parameters for the node. The results of the toolbox’s ROS integration are illus-
trated in Figure 8. The ROS package is validated using a sample environment from Gazebo,
as shown in Figure 8a, and the results of the path planning algorithms from the toolbox
are visualized in Rviz, as shown in Figure 8b. The polytopes (plotted in blue) are visual-
ized in Rviz using the jsk_ visualization (https://github.com/jsk-ros-pkg/jsk_visualization,
accessed on 19 February 2023) package. Both ROS nodes mentioned above will publish
the polytope map and sequence as a msg type jsk_ recognition_ msgs/PolygonArray for visu-
alization purposes in Rviz. Usage instruction and structure information (subscribed and
published topics of nodes) are available in the repository.

(a) Gazebo simulation world. (b) Path planning result in Rviz.

Figure 8. Toolbox’s result on a grid map obtained from a Gazebo simulation.

7. Validation Results

The validation results of the Navigation with Polytopes toolbox are illustrated in this
section. It firstly presents an exploration strategy for mapping an unknown environment
given a top-down view figure (e.g., satellite Google Earth image). Then, the proposed
path planning algorithm as well as other methods are validated in different grid maps,
which are collected from realistic simulations and an actual environment. The evaluation
of the toolbox when being used with ROS in various Gazebo simulation environments
is presented, together with the comparisons with the default path-planning methods
employed by the ROS navigation stack.

7.1. Exploration Strategy for Creating the Occupancy Grid Map

The proposed path planning process requires constructing a polytope map from a
standard grid map. One simple method for creating such grid maps is to use the laser-based
SLAM package gmapping while driving the robot around either manually or autonomously.
We implemented an exploration program, which receives a top-down image of the environ-
ment around the robot, then allows the user to select points that will be connected as the
exploration path for the robot to follow afterwards, autonomously, by using the move_base
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function in ROS (c.f. Figure 9a). Note that a simple sketch of the environment is sufficient
for the program, but a screenshot of the simulation from a top-down view or satellite map
image of the field is better. Moreover, the size of the map must be specified in meters and
the starting position and orientation of the robot has to be specified. The exploration and
mapping process is visualized in real-time in the program window as shown in Figure 9a.
The dashed white line indicates the sequence in which the exploration path passes through
the predefined points. Boundaries of mapped obstacles are highlighted in red, unexplored
parts of the map are grayed-out and explored areas are colored. The robot’s position is
marked by the robot symbol. After obtaining the grid map, one can apply the Navigation
with Polytopes toolbox to construct the polytope map and plan a B-spline reference path
(given by solid red line) as shown in Figure 9b. A comparison with the standard path
planner Navfn in ROS (with its result plotted in a solid green line) is also presented there,
which shows similarities and comparable performances (e.g., smoothness, shape, length) of
the two methods. More details on the applications of the toolbox and comparisons with the
Navfn method will be discussed in the next section.

(a) (b)

Figure 9. Illustration of the exploration strategy using a top-down figure of the environment and
the corresponding path planning results (reference paths obtained from the Navigation with Polytopes
toolbox and from the standard Navfn planner of ROS plotted in red and green lines, respectively).
(a) Exploration program window; (b) path planning results after the exploration.

7.2. Simulation Results

Figure 10 shows the results of the whole path planning process performed by the
toolbox on different grid maps. Figures 10a–c were captured from an agricultural field, while
Figure 10d resulted from an indoor scenario after an earthquake with scattered furniture.
All were simulated with high fidelity in Gazebo. Note that more results from different
aspects of the aforementioned two scenarios, as well as another laboratory and office maps,
are provided in Appendix A. In all scenarios, the toolbox performs the sequential steps as
described throughout the paper: (i) constructing a polytope map, (ii) finding the sequence of
polytopes that leads from start to goal points, and (iii) planning a reference path using one
of the three methods available in the toolbox. The polytope maps are bordered in blue, the
sequence of polytopes allowing safe travel from Ps to Pf is filled with green, and the B-spline
reference path is plotted in red. The computation time for constructing the polytope map
for the complex agricultural field (c.f. Figure 10a–c) is around 500 ms, while for the indoor
scenario after the earthquake shown in Figure 10d, it takes up to 900 ms due to numerous
small and cluttered obstacles. Next, the optimal path planning process consumes 1225,
1080, and 1460 ms for the three scenarios shown in Figure 10b, 10c, and 10d, respectively.
Figures 9b and 10b–d also present the comparison of the toolbox with the path planning
results of the standard Navfn function of ROS. The average computation time of the Navfn
planner is around 100 ms, which is much less than the proposed toolbox. It is understandable
as the Navfn planner is basically a modified version of the A* algorithm [5,27], which is
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well-known for its fast searching capability. However, the Navigation with Polytopes toolbox
serves as a global path planner, which only runs once at the beginning of the navigation
task in order to find a safe and optimal path; spending several seconds is an acceptable
trade-off with numerous advantages that the B-spline path provides in comparison with the
A* path. For more details, in Figures 10d and A1a, the Navfn path planner plans the paths
through the unknown gray area, which are shorter than the B-spline paths but possibly
unsafe. The reason is due to the high safety demand of the Navigation with Polytopes toolbox,
it only considers the explored and free regions when constructing the polytope map while
the Navfn path planner allows the movements inside the unexplored area. Furthermore,
the paths resulting from the Navfn planner (plotted in solid green) are not as smooth as the
B-spline path (in red) and are longer in most of the cases. These prove the effectiveness of
the proposed minimal-length path planning algorithms in (44). Another important property
of the planned paths is their smoothness. As shown in Figure 10b as well as Figure A1b–d
in Appendix A, the B-spline paths (plotted in solid red lines) are significantly smoother
than the results from the Navfn path planner (plotted in solid green lines) despite the usage
of the Savitzky–Golay path smoother, which is already implemented in the Navfn planner.
After extensive simulation and experimental trials, the Navigation with Polytopes toolbox was
tested carefully with various maps of different environments and of various sizes to validate
its scalability and robustness, as shown in Figures 10 and A1.

(a) (b)

(c) (d)

Figure 10. Comparisons of different path planning methods in occupancy grid maps: Navigation with
Polytopes toolbox (red lines) versus the standard Navfn of ROS (green lines). (a) Agriculture field in
the Gazebo simulation; (b) results in the field map: test case 1; (c) results in the field map: test case 2;
(d) results in an earthquake-affected house.

8. Discussion

The Navigation with Polytopes toolbox and its theoretical background were introduced
in this paper. The toolbox currently serves as a global path planner and is compatible with
the ROS navigation package. It takes the standard occupancy grid map of the environment,
the current robot’s position, and the selected goal as inputs and provides a safe and smooth
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reference path with an optimal length to the goal. Major distinctions (with respect to existing
works in the literature) are the construction of a polytope map from the original grid map,
the usage of the B-spline curve via its equivalent Bézier representation on the constrained
path planning problem, and the conversion from B-spline to Bézier control points of the
curve. As an unavoidable consequence of the optimization usage, the computation time is
higher than any standard path planning methods using the grid and graph search strategies
(e.g., Dijkstra, RRT [2–4]). However, the results obtained with the toolbox show advantages
over the standard methods employed in the current path planner of the ROS navigation
package, such as a shorter length, a smoother profile, and enhanced safety. Another
advantage of the toolbox is that optimization can be reformulated with much flexibility. In
the case of the agricultural field map (c.f. Figure 10a), the optimization problem (44) can
be enforced to plan the path along the center lines of the rows and not pass through them
by adding an additional constraint on the connectivity of the polytope map, i.e., by not
considering two polytopes to be connected if they cut through the predefined rows. We
emphasize that the use of a polytope map allows for the integration of various optimal
control methods to solve different navigation problems, in addition to the primary goal
of serving as a global path planner. By constructing the polytope map, the toolbox can
become a framework for easily integrating existing optimal control techniques into realistic
grid map data. The problems to be tackled are not limited to path/trajectory planning, but
also navigation, motion control, localization, etc. The transformation of the obstacle-free
space (i.e., non-occupied cells in a grid map) into a polytope map, as well as finding an
appropriate polytope sequence, allows simplifying and representing a safe environment
with only linear constraints (i.e., polytopic constraints). They have been employed in
various optimal control applications, such as MPC (model predictive control) and mixed-
integer-programming [15,28–30], e.g., in [28], the authors introduce an MPC controller for
the safe navigation of a mobile robot within a polytope, which can push the system far
away from the selected boundaries, such as walls. This controller will be added to the
toolbox as the local navigation controller in the near future.

Another worthy extension would be to improve the technique of finding an appropri-
ate sequence of polytopes by taking into account the narrowness of the corridor (i.e., only
distance is counted for now). It is needed to evaluate a trade-off between a short but narrow
corridor and a long but spacious one. More kinetic constraints will be taken into account,
such as turning the radius and speed into the path planning algorithms, considering their
effects on the solvability of the final optimization problem.

9. Conclusions

This paper presents the process to solve the path planning problem for a mobile robot
given a standard grid map of the surrounding environment. It first constructs a polytope
map of the free space and then seeks a sequence of connected polytopes leading to the
goal with minimal distance. Next, a B-spline path is planned within the sequence and
connects the two end points. Specifically, the B-spline path is converted into its equivalent
Bézier representation in order to reduce the conservativeness of the path planning problem.
Another contribution is the new technique to calculate the B-spline-to-Bézier conversion
matrix, which covers all partitions of the curve. Two variants of constraints that enforce the
B-spline path to stay within the aforementioned sequence of polytopes are presented with
proofs. The whole procedure is implemented in Python and is publicly available as the
Navigation with Polytopes (https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_
polytopes, accessed on 19 February 2023) toolbox, which is ready to use and compatible
with ROS as a global path planner for navigation.
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The following abbreviations are used in this manuscript:
ROS robot operating system
SLAM simultaneous localization and mapping
CAD computer-aided design
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Appendix A. Illustration of the Path Planning Results from the Navigation with
Polytopes Toolbox

This section provides additional examples of the path planning results obtained from
the Navigation with Polytopes toolbox compared to the standard Navfn path planner in ROS.
The paths from the toolbox are plotted in solid red lines, while those obtained from Navfn
are plotted in solid green lines for four different environments: (i) an indoor scenario after
an earthquake in Figure A1a, (ii) an agricultural field (cf. Figure 8a) in Figure A1b, (iii) a
laboratory in Figure A1c, and (iv) an office floor in Figure A1d.

(a) Earthquake-affected house. (b) Agricultural field.

(c) Laboratory. (d) Office floor
Figure A1. Path planning results for different occupancy grid maps; compares the performance of
the Navigation with Polytopes toolbox (red lines) versus the standard Navfn in ROS (green lines).
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Abstract: In this paper, the low-level velocity controller of an autonomous vehicle is studied. The per-
formance of the traditional controller used in this kind of system, a PID, is analyzed. This kind of
controller cannot follow ramp references without error, so when the reference implies a change in
the speed, the vehicle cannot follow the proposed reference, and there is a significant difference
between the actual and desired vehicle behaviors. A fractional controller is proposed which changes
the ordinary dynamics allowing faster responses for small times, at the cost of slower responses for
large times. The idea is to take advantage of this fact to follow fast setpoint changes with a smaller
error than that obtained with a classic non-fractional PI controller. Using this controller, the vehicle
can follow variable speed references with zero stationary error, significantly reducing the difference
between reference and actual vehicle behavior. The paper presents the fractional controller, studies
its stability in function of the fractional parameters, designs the controller, and tests its stability.
The designed controller is tested on a real prototype, and its behavior is compared to a standard PID
controller. The designed fractional PID controller overcomes the results of the standard PID controller.

Keywords: fractional control; autonomous vehicle; robotics

1. Introduction

Mobile robotics is a very active research area. This includes the design and implemen-
tation of autonomous robots. These robots are capable of making intelligent decisions based
on localization, path planning, obstacle detection and avoidance, and environment analysis
modules. One of the key parameters for the success of a mobile robot is robot control. The
robot must obey the decisions made by higher control layers in the most precise way. Any
variation between the maneuver received and the actual maneuver executed can result in
final application failure and more complicated high-level control.

Our research group has been working for some time with a low-cost electric golf
cart [1]. The objective is to turn a standard golf cart into an autonomous vehicle so that some
mechanical and electric modifications were made on it. The drive that generates traction is a
direct current motor and a drive by wire steering system that coexists with manual steering
is included. The prototype includes an on board computer, sensors and software that turn
it into an autonomous robot capable of transporting two passengers in non-structured
environments. The vehicle localize itself [2,3], makes navigation decisions [4,5], detects
obstacles [6], avoids them [7,8], and plans the best route in real time [9]. The robot applies
this plan using a steering and velocity control, and the quality of the control limits the final
performance of the vehicle. This turns this vehicle into a good framework to test different
self-driven vehicle strategies.

The sensor set includes two encoders attached to each rear wheel to obtain odometric
information, an IMU, a centimeter GPS, three Lidars, and a stereo vision system. The
software is developed on Robotic Operative System (ROS). The software is structured in
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layers, from the low level where there are sensors and actuators to the high level where
there are planning layers able to make intelligent decisions based on the environment.
Figure 1 shows the prototype, a fully electric two-seat golf cart.

Figure 1. The sensors system to measure cart speed.

The measured speed for the control is obtained from the odometric system of the
prototype. The odometric system is based on encoders coupled to rear wheels, as shown
in Figure 2. Each encoder provides 1024 pulses per revolution and each revolution of the
wheel generates a revolution of the encoder (1:1 coupling). Wheel rotation is transferred to
the encoders through a flexible mechanical transmission system that goes from the center
of each wheel to the encoder placed on the side of the vehicle (see Figure 2). Encoder
output is connected to an ad hoc electronics that samples the encoders signal every 0.5 ms.
The electronics is designed to measure and integrate the encoder signals and the output is
transmitted to the on-board computer at every integration period of 20 ms. The integration
is made in the microcontroller installed in the ad hoc electronics, based on Euler integration,
and collecting encoder increments for the integration time.

Figure 2. The odometric sensor coupled to the rear wheels.
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This paper focuses on the lower software level of the vehicle, the motor traction control
when a trajectory is being tracked. The traditional way of approaching the control of a
system is using a PID controller [10]. It is a convenient and easy way to apply a solution for
controlling any system, but usually the performance of the controller system is not the best.
To improve the control quality of the final system, some alternatives are available in the
literature. Specifically, the classic PI controller used in the first designs was replaced by a
new fractional control in order to achieve better maneuverability under certain conditions.

In particular, the control engineering benefited from the advantages of adding frac-
tional operators to controllers. Incorporating integral and derivative fractional parts into a
controller makes it possible to have two additional parameters to tune compared to the in-
teger versions. These two parameters are the corresponding fractional orders. The objective
is precisely to take advantage of the fractional controllers to obtain a better performance in
the maneuverability of the prototype.

In this paper, a new fractional controller is used as the speed control for the au-
tonomous vehicle. This controller allows it to follow the applied commands in a more
precise way. Specifically, if the command sent by the high-level control is a speed increase
or reduction, a traditional PID is not able to follow the trajectory without a stationary error,
so the actual speed is different from the desired speed, as shown in Section 5. The fractional
controller proposed is able to follow these variable speed commands with zero stationary
error, and the error between reference and command is reduced as Section 7 results shows.
This advantage allows a more precise and accurate movement of the autonomous cart.

Figure 3 shows the implementation of the low-level controller that is made in the
autonomous vehicle, where a standard PI controller is substituted by a fractional PI.

Figure 3. Overall block diagram of the autonomous cart.

2. Previous Work

Fractional calculus studies the generalization of integer-order derivatives and integrals
to a fractional-order derivatives and integrals. This means that traditional calculus use
integer indices in its derivatives and integrals, however, the fractional calculus allows to
use fractional derivatives and integrals describing a more complex function. The fractional
calculus may be considered an old and yet novel topic. It is an old topic because, starting
from some speculations of G.W. Leibniz in 1695 and L. Euler in 1730 , it has been progres-
sively developed up to now. However, it may also be considered a novel topic because its
applications began in recent decades. A complete description of the fractional mathematics
can be found in [11]. In [12], a survey with the advances in fractional calculus since the
1970s is shown, which includes numerical applications to implement the actual fractional
systems that can work in real time. In [13], a survey of many applications of fractional
calculus, examples, and possible implementations are presented. It also contains a separate
chapter of fractional order control systems, which opens new perspectives in control theory.

Fractional models have been applied to different problems to characterize the dynam-
ics of processes with complex behaviors, as in [14], where fractional kinetic equations of
the diffusion are presented as a useful approach for the description of transport dynamics
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in complex systems which are governed by anomalous diffusion and non-exponential
relaxation patterns. Methods to find the solution are introduced, and for some special cases,
exact solutions are calculated. This report demonstrates that fractional equations have
come of age as a complementary tool in the description of anomalous transport processes.

In [15], fractional calculus is applied to the control of a revolute planar robotic ma-
nipulator. The fractional derivatives required by the control can be obtained by adopting
numerical real-time signal processing. Numerical experiments illustrated the feasibility
and effectiveness of the approach. Ref. [16] presents the possibilities of fractional calcu-
lus applied to system identification and control engineering, but also into sensing and
filtering domains. The fractional-order electronic component has led to the possibility of
analog filtering techniques from a practical perspective, enlarging the horizon to a wider
frequency range, with increased robustness to component variation, stability, and noise re-
duction. Fractional-order digital filters have developed to provide an alternative solution to
higher-order integer-order filters, with increased design flexibility and better performance.

The control of autonomous vehicles includes multiple steps, including route plan-
ning, behavioral decision-making, motion planning, and vehicle control [17]. The last
step, vehicle control is usually made with a standard PID controller. A survey of the
different strategies applied in the low-level control of the vehicles can be found in chapter 2
of reference [18], where the authors distinguish between model-based and model-free
controllers. Model-based controllers are more complicated to implement, and when the
system changes, as for example for battery discharge, its performance is reduced. However,
model-free controllers are more difficult to adjust, but more robust to changes in the model.
The fractional controller presented in this paper can be classified as model-free, but with
better performance than standard PID controllers. In [19], the longitudinal control task
is addressed by implementing adaptive PID control using two different approaches: ge-
netic algorithms (GA-PID) and then neural networks (NN-PID), respectively, adapting the
controller to the non-linearities and the change in system characteristics. In [? ], a control
schema to manage low-level vehicle actuators (steering throttle and brake) based on fuzzy
logic, an artificial intelligence technique that is able to mimic human procedural behavior
is presented, in this case, when performing the driving task.

In this paper, a new approach to controlling the speed of an autonomous robot is
presented, where the fractional-order controller is used to improve the performance in
reference tracking. The advantages of this kind of controller include the fact that it allows
to obtain a better performance in robot tracking the following sections will show.

3. Fractional Integral and Derivative

Given a real function dependent on time f(t), its fractional integral
(

Iα
0+ f
)
(t) of order

α is defined as Equation (1).

(
Iα
0+ f
)
(t) , 1

Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ (1)

where α is the real positive integration order and Γ(α) is the Gamma function. The Laplace
transform of this integral equation can be defined as Equation 2.

L{Iα f (t)} =
∫ ∞

0
e−st

(
1

Γ(α)

∫ t

0

f (τ)

(t− τ)1−α
dτ

)
dt =

1
sα

F(s) (2)

with Iα
0+≡Iα and zero initial conditions.

The definition of the fractional integral is unique. However, for the definition of the
fractional derivative, there are various proposals.

The Lagrange’s rule for differential operators is used to define the Riemann–Liouville
fractional derivative RLDβ

0+ f(t) of order β for a function f (t) . Given n ∈ N such that
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n− 1 < β ≤ n, the Riemann–Liouville derivative is obtained, computing the n-th order
derivative over the integral of order (n − β) which is defined in Equation (3).

RLDβ
0+ f (t) , Dn

(
In−β
0+ f

)
(t) (3)

where D≡ d
dt and RLDβ

0+≡Dβ is used.
In a very similar way to the previous definition, changing the order of the derivative

and the integral, it is possible to define the Caputo fractional derivative cDβ
0+ f (t) of order

β in Equation (4).

cDβ
0+ f (t) ,

(
In−β
0+ (Dn f )

)
(t) (4)

The advantage of the Caputo derivative over the Riemann Liouville derivative,
Equation (4), is that it is not necessary to define the fractional-order initial conditions
when solving differential equations.

Another alternative definition for the fractional derivative is that of Grünwald–Letnikov
GLDβ

0+ f (t) (Equation (5)).

GLDβ
0+ f (t) = lim

h→0

1
hβ

∞

∑
j=0

(−1)j
(

β

j

)
f (t + (β− j)h) (5)

where (β
j) is defined in Equation (6).

(
β

j

)
=

Γ(β + 1)
Γ(j + 1)Γ(β− j + 1)

(6)

It can be shown that the above definitions of the fractional derivative are equivalent
for a wide class of functions [13].

The Laplace transform of the fractional derivative Dβ is given in Equation (7).

L
{

Dβ f (t)
}
= sβF(s) (7)

when n− 1 < β ≤ n and f (0)= f
′
(0)= · · · = f (n−1)(0)= 0.

It is important to note that the classical derivative of a function at an instant t is a local
operator. However, the fractional derivative of a function at time t depends on past values,
and it is therefore an operator with memory.

3.1. Fractional Systems

A non-integer linear time-invariant system with input u(t) and output y(t) can be
represented in Equation (8).

n

∑
k=0

akDαk y(t) =
m

∑
k=0

bkDβk u(t) (8)

where αk, βk∈R and n ≥ m.
If the orders of derivation αk and βk can be represented as a term kα, with k = 0, 1,

2,. . . the system is said to be of commensurate order Equation (9)

n

∑
k=0

akDkαy(t) =
m

∑
k=0

bkDkαu(t) (9)

and its transfer function is defined in Equation (10)

G(s) =
Y(s)
U(s)

=
m

∑
k=0

bk(sα)k/
n

∑
k=0

ak(sα)k (10)
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It should be noted that a complex variable function such as Equation (11) is multi–
valued. Its domain is a Riemann surface, with a finite number of sheets when ∀k, αk∈Q+.
The q sheets of the Riemann surface, with α = 1/q, are determined by

F(s) =
n

∑
k=0

aksαk

s = |s|ejφ, (2k + 1)π < φ < (2k + 3)π

(11)

where k = −1, 0, . . ., q− 2. Note that only the roots of the principal sheet are meaningful [21].
The stability study of this type of control system is the key of its applicability. The

stability analysis is performed, finding an integer index m such as mαk which is an integer
for k = 0, 1, . . . , n. Then, it is possible to define a transformation between the complex
plane s and a new complex plane v, where s = vm.

Figure 4 shows that the first Riemann sheet is a slice of the complex plane v, which is
limited for a θ range of

(
− π

m , π
m
)
. The line with θ = π

2m splits the first Riemann sheet into
two zones. This line is the stability boundary and the zone above the stability boundary is
the stability region [21–23].

Figure 4. Transformation of the stability region from plane s to plane v.

3.2. PIαDβ Fractional Controller

In the control theory, the classical PID has been modified by replacing the ordinary
integral term for a fractional integral of order α, and by replacing the ordinary derivative
term for a fractional derivative of order β. Indeed, Podlubny [24] proposed a generalization
of the classical PID controller known as PIαDβ, with 0 < α, β < 1. The fractional PID has
two new tuning parameters (the fractional order of the integral and derivative actions) and
it has shown a better performance in both time and frequency domains than its classical
counterpart on some applications [25,26].

The PIαDβ controller expression in the time domain is shown in Equation (12) where
e(t) is the error and u(t) the control input.

u(t)=kpe(t)+kiD−αe(t)+kDDβe(t) (12)

The transfer function of the PIαDβ controller is described in Equation (13).

C(s) = Kp +
Ki
sα

+ Kdsβ , α,β > 0 (13)
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4. Prototype Description

In order to carry out the controller design, a model of the traction response of the
vehicle must be obtained first. For this, a constant voltage has been used as an open-loop
input and the readings from the optical encoder coupled to the rear wheels are measured.
This relates motor inputs with velocity output in open loop.

With the measured response, model adjustment has been made. Figure 5 shows the
measured and model output for the same input. The right part of the figure corresponds
to the part in which traction is not exerted and the vehicle stops due to the friction of the
wheels with the ground.

Figure 5. Step response for the electric vehicle.

The adjusted model cart is represented by the state variables described in Equation (14).

A =

[
0.00 1.00
−1.85 −3.05

]
; B =

[
0.00
1.85

]
; C =

[
1.00 0.00

]
; D = 0.00 (14)

The prototype can also be described by the transfer function of Equation (15).

G(s) =
K

(τ1s + 1)(τ2s + 1)
(15)

with K = 1 , τ1 = 1.20, τ2 = 0.45.

5. Fractional Control Application

It should be highlighted that the introduction of fractional terms means that the
dynamics of the closed-loop system does not depend on exponentials but on Mittag–Leffler
functions described in Equation (16).

Eα(z) =
∞

∑
r=0

zr

Γ(1 + αr)
, α > 0 and zεC (16)

where Γ is the Gamma function. When α = 1, the exponential is obtained as a particular
case E1(z) = ez.

An important fact is that, unlike what happens with the product of two exponentials
(Mittag–Leffler functions with α = 1) which is another exponential function, the product of
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two Mittag–Leffler functions with α 6= 1 is not a Mittag–Leffler function but is obtained by
Equation (17).

Eα(ax)Eα(ay) =
∞

∑
r=0

argα(r; x, y)
Γ(1 + αr)

gα(r; x, y) =
r

∑
i=0

(
r
i

)

α

xr−iyi

(
r
i

)

α

=
Γ(1 + αr)

Γ(1 + αi)Γ(1 + α(r− i))

(17)

It should be noted that, if α = 1, this expression reduces to a binomial and the classical
expression for the product of exponential is obtained. This effect has multiple consequences,
but in this paper, the change in the time scale produced by the Mittag–Leffler functions is
particularly interested. Thus, for rapid change signals, the dynamics are much faster than
for an exponential, while for slow change signals, the opposite occurs, that is, the dynamics
given by the Mittag–Leffler function is much slower than that of an exponential. To show
this behavior in a simple way, the Mittag–Leffler functions for the simplest situation,
represented in the fractional differential Equation (18), has been chosen.

dy(t)
dt

+ c1
d(β y(t)

dt(λ
+ c2 I(α y(t) = −y(t) (18)

Note that the differential Equation (18) corresponds to a system with no input, and to
observe the dynamics, an initial condition other than zero must be chosen. Thus, it was
considered y(0) = 2.

Figure 6a shows the behavior when the values c1 = 1; c2 = 0 were chosen. Only
the dynamics generated by the fractional derivative term is present. Figure 6b shows the
dynamic when c1 = 0; c2 = 1 have been chosen as parameters, so only the dynamics
generated by the fractional integral term is present. The bandwidth of the controller can
be adapted in function of the coefficients β in Figure 6a and α in Figure 6b, although the
fractional controller gives more degrees of freedom to adjust the system behavior, changing
the time response for the derivative and integral part.

(a) Comparison of classical dynamics (β = 0) with
fractional derivative dynamics for different values
of β.

(b) Comparison of classical dynamics (α = 0) with
fractional integral dynamics for different values
of α.

Figure 6. Behavior of the fractional terms with different parameters.

The standard closed-loop transfer function of error versus reference is shown in
Equation (19).

E(s)
R(s)

=
1

1 + G(s)C(s)
(19)

404



Sensors 2023, 23, 3191

A controller C(s) a PIα shown in Equation (20) is proposed.

C(s) =
(

Kpsα + Ki

sα

)
(20)

so the controller system transfer function is shown in Equation (21).

E(s)
R(s)

=
sα(τ1s + 1)(τ2s + 1)

sα
(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKi

(21)

The objective is to control a golf cart, so the possible commands that the path planning
layer can send to the controller are a constant speed reference, and a speed change reference.
Step (l = 1) for constant speed and ramp (l = 2) for change in the speed are considered
as the possible inputs for the controller systems. The possible input references for the
controller are shown in Equation (22).

R(s) =
r
sl (22)

As is well known, to calculate the stationary error, the final value theorem is applied
in Equation (23).

estat = lim
s→0

sE(s) = lim
s→0

rsα+1(τ1s + 1)(τ2s + 1)
sα+l

(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKisl (23)

If the reference is for the step type (l = 1), the limit of Equation (23) is shown in
Equation (24).

estat = lim
s→0

rsα(τ1s + 1)(τ2s + 1)
sα
(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKi

(24)

so, the final stationary error depends on α as shown in Equation (25)
{

α = 0; estat =
r

K(Kp+Ki)
α > 0; estat = 0

(25)

For this kind of reference, the classic PI can be used where α = 1 and with zero
error in the stationary. However, if the reference is ramp type (l = 2), where the speed
change from an initial value to a final one, the tracking stationary error can be calculated as
Equation (26).

estat = lim
s→0

r(τ1s + 1)(τ2s + 1)
s
(
(τ1s + 1)(τ2s + 1) + KKp

)
+ KKis1−α

(26)

the final stationary error depends on α as shown in Equation (27).




c0 ≤ α < 1; estat = ∞
α = 1; estat =

r
KKi

α > 1; estat = 0
(27)

In this case, the classical integer solution with α = 2 obtains a zero stationary error,
but it can make the closed-loop system unstable. For this reason, a fractional controller is
used to achieve a zero stationary error, and it is necessary to carry out a stability analysis to
assure stability. For this, it is considered as a final control transfer function Equation (28).

G(s)C(s) =
K

(τ1s + 1)(τ2s + 1)

(
Kpsα + Ki

sα

)
(28)
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and the frequency response must be calculated according to Equation (29).

mag = 20log10




√
K2

pω2α + K2
i + 2KpKiω

αcos
(

π
2 α
)

ωα




+ 20log10


 K√

(τ1ω)2 + 1
√
(τ2ω)2 + 1




f ase = arctag

(
Kpωαsin

(
π
2 α
)

Kpωαcos
(

π
2 α
)
+ Ki

)
− π

2
α− arctag(τ1ω)− arctag(τ2ω)

(29)

To also guarantee stability and robustness, the hypotheses described in [21,27] will be
used. Phase margin ϕm has typically been used as a measure of stability and robustness.
Thus, the phase margin ϕm will be considered to define the desired nominal damping of
the system. On the other hand, the crossover frequency ωcg that fixes the desired nominal
speed of the response of the system will also be used.

In order to calculate the gain crossover frequency ωcg , the equality defined in Equation (30)
must be verified.

|C(jω)G(jω)|
(
Kp, Ki, α

)∣∣
ω=ωcg

= 1 (30)

This value will depend on the parameters that characterize the controller, that is Kp, Ki, α.
At the frequency ωcg, the phase margin ϕm is calculated according to Equation (31).

arg[C(jω)G(jω)]
(
Kp, Ki, α

)∣∣
ω=ωcg

= −π + ϕm (31)

The two previous conditions by imposing values for ωcg and ϕm are established. Thus,
the three parameters of the controller Kp, Ki, α are set as unknowns, a third condition
that sets the phase of the open-loop system to be flat at ωcg and consequently to be
approximately constant in an interval around ωcg according to Equation (32) is defined.
The value obtained for α is fixed greater than 1, a condition which has been previously seen
as necessary to achieve zero steady-state error when faced with ramp-type references.

d(arg[C(jω)G(jω)])

dω

(
Kp, Ki, α

)∣∣
ω=ωcg

= 0 (32)

The third condition establishes robustness against gain variations which guarantees
robustness locally. The gain range depends on the frequency range at approximately ωcg
for which the phase keeps flat. This frequency range will be longer or shorter depending
on the controller and the process.

6. Methods Discussion

The path-planning algorithm for the autonomous vehicle is based on a search in a space
of the possible movements for the robot [28,29]. The path is divided in primitives; small
actions can combine to make complex robot movements. The primitives of the cart include,
different steering wheel angles and different displacement speeds. The combination of
these primitives can compose any desired movement, and the path-planning algorithm
joins the primitives looking for the best path.

The position of the steering wheel can be set accurately using a standard PID con-
troller; however, a standard controller cannot accurately track the desired translation speed
generated by the primitive. Focusing on cart movement primitives, 3 different primitives
can be can highlighted.

406



Sensors 2023, 23, 3191

• The cart keeps the actual speed, which is equivalent to a step reference (l = 1);
• The cart increases its speed, which is equivalent to a ramp reference (l = 2);
• The cart reduces its speed, which is equivalent to a ramp with negative slope (l = 2).

Constant speed can be kept by a standard controller with zero stationary error, so it can
be assumed that this primitive is correctly followed. However, the primitives of increasing
or decreasing speeds are different; this kind of command involves a ramp command, so
the speed increases or decreases from one starting speed to a final one. These primitives
are very difficult to follow by a standard controller, and the tracking error for this kind of
command can be high. If the primitive is not followed correctly, the final cart control will
be poor, and the cart performance can be limited.

The fractional control proposed in this paper is a practical solution for the cart speed
control. This implementation improves the performance of the whole system, so the
primitives are correctly followed, and the movement of the robot is similar to that planned
by the path-planning algorithm.

7. Results

As mentioned, the design process consists of setting the values of the crossover
frequency ωcg and the phase margin ϕm. Figure 7 shows the results for two values of
the crossover frequency ωcg, and the effect it produces on the Bode diagram. In both
cases, it can be observed how for the value of the crossover frequency that ωcg the phase
reaches a maximum, and therefore, the derivative is zero. This fact corresponds to the
robustness condition imposed. However, the overall width of the maximum in the phase
diagram decreases as the crossover frequency ωcg increases, and therefore, the overall
robustness decreases.

(a) Bode diagram for Kp = 1.2; Ki = 0.3; α = 1.2;
for which ϕm is 105º and ωcg is 0.5 rad/s.

(b) Bode diagram for Kp = 1.4; Ki = 0.25; α = 1.4;
for which ϕm is 105º and ωcg is 0.4 rad/s.

Figure 7. Bode plot of the system with different parameters.

Figure 8 presents temporal simulations that show how the error is reduced when the
values of the Kp and Ki parameters are increased. Note that the vertical scale on which
the error is represented changes. On the other hand, as the α value increases, the response
becomes faster, but also more oscillating. Furthermore, for all values of Kp and Ki, the
closed-loop system becomes unstable when α = 2, as shown in Figure 8d.
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(a) For Kp = 1.2 and Ki = 0.3 (b) For Kp = 2.4 and Ki = 0.6.

(c) For Kp = 4.8 and Ki = 1.2. (d) For all values of Kp, Ki above and α = 2.

Figure 8. Tracking errors are shown for a ramp reference in different situations.

Table 1 shows a stability analysis for some representative cases presented in Figure 8.

Table 1. Poles in the first sheet of the Riemann surface for some representative cases presented in the
temporal simulations. The case of the last row corresponds to a situation where α = 2.2, which is
included to illustrate the presence of poles in the instability region.

Parameters m Poles in Stability Region Poles in Instability Region

Kp = 1.2 Ki = 0.3; α = 1.2 5

1.0059 + 0.5396i
1.0059 − 0.5396i
0.6407 + 0.3570i
0.6407 − 0.3570i

———-
———-
———-
———-

Kp = 2.4; Ki = 0.6; α = 1.4 5

1.0768 + 0.5192i
1.0768 − 0.5192i
0.7177 + 0.3305i
0.7177 − 0.3305i

———-
———-
———-
———-

Kp = 4.8; Ki = 1.2; α = 1.8 5

1.1590 + 0.5089i
1.1590 − 0.5089i
0.7945 + 0.2773i
0.7945 − 0.2773i

———-
———-
———-
———-

Kp = 4.8; Ki = 1.2; α = 2 1 −1.5566 + 2.8745i
−1.5566 − 2.8745i

0.0302 + 0.4543i
0.0302 − 0.4543i

Kp = 1.2; Ki = 0.3; α = 2.2 5 1.0213 + 0.5399i
1.0213 − 0.5399i

0.8001 + 0.2129i
0.8001 − 0.2129i
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In order to evaluate the proposed fractional PI controller, a series of experiments
were conducted involving an electrical vehicle following different movement primitives.
The goal of the vehicle was to maintain the desired speed with the smallest error. To
facilitate this, the vehicle had to control its own power according to the path. The command
can change a lot for the same speed, depending on the slope of the road, the pavement
roughness, the battery level etc. The experiments were conducted using Simulink with the
Real-Time Workshop toolbox, and the vehicle was is obtained from the odometer sensor.
The set point for the Simulink model, which included the fractional controller, was the
movement primitive generated by the path planning module, and the control action was
transmitted to the vehicle’s control hardware via a serial protocol. The tests were carried
out under different slope, pavement, and battery conditions. The objective of this paper
was to improve the longitudinal controller for an autonomous vehicle. To measure the
performance of the reference tracking, the difference between the reference velocity and
the actual velocity of the prototype is used as a metric. If the reference tracking is good,
the vehicle will be able to better follow the high-level primitives. This means that the
maneuverability will increase, reducing the tracking error. High level layers will correct
the control error introduced by system control, but if we reduce this error, the performance
of the whole prototype will increase.

Figure 9 shows the cart speed error during two experiments following different
primitives. From 0 to 10 s, the cart receives a movement primitive of acceleration, and
should follow a speed ramp. The standard PID controller cannot follow the reference
and it maintains a constant error, however, the fractional controller reduces the error over
time. From 10 to 25 s, a constant speed primitive is set. The traditional integer controller
significantly reduces the error, but the fractional controller reduces the error almost to 0.
For the two real tests presented, the values Kp and Ki are maintained as fixed, while the
value of alpha has been changed. The results obtained correspond to what was predicted
by the simulations, where in Figure 9b, the error is reduced when α is increased and the
system remains stable.

(a) (b)
Figure 9. Tracking errors for a fixed reference of 2.5 m with Kp = 1.2; Ki = 1. (a) For a PI versus PI1.2;
and (b) For a PI versus PI1.4.

Figure 10 shows the ratio between the control command effort of a fractional strategy
versus an integer strategy. The command is bigger for the fractional controller, and when
α is increased, the ratio also grows. This is the expected behavior, so the error using a
fractional controllers is also smaller.
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Figure 10. Ratio fractional control/integer control for PI1.2 versus PI1.4.

8. Implementation of Fractional Module sα

The values that have been used for α as a fractional order coefficient in the real tests
have been α = 1.2 and α = 1.4. In the actual implementation, two fractional modules have
been used with α = 0.5 and α = 0.7. To obtain the value α = 1.2, a 0.5 module and a 0.7
module were connected in series, while two 0.7 modules were connected in series to obtain
the value α = 1.4.

The Matsuda approximation has been used to obtain the two modules. First, a fre-
quency range is chosen between a lower frequency ωl and a higher frequency ωh where
the approximation is valid. It is also necessary to give the degree n of the approximation,
which will determine N = 2n. Then, N + 1 logarithmically distributed frequencies are
calculated in the range of [ωl , ωh], Equation (33).

ωk = ωl

(
ωh
ωl

) k
N

k = 0, . . . , N (33)

and N + 1 coefficients are defined for each frequency ωk which we will call di(ωk) Equation (34).

di(ωk) =

{
(ωk)

α i = 0; k = 0, . . . , N
ωk−ωi−1

di−1(ωk)−di−1(ωi−1)
i = 1, . . . , N; k = 0, . . . , N (34)

Note that these coefficients must be calculated recursively. From the di(ωk), we will
define ck as Equation (35) shows.

ck = dk(ωk) =

{
ωα

0 k = 0
ωk−ωk−1

dk−1(ωk)−dk−1(ωk−1)
k = 1, . . . , N (35)

With the ck values, it is possible to write the following truncated continued fraction
expansion that approximates sα, as in Equation (36).

sα ∼= c0 +
s−ω0

c1 +
s−ω1

c2+
s−ω2

c3+
s−ω3
c4+···

(36)

It is usual to write Equation (36) in a compact way by using the following notation,
Equation (37).

sα ∼= c0 +
s−ω0

c1+

s−ω1

c2+
· · · s−ωN−1

cN
(37)

Note that since N is even, the degree of the numerator and denominator coincide. If
N is odd, the degree of the numerator is one greater than the degree of the denominator.
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For this reason, N = 2n was chosen. Table 2 shows the values of ck for the ninth-order
approximation used for the modules with α = 0.5 and with α = 0.7.

Performing operations on the above equation can be easily reduced to a quotient of
polynomials in s as Equation shown in (38).

sα ∼= N(s)
D(s)

=
∑n

J=0 bjsj

∑n
J=0 ajsj (38)

In this case, a ninth-order approximation, i.e., n = 9 is chosen. Table 3 shows the
values of ak and bk for the ninth-order approximation used for the modules with α = 0.5
and with α = 0.7. In Figure 11, the frequency representations of Matsuda approximations
of different orders are shown, proving that the ninth order is a good approximation.

Table 2. Coefficients of the continued fraction expansion for the ninth-order Matsuda approximation.

A Coefficients C

0.5

C0 = 10−3 ; C1 = 2.5647−3 ; C2 = 4.0132−3

C3 = 6.2796−3 ; C4 = 9.8260−3 ; C5 = 1.5375−2

C6 = 2.4058−2 ; C7 = 3.7645−2 ; C8 = 5.8905−2

C9 = 9.2172−2 ; C10 = 1.4423−1 ; C11 = 2.2568−1

C12 = 3.5313−1 ; C13 = 5.5256−1 ; C14 = 8.6461−1

C15 = 1.3529 ; C16 = 2.1170 ; C17 = 3.3125
C18 = 5.1832

0.7

C0 = 6.3096−5 ; C1 = 2.6337−2 ; C2 = 6.7040−4

C3 = 2.9510−2 ; C4 = 2.6694−3 ; C5 = 4.6540−2

C6 = 9.7623−3 ; C7 = 7.7435−2 ; C8 = 3.4763−2

C9 = 1.3109−1 ; C10 = 1.2257−1; C11 = 2.2337−1

C12 = 4.3051−1 ; C13 = 3.8159−1 ; C14 = 1.5097
C15 = 6.5256−1 ; C16 = 5.2909 ; C17 = 1.1164
C18 = 18.537

Table 3. Coefficients of numerator and denominator of the ninth-order Matsuda approximation.

α Numerator N(s) Denominator D(s)

0.5

b0 = 8.76
b1 = 52.260
b2 = 30.508
b3 = 2.4739

b4 = 3.1015−2

b5 = 6.2017−5

b6 = 1.9589−8

b7 = 9.1993−13

b8 = 5.3200−18

b9 = 1.7783−24

a0 = 1
a1 = 29.916
a2 = 51.732
a3 = 11.016

a4 = 3.4874−1

a5 = 1.7441−3

a6 = 1.3912−6

a7 = 1.7156−1

a8 = 2.9388−15

a9 = 4.9261−21

0.7

b0 = 25.939
b1 = 1.22282

b2 = 58.519
b3 = 3.9356

b4 = 4.1069−2

b5 = 6.8328−5

b6 = 1.7874−8

b7 = 6.8520−13

b8 = 3.0830−18

b9 = 5.6234−25

a0 = 1 ;
a1 = 54.825
a2 = 1.21852

a3 = 31.784
a4 = 1.2151

a5 = 7.3032−3

a6 = 6.9986−6

a7 = 1.0406−9

a8 = 2.1745−14

a9 = 4.6127−20
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To obtain the discrete version, we used Tustin’s discretization, as in Equation (39).

s ∼= 2
T

(
1− z−1

1 + z−1

)
(39)

where z−1 is the delay operator.

(a) (b)
Figure 11. Magnitude and phase responses of Matsuda approximation of different orders: (a) for s0.5;
and (b) for s0.7.

The approximation between the actual module in function of the N coefficient is
shown in Figure 11, where both modules with α = 0.5 and α = 0.7 and its adjustment in
function of the approximation degree N are shown. The ninth-order approximation follows
in the frequency range the behavior of the fractional order controller with a negligible error.
The computation cost of the implementation of these modules is also very small.

9. Discussion

As the results section shows, the use of fractional-order controllers represents a clear
improvement in system control. When tracking control primitives for an autonomous
vehicle, it is able to track them with less error than traditional controllers. Specifically, when
the received command is a ramp, which is equivalent to a speed change in a certain slope,
the fractional controller is capable of following it with an error in the stationary state of 0.

To achieve an equivalent performance using traditional non-fractional systems, it is
necessary to use a double PID, however, this compromises the stability of the system. The
use, as has been demonstrated in previous sections, of a PID with integral index α > 1
allows obtaining a stationary error 0, but guarantees stability.

The tests carried out in simulation demonstrate that bandwidth and gain adjustment
can be carried out with this type of controller. We also check how the index of the integral
part of the PID affects the stability of the system, ensuring a stable value with correct
tracking and a low stationary error with a coefficient of α = 1.4. This demonstrates the
better performance of this type of controller compared to the traditional ones.

The tests carried out on the real prototype confirm these results, with a much lower
primitive tracking error than the previously used PID controller. The difference in compu-
tation time and complexity are clearly compensated thanks to the better performance of the
overall system.
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Using this type of controller, a more reliable autonomous vehicle system is obtained,
capable of better following trajectories and performing more precise maneuvers, thus
facilitates the control of high-level systems.

10. Conclusions

The low-level controller of an autonomous vehicle can make the difference in the
performance of its activity. In this case, the analysis and implementation of the traction
motor control for an autonomous cart is presented. A traditional PID control generates
stationary output errors in the controller variable, but it is not valid for tracking speed
changes, so a solution looking for a better tracking performance is presented.

In this article, a fractional PIα controller, with a parameter α > 1 has been proposed
for the speed ramp tracking problem of an electric car. It must be taken into account that
the approach normally used in the literature considers fractional orders within the interval
(0, 1].

Several simulations have been carried out that allowed demonstrating the better
performance of the PIα controller, as well as an implementation in the electric vehicle that
showed a remarkable reduction in the error.

The controller was applied to an autonomous electric cart, improving the low-level
control performance and obtaining a better path tracking. The ability to follow more closely
follow the trajectory facilitates the high-level tasks. This controller facilitates navigation in
narrow areas and with multiple obstacles.
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Abstract: Monocular cameras and multibeam imaging sonars are common sensors of Unmanned
Underwater Vehicles (UUV). In this paper, we propose a new method for calibrating a hybrid sonar–
vision system. This method is based on motion comparisons between both images and allows us to
compute the transformation matrix between the camera and the sonar and to estimate the camera’s
focal length. The main advantage of our method lies in performing the calibration without any
specific calibration pattern, while most other existing methods use physical targets. In this paper, we
also propose a new sonar–vision dataset and use it to prove the validity of our calibration method.

Keywords: calibration; multibeam imaging sonar; monocular camera; dataset

1. Introduction

Remotely Operated Vehicles (ROVs) are used for a wide range of underwater opera-
tions either physically impossible or technically complicated for divers, from inspections
of industrial offshore structures to scientific deep-sea explorations. Usually, ROVs are
equipped with at least one monocular video camera to pilot the ROV and to observe
its surroundings. For more autonomous robots, this camera can be used for navigation
by determining the robot’s position from the observed objects and features, for obstacle
avoidance by tracking objects in the camera and determining the risk and time for the
robot to encounter them, or even for autonomous docking using visual targets. Another
example of such applications is station-keeping, which gives the ROV increased stability
when standing still during inspections. This can be achieved by using homography to
estimate the movement of the robot and then compensate for it [1]. Furthermore, object
detection algorithms can help guide the pilot to its goal. This can be achieved using object
segmentation, as presented in [2], by combining multiple visual cues (gradient, colour
disparity, pixel intensity, etc.). However, all these methods are limited by optical cameras’
sensitivity to low-light conditions, colour degradation, turbidity, and noise. To cope with
these problems, many techniques have been proposed to enhance underwater images, as
presented in the survey [3,4]. There are also solutions to denoise underwater images using
a variation of the wavelet transform [5]. Some of these algorithms are quite simple and can
even be used for low-power platforms [6], such as for Autonomous Underwater Vehicles
(AUVs).

In addition to the camera, an imaging sonar may be added for specific operations
(inspections of underwater structures, target localisation, etc.). An example of an ROV
equipped with such sensors is shown in Figure 1. The imaging sonar allows to detect objects
at a larger range or under poor visibility conditions. Moreover, sonars allow to obtain
information regarding dimension and distances, which is not the case of monocular cameras.
These advantages of the sonars over the cameras are counterbalanced by two limitations: a
slower frame rate, due to the sound propagation; a poorer resolution, due to the limited
number of acoustic beams and the quite low frequency of the emitted acoustic waves
(typically less than 1.2 MHz). There are several classes of sonars. In this paper, we will only
consider multibeam imaging sonars, often called “acoustic cameras”. Unlike single-beam
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scanning sonars, multibeam imaging sonars use several beams at the same time (typically
256), allowing a much higher update rate (typically 10 to 30 fps, depending on the range).
The acoustic beams have a quite large vertical aperture (typically 20◦) while having a
narrow horizontal width (less than 1◦). Thanks to their long range and their ability to work
in turbid waters, sonars are very useful for underwater object or landmark detection and
recognition. In [7], this is achieved by processing the beams composing the sonar image
and by looking for combined bright spots and acoustic shadows in the acoustic image; then,
comparing the sizes of the detected bright and shadow zones to a known template of the
landmark leads to its recognition. These landmarks are then used for the localisation of
Autonomous Underwater Vehicles (AUVs). Another use of sonar imaging is marine life
detection for ecological surveys [8] using machine learning algorithms such as k-nearest
neighbours, support vector machines, and random forests. To classify them, the detected
targets are described using many parameters, such as their size, intensity, speed, time in
the image, or time of the observation. Sonars can also be used to detect dangerous objects.
For example, in [9], the authors used a CNN-based approach to identify underwater mines
lying on the seafloor. In pipeline following and inspection, sonars are also often employed.
A recent approach used a constant false alarm algorithm to extract the pipeline in spite of
the noise in the sonar image [10].

