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Summary: The dynamics of a rain forest is extremely complex involving births, deaths and growth of trees with

complex interactions between trees, animals, climate, and environment. We consider the patterns of recruits (new

trees) and dead trees between rain forest censuses. For a current census we specify regression models for the conditional
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intensity of recruits and the conditional probabilities of death given the current trees and spatial covariates. We

estimate regression parameters using conditional composite likelihood functions that only involve the conditional

first order properties of the data. When constructing assumption lean estimators of covariance matrices of parameter

estimates we only need mild assumptions of decaying conditional correlations in space while assumptions regarding

correlations over time are avoided by exploiting conditional centering of composite likelihood score functions. Time

series of point patterns from rain forest censuses are quite short while each point pattern covers a fairly big spatial

region. To obtain asymptotic results we therefore use a central limit theorem for the fixed timespan - increasing spatial

domain asymptotic setting. This also allows us to handle the challenge of using stochastic covariates constructed from

past point patterns. Conveniently, it suffices to impose weak dependence assumptions on the innovations of the space-

time process. We investigate the proposed methodology by simulation studies and an application to rain forest data.

Key words: Central limit theorem; composite likelihood; conditional centering; estimating function; point process;

spatio-temporal.
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1. Introduction

This paper develops composite likelihood methodology for analysing a discrete-time continuous-

space time series of spatial point patterns. Our primary motivation is the need to under-

stand the complex spatio-temporal development of a rain forest ecosystem. Essentially, this

process can be characterized in terms of growth, recruitment and mortality (Wolf, 2005;

Wiegand et al., 2009; Shen et al., 2013; Kohyama et al., 2018). Each of these processes

depend on species specific factors (e.g. genetics, light requirements, seed dispersal), inter- and

intraspecies interactions (e.g. competition), interactions with animals, as well as exogeneous

factors such as climate or weather, soil properties, and topography (Rüger et al., 2009; Häbel

et al., 2019; Hiura et al., 2019). We leave aside the aspect of tree growth and confine ourselves

to considering recruitment and mortality.

Extensive rain forest tree census data have been collected within a global network of forest

research sites including the Barro Colorado Island plot with eight censuses collected with

5 year intervals (Condit et al., 2019). In the ecological literature (e.g. Hubbell et al., 2001;

Rüger et al., 2009; Johnson et al., 2017; Zhu et al., 2018; Zuleta et al., 2022) there is much

interest in the spatial patterns of trees that were recruited or died between consecutive

censuses (see Figure 3). In particular, biologists wants to assess how the intensity of recruits

and how the death probabilities depend on various covariates including soil properties,

topography, and covariates representing the influence of trees from previous censuses. The

latter type of covariates can be regarded as stochastic or auto-regressive since they depend

on the process of recruitment and mortality up to the current time interval. We model

the intensity of recruits and the death probabilities using parametric log-linear and logistic

regression models. This enables biologists to study the impact of covariates through estimates

of regression parameters in these models.

We estimate regression parameters using conditional composite likelihood functions. This
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is computionally very efficient since the composite likelihoods can be maximized using stan-

dard efficient logistic regression software. We obtain asymptotic distributions of regression

parameter estimates using asymptotic results for sequences of conditionally centered random

fields with increasing spatial domain but fixed time horizon (Jalilian et al., 2024). The

aforementioned stochastic covariates do not violate conditional centering and are easily

accommodated by the asymptotic framework.

To enhance robustness to model misspecification, we, inspired by approaches in spatial

econometrics (Conley, 2010), avoid parametric modeling of second-order properties or further

distributional characteristics of the spatial patterns of recruitment and mortality. Instead

we estimate variance matrices of parameter estimates by exploiting conditional centering

of the conditional composite likelihood score functions and model free estimators (Conley,

2010; Coeurjolly and Guan, 2014) of conditional variance matrices for the score functions.

For the space-time correlation structure we only need mild assumptions of spatial decay of

correlations for recruits and death events in each census interval conditional on the previous

state of the forest. The estimation of variance matrices is computationally efficient. This is

because it only involves pairs of recruits or of dead trees that are close in space within each

of the time intervals rather than all pairs of points across all spatial distances and all time

intervals.

Logistic regression models for mortality are used extensively in the ecological literature

(Comita and Hubbell, 2009; Johnson et al., 2017; Zhu et al., 2018; Zuleta et al., 2022)

with various approaches to handling spatial correlation including block bootstrap or random

effects associated with grid cells partitioning the study region. Rathbun and Cressie (1994)

and Hubbell et al. (2001) instead model spatial correlation between deaths using auto-logistic

models and implement approximate maximum likelihood estimation using computationally

heavy Markov chain Monte Carlo (MCMC) methods.
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Regarding recruits, Rathbun and Cressie (1994) consider a single generation and explicitly

model dependence between recruits using a spatial Cox point process and implement pa-

rameter estimation using MCMC. Wiegand et al. (2009) and Getzin et al. (2014) use spatial

point process summary statistics to investigate associations between recruits and adults

and test independence by randomization of the recruits. Regression modeling is not used in

these papers. Rüger et al. (2009) use a negative binomial regression to model effects of light

availability on grid cell counts of recruits implementing inference using MCMC. Brix and

Møller (2001) consider a multi-type spatio-temporal log Gaussian Cox process for modeling

weed recruits on a barley field and use minimum contrast parameter estimation. However,

their approach does not accommodate covariates. Within rain forest ecology, May et al.

(2015) use approximate Bayesian computation for a discrete-time continuous-space model

based on ecological neutral theory (Hubbell, 2001).

In contrast to previous approaches to analyzing recruitment and mortality we avoid po-

tentially restrictive assumptions regarding the space-time correlation structure, we avoid

dependence on choice of grids for random effects or counts, and we avoid computationally

intensive bootstrap, approximate Bayesian, or MCMC methods. We demonstrate the useful-

ness and validity of our approach by application to simulated and rain forest data.

2. Space-time model for rain forest census data

We consider marked spatial point pattern datasets originating from censuses that record

location u = (u1, u2) ∈ R2, species s ∈ {1, . . . , p} and possibly further marks m ∈ M

for all trees in a research plot. The mark m for a tree could represent size in terms of

diameter at breast height and we assume for specificity that M = R+. Such data can be

viewed as a time series of multivariate marked space-time point processes, X = {Xt}t∈T ,

where Xt = (X
(1)
t , . . . , X

(p)
t ) and X

(s)
t is the marked point process consisting of marked

points x = (u,m) at time t ∈ T for species s (Diggle, 2013; González et al., 2016). The



4 Biometrics, 000 0000

distribution of the point process X may depend on a space-time process Z = {Zt}t∈R, where

Zt = {Zt(u)}u∈R2 and Zt(u) = (Z
(1)
t (u), . . . , Z

(q)
t (u))T is a vector of q > 1 environmental

covariates at location u ∈ R2 at time t.

We assume that the time index set T consists of equidistant time points tk = ∆k, k =

0, 1, . . . , for some ∆ > 0, where we henceforth take ∆ = 1. For any k > 0, we let the

‘observation history’ Hk denote the information given by X0, . . . , Xk and Z0, . . . , Zk. In

practice we only observe X and Z within W = W̃ ×M for a bounded W̃ ⊂ R2 (typically

a rectangle) and for a finite number K + 1 of observation times 0, 1, . . . , K. More precisely,

for an observation time 0 6 k 6 K, we observe those marked points x = (u,m) in X
(s)
k and

covariate vectors Zk(v) where u, v ∈ W̃ .

We focus on statistical modeling of recruits and deaths of trees for a single species but

our models for recruit intensities and death probabilities may in general depend on existing

trees of other species. Without loss of generality we consider the first species s = 1 and for

two consecutive observation times k − 1 and k we let Bk = X
(1)
k \X

(1)
k−1 and Dk = X

(1)
k−1\X

(1)
k

denote the recruitment and mortality processes of species s = 1 over the interval ]k − 1, k].

The spatial pattern of recruits Bk often exhibit clustering around parent plants due to seed

dispersal and favorable soil conditions (Wiegand et al., 2009). Moreover, when regeneration

occurs in canopy gaps, recruits tend to aggregate and be positively correlated with dead trees

(Wolf, 2005). The spatial pattern of deaths Dk is influenced by biotic and abiotic factors such

as intra- and inter-specific interactions as well as environmental factors (Shen et al., 2013).

The negative density-dependent mortality hypothesis for example implies clustering of dead

individuals and repulsion between surviving and dead individuals (Wiegand and Moloney,

2013, p. 210).

In the next section we specify models for the intensity functions of recruits Bk and

probabilities of death for trees x ∈ X(1)
k−1 over intervals ]k − 1, k], conditional on Hk−1. We
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do not impose assumptions regarding the dependence structure of the recruit and mortality

processes until Sections 4 and 5 where spatially decaying correlations and spatial mixing

are needed for the conditional distributions of recruits and deaths at time k conditional on

Hk−1, k = 1, . . . , K.

2.1 Models for recruit intensity and death probabilities

Given Hk−1, we model the recruits Bk as an inhomogeneous point process on R2 ×M with

log linear intensity function of the form

ζk(x|Hk−1) = f(m) exp
[
βb0,k + ZT

k−1(u)βb + ck−1(x)Tγb

]
, x = (u,m) ∈ R2 ×M, (1)

where f is a probability density for the marks, βb0,k is a time-dependent intercept, βb ∈ Rq

and γb ∈ Rp are vectors of regression parameters, and ck−1(x) = (clk−1(x))pl=1 where clk−1(·)

represents the ‘influence’ of trees of species l on the intensity of recruits. In general, the

intensity ζk(·|Hk−1) may not capture all sources of variation of the recruits. It is therefore

important to recognize the possibility of stochastic dependence between recruits conditional

on Hk−1. In forest ecology, the marks of recruits are often quite similar and in the following

we focus on estimation of the log linear part treating f(m) as a known density.

For x = (u,m) ∈ X(1)
k−1 we define Ik(x) = 1[x ∈ Dk] to be an indicator of death. The Ik(x),

x ∈ X(1)
k−1, are Bernoulli random variables with death probabilities pk(x|Hk−1) = P (Ik(x) =

1|Hk−1). We do not assume that the death indicators are independent. We model the death

probabilities by logistic regressions pk(x|Hk−1) = exp [ηk(x|Hk−1)] /{1 + exp [η(x|Hk−1)]}

with

ηk(x|Hk−1) = βd0,k + αm+ ZT

k−1(u)βd + dk−1(x)Tγd, (2)

where βd0,k is a time-dependent intercept, α is a regression parameter for the mark m,

βd ∈ Rq and γd ∈ Rp are vectors of regression parameters, and dk−1(x) = (dlk−1(x))pl=1

where dlk−1(x) represents the ‘influence’ of trees of species l on death of a tree x.
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Unlike the spatial covariates Zk−1(u) which are commonly assumed to be deterministic,

we permit the influence covariates ck−1 and dk−1 to be stochastic being constructed (next

subsection) from past marked point patterns Xk−1.