Figure 1. The Hilarion ROV of the DRASSM equipped with an acoustic camera (Oculus 1200M
multibeam sonar from BluePrint Subsea) and a monocular video camera (Sony ER8530).

Combining the sonar with a monocular camera allows to benefit from both sensors’
advantages: long range sensing, distance and dimension measurements, robustness to
turbidity in the sonar image, easier identification of objects in the optical images, etc.
Figure 2 shows acquisitions of the same scene by a video camera and sonar. However, this
requires knowledge of the transformation matrix between the two sensors, thus allowing
to match pixels of the sonar image with pixels of the optical image. Furthermore, the
knowledge of this matrix allows to improve piloting experience. Indeed, areas of the optical
image can be highlighted where obstacles or objects of interest are detected by the sonar.

416



Sensors 2023, 23, 1700

Figure 2. Optical image of a car acquired by a UHD (4K) camera (on the left) and the corresponding
acoustic image obtained by a multibeam imaging sonar (on the right). One can observe the bright
lines corresponding to the edges of the wreck.

In this paper, we propose to study an acquisition system associating a monocular
camera and a multibeam imaging sonar. As mentioned above, to adequately exploit such a
system, it is necessary to perform a calibration, i.e., to determine the existing transformation
between the two sensors. Most existing calibration methods rely on purpose-made physical
calibration patterns, which contain both optical patterns (such as checkers or aruco markers)
and acoustically detectable patterns (made of materials with different textures or different
backscattering properties). For example, in [11,12], the authors use a grid where the edges
create bright lines, which intersect at corners, creating eligible feature points in both acoustic
and optical images. Corners in both images are associated to their known positions in
the grid. With enough points, it is then possible to find the transformation matrix linking
the two sets of points by using the Levenberg–Marquardt algorithm. This process is quite
similar to the one used for the calibration of standard optical stereovision systems. More
recently, a paper proposed to use patterns such as aruco markers with metal rods [13] or
bolts [14], allowing differences in sound reflection. These differences lead to bright spots
where the material is highly reflective and dark spots where it is not. This creates patterns
visible in both the optical and the acoustic images. Another approach consists in using
a known 3D object, including an optical pattern such as a chessboard pattern [15]. By
comparing the acoustic view of the object and the image of the optical pattern, it is possible
to find the transformation between the two sensors.

There are other hybrid sensors’ associations for underwater perception. One of these
methods uses a stereo camera placed alongside a sonar [16]. This adds the distance
information to the visual data, thus allowing to match them with the distances from the
sonar image. Another method, combining a monocular camera and an acoustic sensor, uses
an echosounder instead of a sonar [17]. While not giving an acoustic image of the scene,
this gives a distance map that can be overlapped with the optical image. Additionally, an
original idea came from using a multidirectional microphone array [18]. This kind of sensor
proposes the idea of using multiple microphones placed at various positions. This could be
advantageous when the payload of the vehicle is limited.

As seen previously, most calibration methods between a sonar and an optical camera
rely on a specific calibration object with features that can be detected and matched in both
the acoustic and the optical images. These approaches are efficient, but their use at sea
may be limited by some difficulties, such as the sea state or the requirement of divers and
the time needed to immerse the object and to calibrate the system, especially from large
vessels or offshore structures. A pre-calibration in a pool or in a harbour is not always
enough, as the ROV maintenance teams often modify the system on the field to adapt it
to various types of missions (pipeline inspection, hull inspection, manipulation, etc.) or
simply because the maintenance implies frequent disassembly and reassembly of the robot,
thus inducing small changes in the relative positions of the sensors. In this context and at
the moment, we have found only one team who proposed a targetless calibration method.
This approach is based on natural contours [19] and uses the fact that not only can edges be
easily detected in optical images but they also create detectable bright lines in the acoustic
images. Using these contours, the article proposes to match segmented images of the two
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sensors in order to perform the calibration. As for target-based approaches, this method
may be limited by the field constraints because many underwater environments do not
offer the adequate natural shapes and textures (i.e., allowing easy matching of optical and
acoustic contours).

In this paper, we propose a new calibration method, using only very common under-
water elements (rock, underwater structures, wrecks, etc.) without requiring any specific
shape. Thus, our self-calibration technique is dedicated to hybrid sensing systems com-
posed of a monocular camera and a multibeam imaging sonar. Unlike most existing
methods, this technique does not require any artificial calibration pattern, and uses only
elements of the observed scene without necessitating any knowledge about them. Our
method first extracts acoustic feature points in the sonar image and tracks them with optical
flow to compute their motion in two consecutive sonar frames. Then, a comprehensive
search algorithm estimates the best transformation matrix by projecting these motions onto
the optical image and by comparing the motions predicted from the acoustic image with
the motion actually observed in the optical images. The proposed method also allows
to estimate the focal length of the optical camera and, thus, does not require any prior
knowledge of its intrinsic matrix. This method is validated by experiments on field data
gathered during archaeological surveys. The results presented highlight the ability of the
method to estimate the focal length of the monocular camera, as well as the transformation
matrix between the two sensors. Another contribution of this paper is the introduction of
a dataset. This dataset includes combined optical and sonar images acquired on archae-
ological underwater sites in the Mediterranean sea. The paper is organised as follows.
In Section 2, we introduce the sensors’ models and the notations. Section 3 presents the
calibration method. Then, the experimental performances of our algorithm are evaluated
on field data and the results are presented and analysed in Section 4. This chapter also
presents the content of the public dataset accompanying this paper. The conclusion gives
some perspectives on future works and usage of this method.

2. Problem Statement, Notations and Models
2.1. Problem Statement

We consider two sensors: one monocular optical camera and one acoustic camera.
Each variable associated with the monocular camera (respectively, the acoustic camera) will
be referenced with a subscript o (respectively, s). Let us define Rs as the frame associated to
the sonar and Ro as the frame associated to the optical camera as shown in Figure 3. Then,
a 3D point is denoted Ps : (Xs, Ys, Zs)ᵀ in the sonar frame, while the same point is denoted
Po : (Xo, Yo, Zo)ᵀ in the optical frame. The transformation between the two frames Ro and
Rs is composed of a 3D rotation matrix Ro

s and a translation matrix To
s .

Figure 3. The camera frame Ro, the sonar frame Rs, and the translation vector To
s .
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The rotation matrix Ro
s is defined by three angles α, β, and γ around the axes xs, ys,

and zs, respectively. Using the Euler angles with the (z, y, x) convention, the rotation matrix
is defined by Equation (1).

Ro
s = Rx(α)Ry(β)Rz(γ) =




1 0 0
0 cosα −sinα

0 sinα cosα







cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ







cosγ −sinγ 0
sinγ cosγ 0

0 0 1


 (1)

The translation vector To
s = (tx, ty, tz)ᵀ has three components, one for each translation

along the axes of the sonar frame. Then, a 3D point Ps : (Xs, Ys, Zs)ᵀ in the sonar frame can
be expressed in the camera frame using Equation (2).

Po = Ro
s Ps + To

s (2)

where Po : (Xo, Yo, Zo)ᵀ are the coordinates of the 3D point Po in Ro, and Ro
s and To

s
have been defined above and are the elements that we want to estimate through our
calibration method.

2.2. Monocular Camera’s Model

This section details the camera model used to project a 3D point expressed in Ro into
the 2D image frame. Using the well-known pin-hole model, the projection is expressed in
Equation (3).

po =
1

Zo
KPo (3)

where Po is a 3D point expressed in the camera frame; po : (u, v, 1)ᵀ is the correspond-
ing pixel in the optical image; and K is the intrinsic matrix of the camera, defined by
Equation (4).

K =




fx s cu
0 fy cv
0 0 1


 (4)

where ( fx, fy) are the focal length in pixel/m along the two axes, s is the skew parameter
describing the non-orthogonality of pixels, and (cu, cv) are the coordinates of the optical
centre of the camera expressed in pixels. For our method, we assume that the skew
parameter s is equal to zero since it is now the case for most cameras thanks to modern
manufacturing techniques (as said in [20]), and we also assume that coordinates (cu, cv)
correspond to the middle of our image. Only the focal length remains unknown, with the
assumption that fx and fy have the same value, noted f . Even though f can be obtained by
a classic intrinsic calibration, we decided to include it in our calibration method to simplify
as much as possible the calibration process to the ROV’s operator.

2.3. Sonar’s Projection Model

In this paper, we consider the case of a multibeam imaging sonar, which processes the
echoes received along multiple beams to create an image. The principle of multibeam sonar
imaging is illustrated in Figure 4.
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Figure 4. Illustration of the principle of a multibeam imaging sonar. The sensor produces wide
acoustic beams, which are reflected by the objects they reach. The echoes are then received by an
array of transducers forming many beams. The echoes create bright points in the acoustic image. The
areas located behind the objects do not receive any sound, thus creating dark zones, corresponding to
the acoustic shadows. The length of the shadow generally depends on the object’s height.

In what follows, ps: (ρ, θ)ᵀ will be the polar coordinates of ps—the projection of the
3D point Ps in the 2D sonar image Is; ρ is the distance in meters between the sonar frame’s
origin Os and the point Ps; while θ is the horizontal azimuth angle with respect to the
central line of the sonar image (Figure 5).

As one will remark, ps has only two coordinates, ρ and θ, while the elevation angle
φ does not appear. This is because the sonar cannot discriminate the echoes from points
having the same horizontal azimuth and the same distance but different elevations. So,
every 3D point in spherical coordinates Psk : (ρ, θ, φ)ᵀ with the same distance ρ and azimuth
θ will be projected on the same point ps: (ρ, θ)ᵀ of the sonar image as long as their elevation
φ is within the range of the vertical aperture of the sonar. Figure 5 illustrates this.

Figure 5. Illustration of the sonar elevation incertitude effect. In the figure, we can see that the three
3D points Ps1 , Ps2 , and Ps3 —having the same azimuth angles θ and the same range ρ but different
elevation angles φ along the doted arc—will be projected on the same point ps in the sonar image (on
the right).

This inability to discriminate the elevation angle has been studied in works concerning
3D reconstruction from sonar images. To deal with this, the existing methods either rely
on a single sonar or on adding an additional sonar placed orthogonally [21] to compute
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the elevation angles by using the azimuth angles observed in the images from the second
sonar. Another approach [22] consists in using multiple views by moving the sonar up
and down and then in tracking points in these views to determine their elevation from
their displacement along an acute angle of the object. The limitation of this method as it is
presented by the author is that in case of smooth objects, extracting and following a feature
can be difficult and can lead to errors in the elevation’s estimation. Another possibility is
to consider the intensity of the points as an image of the elevation [23]. Even though the
intensity of a pixel in the sonar image is linked to the echoes of each point of the arc of
the acoustic beam, this method only works when used close to the ocean floor and with
objects with a similar composition since backscattered intensity varies depending on the
material. One last solution is to track the bright spot of an object and its shadow [24]. By
combining the robot position and considering the evolution of the object’s position in time,
particularly the moment when it leaves the image, this method allows to determine the
elevation of certain points and the height of objects.

In our case, because of the possible absence of targets and the complexity of the
environment, these method will not be used. Instead, we use an interval of elevation values
[φ], where φmin and φmax (the minimum and maximum values of the interval) are defined
by the sonar’s vertical aperture. Using this interval, we can find the interval of 3D points
[Ps] corresponding to each sonar point ps by using Equation (5).

[Ps] =





Xs = ρsin(θ)cos([φ])
Ys = ρcos(θ)cos([φ])
Zs = ρsin([φ])

(5)

where the values of φ belong to the interval [φmin, φmax]. Using this method means that
each point in the sonar image may come from an arc of 3D points.

2.4. Frame Transformation

As stated before, the calibration consists in finding the parameters to go from a pixel
ps of the sonar image to its corresponding pixel po in the optical image. This transformation
relies on the sensors’ models and the transformation between the sensors’ frames. First,
starting from the sonar image point ps, its corresponding sets of points [Ps] can be obtained
from Equation (5). Then, for the set of points [Ps], a corresponding set of points [Po] is
found in the optical camera frame by applying Equation (2) on each points of [Ps]. Finally,
from [Po] and using Equation (3), the corresponding set of points [po] in the optical image
can be found. In summary, for a point in the sonar image ps with an azimuth angle θ and a
range ρ, as well as a value of φ in the interval [φmin, φmax], we obtain a corresponding set
[po] in the optical image. This transformation is summarised by Equation (6):

[po] =
1

Zo
K(Ro

s




ρsin(θ)cos(φ)
ρcos(θ)cos(φ)

ρsin(φ)


+ To

s ) (6)

where ρ and θ are the coordinates of ps in the sonar image, φ is within [φmin, φmax], and
the other variables have been introduced in previous sections. In Equation (6), we need to
estimate the translation vector To

s , the rotation matrix Ro
s , as well as the focal length f of

the camera (inside the camera’s intrinsic matrix K). In order to find these parameters, we
introduce a new calibration algorithm in the following section.

3. Calibration Method
3.1. Selection of a Set of Feature Points in the Sonar Images

To compute K, Ro
s , To

s , and f (i.e., to calibrate the optical–acoustic system), similarly to
stereovision calibration, we need to select a set of corresponding feature points in both the
sonar image and the optical image.

To associate points between a camera image and a sonar image, a recent method
proposes to use feature matching (SuperGlue, a feature matching method based on graph
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neural networks) between the optical and the style-transferred sonar image (CNN-based
style transfer) [25,26]. Another optical–acoustic matching is proposed by the same research
team, based on the Dense Adaptive Self-Correlation Descriptor (DASC), which provides
better results than other descriptor techniques such as Scale-Invariant Feature Transform
(SIFT), Binary Robust Invariant Scalable Keypoints (BRISK), and Accelerated-KAZE (A-
KAZE) [27]. The goal of the authors was not to calibrate the opti-acoustic system, and one
notes that rotation, translation, and scale differences between two images were corrected
prior to the images’ preprocessing, thanks to the knowledge of the relative sensor’s transfor-
mation. Even if the results obtained by the matching process in [27] are impressive and very
relevant, the method requires that the calibration parameters of the opti-acoustic system are
known. This method also necessitates that, after style transfer, the acoustic image contains
patterns relatively similar to the ones of the optical image. Although in many situations
the calibration of the opti-acoustic system can be performed before the mission, for the
reasons given in the introduction, we propose today a method for automatic calibration.
Moreover, in natural underwater environments, it may happen that the acoustic image
bears no resemblance to the optical, as depicted in Figure 2, thus reducing the effectiveness
of the descriptor-based methods. For this reason, in this paper, we propose a motion-based
method aiming at performing the calibration of the opti-acoustic system. Relying on the
comparison of the local motion in both images (optical flow), our method does not rely on
the visual similarity of the images; thus, it can work in any type of environment (except
completely flat bottoms) and we do not need any artificial pattern or calibration target.
This method is described below.

Before selecting the points, we need to process the sonar images in order to reduce
the background noise and other disturbances such as schools of fish that would appear as
multiple clustered spots in the images. To suppress these, we apply a low-pass filter on
the sonar image using its Fourier transform, results are shown in Figure 6. In the denoised
image, denoted Isi , we select n feature points using the Shi-Tomasi algorithm. On sonar
images, the Shi-Tomasi detector offers the advantage of selecting less outliers than the
Harris detector would.

(a) (b)

Figure 6. (a) The unfiltered sonar image. (b) The sonar image after using a low-pass filter.

Among the n selected feature points in the sonar image, the ones located farther than
an adjustable range ρmax are discarded, since they may not be visible in the optical camera
due to turbidity or the lack of light (deep sea). The value of ρmax is set depending on the
water’s turbidity and the lighting capabilities of the robot. In what follows, we will use
ρmax = 2 m. We also discard the points that may be occluded by other selected points
located closer on the same acoustic beam. The final set of selected points is denoted {psi} in
the following. Figure 7 summarises the selection process, while Figure 8 gives an example
on real sonar images. It is important to note that if the number of points in {psi} is below
a certain threshold nmin, the image is discarded and the algorithm will go on to the next
image. For a correct behaviour of the calibration process, experiments have demonstrated
that nmin should be equal to at least 10 points. Once a large enough set of points {psi}
has been selected in the current sonar image Isi, these points are tracked in the next sonar
image Isi+1 using the Lucas–Kanade tracking algorithm [28]. Thus, we obtain the set of
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sonar points {psi+1} corresponding to the tracked positions of {psi} in the second image
Isi+1 .

Figure 7. Illustration of the points’ selection process in the sonar image.

Figure 8. Selection process of the sonar feature points. Similarly to Figure 7, green points are
the remaining points psi after the suppression of the red points located further than ρmax range or
occluded by a closer point located on the same acoustic beam.

3.2. Projection and Evaluation

First, we consider an arbitrary initial value for Ti, Ri, and fi, the sought-after parame-
ters. Using Equations (5) and (6) presented in Section 2, we can project each starting point
psi and the corresponding end point psi+1 into the optical images Ioi and Ioi+1 acquired at
the same times ti and ti+1, thus obtaining the corresponding sets of optical starting points
noted poi and end points poi+1 . As stated before, these optical points represent an arc of
points for each of the selected sonar points. We then use the Lucas–Kanade optical flow to
estimate end points in the next optical image based on the optical movement of the starting
points poi , thus obtaining the estimated end points { p̂oi+1}. An example of this projection
process is shown in Figure 9 for a single sonar point.
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(a) (b) (c)

Figure 9. (a) The selected sonar point in green. (b) The corresponding projected points in the optical
image, with the starting (green), ending (red), and estimated points (yellow); a zoomed image of the
projected points is proposed in (c).

So, for each selected point in the sonar image, we have a starting arc of optical points,
an arc of optical end points corresponding to its tracked counterpart, and an arc of estimated
points from the movement in the optical image. Using these, we can compute the projection
score (i.e., a proximity score between the points computed from the optical movement and
the end points obtained by projection of the tracked acoustic points).

The relative score for the j-th point is defined in Equation (7), where d is the minimal
distance between the estimated points and the end points, and dmax is the distance between
the starting and ending points. This is illustrated in Figure 10.

This score is calculated by considering the estimated end points with the biggest
displacement with respect to the starting points and their distance to the end points, noted
d, as well as the distance between the arc of end points and the arc of starting points, noted
dmax. The score for the j-th point among the n selected points is calculated by Equation (7)
and described by Figure 10. We decided to represent the score with a distance ratio to
mitigate the effect of parameters that could act as scale factors. We call scale factors the
parameters such as focal length that will impact the scale of the projection, thus changing
the spacing of the point by themselves.

scorej =
abs(dmax − d)

dmax
(7)

Figure 10. Description of the score calculation for one projected point, with the starting points (green),
ending points (red), and estimated points (yellow) from the optical flow, as well as the distances used
to compute the score.
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Then, by taking the mean score of every projected point, we obtain the score for one
group of images (two consecutive sonar images and their corresponding optical images).

3.3. Estimation of the Calibration Parameters

To compute the projection parameters (i.e., calibration parameters), we iterate through
all the parameters, realising an exhaustive search in a parameter space whose limits can be
either defined by the dimensions of the robot or chosen by the operator according to the
rough knowledge of the robot’s configuration if it is available (note that the method will
work even without any prior knowledge about the geometric configuration of the setup).
Since an exhaustive search can take a long time, we use an adaptive search, starting with a
coarser step, and then using a finer step to find the calibration parameters. In addition, we
also need to use multiple image pairs to obtain a finer estimation.

To conclude this section, all the steps of the calibration algorithm are represented in
Algorithm 1.

Algorithm 1 Research of the calibration algorithm on one set of camera and sonar image
pairs.

Isi ← getNextSonarImage()
Ioi ← getNextCameraImage()
Isi+1 ← getNextSonarImage()
Ioi+1 ← getNextCameraImage()
psi ← selectFeaturePoints(Isi )
psi+1 ← LucasKannade(Isi , Isi+1 , psi )
scoreMin← +∞
for all Ro

s , To
s and f do

[poi , poi+1 ]← projectPointsSonarToCamera(Ro
s , To

s , f , psi , psi+1)
p̂oi+1 ← LucasKannade(Ioi , Ioi+1 , poi )
projectionScore← computeScore(poi , poi+1 , p̂oi+1)
if score < scoreMin then

scoreMin← score
[Tmin, Rmin , fmin]← [Ro

s , To
s , f ]

end if
end for
Return : [Tmin, Rmin , fmin]

4. Experimental Validation and Dataset
4.1. Experimental Setup

To test our calibration algorithm, we performed two campaigns at sea with two
different ROVs. These tests were performed on wrecks under the supervision of the
Department of Underwater Archaeological Research (DRASSM) of the French ministry of
culture. The first set of tests were performed with the Hilarion ROV equipped with a Sony
4K ER8530 optical camera and an Oculus 1200M multibeam imaging sonar (Figure 1).

Hilarion inspected underwater car wrecks located in the Mediterranean Sea, 60 m deep.
Such wrecks are interesting for these experiments since they present sharp angles, thus
facilitating the detection of feature points thanks to the bright echoes they create in the
sonar images. The second set of tests were performed with the Basile ROV, equipped with
the same Oculus 1200M multibeam imaging sonar and a monocular imaging camera, both
mounted on a mechanical frame, allowing to accurately change the geometric parameters
(e.g., distance and orientation of the camera with respect to the sonar) and thus allowing us
to control the ground truth of the extrinsic calibration parameters, as shown in Figure 11.
During this second mission, the ROV observed various wrecks (cars, barges, boats, etc.)
located around 60 m deep. We created a software allowing synchronisation of the images
from the two sensors, as well as the IMU of the robot.
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(a) (b) (c)

Figure 11. (a) The CAD model of the Basile ROV and its frame, allowing to modify the relative
positions of the camera and the sonar. (b) The mechanical frame with the optical camera and the
sonar. (c) The frame attached to the Basile ROV during a dive in Marseille.

4.2. Dataset

The dataset we created contains 17572 monocular images and the 8577 corresponding
sonar images. We also added the IMU data of the ROV during the mission, despite them
not being useful for our calibration method. We named this dataset the “shipwreck sens-
ing dataset” and it is publicly available here https://www.lirmm.fr/shipwreck-dataset/
(accessed on 1 February 2023).

Details on the nature of the data and their acquisition are presented in Table 1. In
order to see if our algorithm works for various positions of the sensors, we acquired
images with different configurations, as presented in Table 2. The choice of these ground
truth configurations was made to try parameters independently, the first one serving as a
reference and the two others introducing variation on a single parameter. A representation
of each of the extrinsic parameters is shown in Figure 12.

Table 1. Technical data about the sensors of the Basile ROV.

Monocular Video Camera

Camera model Optovision HD mini IP camera

Image size 720 × 480 pixels

Frame rate 30 fps

Sonar

Sonar model Oculus 1200 M

Image size 1024 × 507 pixels

Frame rate 10 fps

Horizontal aperture 130◦

Vertical aperture 20◦

Angular resolution 0.5◦

IMU data frequency 20 Hz
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Table 2. The three geometric configurations of the sensors available in the dataset.

Tx (cm) Ty (cm) Tz (cm) α (◦) β (◦) γ (◦) f (pixel/m)

Configuration I 0 5 0 0 0 0 600

Configuration II 0 15 0 0 0 0 600

Configuration III 10 5 0 0 0 0 600

Figure 12. Representation of the extrinsic parameters as part of the frame used to set them during the
experiments at sea. It is important to note that the rotations are expressed along the sonar frame Rs

while the translations are expressed along the optical camera frame Ro, as defined in Figure 3.

4.3. Experimental Evaluation of the Calibration Algorithm

Taking sonar and camera image pairs from this dataset, we tested our algorithm using
the steps described in Section 3. The code was made in C++ with the OpenCV library and
executed on a Dell precision 5520 with an Intel Xeon E3-1505M v6 3.00 GHz processor.

First, we tested our algorithm on an increasing number of image pairs to show the
evolution of the error. The error is the absolute value of the difference between the parame-
ters obtained with the algorithm and the ground truth (relative positions of the two sensors
on the frame, and focal length computed from a standard optical calibration of the camera).
The results are presented in Figure 13. One observes that the algorithm converges very fast
(5 to 6 pairs of images) to errors smaller than 1 cm and 1 degree.
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(a) (b)

(c)

Figure 13. (a) The evolution of the mean error on the calibration parameters over the number of
image pairs used. In (a), the translation parameters (Ts, Ty, and Tz) are presented in meters, (b) the
rotation parameters (α, β, and γ) in degrees, and (c) is the focal parameter.

As we could expect, the results yield a bigger error on the β and Tz parameters because
of the elevation uncertainty in the sonar images, creating a larger vertical zone where the
projection can match the movement. Similarly with the error on the parameters shown
in Figure 13, the evolution of the reprojection error in pixels is shown in Figure 14. This
reprojection error is defined by the minimal distance between the projected arcs and the
known position where they should be. An example of points projected with the found
calibration parameters in comparison to their goal is shown in Figure 15.

The achieved results allow to accurately convey information (the position of an object
from one to the other, for example) from the sonar to the camera and vice-versa, notably
for the position of objects seen by the sonar from further away. Even though a greater
number of images yields a lower error, it is at the cost of the time required to obtain the
results. Since this is an exhaustive search without any optimisation, the time increases
with the number of image pairs (around 4 h per pair), requiring several hours to compute
the calibration parameters, despite using a coarser step to reduce search time (typically
searching by 5 cm/◦ every iteration, then reducing the step to 3, and then 1).
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Figure 14. The mean reprojection error (in pixels) depending on the number of image pairs used for
the calibration. As a reminder, the images have dimensions of 720 × 480 pixels.

This steep increase of the required time can be explained by the sequential imple-
mentation of this algorithm (no parallelisation). An improvement on that matter could
be a subject of future work. The purpose of this brute force approach was to validate the
algorithm before improving its time of execution. To end this section, Table 3 summarises
the results yielded on all the configurations available in the dataset.

These results show that we are able to achieve a precise estimation of all the parameters
despite the differences in configuration. Even though an error still persists, we consider
it sufficiently low for applications making these two sensors work together. For example,
with such precision we could highlight in the optical image the position of a distant object
visible only in the sonar image.

Table 3. Results obtained with our method for the three geometric configurations.

Tx (cm) Ty (cm) Tz (cm) α (◦) β (◦) γ (◦) Focal

Configuration I ground truth 0 5 0 0 0 0 600

Configuration I estimated 1.2 3.8 0.9 0.7 1.0 0.1 570

Configuration II ground truth 0 15 0 0 0 0 600

Configuration II estimated 0.5 14.2 0.8 0.3 1.1 0.4 610

Configuration III ground truth 10 5 0 0 0 0 600

Configuration III estimated 8.7 4.0 0.8 0.7 1.0 0.1 570
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Figure 15. Examples of reprojection once the calibration parameters have been obtained. In green are
the selected points in the sonar image and their corresponding area of presence in the camera image.
In yellow are the arcs of points obtained using the found calibration parameters.

Table 4 presents a comparison with results from the literature. One can observe that
we obtain better performances for translation estimation and we obtain 0.5 degree less
accurate results for rotation estimations. This shows that using movement is an effective
way to compute the calibration parameters.

Table 4. Comparison between existing methods and our algorithm.

Algorithm Error on Tx (m) Error on Ty (m) Error on Tz (m) Error on α (◦) Error on β (◦) Error on γ (◦)

[12] 0.02 0.05 0.1 0.1 1.0 0.003
[14] 0.0 0.05 0.1 1.0 5.0 0.0

Our algorithm 0.01 0.015 0.05 1.0 1.5 0.5

The main limitation of our method in its current form is the important time required
to estimate the calibration parameters. This makes our method unusable for short missions;
however, it could still be of used for long-term missions. This drawback is counterbalanced
by the fact that our method does not require any specific calibration pattern and can be
performed in any natural environment. The computation of the parameters relies on
brute force; thus, it is likely to be optimised in the future in several ways. As gradient-
based techniques are likely to fail with such a problem, we will consider other approaches
in the coming months, such as genetic algorithms. In addition to this, although it is
not required for the convergence of the algorithm, a rough measurement of the relative
positions of the two sensors with a very reasonable accuracy of several centimetres and
several degrees would drastically reduce the search space and, thus, will help them to
converge much faster.
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5. Conclusions

In this article, we presented a new targetless calibration method for a system combining
an acoustic camera (i.e., multibeam imaging sonar) and an optical monocular camera. This
method uses the pixels’ motion in the images of the two sensors. After a presentation of the
model of each sensor, we showed that we could project the movement of feature points of
the sonar image into the optical image. Using the optical flow of the optical image to obtain
an estimate of the movement of projected points in the optical image, a distance score
was calculated, allowing us to compute the calibration parameters through an exhaustive
search. The important upside of this method is that it does not require a calibration pattern.
This will help for robotic operations at sea, which may require frequent recalibration due
to changes in the sensors’ positions and orientations. The obtained level of accuracy is
sufficient to merge the data acquired by the two sensors and is close to the one obtained
by existing calibration methods based on a target. Future works will consist in optimising
the algorithm to improve the search speed, with the goal of reaching a far better execution
time, preferably below an hour, while keeping the same precision. For now, plans for this
method are to use it to highlight in the optical image the distant structures (objects, rocks,
pipelines, etc.) that are visible only to the sonar, in order to give better indication to the
ROV’s operator.
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Abstract: Acquiring adequate sensory information and using it to provide motor control are important
issues in the process of creating walking robots. The objective of this article is to present control
algorithms for the optimization of the walking cycle of an innovative walking robot named “Big
Foot”. The construction of the robot is based on minimalist design principles—only two motors are
used, with which Big Foot can walk and even overcome obstacles. It is equipped with different types
of sensors, with some of them providing information necessary for the realization of an optimized
walk cycle. We examine two laws of motion—sinusoidal and polynomial—where we compare the
results with constant angular velocity motion. Both proposed laws try to find balance between
minimizing shock loads and maximizing walking speed for a given motor power. Experimental
results are derived with the help of a 3D-printed working prototype of the robot, with the correct
realization of the laws of motion being ensured by the use of a PD controller receiving data from
motor encoders and tactile sensors. The experimental results validate the proposed laws of motion
and the results can be applied to other walking robots with similar construction.

Keywords: walking robot; motor control; movement of sensors

1. Introduction

Mobile robots are designed to function in a complex environment, which requires that
they have to possess specific capabilities, such as: climbing stairs [1–3]; avoiding obstacles
and moving on uneven terrain [4,5]. Many of their applications involve them covering a
given area, while bypassing obstacles within it. Some of the tasks that mobile robots are
usually designed for include: cleaning [6,7], grass cutting [8], agricultural applications [9],
and underwater operations [10]. They are capable of moving in an unstructured and
uneven environment [1] and can take part in rescue missions or research inspections. Thus,
the use of suitable sensors becomes necessary.

In general, providing adequate sensor input is quite complicated. For example, in [11],
an integrated laser-based perception is applied for planning the steps and control of a
walking humanoid robot in an unknown rugged terrain. A perception system determines
the surrounding environment with an accuracy of several centimeters and the robot’s
movements are realized based on input data obtained by scanning with a laser sensor. The
authors of [4] consider the issue of perception of an uneven terrain and its mapping with a
walking robot equipped with low-cost optical range sensors providing only 2D information.
A Hokuyo URG-04LX light sensor and laser scanner are used. The mapping algorithm and
methods to remove artifacts that lead to quality errors in the map are applied. Article [12]
describes the design and testing of a bipedal robot. Each of its legs is equipped with six
servo motors. A gyroscope and an accelerometer are used to measure the current position
of the robot’s structure in the space. Control algorithm stabilizes the robot in an upright

Sensors 2023, 23, 1506. https://doi.org/10.3390/s23031506 https://www.mdpi.com/journal/sensors433



Sensors 2023, 23, 1506

position. Potentiometers placed in the axes allow measuring of the angular positions of the
individual servomechanisms during movement.

An important problem in the control of mobile robots is the preservation of stability.
Recovering from a fall is usually hard (often impossible without outside assistance), so
measures must be taken to avoid it. Stability is divided into two groups: dynamic and
static. Static stability means that the robot maintains balance without constantly making
adjustments to its steering. In this case, the projection of the robot’s center of gravity
always lies in the support polygon defined by its legs (or wheels). Static stability implies
that the robot can stop at any time in its walking cycle without losing balance [13]. To
maintain dynamic stability, the robot must actively balance its body. This requires much
more complex control algorithms and also usually the robot has a large number of degrees
of freedom. The forces and moments in the robot’s legs are an important factor when one
investigates dynamical stability [14].

The planning of the gait for walking robots is a complicated task, which needs to
be consistent with the terrain [11]. Wayfinding methods proposed in the literature can
be divided into two categories: offline and online planning strategies. Offline strategies
use a previously known map of the region where the robot performs a certain task, using
different path-planning approaches: genetic algorithms [15], cellular decomposition [16],
neural networks [17], etc. In the online strategies, obstacles are detected in real time
using various sensors [18]. Articles [6–10] consider coverage path planning and obstacle-
avoiding algorithms. The goal is to find a path that covers all points in a given region [7].
One of the widely used methods is the Boustrophedon cell decomposition [19]. In [20],
the bipedal walking of a robot is realized by a method of control based on information
received from various sensors. The control of the walking function uses separation of the
movements in the sagittal and lateral planes. The effectiveness of the proposed method is
investigated with a walking robot, “BLR-G2”, equipped with pressure sensors in the feet.
These sensors provide information about the state of contact with the floor. This contributes
to a realization of a smooth walk with a good grip on the surface. Article [21] presents
a hexapod robot walking on uneven terrain. A trajectory generator is used for precise
control of its legs. Trajectories are further shaped by sensory information. Thus, the robot
passes through obstacles of different sizes and rough surfaces. The results show that by
integrating the trajectory generator on foot, the sensor-driven six-legged robot can achieve
better terrain adaptability and better walking performance. The bipedal robot “Johnny”
is designed to achieve a dynamically stable gait, which enables high walking speeds [22].
Very accurate and fast sensors have been developed for this purpose. The design uses six
component force-torque sensors. The control scheme is based on the information from
these sensors and the robot can walk on an unstructured terrain.

Compared with the wheeled robots, the walking robots have much more complex
structure, have more motors, and are slower. However, they are able to overcome higher
and more complicated obstacles. There are studies that aim to reduce the complexity of
the walking robots while maintaining their advantages. The authors of [23] present a
conceptual design of a new minimalist biped walking robot with four degrees of freedom.
The proposed mechanism combines sensing the stability and balancing of the robot during
the steps. The sensor mechanism uses an additional flexible ankle joint that is able to
provide a measurement of the instability of the biped robot. A balance mass and control
algorithm are used to maintain the lateral stability of the robot. The authors of [24] propose
a concept for a bipedal robot with vertical stabilization of the robot base and minimization
of its lateral oscillations. This robot uses only six actuators and has a good energy balance
compared with purely articulated biped robots.

The above literature review for the walking robots could be summarized as follows:

- Since their primary function is to work in an undefined and complex environment,
they have to perform complicated spatial movements, which usually requires a so-
phisticated mechanical design;
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- In order to obtain appropriate information for the environment, they have to be
equipped with a sufficient number of different types of sensors;

- The control system has to be able to handle the processing of a large amount of sensory
information including the motion planning algorithms and changing conditions of
the unstructured environment.

Mechanical designs of robots with a large number of degrees of freedom, sensors, and
complex control algorithms are often used to solve these problems. However, such an
approach leads to significant disadvantages: low reliability, need for more energy, and high
production and maintenance cost.

We ask the following questions:

- Could we use the robot’s movements in order to obtain more information from its sensors?
- What is the minimal number of degrees of freedom which allows for a creation of a

walking robot with good functional capabilities?
- In which way can sensory information be used to improve the walking performance

of the robot?

We propose an innovative design with only two degrees of freedom called “Big Foot”.
For this design, the first question is examined in article [25]. The answers to the remaining
questions depend on details that must be further specified, i.e., what is the expected walking
environment, expected capabilities of the robot, cost, etc. Our proposed design is capable of
walking on even or uneven surfaces using only two motors and having a low overall cost.
The aim of this paper is to try to optimize the motion of the robot for the case of walking
on a plane (or a surface that is close to a plane) by examining two types of laws of motion:
polynomial and sinusoidal. The overall goal is to find a compromise that achieves sufficient
walking speed, while keeping impact shocks low, and is compatible with motor power
constraints. The results are verified experimentally by using a 3D-printed prototype. The
realization of the desired laws of motion is ensured by the use of a PD controller reading
data from the motor encoders and the tactile sensors on the robot’s feet.

This paper is structured as follows: Section 2 examines the overall structure of the robot
and some of the previous work on the subject; Section 3 presents in detail the structure of the
walking mechanism and its kinematics. The used laws of motion are also located here. This
section also contains the experimental setup and details on the 3D-printed prototype and
motors and sensors used; Section 4 contains the experimental results and their comparison
with the theoretical laws of motion; Section 5 is a short discussion; Section 6 contains some
concluding remarks; and Section 7 provides the patents, Supplementary Materials, and
other information.

2. Background and Related Work

The development of the robot in question went through a few iterations, with the
original idea first presented in articles [26,27] and patent [28]. The robot has only two
degrees of freedom. It consists of a base (base 1), on which the body (body 2) of the robot
is connected by means of a vertical rotary joint (with axis R1), in which a shaft (shaft 3)
is mounted, which drives the symmetrical arms (legs) 4R and 4L of the robot. Shaft 3 is
perpendicular to axis R1. In Figure 1a, the principle scheme of the robot is given; 1b is a 3D
model; and 1c is a photo of a 3D-printed robot prototype.

In the two symmetrical arms (legs) 4L and 4R, the robot feet 5L and 5R are bearing
mounted. The rotations R1 and R2 are driven by DC motors and transmission mechanisms.
The parts identified as 6R and 6L are two belts or gears that provide parallel movement of
the feet 5L and 5R relative to base 1.
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Figure 1. The robot Big Foot: principle scheme (a); 3D model (b); photo of a 3D-printed prototype (c).

Although the robot has only two motors and a relatively simple design, it moves
by walking and rotates on 360[◦], avoids obstacles, and even climbs stairs suitable to its
size. In [25], the main kinematic dependencies of the robot are presented and a design
based on a proportional distribution of the potential energy during the movement of the
robot is proposed. A simulation of its movements while climbing an obstacle is given. The
robot’s ability to passively adapt to high obstacles in order to overcome them is discussed.
The authors of [29] present numerous experiments with 3D-printed models of the robot
with different shapes and materials of the feet, which lead to an increase in its movement
capabilities in a complicated environment. The dynamics of the robot is developed in [30].

Although the mechanics of the robot is relatively well studied both theoretically
and experimentally, its sensor systems and possibilities for exploring the surrounding
environment are discussed in only one article [25]. The 3D printed model of the “Big Foot”
robot has five tactile sensors and one force sensor attached to the bottom of the circular base
1 (see Figure 2a). When the robot moves, it steps on the sensors and activates the tactile
buttons. As there may be bumps on the surface the robot is moving on, one or more of the
buttons may not be pressed and activated. Thus, the walking robot can be used to detect
surface irregularities or to “read” inscriptions or drawings that are embossed or indented
in the surface (Figure 2b,c).
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Figure 2. Location of the tactile sensors (ti; i = 1 − 5) on the base of the robot “Big Foot” (a);
exemplary trajectory for scanning of bumps (b); experiment using the robot for scanning light
unevenness on the surface (c).

The location of the tactile sensors is chosen in such a way that the robot could measure
up to five different points on the surface each time it touches it. The skillful combination
of the two rotational movements of the robot (R1 and R1) with the sensors at its base are
used to enrich the received sensory information. In [25], such a strategy for the study
of irregularities with tactile sensors is considered, and a video with the programmed
movements can be seen in the following link: https://youtu.be/RYRJZcYdIX0 (accessed
on 20 January 2023).
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The robot is also equipped with other sensors: magnetic encoders of the motors, a
gyroscope, a magnetometer, and an accelerometer located in body 2.

Here, we further develop the idea presented in [25] to show that sensory signals
combined with the movements of a robot based on a minimalist design are useful both for
receiving external information and for control of the robot’s walking movements.

A word on notations: we will use degrees for angles where possible (for example in
graphics) but will switch to radians when needed.

3. Materials and Methods

The main methods, which we apply to develop and test the strategy for managing
the information received from the walking robot’s sensors are as follows: application of
kinematics to determine the necessary motions, velocities, and laws for motor control;
mathematical analysis for defining a suitable time dependence of the velocity, which
ensures smooth robot movement; synthesis of the control algorithm based on sensor
information; design, 3D modeling, and printing of a prototype for experiments; and
experimental validation.

3.1. Kinematics of Walking

In [27], we consider the kinematics of our walking robot. There are two phases of the
walking function (see Table 1). The walking mechanism occurs only in the motor which
turns shaft 3 (Figure 1). For one revolution of shaft 3, body 1 of the robot is successively
moved along an arc corresponding to the angle ϕB and feet 5 along the arc ϕS (Figure 3).
These angles are defined as a function of the step length S of the robot:

ϕB = 2arctan
(

S
2(L2 − L4)

)
, (1)

ϕS = 2π − ϕB. (2)

Table 1. Processes during the different phases of motion.

Phase Motionless
Parts

Instantaneous Center of
Velocity for Arm 4

Time
Interval

Movement
of the
Robot

Active
Sensor

I Feet
5L and 5R Point A (Figure 3) T1 = t1 − t0 Yes Encoder

II Base 1 and
body 2 Point B (Figure 3) T2 = t2 − t1 No

Tactile
sensors,
encoder

Transitional
process Undefined Undefined (instantaneously

changes from A to B)
Undefined
short time Undefined Accelerometer
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Figure 3. Walking phases (on even horizontal surface) for the robot “Big Foot”. The trajectory of the
base (robot’s body) is tB while ts is the trajectory of the robot’s feet. The dimensions Lj = 1 ÷ 5, are
in millimeters.
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L2 and L4 are the distances shown in Figure 3 and step S is defined as [26]:

s = 2
√

L2
3 − (L2 − L4)

2 (3)

As a result of Equations (1)–(3), for both phases of walking, the angles ϕB and ϕS
(rotation angle of link 2) depend only on the dimensions L2, L3, and L4 of the links 1, 2, 4,
and 5.

The movements of the robot are carried out successively as follows. In the first phase
of walking the robot rests on feet 5 and in the second phase it rests on base 1. During the
transition between the first and second phase, the instantaneous center of velocity of arm
4 changes with a jump from point B’s instantaneous center of velocity to point A. Thus, the
elements of the robot undergo shock loads during this transition.

If we assume that the motor maintains a constant speed of shaft 3, which drives link 4,
then for the robot’s velocity vx on a horizontal plane, we have:

vx =
.
xc1 = ωL3sin(ϕ). (4)

Note that there is forward movement only during the first phase of walking (when the
feet are on the ground). During this phase, we have ϕ = ωt + ϕ0. The robot’s velocity–time
graph is provided in Figure 4.
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Figure 4. Change in the robot’s linear velocity vx over time obtained according to Figure 3 and
Equation (4) in the case of the uniform rotation of shaft 3 with the angular velocity ω = 50 [deg/s].

The robot’s velocity vx is a periodic function of time with the period T = T1 + T2 =
t2− t0 (see Figure 4). This period is divided into two parts. In the first part, T1 = t1− t0, the
robot’s feet 5 are on the ground and the robot is moving. In the second part, T2 = t2 − t1,
the robot’s base/body (links 1 and 2) are on the ground and arm 4 and feet 5 are rotating
(see Figure 3). Obviously the time, t2 − t1, in which feet do not touch the ground should be
minimized. A generalized overview of the robot’s movement is provided in Table 1.

3.2. Law of Motion Synthesis

In order to find an appropriate control law for the motor, which drives the walking
mechanism, we are guided by the following ideas/aims: the robot’s movement should be
as fast as possible; impact loads in the transition between the two walking phases must be
minimal; and the movement should be smooth and the available sensors should be used in
the control process. The shock phenomenon is observed when a sudden (instantaneous)
change in the speed of a body is caused by the action of instantaneous forces. The impact
force reaches large magnitudes during the collision process. The momentum of the impact
leads to a step change in the velocity of the body [31]:

J = m(v− v0) = lim
τ→0

t0+τ∫

t0

Fdτ, (5)

where J is the impulse of the force F, v is the velocity at a moment of time t0 + τ, which is
very close to the moment of time t0 at which the contact between the two bodies occurs, m is
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the mass of the body, and τ is a short interval of time. In our case, at the moment of contact,
v0 = 0, since the body becomes immobile. If we reduce the velocity v at the time t0 + τ,
which is very close to the contact time, we will reduce the impact load. Moreover, if the
velocity changes smoothly, we will have small inertial forces. For these reasons, we require
the following initial conditions for the angle ϕ1, the angular velocity

.
ϕ1, and the angular

acceleration
..
ϕ1 (the dots denote the time derivative) for phase I (feet are on the ground):

ϕ1(t0) = ϕ1(0) = ϕ0, ϕ1(t1) = ϕ1(T1) = ϕB + ϕ0, (6)

.
ϕ1(t0) =

.
ϕ1(0) = 0,

.
ϕ1(t1) =

.
ϕ1(T1) = 0, (7)

..
ϕ1(t0) =

..
ϕ1(0) = 0,

..
ϕ1(t1) =

..
ϕ1(T1) = 0. (8)

Figures 3 and 4 explain the parameters in Equations (6)–(11). In a similar way, for the
phase II robot’s base on the ground we have:

ϕ2(t1) = ϕ2(0) = ϕB + ϕ0, ϕ2(t2) = ϕ2(T1 + T2) = ϕB + ϕS + ϕ0, (9)

.
ϕ2(t1) = 0,

.
ϕ2(t2) =

.
ϕ2(T1 + T2) = 0, (10)

..
ϕ2(t1) = 0,

..
ϕ2(t2) =

..
ϕ2(T1 + T2) = 0 (11)

The motor’s limitations and load should also be taken into account. During each
phase, the motor can achieve angular accelerations in the interval 0 ≤

∣∣ .
ϕ(t)

∣∣ ≤ ωmax and
angular accelerations in the interval 0 ≤

∣∣ ..
ϕ(t)

∣∣ ≤ εmax.The maximal values are determined
by the power of the motor and the moments of inertia of the corresponding links.

We consider two types of time dependence for the angular velocity which meet the
conditions stated above: sinusoidal and polynomial.

3.2.1. Sinusoidal Dependence

The trigonometric functions sine and cosine are suitable for constructing a law of
motion, which smoothly varies the velocity from zero to maximum and then decreases it
again to zero. A smooth increase in the angular velocity ω when starting from rest and a
smooth stop can be ensured if we use a function of the form:

ω(t) =
.
ϕ(t) = A− Acos(kt). (12)

Here, A is the amplitude of the angular velocity and k defines the frequency. For the
separate phases I and II of motion we are only interested in one period of the function in
Equation (12). After integration, for the law of motion of link (arm) 4 we obtain:

ϕ(t) = At− A
1
k

sin(kt) + C. (13)

The constant C sets the initial angle of rotation for the phases I and II. For the angular
acceleration ε of link 4 we have:

ε(t) =
..
ϕ(t) = Aksin(kt). (14)

During phase I time is in the interval t ∈ [0, T1]. The coefficient k is determined from
Equations (7) and (12), k = 2π

T1
. The constant C is determined by the first condition in

Equation (6). We obtain C = ϕ0 if the robot’s base 1 is on the ground and the motor rotates
the links (4L and 4R). The angle ϕ0 corresponds to the moment when the phase of movement
changes, which is read by the tactile sensors (see Figure 3). From the second condition in
Equations (6) and (13) we obtain: A = ϕB

T1
. Thus, we could write Equations (12)–(14) for

phase I in the form:

ϕ1(t) =
ϕB
T1

[
t− T1

2π
sin
(

2π

T1
t
)]

+ ϕ0, (15)
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.
ϕ1(t) =

ϕB
T1

[
1− cos

(
2π

T1
t
)]

, (16)

..
ϕ1(t) =

2πϕB

T2
1

sin
(

2π

T1
t
)

. (17)

During this phase, the maximal angular velocity is
.
ϕ1max = 2 ϕB

T1
and is reached at time

t = T1
2 . The maximal angular acceleration

..
ϕ1max = ϕB

T2
1

2π is reached at t = T1
4 , and with the

opposite sign at t = 3T1
4 . If the maximal angular velocity and acceleration are known, then

one could determine the least possible time, T1min, for the execution of phase I:

T1min = min
[

2ϕB.
ϕ1max

,
√

2πϕB..
ϕ1max

]
. (18)

Since the angle ϕB is significantly smaller than ϕS and ϕB + ϕS = 2π, usually

T1min =
∣∣∣
√

2πϕB
ϕ́1max

∣∣∣.
In a similar way, using Equations (9)–(14) for phase II, corresponding to time

t ∈ [T1, T1 + T2], we obtain: k = 2π
T2

, C = ϕ0 + ϕB‚ A = ϕs
T2

. Reaching the angle ϕ0 + ϕB is
confirmed by the tactile sensors in the robot’s base 1. Equations (12)–(14) for phase II are
modified as follows:

ϕ2(t) =
ϕS
T2

[
(t− T1)−

T2

2π
sin
(

2π

T2
(t− T1

)]
+ ϕ0 + ϕB, (19)

.
ϕ2(t) =

ϕS
T2

[
1− cos

(
2π

T2
(t− T1

)]
, (20)

..
ϕ2(t) =

2πϕS

T2
2

sin
(

2π

T2
(t− T1

)
. (21)

Here, the maximal angular velocity is
.
ϕ2max = 2 ϕS

T2
and is reached at time t = T1 +

T2
2 .