2.2 Stochastic covariates for influence of existing trees

Recruits may be positively dependent on previous conspecific trees since recruits arise from

parent tree seed dispersal. Conversely, the impact of the remaining species could be negative

due to competition for light and other resources. There is a rich ecological literature on

models for seed dispersal kernels (Nathan et al., 2012; Bullock et al., 2019) and competition

indices (e.g. Burkhart and Tomé, 2012; Britton et al., 2023).

We assume that the influence of an existing conspecific forest stand on a recruit x = (u,m)

is a function of the distance from x to the nearest neighbour in the forest stand. That is,

c1k−1(x) = exp{−[d(x,X
(1)
k−1)]/ψ1)

2}, (3)

with d(x,X
(1)
k−1) = min

(u′,m′)∈X(1)
k−1
‖u−u′‖/m′ being a mark-weighted spatial distance between

the marked point x = (u,m) and the point pattern X
(1)
k−1, while ψ1 > 0 controls the range of

effect of the existing conspecific trees. Thus, the influence of the existing trees is determined

by a Gaussian dispersal kernel placed at the location of the nearest existing tree.

For the impact of competition from existing trees we follow Burkhart and Tomé (2012)

and use for clk−1(x), l 6= 1, and dlk−1(x), l = 1, . . . , p, x = (u,m), indices of the form∑
(u′,m′)∈X(l)

k−1\{(u,m)}

m′

m
exp[−(‖u− u′‖/κl)2], κl > 0. (4)

For the data example in Section 7, m represents diameter at breast height which does not vary

much between recruits. Further, diameter at breast height is missing for a large proportion

of the dead trees. We therefore in Section 7 modified (4) by omitting division by m.

A huge variety of plausible models for influence of conspecific trees and competition could

be proposed and compared e.g. in terms of resulting maximized composite likelihoods.
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However, the exact choice of model for the influence of existing trees is not our primary

focus and we leave it to future users to investigate further models.

Using stochastic covariates such as ck(·) and dk(·) in the models (1) and (2) is conceptually

straightforward but challenging from a theoretical point of view. For example, the resulting

intensity in (1) becomes stochastic, bearing a resemblance to the conditional intensity of the

Hawkes process. However, the conditional intensity (1) allows for a more flexible dependence

structure on the past Hk−1. To address the theoretical challenges, we propose in Sections 4

and 5 a framework based on conditional centering for estimating functions.

2.3 Campbell formulas and pair correlation function

In Sections 3 and 4, for recruits Bk conditional on Hk−1, we use the so-called first and second

order Campbell formulas

E[
∑
x∈Bk

h1(x)|Hk−1] =

∫
h1(x)ζk(x|Hk−1)dx

E[
∑

x,x′∈Bk:
x 6=x′

h2(x, x
′)|Hk−1] =

∫ ∫
h2(x, x

′)ζk(x|Hk−1)ζk(x
′|Hk−1)gBk

(x, x′)dxdx′

for any non-negative functions h1 and h2 where gBk
(·, ·) is the so-called pair correlation

function of Bk conditional on Hk−1 (the second equation is actually the defining equation

for the pair correlation function). We also use the Campbell formulas for a Poisson process

Yk of intensity ρ0(·) and independent of Hk−1. The Campbell formulas then become

E
∑
x∈Yk

h1(x) =

∫
h1(x)ρ0(x)dx and E

∑
x,x′∈Yk:
x6=x′

h2(x, x
′) =

∫ ∫
h2(x, x

′)ρ0(x)ρ0(x
′)dxdx′

since the pair correlation function of a Poisson process is one. Møller and Waagepetersen

(2003) provide more details regarding Campbell formulas and pair correlation functions.



8 Biometrics, 000 0000

3. Composite likelihood estimation

Given observations Xk and Zk, k = 0, . . . , K, we infer regression parameters using estimating

functions derived from composite likelihoods for the recruit and death patterns Bk and Dk,

k = 1, . . . , K. Let θb = (βb0,1, . . . , βb0,K ,β
T

b,γ
T
b)T and θd = (βd0,1, . . . , βd0,K , α,β

T

d,γ
T
d)T

denote the parameter vectors for the recruit and mortality models. Since the models for

recruits and deaths do not share parameters, we construct separate estimating functions for

θb and θd. The proposed estimating functions are unbiased, leading to consistent estimators

of θb and θd. Background on composite likelihood for intensity function estimation can be

found in Møller and Waagepetersen (2017).

3.1 Composite likelihoods for recruits at time k

For the recruits Bk, we consider the following conditional composite log likelihood∑
x∈Bk∩W

log ζk(x|Hk−1)−
∫
W

ζk(x|Hk−1)dx

which would be the log likelihood if Bk was a Poisson process given Hk−1. For a Poisson

process, points occur independently of each other. Hence for the estimation of θb we ignore

possible dependencies between recruits that are not explained by Hk−1. Since
∫
M f(m)dm =

1, the integral over W reduces to an integral over W̃ involving just the log-linear part of

ζk(·|Hk−1). The score function (gradient) is∑
x∈Bk∩W

∇ζk(x|Hk−1)

ζk(x|Hk−1)
−
∫
W

∇ζk(x|Hk−1)dx, (5)

where ∇ζk(x|Hk−1) denotes the gradient of ζk(x|Hk−1) with respect to θb. By the first

order Campbell formula, the score function is conditionally centered meaning that it has

expectation zero given Hk−1.

In practice we need to estimate the integral in the score function (5). Following Waagepetersen

(2008) and Baddeley et al. (2014), consider for each k = 1, . . . , K, a dummy Poisson

point process Yk on W independent of Bk and Hk−1 and with known intensity function
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ρ0(x) = f(m)ρ(u) for x = (u,m). By the first order Campbell formula for the union Bk ∪ Yk

with intensity ζk(·|Hk−1)+ρ0(·), the integral
∫
W
∇ζk(x|Hk−1)dx can be estimated unbiasedly

by
∑

x∈(Bk∪Yk)∩W ∇ζk(x|Hk−1)/ [ζk(x|Hk−1) + ρ0(x)]. Crucially, after replacing the integral

with the estimate, the resulting approximate score function

eb,k(θb) =
∑

x∈(Bk∪Yk)∩W

[
∇ζk(x|Hk−1)

ζk(x|Hk−1)
1[x ∈ Bk]−

∇ζk(x|Hk−1)

ζk(x|Hk−1) + ρ0(x)

]
(6)

is still conditionally centered. As explained in Waagepetersen (2008) and Baddeley et al.

(2014), (6) is formally equivalent to a logistic regression score function and parameter

estimates can be obtained using standard glm software.

3.2 Composite likelihood for deaths at time k

For the mortality process Dk we ignore possible dependencies between deaths and use the

Bernoulli composite log likelihood function∑
x∈X(1)

k−1∩W

{Ik(x) log pk(x|Hk−1) + [1− Ik(x)] log[1− pk(x|Hk−1]}

=
∑

x∈X(1)
k−1∩W

[Ik(x)ηk(x|Hk−1)− log {1 + exp [ηk(x|Hk−1)]}]

with conditionally centered composite score function

ed,k(θd) =
∑

x∈X(1)
k−1∩W

∇ηk(x|Hk−1) [Ik(x)− pk(x|Hk−1)] , (7)

where ∇ηk(x|Hk−1) denotes the gradient of ηk(x|Hk−1) with respect to θd.

3.3 Conditional likelihoods and estimating functions based on all data

Log composite likelihoods based on all generations of recruits and deaths are obtained by

adding the one generation log composite likelihoods derived in the previous paragraphs.

This results in estimating functions eo(θo) =
∑K

k=1 eo,k(θo), o = b, d. An estimate θ̂o of θo

is obtained by solving eo(θo) = 0. Conditional centering of (6) and (7), E[eb,k(θb)|Hk−1] = 0

and E[ed,k(θd)|Hk−1] = 0, implies that eb(·) and ed(·) are unbiased, Eeo(θo) = 0, o = b, d.
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4. Approximate covariance matrices of parameter estimates

According to standard estimating function theory (e.g. Sørensen, 1999, and Section 5),

the approximate covariance matrix of θ̂o is given by the inverse of the Godambe matrix

So(θo)Vo(θo)
−1So(θo)

T, where Vo(θo) = Vareo(θo) and So(θo) = −E d
dθT

o
e(θo) are the

variability and sensitivity matrices.

By iterated conditioning, So(θo) = −
∑K

k=1 EE
[

d
dθT

o
eo,k(θo)|Hk−1

]
. Moreover, conditional

centering of eo,k(θo) and eo,k′(θo′) implies that Cov
[
eo,k(θo), eo,k′(θo′)

]
= 0, o = b, d,

whenever k 6= k′. This is very appealing since we avoid assumptions regarding the corre-

lation structure across time for the space-time point process. It follows that Var eo(θo) =∑K
k=1 Var eo,k(θo), o = b, d, and again by conditional centering, Var eo,k(θo) = EVar

[
eo,k(θo)|Hk−1

]
.

To estimate the approximate covariance matrix of θ̂o we thus need estimates of the condi-

tional expectations −E
[

d
dθT

o
eo,k(θo)|Hk−1

]
and the conditional variances Var

[
eo,k(θo)|Hk−1

]
.

For the estimation of the conditional variances we assume that spatial correlation decays as

a function of distance for recruits and deaths at each time k given the past Hk−1.

4.1 Conditional expectation and variance for recruits

By the first order Campbell formula used for Bk,

−E
[ d

dθT

b

eb,k(θb)|Hk−1
]

=

∫
W

∇ζ(x|Hk−1)
[
∇ζ(x|Hk−1)

]T
ρ0(x)

ζ(x|Hk−1)
[
ζ(x|Hk−1) + ρ0(x)

] dx,

which by the first order Campbell formula for Bk ∪ Yk can be estimated unbiasedly by∑
x∈Bk∪Yk

∇ζ(x|Hk−1)
[
∇ζ(x|Hk−1)

]T
ρ0(x)

ζ(x|Hk−1)
[
ζ(x|Hk−1) + ρ0(x)

]2 =
∑

x∈Bk∪Yk

hk(x)hk(x)T

ζk(x|Hk−1)ρ0(x)

where hk(x) = ∇ζk(x|Hk−1)ρ0(x)/[ζk(x|Hk−1) + ρ0(x)].

By the first and second order Campbell formulas, the variance of (6) is

Var
[
eb,k(θb)|Hk−1

]
= Sb(θb) +

∫
W 2

hk(x)hk(x
′)T [gBk

(x, x′)− 1] dxdx′,

where gBk
is the pair correlation function of Bk given Hk−1. Following Coeurjolly and Guan

(2014) we estimate the last term in the variance by
∑

x,x′∈Bk∪Yk:
x6=x′

k(x, x′) hk(x)hk(x
′)T

ζk(x|Hk−1)ζk(x′|Hk−1)
φ(x)φ(x′),
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where k((u,m), (u′,m′)) = 1[‖u − u′‖ 6 ω] is a uniform kernel function depending on a

truncation distance ω to be chosen by the user, and φ(x) = 1 if x ∈ Bk and φ(x) =

−ρ0(x)/ζk(x|Hk−1) if x ∈ Yk.