The maximal angular acceleration,
..
ϕ2max = ϕS

T2
2

2π, is reached at t = T1+
T2
4 , and with the

opposite sign at t = T1 +
3T2

4 . Again, if the maximal angular velocity and acceleration
are known, then one could determine the least possible time, T2min, for the execution of
phase II:

T2min = min
[

2ϕS.
ϕ2max

,
√

2πϕS..
ϕ2max

]
. (22)

Since ϕS > ϕB, this phase is performed in a longer time compared with phase I and it
is expected that the motor will reach its maximal angular velocity, which corresponds to
T2min = 2ϕS.

ϕ2max
.

3.2.2. Polynomial Dependence

Another suitable function for a smooth variation in the angular velocity ω during the
change in the phases of movement is a polynomial of degree four:

ω(t) =
.
ϕ(t) = a1t4 + a2t3 + a3t2 + a4t + a5. (23)

Such a polynomial has at most 3 extreme points. The analysis is similar to that of the
sinusoidal law. After integration, we obtain for the law of motion:

ϕ(t) =
a1t5

5
+

a2t4

4
+

a3t3

3
+ a5t + C, (24)
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Here, C is a constant of integration which again sets the initial angle of rotation for the
phases I and II. After differentiating (23), for the angular acceleration ε of link 4 we have:

ε(t) =
..
ϕ(t) = 4a1t3 + 3a2t2 + 2a3t + a4, (25)

We determine the coefficients ai and the constants of integration from Equations (6)–(11).
Again, we will review each phase separately, and reaching the angle ϕ0 corresponds to the
moment when the phases of movement change.

During phase I time is in the interval t ∈ [0, T1]. We have 6 coefficients a1, . . . , a5, C
and 6 Equations (6)–(8), and solving them leads to:

ϕ1(t) = ϕB

(
10t3

T1
3 +
−15t4

T1
4 +

6t5

T1
5

)
+ ϕ0, (26)

.
ϕ1(t) =

ϕB
T1

(
30t2

T1
2 +
−60t3

T1
3 +

30t4

T1
4

)
, (27)

..
ϕ1(0) =

ϕB

T1
2

(
60t
T1

+
−180t2

T1
2 +

120t3

T1
3

)
. (28)

During this phase, the maximal angular velocity is
.
ϕ1max = 15

8
ϕB
T1

and is reached at time

t = T1
2 . The maximal angular acceleration,

..
ϕ1max = 10√

3
ϕB
T2

1
, is reached at t =

(
1
2 −

√
3

6

)
T1,

and with the opposite sign at t =
(

1
2 +

√
3

6

)
T1. Again, if the maximal angular velocity and

acceleration are known, then one could determine the least possible time, T1min, for the
execution of phase I:

T1min = min
[

15
8

ϕB.
ϕ1max

,
√

10√
3

ϕB..
ϕ1max

]
(29)

This was the case for the sinusoidal time dependence since the angle ϕB is significantly
smaller than ϕS and ϕB + ϕS = 2π, usually T1min =

√
10√

3
ϕB..

ϕ1max
.

In a similar way, using Equations (9)–(11) and (23)–(25) for phase II, corresponding to
time t ∈ [T1, T1 + T2], we obtain:

ϕ2(t) = ϕS

(
10(t− T1)

3

T23 +
−15(t− T1)

4

T24 +
6(t− T1)

5

T25

)
+ ϕ0 + ϕB, (30)

.
ϕ2(t) =

ϕS
T2

(
30(t− T1)

2

T22 +
−60(t− T1)

3

T23 +
30(t− T1)

4

T24

)
, (31)

..
ϕ2(0) =

ϕS
T22

(
60(t− T1)

T2
+
−180(t− T1)

2

T22 +
120(t− T1)

3

T23

)
. (32)

The maximal angular velocity is
.
ϕ2max = 15

8
ϕS
T2

and is reached at time t = T1 +
T2
2 . The

maximal angular acceleration,
..
ϕ2max = 10√

3
ϕB
T2

2
, is reached at t = T1 +

(
1
2 −

√
3

6

)
T2, and with

the opposite sign at t = T1 +
(

1
2 +

√
3

6

)
T2. For the minimal time for execution we have:

T2min = min
[

15
8

ϕB.
ϕ2max

,
√

10√
3

ϕB..
ϕ2max

]
. (33)

As in the sinusoidal case, this phase is performed in a longer time compared with
phase I and it is expected that the motor will reach its maximal angular velocity, which
corresponds to T2min = 15

8
ϕB.

ϕ2max
.
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3.2.3. Experiment

The considered construction of the “Big foot” robot uses two motor reducers of type
FIT0277 (12 V-Motor: DC; with encoder, with gearbox; 12VDC; 230 mA; 146 rpm; 51:1)
with magnet encoders. The output shaft revolutions are 146 RPM. From the transmission’s
(see Figure 5) gear ratio, i = z2

z1
= 124

40 = 3.1, of the motor’s parameters, we obtain the
maximal value for the angular velocity ωmax =

.
ϕmax = 150[◦/s] and angular acceleration

εmax =
..
ϕmax = 130

[◦/s2] for the angular acceleration of the links 4L and 4R. Thus, we are
able to determine the least possible durations, T1min, T2min, for the phases I and II.
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The robot is equipped with tactile sensors in the base (Figure 1a), which allow the 
moment of contact of the base with the surface to be accurately registered and to deter-
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Figure 5. Walking mechanism.

Angular velocity control is realized by feedback with a PD-type controller. This
controller receives as input the error between the set angular velocity and the current
angular velocity, measured in number of encoder readings. The output of the PD controller
is the necessary correction of the signal supplied to the motor driver. The motor driver
receives as input an integer from 0 to 255. The controller parameters are experimentally
set to P = 0.05 D = 0.00025. P is the proportional term, D is the derivative gain. The
proportional term produces an output value that is proportional to the current error value.
The derivative of the process error is calculated by determining the slope of the error over
time and multiplying this rate of change by the derivative gain. In the transition between
the two stages of the movement, the shock load on the robot structure is maximal and there
is the greatest need for correction of the input value to the motor driver.

The robot is equipped with tactile sensors in the base (Figure 1a), which allow the
moment of contact of the base with the surface to be accurately registered and to determine
the phase of the movement. A sensor for measuring acceleration (accelerometer) is also
installed on the robot. This sensor allows us to read the acceleration along the vertical
z axis that acts on the structure when the transition between the two phases takes place.
The sensor is set to read values between ±2 g, where g = 9.81

[
m/s2] is the gravitational

acceleration. When the robot is at rest, the sensor reads that the gravitational acceleration
and its readings are equal to 1 g, respectively.

Two types of experiments were conducted. In the first type, the constant angular velocity
of the motor is set, in which arm 4 of the robot has the angular velocities: ω1 = 118[◦/s] and
ω2 = 59[◦/s].

The second type are the experiments with angular velocity control according to
Equations (15)–(17) and (19)–(21), subject to restrictions (6–11) and the maximal allowed
angular velocity and acceleration for link 4.

4. Results

From Equation (3) for the robot’s step we obtain S = 128[mm] and the rotation range of
the base in phase I is determined by Equation (2). Thus, the maximal angles are ϕB = 80.5[◦]
and ϕS = 279.5[◦]. These are results calculated theoretically using the designed dimensions
of the robot. In order to specify these parameters, measurements have been made based
on the information from the motor’s encoder. Experimentally, we have found that the
encoder takes 4575 readings per full revolution of 360[◦] of arm 4 and feet 5. Thus, one
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encoder reading equals 0.0787 degrees. Maximal angular velocity (when the feet are in the
air) of 1650 readings per second has been experimentally confirmed, which corresponds
to 130[◦/s]. The angle ϕB of phase I (when the feet are on the ground and the base is in
the air) is 975 encoder readings, i.e., ϕB = 77[◦]. The angle ϕS of phase II is 3600 encoder
readings, i.e., ϕs = 283[◦].

Equations (18), (22), (29), and (33) determine the times T1min, T2min, and the periods in
Equations (12) and (23). The results are presented in Table 2.

Table 2. Minimal duration of phases I and II for the considered control laws.

Law
Minimal Duration of the Phase [s]

Period T [s]
T1min for Phase I T2min for Phase II

Polynomial 1.84 3.54 5.38
Sinusoidal 1.92 3.78 5.70

Thus, Equations (15)–(22) set the sinusoidal motor control laws, while Equations (26)–(33)
set the polynomial motor control laws. Figure 6a–c shows a comparison of the angular position,
velocity, and acceleration assignments during the entire motion for one period, T, under the two
control laws.
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Figure 6. Comparison of the assignment angle positions ϕ for the two control laws (a). Comparison
of the assigned angle velocities

.
ϕ (b). Comparison of the assigned angle accelerations

..
ϕ (c).

The following figures present raw unfiltered data from the accelerometer and encoder.
Figure 7 contains the results of performing two rotations of the robot’s feet at a set constant
angular velocity ω1 = 118[◦/s], which is close to the maximal one. At this rate, the average
execution times for phases I and II are T1 = 0.80[s] and T2 = 2.56[s], respectively. It takes
an average of T = 3.36[s] for a full walk cycle. During the movement, the robot experiences
the following minimal and maximal acceleration values along the z axis (the axis normal to
the walking plane): −0.26 g and 1.99 g, reported by the accelerometer (Figure 7). These
values subject the robot to a strong external load and are not suitable when it is used for a
long time.

Next, we reduced the constant angular velocity by half to ω1 = 59[◦/s]. Figure 8
presents the results of two complete rotations of the robot’s legs. The average execution
times of phases I and II are respectively T1 = 2.00[s] and T2 = 5.06[s]. It takes an average
of T = 7.06[s] for one full walk cycle. During the movement, the robot experiences the
following minimal and maximal acceleration along the z axis: 0.34 g and 1.47 g.
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Figure 8. The angular velocity read by the encoder and the vertical acceleration obtained by the
accelerometer during the motion of link 4 with a constant angular velocity ω2 = 59[◦/s].

The third experiment uses the polynomial control law. Now velocities are set in a way
ensuring that at the start and at the end of both phase I and phase II the velocities and
accelerations are zero. The results of two complete rotations of the robot’s legs are shown in
Figure 9. With the motion planned in this way, the average execution times of phases I and
II are T1 = 2.11[s] and T2 = 3.88[s], respectively. It takes an average of T = 5.99[s] for one
full walk cycle. During the movement, the robot experiences the following minimal and
maximal accelerations along the z axis: 0.34 g and 1.57 g. The achieved maximal angular
velocity is ωmax = 149[◦/s].
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Figure 9. The angular velocity read by the encoder and the vertical acceleration obtained by the
accelerometer during the motion of link 4 subjected to the polynomial control law.

The fourth experiment uses the sinusoidal control law. Again, the velocities are set in
a way ensuring that at the start and at the end of both phase I and phase II the velocities
and accelerations are zero. The results of two complete rotations of the robot’s legs are
shown in Figure 10. The average execution times of phases I and II are T1 = 2.17[s] and
T1 = 4.16[s], respectively. It takes an average of T = 6.32[s] for one full rotation. During the
movement, the robot experiences the following minimal and maximal accelerations along
the z axis: 0.22 g and 1.94 g. The achieved maximal angular velocity is ωmax = 150[◦/s].
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Figure 10. The angular velocity read by the encoder and the vertical acceleration obtained by the
accelerometer during the motion of link 4 subjected to sinusoidal control law.

In the third and fourth experiments, the robot experiences lower acceleration along
the z axis during the entire motion compared with the motion at velocity ω1 = 118[◦/s].
In real conditions, as seen in Figures 9 and 10, the robot needs a minimal additional time
of about 0.30 s on average for transition between the two phases. This is due to the use of
a PD-type controller, as well as the physical characteristics of the electric motors and the
mechanics of the robot itself. During this time, the motor passes through the moment of
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zero acceleration. Furthermore, it starts from zero acceleration, while lifting the robot’s
body, i.e., it overcomes the weight of the structure. This delay can be eliminated if the two
phases are planed with a time overlap.

A comparison of the angle change ϕ (legs’ positions) when using polynomial and
sinusoidal law is shown in Figure 11.
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A video with some of the experiments is available at the following link: https://youtu.
be/zo1276JLs0k (accessed on 20 January 2023).

5. Discussion

The robot “Big Foot” is an innovative design with minimal degrees of freedom and as
such it is difficult to make a direct comparison with other designs. For example, ref. [32]
deals with similar issues when trying to develop control algorithms for the joints of bipedal
walking robots. They approach the problems in three steps: planning method, mathematical
modeling (dynamics), and control algorithms. While we also have a dynamical model of
the design [30], the simplicity and static stability allows for a purely kinematic approach
(with adequate support from sensory input), with the only restrictions being motor loads
and impact shocks. Note that in [32], the author tried to solve similar problems (minimizing
impact shocks) using similar methods (a PD controller) with a key difference being that
they include force control methods.

In article [33], the authors conduct a simulation of a walking robot with a similar
analysis. They present angles and angular velocities with and without impact, and their
effect on walking speed. They, however, do not consider accelerations and impact shocks.

The presented theoretical and experimental results are in good agreement but there are
some differences. A difference is observed between the calculated rotation angles ϕB and ϕs
for the two phases and the experimentally measured ones from the motor encoder. In reality,
the dimensions have inaccuracies as there are slacks in the joints as well as elasticities,
which lead to a deviation of the actual values for the angles for the two phases. This
experiment is important for accurate determination of the coefficients in the control laws.

The theoretically calculated intervals for the two phases of motion provided in Table 2
differ from the experimentally obtained results presented in Figures 9 and 10. This is due to
an inaccurate determination of the actual coefficients and the fact that the proposed model
does not take into account the dynamics of the process. However, since the velocities are
low, the inaccuracies from the dynamics are insignificant. The experimentally obtained
values for Ti are bigger than the theoretical ones.

Graphs in Figure 6 show that both proposed laws provide a smooth increase in velocity
and acceleration and satisfy the initial conditions. However, the polynomial law completes
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one period for T = 5.38[s], which is 0.32[s] faster than the sinusoidal law. This is also
confirmed by the result given in Figure 11.

The experimental results given in Figures 7 and 8 show that under a motion with a
constant angular speed ω1 = 118[◦/s] of the link 4, which is close to the maximum permis-
sible one for the motor, the accelerometer reports very high acceleration fluctuations during
the transition process. This leads to significant loads on the robot structure, which are also
visible in the attached video. Decreasing the speed leads to a reduction in accelerations
and shock loads, but at a constant angular velocity it significantly reduces the speed of
the robot.

The experimental graphs in Figures 9 and 10 show the deviation of the angular velocity
from the theoretical one. These deviations are largest at the transition points between the
phases and at the maxima of the functions. The polynomial law executes one period in
T = 5.99[s], which is 0.33[s] faster than the sinusoidal law. This difference is very close to
the theoretically obtained value. Therefore, the polynomial law can be used to make the
robot move faster.

Figures 7–10 also contain the accelerations normal to the walking surface (labeled
z-axis) read by the accelerometer. One could notice that the application of polynomial and
sinusoidal control laws (Figures 9 and 10) lead to much lower values than the accelerations
obtained with the maximum angular velocity given in Figure 7. These accelerations are close
to those obtained in Figure 8 at the average angular velocity. An important advantage of
both laws is that they significantly shorten the execution time of each period while keeping
low values of accelerations along the Z-axis. This corresponds to small dynamic loads.

Figures 9 and 10 also show some disadvantages of applying the sinusoidal and poly-
nomial control laws. In the transition between the two phases, there is a delay, which is a
result of two things: the motor needs to overcome a significant torque at low speeds, which
is difficult for the DC motor to do; the PD controller tries to ensure the correct motor angle,
with close to zero angular velocity. When the angular velocity increases sufficiently, the
PD controller tries to “catch up”, as is evident by the blue line in Figures 9 and 10. This
leads to another difference between experimental and theoretical results, located around
the maximal values of the angular velocity. The controller is trying to compensate the
difference between the real and expected velocities, which leads to overshoot when the
expected velocity rapidly changes at the maximum. Note that the difference is more dire
for shorter periods. The first issue could be solved by using more powerful motors, but
this necessitates changes to the mechanical construction and electronics of the robot. Both
issues can probably be solved by the implementation of a more sophisticated controller
(for example a full PID controller). The delay can also be eliminated if the two phases are
planed with a time overlap. Improvements in those directions are planned for future work.

6. Conclusions

We present a theoretical and experimental approach for the control of an innovative
design of a walking robot with only two degrees of freedom, named “Big Foot”. Our
approach aims to reduce shock loads while trying to maximize walking speed over a
flat surface. The proposed algorithm utilizes a PD controller using the robot’s tactile
sensors and encoders to determine the transition between the phases of walking, and
the motor’s angular velocity. Three different laws of motion were compared: constant
angular velocity, polynomial, and sinusoidal. Theoretically and experimentally, it is shown
that the polynomial law leads to higher walk speed compared with the other laws, while
maintaining low motor loads and low impact shocks.

The flaws in experimental realization could be eliminated by using a more complicated
control algorithm (for example a full PID controller), more powerful motors, or more sophis-
ticated laws of motion (time overlap between different phases of walking). The proposed
scheme can be generalized in two ways: by considering collision and obstacle avoidance;
and by walking in an uneven and/or unstructured environment. The proposed approach
may be applicable to the control of the walking mechanisms of similar mobile robots.
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7. Patents

Chavdarov I, Tanev T, and Pavlov V. Walking robot. Patent application № 111362.
Published summary—Bulletin № 6, 30 June 2014, p. 11, in Bulgarian.
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Abstract: Multi-camera-based simultaneous localization and mapping (SLAM) has been widely
applied in various mobile robots under uncertain or unknown environments to accomplish tasks
autonomously. However, the conventional purely data-driven feature extraction methods cannot
utilize the rich semantic information in the environment, which leads to the performance of the
SLAM system being susceptible to various interferences. In this work, we present a semantic-aware
multi-level information fusion scheme for robust global orientation estimation. Specifically, a visual
semantic perception system based on the synthesized surround view image is proposed for the
multi-eye surround vision system widely used in mobile robots, which is used to obtain the visual
semantic information required for SLAM tasks. The original multi-eye image was first transformed
to the synthesized surround view image, and the passable space was extracted with the help of
the semantic segmentation network model as a mask for feature extraction; moreover, the hybrid
edge information was extracted to effectively eliminate the distorted edges by further using the
distortion characteristics of the reverse perspective projection process. Then, the hybrid semantic
information was used for robust global orientation estimation; thus, better localization performance
was obtained. The experiments on an intelligent vehicle, which was used for automated valet parking
both in indoor and outdoor scenes, showed that the proposed hybrid multi-level information fusion
method achieved at least a 10-percent improvement in comparison with other edge segmentation
methods, the average orientation estimation error being between 1 and 2 degrees, much smaller than
other methods, and the trajectory drift value of the proposed method was much smaller than that of
other methods.

Keywords: simultaneous localization and mapping (SLAM); semantic; information fusion; orienta-
tion estimation; mobile robots

1. Introduction

With the rapid development of sensing, computation, manufacturing, and control
technologies in recent years, various kinds of robots have been coming into our lives and
work gradually, such as unmanned aerial vehicles, robot vacuum cleaners, intelligent
vehicles, autonomous disinfection robots, logistics delivery robots, and so on. These
different kinds of robots have been transforming our social lives ever-increasingly [1,2].
For example, during the current COVID-19 pandemic, we always expect to use robots
to replace humans to complete the disinfection work in public places, due to different
regions in the environment having different risks. Thus, in these environments, one of the
most-important prerequisites for the robots to accomplish the task safely, autonomously,
and efficiently is that the robot should know its own location relative to the environment.
Therefore, it is of great importance to endow the robot with the ability of autonomous
navigation. Simultaneous localization and mapping (SLAM) [3] is such a technique that
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can build the environment map and compute the location in the map simultaneously. With
the help of SLAM, when a robot enters an uncertain or even unknown environment, it can
make use of the structured environment information to determine its location on the map;
it can also reconstruct its surroundings by only relying on its own sensors. Thus, the robot
can move and complete specific tasks in a prior unknown and unstructured environment
autonomously [4,5].

SLAM has been widely applied in various applications. Since the robot has to build the
environment map and locate its positions by the sensors carried by it, the most-fundamental
problem is how to accurately and robustly extract information that can be used for map
building and localization. Conventionally, the information extraction techniques have been
utilized to obtainfeatures directly from the available sensors by some manual rule-based
methods, then these features will be used for map building and localization. With the
rapid development of deep-neural-network-based learning methods, we can obtain much
high-level semantic information from the environment by the nature of the multi-level
information processing mechanism. Thus, the accuracy and robustness of the SLAM system
can be improved further by this high-level semantic information [3,6,7].

Semantic information plays a positive role in the SLAM system of mobile robots.
The semantic information can enhance the robustness against those disturbances in the
environment and systems [8–10]. During the computing of semantic information, the
effective information generally flows from low-level, low-accuracy to high-level, high-
accuracy by the nature of the hierarchical structure of the deep neural network; thus,
this high-level information can adapt to various variations in the environment [11–14].
Some works showed that the stability of the features can be enhanced by filtering out
those features of dynamic or potentially moving objects. Some works showed that this
high-level semantic information lowers the sensitivity to sensor noise to some extent, such
as straight lines, triangles, and planes, which are more robust than the original sensor
data [15,16]. Some work showed that semantic information can improve the accuracy
and reliability of data association by taking advantage of relevance, heterogeneity, and
invariance in semantics [17,18]. On the other hand, semantic information can support
the accomplishment of various high-level tasks to a great extent, since these high-level
tasks are usually encoded by some natural-language-like semantics, consisting of some
specific, abstract symbols, logic, and temporal operators, such as linear temporal logic,
signal temporal logic, metric temporal logic, and so on [19–22]. However, though semantic
SLAM has achieved state-of-the-art performance in various practical applications, the
purely data-driven-based neural network model has also shown many disadvantages, such
as the non-explainability issue and the huge amount of labeled data requirement, both
of which limit its adaptability in different environments, especially the human beings
involved and safety-critical scenarios [23,24]. Therefore, in this work, we hope to resolve
the aforementioned problem partially by embedding rule-based and explainable structures,
allowing the robot to be able to adapt to the new environment efficiently.

In practical applications, in order to be able to achieve the all-around perceptual
coverage of objects in any direction in the task scene, mobile robots often need to be
equipped with multiple vision sensors to meet this demand. In smart cars, for example, the
vision system on board often consists of multiple high-resolution cameras with different
viewing angles to cover a 360-degree field of view around the vehicle. Having a wider field
of view means that the robots can observe more information about the environment, but it
also means that the amount of computation required to process this information is greatly
increased. In addition, under the current situation that the perception method based on the
deep neural network model has become the mainstream, more raw perception data input
also require corresponding orders of magnitude labeled data, which undoubtedly greatly
increases the cost and time of the perception model when adapting to new scenarios, which
is not conducive to rapid deployment and application in new scenarios.

In summary, the main contributions of this article are summarized as follows:
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• We propose a multi-level semantic-structure-aware global orientation estimation
framework, which consists of a semantic information extraction module and a global
orientation estimation module.

• In the semantic information extraction stage, we attempted to process the surround
view synthesized images obtained after the inverse perspective mapping (IPM) of
the original image and use the passable area segmentation mode, which more easily
obtains the annotation data, fully combines the potential prior information in the
task, and obtains the boundary including the passable area. The semantic information
including visual feature points and ground marking edges in the passable area can
effectively reduce the requirements of the semantic perception model for labeled data
and, finally, meet the needs for tasks such as mapping and positioning.

• In the orientation estimation stage, we designed a segmentation method for marker
lines based on the structural rules of the Manhattan world, which can be used to
obtain from the image a collection of line segments that conform to the structural
assumptions of Manhattan and the dominant orientation of these lines; thus, we can
distinguish the marker lines from the noise lines.

• We validated the effectiveness of the proposed scheme by taking the semantic percep-
tion task of intelligent vehicles equipped with multi-vision systems in the automatic
valet parking task as an example.

The remainder of this work is organized as follows: In Section 2, some related works
are described. In Section 3, we describe our system architecture, followed by semantic
information extraction in Section 4. After that, we present the semantic-aware global
orientation estimation method in Section 5, with the experiments presented in Section 6
and the conclusion in Section 7.

2. Related Works
2.1. Multi-Camera SLAM System

In general, increasing the number of cameras in a mobile robot system can effectively
improve its perception range, thereby increasing the potential improvement of its percep-
tion ability [25,26]. Therefore, researchers are paying more and more attention to how to
model multi-vision systems and use the characteristics of multi-vision systems to improve
the accuracy and robustness of the system, and the relevant research results have been
widely used in mobile robot SLAM tasks [27–29].

Although direct processing of multi-camera images maximizes the use of the informa-
tion in the original image, it also means that sufficient computing resources are required
to enable fast processing, so it may not be suitable for tasks that require high real-time
performance. As an alternative scheme, some recent research has also been performed to
use the image after surround view synthesizing as the input, which can greatly improve
the processing efficiency of the system while achieving satisfactory accuracy.

2.2. Feature Extraction Techniques for SLAM

The environmental feature information utilized in traditional visual SLAM frame-
works typically includes sparse corner features (e.g., SIFT, ORB) in indirect methods and
pixel luminance information in direct methods [30–32]. On top of this, there are many ways
to further improve SLAM by detecting features such as geometric elements, such as line
segments and planes, in the scene reliability of the system [12,33,34].

With the rapid development of deep learning in recent years, more and more methods
based on deep neural networks have been integrated into visual SLAM systems to improve
the system’s perception and utilization of environmental information. As the main means of
semantic perception, semantic segmentation and object detection networks are widely used
in the acquisition of pixel-level and object-level semantic information, respectively, and
bring additional semantic and geometric constraints to the SLAM system, especially in sce-
narios with many dynamic objects, which significantly improves the stability and accuracy
of the SLAM system. Semantic SLAM has been widely studied and implemented in various
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kinds of robots by the substantial progress of deep learning techniques, especially alongside
high-performance computing machines, such as graphics processing units (GPUs). For
example, the image-segmentation-based neural network models include the FCN [35],
SegNet [36], PSPNet [37], ICNet [38], DeepLab [39], MobileNet [40], and their extensions;
the image-based object detection network models include RCNN [41], YOLO [42], SSD [43],
and their extensions; point cloud segmentation network models include PointNet [44] and
its extensions; point cloud-based object detection network modes include VoxelNet [45],
PointPillars [46], and their extensions. These semantic segmentation and object detection
networks have been applied to extract object-level and point-level semantics, which bring
prior structures into the SLAM system, and more accurate and robust performances are
obtained. However, these deep-network-based methods need huge amounts of labeled
data, which are usually not affordable for practical applications. Therefore, we propose a
hybrid and multi-level information fusion scheme to deal with this problem.

2.3. Semantic Information with Synthesized Surround View Image

The homogeneous transform or IPM relied on by surround view synthesizing tech-
niques is a very classic image processing method [47,48]. With the rapid development
of vision systems in recent years, this technology has also been widely used, such as
the reverse assistance system in cars, which usually uses this technology to enable the
driver to easily observe the situation of surrounding objects and the distance from the
robot. Similarly, when mobile robots complete tasks such as mapping, positioning, and
navigation, researchers also focus on how to extract effective semantic information from
the synthesized surround view image, such as various pavement markings, obstacles, and
passable areas, and describe them in different forms of representation such as point clouds
and occupied grids to help complete related tasks [49,50].

However, because models based on deep neural networks often require a large amount
of manually labeled data for training, they are difficult to quickly scale and apply to new
scenarios. Therefore, this work considered only the rough passable space segmentation
results to assist in extracting the semantic information in the surround view synthesized
image and obtain rich and effective semantic information such as passable area boundaries,
pavement sparse feature points, and pavement marking edges, which not only improves
the effective information quality of the input SLAM system, but also greatly reduces
the requirements for annotated data, so it can be applied to mapping positioning and
navigation tasks in new scenes more quickly than the previous methods.

2.4. Semantic-Feature-Based Global Localization

Due to the high ability of convolutional neural networks to discover complex pat-
terns, NetVLAD uses the network to generate global descriptors directly end-to-end [51].
LoST uses the network to learn local key points, global descriptors, and semantic infor-
mation to complete VPR tasks with extreme changes in view and appearance [52]. In
addition, some methods even use the network directly to give the results of pose estimation
end-to-end [53–55]. Although their results show extremely high accuracy and robustness
to noise in the dataset, they are invariably dependent and data-dependent, so the general-
ization performance of these methods is not satisfactory.

As a high-level feature, semantic information is compact and has good stability, so it is
suitable as a reference for visual localization. Some research work used specific landmarks
as masks to avoid extracting feature information in some dynamic regions [56]. VLASE
uses the semantic edges extracted by the network to characterize the image and, then,
achieve localization. Some methods use columnar landmarks as a special location refer-
ence to improve the positioning accuracy of robots [57]. The aforementioned methods
only consider the information of the episemantic class. However, the spatial relationship
between semantics also implies information about the place. Therefore, the method pro-
posed in this work uses both episemantic and spatial distribution information to pursue
a complete description of the scene. Some studies use graph models to encode scenes
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and their topologies, but building graphs from images is a difficult problem, especially in
sparse landmark scenes [58,59]. In this work, semantic information is explicitly encoded
as semantic vectors, and spatial geometric relationships are represented in the form of
histograms. The descriptor constructed by this encoding method has a compact structure
and good interpretability, which is commonly used in various scenarios.

3. Structure-Aware Global Orientation Estimation System

In this work, we built a SLAM framework based on semantic-aware structural informa-
tion for estimating the robot’s global orientation state, as shown in Figure 1. The framework
takes a synthesized surround view image as the input and outputs a drift-free trajectory
and a map consisting of marker lines. As we can see, the proposed SLAM system consists
mainly of two procedures, structured semantic information extraction and orientation
estimation. During the structured semantic information extraction stage, the passable space
in the image is firstly extracted with the help of the semantic segmentation network model
as a mask for feature extraction; thus, we can improve the computational efficiency of the
system while retaining most of the effective information. Since the boundary of the passable
area contains geometric information about the environment, it could also be converted
into a point cloud representation by LiDAR, which effectively complements the visual
feature point information. In addition, since the passable space contains rich pavement
marking edges, by further using the distortion characteristics of the reverse-perspective
projection process, the distortion edges could be effectively eliminated, and the hybrid
edge information could be used for mapping and localization tasks. During the orientation
estimation stage, based on the dominant orientation information, the global orientation of
each frame can be preliminarily estimated without drift. In order to further improve the
anti-interference performance, we built a local map and designed it to optimize the state
factor in the local map using the global orientation error constraint. Finally, the estimation
of the global orientation is obtained, and a line map that reflects the structure of the real
scene can be reconstructed.

Figure 1. Semantic-structure-aware global orientation estimation framework.

4. Semantic Information Extraction
4.1. Virtual LiDAR Data Generation

Conventionally, LiDAR can accurately measure the distance information of objects in
the environment relative to the robot itself, and the virtual radar proposed in this work
obtains similar distance measurement information through the secondary processing of
semantic segmentation results, simulating the detection results of LiDAR sensors. Since
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most of the area in the original image is the ground and objects on the ground, we consid-
ered using IPM to convert the original image to a top view and synthesized it to obtain a
surveillance-synthesized image. The process of IPM transformation can be described as
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where
[
u f ish, v f ish

]T
denotes the pixel coordinates of the fish-eye camera image, πc(·)

denotes the projection model with its inverse projection model as π−1
c (·),

[
Rc tc

]

denotes the external parameters of the camera, i.e., the homogeneous transformation matrix
from the robot coordinate system to the camera coordinate system, and []col :k denotes
the k-th column of the matrix. λ denotes the scaling factor, which can be obtained by
calibrating the correspondence between the transformed image and the actual scene size,
and

[
xveh yveh

]T denotes the position of the point in the final robot coordinate system.
After IPM transformation, a virtual camera directly above the robot and shot vertically

downward can be further constructed, which can map the points under the obtained robot
coordinate system to obtain the final synthesized surround view image as
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where
[

uipm vipm
]T denotes the pixel coordinate of the synthesized surround view

image and Kipm denotes the internal parameter matrix for the virtual camera.
To obtain the segmentation results of free spaces, this paper trained a semantic seg-

mentation network model to distinguish between passable space and non-passable space.
Then, through the morphological processing at the image level, the segmentation results
can be further modified to obtain a more ideal segmentation effect, and the boundaries
of the passable area can be further extracted. Since the scale transformation coefficient
between the pixel distance of the image and the actual distance can also be obtained at
the same time during the calibration process of surround view synthesizing, the pixel
distance between the point on the passable area boundary in the image and the pixel
distance of the image center can be directly converted into the actual distance under the
robot coordinate system or virtual radar sensor coordinate system. Then, according to the
scanning method using LiDAR, all boundary points are sampled at fixed angular intervals,
and the boundary points in the same angle window can be represented by the closest point
so that the final virtual radar measurement data can be obtained. The process of virtual
LiDAR data generation is shown in Figure 2.
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Figure 2. The process of virtual LiDAR data generation.
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4.2. IPM-Based Hybrid Semantic Edge Extraction

The original synthesized surround view image often contains a large number of ground
markings, which can be fed into SLAM systems as high-quality road sign information.
However, the information of the synthesized surround view image is also disturbed by
a large number of ground spots. At the same time, the reverse-perspective projection
transformation during the synthesizing process will distort objects with a certain height
on the ground. Therefore, an edge segmentation module needs to be designed to reject
the above interference edges, so that the high-quality effective edges on the ground can be
retained. The process of hybrid semantic edge extraction is shown in Figure 3.
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Figure 3. The procedure of hybrid semantic edges extraction.

Primary edge extraction: The edges on the input surround view synthesized image can
be extracted by traditional edge detection methods, such as the Canny edge detector and
LSD detector. On the one hand, the edge of the ground mark and the projected edge of the
object can be well extracted; on the other hand, traditional edge detectors will also detect
those invalid edges, such as the edges of surrounding robots, pillars, and light spots, so the
original edges need to be processed to some extent. Due to the segmentation of the passable
space, edges that are located on objects above the ground level can be easily removed.
However, there is still a considerable part of the spot edge that cannot be removed in this
way, and the part of the passable space boundary that is affected by distortion requires
additional processing; otherwise, it will not be able to be entered into the subsequent SLAM
system and achieve the ideal positioning and mapping results.

IPM-based edge segmentation: Considering that the distortion edges are mainly
centered on the photocenter of each camera and distributed in the direction of the rays,
an intuitive idea is to build a polar coordinate system with its photocenter as the origin
for each camera and count the number of edge points in each direction. However, the
segmentation method based on ray accumulation has problems such as erroneous removal
of dense small edges, such as the edge of zebra crossings, threshold coupling of angle
parameters and the number of edge points in the fan, and inaccurate results. In order to
consider the geometric distribution of edges, further attempts can be made to detect line
segments in the edge image. Specifically, traditional linear detectors, such as those based on
the Hough transform, can extract segments of a length from the original edge image, then
calculate the distance between the line in which each segment is located and the camera
center of its field of view. Finally, those segments that are small enough away are marked
as distorted edge areas. However, the segmentation method based on segment detection
has problems such as the erroneous exclusion of some unconnected edge points, and the
distance between the line segment and the optical center will also affect the selection of the
final distance threshold.

To further consider the fine structure of the edge, different consecutive edges can first
be distinguished before edge segmentation. Then, for each edge, the Douglas–Peucker
algorithm is used to approximate the edges. The line segments obtained by approximating
the contour of each edge are connected to the center of the camera photocenter in the field
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of view, and then, the angle between the line and the line segment is calculated to remove
those parts whose angles are less than a certain threshold. The main advantage of the
segmentation method based on polyline approximation is that it simplifies the operation of
segment detection and limits segment approximation to the interior of each edge. At the
same time, for edges at different distances, the way of evaluating the angle is more stable
and consistent than the previous way of evaluating the distance, especially for those edges
that are very far from the robot. The algorithm of the polyline-approximation-based edge
segmentation method is shown in Algorithm 1.

Algorithm 1 Polyline-approximation-based edge segmentation algorithm.

1: Input: Synthesized surround view image within the passable area Iedge .
2: Output: Valid edge image after segmentation Iseg .
3: Initializing: The maximum allowable error of the polyline approximation Dmax, the

maximum allowable angle threshold for the line and polyline between the midpoint of
the effective polyline and the camera optical center θmax, reject range r.

4: Extracting the contours of all edges in Iedge to form the edge profile set C;
5: for c ∈ C do
6: Computing the polyline set L by taking advantage of Douglas–Peucker operators

and Dmax to approximate the contours with polylines;
7: for l ∈ L do
8: Computing the camera center note position C of the field of view based on the

endpoint of the polyline l;
9: Computing the connecting line lC between the middle point of l and the camera

optical center C;
10: Computing the angle θ between l and lC;
11: if θ < θmax then
12: Removing all the edge points covered by l along with reject range r from

Iseg ;
13: end if
14: end for
15: end for

5. Semantic-Aware Global Orientation Estimation
5.1. Local Dominant Direction Estimation

In a real navigation environment, there is a large number of road markings on the
ground, which is a good reference landmark for SLAM systems. However, there are also
various disturbing noises on the ground, such as glare or water stains. Therefore, it is
necessary to distinguish the marker lines from the noise lines. By observation, it can be seen
that most of the marker lines are parallel or perpendicular to each other, while the noise
lines are disordered. Inspired by this phenomenon, this section designs a segmentation
method for marker lines based on the structural rules of the Manhattan world, which
can be used to obtain from the image a collection of line segments that conform to the
structural assumptions of Manhattan and the dominant orientation of these lines, as shown
in Figure 4. The left (a) is the raw input image. The middle (b) is the extracted raw lines,
and the right (c) is the line segmentation result. Green lines are the preserved marking lines,
and red lines are the noisy lines. The bottom row shows three consecutive images. Green
lines are marking lines; the orange arrow is the local dominant direction of the current
frame, and the blue arrow is the global dominant direction.

In the initial frame, the line with the highest number of perpendicular and parallel
to the other lines is considered to be the initial dominant direction xd, and the vertical or
parallel between two lines can be evaluated by computing,

θ − arccos

(
xi · xj

|xi|
∣∣xj
∣∣

)
< δ, (3)
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where δ denotes the tolerance and θ can be set as 0 for the parallel lines’ evaluation and π
2

for the perpendicular lines’ evaluation. Thus, we can build two sets for these two types of
lines as L//, L⊥ for parallel lines and perpendicular lines, respectively. Then, we optimize
the dominant direction:

min
a,b

∑
li∈L//

∣∣x′d · li
∣∣+ ∑

lj∈L⊥

∣∣xd · lj
∣∣. (4)

Figure 4. The three subfigures in the upper row illustrate the procedure of structure information
extraction: (a) denotes the raw input synthesized image, (b) the extracted raw lines, and (c) the
segmentation results, in which green lines denote the preserved marking lines and red lines denote
the noisy lines. (d–f) denote the relationship between the local dominant direction and global
orientation, in which the orange arrow denotes the local dominant direction and the blue arrow
denotes the global dominant direction for the current frame, respectively, while the green lines denote
the marking lines.

The first term denotes that the parallel line intersects with the dominant direction at
point x′d = [b,−a, 0], and the second term means the perpendicular line intersects with the
dominant direction at point xd = [a, b, 0].

Due to the robot’s dynamic constraints, the maximum directional change in adjacent
frames is assumed to be η. After successful initialization, in order to reduce the amount
of calculation, subsequent frames will only look for a new dominant direction and the
corresponding set of structure lines from candidate line features in the interval with the
dominant direction of the previous frame less than η.

5.2. Global Orientation Optimization

When a new image appears, first extract the marker line collection and determine the
local dominant direction according to the method described in the subsection before. As
shown in Figure 4, the orientation of the current frame equals that angle between the global
orientation and the dominant direction of the current frame; thus, it can be computed as

θz = arccos

(
Ig · Ic∣∣Ig
∣∣|Ic|

)
, (5)
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where Ig denotes the global orientation and Ic denotes the dominant direction of the
current frame.

A collection of marker lines may contains some noise lines. However, these noise lines
also satisfy the geometric rules of the Manhattan world assumption, so they have little
effect on the orientation estimates. This way of estimating orientation is independent of the
orientation estimation of adjacent frames, so there is no cumulative error. When the orienta-
tion is known, only the translation term remains to be estimated. In this way, the originally
nonlinear pose estimation problem is transformed into a linear least-squares problem.

Due to the existence of occlusion, visual blurring, and other factors, the consistency
of line segment detection is poor, and a line segment is often split into two independent
line segments, or the length of the line segment will change. This results in the line feature
not binding enough on the amount of translation in the extension direction and may even
introduce incorrect constraints. Although it is also possible to extract the features of points
separately to constrain the amount of translation, this will cost additional computational
resources. As shown in Figure 4, the endpoints of many segments are also corner points.
Therefore, in order to solve the above problem, this paper takes the endpoints of the line
segment as point features and uses bidirectional optical flow to trace these endpoints to
establish data associations between endpoints, rather than between line features. More
specifically, mapping the feature points from the reference frame to the current frame,
denoted as Pr, re-mapping the feature points from the current frame to the reference frame,
denoted as Pc, only if enough point pairs are obtained, we can compute the translation
term as

WtBi =
WRBj · pBj

+ WtBj −WRBi · pBi
, (6)

where p̄ denotes the mean position of the point sets. Then, estimate the translation of the
current frame via the reprojection errors.

If the current frame is more than 10 frames away from the previous keyframe and the
required number of features is met, the current frame is selected as the keyframe and added
to the local map. Then, optimize the local map using an objective function that minimizes
the global orientation residuals and reprojection errors as

min
W TBi

w ∑
i

(
1− Ii ·

(Bi RW Ig
)

|Ii|||Bi RW Ig |

)
+ ∑

i

∥∥∥pi −WTBi π
−1
s (ui)

∥∥∥
2
, (7)

where the former term means the global orientation residual errors since the angle be-
tween Ii and Bi RW Ig should be zero. Bi RW denotes the transformation of xg from the
world coordinates to the robot frame B. The latter term means the reprojection errors.
WTBi =

[WRBi ,
WtBi

]
∈ SE(2), and π−1

s transform the pixel ui to the world coordinates W.
Here, the end-to-line reprojection error commonly used by other methods is not used be-
cause the point-to-point reprojection error is more constrained and accurate in the amount
of translation.

After local map optimization, the global orientation can be found, which is not dis-
turbed by the accumulated errors. At the same time, the position of the line in the world
coordinate system is also determined. Because line features are primarily marked lines on
the pavement, maps reconstructed from line features reflect the structure of the road and
the markings on the roads.

6. Experimental Results
6.1. Experiments’ Configurations

In this experiment, an automotive platform equipped with four fisheye cameras was
mounted for parking assistance purposes, as shown in Figure 5. The experimental data were
recorded by a car and wheel speedometer equipped with four fisheye cameras. All cameras
have a 190-degree viewing angle, take images at a frequency of 25 Hz, and have an image
resolution of 1920*1208. Each camera was connected to the in-vehicle computing platform
NVIDIA Drive PX2 via a Gigabit multimedia serial interface. Timestamp synchronization
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is guaranteed by the hardware. The composite ring view has a resolution of 384*384 and
covers a range of 15.3 m by 15.3 m around the vehicle circumference. The measured values
of the wheel speedometer and IMU are obtained via the CAN bus. The experimental
computing platform has a configuration of 3.3 GHz Intel i5-4590 CPU and 16 GB memory.
In the indoor scenes with weak GPS signals, the true value of panning is provided by the
fusion of wheel odometry and high-precision IMU measurements. In the outdoor scenes,
the true value of planning is provided by the high-precision differential GPS.

Figure 5. (a) The experimental platform with four fisheye cameras. (b) The outdoor and (c) indoor
parking scenes.

6.2. Evaluation of Structural Information

Figure 6 shows some sample results of different edge segmentation methods at the
same level of recall. For the original edge picture corresponding to each test sample, the
truth value of the edge segmentation result can be given by manual annotation, and then,
the difference between the segmentation result of each method and the true value can be
compared, including the part that was correctly retained, the part that was mistakenly
rejected, and the part that was incorrectly retained. As we can see, the splitting method
based on ray accumulation retains too many wrong spot edges, usually because the same
long edge is incorrectly divided into different sector areas, and the length of each segment
does not reach the set threshold, so it cannot be correctly rejected. The segmentation method
based on line segment detection can detect most of the spot edges, but for the less straight
edges in the distance, especially the boundaries of the passable area in the distance, the set
distance threshold cannot be reached, so it will be incorrectly retained. The segmentation
method based on polyline approximation can successfully remove most of the distorted
edges, while only a small number of effective edges are erroneously rejected because they
are exactly in the direction of the camera’s field of view rays.

More specifically, as shown in Table 1, when the recall of all methods is controlled
at about 0.73, the segmentation method based on polyline approximation can achieve the
best segmentation effect, which is 24.3 percent higher than the segmentation method based
on ray accumulation and 11.9 percent higher than the segmentation method based on line
segment detection.

Table 1. Comparisons of the precision and recall rates among different edge segmentation methods.

Methods Precision Recall

Ray-accumulation-based segmentation 0.621 0.731
Line-segment-detection-based segmentation 0.745 0.729
Polyline-approximation-based segmentation 0.864 0.730
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Figure 6. The comparison of different edge segmentation methods. Each row represents the results
for different structure extraction methods for the same synthesized image, which is illustrated in the
first column, and each column represents the results for different synthesized images with the same
structure information extraction method, which is described at the bottom of each column. The first
column denotes the three input images, the second column the ground truth of edge information, the
third column the edge information extracted by the ray accumulation method, the fourth column
the edge information extracted by the line segment detection method, and the fifth column the edge
information extracted by polyline approximation method. The manually labeled ground truth edges
are drawn in green. For each column of segmented edges, the green lines denote that the edges
are correctly preserved, while the red lines denote that the edges are not correctly preserved, and
the white lines denote those missed for the specific method. Moreover, The color intensity means
whether the edges are inside the free space (brighter) or on the contour of the free space (darker).

6.3. Global Orientation Optimization

We compared our semantic-structure-based method (semantic-aware) with three other
methods, ORB feature-point-based method (ORB-based), primary-edge-based method
(primary-edge-based), and wheel-speedometer-based method (wheel-speedometer-based).
In Figure 7, we show the comparisons of the orientation estimation errors for the different
methods. As the trajectory becomes longer, the orientation angle error of the three com-
parison methods gradually increases. The main reason is that errors accumulate over time.
However, our method achieves a global estimation of the change in direction and avoids
the occurrence of accumulated errors. Therefore, the orientation error of this algorithm is
independent of the length of the trajectory. When the vehicle turns, the orientation error
of all methods increases significantly. This is mainly caused by blurry images caused by
fast rotation. Table 2 shows a comparison of the mean orientation estimation errors of
the different methods. The average orientation estimation error of the methods presented
in this work is stable between 1 and 2 degrees, well below other methods, both indoors
and outdoors. This also verifies that, among the different types of feature information, the
structure line information is the most robust to the interference factors, and the orientation
results estimated based on it are the most accurate.

The comparisons of the trajectories for the different methods are shown in Figure 8.
Since the proposed method has the most-accurate orientation estimation, the trajectory
drift value of the proposed method is much smaller than that of other methods. The
trajectory estimated using other information has a significant drift. At the same time,
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it can be seen from the trajectory comparison chart that, although the trajectory using
structural information is more consistent with the true value in the upward direction, there
are also jagged oscillations and even mutations in some local areas. This is actually due
to environmental factors: when there are few marked lines on the road surface in the
environment and when the line features are not accurate enough due to blurry images,
the estimated dominant direction will oscillate, rather than be smooth enough. Therefore,
although the positioning strategy based on structural information proposed in this paper
performs well in orientation estimation, the overall trajectory still has errors compared with
the truth trajectory.

ORB-based

Primary-edge-based

Wheel-speedometer-based

Semantic-aware

Figure 7. The comparisons of the orientation estimation errors of different methods.

Figure 8. The comparisons of the trajectory estimation for different methods. (a) Indoor Scene,
(b) Outdoor Scene..

462



Sensors 2023, 23, 1125

Table 2. Comparison of the orientation estimation errors of different methods.