The underlying assumption of the estimator is that correlation vanishes for large spatial

lags in the sense that gBk
(x, x′) ≈ 1 when the spatial distance between x and x′ is large.

Hence, the kernel function eliminates pairs of distant points which are uncorrelated (meaning

gBK
close to one) and only add noise to the estimate. The unknown regression parameters

appearing in ζk(·|Hk−1) and hk(·) are replaced by their composite likelihood estimates.

Crucially, we avoid specifying a model for the pair correlation function gBk
which makes

our variance estimate less prone to model misspecification. In contrast to non-parametric

kernel estimates of gBk
we also avoid assuming isotropy. If isotropy for gBk

is preferred,

shape-constrained non-parametric estimators (Hessellund et al., 2022; Xu et al., 2023) may

be plugged in for gBk
in Var

[
eb,k(θb)|Hk−1

]
.

4.2 Conditional expectation and variance for death score

When conditioning on Hk−1, the index set X
(1)
k−1 for the sum in (7) becomes non-random.

Therefore, by standard computations for expectations and variances of sums,

−E
[ d

dθT

d

ed,k(θd)
∣∣Hk−1

]
=

∑
x∈X(1)

k−1∩W

∇ηk(x|Hk−1)∇ηk(x|Hk−1)
T

pk(x|Hk−1)
2

expk(ηk(x|Hk−1))
and

Var(ed,k(θd)|Hk−1) =
∑

x,x′∈X(1)
k−1∩W

∇ηk(x|Hk−1) (∇ηk(x′|Hk−1))
T Cov[Ik(x), Ik(x

′)|Hk−1].

In the spirit of Conley (2010), we estimate the conditional variance by∑
x,x′∈X(k)

k−1

∇ηk(x|Hk−1)∇ηk(x′|Hk−1)
Tk(x, x′) [Ik(x)− pk(x|Hk−1)] [Ik(x

′)− pk(x′|Hk−1)] ,

where as in the previous section, k(·, ·) is a uniform kernel used to avoid contributions

from pairs of distant points in Xk−1, and where the unknown parameters in pk(·|Hk−1) and

∇ηk(·|Hk−1) are replaced by their composite likelihood estimates. Similar to the previous
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section we avoid modeling of the conditional covariance Cov[Ik(x), Ik(x
′)|Hk−1] and just

need that the covariance vanishes when the spatial distance between x and x′ increases.

5. Asymptotic distribution of parameter estimates

The key elements in establishing asymptotic normality are a first order Taylor expansion

of the estimating function and asymptotic normality of the estimating function. In addition

various regularity conditions are needed (e.g. Sørensen, 1999). Given asymptotic normality

of the estimating function, the further conditions and derivations needed are quite standard

(see for example Waagepetersen and Guan, 2009, for a case with all details provided). In

the following we give a sketch of the asymptotic approach. We do not present the standard

technical assumptions and just focus on the essential peculiarities for our setting.

In the space-time context, several asymptotic regimes are possible. One option is increasing

K, i.e. accumulating information over time. Another is increasing spatial domain W . A

combination of these is also possible (Jalilian et al., 2024). In our setting, K is moderate

(seven for the specific data example) and increasing domain asymptotics therefore seems more

relevant than increasing K. Consider a sequence of observation windows Wn, n = 1, 2, . . .

and add the subindex n to eb(θb) and ed(θd) when the observation window Wn is considered.

We further divide R2 into unit squares C(z) = [z1 − 1/2, z1 + 1/2[×[z2 − 1/2, z2 + 1/2[ for

z = (z1, z2) ∈ Z2. Then eo,n(θ) =
∑

z∈Z2

∑K
k=1Eo,k,n(z), o = b, d, where

Eb,k,n(z) =
∑

x∈(Bk∪Yk)∩[C(z)×M]∩Wn

[
∇ζk(x|Hk−1)

ζk(x|Hk−1)
1[x ∈ Bk]−

∇ζk(x|Hk−1)

ζk(x|Hk−1) + ρ0(x)

]
and

Ed,k,n(z) =
∑

x∈X(1)
k−1∩[C(z)×M]∩Wn

∇ηk(x|Hk−1) (Ik(x)− pk(x|Hk−1))

are the contributions to eb,n(θb) and ed,n(θd) arising from the intersections of time k recruits

and deaths with [C(z)×M] ∩Wn.

For fixed K, eo,n(θo) can be viewed as a sum of purely spatially indexed variables Eo,n(z) =
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∑K
k=1Eo,k,n(z). It is, however, difficult to control the spatial dependence structure of these

variables since spatial dependence may propagate over time. Instead, for n→∞, we invoke

case (i) of the central limit theorem established in Jalilian et al. (2024) for the sequence of

conditionally centered random fields Eo,k,n = {Eo,k,n(z)}z∈Z2 , k = 1, . . . , K.

Regarding spatial dependence it then suffices to assume for each k = 1, . . . , K, weak spatial

dependence (α-mixing) of Bk and Dk conditional on Hk−1. For instance, such conditional

weak dependence is trivially satisfied for Bk if Bk is a Poisson process conditional on Hk−1

and could also be established if for example Bk is a Poisson-cluster process conditional

on Hk−1. Note that even in the simple case of Bk being conditionally a Poisson process

and deaths being conditionally independent, the aggregated processes Eo,n = {Eo,n(z)}z∈Z2 ,

o = b, d (with Eo,n(z) defined above), have non-trivial spatial dependence structures. We

refer to Jalilian et al. (2024) for further technical details and discussion of assumptions.

According to the central limit theorem, V
−1/2
o,n (θ∗o)en(θ∗o) converges to a standard Gaussian

vector where θ∗o denotes the true value of θo, o = b, d. Using standard arguments, the

convergence in distribution of Vo,n(θ∗o)
−1/2So,n(θ∗o)(θ̂o,n−θ∗o) to a standard Gaussian vector

is obtained. Hence, (θ̂o,n−θ∗o) is approximately Gaussian distributed with covariance matrix

So,n(θ∗o)
−1Vo,n(θ∗o)So,n(θ∗o)

−1. Plugging in our estimates for So,n(θ∗o) and Vo,n(θ∗o), we obtain

standard errors and confidence intervals for the various parameters. The sensitivity So,n(θ∗o)

and the variance Vo,n(θ∗o) are roughly proportional to the spatial window size |W̃n| so the

parameter estimation variance is asymptotically inversely proportional to |W̃n|.

6. Simulation study

We conduct a simulation study to assess the performance of our methodology and to bench-

mark it (Section 6.1) against existing methodology for space-time point and binary pro-

cesses. To emulate the expanding window asymptotics we consider two observation windows
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W̃1 = [0, 500]× [0, 250] and W̃2 = [0, 1000]× [0, 500]. We simulate two types of tree species,

p = 2, and estimate the parameters for the first species. For sake of simplicity we disregard

effects of marks which are just fixed at an arbitrary value 1. The covariate vector for recruit

intensities and death probabilities (Section 2.1) is specified as Zk−1(u) = (Z(1)(u), Z(2)(u))T,

u ∈ W̃2, where Z(1)(u) and Z(2)(u) are zero mean Gaussian random fields (Figure 1 in the

supplementary material).

For the influence of the existing trees on recruits, we deviate a bit from the description in

Section 2.2 and for both species let ck−1(x) have components clk−1(x) = exp{−[d(x,X
(l)
k−1)]/ψ)2},

l = 1, 2, as in (3) with ψ = 6. For the death probabilities we for both species let dk−1(x)

have components dlk−1(x) =
∑

(u′,m′)∈X(l)
k−1\{(u,m)}

m′

m
exp[−(‖u − u′‖/κ)2], l = 1, 2, as in (4)

with m = m′ = 1 and κ = 10 so that the practical range of influence of an existing tree is

less than 20m.

We simulate K = 10 generations of recruits and deaths. For each time step 1 6 k 6 K,

the recruits for both species are simulated from a log Gaussian Cox process (Møller et al.,

1998) with intensity function given by (1) with intercept βb0,k = βb0 = −6.32, (βb1, βb2) =

(0, 0.1), and log-pairwise interaction function log gBk
given by the Matérn covariance function

(supplementary Section 1) with variance, smoothness and correlation scale parameters σ2 =

1, ν = 1.75 and ξ = 4. For the first species (γb1, γb2) = (0.1,−2), while for the second species

(γb1, γb2) = (−2, 0.1). The initial point patterns X
(1)
0 and X

(2)
0 are generated from the same

log Gaussian Cox process but with γb1 = γb2 = 0. For the death indicators we for time

1 6 k 6 K use correlated logistic models. For both species we let βd0,k = βd0 = −0.25,

(βd1, βd2) = (0.25, 0), (γd1, γd2) = (−0.25, 0.25), specify ηk(·|Hk−1) by (2), and proceed as

follows for l = 1, 2.

(1) First, we simulate a zero mean Gaussian random field Uk, with a Matérn covariance

function with parameters σ2 = 1, ν = 0.5 and ξ = 7.
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(2) Then, for x = (u,m) ∈ X
(l)
k−1, we compute pk(u) = Φ−1[Uk(u)] with Φ the standard

normal cumulative distribution function and the logistic variable τ(u) = log
[

pk(u)
1−pk(u)

]
.

(3) Finally, Ik(x) = 1[τ(u) 6 ηk(u|Hk−1)], x = (u,m) ∈ X(l)
k−1.

We generate 1000 bivariate space-time point patterns and compute parameter estimates

and estimates of parameter estimate covariance matrices for each simulated space-time

pattern. Figure 2 in the supplementary material shows the evolution of the numbers of

recruits and deaths for the windows W̃1 and W̃2.

Figures 3 and 4 in the supplementary material show kernel density estimates of the 1000

simulated regression parameter estimates. For both window sizes the parameter distributions

are close to normal and with bias close to zero. Moreover, the kernel density estimates and the

numbers in Table 1 show that according to asymptotic theory, parameter estimation variance

decreases at a rate inversely proportional to window size (variances four times larger for W̃1

than for W̃2).

[Table 1 about here.]

Figure 1 shows boxplots of estimates (Section 4) of the variances of recruit parameter

estimates for different choices of truncation distances equally spaced between 5 and 155m.

For small truncation distances, the estimates are strongly biased downwards and the bias

decreases for larger truncation distances. The medians of the variance estimates are stable for

truncation distances greater than 30 and the variance increases as the truncation distance

increases. The variances of the variance estimates are much reduced when increasing the

window from W̃1 to W̃2 (note the different limits on the y-axes) while the bias relative to

the variance seems a bit larger for W̃2.

[Figure 1 about here.]
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The plots for the death parameters in Figure 5 in the supplementary material are similar to

Figure 1 and with similar comments.

The plots in Figure 2 show coverage probabilities over the 1000 simulations of 95% con-

fidence intervals based on the asymptotic normal distribution of the parameter estimates

with variances estimated following Section 4. For the recruits parameters, the coverage

probabilities are quite close to the nominal 95% over a wide range of truncation distances.

For the death parameters, the coverage probabilities are a bit less satisfactory in case of W̃1

but quite close to the nominal 95% in case of the bigger window W̃2.

[Figure 2 about here.]