Methods ORB-Based (°) Primary-Edge-Based (°) Wheel-Speedometer-Based (°) Semantic-Aware (°)

Outdoor-navigation 6.426 5.885 3.815 1.491
Indoor-navigation 4.839 4.342 3.095 1.897

7. Conclusions

This paper used high-level semantic information and spatial distribution information
to assist the visual location recognition task and used the semantic structure information to
realize the global orientation estimation method without drift interference. In this paper,
a visual semantic perception system based on the synthesized surround view image was
proposed for the multi-eye surround vision system, which was used to obtain the visual
semantic information required for SLAM tasks. Different from the traditional method of
obtaining feature information from the original multi-eye image, the original multi-eye
image was transformed and synthesized by reverse-perspective projection to obtain a
synthesized surround view image that could describe the scene in an all-round way, to
improve the computational efficiency of the system while retaining most of the effective
information. To retain the effective information in the synthesized surround view image
and remove the features that had been distorted during the synthesizing process or located
on the dynamic object, this paper extracted the passable space in the image with the help
of the semantic segmentation network model as a mask for feature extraction. Since the
boundary of the passable area contained geometric information about the environment,
it could also be converted into a point cloud representation by LiDAR, which effectively
complements the visual feature point information. In addition, since the passable space
contained rich pavement marking edges, by further using the distortion characteristics
of the reverse perspective projection process, the distortion edges could be effectively
eliminated, and the hybrid edge information could be used for mapping and localization
tasks. The experiments based on the indoor and outdoor automated valet parking verify
that the proposed scheme can achieve more precise edge segmentation results, much
smaller orientation estimation error, and better trajectory estimation. In the future, we hope
to investigate the generalization of our algorithm in more diverse scenarios, such as light
changes and more dynamic tasks.
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Abstract: This paper presents a doublegyroscope unicycle robot, which is dynamically balanced by
sliding mode controller and PD controller based on its dynamics. This double−gyroscope robot uses
the precession effect of the double gyro system to achieve its lateral balance. The two gyroscopes are
at the same speed and in reverse direction so as to ensure that the precession torque of the gyroscopes
does not interfere with the longitudinal direction of the unicycle robot. The lateral controller of the
unicycle robot is a sliding mode controller. It not only maintains the balance ability of the unicycle
robot, but also improves its robustness. The longitudinal controller of the unicycle robot is a PD
controller, and its input variables are pitch angle and pitch angular velocity. In order to track the set
speed, the speed of the unicycle robot is brought into the longitudinal controller to facilitate the speed
control. The dynamic balance of the designed double gyro unicycle robot is verified by simulation
and experiment results. At the same time, the anti−interference ability of the designed controller is
verified by interference simulation and experiment.

Keywords: unicycle robot; sliding mode control; dynamics; mobile robot

1. Introduction

As a wheeled mobile robot, the unicycle robot has high flexibility due to its contact
with the ground being a single point of contact. However, the characteristics of the unicycle
robot, such as difficult balance control, high coupling, weak anti−interference ability, also
bring great challenges to the research into unicycle robots. There are many researchers
studying unicycle robots. According to the classification of lateral balance of unicycle
robots, there are the following: Stanford and MIT use horizontal rotors to achieve the
balance control of the unicycle robot [1,2]; The gyrover unicycle robot designed by Carnegie
Mellon University and Yangsheng Xu team controls the robot’s lateral balance according
to the high−speed flywheel [3–6]; Pusan National University of Korea uses vertical rotor
structure to achieve the balance of the unicycle robot [7]; Chiba University of Japan [8] and
the Asian Institute of Technology in Thailand [9] use the precession effect of double gyros
to achieve the balance control of the unicycle robot; J. Shen and D. Hong applied universal
wheel to realize the balance control of the designed unicycle robot [10,11]. Many studies
on the unicycle robot focus on its static balance control. However, as a mobile robot, its
mobility and anti−interference ability are also worth studying. Kwok Wai Au used the state
feedback controller to realize the displacement tracking of the Grover unicycle robot [12].
Umashankar Nagarajan et al. used PID controller to realize the dynamic balance control of
the designed unicycle robot through off−line motion trajectory [13]. It can be seen from
previous studies that the research on dynamic balance control of unicycle robot is also
important. Due to the point contact movement of the unicycle robot, its anti−interference
ability is worse than other mobile robots. However, many previous studies on the controller
of the unicycle robot focus on the balance control of the unicycle robot, while neglecting
to enhance its anti−interference ability. Therefore, the dynamic anti−interference balance
control of the unicycle robot is studied in this paper.
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As a highly complex structure of the unicycle robot, the double gyros unicycle robot
has the characteristics of control difficulty, serious self vibration and interference. Compared
with other unicycle robots, the double gyros has better balance characteristics due to its
gyro effect. Therefore, the dynamic balance control and anti−interference of the designed
unicycle robot are studied in this paper. The dynamics of the double gyros unicycle robot
has been completed in previous research [14]. In this paper, according to the dynamic model
of the unicycle robot, sliding mode controller is used to control its lateral dynamic balance.
The sliding mode controller has anti−interference ability to ensure that the unicycle robot
can still maintain balance when facing lateral interference under the dynamic motion.
Its dynamic anti−interference ability has been verified in simulation and experiment.
Longitudinal balance takes pitch angle, pitch angular speed and the speed of unicycle robot
as controller inputs. The PD controller is used to ensure the dynamic speed tracking and
longitudinal balance of the unicycle robot. According to the corresponding relationship
between the pitch angle and the bottom wheel speed in the longitudinal dynamics, at the
target speed, the corresponding target pitch angle is given to ensure balance.

The rest of this paper is as follows. Section 2 is the model of the designed unicycle
robot, which includes lateral dynamics model, longitudinal dynamics model and exper-
imental platform model. Section 3 is the controller designed according to the dynamics
of the unicycle robot. Section 4 provides the simulation results. Section 5 provides the
experimental results. Section 6 presents the conclusion and future work.

2. Model

In this section, based on the Lagrangian dynamics method, the dynamic model of the
designed double gyros unicycle robot is decomposed into two parts: lateral dynamics and
longitudinal dynamics. The dynamics of the double gyros unicycle robot are shown in
previous work [14]. Its Lagrangian dynamics are as follows:

M(q)
..
q + N

( .
q, q
)
= Q. (1)

M(q) ∈ R6×6 and N
( .
q, q
)
∈ R6×1 the inertia matrix and nonlinear term, respectively,

where

M(q) =




m11 m12 m13 m14 0 m16
m21 m22 m23 0 0 m26
m31 m32 m33 m34 0 0
m41 0 m43 m44 0 0

0 0 0 0 m55 0
m61 m62 0 0 0 m66




N
( .
q, q
)
= (n1 n2 n3 n4 n5 n6)

T .

This paper only considers the linear dynamics of the unicycle robot, so the influence
of yaw angle on the unicycle robot is ignored. For the system, q and Q are

q = (ϕ, δ, θ, ω, α, β)T , Q =
(
0, 0, 0, τω, τα, τβ

)T

where τω, τα and τβ are torque of the bottom, torque of precession system and torque of
gyro system, respectively. Next, the dynamics are decomposed into lateral dynamics and
longitudinal dynamics.

2.1. Lateral Dynamics

Figure 1 shows the lateral model of the unicycle robot. It consists of double gyro
rotation and precession system. The two gyroscopes have the same speed and opposite
direction. The precession angular speed of these two gyroscopes is the same, and the
direction is opposite. This can ensure that the gyroscopic moment generated by the
precession of the gyroscope can offset the longitudinal interference. In the figure, δ Is
the roll angle of the unicycle robot, α1, α2 are the precession angles of the left and right
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sides of the unicycle robot. β1, β2 are the rotation angles of the left and right gyroscopes,
respectively.
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Figure 1. Lateral model of the unicycle robot.

According to the dynamic Equation (1), the gyro rotation is assumed to be constant,
and the influence of yaw angle on the side direction of the unicycle robot is ignored. The
lateral dynamic is as follows:

m22
..
δ + m23

..
θ + n2 = 0 (2)

When the unicycle robot is dynamically balanced, its lateral direction is regarded as an
inverted pendulum model, so the influence of pitch angle and bottom wheel speed can be
ignored. Where parameter I1z − I1x is small, so the lateral dynamic equation can be solved
as follows:

m22
..
δ + 2

.
β

.
αcαI1z − Grollδ = 0 (3)

In order to simplify the dynamic equations, cx and sx mean cos(x) and sin(x), respec-
tively. Where I1z is the moment of inertia of gyroscopes’ center of gravity to Z axe for left,
Groll is the lateral gravity component, and its equation is as follows:

Groll = MwgRW + Mbg(Lb + RW) + 2Mp1g(L + RW) + 2M1g(L + RW) (4)

where Mw, Mb, Mp1 and M1 are mass of the wheel, mass of the frame, mass of the
precession frame and mass of the gyroscope, respectively. RW , Lb and L are radius of the
wheel, distance of frame’s center of gravity from center of wheel and distance of gyro’s
center of gravity from precession frame’s center of gravity for left. g is the unit of gravity. It
can be seen from the lateral dynamic equation that the roll angle is mainly affected by the
rotation speed and precession angular speed of the double gyros. If precession angle α is
too large, the lateral precession torque will be smaller. Therefore, in the lateral controller,
the precession angular velocity should be used to control the lateral balance of the unicycle
robot when the gyros’ rotation speed is constant. At the same time, in order to keep the
precession angle as small as possible to ensure lateral controllability, the precession angle is
regarded as the input variable in the lateral controller.

2.2. Longitudinal Dynamics

Figure 2 shows the longitudinal model of the unicycle robot. It is composed of the
bottom wheel and frame. In the figure, θ is the pitch angle of the unicycle robot and ω is
the rotation angle of the bottom wheel of the unicycle robot.
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Figure 2. Longitudinal model of the unicycle robot.

According to the dynamic Equation (1), ignore the influence of yaw angle on the
longitudinal direction of the unicycle robot. The longitudinal dynamic is as follows:

m32
..
δ + m33

..
θ + m34

..
ω + n3 = 0 (5)

When the unicycle robot is dynamically balanced, its longitudinal direction is regarded
as an inverted pendulum model, so the influence of roll angle can be ignored. Where
parameter I1z − I1x is small, so the longitudinal dynamic equation can be solved as follows:

m33
..
θ + m34

..
ω− Gpitchθ = 0 (6)

where Gpitch is the longitudinal gravity component, and its equation is as follows:

Gpitch = MbgLb + 2Mp1gL + 2M1gL (7)

It can be seen from the longitudinal dynamic equation that its longitudinal balance is
mainly affected by the bottom wheel. Although the precession angle rotation of the double
gyros also affects the longitudinal direction, (4sαcαI1x − 4sαcαI1z) is small, and its impact
can be ignored. Therefore, in the longitudinal control, the torque of the bottom wheel is
taken as the longitudinal control variable, and in order to ensure that the bottom wheel can
track the set speed, the speed of the unicycle is added to the controller.

2.3. Experimental Platform Model

As shown in Figure 3, it is the CAD model of the designed unicycle robot. It is mainly
composed of three parts: gyro system, bottom wheel system and frame system. In the gyro
system, the gyro is driven by a brushless DC motor, and precession rotation is achieved
by gear transmission. The left and right gyroscopes are the same. In the frame system, the
symmetrical structure is used to distribute the drive motor to ensure the balance of the
unicycle robot, and the belt drive is used to drive the gear to realize the precession rotation.
The left and right precession rotation is driven by the same gear input shaft to ensure the
same precession speed. Moreover, its driving motor is a DC servo motor on the frame. The
bottom wheel is also driven by the DC servo motor on the frame, and its transmission mode
is belt. The left and right sides of the bottom pulley belt drive have the same structure to
ensure the symmetry of the unicycle robot in the structure. In the experiment section, the
experiments are completed according to the designed unicycle robot platform.
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Figure 3. CAD model of the unicycle robot.

3. Design of the Controllers

In this section, the lateral and longitudinal controllers are designed according to
the dynamic model of the double gyros unicycle robot. The control block diagram of
the unicycle robot is shown in Figure 4. According to the dynamic model, the lateral
controller is a sliding mode controller to ensure the dynamic balance of the unicycle robot
and increase its anti−interference ability. The longitudinal controller is a PD controller, in
which a speed tracker is added to ensure the dynamic speed tracking of the unicycle robot.
The sliding mode controller has excellent anti−interference ability. In order to enhance
the anti−interference ability of the unicycle robot, the lateral controller is designed as a
sliding mode controller. At the same time, it helps to improve the lateral balance ability.
The longitudinal controller is used to ensure the longitudinal balance of the unicycle robot
while tracking the set speed. The longitudinal control state variable has not only pitch angle,
but also speed value. In order to simplify the lateral controller and let the longitudinal
balance track the set speed at the same time, the longitudinal controller is designed as a PD
controller.
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3.1. Lateral Controller

The lateral dynamic equation is shown in Equation (3). In the dynamic controller of
the unicycle robot, the rotation angle speed of the gyroscopes is constant (

..
β = 0). The
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variable
.
β in dynamics can be regarded as a constant value. Therefore, the lateral dynamic

equation can be changed as follows:

..
δ = aδδ− bδ

.
αcα (8)

where aδ and bδ are lateral dynamic parameters, both of which are constant values. The roll
angle error equation is as follows:

eδ = δ− δd (9)

where δd is the desired roll angle. According to the roll angle error value eδ, its lateral
sliding surface is as follows:

sδ =
.
eδ + λeδ (10)

where λ is a constant parameter. The derivative of the lateral sliding surface can be obtained
as follows:

.
sδ =

..
eδ + λ

.
eδ (11)

Bring Equation (8) into Equation (11) and take precession angular velocity
.
α as the

output value of lateral balance controller. For lateral balance, if
.
sδ → 0 , the expected input

value
.̂
α is as follows:

.̂
α =

(
aδδ + λ

.
eδ −

..
δd

)
/bδcα (12)

Since the parameter values aδ and bδ are estimated values, they are not accurate. Due to
the error between the actual precession angular velocity

.
α and expected precession angular

velocity
.̂
α, in order to reduce the interference caused by the error to the unicycle robot and

increase the anti−interference of the controller, a discontinuous term is added between the
actual and expected precession angular velocity to make it swing in the designed sliding
surface sδ. The precession angular velocity can be obtained as follows:

.
α =

.̂
α− kδsgn(sδ) (13)

kδ is the coefficient of discontinuous function sgn(sδ). Where function sgn(sδ) is a
discontinuous function, the equation is as follows:

sgn(sδ) =

{
+1 sδ > 0
−1 sδ < 0

(14)

Thus, a lateral sliding mode controller can be obtained.

3.2. Longitudinal Controller

The longitudinal dynamic equation is shown in Equation (6). It can be seen from the
dynamic equation that the longitudinal balance is affected by the bottom wheel. If the
longitudinal direction of the unicycle robot is regarded as the inverted pendulum model,
the torque of the bottom wheel is as follows:

τω = mθ
..
ω (15)

Where mθ is the longitudinal component of the mass of the unicycle robot. Therefore,
the bottom wheel torque τω can be regarded as the output value of the longitudinal
controller. The longitudinal balance controller is a PD controller, and its control equation is
as follows:

τω = κPθ + κD
.
θ (16)

κP and κD are the pitch angle and pitch angle velocity coefficients in the longitudinal
PD controller, both of which are constant. In order to track the set bottom wheel speed, the
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bottom wheel speed tracking is added on the basis of PD controller. The control equation
can be obtained as follows:

τω = κPθ + κD
.
θ + ρP

.
eω (17)

where ρP is the constant coefficient of bottom wheel speed error and
.
eω is the bottom wheel

speed error, and its equation is as follows:

.
eω =

.
ω− .

ωd (18)

ωd is the desired bottom wheel speed. The unicycle robot does not move at a constant
speed in the process of speed tracking. When the bottom wheel has acceleration, the pitch
angle must be disturbed. In this case, if the target pitch angle set by the longitudinal PD
control is 0, it is bound to cause certain interference to the pitch angle. In the longitudinal
balance controller, the corresponding equation is designed for the target forward speed
value and the target pitch angle value. The equation is as follows:

θd = µω
.

ωd (19)

In order to control the speed of the unicycle robot, the angular velocity of the bottom
wheel is converted into the speed of the robot. Since the relationship between the robot
speed and the bottom wheel angular velocity is v = Rw

.
ω, Equation (19) can be transformed

as follows:
θd = µvd (20)

vd is the target speed of the unicycle robot. µ Is the constant coefficient of Equation
(20). Therefore, the longitudinal controller changes as follows:

τω = κPeθ + κD
.
eθ + ρev (21)

where ev is the error of the speed of the unicycle robot. It is as follows:

ev = v− vd (22)

The error value of pitch angle is as follows:

eθ = θ − θd (23)

4. Simulation

In order to test the balance ability and anti−interference ability of the designed
controller on the double gyros unicycle robot, it is verified in the three−dimensional
simulation environment. The simulation software is Vrep. The designed CAD model is
brought into the simulation software, and the connection pair and model parameters are
set to ensure the authenticity of the simulation. The rotation speeds of the double gyros are
set to 7000 rpm and the direction is opposite. The precession angular velocities on the left
and right sides are the same and in opposite directions. The precession angular velocity
is taken as the lateral balance control output, and the bottom wheel torque is taken as the
longitudinal balance control output. The set tracking speed of the bottom wheel is 0.08
m/s. In the simulation, a 3N pulse interference is generated on the side of the unicycle
robot at 10 s, and the anti−interference ability of the designed controller is tested. The
initial coefficients of the controller are given according to the estimated parameters in
the dynamics of the designed unicycle robot, and then the performance of the unicycle
robot is achieved through minor adjustment. The sliding mode controller can enhance
the balance ability and anti−interference ability of the unicycle robot by adjusting the
coefficient of discontinuous function kδ. The simulation curves are shown in Figure 5.
Figure 5a shows the roll angle in the simulation. It can be seen that the roll angle of the
unicycle robot fluctuates slightly and keeps balance. After interference, the roll angle has a
large swing and immediately returns to a stable state. Figure 5b shows the pitch angle in
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the simulation. Due to the unicycle robot displaying a dynamic movement in the process
of moving forward, it has a certain value in the pitch angle to ensure the longitudinal
balance of the unicycle robot. After the lateral interference has a small interference to the
longitudinal, the pitch angle returns to the equilibrium state immediately. Figure 5c shows
the precession angle in the simulation. After the lateral interference, the precession angle
returns to the balance state immediately after the large swing to maintain the dynamic
balance of the unicycle robot. Figure 5d shows the speed curve of the unicycle robot in the
simulation. It can be seen that the unicycle robot can track the set moving speed of 0.08 m/s
with minimal gap. According to the simulation, it can be seen that the designed controller
has the ability to maintain balance with large disturbances, and the unicycle robot can also
track the set speed.
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Figure 5. Curves of the unicycle robot in simulation. (a) The roll angle curve in the simulation.
(b) The pitch angle curve in the simulation. (c) The precession angle curve in the simulation. (d) The
speed curve in the simulation.

In the simulation, continuous stochastic interference is added for comparison. Af-
ter the unicycle robot is balanced for 4 s, a stochastic pulse interference within 1–2N is
added every 2 s. PD controller is added as comparison controller to the simulation. The
longitudinal controller of PD controller is the same as the designed controller. The lateral
controller is a PD controller composed of roll angle and roll angular velocity. However,
in the dynamic balance simulation of the unicycle robot under 3N pulse disturbance, PD
controller is difficult to keep the balance. Therefore, the 3N pulse interference curve only
has the designed controller curves. The curves are shown in Figure 6. Figure 6a–d are the
comparison curves of roll angle, pitch angle, precession angle and speed, respectively. In
the case of continuous stochastic interference, the pitch angle and speed of PD controller
and designed controller have little influence. In the roll angle, the designed controller
has less vibration and is more stable than the PD controller in the continuous stochastic
interference. In the precession angle, the designed controller has smaller amplitude and
faster in convergence speed than PD controller. It can be seen that the designed controller

474



Sensors 2023, 23, 1064

has better anti−interference ability and is more stable than the PD controller in the case of
dynamic balance of the unicycle robot in the continuous stochastic interference.
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Figure 6. Curves of stochastic pulse interference in simulation. (a) The roll angle curve of stochastic
pulse interference in the simulation. (b) The pitch angle curve of stochastic pulse interference in the
simulation. (c) The precession angle curve of stochastic pulse interference in the simulation. (d) The
speed curve of stochastic pulse interference in the simulation.

5. Experimental

The dynamic balance ability and stability of the controller to the robot are verified
by using the designed experiment platform of the double gyros unicycle robot. The roll
angle and pitch angle of the unicycle robot are obtained by the gyroscope sensor mpu9250
installed in the center of the unicycle robot. The precession angle and the angle of the
bottom wheel are calculated according to the encoder on the precession drive motor and
bottom wheel drive motor, respectively. The gyroscopes have constant speed and the
same left, right and opposite direction. The experiment mainly includes dynamic balance
experiment and dynamic interference experiment. The dynamic interference experiment is
to verify the dynamic anti−interference ability with a 0.18 kg mass block by placing it in
the lateral, middle and longitudinal directions when the unicycle robot is moving forward
dynamically.

Figure 7 shows the dynamic balance experiment curve of the unicycle robot. Figure 7a–d
show the roll angle curve, the pitch angle curve, the precession angle curve and the speed
curve of the unicycle robot in the dynamic balance experiment, respectively. It can be
seen from the figures that with the designed controller, the roll angle of the double gyros
unicycle robot is stable near the zero position and fluctuates slightly. As the longitudinal
dynamic balance controller is designed, the pitch angle has a corresponding tilt angle while
the speed is tracked. In the experiment, the set speed is 0.2 m/s. According to Equation
(18), the corresponding pitch angle is shown in Figure 7b. Although the speed fluctuates
greatly due to the influence of the bottom wheel transmission mode, the speed can basically
track the set speed value. The PD controller also can keep the unicycle robot balanced and
stable.
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Figure 7. Dynamic balance curves. (a) The roll angle curve in dynamic balance experiment. (b) The
pitch angle curve in dynamic balance experiment. (c) The precession angle curve in dynamic balance
experiment. (d) The speed curve in dynamic balance experiment.

Figure 8 shows the curves of the left side interference dynamic experiment of the
unicycle robot. Place the 0.18 kg mass on the left side of the unicycle robot (90 cm from the
centre) when the unicycle robot is balanced for 10 s. In the dynamic balance experiment
with 0.18 kg mass block placed, the PD controller is difficult to keep the unicycle robot
balanced, so the step interference dynamic balance experiment of the PD controller is not
shown here. The unicycle robot is affected by the step interference caused by small gravel
falling on it. The mass block is placed at the unicycle robot when it is moving forward
dynamically to simulate the anti−interference ability of the unicycle robot in the face of
step interference. The 0.18 kg mass block is used to simulate the balance ability of the
unicycle robot under the influence of large step interference. Figure 8a–d show the roll
angle curve, the pitch angle curve, the precession angle curve and the speed curve of the
dynamic interference balance of the unicycle robot, respectively. It can be seen that the roll
angle and precession angle are greatly affected by interference. After interference, the roll
angle keeps balance after fluctuation, and the precession angle keeps balance after large
swing. The lateral interference has little effect on the pitch angle, and the speed has slight
interference, but the speed remains stable after balance.

Figure 9 shows the curves of the middle interference dynamic experiment of the
unicycle robot. Place the 0.18 kg mass on the middle of the unicycle robot when the
unicycle robot is balanced for 10 s. Figure 9a–d show the roll angle curve, the pitch angle
curve, the precession angle curve and the speed curve of the dynamic interference balance
of the unicycle robot, respectively. It can be seen from the curves that when the mass
block is placed in the middle of the unicycle robot, the longitudinal and lateral effects are
very small.
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Figure 8. Dynamic balance curves after placing a mass block laterally. (a) The roll angle curve of
lateral placement of material block experiment. (b) The pitch angle curve of lateral placement of
material block experiment. (c) The precession angle curve of lateral placement of material block
experiment. (d) The speed curve of lateral placement of material block experiment.
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Figure 9. Dynamic balance curves after placing a mass block in middle. (a) The roll angle curve
of placing material block in the middle. (b) The pitch angle curve of placing material block in the
middle. (c) The precession angle curve of placing material block in the middle. (d) The speed curve
of placing material block in the middle.
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Figure 10 shows the curves of the interference dynamic experiment on the rear of
the unicycle robot. Place the 0.18 kg mass on the rear of the unicycle robot (43 cm from
the centre) when the unicycle robot is balanced for 12 s. Figure 10a–d show the roll angle
curve, the pitch angle curve, the precession angle curve and the speed curve of the dynamic
interference balance of the unicycle robot, respectively. It can be seen from the curves that
the interference on the rear has little influence on the lateral of the unicycle robot, and the
roll angle and precession angle fluctuate slightly. Rear interference has great influence on
the longitudinal direction. After the interference, the pitch angle becomes larger and has a
large swing. After the interference, the pitch angle has a large swing and is balanced at a
larger angle value. The speed is greatly increased after interference, but it is still within the
set speed range.
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Figure 10. Dynamic balance curves after placing a mass block longitudinally. (a) The roll angle
curve of placing material block longitudinally. (b) The pitch angle curve of placing material block
longitudinally. (c) The precession angle curve of placing material block longitudinally. (d) The speed
curve of placing material block longitudinally.

The dynamic balance experiment curves with continuous stochastic interference are
shown in Figure 11. Figure 11a–d are the comparison curves of roll angle, pitch angle,
precession angle and speed, respectively. It can be seen from the curves that continuous
stochastic interference has a greater impact on roll angle and precession angle. However,
after the interference, the roll angle and precession angle can still quickly recover to balance.
Compared with PD controller, the designed controller has smaller amplitude in roll angle
and precession angle. The interference also affects the pitch angle and speed. The pitching
angle can still recover the balance state after interference. Although there is a large deviation
in speed after interference, it can slowly recover to the tracking speed. Compared with
PD controller, the designed controller has smaller oscillation and faster recovery when the
pitch angle is subject to continuous stochastic interference and the speed fluctuates less.

478



Sensors 2023, 23, 1064

Sensors 2023, 23, x FOR PEER REVIEW 13 of 14 
 

 

but the robot can keep balance and track the set speed after the interference. It can be seen 
that the double gyros unicycle robot can maintain dynamic balance, have anti−interfer-
ence ability and track the set speed by using the designed controller. 

 
(a) (b) 

 
(c) (d) 

Figure 11. Curves of stochastic pulse interference experiment. (a) The roll angle curve of stochastic 
pulse interference experiment. (b) The pitch angle curve of stochastic pulse interference experiment. 
(c) The precession angle curve of stochastic pulse interference experiment. (d) The speed curve of 
stochastic pulse interference experiment. 

6. Conclusions 
In this paper, the dynamic balance controller is designed according to the dynamic 

model of the double gyros unicycle robot. The lateral controller is a sliding mode control-
ler, which can improve the anti−interference ability of the unicycle robot. In the longitu-
dinal controller, PD controller is used to balance. At the same time, due to the relationship 
between the pitch angle and moving speed, the corresponding equation is designed, and 
the designed speed tracking equation is taken into the longitudinal controller to ensure 
that the speed can track the designed speed. In the simulation, the dynamic balance and 
anti−interference ability of the designed controller are verified. According to the dynamic 
balance experiment, lateral, middle and longitudinal interference experiments, the dy-
namic balance and anti−interference ability of the designed controller on the double gyros 
unicycle robot are verified. The contribution of this paper is to design the lateral sliding 
film controller and the longitudinal speed tracking controller for the double gyros unicy-
cle robot to achieve its dynamic balance ability and dynamic anti−interference ability. In 
the latter research, we will study the yaw angle control and autonomous motion of the 
double gyros unicycle robot. 

Author Contributions: Conceptualization, Y.Z. and H.J.; methodology, Y.Z.; software, Y.Z.; valida-
tion, Y.Z.; formal analysis, Y.Z.; investigation, Y.Z.; resources, Y.Z.; data curation, Y.Z.; writing—
original draft preparation, Y.Z.; writing—review and editing, Y.Z.; visualization, Y.Z.; supervision, 
H.J. and J.Z.; project administration, H.J. and J.Z.; funding acquisition, H.J. and J.Z. All authors have 
read and agreed to the published version of the manuscript. 

Funding: This work was supported in part by the STI 2030−Major Project 2021ZD0201400, the Na-
tional Natural Science Foundation of China under Grants 92048301 and 61473102. 

-6

-4

-2

0

2

4

6

0 3 6 9 12 15

Ro
ll(

de
g)

Time(s)

Sliding Mode PD

-4

-3

-2

-1

0

1

2

3

4

0 3 6 9 12 15

Pi
tc

h(
de

g)

Time(s)

Sliding Mode PD

-60

-40

-20

0

20

0 3 6 9 12 15

Pr
ec

es
sio

n(
de

g)

Time(s)

Sliding Mode PD

0

0.2

0.4

0.6

0.8

0 3 6 9 12 15

W
he

el
 sp

ee
d(

m
/s

)

Time(s)

Sliding Mode PD

Figure 11. Curves of stochastic pulse interference experiment. (a) The roll angle curve of stochastic
pulse interference experiment. (b) The pitch angle curve of stochastic pulse interference experiment.
(c) The precession angle curve of stochastic pulse interference experiment. (d) The speed curve of
stochastic pulse interference experiment.

According to the dynamic test and interference experiment of the designed controller
on the double gyros unicycle robot, it can be seen that the designed controller can track the
set speed of the unicycle robot and has the ability of anti−interference. The interference
on the rear has a strong interference with the longitudinal direction of the unicycle robot,
but the robot can keep balance and track the set speed after the interference. It can be seen
that the double gyros unicycle robot can maintain dynamic balance, have anti−interference
ability and track the set speed by using the designed controller.

6. Conclusions

In this paper, the dynamic balance controller is designed according to the dynamic
model of the double gyros unicycle robot. The lateral controller is a sliding mode controller,
which can improve the anti−interference ability of the unicycle robot. In the longitudinal
controller, PD controller is used to balance. At the same time, due to the relationship
between the pitch angle and moving speed, the corresponding equation is designed, and
the designed speed tracking equation is taken into the longitudinal controller to ensure
that the speed can track the designed speed. In the simulation, the dynamic balance
and anti−interference ability of the designed controller are verified. According to the
dynamic balance experiment, lateral, middle and longitudinal interference experiments,
the dynamic balance and anti−interference ability of the designed controller on the double
gyros unicycle robot are verified. The contribution of this paper is to design the lateral
sliding film controller and the longitudinal speed tracking controller for the double gyros
unicycle robot to achieve its dynamic balance ability and dynamic anti−interference ability.
In the latter research, we will study the yaw angle control and autonomous motion of the
double gyros unicycle robot.
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Improving Tracking of Trajectories through Tracking Rate
Regulation: Application to UAVs
Fernando Diaz-del-Rio , Pablo Sanchez-Cuevas, Pablo Iñigo-Blasco and J. L. Sevillano-Ramos *

ETS Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
* Correspondence: jlsevillano@us.es

Abstract: The tracking problem (that is, how to follow a previously memorized path) is one of the
most important problems in mobile robots. Several methods can be formulated depending on the
way the robot state is related to the path. “Trajectory tracking” is the most common method, with the
controller aiming to move the robot toward a moving target point, like in a real-time servosystem. In
the case of complex systems or systems under perturbations or unmodeled effects, such as UAVs
(Unmanned Aerial Vehicles), other tracking methods can offer additional benefits. In this paper,
methods that consider the dynamics of the path’s descriptor parameter (which can be called “error
adaptive tracking”) are contrasted with trajectory tracking. A formal description of tracking methods
is first presented, showing that two types of error adaptive tracking can be used with the same
controller in any system. Then, it is shown that the selection of an appropriate tracking rate improves
error convergence and robustness for a UAV system, which is illustrated by simulation experiments.
It is concluded that error adaptive tracking methods outperform trajectory tracking ones, producing
a faster and more robust convergence tracking, while preserving, if required, the same tracking rate
when convergence is achieved.

Keywords: UAV; mobile robots; path following; trajectory tracking; error adaptive tracking; Lyapunov
stability theory

1. Introduction

In a state space system, all the possible internal states of the system can be represented
as a vector of variables. Typical control engineering problems in these systems are the
stabilization problem, i.e., how to take the system to a fixed point in its state space, and
the tracking problem, i.e., how to follow a desired trajectory or path. This tracking problem
has been profusely studied in the area of motion control of mobile robots and autonomous
vehicles, where the desired path is either memorized or previously generated [1,2].

In the particular case of UAVs (Unmanned Aerial Vehicles), it must be remarked
that paths are usually defined as a set of straight lines and circular-orbit paths connecting
several waypoints. This means that these paths usually contain singular points in the
intersections of these lines, that is, they are not feasible trajectories for the UAV itself,
but imprecise paths that the UAV cannot accurately track. Nonetheless, a convenient
interpolation can convert this piecewise path into a smooth UAV trajectory passing over
the desired waypoints, which should fulfill its own state equations. Note that having well-
defined feasible desired trajectories is important when using UAVs safely (e.g., avoiding
collisions) in many applications, such as multi-UAV systems, cluttered urban environments,
etc. Navigation sensors are usually integrated into the robot in order to determine its
current position and, thus, calculate the errors between the desired and actual trajectory.

The most common tracking method is called “trajectory tracking” (TT) or “reference
tracking” and it explicitly considers time in the tracking [1]. In this case, the controller
aims to bring the robot as near as possible to a moving target (or reference) point (Figure 1,
top right). It is like servosystems (Figure 1, top left) where it must be guaranteed that the
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system will approach the desired point in a deterministic time. Examples of this kind of
tracking can be found in most industrial robot applications (due to their strict real time
characteristics). In mobile robots, pursuing a real moving objective (such as an antimissile
system) is an example of a task that needs time determinism.

Figure 1. Classification of tracking methods regarding the descriptor parameter.

The second group, usually called “path following” (PF) (Figure 1, bottom left), does not
consider timing requirements and simply tries to converge to a path. A reference point
on the path must be selected at each instant according to some relation between actual
robot state and path shape, e.g., the “closest” point to the robot’s position. Consequently, a
notable PF inconvenience is assuring the projection uniqueness for all possible paths.

A common example of PF is car driving, which can be extended to most Intelligent
Transportation Systems (ITS) applications. For instance, in cars, usual control approaches
select a point at a look-ahead distance on the road and the vehicle is driven to that point.
Linear speed is preset, while orientation (or steering) is the single control variable used to
perform the convergence.

However, there is confusion in the literature regarding the terminology used for
these methods. For instance, a tracking rate that adapts to system errors has been used
in [3] to improve the TT guidance results for underactuated vehicles in the presence of
parametric modeling uncertainties, although these authors use the term ‘path following’
to refer to their implementation. There are other approaches, such as the one inspired by
the Dynamic Time Warping (DTW) algorithm (studied extensively in the automatic speech
recognition literature) in [4], where a strictly increasing rate of progression (

.
r > 0) is selected

by minimizing a cost function for finite-duration movements.
Although we can find several excellent compendia of both methods in some classic

books [1], the question of which tracking method is the most adequate for a given applica-
tion is an active research area and many papers choose to implement a TT or a PF controller
for UAVs and other mobile robots, depending on the application or with the purpose of
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easing the finding of a suitable controller (see more references in context in the rest of this
section). This question has been elucidated for some simple paths and specific systems:
in [5], TT and PF controllers were investigated for a linear time-invariant system with
unstable zero dynamics, and it was demonstrated (for the simple PF task of moving the
vehicle along a straight line) that there is a fundamental performance limitation for TT,
which does not appear for PF method.

In the field of UAVs, many variants have appeared, which are called “guidance laws”,
and are actually based on TT or PF methods. Many of them use a virtual target point (VTP)
on the path, which is selected through some projection, such as the line-of-sight (LOS)
point situated at a certain look-ahead distance from the nearest path point to the robot. The
selection of this point implies that they are a PF variant. Among these methods, we find a
first set that uses simple and intuitive methods, such as the classic carrot-chasing algorithms
and the Pure Pursuit. The number of works that have used these simple methods for UAVs
is considerable, with [6,7] being perhaps the first ones.

There is another set of methods that select the projection point using a pair of circles
that intersect with the desired path, which have been named “nonlinear guidance laws”
(NLGL). These methods were used many years ago [8], and are still very common in recent
years [9].

An alternative to guidance laws, which appeared 15 years ago, are those based on
vector fields (VFs). A VF is built for each position in the state space and as a function of
each specific path, that is, it is a geometric approach that computes a special projection
that returns a vector. This vector defines some of the desired variables that the system
must follow. Thus, according to our classification, VF are also a type of PF. It is worth
mentioning that, up to date, not all state variables are determined by the VF, and the
rest of the variables that remain free must be calculated by the controller. In this respect,
a Lyapunov-based controller can be simplified because some of the desired states are
predefined by the VF [10,11].

To sum up, designing VFs in 3D is not simple, and requires significant work [12].
Maybe the first proposal of a VF-based PF algorithm was developed in [13], as an intuitive
and easy way to compute the desired heading angle for simple paths, such as straight lines
and circles. Many other VFs for specific paths have followed since then, such as [14–16].
No VF has been implemented yet for any generic path; hence, this method should evidently
come across the same drawbacks as PF. It is not guaranteed that the virtual field exists for a
generic path, even for a simple one, such as a pure rotation around the robot center of mass.

In TT, time is the usual descriptor parameter of a path. Since time is an intuitive
parameter, TT seems to be the most straightforward method. However, for the rest of the
approaches, other path-descriptor parameters are possible. For example, in differential
geometry, the natural arc parameter, which makes the linear speed equal to one, is generally
preferred. In this paper, for the sake of generality, the descriptor parameter is denoted
by r. Therefore, other groups of tracking methods can be defined to explicitly control the
progression rate of a moving virtual target to be tracked; i.e., they impose a pace for r or
a value for

.
r (derivative with respect to time). Equivalently, in these methods, the real

robot is forced to follow a virtual robot (also called “reference” robot) that goes along the
reference path at a variable pace, which may be null when necessary; i.e., the reference
robot can “wait” for the real one [17,18]. This pace can be selected with several purposes
(as shown below).

Some scattered examples can be found in the literature, where the explicit control of
progression of the “virtual target” (that is, the VTP) helps design a control law. For instance,
in [18] a complete practical application, where the motion of the descriptor parameter
was governed by a differential equation depending on the errors’ and path’s shape, was
developed. In [19], a term related to the curvature (called “curvature effort” in that work)
was defined, and a penalty factor based on the curvature effort was introduced in the
dynamics of the path’s description parameter to prevent the performance degradation
of the tracking when the dynamic and kinematic constraints are exceeded. In [20], the
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target progression was tailored to design a nonlinear adaptive control law, which yields
the convergence of the (closed-loop system) error trajectories to zero in the presence of
parametric modelling uncertainties.

This family of methods can be considered a different path-tracking method that can
be named error adaptive tracking (EAT) [13] (Figure 1, bottom right). Furthermore, EAT
methods can be divided into two categories, depending on whether time deterministic
following is expected or not. Basic EAT variants can be named “non-deterministic” EAT
(NDEAT) because no aspect of time determinism is pursued. On the other hand, tracking
rate adaptation to system errors can be combined with convergence of r to time (that is,
convergence to the TT method). In this case, the rate of r can be extended to include
the “inaccuracy in the deterministic tracking”, i.e., the difference between the descriptor
parameter r and time t. For this reason, this variant can be named “soft” deterministic error
adaptive tracking (SDEAT) [21]. A tailored control law that includes a variable tracking
(similar to that of SDEAT) of the virtual target that helps design the control law was
exploited in [22] (these authors called it path tracking).

The aim of this paper is to provide a formal description and generalization of the
EAT tracking method (which was used in particular cases of terrestrial and underwater
vehicles [21]), and to show how it can be used in any system using the same control law, with
the additional advantage of improving error convergence and robustness. Afterwards,
EAT method is applied to a UAV model to show its benefits. We must emphasize that
this paper is not focused on the design of new control laws. The selection of a tracking
method, or more specifically, a proper form for

.
r when using EAT, has been exploited

in some systems [3,20,22] with the aim of finding a stabilizing control law (mainly via
second Lyapunov method). On the contrary, the present study is focused on how the
EAT method (instead of TT) can be applied using the same controller just by selecting a
proper pace for

.
r, having the additional benefits that error convergence and robustness are

improved. As a result, the burden of finding a new controller or a special path projection
(see VF, carrot-chasing and so on in the Introduction section) will not be necessary. An
additional benefit is that the switching between these two tracking methods (TT and EAT)
can be performed smoothly, since the controller is exactly the same. Our approach is here
particularized for a UAV, but it is worth mentioning that the same procedure can be applied
to other non-linear systems. In fact, this is the first time (to the best of our knowledge) that
an EAT method has been applied to a UAV, despite the fact that many tracking methods
have been implemented for UAVs (see Introduction).

In order to understand properly the different tracking methods and the notation used
in this work, we present first the simple case of a one-state system:

.
x = u, where x is

the coordinate and u is the input. The goal is to follow a reference xdes={xdes(r)} made
by a virtual system, which must fulfill x

′
des = udes(r), where (’) holds for derivative with

respect to r. Let us suppose that the whole reference path is known (memorized) and r is
extended all over real line R. Thus, the following relations for r hold: udes(t)=

.
r udes(r), and

.
xdes = udes(t) =

.
r udes(r).

This one-coordinate system will permit us to easily extract and analyze the differential
equations implicated in this proposal and to clearly see EAT running. Moreover, we will be
able to gain insight of the influence of tracking rate election over system behavior. Note
that the concept of trajectory does not exist for a coordinate only, but our analysis and
conclusions can be extended to a system with several coordinates.

For a fair comparison between TT and EAT, we will use the same control law for both
methods. We briefly present a problem that affects the model considered by the controller
(which are usual for UAVs). Evidently, with no perturbation, big errors or unmodeled
effects stationary tracking would be perfect and, consequently, there would be no need
for studying improvements introduced via tracking rate changes. The main idea is that,
using the EAT method, problems that affect the tracking will be partially “absorbed” by
the tracking rate in order to reduce tracking errors and to improve convergence.
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If TT were applied, the system error would be merely the difference: e(t) = x(t) -xdes(t),
and the state equation for the error would be:

.
e(t) = u(t) – udes(t);

It is clear that a simple convergent control law is: u(t)= udes(t)–Kpe , Kp >0
This yields the TT error equation:

.
e(t)= -Kpe.

The solution of the previous equation is: e(t) = e(0) exp(-Kpt), where e(0) is the initial
error. Therefore, exponential convergence is ensured, with a characteristic time constant
t = (Kp)−1.

Figure 2 depicts the role that the tracking methods play in the feedback control of a
simple one-state plant. Common blocks for the plant, controller and sensors work as usual.
However, the desired trajectory sent to the controller is computed through the product
of the desired path profile udes(r) and the

.
r evolution, which is selected by the desired

tracking method.

Figure 2. Diagram block of the control of a plant that considers the descriptor parameter evolution.

On the other hand, if EAT were to be applied, the system error (a superscript r is added
to clearly distinguish this error definition from that of TT) would be: er(t) = x(t) − xdes(r(t)),
and the error equation:

.
er(t)= u(t) − .

rudes(r). Now the same simple control law yields:

ėr= −Kper +
.
rudes(r) − udes(r);

An intuitive proposal for a NDEAT tracking rate can be (this intuitive form fulfills
completely the mathematical condition given by the Lemma in the next section):

.
r = 1 +

Kr

udes
er ; Kr>0

This yields to the EAT error equation:
.
er(t) = -Kper − Krer. The error evolution includes

a new parameter Kr that considers the rate of tracking, which is: e(t) = e(0) exp((−Kp − Kr )t),
where e(0) is the initial error. Exponential convergence for EAT method has now the
characteristic time constant t = (Kp + Kr)−1, which is faster than that of TT because error
decreasing is produced by two causes: the control law and the tracking rate selection.

Likewise, if SDEAT were to be applied, system error could be defined as:
ert(t) = x(t) − xdes(r(t)) + Art(t − r), Art >0. Therefore, an intuitive proposal for SDEAT
tracking rate could be:

.
r = 1 +

Krt

Art + udes
ert ; Krt>0

Transient behavior is more interesting with respect to the advancement along the
desired path r because this will be the main objective when following a memorized path,
for example, in mobile robot applications. Previous equations were simulated using
MATLAB, with the following conditions: simulation time = 10 s, e(0) = −1.5 m, Kp = 0.5 s−1

, Kr = 0.5 s−1 , and reference path defined by udes(r) = 1 m/s. In Figure 3a we represent TT
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and NDEAT error behaviors as a function of parameter r (being r = t for TT). Likewise,
.
r

evolution is shown in Figure 3b.

Figure 3. (a) TT, NDEAT and SDEAT transient behaviors for a big initial error. (b)
.
r evolution.

The most interesting fact in Figure 3b happens during the first transitory moments for
EAT methods. Here,

.
r gets low values, thus, the desired point xdes(r) “waits” for the robot

to approach it. For a system with several coordinates, this means that a faster convergence
to the desired path can be reached with the EAT method. At the extreme case, if errors
were big, this approximation would become a straight line to the reference xdes(r(t)). This
desirable behavior clearly resembles that of the PF method [1,5].

On the contrary, for TT we find the usual behavior of a tracking system; the objective
advances continuously pulling the system ahead. In this way, in a system with several
coordinates, this attraction will prevent the system from approaching the path, and so the
system convergence will be delayed in relation to the path parameter r. Note also that
the final value of r for NDEAT in Figure 3b is lower than the final value of r (or t) for TT
because

.
r takes small values for the first seconds.

In the case of SDEAT, it can be seen that it behaves similar to NDEAT during the
first moments when errors are big (Figure 3a). That is,

.
r stays low (Figure 3b) because the

system intends to approach point xdes(r) (r is almost constant). Therefore, we will achieve a
fast convergence to the path (in case of several coordinates). However, when the system
is approaching convergence,

.
r grows above one, and the system tries to be deterministic

by tracking the reference point xdes(t), that is, the system recovers real-time conditions. In
this last part, the system velocity continues to be slightly bigger than the reference velocity
udes(r) to reduce the difference r−t. SDEAT evolution of Figure 3 has been reproduced
with exactly the same conditions and control law. Constants for SDEAT were chosen as
Art = 2.0 ms−1, Krt = 2.0 s−1.

In addition, let us analyze the existence of a parametric modeling uncertainty. Imagine
that the real system equation has a δ deviation from the ideal model, that is, the real system
behaves actually as

.
x = (1 + δ)u. Applying the same control law, the error equation

becomes now:
ė(t)= −Kp(1+δ)e + (d + 1 − .

r) udes(r)

Therefore, a steady error ess is unavoidably present. In the case of TT (
.
r = 1), when the

stationary state is reached (
.
e→0), we arrive at

ess,TT =
δudes

(1 + δ)Kp
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However, this error would be scaled down by
.
r if NDEAT were used. Applying the

NDEAT proposal for
.
r, the stationary state can be easily found as:

ess,NDEAT =
δudes

(1 + δ)Kp + Kr

It is clear that ess,NDEAT becomes smaller than ess,TT, as the reduction in tracking rate
(that is,

.
r < 1 for NDEAT) is absorbing the unmodeled behavior. More exactly for constants

Kp = Kr = 0.5 s−1, the stationary error is divided by almost 50%.
To sum up, two important considerations must be taken into account:

• As the control law and the system become more complex, the design of tracking rate
.
r

should contemplate more circumstances as it is discussed below for the case of UAVs.
• For complex systems, it is obviously more difficult to find robust control laws that

behave well enough under several problems (such as unmodeled behaviors, motor
delay responses and so on). When this happens, the EAT method may provide a
new form of avoiding oscillations, divergences, error enlargements, etc. This will be
presented at the following sections, where a generic method is formulated to extend
the EAT for any controller that is based on a Lyapunov function.

The paper is organized as follows. Basic formulation and the lemmas to use EAT
methods from a Lyapunov-based controller are stated in Section 2. In Section 3, an appli-
cation case is discussed in depth, a UAV model. Its asymptotically stable control law is
considered, and its validity for various EAT methods is demonstrated. Evaluation of these
methods through simulation is discussed to illustrate the EAT benefits in Section 4. Finally,
conclusions are presented in the last section.

2. Conversion of Trajectory Tracking into Error Adaptive Tracking for
Lyapunov-Based Controllers

In this section, we present a theoretical formulation of the tracking equations and
some Lemmas for using EAT straightforwardly from a Lyapunov-based controller. Let
us consider the state space representation of a dynamic system model:

.
q = fq(q, u, t),

where q is the state vector of dimension m, u is the input vector of dimension n, and t
is time. The initial conditions are given by q(0). A memorized, reference or desired path or
trajectory (or merely path) qdes(r) can be described by a single-descriptor parameter, namely
r. This path should be covered by the system, that is, it must fulfill the system model:
q
′
des = fq(qdes, udes, r), where (´) denotes derivative with respect to r. As we are interested

in convergence to a path, we assume in this work that the desired trajectory has no end
and it never stops, that is, r (-∞, ∞), q

′
des 6= 0, ∀r (because if it ended at a certain point, this

would be a problem of stabilization instead of tracking).
To study the tracking, an error state vector should be defined through a diffeomor-

phism e = he(q, r, t), such that e = 0 if and only if q(t) = qdes(r(t)). Note that r dependence can
now be introduced in the definition of error e. Likewise, the input vector may be redefined
as v = hv(q, r, u, t) in order to express the dynamics in a more convenient form. In practical
cases, the dependence of error and input vectors on r are usually through qdes(r) and udes(r),
which are merely functions of r. Therefore, a new state variable r appears, whose state
equation can be freely defined (“modeled”) in general as:

.
r = σ(e, r, t), where σ can be

considered a new input, so dependence on v is prevented in σ. Thus, the system error
model is now

.
e = f (e, r, v, σ, t), and the initial conditions are given by e(0), r(0).

Minimal tracking control objectives for these state variables {e, r} can be set to

e→0 when t→∞ (1a)

|
.
r| bounded ∀t, r→∞ when t→∞ (1b)
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Objective (1b) is needed to prevent r from jumping suddenly, so tracking is performed
smoothly. These objectives are to be satisfied through the proper selection of control laws:

v = cv(e, r, t) (2a)

σ = g(e, r, t). (2b)

We want to point out that the expression g(e, r, t) is just a control law for r, and
the behavior of r (or its rate of progression) can be designed for any application—still
preserving the objectives stated in (1b).

A trivial rate of progression can be performed just by identifying parameter r with
time, that is, r(t) = t or σ = 1, which yield the simplest TT. This would mean that qdes(r)
advanced continuously pulling the system forward. In this case, error coordinates can be
simply defined as eq(t) = q(t)-qdes(t). Nevertheless, TT can be extended with a more general
assumption: let parameter r be a strict increasing function of time to fulfill objectives in
(1b), for example, r = at, a > 0. Therefore, error coordinates can be eq(t) = q(t)-qdes(r(t)).