Overall, inference based on the asymptotic normal distribution of parameter estimates and

the proposed estimates of parameter estimate variances seems reliable at least when the

observation window is sufficiently large. Coverage probabilities of confidence intervals are

fairly stable across a wide range of truncation distances indicating an appealing robustness

to the choice of truncation distance for variance estimation.

6.1 Comparison with INLA

The INLA (integrated nested Laplace approximation) package (Rue et al., 2009) has gained

huge popularity as a versatile and computationally efficient tool for analysing space-time

data. INLA implements Bayesian inference for latent Gaussian random field models and

thus requires a full specification of the data generating mechanism. For the recruits we use

INLA to fit a log Gaussian Cox process with the same space-time correlation structure and

covariates that were used to generate the simulated data sets. More precisely, INLA fits a

Poisson log normal model to counts of points within cells of a partition of the observation

window. Specifically, we consider counts within disjoint 10×10m squares corresponding to a

50× 100 grid on the large window W̃2. For the deaths we use INLA to implement a logistic

regression with space-time correlated random effects. For the prior distributions we use the
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default non-informative priors specified by INLA. More details regarding the INLA method

are given in supplementary Section 1.

For the considered space-time setting, INLA is quite time consuming and we therefore

only consider the window W̃2 and only 100 simulated data sets. The mean computing time

(Intel E5-2680 v4, 152GB RAM) for a simulated data set is 21.6 minutes (standard deviation

5.38) for recruits and 19.7 minutes (standard deviation 4.3) for deaths. Our method is much

faster with mean computing time 13.7 seconds (standard deviation 3.8) for recruits and

4.63 seconds (standard deviation 2.28) for deaths (including all 11 considered truncation

distances). Supplementary Figure 6 compares the composite likelihood estimates with the

INLA posterior mean estimates. For 6 out of 10 parameters there is close agreement between

the two types of estimates. However, the INLA posterior means for the remaining 4 param-

eters show considerable bias. As detailed in the supplementary material, this seems to be

due to discretization error when a covariate is coarsened to the 50× 100 grid. Accordingly,

frequentist coverages of nominal 95% posterior intervals differ markedly from 95% for several

parameters: the estimated coverage probabilities are 0.00, 0.94, 0.95, 0.90, 0.01 for βb0, βb1,

βb2, γb1, γb2 and 0.77, 0.87, 0.89, 0.48, 0.94 for βd0, βd1, βd2, γd1, γd2.

7. The Barro Colorado Island data

[Figure 3 about here.]

We consider tree census data from the 50 ha, W̃ = [0, 1000m]× [0, 500m], Barro Colorado

Island (BCI) study plot (Condit et al., 2019). The first census was conducted in 1983 followed

by censuses in 1985, 1990, 1995, 2000, 2005, 2010, and 2015. The censuses include all trees

with diameter of breast height m > 10mm. Figure 3 shows the locations of Capparis frondosa

trees in the first census and recruits and deaths for the remaining seven censuses. We here

ignore that the time-interval between the first and the second census is smaller than for the
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remaining censuses. To some extent this is accounted for by the census dependent intercepts.

Table 1 in the supplementary material summarizes the numbers of recruits and deaths in

each census. The population of Capparis trees seems to be declining with a decreasing

trend regarding number of recruits and increasing trend regarding number of deaths. A

detailed discussion of existing BCI literature on recruitment and mortality is given in the

supplementary Section 4.

We employ the log linear recruit intensity function (1) with covariates copper (Cu), potas-

sium (K), phosphorus (P), pH, mineralized nitrogen (Nmin), elevation (dem), slope gradient

(grad), convergence index (convi), multi-resolution index of valley bottom flatness (mrvbf),

incoming mean annual solar radiation (solar), and topographic wetness index (twi) available

on a 5× 5 m2 grid. For the influence of existing trees we only distinguish between Capparis

trees (l = 1) and other trees (l = 2). For the influence of Capparis on recruits we use (3)

with ψ1 = 0.25 and for the influence of Capparis on deaths we use (4) with κ1 = 5. For

the influence of other trees we compute influence functions of the form (4) for all abundant

species other than Capparis with more than 500 trees and with κ2 = 5. These influence

functions are averaged to get an influence function for other trees that is used both for

recruits and deaths.

The left plot in Figure 4 shows non-parametric estimates of pair correlation functions for

each point pattern of recruits. Despite the variability between the estimates, all estimates

seem to stabilize around 1 after a distance of 55m which we use as the truncation distance for

variance estimation. The middle plot shows variograms for the death events. For the deaths

we also use truncation distance 55m. There does not appear to be strong spatial correlation

between death events and indeed our estimated standard deviations for the death regression

parameter estimates are only slightly larger than those (not shown) obtained assuming

conditionally independent death events. The right plot shows the intercepts for recruits
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that decrease over time and the intercepts for deaths that increase over time. The composite

likelihood estimates of the remaining regression parameters for respectively recruits and

deaths are given in Table 2 together with p-values and INLA results (see below).

[Figure 4 about here.]

[Table 2 about here.]

We do not attempt a formal investigation of the significance of the various covariates.

However, based on the p-values, there is some evidence that recruit intensity is negatively

associated with the covariates convi, grad, and solar and positively associated with Nmin

and, not surprisingly, presence of existing Capparis trees. Probability of death appears to

be positively associated with high level of Cu, pH and solar. However, no dependence on

existing trees is detected.

We also analyzed the BCI data set using INLA as described in Section 6.1 with a dis-

cretization into 5 × 5m cells for the recruits. The INLA posterior means for the regression

parameters are quite similar to our estimates and this also holds for conclusions regarding

significance based on whether zero is contained in the 95% credibility intervals or not (except

for Capparis influence on deaths). However, our method is much faster with computing times

in seconds 53.2 seconds (recruits) and 12.6 seconds (deaths) compared to 14.6 minutes and

34.9 minutes for INLA.