However, if time was not critical, the tracking methodology could be freely designed,
as the whole trajectory is known a priori. The most common alternative in the mobile
robotics literature is path following. This is based on some relation between the actual system
state and the whole path. This relation or projection will give us the desired point qdes(r),
i.e., the descriptor parameter r as a function of the actual position and the path. Differently
from the TT case, here the real system must aim to follow this point. For example, the
desired point is usually selected to be the point on the path that is “closest” to the actual
robot’s position [23,24]. The main drawback of PF is that (to the authors’ knowledge)
projection uniqueness has not been guaranteed for all possible paths qdes(r). This problem
may occur when the projection is fulfilled for an interval of r [23], which means that (1b)
cannot be satisfied (r is undetermined in this interval). Finally, we have the EAT method,
which has very interesting properties: it can be applied to every tracking system and to all
sets of paths (because it does not depend on any projection); it can also consider timing
requirements, and, as it will be discussed in the next section, its controller design can be
performed in a way similar to that of TT, but achieving faster convergence and higher
robustness. In the approach presented here, the same control law can be used for TT and EAT
methods, thus, facilitating the design of the controller and allowing to choose between TT
and EAT when needed.

It can be noted that PF on the one hand, and TT or EAT on the other, must define
completely dissimilar control laws. For example, in a system with two error variables and
two inputs, the PF projection causes a constraint that eliminates one of the variables [23],
which implies that PF control law is applied only to one variable. A common approach
consists of setting one of the inputs to be constant, thus, forcing the system to move.
Another approach consists of selecting a relation for both inputs that implies the overall
input to never be null. This “motion exigency” is not present in EAT (or TT). Depending on
the regulations performed for both tracking methods, one method will present potential
benefits over the other or vice versa. On the other hand, the control law will be identical
when applying NDEAT or SDEAT (see Lemmas below), and no design or tuning of a new
controller is needed.

Moreover, when using EAT, the convergence will be, at least, as fast as that obtained
with TT. In the next sections, this general procedure is illustrated for a PVTOL (planar
vertical take-off and landing aircraft). The subsequent tests will demonstrate that a) EAT
presents a faster convergence than TT, and b) it is valid even for those paths where PF
cannot be applied. Nonetheless, as mentioned before, the procedure shown here can be
applied to any other system that uses a Lyapunov-based control law.

Before presenting the Lemmas, it should be pointed out that their objective is to
change the tracking from TT to EAT due to the good properties of the latter. As a direct
consequence of these Lemmas, when using EAT the question would be: what tracking
rate must be selected for the EAT method so that the same controller presents a faster
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convergence to the desired posture? In this respect, finding an appropriate tracking rate is
crucial for nonholonomic system controllers. This is a direct consequence of the Brockett’s
Theorem [25], which prevents the existence of a smooth feedback stabilization control law.
We mean that a smooth controller may fail if the tracking rate is different from σ = 1 (this is
evident if the rate becomes near σ = 0, that is, if the tracking tends to stabilization). Another
consequence of nonholonomic constraints is that derivatives of a Lyapunov function V
cannot be a negative definite function but only a negative semidefinite function. This can be
observed for those postures where only an error is not null and the movement that should
reduce this error is prohibited, such as a lateral displacement in a car.

The next Lemmas allow selecting a valid rate that additionally improves initial TT
convergence and introduces an interesting relation with the PF method (see Remark 3).

Lemma 1. Conversion of TT into NDEAT.

Let
.
q = fq(q, u, t) be the model of a system that must follow a smooth desired path

given by qdes(r), r(−∞,∞), which fulfills q
′
des = fq(qdes, udes, r), with udes(r) 6= 0 ∀r. Let et =

he(q,qdes(t)) be the definition of TT errors, and er = he(q,qdes(r(t))) those of EAT errors, being
he also smooth. Let us suppose that there exists a positive definite Lyapunov function V(et),
with the intention that a smooth control law v = cv(et, t) makes

.
V be negative semidefinite

and uniformly continuous, so it can be proved that et=0 is a global asymptotically stable
equilibrium point for the path qdes(t).

With these assumptions and for the same control law evaluated on r: v = cv(er, r),
we have that er = he(q, qdes(r(t))) = 0 is also a global asymptotically stable equilibrium
point, if a uniformly continuous NDEAT rate

.
r = σ(er, r) = 1 + eσ(er, r) is chosen, so

that eσ

〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq(qdes, udes, r)
〉

is negative semidefinite with respect to e. Here, 〈x, y〉
represents the dot product of x, y and ∂

∂x stands for the gradient for a scalar function, or the
Jacobian for a vector function.

Proof of Lemma 1. Using the chain law,
.
qdes = σ q

′
des = σ fq(qdes, udes, r) = σ fq,des,

where it has been called fq,des = fq(qdes, udes, r) for clarity purposes. Deriving er =
he(q,qdes(r(t))) and using the change σ = 1 + eσ,

.
er

=
∂he

∂q
.
q +

∂he

∂qdes

.
qdes =

∂he

∂q
.
q +

∂he

∂qdes
fq,des + eσ

∂he

∂qdes
fq,des

The previous derivative can be expressed as:

.
er

=
.
et

t=r + eσ
∂he

∂qdes
fq,des ,

where
.
et

t=r =
.
q− q

′
des(t = r) represents the tracking error rate for the TT case when t = r.

By computing the derivative of V(er), we obtain

.
V(er) =

〈
∂V
∂e

∣∣∣∣
e=er

,
.
er
〉

=

〈
∂V
∂e

∣∣∣∣
t=r

,
.
er
〉

=

〈
∂V
∂e

∣∣∣∣
t=r

,
.
et

t=r

〉
+ eσ

〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉

Using the hypothesis, it holds that
.

V is negative (at least) semidefinite and uniformly
continuous in time. Therefore, the resulting NDEAT tracking will also make er be a globally
asymptotically stable equilibrium point for the path qdes(r), as was et. �
Remark 1. Note that the convergence of the NDEAT is, at least, as fast as that of the TT because
the term eσ

〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq,des

〉
decreases or maintains the temporal rate of V.

Remark 2. Note that a simple election like eσ = −Kσ

〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq,des

〉
; Kσ > 0 implies that

eσ → 0 ; σ→ 1 , i.e., the same desired tracking rate is preserved when the convergence is achieved.
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Remark 3. Path following controllers usually project real system posture over the reference path by
choosing that reference point that minimizes some kind of distance. A common and sensible distance
is given by the proper Lyapunov function [1]. In fact, this function gives an idea of the amount of
error, so the point on the path with minimum errors is chosen. In this case, the projecting point looks
for the value of r that makes the derivative of V null for a fixed system state, that is,

∂V
∂r

∣∣∣∣
q=constant

= 0 ;
∂V
∂e

∣∣∣∣
e=er

∂e
∂r

∣∣∣∣
q=constant

=

〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
= 0 ;

The previous equation zeroes the same term that multiplies to eσ in
.

V(er), which
implies that the chosen eσ of Remark 2 makes EAT tracking tend to that of PF. Thereby, EAT
conserves most of the advantages of the PF method [1,5], while avoiding its main obstacle:
the non-uniqueness of the selection of a point in the path when the robot is far from it (in
other words, the need for the robot to stay in a tube around the path).

If the SDEAT method were to be applied, a way to obtain the proper function σ = σ(er, r, t)
is to select the next variant of the Lyapunov function: V2(er, t) = V(er) + 1

2 Art(r− t)2, Art>0.
Proceeding correspondingly,

.
V2(er, t) =

.
V + eσ Art(r− t) =

〈
∂V
∂e

∣∣∣∣
t=r

,
.
et

t=r

〉
+ eσ

(〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
+ Art(r− t)

)

An evident SDEAT proposal that keeps
.

V2 uniformly continuous in time and negative
definite (other σ are possible), is making the last term quadratic by carrying out

σ = 1− Kσ

(〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
+ Art(r− t)

)
, Kσ > 0

This allows us to enunciate the following Lemma.

Lemma 2. Conversion of TT into SDEAT.

For the same conditions of Lemma 1, e = he(q,qdes(r(t))) = 0 is a global asymptotically
stable equilibrium point, if a uniformly continuous SDEAT rate

.
r = σ(er, r) = 1+ eσ(er, r, t)

is chosen, so that eσ

(〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq,des

〉
+ Art(r− t)

)
is negative semidefinite with re-

spect to e and to (r − t), with Art > 0.

Proof. The proof can be guided in a way similar to that of Lemma 1, using the given form
of

.
V2(er, t).�

Remark 4. Note that r tends to t, so TT tracking rate can be achieved in the end.

Straightforward case uses can be easily obtained. For example, using Remark 2, a
uniformly continuous NDEAT rate for

.
r = 1 + eσ can be found for the TT controller of the

WMR presented in Section 34.4.2 of [1]. There, the authors use the kinematic model of a
unicycle robot: 




.
x = u1 cos θ
.
y = u1 sin θ
.
θ = u2





.
xdes = u1,des cos θdes.
ydes = u1,des sin θdes.
θdes = u2,des

where state q = (x,y,θ) represents the Cartesian coordinates of the driven wheel middle
point and the orientation with respect to a fixed frame, and (u1, u2) the linear and angular
speed of this point. Subscript ‘des’ is used for the virtual robot (the desired trajectory). They

490



Sensors 2022, 22, 9795

introduce the TT error definition zt = he(q,qdes(t)) = (z1, z2, z3) valid for θ − θdes 6= ±π/2
and given by 




.
z1 = (x− xdes) cos θdes + (y− ydes) sin θdes.
z2 = −(x− xdes) sin θdes + (y− ydes) cos θdes.
z3 = tan(θ − θdes)

where dependence on (t) has been suppressed for desired coordinates for clarity reasons.
Additionally, through the definition of the Lyapunov function V = 1

2

(
z2

1 + z2
2 +

1
k2

z2
3

)
;

k2 > 0, they propose a globally asymptotically stable TT control law that makes
.

V negative
semidefinite and uniformly continuous, provided that

∣∣u1,des
∣∣ is uniformly continuous and

does not tend to zero.
In order to apply NDEAT, gaining the benefits described previously, the necessary

terms for Lemma 1 are calculated:

∂V
∂e

∣∣∣∣
e=er

=

(
z1, z2,

1
k2

z3

)
,

∂he

∂qdes
fq,des =

(
−u1,des + z2u2,des, z1u2,des,−u2,des

(
1 + z2

3

))

Finally, using Remark 2, an expression for the NDEAT tracking rate that preserves the
validity of the same controller is obtained:

eσ = −kσ

(〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉)
= kσ

(
z1u1,des +

1
k2

z3u2,des

(
1 + z2

3

))
; kσ > 0

With this eσ, Lemma 1 ensures that the same control law is globally asymptotically
stable for errors zr=he(q,qdes(r)), and the convergence of the NDEAT tracking is, at least, as
fast as that of TT. Note that if timing requirements were needed, the SDEAT method can be
found in a similar manner.

Although several benefits of NDEAT tracking can be revealed for simple models, these
benefits can be better observed for more complex robots including non-linearities. In the
next section, EAT is compared with TT for a UAV, whose inputs saturate when their values
surpass a certain bound.

3. Application of EAT for the PVTOL

Mobile robots, and more specifically UAVs, are a traditional application example
when studying and selecting tracking methods because most of them do not need strict
timing requirements. The interesting control problems associated with the vertical/short
takeoff and landing aircraft has turned PVTOL into one of the most studied benchmarks
for controller design. More concretely, the fact that PVTOL has non-minimum phase zero
dynamics associated with its center of mass suggested that path following controllers could
be more appropriate than tracking controllers [3].

Firstly, we recall in the next paragraphs the main equations for the PVTOL according
to [26]. We refer the reader to this classic paper for further details on this system. After-
wards, the tracking method is transformed from TT to NDEAT and SDEAT by using the
previous Lemmas. Finally, in the next section, several results are shown to demonstrate the
benefits of using EAT methods instead of TT.

A simplified model for PVTOL is given by [26]:

m
..
x = − sin θ T

m
..
y = −mg + cos θ T

..
θ = −ω2

n sin θ + ksTσ2(u2).
T = −kt(T − σ1(Td)).
Td = u1

(3)

where x, y are the lateral and vertical positions, θ is the pitch angle, T is the actual propeller
thrust in Newtons (which is controlled through a second order dynamics by the input u1,
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being Td the desired thrust), and input u2 is the stabilator input used to generate a pitching
movement. Constants in (3) are: m = 2.15 kg (mass of the aircraft), g = 4.98 ms−2 (effective
gravity), ωn =

√
33s−1 (natural frequency in pitch), ks = 5.4 kg−1m−1 (stabilator constant),

and kt = 4 s−1 (thrust constant). Functions σ are saturations for the thrust and the stabilator
inputs, with the following upper and lower limits: max(σ1) = 16, min(σ1) = 0, max(σ2) = 1,
min(σ2) = −1.

It is well known that linearized forms of systems with nonholonomic constraints,
such as WMRs (Wheeled Mobile Robots) and UAVs, are not controllable [27]. For this
reason, other alternatives, such as feedback linearization have been profusely studied for
these systems. In [26] it is shown that system (3) is feedback linearizable provided that
saturations are not active. Using the linearizing coordinate change





x =
(

x,
.
x, y,

.
y, θ,

.
θ, T, Td

)
7→ z ≡

(
x,

.
x,

..
x,

...
x , y,

.
y,

..
y,

...
y
)

u = (u1, u2) 7→ v ≡
(

x(4), y(4)
) (4)

the linearized dynamics (valid outside the saturation) result in

Ao =




0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 ; Bo =




0
0
0
1




A = block diagonal {Ao, Ao}
B = block diagonal {Bo, Bo}.
z = Az + Bv

(5)

A reference or desired path to be followed can be a feasible trajectory that fulfills (3).
Therefore, it can be expressed as a function of a descriptor parameter r: xdes(r), with desired
inputs udes(r). Alternatively, for the linearized system, the desired path {zdes(r), vdes(r)}
must fulfill z

′
des = Azdes + Bvdes.

Now we recall the control law for the linearized system (5) presented in [26], and
we show that the same law can be used for EAT using the appropriate tracking rate (see
Lemmas 1 and 2). Therefore, no design or tuning of a new controller is needed. A linear
control law for system (5) is:

v =vdes + K(z − zdes) (6)

where Ac = A + BK is Hurwitz, which provides local stable trajectory tracking (global
in (z, v) if there are no restrictions in these coordinates). Linear dynamics result in
.
ez = Acez, being ez = z-zdes. According to [26], the experience with the actual PVTOL
shows that K can be decoupled for lateral and vertical modes and that values for K:
Ko =

[
−3604 −2328 −509.25 −39

]
, K = block diagonal{Ko, Ko} make the system

perform properly. System input u can be calculated from v, through (4) and (3). Thus,
provided that {x(t), u(t)} stays within the valid region, global exponential convergence
to the desired trajectory (that is, to ez = 0) is guaranteed. Consequently, given a positive
definite symmetric matrix Q (Q > 0), there exists a unique positive definite symmetric
matrix, P > 0, that fulfills the Lyapunov equation AT

c P + PAc + Q = 0.
Let us first analyze the case of NDEAT. Using Lemma 1, it is evident that: if (a) the

same control (6) is applied, being V = eT
z Pez a Lyapunov candidate (from now on the

superscript r of the error is omitted for simplicity reasons), and (b) the chosen uniformly
continuous NDEAT rate σ = 1 + eσ(ez, r) makes −2eσ

(
z′TdesPez

)
negative semidefinite

with respect to ez, then ez = z-zdes(r(t)) = 0 is a globally asymptotically stable equilibrium
point (if there are no restrictions in z, v coordinates).
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The proof can be guided by using the change σ = 1 + eσ, as in Lemma 1. In this case,
the new linear dynamics for the same control law (6) is

.
ez =

.
z− σ z

′
des = Acez − eσz

′
des. By

computing the derivative of V, and using the new linear dynamics, we obtain

.
V = eT

z

(
AT

c P + PAc

)
ez − 2eσ

(
z′TdesPez

)
(7)

Using the hypothesis and the Lyapunov equation, it holds that
.

V = −eT
z Qez − 2eσ(

z′TdesPez

)
is negative definite and uniformly continuous in time.

An evident proposal that makes the last term of (7) quadratic is:

σ = 1 + 2Kσ

(
z′TdesPez

)
= 1 + 2Kσz

′
des, ezP, Kσ > 0 (8)

but other functional proposals for σ are possible (depending on the application track-
ing requirements).

Remark 5. The proposed form (8) of σ includes a dot product, which gives an idea of the relative
posture (the “sign” of the errors) of the real and virtual robots when the robot is not too “far”
(according to the distance function given by matrix P) from the reference point. When the robot is
“ahead” with respect to zdes(r) (along the direction specified by z ¢des(r)), then this dot product will
be positive, but when the robot is delayed, it will be negative. If this product is zero, the errors are
perpendicular to the desired velocities, and the robot is neither ahead nor delayed. Therefore, the
tracking rate can be greater or less than 1. When the robot is ahead (according to the previous dot
product criterion), it is intuitive that a faster rate will get the reference point closer to the robot. On
the other hand, for a delayed robot, the lower value of σ means that the desired point will “wait” for
the robot.

If the SDEAT method were to be applied, another Lyapunov function can be defined
according to Lemma 2. Using V2 = eT

z Pez +
1
2 Art(r− t)2 and proceeding correspondingly,

(7) results in:
.

V2 = eT
z

(
AT

c P + PAc

)
ez − eσ

(
2z′TdesPez − Art(r− t)

)

An evident SDEAT proposal that keeps
.

V2 uniformly continuous in time and negative
definite (other σ are possible), is to make the last term quadratic by carrying out

σ = 1 + Kσ

(
2z
′
des, ezP − Art(r− t)

)
, Kσ > 0 (9)

Therefore, if a) the same control (6) is applied and b) the uniformly continuous EAT
rate σ = 1 + eσ makes −2eσ

(
z′TdesPez

)
− Art(r− t) negative definite, then ez = 0 is a global

asymptotically stable equilibrium point. The proof can be guided in a way similar to that
of the proof of Lemma 2.

4. Simulation Results

In this section, simulation results comparing the TT and EAT behaviors for the previous
UAV system are presented and discussed. Although the results are shown for this system,
these analyses and conclusions can be extended to other systems for which a classic
control law was previously obtained. Advancing one of the conclusions of our results,
using numerically the same control law for EAT leads to a faster and much more robust
convergence as Remark 1 points out. The reason is that errors that affect the tracking are
partially “absorbed” by the tracking rate

.
r. Therefore, a final thought is worth mentioning:

for complex systems, it is more difficult to find robust control laws that behave well enough
under several problems. When this happens, the EAT method may provide a form of
avoiding oscillations, divergences, error enlargements, etc.

Two tests are to be analyzed using a SIMULINK/MATLAB model [28]: (a) the diverse
initial extreme conditions, and (b) the convergence to a desired path that cannot be executed
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by the PF presented in [26] because the whole path fulfills the projection used there. The
first test is focused on big errors because in the case of small errors the simulated system’s
behavior will be similar to that of an exponential convergent system. The second test is
intended to confirm the advantage of EAT versus PF, which is the validity of EAT for all
kinds of paths.

The chosen form of σ for NDEAT is that of (8) with Ks = 0.0010 m−1s−1. To conduct a
fair comparison between NDEAT and SDEAT methods, the constant Ks of SDEAT is the
same as that of NDEAT, with Art = 400 m2/s2. Greater values of Art will bring the tracking
closer to that of TT, while lower ones will bring it closer to that of NDEAT. An important
property of σ is the linearity around ez = 0.

As our intention is to show the benefits of EAT against TT for a same controller, we
have used exactly the same controller of [26]. Therefore, the Lyapunov equation matrices
used are Q = I, and by solving Lyapunov equation: P = block diagonal {Po,Po}, with

P0 =




436.3905 281.1773 53.4184 0.0001
281.1773 189.7791 39.2207 0.1210
53.4184 39.2207 10.4683 0.0780
0.0001 0.1210 0.0780 0.0148




The first test (Figures 4–6) analyzes the tracking of a periodic lateral motion xdes(r) = A
sin(wref r) with constant ydes(r) = 0, where wref = 2π/5 s−1, and A = 1.857 π/2 m. The initial
desired state and value of parameter r are: zdes = 0; r = 0, for all tests. Two considerable initial
position errors in x and y are tested in order to compare EAT with TT (see Table 1, where
the corresponding figures are also shown). The rest of the real initial states are the same as
those desired.

Figure 4. Comparison of NDEAT, SDEAT, and TT when the robot is delayed (desired path consists
on a periodic horizontal motion xdes(r) = A sin(wref r), ydes(r) = constant). Up: Left, Y/X trajectories;

Right: evolution of
.

X/X Bottom: Left, Desired Thrust Td (with saturation). Middle: Lyapunov
function versus time. Right: evolution of σ = dr/dt with respect to time.
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Figure 5. Comparison of NDEAT, SDEAT and TT when the robot is ahead (same desired path as
previous Figure 4). Up: Left, Y/X trajectories; Right: evolution of

.
X/X Bottom: Left, Desired Thrust

Td (with saturation). Middle: Lyapunov function versus time. Right: evolution of σ = dr/dt with
respect to time.

Figure 6. Comparison of NDEAT, SDEAT and TT when the robot is neither delayed nor ahead.
Up: Left, Y/X trajectories (same desired path as previous Figure 4); Right: evolution of

.
X/X Bottom:

Left, Desired Thrust Td (with saturation). Middle: Lyapunov function versus time. Right: evolution
of σ = dr/dt with respect to time.
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Table 1. Initial robot positions and their corresponding figures.

Figure x-xdes (m) y-ydes (m) Case

Figure 4 −1.5 0 robot is delayed

Figure 5 1.5 −0.1 robot is ahead

Figure 6 0 0.7 robot is neither ahead nor delayed

The experiment is delayed for only 7.5 s, in order to see the transients more clearly.
For all figures, NDEAT curves are drawn with solid lines, SDEAT with dashed lines and TT
with dash-dotted lines.

For all the tests, it can be observed that the method with the fastest and best conver-
gence to the path is NDEAT. According to Remark 1, NDEAT and SDEAT convergences
are obviously faster than that of TT. This fact can be also verified by several reasons. First,
Lyapunov function diminution is very much faster for EAT than for TT (especially when
the robot is delayed). Moreover, the Lyapunov function is not decreasing when the system
comes into the saturation zone (Td > 16 N), which occurs in many occasions and for long
periods when using TT. This zone should be avoided because when the system enters this
zone, the feedback linearization control is not valid. As a consequence, PVTOL control is
lost and in some occasions coordinate Y goes so low that the actual system may collide
with the ground (a value below −0.5 m is not possible for the real PVTOL). In any case, the
evolution of s is the expected one: during the first transients, it reaches values that are far
from one, in order to “look for” the best desired reference (which fulfills that z

′
des, ezP is

near zero). Afterwards, it remains near one for NDEAT but greater than one for SDEAT,
which is necessary in order to reduce the difference between r and t. After 7 s, parameter r
has almost reached t in SDEAT; on the contrary, a gap remains when NDEAT is applied.

Other interesting points are the following: when the robot is ahead, all tracking
methods behave satisfactorily. Since the actual system response is slow (mainly due to the
second order dynamics of input u1) this case is not as critical as the delay in the robot’s
posture. Nevertheless, TT is the only method that comes into saturation in the first moments
of this test. Finally, TT shows also significant problems for the last trial (the robot is neither
ahead nor delayed). Although coordinate X presents a small error, Y falls considerably.
This is because the TT reference posture is continuously increasing, which implies high
input values that take the system out of the linear zone. In conclusion, one of the strongest
points of NDEAT is that its behavior is almost the same as the PF approach found in [26].
This can be observed very patently when the robot is delayed.

Moreover, and due to its large errors, the real speeds demanded by TT are greater
than those of NDEAT (Figure 7). It is obvious that input limitations will further degrade
TT’s response. In the end, the TT method introduces more oscillations than EAT, and it
has a transient response that separates the robot from the desired path. This is a well-
known advantage of PF that EAT retains [1]. Concretely, for the PVTOL system the
states variables barely enter the saturation zone when applying NDEAT. Moreover, if time
determinism were needed, SDEAT would be a possible option, which avoids TT drawbacks
and maintains the system’s response near to that of NDEAT.

In the second test, the segment that fulfills the PF projection used in [26] is previously
computed to serve as the path for the tracking (thick line in Figure 8). This path is composed
of the points that are equidistant from the origin according to the projection. The initial
posture of the robot is the origin (x = 0), and the desired initial position is (X,Y) = (−1.5,0).
As can be seen, there is no racking problem for any EAT method. Moreover, as expected,
NDEAT converges slightly better than SDEAT, and SDEAT converges better than TT. Note
that no comparison with PF is possible because the projection is not defined for it. Moreover,
and due to its large errors, the real speeds demanded by TT are greater than those of NDEAT.
It is obvious that speed limitations will degrade TT’s response even more. In the end, the
TT method introduces more oscillations than EAT, and it has a transient response that
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separates the robot from the desired path. This is also another advantage of PF [1] that EAT
also retains.

Figure 7. Inputs u when the robot is delayed. During transients, NDEAT demands less input than
SDEAT, and SDEAT demands much less than TT. The first instants are not depicted because TT inputs
rise to very high values, which would reduce the scale of the plot too much.

Figure 8. NDEAT, SDEAT and TT when the path is equidistant to the origin. Left: XY desired and
real trajectories. Right: evolution of σ = dr/dt with respect to time.

Similar comparisons can be made for other perturbations, such as saturation of inputs,
path’s curvature discontinuities, introduction of a scale between the inputs demanded by
the control and the real ones, etc. On the whole, this is because the inputs demanded by TT
are usually greater than those asked by EAT (see Figure 7), so TT experiences more problems
in the tracking. Thus, the EAT method is more robust than TT against perturbations or
unmodeled dynamics because the adaptive variation of r facilitates robustness. Finally,
it is important to observe that the qualitative behavior of EAT is similar to that of PF,
i.e.,

.
r is reduced in the presence of large errors until the system approaches the path.

Obviously, both methods are constructed in a very different way, so it is not easy to make a
quantitative comparison.

5. Conclusions

In this work, it is illustrated how a Lyapunov-based trajectory tracking control law
can be used for error adaptive tracking methods for any system. This is carried out by
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selecting the proper rate for the progression of the descriptor parameter of the reference
curve. This way, the burden of finding a new controller is not necessary. When EAT
method is applied to a UAV (PVTOL), it is shown, through several tests, that error adaptive
tracking methods outperform trajectory tracking ones using exactly the same controller
(with identical parameters). We can conclude that the behavior of the several alternatives of
error adaptive tracking is much better than that of a trajectory tracking under large errors,
disturbances, unmodeled parameters or delayed response. This is because in error adaptive
tracking, pace adapts to system errors. Two additional advantages of error adaptive
tracking are also presented: a) it conserves most of the advantages of the path following
method, and b) it avoids one of the main drawbacks of the path following method, that
is, it is valid for all feasible trajectories. Finally, the benefits of the variant here called
“soft deterministic error adaptive tracking” are also illustrated. This alternative presents
almost the same excellent behavior as any error adaptive tracking when errors are large
because temporal determinism is ignored in these situations. However, once errors have
decreased, it gains the additional benefit of taking into account timing determinism as in
classic trajectory tracking.
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Abstract: Autonomous robots require control tuning to optimize their performance, such as optimal
trajectory tracking. Controllers, such as the Proportional–Integral–Derivative (PID) controller, which
are commonly used in robots, are usually tuned by a cumbersome manual process or offline data-
driven methods. Both approaches must be repeated if the system configuration changes or becomes
exposed to new environmental conditions. In this work, we propose a novel algorithm that can
perform online optimal control tuning (OCTUNE) of a discrete linear time-invariant (LTI) controller
in a classical feedback system without the knowledge of the plant dynamics. The OCTUNE algorithm
uses the backpropagation optimization technique to optimize the controller parameters. Furthermore,
convergence guarantees are derived using the Lyapunov stability theory to ensure stable iterative
tuning using real-time data. We validate the algorithm in realistic simulations of a quadcopter model
with PID controllers using the known Gazebo simulator and a real quadcopter platform. Simulations
and actual experiment results show that OCTUNE can be effectively used to automatically tune the
UAV PID controllers in real-time, with guaranteed convergence. Finally, we provide an open-source
implementation of the OCTUNE algorithm, which can be adapted for different applications.

Keywords: robotics; unmanned aerial vehicles; control tuning; open-source

1. Introduction

Control tuning is a fundamental concept in any control system’s design cycle; see, for
instance, Refs. [1,2] and the references therein. In particular, robotic systems require control
tuning to perform different levels of autonomous tasks with the desired performance.
In these systems, conventional controllers, such as the Proportional–Integral–Derivative
(PID) controller, are usually tuned using an iterative manual process or offline data-driven
methods.

For instance, in quadrotor control, known open-source autopilots, such as PX4 [3]
and Ardupilot [4], use either manual tuning or non-optimal auto-tuning methods. Fur-
thermore, many dynamical systems exhibit complex characteristics, such as non-linearity,
time-varying parameters, and time delay, which leads to different operating conditions
and/or disturbances, leading to poor control.

Generally speaking, control tuning methodologies can be classified as offline methods
and online methods. In the offline methods, such as linear–quadratic Gaussian control
(LQG) [5,6] and H-infinity control [7], the controller requires an accurate model of the
system dynamics under control. The controller is designed for the model of the system and
is tuned before the implementation stage. These controllers work well with systems that
have an accurate linear model. However, they give poor performance otherwise. On the
other hand, in the online adaptive methods, the model is often required as well. However,
the controller can adapt to the un-modeled system dynamics, which is well-known under

Sensors 2022, 22, 9240. https://doi.org/10.3390/s22239240 https://www.mdpi.com/journal/sensors500



Sensors 2022, 22, 9240

the adaptive control theory [8,9], which is well-developed and established in linear and
nonlinear control systems.

Online model-free methods also exist in several studies [10–12]. Another class of
gradient-descent-based algorithms also exist in the literature. For instance, a control
method based on an adaptive PID neural network and particle swarm optimization (PSO)
algorithm was developed in [13]. In [14], the investigation of adaptive learning control for
underwater vehicles (AUVs) with unknown uncertainties using gradient descent algorithm
is presented, where the unknown nonlinear functions in the system are approximated by
radial basis function neural networks.

In [15], another adaptive gradient descent algorithm combined with a fuzzy system
was developed to improve the attitude estimation accuracy and adaptability of unmanned
underwater vehicles under various ocean environments. Many attempts have been made
to build auto-tuned PID controllers using different adaptive learning techniques [16]. For
instance, the authors in [17,18] used genetic algorithms to tune a PID. Furthermore, the
use of a neural network to tune a PID controller through extensive training was discussed
in [19]. However, these techniques have several drawbacks, such as a lack of stability
guarantees, slow convergence, or implementation constraints.

In this paper, we develop an online learning algorithm based on the backpropagation
learning technique to learn a controller for a dynamical system without knowing the system
model. Our control-learning algorithm is based on the work presented in [20,21], where the
backpropagation learning technique is used in system identification for linear dynamical
models. The use of backpropagation learning techniques in training systems is becoming
the norm due to the extensive use of backpropagation algorithms in the modern machine-
learning domain. The accessibility of the backpropagation algorithms in several software
packages, such as TensorFlow [22] and PyTorch [23], has made them more attractive and
easy to use.

The backpropagation learning technique was used in several attempts in PID tuning.
For instance, in [24], a fuzzy PID controller, which is a combination of a fuzzy controller
with a PID neural network (PIDNN), was proposed. In [25], a conventional Neuro PID
controller for linear or nonlinear systems that was unaffected by the unpredictability of
the system’s parameters and disturbances, such as noise, was developed. However, again,
these methods require a model for the controlled system as they lack stability guarantees.

This paper proposes a novel, implementable, and fast algorithm that can perform
online optimal control tuning (OCTUNE) of a discrete linear time-invariant (LTI) controller
in a classical feedback system, only using real-time system signals, i.e., no model required
for the system under control. The OCTUNE algorithm uses the backpropagation optimiza-
tion technique to optimize a performance function (squared error between the desired and
actual signals) in real-time. Furthermore, convergence guarantees are derived using the
Lyapunov stability theory to ensure stable tuning using online real-time data.

We demonstrate the effectiveness and practicality of the OCTUNE algorithm by ap-
plying it to the tuning of a discrete PID controller (a particular case of an LTI controller)
that is used to stabilize the angular rates of a quadrotor unmanned aerial vehicle (UAV).
The demonstration is performed in a realistic simulation environment using the Gazebo
simulator and the robot operating system (ROS). The simulation results show how OC-
TUNE can be effectively used to automatically tune the UAV angular rate PID controllers
using real-time signals in a fraction of a minute with a low number of online iterations.
Finally, an open-source implementation of the OCTUNE algorithm is provided, which can
be adapted for different applications.

The contributions of this work are summarized as follows.

• An online and model-free optimal auto-tuning algorithm for a generic LTI controller
is developed, called OCTUNE, which is demonstrated using realistic simulations of a
quadrotor system.

• Convergence proof of the OCTUNE algorithm is derived in order to guarantee safe
control learning/tuning.
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• We provide our implementation as an open-source software package of OCTUNE to
facilitate the use and adaptation of the presented algorithm for different applications. The
links to the open-source software is provided in the Supplementary Materials section.

The remainder of the paper is organized as follows. The problem statement is pre-
sented in Section 2. The optimal tuning algorithm is derived in Section 3, followed by
convergence analysis in Section 4. Realistic simulation results of the OCTUNE algorithms
for a quadrotor tuning application are discussed in Section 5. Finally, our conclusions and
future work are discussed in Section 6.

2. Problem Statement

This section defines the controller architecture to be optimized using the OCTUNE
algorithm described in Section 3 to improve the reference tracking in a classical feedback
system. In this work, we assume a standard feedback system as shown in Figure 1, where
the system is represented by an unknown discrete-time plant, P(z). The controller is
assumed to be a discrete-time linear time-invariant (LTI) system of the following transfer
function.

C(z) =
B(z)
A(z)

=
b0 + b1z−1 + · · ·+ bnb z−nb

1 + a1z−1 + · · ·+ ana z−na
, (1)

where a’s and b’s are the controller’s denominator and numerator coefficients, respectively.
The system signals, reference r(k), controller output u(k), and output y(k) for time instances
k = 0, 1, 2, . . . are all assumed to be measurable in real-time.

Figure 1. A feedback system with an unknown discrete-time plant, P(z), and a discrete-time LTI
controller, C(z).

It is assumed that the controller in Equation (1) is initially stabilizing the feedback sys-
tem in Figure 1. However, the performance defined later in Equation (2) may not be initially
optimal. In other words, the system output y(k) is poorly tracking the reference r(k).

The objective of this work is to find a controller structure of the form C(z), which
optimizes the performance of the system response—defined later in Equation (2). To
achieve this objective, we propose the OCTUNE algorithm, which updates the controller’s
parameters a and b in real-time as shown in Figure 2. The OCTUNE block shown in Figure 2
receives r(k), y(k), and u(k) signals in real-time and computes the updated controller
parameters in order to minimize the error between the reference signal r(k) and the actual
output signal y(k). In addition, the OCTUNE algorithm updates the controller parameters
while guaranteeing stable convergence to the minimum error using only real-time signals.

Figure 2. A feedback system with controller C(z) coefficients updated by the OCTUNE algorithm.
The OCTUNE algorithm receives the reference, actual, and controller output signals and performs
update operations to update the controller parameters.
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3. Control Tuning Algorithm

The objective of the OCTUNE is for the system output y(k) to track the desired
reference signal r(k) as accurately as possible. Therefore, we define the objective function L
that is to be optimized as follows.

L(k) =
1
2

k

∑
i=k−N

e2(i) (2)

where N is the number of available data samples, and the error e(k) at time instant k is
defined as the difference between the desired reference signal r(k) and the corresponding
output signal y(k),

e(k) = r(k)− y(k) (3)

The objective function L can be written in a compact form as follows.

L =
1
2
||E||2 (4)

where || · || is the Euclidean norm, and

E = [e(k− N), e(k− N + 1), . . . , e(k)]T (5)

In the following section, an algorithm based on the backpropagation method is de-
veloped to compute the controller parameters in Equation (1) that minimize the objective
function defined in Equation (4) given the system signals r(k), y(k), and u(k).

Optimization Using Backpropagation

Backpropagation (BP) is a widely used algorithm in machine learning for efficiently
training artificial neural networks (ANNs) [26]. BP computes the gradient (partial deriva-
tives) of the loss function with respect to the weights of the neural network. The partial
derivatives are then used to update the weight values. This process is repeated until
convergence is achieved. The objective of this work is to compute the controller parameters
(analogous to weights in ANNs) that minimize the loss function in Equation (2).

As depicted in the computational graph in Figure 3, the backpropagation operations
(represented using dashed lines) use the chain rule to compute the partial derivatives ∂L

∂a , ∂L
∂b

through the intermediate partial derivatives ∂L
∂y , ∂L

∂u . Then, the computed partial derivatives
∂L
∂a , ∂L

∂b are used to compute the new controller parameters a, b using the delta rule (gradient
descent), Equation (16).

Figure 3. Forward and backward operations are used to compute the partial derivatives. Solid arrows
represent forward propagation, and backpropagation is represented by dashed arrows.

The optimization problem is defined as follows,

min
ai ,bi

L =
1
2

k

∑
i=k−N

e2(i) (6)
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In order to use the backpropagation algorithm [26] to solve (6), the partial derivatives of
the objective function L with respect to the controller coefficients ai, bi need to be calculated,
which is described as follows.

The objective L is directly a function of the error e; hence, the partial derivative of L
with respect to the error ek at time k, and the error vector E at all N samples, are the first
derivatives that need to be computed as follows.

∂L
∂ek

= e(k)

∂L
∂E

= E
(7)

Next, going backward in the chain, the partial derivative of L with respect to the
output yk at time k (and y for all N samples) is defined as follows,

∂L
∂yk

=
∂L
∂ek

∂ek
∂yk

= −e(k)

∂L
∂y

= −E
(8)

Next, using the chain rule, the change of L with respect to the controller denominator
coefficients ai is

∂L
∂ai

=
k

∑
t=k−N

∂L
∂et

∂et

∂ai

=
k

∑
t=k−N

∂L
∂et

∂et

∂yt

∂yt

∂ut

∂ut

∂ai

=
k

∑
t=k−N

e(t)(−1)
∂yt

∂ut

∂ut

∂ai

i = 1, . . . , na

(9)

Equation (9) can be written in a compact vector form as follows.

∂L
∂a

= −JaE ∈ Rna

Ja =




∂yk−N
∂uk−N

∂uk−N
∂a1

. . . ∂yk
∂uk

∂uk
∂a1

...
...

...
∂yk−N
∂uk−N

∂uk−N
∂ana

. . . ∂yk
∂uk

∂uk
∂ana


 ∈ Rna×(N+1)

(10)

Similarly, the change of L with respect to the controller’s numerator coefficients bj can
be calculated as follows.

∂L
∂bj

=
k

∑
t=k−N

∂L
∂et

∂et

∂bj

=
k

∑
t=k−N

∂L
∂et

∂et

∂yt

∂yt

∂ut

∂ut

∂bj

=
k

∑
t=k−N

e(t)(−1)
∂yt

∂ut

∂ut

∂bj

j = 0, . . . , nb

(11)
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Equation (11) can also be written in a compact vector form.

∂L
∂b

= −JbE ∈ Rnb

Jb =




∂yk−N
∂uk−N

∂uk−N
∂b0

. . . ∂yk
∂uk

∂uk
∂b0

...
...

...
∂yk−N
∂uk−N

∂uk−N
∂anb

. . . ∂yk
∂uk

∂uk
∂anb


 ∈ Rnb×(N+1)

(12)

For compactness, let us define the following quantities, W is the controller parameter
vector, J is the Jacobean matrix of all intermediate, data-driven, partial derivatives, and ∂L

∂W
is the gradient vector of L with respect to the controller parameters W.

W = [a1, . . . , ana , b0, . . . , bnb ]
T ∈ Rna+nb (13)

J =
[

Ja
Jb

]
∈ R(na+nb)×(N+1) (14)

∂L
∂W

=




∂L
∂a

∂L
∂b


 =

∂E
∂W

∂L
∂E

= −J · E ∈ Rna+nb (15)

Using Equation (15), the update rule of the controller coefficients ai, bi can be written
as follows.

W := W + ∆W = W − α
∂L
∂W

= W + αJ · E
(16)

The calculations of ∂u
∂ai

and ∂u
∂bi

are performed similar to the calculations of ∂y
∂bj

and ∂y
∂aj

in [20], and omitted here for brevity. In comparison to [20], in this work, we are identifying
the coefficients of the controller’s transfer function instead of the plant’s.

In [20], the calculation of ∂y
∂u , which is needed in Equations (9) and (11), was performed

using the known linear structure of the plant P(z). However, in this work, this cannot
be conducted in the same way as P(z) is assumed to be unknown. Instead, we assume
that the system signals y and u are sampled fast enough, and the following first-order
approximation is used.

∂y
∂u
≈ ∆y

∆u
=

y(k)− y(k− 1)
u(k)− u(k− 1)

(17)

Algorithm 1 presents a pseudo code of the OCTUNE algorithm.
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Algorithm 1: Pseudo code of the OCTUNE algorithm
Data: Nitr: Maximum number of iterations, Nt: Maximum optimization time
Data: W0: Initial controller parameters
Result: W = W∗, optimal controller parameters
W ←W0, Equation (13)
while Not converged do

Compute error vector E, Equation (5) ;
Compute ∂L

∂E , Equation (7) ;
Compute Ja, Equation (10);
Compute Jb, Equation (12);
Compute J, Equation (14);
Compute ∂L

∂W , Equation (15);
Compute |λmin|, the absolute value of the smallest eigenvalue of (−J · JT);
Compute optimal learning rate, α∗ = 2

|λmin| ;

Update W using Equation (16);
end

4. Convergence Analysis

The convergence of the controller coefficients ai, bi (or W) depends on the choice of
the training rate α in Equation (16). High values of α can diverge the controller coefficients,
while overly small values can guarantee convergence but with a slow training speed, which
might not be practical for real-time applications. In this section, the procedure of selecting
the proper values of α is developed.

Let V(k) be a discrete Lyapunov function [27] that is defined as follows.

V(E) =
1
2
||E||2 (18)

where || · || is the 2-norm. The Lyapunov function V(E) = 0 only when E = 0. The change
of V, ∆V is defined as follows.

∆V = V(Ek+1)−V(Ek)

=
1
2

[
||Ek+1||2 − ||Ek||2

]

= ∆ET
[

Ek +
∆E
2

] (19)

The error difference ∆E can be written as follows.

Ek+1 = Ek + ∆E = Ek +

(
∂Ek
∂Wk

)T
· ∆Wk (20)

Using Equations (15) and (16),

Ek+1 = Ek − αJT JEk (21)

Therefore, ∆E can be defined as follows

∆E = −αJT JE (22)

Theorem 1. Let α be the learning rate used in the backpropagation algorithm in Equation (16)
and |λmin| be the absolute value of the smallest eigenvalue of (−J · JT), where J is defined in
Equation (14). Then, the convergence of the controller coefficients W is guaranteed if α is chosen
such that it satisfies the following relationship.
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0 < α <
2
|λmin|

(23)

Proof. Plugging Equation (22) into Equation (19) yields

∆V = (−αJT JE)T
[

E +
1
2
(−αJT JE)

]

=
−α2

2
ET JT

[
2
α

I − J JT
]

JE
(24)

From Equation (24), ∆V < 0 if α > 0 and 2
α I − J JT is positive definite, which can

be achieved by choosing α as in (23). With V(E) > 0 for E 6= 0 and ∆V < 0 satisfied
by Equation (23), the convergence of W in Equation (16) is guaranteed. The optimal
convergence can be achieved by α∗ = 2

|λmin| .

5. Validation: Quadrotor Tuning

This section presents realistic simulation results of the proposed OCTUNE algorithm
applied to a practical use case of tuning a quadrotor’s PID angular rate control loops in
real-time during flight. The angular rate stabilization is the innermost control loop and is
the most critical one, which affects all the other higher control loops, such as the attitude,
linear velocity, and position. For example, refer to the control architecture of the PX4
open-source autopilot PX4 control architecture [28].

Many UAVs use open-source autopilots, such as ArduPilot [4] and PX4 [3], in custom
UAV research and development works. Usually, the custom-built UAVs that use off-the-
shelf autopilots with open-source software, such as PX4 require iterative tuning of the
PID control loops, which is generally performed manually before further development
and flight testing. This manual process is essential to have a desirable flight performance.
However, it can be cumbersome and time-consuming, as it requires manually performing
flight tests, collecting data, manually analyzing them, and finally tuning the PID gains.

This manual tuning is conducted for each degree of freedom, i.e., three rotational (roll,
pitch, and yaw) and three translational (x, y, and z) degrees, repeated many times until the
desired control performance is achieved. In addition, a re-tuning process is needed if the
UAV configuration is changed, for example, by adding or removing a payload. Moreover,
the PID control loops might be tuned to work in specific environmental conditions, such as
low wind speed. Therefore, it will need to be re-tuned to perform well against different
disturbance sources and levels. An algorithm that can automatically and reliably tune
controllers in such situations and in real-time is greatly beneficial as it saves time and
optimizes performance.

The OCTUNE algorithm presented in this work effectively and practically addresses
the above mentioned issues in real-time with no manual iterations or interventions. The
OCTUNE algorithm is demonstrated with realistic quadrotor simulations in the following
sections. A link to the video of the simulation experiments is provided in the Supplementary
Materials section.

5.1. Simulation Setup

The quadrotor simulation setup consists of the four main components depicted in
Figure 4 and described as follows.

• Gazebo simulator : An open-source robot simulator [29] that accurately and efficiently
simulates several types of robots in complex indoor and outdoor environments with
multiple options of robust physics engines. It also has strong integration with the
robot operating system (ROS) to facilitate software development and integration.
The robot model simulated in this work is an actual quadrotor UAV called Iris; see
Figure 5. The quadrotor model has several plugins to simulate the onboard sensors
(Inertial measurement unit, GPS, and magnetometer) and the propulsion system. The
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model also models the mechanical structure of the drone with its mass and inertial
characteristics.

• PX4 autopilot: This is the autopilot firmware that interfaces with Gazebo to receive
the simulated sensors readings, to perform control and operations, and to send motor
commands to the motor plugins of the Gazebo quadrotor model. The PX4 autopilot
firmware implements the PID control loops tuned using the OCTUNE algorithm. The
autopilot firmware in simulation (called software in the loop, SITL) is the same as
the one on actual autopilot hardware, except that the actual sensors and motors are
replaced with simulated ones.

• MAVROS: MAVROS is a software package that interfaces between the PX4 autopilot
and the robot operating system (ROS) [30]. Interfacing PX4 with ROS makes the soft-
ware development and integration extremely streamlined and can be easily deployed
on actual hardware with almost no modifications to the software used in the simula-
tion. The MAVROS communicates the required signals (target, controller output, and
actual), and the PID controller gains between the OCTUNE application and the PX4
autopilot.

• OCTUNE: This is the implementation of the OCTUNE algorithm as a ROS software
package (node in ROS terminology) for real-time tuning. The OCTUNE node receives
the quadrotor signals (target, actual, and controller output), and the PID gains from
the MAVROS node in real-time. After the signals and the current gains are used to
compute the updated PID gains by the OCTUNE node, the new gains are sent to the
PX4 autopilot via the MAVORS node.

Figure 4. Abstract of the software architecture used in the simulations. Bold and underlined text
represent software packages that are explained in Section 5.1.

Figure 5. A snapshot of the Iris quadrotor model flying in the Gazebo simulator.
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5.2. Controller

The OCTUNE algorithm requires the definition of the controller’s transfer function as
defined in Equation (1)—namely, the numerator coefficients bi and denominator coefficients
ai. An angular rate PID controller can be represented as a discrete-time transfer function [31]
as follows.

C(z) =
U(z)
E(z)

=
b0 + b1z−1 + b2z−2

1− z−1

b0 = Kp + Kd/T + KiT

b1 = −2Kd/T − Kp

b2 = Kd/T

(25)

where b0, b1, and b2 are the controller’s transfer function numerator’s coefficients; Kp, Ki,
and Kd are the proportional, integral, and differential PID gains; and T is the sampling time
in seconds. With some algebraic manipulations, the PID gains can be calculated from the
controller’s coefficients.

Kp = −2b2 − b1

Ki = (b0 + b1 + b2)/(T)

Kd = b2/T

(26)

5.3. Algorithm Implementation and State Machine

For the real-time safe implementation and execution of the OCTUNE algorithm, a
state machine was designed to control the transitions between the different stages of the
tuning process. The four primary states are depicted in detail in Figure 6 and described as
follows.

• IDLE state: In the IDLE state, the tuning application waits for the operator to send
a start signal. Upon receiving the start signal, the application transitions to the next
state—the Get Data State .

• Initial Gain State: In this state, the initial (current) PID gains are requested from
the autopilot. If there are no failures in receiving the initial gains, the application
transitions to the next state, the Get Data Sate. Otherwise, it returns to the IDLE state.

• Get Data State: In this state, the required data for the tuning process, such as target,
actual, and control output signals, are stored in buffers in real-time, over a predefined
time period or number of samples. Once sufficient data samples are received, they
are post-processed to align the data samples according to their time stamps and
up-sampled to reduce the high-frequency noise in the acquired signals. If data post-
processing is successfully performed, the application transitions to the next state—the
Optimization state. Otherwise, the tuning process is stopped, and the application
transitions to the IDLE state.

• Optimization state: In this state, an update step of the OCTUNE algorithm, Equation (16)
is performed using the data collected and prepared in the Get Data State. The optimal
learning rate α∗ in Equation (23) is also computed in this state. If the update step
is completed successfully, the application transitions back to the Get Data State to
prepare a new set of signals for a new update iteration. If a termination condition is
reached, such as the maximum optimization iteration or maximum optimization time,
the state-machine is terminated, and the application transitions to the IDLE state to be
ready for a new tuning cycle.
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Figure 6. The auto-tuning state machine.

The aforementioned state-machine implementation is used to run multiple simulations
of real-time tuning processes for the quadrotor system, which is discussed in the following
sections.

5.4. Simulation Results with a Static Learning Rate, α

As mentioned, a primary contribution of this work is to guarantee stability during
the tuning process in real-time, which is proved using the condition on the learning rate α,
Equation (23). To demonstrate this, we compare the effect of executing the OCTUNE algo-
rithm with a fixed learning rate α and with the optimal one in Equation (23) in simulations.

A simulation run was performed with a fixed learning rate α = 0.001 for the angular
rates of the roll and pitch PID control loops. In this simulation, the following steps were
followed.

1 The quadrotor was commanded to take off in position stabilization mode and hover
at 2 m above the ground. The quadrotor was initially stable.

2 The proportional gain of the pitch rate PID control loop was increased from 0.2 to 0.6
in order to introduce high-frequency oscillations.

3 The OCTUNE algorithm was started to tune the PID gains.
4 At the end of the tuning process, the tuning performance was shown using different

plots as shown in Figure 7.
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(a) (b)

(c) (d)

Figure 7. The pitch-rate tuning process during hovering. A fixed learning rate, α = 0.001, was used.
The quadrotor started with an oscillatory angular pitch response and ended with a worse response
after tuning due to the use of a non-optimal fixed learning rate. (a) signals before tuning, (b) signals
after tuning, (c) pitch rate PID gains, (d) performance error V(E) over iterations.

As shown in Figure 7a, the quadrotor initially had an oscillatory response in the
angular rate control of the pitch axis due to high proportional gain; see the Kp = 0.6 value
at iteration 1 in Figure 7c. Since the learning rate α = 0.001 was fixed over the entire
optimization iterations, it resulted in the divergence of the system output in Figure 7b, the
oscillatory behavior of the PID gains in Figure 7c, and non-diminishing performance error
in Figure 7d. Therefore, using a fixed value of the learning rate α can be dangerous to the
system tuning process as this cannot guarantee convergence.

In the next section, the simulations are performed with the optimal condition on the
learning rate α∗ to guarantee stability during the tuning process.

5.5. Simulation Results with an Optimal Learning Rate, α∗

To guarantee the convergence of the performance metric L in Equation (4) of the
angular rate control loops of the quadrotor system, the learning rate α was computed
at each iteration, according to Equation (23), using the absolute value of the minimum
eigenvalue of the Jacobean matrix J in Equation (14), which was constructed using the
real-time signals, r(t), y(t), u(t).

Similar simulation steps were followed as in the static learning rate case, starting
with the quadrotor in a hover state, increasing the proportional gain of both roll and pitch
angular rate PID controllers to obtain high frequency oscillations, and finally starting the
OCTUNE algorithm to tune the PID gains in using real-time simulated signals.

As shown in Figures 8 and 9, the initial roll and pitch angular rate responses showed
high-frequency oscillations due to the high proportional gains. After tuning the control
loops using the OCTUNE algorithm over 28 iterations for 60 s, the control loops were
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stabilized as shown in Figures 8b and 9b. In addition, the performance error L eventually
diminished as shown in Figures 8c and 9c.

In Figures 8d and 9d, we can see that the learning rate α changes over iterations to
guarantee that the performance error eventually converges. In comparison to the oscillating
gains in Figure 7c, the gains in Figures 8e and 9e are not oscillating and are tuned to reduce
the performance error, which results in stable tracking of the angular rates as shown in
Figures 8b and 9b. The proportional gains are lowered to reduce the oscillations, and the
integral gains are increased to reduce the steady-state error. The differential gains, however,
have a minimal change, which is reasonable as high differential gains can cause system
instability.

(a) (b)

(c) (d)

(e)

Figure 8. The tuning process of the roll-rate PID controller during hovering. The quadrotor starts
with an oscillating behavior due to poorly tuned PID gains. Eventually, the angular rate loops
are stabilized after the real-time tuning process. (a) signals before tuning, (b) signals after tuning,
(c) performance error V(E) over iterations, (d) learning rate α over tuning iterations, (e) PID gains.
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(a) (b)

(c) (d)

(e)

Figure 9. The tuning process of the pitch rate PID controller during hovering. The quadrotor starts
with an oscillating behavior due to poorly tuned PID gains. Eventually, the angular rate loops
are stabilized after the real-time tuning process. (a) signals before tuning, (b) signals after tuning,
(c) performance error V(E) over iterations, (d) learning rate α over tuning iterations, (e) PID gains.

To provide numerical assessment of the tuning performance, we computed the mean
squared error MSE = 1

n ∑n
i=1(r(i)− y(i))2 before and after tuning. The number of data

samples is constant in all experiments n = 200, with time length T = 2 seconds and the
sampling rate dt = 0.01.

Table 1 provides the mean squared error (MSE) of the simulation experiments of
the pitch and roll-rate PID controllers, with an optimal learning rate α∗ as depicted in
Figures 8 and 9. As shown in Table 1, the MSE for the roll rate after tuning is 5% of the
MSE before tuning. Similarly, for the pitch rate control, the MSE after tuning is 0.82% of the
MSE before tuning. This shows a significant improvement in the reference tracking of the
rate PID control loops after the tuning process.
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Table 1. The mean squared error (MSE) for the simulation results with the optimal learning rate, α∗.

Experiment MSE before Tuning MSE after Tuning

Roll rate tuning 0.59 0.03
Pitch rate tuning 1.21 0.01

5.6. Hardware Experiments

This subsection provides validation results of the OCTUNE algorithm on a real quad-
copter platform. The quadcopter used in the presented experiments is depicted in Figure 10.
Three experiments were conducted in order to evaluate the OCTUNE performance under
different initial PID gains. The PID controllers that were tuned in the hardware experi-
ments were the same as the ones performed in simulation, which control the roll and pitch
rates. The experiments were conducted in an indoor environment, and the quadcopter
was controlled by a pilot. A link to the video of the hardware experiments are provided in
the Supplementary Materials section. Each experiment’s design and results are presented
as follows.

Figure 10. F450 quadcopter platform used in the OCTUNE hardware experiments.

5.6.1. Experiment 1

In this experiment, the PID gains of the roll and pitch rates were left at their default
values, and the OCTUNE algorithm was executed during flight. The experiment steps are
described as follows.

1 The drone is started on the ground with disarmed motors. The PID gains of the
roll/pitch speed control loops are left at their default values (P = 0.15, I = 0.2,
D = 0.003).

2 The pilot flies the quadcopter to a hover position.
3 The OCTUNE process is started.
4 The pilot performs some maneuvers with the quadcopter in order to excite the system.
5 The OCTUNE process is stopped automatically after the indicated maximum opti-

mization time, 120 s, is reached, and the logs and plots are saved.

As can be seen from Figure 11, the initial response as shown in Figure 11a and the
final response as shown in Figure 11b show similar tracking performance. However,
Figure 11e shows an increase in the P gain to have relatively faster tracking. Furthermore,
the performance error in Figure 11c is small (≤3), which indicates acceptable tracking of
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the actual pitch rate signal to the desired one. This experiment demonstrates that starting
for good PID gains that stabilize the system with good performance error, the OCTUNE
algorithm does not drive the control system to an unstable state. It just improves its
performance or at least maintains the current low-error performance. A similar observation
of the roll axis can be seen in Figure 12.

(a) (b)

(c) (d)

(e)

Figure 11. The results of the tuning process of the pitch rate PID controller in Experiment 1. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.
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(a) (b)

(c) (d)

(e)

Figure 12. The results of the tuning process of the roll-rate PID controller in Experiment 1. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.

5.6.2. Experiment 2

In this experiment, the proportional gain (P) of the roll and pitch rates was increased
dramatically, four times more than the default values (from 0.15 to 0.6, and, in order
to introduce high-frequency oscillations, the OCTUNE algorithm was executed during
flight, which should eventually tune the controllers to obtain rid of the oscillations. The
experiment steps are described as follows.

1 Initially, the drone is on the ground, and the motors are disarmed. The PID gains
of the roll/pitch speed control loops are left at their default values (p = 0.15, I = 0.2,
D = 0.003).

2 The pilot flies the quadcopter to a hover position.
3 The P gains of the roll/pitch speed control loops are set to high values (from 0.15 to

0.6) to introduce high-frequency oscillations.
4 The OCTUNE process is started during the flight
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5 The pilot tries to keep the quadcopter in hover position while tuning is running.
6 After the quadcopter stabilizes, the pilot performs some maneuvers with the quad-

copter in order to excite the system and make sure the system is tuned well.
7 The OCTUNE process is stopped automatically after the indicated maximum opti-

mization time, in the table below, is reached, and the logs and plots are saved.

The tuning results of Experiment 2 are depicted in Figures 13 and 14, for pitch and
roll axes, respectively. As can be seen from Figures 13a and 14a, the initial response of the
pitch and roll rates, respectively, show high-frequency oscillations as expected because
the P gain of both controllers was increased dramatically. After executing the OCTUNE
algorithm for 100 iterations (approximately 2 min), the performance error eventually
decreased (see Figures 13c and 14c) and the proportional gains were decreased as well
(see Figures 13e and 14e). As a result, the reference tracking is improved as shown in
Figures 13b and 14b.

(a) (b)

(c) (d)

(e)

Figure 13. The results of the tuning process of the pitch rate PID controller in Experiment 2. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.
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(a) (b)

(c) (d)

(e)

Figure 14. The results of the tuning process of the roll-rate PID controller in Experiment 2. (a) signals
before tuning, (b) signals after tuning, (c) performance error V(E) over iterations, (d) learning rate α

over tuning iterations, (e) PID gains.

Similar to the simulation experiments, we computed the MSE of the error signal in
the hardware experiments before and after tuning. The MSE results are shown in Table 2.
As shown in Table 2, the MSE of teh tracking error of the roll-rate PID controller after
tuning is 5.9% of the MSE before tuning. Similarly, the MSE of tracking error of the pitch
rate PID controller after tuning is 4.4% of the MSE before tuning. This shows significant
improvement of the tracking performance after the tuning process in real-time.

Table 2. The mean squared error (MSE) for hardware Experiment 2.

Experiment MSE before Tuning MSE after Tuning

Roll rate tuning 0.17 0.01
Pitch rate tuning 0.16 0.007
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6. Conclusions

In this paper, we presented the OCTUNE algorithm, which can be used for the optimal
control tuning of an LTI controller (such as a PID) in a classical feedback system without
the knowledge of the plant model and using only real-time signals.

The OCTUNE algorithm was validated in realistic simulations of a quadrotor UAV
model and on a real quadrotor platform, in which the angular rates of PID controllers
were stabilized in a fraction of a minute. The OCTUNE algorithm can run in real-time and
continuously tune the controllers to account for any changes in the physical system (e.g.,
a change of payload) or environment (e.g., wind conditions), with proven convergence.
In addition, an open-source implementation of the OCTUNE is available to facilitate the
adaptation of the algorithm in different applications.

In future works, it would be interesting to generalize the OCTUNE algorithm to some
nonlinear controllers with guaranteed convergence. Furthermore, the trade-off between
robustness and optimality in real-time data-driven tuning is an exciting property to address.

Supplementary Materials: Supporting videos of simulations and hardware experiments, as well
as the open-source codes, can be found in the following links: Video of the OCTUNE algorithm in
quadcopter simulations: https://youtu.be/OY9XY9CdGhA; Video of the OCTUNE algorithm with
actual quadcopter experiments: https://youtu.be/a3mrDvK2b-c; Open-source code of the OCTUNE
algorithm: https://github.com/mzahana/octune; A ROS wrapper package to use OCTUNE with the
PX4 flight controller: https://github.com/mzahana/px4_octune_ros. These links are accessed on 30
October 2022.
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Abstract: Caenorhabditis elegans (C. elegans) exhibits sophisticated chemotaxis behavior with a unique
locomotion pattern using a simple nervous system only and is, therefore, well suited to inspire simple,
cost-effective robotic navigation schemes. Chemotaxis in C. elegans involves two complementary
strategies: klinokinesis, which allows reorientation by sharp turns when moving away from targets;
and klinotaxis, which gradually adjusts the direction of motion toward the preferred side throughout
the movement. In this study, we developed an autonomous search model with undulatory locomo-
tion that combines these two C. elegans chemotaxis strategies with its body undulatory locomotion.
To search for peaks in environmental variables such as chemical concentrations and radiation in
directions close to the steepest gradients, only one sensor is needed. To develop our model, we first
evolved a central pattern generator and designed a minimal network unit with proprioceptive feed-
back to encode and propagate rhythmic signals; hence, we realized realistic undulatory locomotion.
We then constructed adaptive sensory neuron models following real electrophysiological charac-
teristics and incorporated a state-dependent gating mechanism, enabling the model to execute the
two orientation strategies simultaneously according to information from a single sensor. Simulation
results verified the effectiveness, superiority, and realness of the model. Our simply structured model
exploits multiple biological mechanisms to search for the shortest-path concentration peak over a
wide range of gradients and can serve as a theoretical prototype for worm-like navigation robots.

Keywords: bio-inspired model; autonomous search; undulatory locomotion; Caenorhabditis elegans;
chemotaxis

1. Introduction

Biological systems are important inspirational resources for mobile-robot control re-
search. Even the simplest organisms have unique locomotion patterns and remarkable
spatial orientation abilities, which depend on their powerful nervous systems. The ne-
matode Caenorhabditis elegans (C. elegans) has a small, compact anatomy, a fully mapped
nervous system comprising only 302 neurons [1,2], and a rich behavioral repertoire; thus, it
is an ideal organism for linking neural activity to behavior. ‘C. elegans moves in an undula-
tory fashion by generating sinusoidal dorsoventral bends that propagate from anterior to
posterior; the locomotion is involved in most, if not all, of its behavior. Furthermore, C. ele-
gans exhibits chemotaxis toward numerous environmental cues, including salt; chemotaxis
is the ability to move up (or down) a concentration gradient of a chemical attractant (or
repellent). In C. elegans, chemotaxis is performed using two parallel strategies [3]: klinoki-
nesis and klinotaxis. Klinokinesis [4] is a biased random walk in which sharp turns occur
more frequently in response to a declining (or rising) concentration gradient. The klinotaxis
strategy [3] gradually adjusts the movement direction toward the line of steepest ascent (or
descent) within the gradient. These behaviors can also be important functions for mobile
robots. Chemotaxis-inspired navigation methods can control robots to perform specific
tasks, such as chemical leak location [5,6]; radiation measurement [7]; and environment
monitoring [8]. Worm-like undulation robots can be deployed in certain special scenarios,
such as in pipelines [9] and complex terrain [10,11].
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From an engineering perspective, the C. elegans chemotaxis behavior is attractive
for robotic navigation control. First, this is because the two chemotaxis strategies serve
complementary roles to ensure a short search path. Klinokinesis allows the robot to
use temporal gradients of environmental variables to quickly correct its direction away
from the target, while klinotaxis allows the robot to gradually optimize the path using
spatial gradients to align its movement with the steepest gradient direction. Second,
C. elegans performs chemotaxis only by sensing concentration changes at a single point
in its head, suggesting that a robot could mimic the two chemotaxis strategies with a
single sensor. This is reasonable, especially for small or resource-constrained mobile
robots, as it enables them to make precise steering decisions according to temporal and
spatial gradients while carrying a single sensor. Moreover, the clearly delineated nervous
system of C. elegans provides researchers with the opportunity to study the functional
neural circuits [12–14] and mechanisms underlying these behaviors [15–18]. Therefore,
these behaviors can be replicated using simple models with efficient biological neural
mechanisms, and such models could potentially incorporate these biological methods into
robot control applications.

Several studies have explored navigation models inspired by chemotaxis locomotion
in C. elegans. In early works, researchers [19–21] simulated chemotaxis behavior using
recurrent networks; hence, they explored computational rules and behavioral strategies
for chemotaxis in C. elegans. Additionally, Morse et al. [22] designed an autonomous
robot to perform chemotaxis-like phototaxis behavior under the control of a simulated
neural network. Xu et al. [23] trained dynamic neural networks with single or dual
sensory neurons to perform navigation tasks featuring salt attraction and toxin avoidance,
mimicking the klinokinesis or klinotaxis strategy; subsequently, those researchers added a
speed regulation mechanism to their model [24]. Some studies focused on implementing C.
elegans chemotaxis-inspired contour tracking by designing spiking neural networks [25,26]
and utilizing a neuromorphic processor [27]. However, in the above works, each model
was regarded as a point, and the whole-body movement of C. elegans was ignored. Deng
et al. [28] incorporated the body undulatory locomotion of C. elegans into a navigation model
emulating chemotaxis for the first time; however, the wave propagation was modeled using
an added phase lag term, which was unrealistic, and navigation-induced head deflections
could not be propagated. A follow-up study [29] further incorporated the proprioception
mechanism [15,30], which is a biological mechanism responsible for the propagation of
undulatory waves along the body in C. elegans. Demin et al. [31] and Costalago-Meruelo
et al. [32] both trained neural circuit models and combined physics engines to simulate
chemotaxis and body locomotion in C. elegans.

Existing models typically leverage one strategy only. Most (i.e., [19–29,31]) imitate
klinokinesis; the model decides to turn or continue straight based on the temporal gradients
of the environmental variables only and, therefore, a short search path cannot be guaranteed.
Other models (i.e., [23,24,32]) mimic klinotaxis exclusively; they steer in the correct direction
depending on the spatial gradient perpendicular to their current path, but usually under
the assumption that two sensors are spaced at a certain distance to directly determine
the spatial gradient. However, biological studies [14,33] have found that ASEL and ASER
neurons in C. elegans are responsible for sensing salt, and function by sensing concentration
changes at a single point in the head due to proximity. The state-dependent gating neural
mechanism [34,35] indicates that the klinotaxis steering response of C. elegans relies on the
internal state of the nervous system at the time of the sensory stimulus during undulatory
locomotion. Our previous work [17] further identified this mechanism in a neural model
based on the C. elegans connectome.

Thus, owing to the omission of one chemotaxis strategy, current C. elegans-inspired
navigation models are often unable to use the temporal and spatial gradient information
simultaneously to rapidly search for a gradient source in the environment. In particular,
current models typically lack the ability to capture spatial gradient information with a single
sensor. To address this problem, we designed a bio-inspired network model that integrates the
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two strategies (i.e., klinokinesis and klinotaxis) and body undulatory locomotion of C. elegans
in the context of one sensor. The model exploits the advantages of the complete C. elegans
chemotaxis behavior, aiming to provide an efficient robotic autonomous search scheme and
afford a simple network control prototype for worm-like navigation robots. The proposed
model is a multi-joint rigid link system with a network circuit that controls the joint angles. To
implement complex behavior in this simple model, we simplified the network circuit as much
as possible based on the functional neural circuits of C. elegans and incorporated multiple
biological mechanisms. The main contributions of this study are as follows.

First, a central pattern generator (CPG) was evolved using a genetic algorithm (GA) to
spontaneously generate rhythmic oscillatory signals. Furthermore, a repeating minimal net-
work unit with proprioceptive feedback was designed, which is sufficient to propagate the
undulatory wave from anterior to posterior. As such, the model can perform realistic body
undulatory locomotion during both forward and navigation-induced steering movements;
this behavior was verified through simulation experiments.

Second, dynamic adaptive sensory neuron models were constructed based on the
electrophysiological characteristics of the salt sensory neurons in C. elegans, which convert
information from the sensor into the sensory inputs of the network circuit. Moreover, the
state-dependent gating mechanism was incorporated into the model, thereby realizing
klinotaxis behavior in the context of a single sensor. Klinokinesis behavior is implemented
by fitting a logic function. The model can make steering decisions leveraging the klinotaxis
and klinokinesis strategies simultaneously; klinokinesis allows for rapid steering away
from the target, while klinotaxis continuously adjusts the movement direction toward the
side with the higher concentration. The model was tested in simulations, demonstrating its
stable search for environmental variable peaks in directions close to the steepest gradients
over a wide range of gradients. The search path was significantly shorter than those of
the models employing a single strategy. In addition, the quantitative analysis verified the
realness of the two strategies implemented by the proposed model.

The remainder of this paper is organized as follows. Section 2 details the proposed
methodology; the overall model architecture and biological basis are first introduced and
a detailed description of the sub-network circuits controlling the undulatory locomotion
and navigation behavior is then provided. Section 3 presents the experiment results and
corresponding analyses, and comparative discussion. Section 4 summarizes the study and
suggests future research.

2. Methodology
2.1. Overall Model Architecture and Biological Basis

The overall model architecture consists of a multi-joint rigid link system and a simple
network circuit based on the anatomical structure and functional neural circuits of C. elegans,
as shown in Figure 1. C. elegans is approximately 1 mm long and elliptically cylindrical
in shape. It moves on its side on agar and bends in the dorsoventral plane [36], with
this movement being mediated by a neuromuscular circuit. Its 95 body wall muscles are
arranged along the four body quadrants [37]: the dorsal left, dorsal right, ventral left, and
ventral right (DL, DR, VL, and VR, respectively). Each quadrant contains 24 or 23 muscles,
which are staggered in pairs. Based on its muscle structure, C. elegans was typically modeled
with 11 or 12 segments in previous works [28,29]. Similarly, our model contains 12 rigid
rods of length l, with 11 rotatable joints and 13 nodes, as shown in Figure 1a. Joint 1 controls
the head orientation and Node 1 corresponds to the head tip.

The C. elegans neural circuits for navigation locomotion are well understood. The
motoneurons located in the head and along the ventral neural cord (VNC) drive the
dorsoventral muscles to contract and relax rhythmically, generating undulatory locomotion
with sinusoidal body waves. Laser ablation studies [13] have shown that, among the five
types of VNC motoneurons, the cholinergic B-type excitatory motoneurons are essential for
forward locomotion; these include 11 ventral B-type motoneurons (VB neurons) and seven
dorsal B-type motoneurons (DB neurons) that form neuromuscular junctions with ventral
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and dorsal muscle cells, respectively. The four SMB-class and four SMD-class head mo-
toneurons [12] play important roles in regulating the undulatory amplitude and sharp turns,
respectively, and innervate the head and neck muscles. In the salt-sensorimotor pathway of
C. elegans, asymmetric chemosensory neurons (ASEL/R) [14,33] located in the head sense
salt stimuli in the environment and communicate with motoneurons through interneurons,
inducing head steering. Based on this understanding, we designed a simplified network
circuit, the outputs of which control the joint angles of the rigid link system. As shown in
Figure 1b, the circuit consists of a head circuit responsible for generating undulations and
making navigation decisions, and 10 repeating minimal VNC units responsible for wave
propagation. Because this model is two-dimensional, the muscles degenerate to the dorsal
and ventral muscles (DMs and VMs, respectively). In addition, the head circuit contains a
CPG; however, it is still unclear which neurons belong to the CPG in the head of C. elegans.
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blue and red lines represent excitatory and inhibitory neural connections, respectively, where the
central pattern generator (CPG) connection polarities were determined through evolution and the
rest were specifically designed. The black lines represent neuromuscular connections.

2.2. Definitions

For clarity, some definitions of the kinematics-related terms used in this study are
shown in Figure 2. Unless otherwise specified, the position and locomotion trajectory of

524



Sensors 2022, 22, 8825

the model default to those of the head tip (i.e., Node 1 of the rigid link system). Because
the model performs undulatory locomotion, the translation direction is the forward di-
rection of the model during movement for one cycle. The normal direction is that 90◦

counterclockwise to the translation direction. The instantaneous locomotion direction can
be decomposed into a translation component and a perpendicular component (the same
or opposite to the normal direction). The turning bias is the angle between the current
translation direction and the translation direction after one cycle. Sides D and V correspond
to the left and right sides, respectively, and a left/right sweep corresponds to half a cycle of
movement toward the right/left.
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2.3. Undulatory Control Circuit

The key to realizing undulatory locomotion is the generation and propagation of an
undulatory wave, which requires encoding of rhythmic oscillatory signals in both temporal
sequences and spatial patterns. For simplicity, we designed an undulatory control circuit
in accordance with the biological view [15,38] that a single CPG produces head-bending
waves in C. elegans, and that these waves propagate through body from anterior to posterior
via proprioceptive feedback. Note, however, that the existence of multiple oscillators in the
mid-body VNC motor circuit of C. elegans has been suggested [16,39].

2.3.1. CPG

CPGs are neuronal circuits capable of producing rhythmic outputs without rhyth-
mic inputs, typically as a result of reciprocal inhibitory interactions between neurons.
Biomimetic CPG controllers are often used in rhythmic motion robots [40,41]. In the pro-
posed model, the CPG consists of three interconnected dynamic neurons (i.e., C1, C2, and
C3). In previous models [28,29], a sinusoidal voltage was preassigned to a neuron (i.e., as
an oscillator) and the CPG neuron phases were regulated through neuronal interactions. In
contrast, we made no explicit a priori assumption regarding the way neurons generate oscil-
lations and evolved them to spontaneously generate oscillatory voltages. This mechanism
is more in line with biological reality, and from an engineering perspective, the design of a
specialized neuron with sinusoidal oscillations is not required.

The neurons in the CPG have first-order nonlinear dynamics, which are expressed by
the following first-order ordinary differential equation (ODE):

τi ·
dVi(t)

dt
= −

(
Vi − Erest

i
)
+ ∑

j
wi,j · f

(
Vj + bj

)
, (1)

where Vi(t) denotes the voltage of neuron i at time t, τ is the time constant, and Erest is the
resting potential. The second term on the right is the input current from the other neurons,

525



Sensors 2022, 22, 8825

where wi,j represents the connection weight from neuron j to i, b is the constant bias, and
f (·) is a sigmoidal function that expresses the nonlinear transmission from the presynaptic
neurons to the postsynaptic neurons.

In the proposed model, a simple evolutionary algorithm known as the genetic algo-
rithm (GA) [42] evolves the CPG parameters. There are 15 parameters to be determined:
τi [0.05, 2]; wi,j [−10, 10]; Erest

i [−10, 10]; bi [−10, 10] (the values in square brackets are
the ranges). The parameters are encoded as a real-valued vector with a range of [−1, 1],
which corresponds to one individual. The initial population is composed of 500 random
individuals and evolves into a new population generation through crossover, mutation, and
selection operations. During crossover, two individuals are randomly selected as parents
and a new individual, the child, is obtained through two-point recombination. The child is
then mutated by adding Gaussian noise with mean zero and a standard deviation (s.d.)
of 0.2 to each element of the vector. During selection, the parent with the lower fitness is
selected and replaced with the child. If 300 generations are obtained, or the fitness of the
best individual exceeds the threshold, the iteration ends.

The goal of this evolution is for the CPG output neuron C3 to generate a sinusoidal
oscillatory voltage with a cycle of Tosc = 4 s (approximating the C. elegans cycle recorded
in biological data [35]). Therefore, the model employs the fitness function F, which is the
product of multiple components: F = F1 · F2 · F3, in terms of VC3(t), and

F1 = 1−
∣∣∣∣

1
T
·
∫ T

0
VC3(t)dt

∣∣∣∣, (2)

F2 = fN(max(VC3(t)),−min(VC3(t))), (3)

F3 = fN

(
1
T
·
∫ T

0

∣∣∣∣
dVC3(t)

dt

∣∣∣∣dt,
4 ·max(VC3(t))

Tosc

)
, (4)

where T is the time length and fN(x, x0) = (x/x0) · exp(1− x/x0) is a normalization
function that reaches a maximum of 1 at x = x0. Here, F1 is combined with F2 to reward
voltage dynamics with zero mean and with the same positive and negative amplitudes.
Hence, the same left–right sweep amplitude is ensured for the undulatory locomotion; that
is, the translation direction is straight. F3 is an oscillatory criterion that encourages the
voltage change rate to match that of the ideal sinusoidal function, with reference to the
criterion used in [43]. The negative values for these functions are set to zero.

The specific amplitude of the voltage is not specified in the evolution, because the
output strength can be tuned by connection weights. In addition, some evolved solutions
may exhibit damped oscillations that must be re-evaluated over a longer period. Finally,
the best individual with stable oscillation is selected from the multiple solutions evolved
by the GA to form the CPG.

2.3.2. Undulation Generation and Propagation

As shown in Figure 1b, the SMBD and SMBV motoneurons receive antiphase oscil-
latory inputs from neuron C3, with the same connection weight strengths but opposite
algebraic signs. For simplicity, SMBD and SMBV are modeled as neurons with a linear
synaptic transfer function, and their voltage dynamics are expressed by the following ODE:

τSMB · dVSMBD/V(t)
dt = −

(
VSMBD/V(t)− Erest

SMB

)
+ wSMBD/V,C3 ·VC3(t)+

wSMB,ASEL ·VASEL(t) + wSMB,ASER ·VASER(t)
(5)

The symbols have the same meanings as in Equation (1), except that the subscripts refer
to different neurons; thus, the definitions are not repeated here. wSMBD,C3 = −wSMBV,C3 > 0,
and the other SMBD and SMBV parameters are set to the same values. Here, we default to
zero sensory input from ASEL/R; this setting is discussed below.
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When affected by oscillatory inputs, SMBD and SMBV generate oscillatory voltages with
opposite phases, which are in turn fed to muscles DM0 and VM0, respectively, via excitatory
neuromuscular junctions. The DM0 and VM0 activation states are expressed as follows:

τA0 ·
dADM0(t)

dt
= −ADM0(t) + wm

M0,SMB ·VSMBD(t), (6)

τA0 ·
dAVM0(t)

dt
= −AVM0(t) + wm

M0,SMB ·VSMBV(t) + wm
M0,SMD ·VSMDV(t), (7)

where Ai(t) denotes the activation state of muscle i at time t and wm
M0,SMB > 0 is the

neuromuscular junction weight from SMBD/V to D/VM0. In addition, VM0 also receives
input from SMDV with wm

M0,SMD > 0; this mechanism is related to the navigation function,
as discussed below.

The angle of Joint 1 is controlled by the difference between the nonlinear outputs of
DM0 and VM0:

OD/VM0(t) = f (AD/VM0(t) + bm
0 ), (8)

θ1(t) = ω0 · (ODM0(t)−OVM0(t)), (9)

where Oi(t) and θ1(t) denote the output of muscle i and the angle of Joint 1 at time
t, respectively; and bm

0 and ω0 are the output bias and steering coefficient of D/VM0,
respectively. In this manner, Joint 1 exhibits rhythmic rotation over time under the control
of the network outputs. An increase/decrease in θ1(t) means that Rod 1 is turning left/right
relative to Rod 2 (i.e., counterclockwise/clockwise).

Biologically, local proprioceptive coupling of adjacent body parts in C. elegans converts
rhythmic motion near the head into bending waves along the body through a cascade of
muscle-to-neuron feedback, with B-type motoneurons transducing the proprioceptive sig-
nals [15]. Therefore, in the proposed model, Joints 2–11 are controlled by 10 repeating minimal
VNC units, each containing a pair of B-type motoneurons and a pair of muscles, where
neurons DBi and VBi (i = 1, 2, . . . , 10) receive feedback currents from the muscles of their
own units and the anterior adjacent units. The voltage dynamics of DB and VB are as follows:

τB ·
dVD/VBi(t)

dt
= −

(
VD/VBi(t)− Erest

B
)
− Ishape

D/VBi(t). (10)

The parameters of all units are the same. Further, Ishape
DBi (t) and Ishape

VBi (t) are the propri-
oceptive feedback currents of DBi and VBi, respectively, and are expressed as follows:

Ishape
DBi (t) = ∑

j=0,1
wshape

j · f
(

pj · θi−j+1(t)
)
·
(

VDBi(t)− Eshape
j

)
, (11)

Ishape
VBi (t) = ∑

j=0.1
wshape

j · f
(
−pj · θi−j+1(t)

)
·
(

VVBi(t)− Eshape
j

)
, (12)

where the terms with j = 0, 1 represent the feedback currents from the considered unit and the
anterior adjacent unit, respectively; wshape is the proprioceptive feedback weight; Eshape is the
reversal potential of the B-type neurons to the feedback inputs; and p is a constant coefficient.

Through substitution of Equation (9), Equations (11) and (12) can be rewritten as

Ishape
DBi (t) = ∑

j=0,1
wshape

j · f
(

qi,j ·
(

ODM(i−j)(t)−OVM(i−j)(t)
))
·
(

VDi(t)− Eshape
j

)
, (13)

Ishape
VBi (t) = ∑

j=0,1
wshape

j · f
(

qi,j ·
(

OVM(i−j)(t)−ODM(i−j)(t)
))
·
(

VVi(t)− Eshape
j

)
, (14)

where qi,j = pj ·ω0 for i = 1 and qi,j = pj ·ω1 for i > 1. Here, ω1 is the steering coefficient of
DMi and VMi (i > 1).
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Similar to Equations (6), (8) and (9), the voltages of DBi and VBi (i = 1, 2, . . . , 10) affect
the activation states of DMi and VMi, respectively, and their output differences control the
angle θi+1(t). Thus,

τAmi ·
dAmD/VMi(t)

dt
= −AmD/VMi(t) + wmAmi ,B ·VD/VBi(t), (15)

OD/VMi(t) = f (AD/VMi(t) + bm
1 ), (16)

θi+1(t) = ω1 · (ODMi(t)−OVMi(t)). (17)

The angles of all joints have been determined at this stage. The Joint 1 angle is
determined by the CPG rhythm, and the angles of the other joints are determined by the
outputs of the corresponding VNC units. Influenced by the feedback current, the joint-angle
oscillation controlled by the output of each VNC unit is the same as that of its anterior
joint angle, but with a certain phase lag; therefore, soon after the anterior rod turns, the
posterior rod is forced to turn in the same direction. In this manner, the rigid link system
has a sinusoidal wave shape, and the shape changes with time.

2.4. Navigation Control Circuit

The proposed model simulates chemotaxis behavior in C. elegans, utilizing parallel
strategies (i.e., klinokinesis and klinotaxis) to navigate based on information from a single
sensor. To develop our model, we first constructed sensory neuron models to process the
sensor concentration information. We then designed the navigation control circuit (i.e., the
head circuit) to make steering decisions in accordance with a concentration peak search. In
the designed circuit, the sensory neurons communicate directly with SMBD, SMBV, and
SMDV, which in turn connect to DM0 and VM0. Hereafter, the chemical concentration is
taken as a representative environmental variable.

2.4.1. Adaptive Sensory Neuron Models

Electrophysiological recordings [33] have shown the following characteristics of two
salt sensory neurons in C. elegans: (S1) ASEL and ASER in C. elegans act as ON and OFF
cells, respectively, in response to increases and decreases in salt concentration, respectively.
(S2) The ASEL/R voltage response peak increases with an increase of the up/down step
amplitude of concentration and tends to saturation. Following this characteristic, we
constructed ASEL and ASER models using a simple conductance-based approach.

The ASEL/R dynamics is expressed by the following ODE:

τASE ·
dVASEL/R(t)

dt
= −

(
VASEL/R(t)− Erest

ASE
)
− gASEL/R(t) ·

(
VASEL/R(t)− Eext

ASE
)
, (18)

where Eext
ASE is the ASEL/R reversal potential to the external input. Further, gASEL/R(t)

denotes the ASEL/R conductance at time t, which is determined by the concentration
information. All constant parameters of the ASEL and ASER neurons are equal.

For ASEL, gASEL(t) is derived as follows:




gASEL(t) = gmax · tanh
(

a·|∆C(t)|
1+b·CN(t)

)
, i f ∆C(t) > 0

τg · dgASEL(t)
dt = −gASEL(t), otherwise,

(19)

where gmax is the maximum conductance; τg is the delay time constant of the conduc-
tance; a, b > 0 are two constant coefficients; and ∆C(t) = C(t) − C(t− ∆t) represents
the concentration difference between two consecutive samples, where C(t) represents the
instantaneous concentration detected at time t and ∆t represents the sampling interval. The
hyperbolic tangent function (tanh(·)) ensures conductance saturation.

The sensory neurons of C. elegans can change their sensitivities to adapt to an environ-
ment in which they have lived for some time [44]; however, this characteristic has not been
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incorporated into previous navigation models inspired by C. elegans. In the present model,
CN(t), a term representing the historical average absolute concentration difference over the
past N s is introduced, which is expressed as follows:

CN(t) =
1
N
·

t

∑
t′=t−N

∣∣∆C
(
t′
)∣∣. (20)

This term allows sensory neurons to have an adaptive characteristic: (S3) sensory neurons
can adaptively modulate their response sensitivities to gradients according to the local gradient
amplitude detected over a recent period; the sensitivity is high when the amplitudes of the
recently detected gradient are small; and decreases when the recent gradient amplitudes are
large. Thus, the model can operate effectively over a wide range of gradients.

Consequently, when there is no concentration gradient, the ASEL conductance is
zero by default. When a positive gradient is detected, the conductance becomes positive,
activating ASEL; after the gradient disappears, the conductance value gradually returns to
zero and the ASEL voltage gradually returns to the resting potential (Eext

ASE = 0 mV here).
As regards ASER, the dynamic equations of its conductance gASER(t) obey a set of similar

equations to Equations (19) and (20), with the replacements L→ R and ∆C(t) > 0→ ∆C(t) < 0;
hence, ASER responds only to concentration decreases.

2.4.2. Klinotaxis Control Circuit

According to the state-dependent gating mechanism [17,34,35], klinotaxis in C. elegans
may depend on the alternating sensitivities to sensory inputs of neural outputs responsible
for controlling dorsal and ventral turns during sinusoidal locomotion. We designed the
klinotaxis control circuit based on this neural mechanism, in which SMBD and SMBV
receive sensory inputs and coordinate with DM0 and VM0 to regulate steering.

A negative bias bm
0 with a large absolute value is set for DM0 and VM0, and shifts

their outputs toward the lower saturation region owing to the nonlinear sigmoidal function
(see Equation (8)). Figure 3 shows the dynamics of the klinotaxis control circuit in the
absence of a sensory input. The antiphase voltages of SMBD and SMBV drive the activation
states of DM0 and VM0 to undergo antiphase oscillations, and the outputs of DM0 and
VM0 alternately saturate. During the half period when the SMBD/V voltage is small, the
D/VM0 output is saturated to zero, where the output is insensitive to the input. As such,
DM0 and VM0 form a state-dependent gating.
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solid-colored curves are the projections of three-dimensional (3D) curves onto each plane.

In the presence of sensory input and when a concentration increase/decrease is
detected during undulatory locomotion, the perpendicular component direction relative
to the instantaneous locomotion direction is the side with higher/lower concentration.
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Therefore, the model should steer in the same/opposite direction to the perpendicular
component of the instantaneous direction. This suggests that ASEL and ASER should
have antagonistic effects on the neural output; therefore, we set wSMB,ASEL < 0 and
wSMB,ASER > 0.

The above two designs ensure two key features of the klinotaxis behavior, respectively:
(f1) When the same concentration change is detected during the right and left sweeps,
opposite steering is induced (i.e., state dependence), and (f2) when concentration changes
with opposite polarity are detected at the same locomotion phase, opposite steering is
induced (i.e., sensory dependence).

Figure 4 shows how the control circuit yields a steering decision corresponding to
klinotaxis behavior when a concentration increase or decrease (an up or down step, re-
spectively) is detected at two different locomotion phases. The up/down step evokes a
continuous voltage response from ASEL/R over a certain timescale, which is transmitted by
motoneurons; this response yields a subsequent significant decrease/increase in the output
of the sensitive muscle and an almost constant output of the saturated muscle. Therefore,
the difference between the dorsal and ventral output decreases/increases, causing a de-
crease/increase in the bending angle of the subsequent undulatory locomotion, which has
a duration of approximately half a cycle. As a result, the trajectories are biased toward
the same/opposite side of the perpendicular component. Figure 5 shows the cumulative
changes in the subsequent outputs of DM0 and VM0 induced by applying an up or down
step at each locomotion phase. When a concentration step is detected at a phase with a
larger perpendicular component (such as phases c and e), the difference between the result-
ing cumulative differences of the dorsal and ventral muscle outputs is larger, indicating
that the steering amplitude is larger. For phases where the perpendicular component is
zero (phases d and f ), the difference between the resulting cumulative differences of the
dorsal and ventral muscle outputs is approximately zero; therefore, almost no steering is
induced. Furthermore, for the right sweep (phases between 0.5π and 1.5π), the change in
amplitude of ODM0 exceeds that of OVM0, and the reverse for the left sweep; that is, the
steering is reversed for the right and left sweeps. Consequently, the circuit can correct the
model direction according to gradients in the normal direction throughout the locomotion;
hence, the model steers to the side with the higher concentration.
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2.4.3. Klinokinesis Control Circuit

In the proposed model, steering mimicking klinokinesis behavior is mediated by an
SMDV motoneuron, the dynamic equation of which is shown below.

τSMDV ·
dVSMDV(t)

dt
= −

(
VSMDV(t)− Erest

SMDV
)
− wSMDV,ASER · f (VASER(t)) · (VSMDV − ESMDV,ASER), (21)

where wSMDV,ASER and ESMDV,ASER are the connection weight from ASER to SMDV and
the corresponding reversal potential, respectively.

In this study, the SMDV response voltage was designed to fit the logic function shown in
Figure 6 through the parameter settings. This approach is similar to that in the literature [29].
The klinokinesis-related steering depends on the negative temporal gradient; therefore, the
SMDV response voltage is a function of the ASER voltage. When a positive gradient is
detected, ASER has no sensory response (VASER = 0 mV). This implies that the model
is moving toward the increased concentrations and the model therefore does not need to
turn. Therefore, SMDV does not generate a voltage response (VSMDV = 0 mV) and does not
transmit a turning signal to VM0. However, when a negative gradient is detected, the ASER
response voltage activates SMDV, which in turn increases the activation state and output
of VM0 (see Equation (7)); thus, the model turns right. The greater the deviation between
the movement direction and direction of the concentration peak, the larger would be the
amplitude of the negative gradient detected and the stronger would be the extent to which
the model should correct the direction; accordingly, the SMDV voltage response should be
large to send a large turning signal. Therefore, the SMDV voltage amplitude is proportional to
that of the ASER voltage and tends to be saturated, enabling the model to correct the direction
according to the deviations from the peak direction while preventing oversteering.
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3. Simulation Results and Discussion

To verify the effectiveness of the proposed model, we tested its undulatory locomotion
behavior without sensory input and its autonomous search behavior under simulated
scenarios with concentration gradients. Then, we observed the shape of the link system
during the steering behavior and quantitatively analyzed the search trajectories. In the
simulation experiments, the model was assumed to have l = 0.1 mm and a constant-
velocity v = 0.25 mm/s based on data for real C. elegans. Except for the CPG parameters,
the parameters in the network circuit were determined by trial and error. All experiments
were conducted using Python 3. 8, and the ODEs were solved by Euler integration with a
0.01-s step.

3.1. Rhythmic Patterns of CPG and Joint Angles

Figure 7 shows the voltage dynamics of the CPG neurons, obtained from our sim-
ulations. Through the neuron interactions, the C3 neuron, as the CPG output neuron,
generated an approximate sinusoidal oscillatory voltage with a 4-s period and the same
positive and negative amplitudes. In the absence of sensory input, the oscillatory voltage
of C3 (processed and transmitted by the head network circuit) caused the Joint-1 angle
to vary periodically, being centered at zero with the same period, as shown in Figure 8a.
Figure 8b shows the changes in all joint angles over time. All joint angles exhibited the
same rhythmic oscillation pattern, but the oscillation of each joint (except Joint 1) had a time
lag of approximately Tosc/10 compared with that of its anterior adjacent joint. Through
backward propagation, the oscillation of the Joint-11 angle was almost synchronized with
that of Joint 1.
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3.2. Forward Undulatory Locomotion Behavior of Model

We observed the behavior of the model under the rhythmic pattern shown in Figure 8.
Figure 9a shows the positions and shapes of the rigid link system at 1-s intervals during
the first period. We initialized the t = 0 s position as (0, 0) and ϕ1(0) = 150◦. In terms
of spatial mode, θ1(0) = 0◦ and the joint angles from front to back increased, decreased,
and increased again, thereby shaping the link system as a sinusoidal wave, similar to the
real-world behavior of C. elegans. As time progressed, Joint 1 rotated periodically and
the model moved forward in a fluctuating pattern, forming a sinusoidal trajectory. The
posterior joints and, hence, the shape of the link system, varied accordingly. For example,
the model was transformed from the left sweep at t = 0 s to the right sweep at t = 1 s and
2 s. After one period (at t = 4 s), the trajectory drew a sine curve with a complete period
and the system shape returned to that at t = 0 s. The system wavelength during locomotion
was approximately 0.83 times the system length (measurements of real C. elegans on agar
fall in the range of 0.4 to 0.9 [43]). Additionally, from the trajectory in Figure 9b, the model
traveled straight with an undulating pattern in the absence of sensory input, because the
positive and negative swing amplitudes of θ1 were consistent (Figure 8a).
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3.3. Adaptive Responses of Sensory Neuron Models

ASEL was selected as an example to verify whether the responses of the sensory
neuron model met the desired characteristics given in Section 2.4.1. As shown in Figure 4a,
a concentration up step evoked ASEL depolarization, and its voltage trace exhibited a rapid
increase and subsequent slow decay. According to the design of sensory neuron models, the
ASEL response amplitude is influenced by the concentration difference ∆C(t) and historical
average absolute concentration difference CN(t) (refer to Equations (19) and (20)). Figure 10
shows the ASEL response voltage peak as a function of ∆C(t) and CN(t), from which the
following observations can be drawn:

• ASEL responded to concentration increases (∆C(t) > 0) only, as required in S1;
• When positive ∆C(t) was small, the ASEL response amplitude was small. The ASEL

voltage peak increased with the increase in ∆C(t) for any given CN(t) (Figure 10b,c).
This indicates that for the local scenario or the scenario with small gradient differences
(i.e., the model did not need to re-adapt to the new gradient range), the ASEL response
amplitude was proportional to the detected temporal gradient, as required in S2. On
this basis, the model can control the steering amplitude by comparing magnitudes of
the same-polarity gradients;
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• When CN(t) was small, the ASEL response amplitude was large, implying that ASEL
was highly sensitive to the gradient. The ASEL voltage peak decreased with the
increase in CN(t) for any positive ∆C(t) (Figure 10b,d). This indicates that the ASEL
response was adaptive to the local environment. When exposed to large concentration
gradients for a period, the sensory neurons became less sensitive to the gradients.
Thus, the characteristic in S3 was satisfied, allowing the model to operate effectively
across a wide range of gradients.
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In conclusion, the response dynamics of ASEL satisfied the desired characteristics.
Similar characteristics were observed for ASER, except that the sensory neuron responded
to concentration decreases as designed; these results are not reported here.

The responses of sensory neurons reflect only the temporal gradients scaled by CN(t).
Klinokinesis-related steering depends solely on the scaled temporal gradient, according to
the ASER response. Meanwhile, klinotaxis-related steering depends on the normal gradient,
i.e., gradients in the normal direction (Figure 2), according to the ASEL and ASER responses.
This is achieved via the state-dependent gating mechanism, that is, the klinotaxis control
circuit combines the network internal state with the sensory neuron responses to implicitly
extract the normal gradient information corresponding to the current locomotion phase
(see Section 2.4.2 for details).

3.4. Autonomous Search Behavior of Model

To verify that the proposed model can search for a concentration peak in a direction
close to the steepest gradient, we performed simulations with concentrations having
Gaussian distributions.
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First, we observed the model trajectories in a scenario where the concentration peak
position was (0, 0) and the maximum concentration was 50 mM. The model began moving
from different initial positions and with different initial orientations. For comparison, we
eliminated one strategy (klinokinesis or klinotaxis) from the proposed model, and the same
experiments were also performed for models utilizing a single strategy. The navigation
method of the model with klinotaxis eliminated is similar to that of the previous mod-
els [29]. Figure 11 shows several trajectories for the three models (two parallel strategies,
klinokinesis only, and klinotaxis only) obtained for the same initial conditions. Comparison
of these trajectories yielded the following observations:

• For various initial conditions, the three models moved forward in a sinusoidal fashion
and successfully reached the concentration peak; however, their search trajectories varied;

• As regards the search trajectories of the klinokinesis-only model (Figure 11b), for the
positive gradient direction, the model did not steer, even if there was a deviation from
the peak direction. The model corrected the locomotion direction by right turns only
when negative gradients were encountered; this behavior is consistent with that of the
previous models [29]. In other words, the model could only ensure that it was moving
close to the peak, but not that it was using a short search path. In such cases, a large
locomotion undulation is advantageous, because a large swing facilitates detection of
a negative gradient and adjustment to a more favorable direction. However, a large
swing also yields a longer path and may increase the search time;

• As regards the search trajectories of the klinotaxis-only model (Figure 11c), this model
continuously and gradually veered toward the side with higher concentration through-
out the undulatory locomotion. The orientation adjustment of the model was slightly
slower than that of the klinokinesis-only model for negative gradients (compare the
beginnings of trajectories whose beginning position are (20, −10) in Figure 11b,c).
Because the ASEL responses reduced the Joint-1 oscillation amplitude when the model
moved toward positive gradients, the model swing amplitude decreased; hence, the
search paths were shortened;

• Our model, which integrates both strategies, yielded significantly shortened search
paths (Figure 11a). Regardless of the initial position and orientation, the model reached
a peak in a direction close to the steepest gradient. If the search began in a direction
away from the peak, the klinokinesis strategy allowed the model to make sharp turns
to rapidly correct the direction. Meanwhile, the klinotaxis strategy allowed the model
to gradually optimize the locomotion direction according to the deviation between the
instantaneous and peak directions.
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Figure 11. Search trajectories of three models in a given scenario: (a) the model exploiting parallel
(klinokinesis and klinotaxis) strategies; (b) the klinokinesis-only model; and (c) the klinotaxis-only
model. The four trajectories of each model have different initial positions and orientations, and the
initial conditions were the same for all models. The color of each position in the scenario represents
the concentration of that position (marked by the color bar in (a)).
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Two metrics were used to measure the model search performance: the arrival rate and
SSR. The arrival rate is the ratio of the number of times the model reached the concentration
peak to the total number of experiments, where the peak point is defined as a circular area
within 1 mm of the maximum concentration point in the simulations. The SSR is the ratio of
the model search time to reach the concentration peak to that corresponding to the shortest
path (i.e., the linear distance from the initial position to the concentration peak position).