8. Discussion

Our methodology is essentially free of assumptions regarding the second-order properties

of the space-time point process but a risk of misspecification for the intensity and death

probability regression models remains. This does not necessarily render regression param-

eter estimates meaningless. As in Choiruddin et al. (2021) one might define ‘least wrong’

regression models that minimize a composite likelihood Kullback-Leibler distance to the true
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intensity and death probability models. The composite likelihood parameter estimates then

estimate the corresponding ‘least wrong’ regression parameter values.

We have focused on estimation of regression parameters. However, scale parameters in the

models for influence of existing trees need to be determined too. If suitable values of these

parameters can not be identified from biological insight, one might include these parameters

in the composite likelihood estimation although computations become more cumbersome.

We have not provided a theoretically well founded method for truncation distance selection

for the variance matrix estimators. Our simulation study, however, indicates robustness to the

choice of truncation distance. As in the data example, plots of estimates of pair correlation

functions and variograms may give some idea of suitable truncation distances.
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βb0 βb1 βb2 γb1 γb2

Figure 1. Boxplots of the estimated variances for recruit parameter estimates for W̃1 =
[0, 250]×[0, 500] (upper row) and W̃2 = [0, 500]×[0, 1000] (lower row) for different truncation
distances. The red dots show the empirical variance of the simulated parameter estimates.
The parameter βb0 is the intercept for recruits, βb1 and βb2 are regression parameters for
spatial covariates, and γb1 and γb2 are regression parameters for the dependence on previous
points of same type and different type, respectively.



26 Biometrics, 000 0000

Figure 2. Coverage probabilities for the recruits (top) and the deaths (bottom) regression
parameter confidence intervals obtained with varying truncation distances and windows
W̃1 = [0, 250] × [0, 500] (left) and W̃2 = [0, 500] × [0, 1000] (right). The parameter βb0 is
the intercept for recruits, βb1 and βb2 are regression parameters for spatial covariates, and
γb1 and γb2 are regression parameters for the dependence on previous points of same type and
different type, respectively. The explanation is analogous for the death regression parameters
βd0, βd1, βd2, γd1, γd2.
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1983 1985

1990 1995

2000 2005

2010 2015

Figure 3. Spatial point patterns of locations of Capparis frondosa trees in the eight
censuses of the 50 ha plot in Barro Colorado Island (BCI), Panama. Top left plot: trees
in first census. Remaining plots: recruits (red) and deaths (blue) relative to previous census.
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Figure 4. Left: estimated pair correlation functions for each census. Red solid curve shows
the average of the estimates. Middle: variograms for death indicators for each census. Right:
time dependent intercepts for recruits (blue) and deaths (red).
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Table 1
Second and fifth rows: variances of the parameter estimates for the recruits and deaths for W̃2 = [0, 500] × [0, 1000].

Third and sixth rows: ratios of variances for W̃1 = [0, 250] × [0, 500] and W̃2. The parameter βb0 is the intercept for
recruits, βb1 and βb2 are regression parameters for spatial covariates, and γb1 and γb2 are regression parameters for
the dependence on previous points of same type and different type, respectively. The explanation is analogous for the

death regression parameters βd0, βd1, βd2, γd1, γd2.

βb0 βb1 βb2 γb1 γb1
Var. W̃2 1.3e-03 3.2e-03 3.8e-03 9.9e-03 1.7e-02

Var. W̃1/ Var. W̃2 3.89 4.37 3.95 3.81 3.79

βd0 βd1 βd2 γd1 γd2
Var. W̃2 7.6e-02 7.6e-02 8.4e-02 2.6e-02 2.6e-02

Var. W̃1/ Var. W̃2 3.95 3.85 3.55 4.05 4.25
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Table 2
Results for recruits (left) and deaths (right). Columns ‘estm.’, ‘post. mean’, ‘p’, and ‘0 inside’ contain composite
likelihood parameter estimates, INLA posterior means, p-values based on asymptotic normality, and indication of
whether 0 is inside INLA 95% posterior credibility interval. Rows ‘Infl. others’ and ‘Infl. Capparis’ contain the

results for the regression parameters measuring influence of other trees respectively Capparis trees on either
Capparis recruits or Capparis deaths.

Recruits Deaths
estm. post. mean p 0 inside estm. post. mean p 0 inside

convi -0.01 -0.01 0.00 no -3e-3 0.00 0.09 yes
Cu 0.03 0.05 0.33 yes 0.10 0.11 0.00 no
dem 0.02 0.02 0.06 yes 4e-3 0.01 0.54 yes
grad -2.79 -3.25 0.03 no 0.76 0.63 0.32 yes
K 0.00 0.00 0.85 yes -2e-3 0.00 0.17 yes
mrvbf -0.07 -0.03 0.24 yes 0.02 0.00 0.64 yes
Nmin 0.03 0.02 0.00 no 1e-3 0.00 0.88 yes
P -2e-3 0.01 0.96 yes -0.03 -0.03 0.32 yes
pH -0.02 -0.01 0.90 yes 0.55 0.60 0.00 no
solar -5e-3 0.00 0.00 no 3e-3 0.00 0.01 no
twi 0.01 -0.03 0.84 yes 0.03 0.03 0.39 yes
Infl. others 1e-3 0.01 0.93 yes -0.01 -0.00 0.21 yes
Infl. Capparis 0.64 0.29 0.00 no 2e-4 0.32 0.65 no