We then tested the three models in 10 scenarios with different gradient ranges. The
maximum concentration for each scenario varied from 50 to 1400 mM. In each scenario,
the models began moving from four different initial positions with 10 different initial
orientations; that is, each model was run 40 times per scenario for a total of 400 times across
all scenarios. Figure 12 shows the average search performance results obtained for the
three models in each scenario, and Table 1 lists the average results for the models across all
experiments. The following conclusions were drawn:

• The arrival rates of all three models were 1, indicating that the models reached the
concentration peaks in all experiments regardless of whether they used single or
parallel strategies. In addition, the standard deviations of the SSRs for all models were
very small, indicating that the models had robust search performance for different
scenarios and initial conditions;

• Compared with the models using a single strategy, the average SSR of the model using
parallel strategies was the smallest and close to 1, indicating that the search paths were
effectively shortened by simultaneous use of the two complementary strategies, and
that the search paths were approximated to the optimal paths although the model
moved along a waveform path instead of a straight line;

• The average SSR of the klinokinesis-only model was much larger; this was because
it did not optimize the path in the direction of the positive gradients and the swing
amplitude of the undulatory locomotion was large (see Figure 11b).
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Figure 12. Search performance of all models in scenarios with different concentration gradient ranges.
Each point represents the average SSR for the model searches, where the model started from different
initial positions and orientations.

Table 1. Search performance results for different models across all experiments (±standard deviation).

Strategies Arrival Rate Average SSR

Klinokinesis only 1.0 1.4922 ± 0.07309
Klinotaxis only 1.0 1.1642 ± 0.09253

Parallel
(klinokinesis &

klinotaxis)

Adaptive 1.0 1.0964 ± 0.05162
Non-adaptive (a = 15) 0.8 1.2474 ± 0.32701
Non-adaptive (a = 30) 1.0 1.4388 ± 0.36184
Non-adaptive (a = 45) 1.0 1.5720 ± 0.43820
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Additionally, to verify the role of dynamic adaptation in the sensory neuron models, we
conducted the same experiments on a non-adaptive model. In that case, the sensory neuron
models did not contain the normalization term with respect to CN(t). That is, the ASEL con-
ductance activation term in Equation (19) was modified to gASEL(t) = gmax · tanh(a · |∆C(t)|) ,
and the corresponding ASER term was similarly modified. The coefficient, a, took on three
different values. Comparison of the results presented in Figure 12 and Table 1 reveals that
the non-adaptive models had comparable search performance to that of the adaptive model
within a narrow gradient range, and that the search performance deteriorated seriously beyond
this range. For small a in particular, the response amplitudes of the sensory neurons in the
small-gradient scenario were too small, which may have caused a model search failure (i.e.,
the arrival rate was not 1). In contrast, the adaptive sensory neuron models could dynamically
adjust their response sensitivities to the gradient according to the gradient amplitude in the
preceding time period, so that the model maintained stable search performance in all scenarios.

3.5. Analysis of Search Behavior

The shape of the rigid link system during the steering induced by the navigation
behavior was observed. Figure 13 shows shapes at five different stages as the model
underwent an Ω turn (a sharp turn performed by C. elegans). When the head turned, the
rigid link system bent accordingly (i.e., at times t2, t3, and t4). The link system shape at
each stage was close to the corresponding trajectory shape. After the head returned to a
normal swing, the entire link system returned to the normal sinusoidal undulation (i.e., at
time t5). This suggests that the rigid link system could be shaped similarly to the body of a
real worm during steering.
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Figure 13. Shape of rigid link system during steering. The upper left diagram shows the model
trajectory, and the shapes of the rigid link system at the position indicated by the five colored points
are shown in the similarly colored sub-graphs. The pentagram represents the head tip (i.e., Node 1 of
the system).

Additionally, to verify that the navigation decisions generated by the model conformed
to the two chemotaxis strategies of C. elegans, we performed a quantitative analysis of all
trajectories of the models using klinokinesis only and klinotaxis only. First, we calculated
and statistically analyzed the relationship between the turning biases and normal con-
centration gradients in the klinotaxis-only trajectories; the result are shown in Figure 14a.
The average turning bias was positively correlated with the normal gradient, which is
consistent with the statistical results of biological experiments [3]. This suggests that the
proposed model mimicked the klinotaxis behavior of real-world C. elegans, steering to the
side with the higher concentration. We then calculated the relationship between the turning
bias and the temporal gradient of the concentration in the klinokinesis-only trajectories,
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as shown in Figure 14b. For positive gradients, the turning bias was almost zero. For
negative gradients, the turning bias was negative (i.e., the model turned right) and the
amplitude was proportional to the gradient amplitude. These results have the same trend
as biological results [3,4]. In addition, comparing Figure 14a,b, the steering amplitude
obtained for the klinokinesis behavior was greater than that for the klinotaxis behavior;
this is also consistent with biological findings [3].

Sensors 2022, 22, x FOR PEER REVIEW 19 of 23 
 

 

trajectories, as shown in Figure 14b. For positive gradients, the turning bias was almost 
zero. For negative gradients, the turning bias was negative (i.e., the model turned right) 
and the amplitude was proportional to the gradient amplitude. These results have the 
same trend as biological results [3,4]. In addition, comparing Figure 14a,b, the steering 
amplitude obtained for the klinokinesis behavior was greater than that for the klinotaxis 
behavior; this is also consistent with biological findings [3]. 

  
(a) (b) 

Figure 14. Quantitative analysis of search behavior strategies: (a) turning bias vs. Normal concen-
tration gradient of klinotaxis trajectories; and (b) turning bias vs. temporal gradient of klinokinesis 
trajectories. All gradients were linearly normalized to between -1 and 1. 

3.6. Discussion 
This section highlights the differences and advantages of our study compared with 

previous related research. Most existing navigation models inspired by C. elegans chemo-
taxis aim to realize the chemotaxis behavior and, on this premise, explore the underlying 
mechanisms from the biological perspective; therefore, less attention is paid on the search 
performance of models from an engineering perspective. In contrast, the purpose of this 
study is to replicate the complete chemotaxis behavior of C. elegans, including parallel 
chemotaxis strategies and body movement, in the context of one sensor, and to provide 
an easy-to-implement and good-performance model for worm-like robot navigation con-
trol. Table 2 lists the capabilities and properties of related navigation models in the litera-
ture and those of the proposed model, which are summarized as follows:  
(1) Previous models typically adopted one strategy to perform navigation tasks. In con-

trast, our model combines two strategies to improve the search performance; 
(2) Our model can realize the klinotaxis behavior with a single sensor by incorporating 

the state-dependent gating mechanism, whereas previous models that mimic klino-
taxis typically require two sensors to obtain the required spatial gradient; 

(3) Our model can realize body undulatory locomotion during steering by incorporating 
a proprioceptive mechanism, similar to the model in [29]. However, the structure of 
our model is simpler; 

(4) Our model exhibits adaptive sensitivity to the concentration gradient to cope with 
scenarios with various gradient ranges, a function which is absent in the previous 
models. 

  

Figure 14. Quantitative analysis of search behavior strategies: (a) turning bias vs. Normal concen-
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3.6. Discussion

This section highlights the differences and advantages of our study compared with
previous related research. Most existing navigation models inspired by C. elegans chemo-
taxis aim to realize the chemotaxis behavior and, on this premise, explore the underlying
mechanisms from the biological perspective; therefore, less attention is paid on the search
performance of models from an engineering perspective. In contrast, the purpose of this
study is to replicate the complete chemotaxis behavior of C. elegans, including parallel
chemotaxis strategies and body movement, in the context of one sensor, and to provide an
easy-to-implement and good-performance model for worm-like robot navigation control.
Table 2 lists the capabilities and properties of related navigation models in the literature
and those of the proposed model, which are summarized as follows:

(1) Previous models typically adopted one strategy to perform navigation tasks. In
contrast, our model combines two strategies to improve the search performance;

(2) Our model can realize the klinotaxis behavior with a single sensor by incorporating the
state-dependent gating mechanism, whereas previous models that mimic klinotaxis
typically require two sensors to obtain the required spatial gradient;

(3) Our model can realize body undulatory locomotion during steering by incorporating
a proprioceptive mechanism, similar to the model in [29]. However, the structure of
our model is simpler;

(4) Our model exhibits adaptive sensitivity to the concentration gradient to cope with sce-
narios with various gradient ranges, a function which is absent in the previous models.
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Table 2. Comparison of capabilities and properties of models in the literature and in our study (
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Additionally, in simulations, the proposed model exhibited realistic undulatory loco-
motion and a stable search for the shortest-path concentration peak over a wide range of
gradients. Moreover, the simulation results have demonstrated that the search performance
of our model combining two strategies is significantly better than that of models using a
single strategy.

For further comparison, we conducted a comparative experiment between our model
and the model in [29]; this model also uses a single sensor and incorporates undulatory
locomotion of the body, and the implementation approach of klinokinesis in our model is
similar to that of this model. We reproduced the model in [29] using the original logic function
and parameters. We tested our model against this model according to the scenario used
in [29]; the peak concentration and diffusion range in this scenario are very small. Figure 15a,b
show the search trajectories of our model and the model from [29], respectively. The trajectory
patterns were consistent with those shown in Figure 11a,b, respectively. Multiple experiments
were conducted with four different initial positions and 10 different initial orientations; the
average SSRs were 1.961 for the reproduced model and 1.486 for our model. The ratio of
average SSR of the reproduced model to that of our model was 1.32, which was close to the
results in Section 3.4; as shown in Table 1, the ratio of average SSR of the klinokinesis-only
model to that of our model was 1.36. In addition, the reproduced model needed to normalize
the concentration gradient in the scenario in advance, while, in practice, it is difficult to obtain
a priori knowledge of the gradient range of an unknown scenario.
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Figure 15. Search trajectories of our model (a); and the reproduced model (b) in the scenario used
in [29].
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4. Conclusions

To incorporate new biological methods into mobile-robot control, a neural network-
based autonomous search model with undulatory locomotion inspired by C. elegans was
proposed in this study. The developed model is the first to simultaneously mimic the body
locomotion and the klinokinesis and klinotaxis strategies of C. elegans with a single sensor,
to search for environmental variable peaks in directions close to the steepest gradients.
Multiple biological outcomes are incorporated into the model so that the simple structure
is sufficient to achieve complex C. elegans-like behavior. Specifically, the CPG and pro-
prioceptive mechanism of C. elegans are incorporated in the model to achieve undulatory
locomotion, as well as the electrophysiological characteristics of salt-sensory neurons and
the state-dependent gating mechanism; the latter is included to achieve klinotaxis behavior
in the case of a single sensor. In addition, klinokinesis behavior is realized by fitting a logic
function. In this study, the effectiveness and realness of the proposed model were demon-
strated through simulation experiments. The model exhibited stable search performance
across a wide range of gradients and outperformed models using a single strategy, while
exhibiting realistic body undulation.

In summary, the developed model constitutes a simple bio-inspired network control
prototype for worm-like navigation robots. In future work, extending the model by includ-
ing more navigation strategies will contribute to addressing possible problems in complex
scenarios, such as lack of gradient or local extremum. Additionally, the developed model
will be considered for application in actual robots.
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Abstract: The field of mobile robot (MR) navigation with obstacle avoidance has largely focused on
real, physical obstacles as the sole external causative agent for navigation impediment. This paper has
explored the possible option of virtual obstacles (VOs) dominance in robot navigation impediment in
certain navigation environments as a MR move from one point in the workspace to a desired target
point. The systematically explored literature presented reviews mostly between the years 2000 and
2021; however, some outlier reviews from earlier years were also covered. An exploratory review
approach was deployed to itemise and discuss different navigation environments and how VOs can
impact the efficacy of both algorithms and sensors on a robotic vehicle. The associated limitations and
the specific problem types addressed in the different literature sources were highlighted including
whether or not a VO was considered in the path planning simulation or experiment. The discussion
and conclusive sections further recommended some solutions as a measure towards addressing
sensor performance incapacitation in a robot vehicle navigation problem.

Keywords: mobile robot navigation; virtual obstacles; sensor incapacitation; environmental conditions

1. Introduction

Over the years, mobile robots (MRs) have been deployed to smartly assist humans in
routines requiring navigation intelligence in the work environment [1,2]. This has partly
been facilitated through the use of sensors. Sensor technology types coupled with guid-
ance, control, and navigation decision-making algorithms are primarily responsible for the
intelligence in MR path planning. The appearance of intelligence associated with MRs is
capable of failing when they are exposed to certain environmental conditions capable of
causing sensor malfunction. A few of these malfunctions can be seen in extreme weather
conditions such as overheating temperatures with extreme heat emissions (e.g., emissions
from groundwater in mines and gas leaks underground in the case of intelligent under-
ground mine rovers) [3] and in clustered domains such as collapsed buildings, cave-ins, or
fire outbreak in buildings in the case of search and rescue robots, among other scenarios.
According to [3], excessive heat, wind, and obstacles can hinder the functional ability
of the sensors hence, causing MRs to react abruptly. The literature has also confirmed
that an inertial measurement sensor is prone to failure when there is an electromagnetic
interference with its signal emissions [4]. The malfunctioning of a sensing device often
results in the display of false data, hence impacting the overall accuracy and behavioural
intelligence of a MR [5]. Another shortcoming associated with sensors in MRs is the little
scope of significant distance estimation and blind areas [6] which can be orchestrated in the
environmental domain. In the earlier review exercises [7–10] on 2D robot navigation (RN),
efficacy was mostly measured and assessed based on algorithmic strength.

As a result, the current review is focused on investigating RN incapacitation based
on environmental conditions that can impede the performance of sensors. The review
is anchored on the fact that sensory incapacitation, as with algorithmic ineffectiveness,
can hinder a robot from successfully navigating to a desired target point (TP). Sensory
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incapacitators in the context of this review are not visible, physical objects, but rather invis-
ible or unseen, virtual phenomena as earlier discussed. Potential sensory incapacitation
environments for robotic vehicles are often facilitated by magnetic fields, electric fields,
clustered and dark environments, environments infiltrated with nuclear radiations and
harmful gases, among others. Sensors that are negatively impacted in these environments
include but are not limited to LiDAR, ultrasonic, radar, GPS, and infrared sensors [11]. In
underground mining for instance, poor conditions such as dangle nano-size dust particles
and unclear lighting can significantly limit the performance of a vision sensor [12]. Sensory
incapacitation herein is not about mechanical or electrical fault on a mounted sensor, but
rather the impact of invisible, unseen, external environmental influences. These invisible
sensory incapacitating phenomena are referred to as virtual obstacles (VOs) in the context
of this research. VOs are neither visible to the human eyes nor the mounted sensory devices
on a MR; rather, they remain invisible and can affect the navigation of a robot towards its
desired TP by interfering with the transductive effectiveness of the sensor, hence resulting
in wrong metric output. There is a gap in exploring challenges associated with functionality
of sensors when MRs are deployed in environments containing VOs.

The review exercise herein is aimed at systematically analysing research works in
the field of 2D MR navigation with a view towards exploring how much attention was
attributed to understanding VOs as possible causes of sensing incapacitation which can
result in poor path planning (PP) as much as an ineffective algorithm. The review aims
to understand sensors, sensing incapacitation domains, and how these can influence 2D
domain navigating robot in navigation environments such as the underground domains
for mining activities, cluttered domains, harmful gaseous environments, and others. The
rest of the paper is divided into two additional sections, viz., Section 2, which addresses a
review of specific research works and their algorithmic and sensing incapacitation consid-
erations for effectiveness in robot PP, and Section 3, which focuses on discussions, findings,
recommendations, and future work.

2. Most Commonly Used Navigation Methodologies for MRs

Researchers have applied several methodologies in addressing the 2D RN problem
amidst workspace obstacles with considerations given mostly to validating the algorithmic
efficacy or inefficacy in the deployed workspaces. In these research works, some papers
only discussed the use of an algorithm without a mention of hardware utilisation, especially
when the validation process is simulation based. This review has focused on the most
commonly used classical and heuristic approaches in 2D robot path planning in both algo-
rithmic control and sensory incapacitation discussions regarding the efficacy or inefficacy
of PP in diverse navigation environments. In the reviewed papers [13–93], a noticeable gap
can be observed in the literature regarding information and discussions about the likely
environments where sensors may fail in the case of experimental validations which can
lead to the malfunctioning or inefficacy in the algorithmic outputs based on environmental
influences on the mounted sensors. The researchers very often, present discussions on the
efficiency of the deployed algorithms without referring to sensory incapacitation even in a
possible medium to high-risk experimental environment. Mostly, these algorithms were
validated on simulation platforms, with a few validated experimentally using real dynamic
obstacles (DOs) and real static obstacles (SOs) environment, with a mention of VOs which
can act as sensor incapacitators.

2.1. An Overview of Algorithms and Navigation Approaches

The following Sections 2.1.1 and 2.1.2 have presented a review of various path planning
research works in a bid to investigate if any of these algorithms were deployed to address
possible VOs as much as the real obstacles in a robot navigation workspace. In addition, a
mild classification was carried out to be sure which algorithms were deployed in a strictly
simulation environment, an experimental environment, or a hybrid environment. Very
often, researchers in this problem domain are mostly concerned about the efficacy of their
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algorithms in the presence of physical workspace obstacles. Hence, this section is not
seeking to compare the efficacy of algorithms or their degree of sensorial independence in a
robot navigation mission (i.e., if an algorithm can be used independent of a sensor or not).

2.1.1. Classical Approaches

The following classical techniques have been reviewed in this section: Simultaneous
Localisation and Mapping (SLAM), as well as some commonly used algorithmic solu-
tions that can either be fused into the concept of SLAM to facilitate its localization and
mapping features or be independently deployed and used directly as standalone control
algorithms in the navigation and control of 2D robotic vehicles. These include Light Detec-
tion and Ranging (LiDAR), Vector Field Histogram (VFH) and the Artificial Potential Field
(APF)/Virtual Force Field (VFF).

Simultaneous Localisation and Mapping (SLAM)

SLAM is one of the most used methodologies that addresses the path planning prob-
lem via the construction of a workplace map with no prior knowledge of the environment
by a navigating robot. It further localises the MR within the map without any human
involvement, as discussed by Taheri and Xia [13]. It was further asserted by Taheri and
Xia [13] that using low-level sensors makes utilising SLAM technique difficult. As a re-
sult, SLAM is associated with observation errors associated with sensors and caused by
the changes in physical factors of the environment. Moreover, other researchers [14–21]
conducted research works on SLAM for RN with real obstacles; however, there was no
mention of VOs in their research. A need to investigate and explore possible navigation
inefficiencies or inaccuracies from the point of view of sensor impairment cannot be overem-
phasised. In [12], the author implemented SLAM in underground mining and found that
the challenges were directly linked to VOs such as dust and illumination challenges for
the sensors. However, there is less literature that addresses SLAM efficiency where the
different types of sensors are capable of malfunctioning due to VOs orchestrated by en-
vironmental influences. Despite SLAM being an effective path planning technique, the
thinking of the future in experimental path planning is in both algorithmic and sensory
assessment. For instance, will an incorrect localisation of the navigating robot always be
linked to algorithmic deficiency? Can there be some temporary or permanent perceptory
conditions resulting from the environment hence contributing to the poor signal prompting
and incorrect readings? The same thinking applies to mapping. Could it be that some
areas within the workspace are not accessible by the sensors due to unseen influences?
Inaccuracies resulting from virtual conditions can be a source of navigation blind spots and
are seen as posing critical challenges to a navigating robot especially when all attention is
on the physical obstacles and visual environment.

Light Detection and Ranging (LiDAR)

LiDAR is an eminent dynamic distance detecting path planning sensor system which
is utilised as a range estimation sensor which consistently sends a beam of light and utilises
pivoting radiations at a steady rate. It also registers the distance between the object and itself
with high precision. LiDAR improves outcomes when combined with different sensors [22].
In [12], the author highlighted that vision sensors are greatly restricted by VOs, which may
affect the success of LiDAR beams in the underground mines. Over the years, researchers
have explored this technique to make more useful improvements. Ghorpade et al. [23]
proposed an efficient OA model using the 2D LiDAR for an MR to accomplish proper
constant execution and improve the precision of OA focused on independent mechanical
frameworks intended for military applications. However, the paper does not address the
limitations that the sensors used have in this environment.

Madhavan and Adharsh [24] used a deliberate methodology to dodge impediments
on most minor expense work guidelines, which are limited to simulation environment with
static obstacles. Additionally, Baras et al. [25] used LiDAR and Raspberry Pi to address
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navigation problems while the autonomous vehicle avoided impediments. The results show
that the approach can navigate safely in less luminous environments. Future adjustments
might anticipate impediments to movement and may more efficiently explore in a dynamic
workspace. Similarly, Dong et al. [26] and Ren Yee et al. [27] used real-time experiments
in the presence of static and dynamic obstacles. However, it could be assumed that the
experiments were conducted in a workspace that is void of VOs capable of resulting in the
failure of the mounted sensors, as the algorithm was effective without failing. However,
as a remote sensing device that uses laser pulse-like lighting beams for high resolution
maps in surveillance, among other uses, deploying the LiDAR system in, for instance, an
underground facility for autonomous path planning in a mining environment may result
in visibility related challenges. LiDAR sensors facilitate robotic vehicles to visualise the
ambient environment by generating and measuring several data points, and then creating
a dynamic navigation map of the static or changing environment. The LiDAR sensor has
a deficiency in measuring distances through interceptions such as heavy rain, snow, and
fog. In addition, the LiDAR sensor measurement capability can be adversely impacted
by contamination from sunlight during the day as pointed out in Atmospheric Chemistry
and Physics, European Geosciences Union [28]. When LiDAR receives scattered radiations
from the Sun, they easily become saturated, following that the solar radiation has so much
influence on a diverse set of wavelengths. In general, the performance of LiDAR depreciates
as the weather conditions deteriorates. How all of these culminate into a negative impact
on a robot and to what degree remains an open investigation to be carried out.

Vector Field Histogram (VFH)

The literature from [29–36] highlight that there is a gap in applying this technique in
environments with VOs, because even in the real world it is not considered that experiments
involving sensors can malfunction and cause wrong algorithmic outputs. The VFH was
pioneered by Borenstein and Koren [29]. The technique was very robust and efficient.
Ulrich and Borenstein improved the VFH in 1998 [30] and 2000 [31]. The technique was
developed to diminish the restriction of potential-field strategies (i.e., robot motions while
dodging the obstacles) [32]. Yim and Park [33] used VFH in RN with SOs. Kumar and
Kaleeswari [34] implemented the VFH in a robot with DOs and SOs. Future work will
consider the use of a potential field strategy. Alagic et al. [35] proposed a modified VFH
technique in an MR framework. Their VFH calculation gave local movement arranging
and obstruction evasion dependent on ready sensor estimations. Results demonstrated
the VFH calculation’s capability to explore RN prior to the TP evading impediments. The
disadvantage with this technique is that it gives mediocre results for local PP regarding
travel time and distance covered. Diaz and Marin [36] improved on the algorithm proposed
by [30].

Artificial Potential Field (APF)/Virtual Force Field (VFF)

In [37–51], the application of the VFF technique even when mixed with other ap-
proaches was limited to user-friendly environments. Hence, there is still insufficient
literature where the efficiency and effectiveness of this approach is tested in the presence
of VOs. The APF PP innovation previously proposed by Khatib is on a fundamental level
appropriate for constant control [37]. APF is also known as VFF, which Borenstein and
Koren [38] pioneered. The drawback is that it falls into the local minima trap (LMT) and
neglects the TP. The essential thought of APF is to make the robot move using forces such
that obstacles produce a repulsive force (RF), and TP delivers an attractive force (AF) on a
robot. The paper [39] provides crucial functions in understanding APF. Chiang et al. [40]
used APF-stochastic reachable strategy for PP in complex workplaces. Extended work by
Malone et al. [41] for PP was in a highly intricate and dynamic workplace with imped-
iments. Sudhakara et al. [42] investigated OA and navigation of a wheeled robot using
amended APF in unstructured environments. Results showed that the enhanced APF
may be adequately used in the direction arranging of wheeled robots and can be applied
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progressively in real-time situations. The improved APF calculation adjusts well in specific
and complex conditions with a short travel time. Lu et al. [43] and Lin et al. [44] algorithm
dependent on the improved APF to tackle the issue of local optimum.

A discrete artificial potential field (DAPF) for robot PP introduced by Lazarowska [45]
utilises the idea of an APF and alters it for use in a discrete setup space. Results showed
that the DAPF calculation is fit for finding a crash-free way for a robot in dynamic and
static conditions. The advantage of this is the close ongoing activity, which makes it helpful
for practical applications. Moreover, a new pattern in RN research is the use of a hybrid
approach (HA) to accomplish better outcomes. Shin and Kim [46] pioneered a HA that
combines positioning risk (PR) and the APF. They designed a flowchart that mapped out
the methodology premised on the use of a temporary goal (TG). e The algorithm is triggered
when the MR does not reach its TP because of LMT caused by obstacles. Results from
their paper showed that the proposed PR-APF generated more than 90% success paths
while the APF failed to generate up to 50% success paths which constitutes a significant
limitation for the unenhanced APF method. Another HA is the hybrid virtual force field
(HVFF) approach. This approach integrates the virtual force field (VFF), virtual obstacle
concept (VOC), and the virtual goal concept (VGC). The HVFF flowchart as presented in
their paper showed a few navigations rules. One of these is such that if a MR is obstructed
by either a lengthy or concave shaped obstacle, the VFF, VOC and VGC should be triggered
otherwise implement VFF and VGC else, implement the VFF procedure only. Olunloyo
and Ayomoh [47] proposed the HVFF approach to take care of PP in both static and
dynamic obstacles scenario [48–51]. The methodology endeavours to impersonate human
knowledge by recognising a nearby local minimal trap causative obstacle as an entity,
while continuing away from the trap towards the target point. Despite advances with
this technique, there is still limited investigation on this algorithm in environments that
can impact on the functionability of sensors. Moreover, an outlook where magnetic field
forces can interfere negatively with this algorithm has not been explored especially in
underground mines, as the APF group of methods are directly linked to attraction and
repulsion of forces from the workspace objects.

2.1.2. Heuristic Approaches

This section presents a review of the following techniques considering their deploy-
ment in a VO navigation environment: Fuzzy Logic (FL), Neural Network (NN), Particle
Swarm Optimisation (PSO), Genetic Algorithm (GA), Ant Colony Optimisation (ACO),
and Firefly Algorithm (FA). In [52–93], these algorithms were effectively deployed for
RN in presence of DOs and SOs; however, they never experimented for environments, as
discussed in Section 1.

Fuzzy Logic (FL)

FL was introduced by Zadeh [52] and extensively used in robotics engineering to
guide robots. FL control is appropriate for minimal effort robots that do not need highly
complex routes and are motivated by human thinking. The behaviour-based FL by Qing-
yong et al. [53] includes OA. Jaradat et al. [54] investigated RN in a dynamic environment
where they integrated FL with APF. The disadvantage is the LMT, where the robot becomes
caught while sitting tight for an obstacle. Pandey et al. [55] developed an FL for taking care
of the PP issue in the presence of various states of SOs to discover crash freeway. Outcomes
showed that the technique empowers the MR to arrive at the objective without impacting.
In the future, an improvement will be by streamlining with the assistance of optimisation
algorithms. In [56,57], improvements have been made on FL, but the experiments do not
consider environments with VOs, but rather only DOs and SOs. Batti et al. [58] extended
the use of FL for OA in labyrinth workspace. Similarly, Mohanty et al. [59] proposed
a new model called Takagi-Sugeno FL developed to address PP via an enhanced wall
following approach. However, in their paper, the approach was limited to the static
obstacles problem. Moreover, in [60] an improvement of FL was proposed by applying it in
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a complex environment that involves more than two DOs. Moreover, in discussions of the
papers reviewed for FL, there are insufficient details on the application of this method in
underground mines. The capability of FL in MR is still limited to environments that do not
consider toxic environments for sensors (i.e., VOs). An exploration of the effectiveness of
this algorithm in different environments remains to be investigated.

Neural Network (NN)

NN is a considerable plan of equivalent spread planning segments related to graph
geology. It has filled quickly in recognising objects and obstacle discovery in a picture.
Recently, the issue of recognising obstacles in the RN system has been essential [61]. The
popular methodology used to solve this problem in the past years has been convolutional
neural networks (CNN) [62,63]. Chi and Lee [64] used various principles that were actu-
alised for the control technique to keep away from the obstacle effectively. The proposed
framework with the NN control approach has illustrated the adequacy of dodging the
obstacles. It needs further exploratory examination in other environments with VOs such
as underground mining. Moreover, in [65–68], researchers continued to explore the NN
technique with environments consisting of DOs and SOs. Wei and Ye [69] proposed an
obstacle avoidance (OA) framework dependent on GA-supported OIF-Elman NN. In their
paper, they showed three layers that make up the design of an OIF-Elman network structure.
The layers include the input, hidden and output layers. A context layer is also included
in the hidden layer. The context layer inside the hidden layer is the primary feedback
mechanism of Elman The framework presents a versatile navigation procedure for robots
to evade impediments in a workspace. Results presented, showed that the OIF-Elman
network is quite successful with OA. This approach was applied in an indoor environment
in order to avoid the effect of illumination. Zhang et al. [70] focused on improving NN for
RN in complex environments. The simulation results showed considerable efficiency and
effectiveness despite the change of different conditions such as weather conditions and
road changes. However, the application is not tested in extreme weather conditions where
sensors can malfunction.

Particle Swarm Optimisation (PSO)

PSO is broadly utilised in versatile RRs tending to RR planning and confinement issues
in the obscure workplace [71]. Examination of different methodologies and results showed
that the FL matched with PSO provides the ideal outcomes in separation voyages [72].
Atyabi et al. [73] introduced an extension of the PSO in robotics to improve performance.
The research considered the environment with SOs and DOs. Results showed potential
under the conditions considered; however, the method cannot work fully in robotics. This
is very limiting to further investigation for environments with VOs, as they can negatively
impact sensors. Future work will examine the effectiveness of this method under real
world applications. Another technique named the PSO-IAC [74] is used to determine the
objective of approaching the OA issue for a 6◦ of freedom controller of the home assistance
robot. Simulation outcomes demonstrated that the PSO-IAC calculation gives the quickest
combination capacity. The suggested control plan can cause the controller of the home
assistance robot to show up at the objective situation with and without impediments.
However, home environments do not consist mainly of VOs, as it is an environment that is
safe for humans compared to underground mining environment.

Meerza et al. [75] built up a PSO-based robot PP calculation that impacts shirking
capacity for SOs and DOs. They will test their calculation in a certifiable workplace in
the future. Alaliyat et al. [76] proposed powerful PP calculations dependent on PSO to
manage the complex dynamic workplace. Outcomes indicated that without any earlier
information about a workplace, the robot could accomplish its objective of evading SOs
and DOs. In the future, they plan to acquire a super robot that can learn and retain the
circumstances during its navigation. It’s not clear if VOs would form part of the future
consideration for their proposed real experiment. Tian et al. [77] deployed the use of remote
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sensing in finding multiple robots and impediments, which utilised an improved counterfeit
clever calculation. One limitation to the method is the calculation of the union speed to
improve the worldwide pursuit execution and failure to manage the circumstance that
numerous robots may collide. In the future, a hypothetical exploration of PSO calculation
and obstruction evasion calculation to manage different testing improvement issues will
be studied. The noticeable gap in discussion of PSO means that there are insufficient
details when it comes to its effectiveness in environments with obstacles that makes sensors
malfunction. Underground mining is an environments where this technique still needs to
be explored for effectiveness and efficacy.

Genetic Algorithm (GA)

GA is a known technique-based enhancement instrument that follows the guideline of
hereditary qualities and joint determination [78]. Application of this technique to software
engineering was introduced first in 1975 [79]. The utilisation of GA for the versatile RR
issue is significant in the static workplace. Reproduction results introduce the investigation
as they were within sight of a polygonal impediment. Xiao et al. [80] embraced the strategy
to accomplish the objective of the route. Many scientists have given less attention to the
sight of a DO in an uncertain workplace [81]. To improve results in robot PP, numerous
scientists have joined in on using GA and other techniques to obtain a HA [7]. Patle
et al. [82] state that in the future, the work may stretch to cause the crossbreed regulator
for the ongoing open-air workplace usage. Germi et al. [83] tended to alter the first
potential field calculation to better the exhibition of the calculation in dynamic conditions.
Choueiry et al. [84] introduced a survey of the PP enhancement issue and a calculation
for robot PP in a static environment using GA as a device to discover number of steps
while staying away from obstacles. The designed flowchart of the proposed approach
took into consideration, the workspace grid size, initial and target positions and obstacles
distribution all serving as inputs. If the MR does not reach the TP the number of steps
in the GA algorithm are increased. Lopez-Gonzalez et al. [85] utilised GA to accomplish
distance-based development by using two unique sorts of chromosomes. Aghda and
Mirfakhrae [86] consolidated the GA-FL to improve directing. In the quest to improve GA,
this approach is incompetent in dynamic environments [50], but produces good outcomes
in simulation. However, as this approach has not been tested in environments with VOs,
this is open for future investigation.

Ant Colony Optimisation (ACO)

ACO applies in the robot system field, particularly the PP issue [87]. ACO resolves
this issue to determine the mechanical flying-vehicle course for a war zone [88]. Zhangqi
et al. [89] proposed improvement measures and applied GA to the advancement and
arrangement boundaries of the essential ACO. Simulation outcomes showed that the im-
proved ideal path length is essentially not exactly the fundamental ACO. Wang et al. [90]
improved APF first, implementing a strategy for a piecewise capacity of fascination poten-
tial that suggests that the robot can, without much of a stretch, slam into the obstruction.
The limitation of this approach is that the model contains numerous boundaries which
makes it difficult to tune. Even the flowchart design depicts this limitation by having a lot
of decision blocks. Researchers will discover the relationships between these boundaries in
the future. Yi et al. [91] produced dynamic change data as indicated by the contrast between
the best way of the past age and the current ACO cycle. Ma et al. [92] addressed the auto-
mated submerged vehicle two-dimensional independent PP issue in the climate influenced
by sea momentum and obstacles. Results showed that this calculation could rapidly locate
the ideal global arrangement where the unpredictable workplace is. However, there is no
clear indication on the impact of these conditions on the sensors. Zhao [93] proposed the
ideal way of anticipating whether robots are dependent on ACO by contemplating the
connected writing and effective methods of robot PP. Results showed that the model could
wisely pick a robot with DO evasion efficiently.
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3. Discussion

It is clear that there is a noticeable gap in the literature in respect of VOs, as there
is insufficient consideration, information, or discussions about such environments where
sensors can fail, or inefficacy of an algorithmic output based on environmental influences
on mounted sensors. The researchers very often present discussions on the efficiency of
the deployed algorithms without referring to sensory incapacitation even in a possible
medium- to high-risk experimental environment. Mostly, these algorithms were validated
on simulation platforms with a few validated experimentally using real dynamic obstacles
(DOs) and/or real static obstacles (SOs) environment.

In as much as some measures appear to be in place regarding the combating of VOs in
both open and obscured environments for MRs, for instance LiDAR generally uses various
filtering methods to filter dust while real industrial robots generally have redundant sensors
to process information to ensure their stable operation under VO conditions etc., this paper
recommends a concept premised on holistic path planning. Holistic path planning should
integrate VOs thinking as much as real obstacles thinking in robot navigation problems
and solution proffering. While purposeful experiments on robot navigation to examine
the efficacy of general sensorial incapacitation due to extreme or obscured environmental
factors are still lacking in the literature (see introductory sections), future research will
present robot vehicle navigation limitations based on sensorial incapacitated experiments.
The experiments will utilise the same set of robotic vehicles in two different navigation
environments depicting different (i.e., normal and extreme) environments over different
trials with the conduct of statistical significance of the difference in navigation output over
time. In addition, it is recommended that in a traditional robot navigation task, when
obstacle avoidance and goal reachability becomes challenging, a robotist should verify
the functionality of the onboard sensors, power unit, and actuators. If all are in a good
operational condition, VOs capable of incapacitating the onboard sensor types may likely
be in play and should be verified. This troubleshooting recipe can be of a greater assistance
in extreme or obscured environments involving robot vehicle navigation.

Furthermore, following that VOs can interfere with or influence both the internal and
external workings of nearly all sensor devices through the interception of both receptive and
emitted sensorial signals, leading to wrong computation and misleading robot navigation
decision, an additional measure of solution to address a possible external influence can
revolve around the integration of a machine learning assisted algorithm for sensors response
accuracy and interpretation of propagated signals. Based on this proposed solution, each
time a sensor emits and receives a feedback signal from the external environment based
on the obstacles along its navigation path, the machine learning algorithm should be able
to compare the most recent and similar emitted signal from its historic emissions and see
if the disparities between the receptive signals for the same or similar emitted signals are
significantly different. In the case of a significant difference, the robot can send out a beep
sound, which is an indication of a possible external interference to its sensorial computation.
However, regarding internal distortions caused by VOs, a sensor-proof capability, which
would protect the limitations as explained in previous sections, can go a long way in
securing the hardware.

Key Findings from This Research Are as Presented Below

Few papers have addressed the RN problem in the presence of VOs. Virtual obstacles
are not visible to both the mounted sensors and the human eyes. However, these can affect
the navigation of a robot towards the desired TP by interfering with the operations of the
sensors, resulting in wrong sensorial output metrics. Examples of experimentally unverified
VOs include magnetic field influence on sensors (infrared sensors), extreme temperature
effect on sensors (freezing temperature, boiling temperature), as well as infrared sensors,
electric field effect on sensors, and so forth.

Occasionally, the effect of frictionless navigation environment on the navigating wheels
of a robot can also impede the display of intelligence in target point attainment. Even
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though frictionlessness is not a VO in the context of an obstruction, it serves as a virtual
impedance to a MR in its bid to accurately reach and stop at a desired target point. Also, in
a noisy, clustered environment, the performance of a sonar sensor can be subject to some
form of impedance. Furthermore, a vision system-controlled navigation can be influenced
by the degree of illumination a robot is exposed to.

Furthermore, additional significant limitations with some of the methodologies pre-
sented in the literature is the processing speed and performance in complex nonconven-
tional navigation environments as a result of certain environmental impediments. Future
work in this field will present specific sensory experimental quantitative information
covering different VO prone environments as earlier presented.

4. Conclusions

This paper has explored the problem of VOs in robot navigation obstruction in certain
extreme or obscured navigation environments as a robot travels from one point to another
within the workspace. Based on this, the current review has investigated robot navigation
incapacitation resulting from environmental conditions that can hamper the performance
of a sensor. The review is premised on the fact that sensory incapacitation, just as with
algorithmic ineffectiveness, can hinder a robot from successfully navigating to a desired
position in a given workspace. Sensory incapacitators in the context of this review are
not orchestrated by visible, physical objects, but rather by invisible, virtual phenomena as
earlier presented. Furthermore, based on the possible influence of VOs on the navigation in-
telligence of robots due to sensory incapacitation, the robust and all-encompassing concept
of SLAM, as previously discussed in this review, is considered to be more skewed towards
algorithm effectiveness in the control of a robot than the tracking of a robot’s hardware
incapacitation, nevertheless with a generic consideration given to onboard hardware units.
It is quite obvious that there are not any categoric considerations for sensors incapacitation
based on VOs (see Durrant-Whyte and Bailey [17]; Taheri and Xia [13]). Based on the
above, it is suggested that the broad concept of SLAM be extended or modified to address
both “algorithm effectiveness and sensors signal” (emission and reception) monitoring and
evaluation, especially when a robot is navigating in an obscured environment. This can
be achieved by deploying a modified concept of SLAM with the acronym “SLAAAM”,
representing “Simultaneous Localisation Assessment Adaptation and Mapping”. The as-
sessment component in “SLAAAM” which is the first “A”, would address the disruption in
sensory signal emission and reception and prepare the robot for “adaptation” which is the
second “A”. The assessment would be carried out by way of a swift analysis and evaluation
of receptive signals. The deployment of the assessment process will require an onboard
vision sensor with both (obstacle proximity response measurement and imaging capability)
and a non-vision sensor with (obstacle proximity response measurement capability).

Usually in an operational environment, a vision sensor will scan the ambient environ-
ment to generate images of physical obstacles while also keeping record of the measured
obstacle’s distance during the simultaneous mapping process. Similarly, the non-vision
sensors (e.g., infrared or sonar sensors) would intermittently send out and receive sensory
signals for proximity distance measurement from obstacles in the ambient environment.
This assessment process is such that when the processed receptive signal by the vision
and non-vision sensors are somewhat misaligned, not necessarily with each other but with
their default sensing attributes when they sense obstacles (for instance, a vision sensor
capturing no obstacle image yet exhibiting some sensory receptive features in response to a
non-existent obstacle), may arguably signify the presence of a sensory interceptive medium
which is obviously a virtual obstructive medium.

Even though different sensors are expected to react to different VOs based on their
operational mode, their respective incapacitative response would remain the same for every
VO they are prone to. For instance, a vision sensor will often not be able to produce any
captured image when a virtual rather than a physical obstacle is present within its sensing
zone. However, the non-vision sensors such as infrared and sonar will have their emissions
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intercepted and a false receptive response signal propagated. Finally, the adaptation
component of “SLAAAM” would prompt the robot to respond to an unusual obstacle
scenario as depicted by the assessment process above, hence causing the affected sensing
devices to be triggered off intermittently as the robot withdraws from the affected sensory
incapacitated mapped region to avoid a partial or absolute damage of the incapacitated
sensing device. The sensors are left in the normally “on” status and immediately the robot
is out of the mapped incapacitated region.

Table 1 presents a summary of pathplanning methodologies discussed above and
their taxonomy covering: Types of obstacles, obstacle geometry, approach used, results,
year, TP and number of robot(s) deployed. Additionally, the taxonomy breakdown covers
references where the algorithms were tested for effectiveness and deployment ommited the
ones used just for the literature.

Table 1. Analysis of various path planning and navigation algorithms amidst obstacles.

Ref No Techniques

Environment
Consists of Technique Used as Result

Year

Obstacle(s)
Shape

Target
Point (TP) Robot

SOs DOs VOs Stand
Alone Hybrid SR RTR Cv Cx Single

TP
Multi

TP
Single
Robot

Multi
Robot

Classical Approach

[12]

SLAM

Yes No Yes Yes No No Yes 2019 Yes Yes Yes No Yes No

[13] No No No Yes No No No 2021 No No No No No No

[14] Yes No No Yes No No Yes 2014 Yes Yes Yes No Yes No

[15] No Yes No No Yes Yes No 2014 No Yes Yes No Yes No

[16] Yes Yes No Yes No No Yes 2016 Yes Yes Yes No Yes No

[17] Yes No No Yes No Yes Yes 2006 Yes Yes Yes No Yes No

[18] Yes Yes No No Yes No Yes 2018 Yes Yes Yes No Yes No

[19] Yes Yes No No Yes Yes No 2021 Yes Yes Yes No Yes No

[20] Yes No No Yes No Yes Yes 2021 No Yes Yes No Yes No

[21] Yes No No Yes No Yes No 2021 No Yes No No Yes No

[23]

Light Detection
and Ranging

(LiDAR)

Yes No No Yes No Yes No 2017 No Yes Yes No Yes No

[24] Yes No No Yes No Yes No 2019 No Yes Yes No Yes No

[25] Yes No No Yes No No Yes 2019 Yes Yes Yes No Yes No

[26] Yes Yes No Yes No Yes Yes 2020 Yes Yes Yes No Yes No

[27] Yes Yes No Yes Yes No Yes 2020 Yes Yes Yes No Yes No

[29]

Vector Field
Histogram (VFH)

Yes No No Yes No No Yes 1991 No Yes Yes No Yes No

[30] Yes No No Yes No No Yes 1998 No Yes Yes No Yes No

[31] Yes No No Yes No Yes Yes 2000 No Yes Yes No Yes No

[32] No Yes No Yes No No Yes 2012 No Yes Yes No Yes No

[33] Yes No No Yes No Yes No 2014 No Yes Yes No Yes No

[34] Yes Yes No Yes No No Yes 2016 Yes Yes Yes No Yes No

[35] Yes Yes No Yes No Yes No 2019 No Yes Yes No Yes No

[36] Yes Yes No Yes No No Yes 2020 No Yes Yes No No Yes

[37]

Artificial
Potential Field
(APF)/ Virtual

Force Field (VFF)

Yes No No Yes No Yes No 2014 No Yes Yes No Yes No

[38] Yes No No Yes No No Yes 1989 Yes No Yes No Yes No

[39] Yes No No Yes No No Yes 1985 Yes Yes Yes No Yes No

[40] Yes Yes No No Yes Yes No 2015 Yes Yes Yes No Yes No

[41] No Yes No No Yes Yes No 2017 Yes Yes Yes No Yes No

[42] Yes No No Yes No Yes No 2018 Yes No Yes No Yes No

[43] Yes No No Yes No Yes No 2020 No Yes Yes No Yes No

[44] Yes No No Yes No Yes No 2020 Yes Yes Yes No Yes No

[45] Yes Yes No Yes No Yes Yes 2019 No Yes Yes No Yes No

[46] Yes No No No Yes Yes Yes 2021 Yes Yes Yes No Yes No
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Table 1. Cont.

Ref No Techniques

Environment
Consists of Technique Used as Result

Year

Obstacle(s)
Shape

Target
Point (TP) Robot

SOs DOs VOs Stand
Alone Hybrid SR RTR Cv Cx Single

TP
Multi

TP
Single
Robot

Multi
Robot

[49] Yes No Yes No Yes Yes No 2009 Yes Yes Yes No Yes No

[48] No Yes Yes No Yes Yes No 2009 Yes Yes Yes No Yes No

[49] No Yes No No Yes Yes No 2010 Yes Yes Yes No Yes No

[50] Yes No No No Yes Yes No 2011 Yes Yes Yes No Yes No

[51] Yes No No No Yes Yes No 2021 Yes Yes Yes Yes Yes No

Heuristic Approach

[53]

Fuzzy Logic (FL)

Yes No No Yes No Yes No 2009 Yes Yes Yes No Yes No

[54] Yes Yes No No Yes Yes No 2012 No Yes Yes No Yes No

[55] Yes Yes No Yes No Yes No 2014 No Yes Yes No Yes No

[56] Yes Yes No Yes No Yes Yes 2016 Yes Yes Yes No No Yes

[57] Yes No No Yes No Yes Yes 2018 No Yes Yes No Yes No

[58] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No

[59] Yes No No Yes No Yes Yes 2020 Yes Yes Yes No Yes No

[60] Yes Yes No Yes No Yes No 2021 No Yes Yes Yes Yes Yes

[64]

Neural
Network (NN)

Yes No No Yes No No Yes 2011 No Yes Yes No Yes No

[65] Yes No No Yes No Yes No 2014 No Yes Yes No Yes No

[66] Yes No No Yes No Yes No 2004 Yes Yes Yes No Yes No

[67] Yes Yes No Yes No Yes No 2019 No Yes Yes No No Yes

[68] Yes No No Yes No No Yes 2020 Yes Yes Yes No Yes No

[69] Yes No No No Yes Yes No 2020 Yes Yes Yes No Yes No

[70] Yes Yes No Yes No Yes No 2020 Yes Yes Yes No Yes No

[73]

Particle Swarm
Optimisation

(PSO)

Yes Yes No Yes No Yes No 2010 No Yes Yes No Yes No

[74] Yes Yes No Yes No Yes No 2016 No Yes Yes No Yes No

[75] Yes Yes No Yes No Yes No 2018 Yes Yes Yes No Yes No

[76] Yes Yes No Yes No Yes No 2019 Yes Yes Yes No Yes No

[77] Yes Yes No Yes No Yes No 2021 Yes Yes No Yes No Yes

[83]

Genetic
Algorithm (GA)

Yes Yes No Yes No Yes Yes 2018 No Yes Yes No Yes No

[84] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No

[85] No Yes No Yes No Yes Yes 2020 No Yes No Yes No Yes

[86] Yes Yes No No Yes Yes No 2020 No Yes Yes No Yes No

[89]

Ant Colony Opti-
misation (ACO)

Yes No No Yes No Yes No 2011 Yes Yes Yes No Yes No

[90] Yes No No No Yes Yes No 2018 Yes Yes Yes No Yes No

[91] Yes No No Yes No Yes No 2019 Yes Yes Yes No Yes No

[92] Yes Yes No No Yes Yes No 2020 No Yes Yes No Yes No

[93] Yes Yes No Yes No Yes No 2020 Yes Yes Yes No Yes No

Cv = Concave, Cx = Convex, SR = Simulation Result, RTR = Real Time Result.
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Abstract: With the development of artificial intelligence technology, the behavior decision-making of
an intelligent smart marine autonomous surface ship (SMASS) has become particularly important.
This research proposed local path planning and a behavior decision-making approach based on
improved Proximal Policy Optimization (PPO), which could drive an unmanned SMASS to the target
without requiring any human experiences. In addition, a generalized advantage estimation was
added to the loss function of the PPO algorithm, which allowed baselines in PPO algorithms to be
self-adjusted. At first, the SMASS was modeled with the Nomoto model in a simulation waterway.
Then, distances, obstacles, and prohibited areas were regularized as rewards or punishments, which
were used to judge the performance and manipulation decisions of the vessel Subsequently, improved
PPO was introduced to learn the action–reward model, and the neural network model after training
was used to manipulate the SMASS’s movement. To achieve higher reward values, the SMASS could
find an appropriate path or navigation strategy by itself. After a sufficient number of rounds of
training, a convincing path and manipulation strategies would likely be produced. Compared with
the proposed approach of the existing methods, this approach is more effective in self-learning and
continuous optimization and thus closer to human manipulation.

Keywords: decision-making; deep reinforcement learning; Nomoto; PPO; SMASS

1. Introduction and Background

Since the 1970s, the combination of robot technologies and vehicles has led to the
emergence of drones, unmanned vehicles, and unmanned ships [1]. Among them, a ship
sailing on the sea is seriously affected by wind and surges. The decision-making and path
planning of intelligent ships have been considered significant academic problems. Ships are
generally under-actuated due to their large tonnage, slow speed, and relatively weak power.
The autonomous navigation of ships has to meet huge inertia and complex navigation rules;
therefore, the requirements for smart ships are much higher than those for unmanned vehi-
cles. A ship operator faces many challenges, including those associated with the dynamic
environment, insufficient power, and uncertainties in perception. According to the report
of the International Maritime Organization, more than 80 percent of maritime accidents are
caused by misunderstandings of the situation and by human error in decision-making re-
sulting from failure to comply with the International Regulations for Preventing Collisions
at Sea (COLREGs). Therefore, artificial intelligence for ship navigation is considered very
difficult, and its core functions are path planning and intelligent decision-making.

Ship intelligent decision-making can be divided into two types: path planning and
obstacle avoidance. One is the traditional model-based obstacle avoidance algorithm. For
many years, the A* algorithm was the dominant approach in relevant research. A Swiss
boat named Avalon was capable of generating a persuasive path to a given destination
and avoiding both static and dynamic obstacles based on the A* algorithm [2]. Several
heuristic function values of the current path grid are compared by the A* algorithm to
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gradually determine the next path grid, which can accurately avoid obstacles. However,
when there were multiple minimum values, the optimal path could not be searched by
the A* algorithm. Sudden obstacles would make the ship fall into the local optimum.
Zhang et al. improved the Rapidly Exploring Random Tree (RRT) algorithm so that the
convergence rate of the algorithm was significantly improved [3]. However, the path
was randomly selected by the RRT algorithm, and the probability of encountering narrow
channels was low. It was not appropriate to navigate in a narrow channel or to face multiple
static obstacles. An ant colony optimization (ACO) and a clustering-based algorithm were
proposed to settle the path planning of the USV by Liu et al. [4]. The improved ant colony
optimization was used to adaptively select the appropriate search range, and the smoothing
mechanism was used to adjust the path to achieve global path planning. An improved
artificial potential field method (APF) was proposed by Shaorong Xie et al. The problem of
USV falling into the unreachable local optimal target could be improved by this method,
but there were still problems such as the poor accuracy of the algorithm and falling into
local optimum in complex environments [5]. The gravitational field and repulsion field
functions were required to be set separately; thus, this method does not apply to any
environment. A new artificial potential field (APF) method was improved by Hongguang
Lv et al. Different from the method proposed by Shaorong Xie et al., the new modified
repulsive potential field function and the corresponding virtual force were introduced in
the algorithm [6]. Appropriate functionality and security requirements were added to
the corresponding virtual force to ensure compliance with the International Regulations
for Preventing Collisions at Sea (COLREGs). However, with the complexity of modern
maritime systems, a complete collision avoidance model is difficult to establish in many
path planning and navigation problems. In most model-based algorithms, uncertainty is
difficult to predict in practical applications.

Another is a model-free reinforcement learning algorithm that learns optimal strategies
by interacting with the environment. At present, the development of artificial intelligence
technology, especially reinforcement learning, provides a new possibility to satisfy the
requirements of the path planning of intelligent ships. Reinforcement learning has at-
tracted extensive attention in recent years, which emphasizes the learning of agents from
the environment to behavior mapping and seeks the most correct or best action decision
by maximizing value functions. A ship path planning algorithm based on Q learning
was proposed by Chen C. et al. Combined with the ship mathematical model, the USV
could obtain a higher reward value by learning the action-value function [7]. However,
the reinforcement learning algorithm had an insufficient perception of the external envi-
ronment, and the action state information was difficult to be searched. In addition, the
experimental environment was too simple, without considering the decision problem of
complex multi-obstacles. An algorithm was proposed by Everett et al. that generates an
appropriate collision-free path even when the number of dynamic obstacles is changed by
using Long short-term memory (LSTM) [8]. A Deep-Q-Learning (DQN) algorithm linking
perception and decision-making was proposed by Jingwei Zhang et al. The algorithm
could acquire external images by depth camera information and extracts image features
as inputs of DQN [9]. Decision problems can be solved by this algorithm, but the use of
a depth camera and convolution network makes the calculation huge. Moreover, when
sailing in harsh sea conditions, the depth camera could not be effectively put into use, and
the method would be not convincing. A DQN-based path planning obstacle avoidance
algorithm was proposed by Haiqing Shen et al. The algorithm could be successfully simu-
lated with human experience and International Regulations for Preventing Collisions at
Sea [10]. However, the DQN algorithm has an overestimation problem, and an unmanned
surface vessel (USV) is prone to action selection error in a more complex environment. An
algorithm combining Deep-Q-Learning (DQN) and the artificial potential field (APF) was
proposed by Lingyu Li et al., which was used for USV path planning [11]. This algorithm
made deep reinforcement learning more purposeful in the early stage of training and had a
faster convergence effect. However, the method based on Q-learning seemed inadequate
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in solving the problem of continuous action. A Multi-Experience Library Framework
was proposed by Zijian Hu et al. for Unmanned Aerial Vehicle (UAV) autonomous motion
planning. The algorithm generated expert experience by model predictive control and
simulated annealing [12]. When applying this algorithm to a complex unknown simulation
environment constructed based on the parameters of the real UAV, the training experiment
results showed that the novel Deep reinforcement learning (DRL) algorithm led to a perfor-
mance improvement exceeding twenty percent, as compared to the state-of-the-art Deep
Deterministic Policy Gradient (DDPG). DDPG has a slightly better decision-making effect
than value-based learning algorithms in complex environments. Choosing the maximum
probability action in each step under continuous action can make calculation much simpler.
A new quantitative risk assessment method was proposed by Do-Hyun Chun et al. In
the calculation of collision risk (CR), the distance closest point of approach (DCPA) and
time closest point of approach (TCPA) were determined by ship length and ship speed [13].
This algorithm could take the collision risk assessment CR as one of the inputs of the
neural network, but the experiment was too simple to generalize. An obstacle avoidance
method based on the combination of PPO and the Line of Sight (LOS) guidance system was
proposed by Luman Zhao et al. This algorithm could ensure that the ship moves along the
predetermined path and avoids collision with the moving ship. Due to the limitation of
the LOS algorithm, this experiment cannot avoid collision in a complex environment [14].
An improved DQN algorithm was proposed by Xinli Xu et al. The network weight was set
by them to slowly approach the current value; in other words, the target network would
approach the evaluation network gradually [15]. It could reduce the correlation between
the current value function and the target value function to some extent. In addition, the
reward function of the algorithm made the USV alter different angles, and the reward value
was also different. However, the algorithm based on value learning was still overestimated,
and the problems of static obstacles and generalization were not considered in the experi-
ment. A distributed sensor-level collision avoidance policy for multi-robot systems was
proposed by Pinxin Long et al., which could directly map raw sensor measurements to an
agent’s steering commands in terms of movement velocity [16]. This experiment verified
the learned sensor-level collision avoidance strategy in various simulation scenarios and
conducted a comprehensive performance evaluation. This experiment also demonstrated
that the learned policy could be well generalized to new scenarios that did not appear in the
entire training period, including navigating a heterogeneous group of robots and a large-
scale scenario with 100 robots. Pinxin Long et al.’s experiment had a strong generalization
ability, which is worth learning.

Based on the above research, an intelligent smart marine autonomous surface ship
(SMASS) decision system based on an improved PPO algorithm was proposed in this paper.
The main contributions of this article were as follows:

• An intelligent SMASS decision-making system based on the Proximal Policy Opti-
mization (PPO) algorithm was proposed in this paper, which could make the critic
network and action network converge faster.

• Through the Gazebo simulation environment, sensors such as laser radar and naviga-
tion radar were used to obtain external environmental information. Intelligent SMASS
could make complex path planning decisions in different environments. After the
training, if unknown obstacles are placed on the map, the intelligent ship could still
successfully avoid obstacles.

• The Nomoto model was brought into the training of this experiment. Training the
model could meet the needs of practical engineering.

The rest of this paper is organized as follows. Section 2 introduces the composition
of the intelligent SMASS system, ship mathematical model, and COLREGs. Section 3
introduces a deep reinforcement learning algorithm and improved Proximal Policy Opti-
mization (PPO) algorithm. Section 4 mainly introduces the reward function setting and
network setting. Section 5 mainly introduces the design of the Gazebo simulation and the
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analysis of experimental results. Section 6 is the summary of this paper and the future
research planning.

2. Intelligent Ship Decision System and Ship Mathematical Model

In building a complete set of the intelligent smart marine autonomous surface ship
(SMASS) decision-making systems, it was necessary to clarify the components of the system,
the functions of each part, and the relationship between different parts [17]. There are three
parts included in the intelligent smart marine autonomous surface ship (SMASS) decision-
making system, namely, the sensing part, the decision-making part, and the control part, as
shown in Figure 1.
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2.1. Intelligent Ship Decision System

The sensing part is divided into the SMASS’s own state information and navigation
environment information. The sensing part is mainly composed of navigation radar, laser
radar, GPS, shaft power sensor, bathymeter, speed sensor, and AIS. The SMASS’s own state
information includes the SMASS’s course, speed, position, oil consumption remaining,
propeller speed, and hull structure strength [18]. Navigation environment information
includes other ship heading speed TCPA, DCPA, hydrological information, velocity, channel
depth, meteorological information (temperature, humidity, wind direction, wind speed),
electronic chart information, navigation mark distribution, etc. In this paper, laser radar
and positioning systems were used in the environmental perception of intelligent SMASS.
The decision part includes path planning before sailing and obstacle avoidance during
self-service navigation. In this paper, improved PPO algorithms were used for SMASS path
planning and obstacle avoidance. The algorithm has the following advantages:

• With autonomous learning ability, the convergence rate was faster than the common
calculation method.

• The trained intelligent SMASS navigation system could obtain strong generalization,
which would solve different scene problems. For example, it can solve the problem
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of path planning for SMASS sailing in broad waters, narrow waters, and restricted
waters. In local path planning, it could successfully avoid unknown obstacles that do
not appear on the electronic chart.

• The path planning problem and SMASS decision problem could be solved simultane-
ously. SMASS could find the optimal path to the target point through known obstacle
information. Under the unknown environment, the SMASS could detect the position
of obstacles by laser radar and accurately avoid the obstacles.

2.2. Ship Mathematical Model

The mathematical model of ship motion is significant for ship motion simulation. The
ship motion model can be divided into the linear model and the nonlinear model. The
linear model is mainly used to optimize or train the control simulator, neural network
decision-making, and controller design [19]. To describe the motion of a ship, a ship motion
coordinate system was established, as shown in Figure 2.
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where 11a , 12a , 21a , 22a , 11b , and 21b  are the ship maneuverability parameters [20]. 
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Figure 2. Ship motion mathematical model.

In this figure, G represents the position of the center of gravity of the ship, XOY
indicates the hydrostatic water plane, O is the origin, XOG represents the projection of the
center of ship gravity on the X and Y axes, respectively, ψ is the heading of the ship, and δ
indicates the ship rudder angle. Considering only the ship lateral drift velocity v and yaw
angular velocity r, the ship motion mathematic model could be expressed as:

[ .
v
.
r

]
=

[
a11
a21

a12
a22

][
v
r

]
+

[
b11
b21

]
δ (1)

where a11, a12, a21, a22, b11, and b21 are the ship maneuverability parameters [20]. Ignoring
the lateral drift velocity v in Equation (1), the response equation of the ship steering rudder
to yaw motion can be written as:

T1T2
..
r + (T1 + T2)

.
r + r = K0δ + K0T3

.
δ (2)
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where T1, T2, T3, and K0 are maneuverability indexes. Their values could be estimated
by T1T2 = 1/(a11a22 − a12a21), T1 + T2 = (a11 + a22)/(a12a21 − a11a22), T3= b21/(a21b11 −
a11b21), and K0 = (a21b11 − a11b21)/(a11a22 − a12a21). Then, the Laplace transform of
Equation (2) could be carried out to obtain the transfer function of the ship steering control
system, as shown in Equation (3):

G(s) =
ψ(s)
δ(s)

=
K0(1 + T3s)

s(1 + T1s)(1 + T2s)
(3)

For ships with large inertia, the dynamic characteristics are the most important in
the low-frequency range [21]. Thus, let the following formula show that s = jw→ 0 , and,
ignoring the second and third-order small quantities, the Nomoto model can be obtained by:

Gϕδ(s) =
ψ

δ
=

K0

s(T0s + 1)
(4)

The differential equation form of the Nomoto model is written as shown in Equation (5):

T
..
ψ +

.
ψ = Kδ (5)

The value T represents the coefficient ratio of the inertia moment to the damping
moment [22]. A large T value indicates a large inertia moment and a small damping
moment during ship motion. The value K actually refers to the angular velocity value of
yaw motion by each rudder angle. The large K means a large yaw moment and a small
damping moment produced by the rudder.

Taking the ship as a rigid body, when the ship steers at any rudder angle δ, the yaw
rate is r. The above formula can be seen as the yaw motion equation of the ship when it
steers. When the ship turns, altering her course, at any rudder angle, assuming that the
initial conditions are t = 0, δ = δ0, and r = 0, the yaw angle at any time can be calculated
by KT Equation (6):

r = Kδ(1− e−t/T) (6)

Ship yaw angle r is the derivative of ψ with respect to time. As shown in Equation (7).

ψ = Kδ0(t− T + T · e−t/T) (7)

There are two advantages of using the Nomoto model in this experiment:

• In the low-frequency range, the spectrum of the Nomoto model is very close to that of
the high order model.

• The designed controller has low order and is easy to implement.

2.3. COLREGs

To solve SMASS path planning and obstacle avoidance problems based on DRL,
maritime collision avoidance rules should be considered. COLREGS is a maritime traffic
rule that is stipulated in the high seas and all navigational waters connected to the high
seas to ensure the safety of ship navigation, preventing ship collision. Therefore, intelligent
ship decision-making systems should also act in accordance with COLREG to ensure the
safety of maritime navigation [23]. According to the COLREGS, the relative position of the
two ships is divided into four obstacle avoidance strategy regions, such as in Figure 3.

The four collision avoidance rules involved in COLREGS Chapter 2 Regulation 13 to
17 are as follows. The corresponding collision avoidance actions are displayed in Figure 3.
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(1) Head-on

The encounter situation refers to the opposite or nearly opposite course (where the
course usually refers to the bow direction of the ship rather than the track direction) of the
two mobile ships under the condition of mutual seeing, and there is a risk of collision. The
opposite direction means the relative azimuth of the target ship (TS) and own ship (OS) is
in [355◦, 360◦] or [0◦, 5◦]. Two ships should alter course port through passing the starboard
side of another ship. The head-on situation is displayed in Figure 3a.

(2) Overtaking

The overtaking situation means that the speed of the rear ship is greater than that of
the front ship. When the own ship chases the target ship in a certain direction 22.5 degrees
behind the target ship, the target ship is a stand-on ship, and the own ship should give way
to the target ship. The overtaking situation is displayed in Figure 3b.

(3) Crossing give-way

When two ships meet and there is a risk of collision, the relative position of the target
ship and the own ship is in [5◦, 112.5◦]. In this case, the own ship should give way to the
target ship. According to COLREGs, the own ship should alter her course to starboard to
avoid a collision. The crossing give-way situation is displayed in Figure 3c.

(4) Crossing stand-on

When two ships meet and the relative position of the target ship and the own ship
is in [247.5◦, 355◦], there is a risk of collision. In this case, the ship is stand-on, and the
target ship should give way to the own ship. If the target ship does not take avoidance
action timely, the own ship should take action to avoid the collision. The crossing stand-on
situation is displayed in Figure 3d.

3. Improved PPO Algorithm
3.1. Deep Reinforcement Learning

At present, artificial intelligence technologies have developed rapidly; especially
after AlphaGo defeated Lee Sedol, the nine-stage chess player, reinforcement learning

564



Sensors 2022, 22, 5732

has risen rapidly to provide new possibilities for intelligent ship path planning. The Q-
learning algorithm could obtain the best behavior decision-making through the optimal
action-value function [24]. However, the marine environment is too complex, and a ship
sailing on the sea faces many uncertainties. The Q-table could seem inadequate in solving
complex problems.

The development of deep reinforcement learning is greatly accelerated by neural
networks [25]. With the change of the agent’s external environment, through the backprop-
agation of neural networks, the weights of neural networks could be updated to simulate
complex functions. Deep reinforcement learning algorithms are divided into two categories:
value learning and strategy learning.

Reinforcement learning based on value function is represented by Deep Q-Learning
(DQN), and the problem of correlation and non-static distribution could be solved by the
experience replay method. The current Q value is generated by the evaluation network,
and the target Q value is generated by the target network [26]. The experience replay
stores the transfer samples (st, at, rt, st+1) from each time step agent that interacts with the
environment into the replay memory unit. Then, small-batch data in the memory library
are selected for training, but the DQN algorithm is not accurate in estimating the action
value Q, so there are some errors. Suppose DQN’s estimate of the real action is unbiased,
then the error is noise with an average of 0. q = max

a
Q(s, a; ω) is maximized based on

DQN action a and used to compute TDtarget. Adding noise to the action-value function will
make q ≥ max

a
(St+1, a, ω). Obtaining the Q value at the next moment is an overestimation.

Although noise does not change the mean value, it will make the maximum value of Q
greater than the maximum value of x. Expectations for the maximum of Q will also be
greater than the maximum value of x. Updating DQN estimates at time t with TDtarget also
means updating itself with itself. Uniform overestimation does not make DQN a problem
with action selection because each action overestimation is the same agent and will still
choose to score high action. However, non-uniform overestimation will make DQN have
problems in the action selection. Double Deep Q-Learning (Double DQN) was proposed
by Google DeepMind to solve the overestimation problem of DQN [27]. Although the
estimation made by Double Deep Q-Learning is relatively small, its overestimation of the
maximum value cannot be solved fundamentally. This is why reinforcement learning based
on value learning was abandoned in this paper.

The Actor-Critic (AC) algorithm is representative of strategy learning. There are
two neural networks that exist in the AC algorithm. One is used to interact with the
environment to select actions, and the other is used to evaluate the quality of actions, and
the network parameters are updated by gradient descent. The AC algorithm is good but
difficult to converge. Compared with random strategies, deterministic strategies adopt
different action probabilities at the same state when solving continuous action problems,
but the maximum probability is only one. Double actor neural networks and double critic
neural networks were used in the Deep Deterministic Policy Gradient (DDPG) algorithm
to improve the convergence of neural networks [28]. The algorithm can only take action
with the maximum probability; however, by removing the probability distribution, the
algorithm will be much simpler. In 2017, a Proximal Policy Optimization (PPO) algorithm
was proposed by OpenAI [29]. The Policy Gradient algorithm is very sensitive to the step
size, but it is difficult to select the appropriate step size. If the difference between the new
and old strategies is too large, it is not conducive to learning. The problem of uncertain
learning rates in the Policy Gradient algorithm could be solved by the PPO algorithm; if
the learning rate is too large, then the learned strategy is not easy to converge. On the
contrary, if the learning rate is too small, it will take a long time. The proportion of current
and previous strategies could be used in the PPO algorithm, which would limit the update
range of the current strategy, so that the Policy Gradient algorithm would not be so sensitive
to a slightly larger learning rate.
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3.2. Improved PPO Algorithm

The current and previous strategy networks were used by the traditional PPO algo-
rithm to improve the uncertainty of the learning rate, but they still had a large variance.
A generalized advantage estimate was proposed by John Schulman et al. to improve the
TRPO algorithm [30], which can also be used to improve the PPO algorithm.

First, the application of baseline in strategy learning should be understood. The
baseline could be regarded as a function b independent of action a.

EA∼π

[
b · ∂ ln π(A|S;θ )

∂θ

]
= b · EA∼π

[
∂ ln π(A|S;θ )

∂θ

]

= b ·∑a π(a|S; θ ) · ∂ ln π(a|s;θ )
∂θ

= b ·∑a π(a|s; θ ) · 1
π(a|s;θ ) ·

∂π(a|s;θ )
∂θ

= b ·∑a
∂π(a|s;θ )

∂θ

= b · ∂∑a π(a|s;θ )
∂θ

= 0

(8)

where a is the action taken for the agent, s is the current state, and θ is the network parameter.
The essence of the policy function is the probability density function. Taking Equation (9)
to the equality of policy gradient update will obtain the advantage function.

∂Vπ(S)
∂θ = EA∼π

[
∂ ln π(A|S;θ )

∂θ ·Qπ(S, A)
]

= EA∼π

[
∂ ln π(A|S;θ )

∂θ · (Qπ(S, A)− b)
] (9)

Although the gradient is not affected by the value of b, it affects the Monte Carlo
approximation. When b approaches Qπ , the variance of the Monte Carlo approximation
will decrease, and the convergence rate will improve. The value of b is Vπ(St), where
Vπ(St) is independent of action a, and then the advantage function is obtained. The action
value function can be seen as the conditional expectation of the return value Ut to st, at,
and the state value function can be seen as the conditional expectation of the action value
function to st; thus, the equation can be obtained:

Qπ(st, at) = ESt+1,At+1 [Rt + γQπ(st+1, at+1)]

= ESt+1

[
Rt + γEAt+1(Qπ(st+1, at+1))

]

= ESt+1 [Rt + γVπ(St+1)]

(10)

Vπ(St) = EAt [Qπ(St, At)]

= EAt

[
ESt+1 [Rt + γVπ(St+1)]

]

= EAt ,St+1 [Rt + γVπ(St+1)]

(11)

At this time, the Monte Carlo approximation of Qπ and Vπ can be obtained:

Qπ(st, at) ≈ rt + γVπ(st+1) (12)

Vπ(st) ≈ rt + γVπ(st+1) (13)

Because the value b in the dominant function is Vπ(st), it is a definite value, so it is not
necessary to use the Monte Carlo approximation. The unbiased estimation of the strategy
gradient can be expressed as:

g(at) = ∂ ln π(at |st ;θ )
∂θ (Qπ(st, at)−Vπ(st))

≈ ∂ ln π(at |st ;θ )
∂θ · (rt + γVπ(st+1)−Vπ(st))

≈ ∂ ln π(at |st ;θ )
∂θ · (rt + γVπ(st+1; ω)−Vπ(st; ω))

(14)
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We can define ηV
t = rt + γVπ(st+1)−Vπ(st) and subtract the K− step advantage from

the baseline function, then we can obtain the following equation:

Ĝ(∞)
t =

∞

∑
k=0

γkηV
t+1 = −V(st) +

∞

∑
k=0

γkrt+1 (15)

Therefore, the generalized advantage estimation can be obtained. The formula is
as follows:

Ĝt = (1− λ)(Ĝ(1)
t + λĜ(2)

t + λ2Ĝ(3)
t + . . .)

= (1− λ)(ηV
t + λ(ηV

t + γηV
t+1) + λ2(ηV

t + γηV
t+1 + γ2ηV

t+2) + . . .)

= (1− λ)
(

ηV
t

(
1

1−λ

)
+ γηV

t+1

(
λ

1−λ

)
+ γ2ηV

t+1

(
λ2

1−λ

)
+ . . .

)

=
∞
∑

k=0
(γλ)kηV

t+1

(16)

The loss function of the PPO algorithm is:

LPPO(θ) = E
[
min(µt

θGt, clip(µt
θ , 1− ε, 1 + ε))Gt] (17)

µt
θ =

π(at|st )

πold(at|st )
(18)

In this equation, µt
θ is the ratio of probability. The ratio of the probability is that the

strategy before updating takes a specific operation in a specific state to the probability that
the current strategy takes the same operation in the same state. The ratio is between 1− ε
and 1 + ε according to the range of the super parameter ε. Therefore, there is a great change
between the previous strategy and the current strategy. The PPO loss iteration is shown
in Figure 4.
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4. Neural Network Design and Reward Function
4.1. Network Construction and Input and Output Information

State information is input by the actor network and critic network in the PPO algorithm.
Two-dimensional plane coordinates of the ship (xp, yp); rudder angle and rudder angular
velocity of the operating system (δ, δ1); and 24 laser radar vector lines (χ1, χ2, χ3 . . . χ24)
were used as the state information of the environment.

To avoid collisions with other ships, the navigator should adjust the direction of their
own ship to ensure the navigation safety of ships in designated waters. The collision
avoidance method of an autonomous ship can be created through a sufficient learning
process by simulating the appropriate decision-making skills that the navigator could
acquire over a long period of experience [31]. In this experiment, the output data are the
rudder angle of the SMASS. The course and path of the SMASS would be affected by the
change of rudder angle. The altering course to port is defined as negative, and altering
course to starboard is defined as positive. The action space of this experiment is [−45◦,
−25◦, 0◦, 25◦, 45◦]. The obstacle avoidance process of the SMASS is shown in Figure 5.
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Figure 5. The update process of the SMASS collision avoidance algorithm.

In this paper, the deep neural network was used to fit the policy function π. Among
them, the actor network adopted a two-layer full connection layer with 128 neurons. The
Relu activation function was used and the network input was state S. The obtained expecta-
tion and standard deviation were put into the Gaussian distribution, the probability density
function was obtained using the strategy distribution, and the probability corresponding to
different action a was the output. The critic network adopted two fully connected layers
with 128 neurons and the Relu activation function. The network input was state S, the
output of the actor selected action score. The PPO algorithm and environment interaction
process are shown in Figure 6.
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Figure 6. Flow chart of the PPO algorithm and environment interaction. Input is state vector S,
output is ship steering angle δ. Both critic network and actor network are connected by a linear layer
with 128 neurons using the Relu activation function.

The probability obtained by the previous strategy was optimized with other relevant
parameters, and the difference in the new_Actor network was obtained. The obtained
difference was put into the new_Actor, so that the strategy of the global network is new, and
the strategy of the regional network is old. The critic network output is the value V, using
discount reward, value subtraction, and generalized advantage estimate optimization to
obtain the advantage function. Then, the gradient descent algorithm was used to calculate
the error and update the network parameters. The proportion of the current and previous
strategies was multiplied by the advantage function. One part was directly multiplied,
and the other part was multiplied after 1− ε and 1 + ε, according to the range of the super
parameter ε. The minimum value of the two was taken, and then the error was calculated.

To break the correlation of data and ensure the convergence of policy functions, an
empirical playback memory can be set to store the historical motion state. Under each time
step t, the intelligent ship entered a new state after interacting with the environment, and
the updated state was put into the memory. In the process of the neural network training,
a small batch of state samples were extracted from the memory to ensure the stability of
the training.

4.2. Reward Function

According to the task of SMASS path planning and obstacle avoidance, the reward
function was set to the following five parts: goal approach reward, yaw angle reward, target
point reward, obstacle avoidance reward, and COLREGs reward as shown in the Figure 7.
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Figure 7. Calculation process of the reward function.

(1) Goal approach reward

The primary task to solve the intelligent SMASS path planning was to make the
SMASS reach the target position. The goal approach reward value was set as follows:

R_d = −λg ·
√
(xp − xg)

2 + (yp − yg)
2 (19)

where xp and yp are the coordinates of the current position of the ship, xg and yg are the
coordinates of the target point, and λg is the weight of the target proximity reward.
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(2) Yaw angle reward

When the SMASS is planning the path, the heading angle should be taken as an
important indicator. As shown in Figure 8, the connection between the current position of
the ship and the position of the target point should be regarded as the shortest distance,
and the SMASS motion direction should be along this direction as far as possible. The Yaw
angle reward function is set as follows:

R_yaw = tr · λa · 2(εyaw)2
√
(xp−xg)

2+(yp−yg)
2

(20)

where yaw is the yaw angle between the SMASS and the target point; tr is the reward
coefficient of the yaw angle, which indicates that the reward values obtained from different
angles are different; λa is the weight of the yaw angle reward; and ε is the adjustment
parameter of the reward value and distance.
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(3) Target point reward

In order to get the SMASS to the target point, it is necessary to set a reward at the
target point position. At the same time, the SMASS should also receive a negative reward
when it collides with obstacles during navigation. The reward value is set as follows:

R_g =

{ −500 collision
2000 goal

(21)

(4) Obstacle avoidance reward

The laser radar detection range of the SMASS is a circle, launching 24 detection lines
from the center of the circle; R_radar is the radar radius, and the reward is 0 when the
static obstacle is outside the radar radius. As shown in Figure 9, S1 is set as the safe
distance between the SMASS and the obstacle. When the distance between the SMASS and
the obstacle is less than S1, a negative reward will be obtained. The reward value is set
as follows:

R_ob =





0 ob > R_radar
−5 ob < R_radar, ob < S1
1 ob < R_radar, ob > S1

(22)
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where cλ  is the weight of the COLREGs reward function. 
Therefore, the calculation process of the total reward function is shown in Figure 7 
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Figure 9. The process of obstacle detection by SMASS laser radar.

(5) COLREGs reward

In order to make the trained SMASS behavior satisfy COLREGs, a COLREGs reward
function was introduced. The distance between SMASS and the target point was designed
in the COLREGs reward.

While SMASS needs to keep heading, the rudder angle should be 0. In addition, when
SMASS needs to avoid obstacles or target ships, she should alter her course to starboard.
These are defined as satisfying COLREGs. Otherwise, SMASS should alter her course to
port or hold heading after encountering obstacles or target ships, which is considered to
be a violation of COLREGs. When the SMASS operations comply with COLREGs, the
SMASS would obtain positive rewards. However, when SMASS violates COLREGs, it will
be punished. Hence, the reward function can be set as follows:

R_c =

{
0 contrary to COLREGs,

λc ·
√
(xp − xg)

2 + (yp − yg)
2 else.

(23)

where λc is the weight of the COLREGs reward function.
Therefore, the calculation process of the total reward function is shown in Figure 7

and is expressed as follows:

R = R_d + R_yaw + R_g + R_ob + R_c (24)

5. Simulation
5.1. Design of Simulation

The training environment is necessary for the intelligent SMASS deep reinforcement
learning. A designed unmanned ship training environment can quickly test algorithms [32].
Hence, multiple simulation scenarios were set up to train mobile SMASS for path planning.
Based on the improved PPO algorithm proposed above and the construction of the neural
network framework, the neural network was trained. The computer configuration was as
follows: Intel Core i9-11900K, NVIDIA GTX3090, 24 G video memory, 32 G main memory,
and 512 G SSD storage. Gazebo and VScode were used for joint simulation and established
a three-dimensional navigation environment in Gazebo to simulate different waters and
build a SMASS model, as shown in Figure 10.
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Figure 10. Ship model built in Gazebo simulation environment.

Some restrictions were attached to the SMASS model. SMASS cannot slow down
her speed and can only alert her course during the voyage. The SMASS inertia was
appropriately increased to simulate the real motion state of the SMASS. In the SMASS
steering phase, with the increase of the rudder angle, the rudder transverse force and
rudder force turn the SMASS moment. In the transition stage, the transverse velocity and
angular velocity were generated under the action of transverse force and rudder force
transfer torque, and the increasingly obvious oblique shipping motion made the ship enter
the accelerated rotation state. When the SMASS moved in a fixed-length cycle, the steering
force transfer torque, drift angle hydrodynamic transfer torque, and resistance transfer
torque were balanced. The acceleration of the rotational angular is zero, and the rotational
angular velocity was the largest and most stable at this value. This experiment assumed
that the SMASS navigated in still water.

5.2. Network Training Process

Experimental parameter settings are shown in Table 1. The Gazebo environment
platform module is responsible for generating a navigation environment and simulating
SMASS simulation. The environment module could generate and calculate SMASS position
and SMASS movement information. When the SMASS reached the target, the training task
was over, and entered the next training. When the SMASS encountered obstacles, it stopped
training immediately and was placed in the initial position for the next training. The
SMASS obstacle avoidance decision training process was divided into two environments,
environment one (Env1) and environment two (Env2).
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Table 1. Experiment parameter information table.

Experimental Parameters Symbol Value

Discounted rate γ 0.95
Lambda λ 0.99

Clipping hyperparameter ε 0.20
Target reward weight λg 10.0

Reward coefficient tr 1.00
Yaw angle reward weight λa 0.30
COLREGs reward weight λc 1.20

Safe distance S1 0.50
Radar radius R_radar 4.50

In the experiment, the initial position of the SMASS in the simulation environment was
(0,0). There were six static obstacles in the simulation environment, and the coordinates
of these six static obstacles were (0.46, 1.78), (−0.57, −1.75), (1.68, 3.78), (0.62, −4.44),
(0.13, 6.08), and (−1.15, −6.18). There were two target points, and the coordinates were
(1.00, −7.00) and (2.00, 7.00), as shown in Figure 11. In the early stage of environmental
interaction, ships extremely lacked driving experience and collision avoidance experience.
The trained SMASS could not navigate towards the target and avoid a collision.
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After 1000 training times, SMASS could avoid obstacle 1 and obstacle 2. When the 
SMASS sailed on the port side of obstacle 2, the course remained unchanged. When en-
countering obstacle 2, the SMASS took two consecutive port alters of 25° and moved to-
wards the upper right under obstacle 2. When it was 0.6 miles from obstacle 1, her course 
to port was altered to 45°, along with obstacle 1 upward obliquely. The SMASS continu-
ously steered port and starboard and changed course during movement, but the SMASS 
could not reach the target point and collided with the environmental framework during 
the wandering process. SMASS collision avoidance obstacles 1, 2, and 3 are shown in Fig-
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Figure 11. Gazebo simulation environment (Env1). From right to left are six obstacles (ob1, ob2, ob3,
ob4, 0b5, and ob6), the blue part is the laser radar range, and the blue line is the laser radar detection
line. The left purple box is the target point.

After 1000 training times, SMASS could avoid obstacle 1 and obstacle 2. When the
SMASS sailed on the port side of obstacle 2, the course remained unchanged. When
encountering obstacle 2, the SMASS took two consecutive port alters of 25◦ and moved
towards the upper right under obstacle 2. When it was 0.6 miles from obstacle 1, her
course to port was altered to 45◦, along with obstacle 1 upward obliquely. The SMASS
continuously steered port and starboard and changed course during movement, but the
SMASS could not reach the target point and collided with the environmental framework
during the wandering process. SMASS collision avoidance obstacles 1, 2, and 3 are shown
in Figure 12.
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avoiding ob2. Subfigures (g,h) show the process of SMASS avoiding ob1. 

After training about 1200 times, the SMASS successfully reached the first target point. 
Subsequently, the SMASS continuously altered her course to port 45° and sailed to the 
target point 2. When the SMASS passed under obstacle 3 and navigated towards obstacle 
4, her course was altered to starboard 25°, then port and starboard rudder were altered 
continuously to ensure heading stability. 

After training 1500 times, the SMASS could maintain her course and sail to the target 
point. The SMASS first altered her course to port 25° close to the upper starboard of ob-
stacle 6, and then turned starboard by 25° twice in succession, passing over Obstacle 6, 
successfully reaching the target point 2. The collision avoidance process is shown in Fig-
ure 13. In training environment one, the SMASS successfully avoided six obstacles. In the 
process of SMASS obstacle avoidance, the change curve of the SMASS steering angle with 
time is shown in Figure 14. 
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Figure 12. The processes of SMASS avoiding obstacle in Env1 after 1200 training times. Subfigures
(a–c) show the process of SMASS avoiding ob3. Subfigures (d–f) show the process of SMASS avoiding
ob2. Subfigures (g,h) show the process of SMASS avoiding ob1.

After training about 1200 times, the SMASS successfully reached the first target point.
Subsequently, the SMASS continuously altered her course to port 45◦ and sailed to the
target point 2. When the SMASS passed under obstacle 3 and navigated towards obstacle 4,
her course was altered to starboard 25◦, then port and starboard rudder were altered
continuously to ensure heading stability.

After training 1500 times, the SMASS could maintain her course and sail to the target
point. The SMASS first altered her course to port 25◦ close to the upper starboard of
obstacle 6, and then turned starboard by 25◦ twice in succession, passing over Obstacle
6, successfully reaching the target point 2. The collision avoidance process is shown in
Figure 13. In training environment one, the SMASS successfully avoided six obstacles. In
the process of SMASS obstacle avoidance, the change curve of the SMASS steering angle
with time is shown in Figure 14.
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Figure 13. The processes of SMASS avoiding obstacle in Env1 after 1500 training times. Subfigures
(a–c) show the process of SMASS avoiding ob4. Subfigures (d–f) show the process of SMASS avoiding
ob5. Subfigures (g,h) show the process of SMASS avoiding ob6.
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There were five obstacles in the second simulation environment, and the coordinates 
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Figure 14. Rudder angle changes of the SMASS sailing in environment 1.

There were five obstacles in the second simulation environment, and the coordinates
of these five obstacles were (−1.7, 3.2), (−1.6, −0.5), (2.7, −2.0), (5.4, −1.6), and (−3.8,
1.6). The coordinates of the two target points were (6.0, −3.0) and (−4.5, 3.0), as shown
in Figure 15.
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After training 1400 times, the SMASS almost did not collide with five obstacles or 
enter the minimum distance 1S  between the SMASS and the static obstacle. The reward 
value obtained by the SMASS crossing between obstacle 1 and obstacle 2 was greater than 
that obtained by the SMASS bypassing above obstacle 1. As shown in Figure 16a, when 
the distance between the SMASS and obstacle 1 was greater than 0.5 miles, the SMASS 
altered her course to starboard 25°. When the SMASS was 0.4 miles away from obstacle 2, 
the SMASS chose to alter her course to starboard 25° and moved forward 0.5 miles. Sub-
sequently, the SMASS altered her course to port and avoided obstacle 2. At the same time, 
when the SMASS arrived at target 2 and got ready to return to target 1, the reward value 
obtained by the SMASS passing through the left side of obstacle 5 was larger than that 
passing through the right side. After passing obstacle 5, the SMASS chose to alter her 

Figure 15. Gazebo simulation environment (Env2). From up to down, there are five obstacles (ob1,
ob2, ob3, ob4, and ob5); the blue part is the laser radar range, and the blue line is the laser radar
detection line. The purple box is the target point.

After training about 1200 times, the SMASS frequently operated the rudder and
reached the first target point. In the process of sailing to the second target point, the SMASS
chose to sail around obstacle 1 from above, as shown in Figure 16b. After reaching the
target point, the SMASS chose to alter course to port 45◦ to sail a distance on the left upper
side, and then frequently operated the rudder. When the SMASS reached the top left of
obstacle 1, the SMASS chose to alter the course to port 45◦ to drive down.
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Figure 16. SMASS avoids Obstacle 1 in Env 2. Figure (a) shows the obstacle avoidance process of
the ship after 1400 training times. Figure (b) shows the obstacle avoidance process of the ship after
1200 training times.

After training 1400 times, the SMASS almost did not collide with five obstacles or
enter the minimum distance S1 between the SMASS and the static obstacle. The reward
value obtained by the SMASS crossing between obstacle 1 and obstacle 2 was greater than
that obtained by the SMASS bypassing above obstacle 1. As shown in Figure 16a, when
the distance between the SMASS and obstacle 1 was greater than 0.5 miles, the SMASS
altered her course to starboard 25◦. When the SMASS was 0.4 miles away from obstacle
2, the SMASS chose to alter her course to starboard 25◦ and moved forward 0.5 miles.
Subsequently, the SMASS altered her course to port and avoided obstacle 2. At the same
time, when the SMASS arrived at target 2 and got ready to return to target 1, the reward
value obtained by the SMASS passing through the left side of obstacle 5 was larger than
that passing through the right side. After passing obstacle 5, the SMASS chose to alter
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her course to port by 25◦. The SMASS altered her course to starboard 45◦ after passing
through obstacle 5. The process of SMASS obstacle avoidance is shown in Figure 17. In the
process of SMASS obstacle avoidance, the change of the SMASS steering angle is shown
in Figure 18.
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5.3. Comparison Experiment

To verify the effectiveness of the improved PPO algorithm, this paper compared the
improved PPO algorithm with the other classic strategy-based reinforcement learning
algorithms (such as the AC algorithm, DDPG algorithm, and traditional PPO algorithm).
As shown in Figure 19, after training 20,000 times, the actor-network in the AC algorithm
converged after training 11,000 times, and the critic network converged after training
10,000 times. The results showed that the convergence rate of the AC algorithm was
not satisfied, and the loss value was high. While the DDPG algorithm converged after
about training 10,000 times, the algorithm still had the problem of high loss value. When
solving SMASS decision-making problems, the traditional PPO algorithm converged after
8000 training times, which was better than the AC algorithm and DDPG algorithm. How-
ever, the improved PPO algorithm converged after 6000 training times; the convergence
rate was significantly better than the traditional PPO algorithm, and the loss was greatly
improved. Hence, it can be found that the convergence rate of the improved PPO algorithm
could increase by about 25% compared to the traditional PPO algorithm. Compared with
the traditional DDPG and AC algorithms, the convergence rate of the improved PPO
algorithm could increase by about 50%.
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The Generalized Advantage Estimation Algorithm directly affects the convergence
speed and convergence quality of the PPO algorithm. In this experiment, four groups
of comparison experiments were conducted to prove the influence of differences in the
generalized advantage estimation on the PPO algorithm. Taking the training environment
as an example, four λ values were selected for comparative experiments, which were 0.8,
0.9, 0.95, and 0.99, respectively.

The convergence of actor and critic networks when λ was 0.8 is shown in Figures 20 and 21.
The convergence of the actor network was not obvious, and the critic network was not converged
obviously after 24,000 training sessions.
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Figure 21. The loss function value change with episodes of critic network when λ was 0.8.

The convergence of actor and critic networks when λ was 0.9 is shown in Figures 22 and 23.
Compared with the actor network convergence curve when λ was 0.8, the actor network conver-
gence was better, but the critic network still did not converge after 22,000 training sessions.

The convergence of actor and critic networks when λ was 0.95 is shown in Figures 24 and 25.
The convergence rate of the actor network was faster than when λ was 0.9 in the early conver-
gence effect, and the overall convergence trend was shown. In addition, the convergence effect
of the critic network was significantly better than when λ was 0.9.

The convergence of actor and critic networks when λ was 0.99 is shown in Figures 26 and 27.
The convergence rate of the actor network was much faster than that of the curve when λ was
0.95. In addition, when λ was 0.99, the convergence quality and stability of the actor network
and critic network were better than the curve when λ was 0.95.
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5.4. Verification Simulation

Generalizability refers to the ability of trained models to apply to new data and make
accurate predictions. When the training is insufficient, the fitting ability of the decision-
making system is not obvious. The disturbance of training data is insufficient to make
the decision-making system change significantly. With the increase of training times, the
fitting ability of the decision-making system is gradually enhanced. The disturbance can be
detected by the decision-making system. A model is often trained too well on training data,
that is, overfitting, so that it cannot be generalized. In order to prove the generalization of
the proposed SMASS intelligent obstacle avoidance model in this paper, several different
simulation environments were constructed to verify the generalizability of the trained
SMASS obstacle avoidance network.
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The eight representative simulation environments were extracted and displayed as
shown in Figure 28. The initial and end positions of each environment were shown in
Table 2. There were five obstacles in environment 3. Environments 4, 5, and 6 were used to
simulate the navigation of SMASS in relatively narrow waters. The number of obstacles in
environment 7 was not too much, but the environment was more complex. There were only
two obstacles in environment 8, but the navigable waters were very narrow to simulate the
SMASS obstacle avoidance in narrow waters. Environment 9 was relatively open, but there
were multiple obstacles located along a line. The environment was used to test whether the
SMASS could find the optimal path when there were multiple obstacles in the environment.
In environment 10, the navigation area with more obstacles was very narrow, which could
be used to simulate the SMASS complex obstacle avoidance navigation in complex narrow
waters. In each environment, the collision avoidance processes from the starting position to
the end position were described by six graphs (as shown in Figures 29 and 30). Moreover,
the SMASS steering rudder angle of collision avoidance processes in each environment are
shown in Figures 31–33.
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Table 2. Training environment and verification environment target point coordinates.

Gazebo Environment Initial Position End Position

Env 1(Train) (1.0, −7.0) (2.0, 7.0)
Env 2(Train) (6.0, −3.0) (−4.5, 3.0)

Env 3(Verification) (5.0, 2.0) (−4.0, 1.0)
Env 4(Verification) (5.0, −1.0) (−5.0, 1.0)
Env 5(Verification) (1.0, 5.0) (1.0, −5.0)
Env 6(Verification) (1.0, 4.0) (2.0, −5.0)
Env 7(Verification) (3.0, 2.0) (−1.0, −4.0)
Env 8(Verification) (−3.0, 1.0) (4.0, −1.0)
Env 9(Verification) (0.0, 7.0) (1.0, −6.0)

Env 10(Verification) (9.0, −4.0) (−9.0, 3.0)
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Figure 29. Obstacle avoidance process from environment 3 to environment 6. The SMASS collision 
avoidance process of each environment is shown by six subgraphs from a to f. 

 
Figure 30. Obstacle avoidance process from environment 7 to environment 10. The SMASS colli-
sion avoidance process of each environment is shown by six subgraphs from a to f. 

Figure 29. Obstacle avoidance process from environment 3 to environment 6. The SMASS collision
avoidance process of each environment is shown by six subgraphs (a)–(f).
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avoidance process of each environment is shown by six subgraphs (a)–(f).
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Figure 31. Rudder angle changes of the SMASS sailing in environment 3, environment 4, and
environment 5.
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Figure 32. Rudder angle changes of the SMASS sailing in environment 6, environment 7, and
environment 8.
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Figure 33. Rudder angle changes of the SMASS sailing in environment 9 and environment 10.

In addition, the avoidance simulations of sailing target ships were carried out to verify
the trained SMASS obstacle avoidance capability. Taking the No. 9 environment as an
example, these sailing target ships met the trained SMASS under the different collision
encounter situations, and the trained SMASS could avoid them accurately and safely
according to COLREGs.

As shown in Figure 34, the left side of the figure is the sailing path of the SMASS and
three target ships, and the right side is the SMASS avoidance process in the simulation
environment. The first target ship (TS01) and the SMASS formed a crossing give-way
situation, and the SMASS altered her course to starboard to avoid the first target ship.
When the SMASS met the second target ship (TS02), the two ships are formed a crossing
stand-on situation. Then, the SMASS kept her course and altered starboard to avoid the
second target ship. When the SMASS passed through the middle position, the third target
ship (TS03) and the SMASS formed the head-on situation. Then, the SMASS altered course
to starboard to avoid the third target ship.
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Figure 34. Trained SMASS avoids other ships in environment 9.

6. Conclusions

An improved PPO algorithm for path planning and obstacle avoidance in different
complex waters was presented in this paper. SMASS can perform complex local path
planning and obstacle avoidance operations when external information is not fully accepted.
In this experiment, five factors were considered in the design of the reward function, namely,
the relationship between target position, angle, and distance, COLREGs, the reward for
safety obstacle avoidance, and whether to reach the target point. This algorithm also
performed well in complex waters composed of different numbers of obstacles. The
contributions of this experiment are as follows:

• The improved PPO algorithm is superior to other traditional model-free reinforcement
learning algorithms based on strategy learning in solving ship decision-making and
local path planning problems. The improved PPO algorithm has the advantages of
fast convergence and low loss value.

• The improved PPO algorithm has a strong self-learning ability and strong generalization,
which could be used to solve the SMASS local path planning and collision avoidance
decision-making simultaneously in different complex navigation environments.

Some works should be explored in the future. In the experiment, there are some
limitations in setting obstacles into cylinders and squares. Actual obstacles such as islands
and navigable areas are not suitable to be set into base shapes. The design of complex
obstacles is one of the directions in the future study. In addition, the rudder angle output in
this study was the command rudder angle, which has a certain deviation from the execution
rudder angle. This is also an important factor to be considered in future studies.
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