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Abstract

Establishing nature reserves is a key method for preventing biodiversity loss. This

thesis addresses the reserve site selection (RSS) problem, which aims to select sites for

nature reserves to ensure species survival. Specifically, it examines the extent to which

simulation optimisation (SO) can be used in the RSS problem. The applicability and

effectiveness of SO are evaluated by applying an SO method and its adaptations across

three scenarios of a Grey Wolf (Canis lupus) RSS problem.

The problem is formulated as a chance-constrained SO problem, with a deterministic

objective that minimises conservation costs, subject to a probabilistic species survival

constraint. This probability is estimated using a grey wolf simulation model that simu-

lates the wolves’ birth, growth, dispersal and death in discrete time steps. The problem

is solved using the sequential feasibility test procedure from Hong, Luo, and Nelson

(2015), hereafter CCSB-F.

Three scenarios of the RSS problem, each with different characteristics, are investigated

in this research. Scenario 1 demonstrates how CCSB-F can tackle a basic problem.

Several observations are made: first, since solution costs are trivial to obtain, com-

putational effort (measured by the number of simulation runs) is required solely for

establishing solution feasibility. Second, due to sampling error in simulation results,

solution feasibility can only be assured subject to a ‘statistical guarantee’. Lastly, the
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computational effort required depends on how close the solutions are to the feasibility

boundary and the required level of statistical guarantee.

To address likely computational hurdles in more difficult versions of this problem, Sce-

narios 2 and 3 are designed to demonstrate and evaluate two solution space filtering

approaches. The first approach ‘temporarily removes’ solutions with equivalent alterna-

tives, identified based on the simulation model, without affecting CCSB-F’s statistical

guarantee. Applying this approach to Scenario 2 (28 solutions) reduces computational

effort by approximately 26% compared to using CCSB-F alone. When applied to Sce-

nario 1 (28 solutions), it achieves an estimated savings of 40% while maintaining the

same level of statistical guarantee.

The second approach is a heuristic that uses expert knowledge to create solution domi-

nance rules and then removes dominated solutions before applying CCSB-F. It reduces

computational effort by approximately 80% in Scenario 3 (210 solutions) compared to

using CCSB-F alone. When applied to Scenario 1 (28 solutions), the estimated com-

putational savings is 60%. Even though it cannot guarantee to find the best solution

in the entire solution space because it removes solutions, it still provides a statistical

guarantee on the filtered solution space and the feasibility of the selected solutions.

Although these estimates represent conservative lower bounds (as they do not fully

account for the additional reduction in the number of replications per solution), they

clearly demonstrate the potential of the proposed approaches to significantly reduce

computational effort.



Acknowledgements

First and foremost, I would like to thank my supervisors, David Worthington, Richard

Williams, and Luke Rhodes-Leader, for their invaluable support throughout my PhD

journey. To Richard, thank you for your support and for generously sharing your

knowledge and experiences. To Luke, thank you for providing your insights and for all

the 9 a.m. meetings that kept me on track. I am especially grateful to David for your

continuous support during both my MSc and PhD. Thank you for all the advice and

support you have patiently given to guide and teach me how to become a researcher.

I would also like to thank Roger Brooks for his supervision during the first three and a

half years of my PhD (before his retirement). I am grateful for the time and effort he

dedicated to supporting me during that period, and for his kindness.

I am also grateful to the Management Science Department. Without its financial sup-

port, this work would not have been possible. I would like to extend my thanks to the

staff in the department for creating a very friendly environment. Additionally, I would

like to thank all the PhD students in the department during my time there. Thank you

all for making my PhD journey enjoyable.

I also want to express my gratitude to my partner, Liam, for taking care of me, encour-

aging me, and engaging in meaningful discussions about life and academics.

iii



iv

Finally and most importantly, I would like to thank my mother for her unconditional

and ever-present love, understanding, and support throughout my life. Without you, I

would not have achieved any of what I have. I cannot thank you more.



Declaration

I declare that the work in this thesis is my own work. The material has not been

submitted in whole for the award of any other degree, in Lancaster or elsewhere. An

early version of this work has been presented at two conferences in the form of posters.

The abstracts of these posters have been published in:

S. Zhou et al. (2023). “To What Extent Can Simulation Optimisation be Used in

Wildlife Conservation?” In: Proceedings of the Operational Research Society Simulation

Workshop 2023 (SW23). Ed. by C. Currie and L. Rhodes-Leader. The Operational

Research Society. Southampton, UK, p. 285

S. Zhou (2023). “To What Extent Can Simulation Optimization be Used in Wildlife

Reserve Design?” In: Proceedings of the 2023 Winter Simulation Conference (Archive).

Ed. by C. G. Corlu et al. Texas, USA: IEEE Press. URL: https://informs-sim.org/

wsc23papers/doc127.pdf

The approximate word count of this thesis is 28,724 words.

Shengjie Zhou

v



Contents

Abstract i

Declaration v

Contents xi

List of Figures xiii

List of Tables xvi

List of Abbreviations xvii

1 Introduction 1

1.1 Reserve Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Reserve Site Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Simulation Optimisation in RSS . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Reserve Site Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vi



CONTENTS vii

2.2.1 Optimisation in RSS . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Simulation in RSS . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Simulation Optimisation in RSS . . . . . . . . . . . . . . . . . . 13

2.2.4 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Simulation Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Simulation Optimisation Background . . . . . . . . . . . . . . . 16

2.3.2 Ranking and Selection . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 RnS with Stochastic Constraints . . . . . . . . . . . . . . . . . . 22

2.4 Summary and Research Question . . . . . . . . . . . . . . . . . . . . . 31

3 Problem Formulation and Simulation Model 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Grey Wolf RSS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Conceptual Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Grey Wolf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 Simulation Model Design Requirements . . . . . . . . . . . . . . 43

3.5.3 Pup (0 to 6 Months) . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.4 Juvenile (6 to 18 Months) . . . . . . . . . . . . . . . . . . . . . 46

3.5.5 Yearling (18 to 30 Months) . . . . . . . . . . . . . . . . . . . . . 51

3.5.6 Adult (More than 30 Months) . . . . . . . . . . . . . . . . . . . 57

3.5.7 Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.8 Summary Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Computer Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS viii

3.7.1 Fixed Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.2 Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Data-Informed Wolf Reserve Site Selection Problem 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Scenario 1: Problem Description . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Scenario 1: Problem Formulation . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Chance-Constrained Formulation . . . . . . . . . . . . . . . . . 71

4.3.2 CCSB-F Initialisation . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Scenario 1: Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Scenario 1: CCSB-F Performance Analysis . . . . . . . . . . . . . . . . 75

4.5.1 Selection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Benchmark and CCSB-F Comparison . . . . . . . . . . . . . . . . . . . 78

4.6.1 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Selection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 A Model-Based Approach for Solution Space Filtering 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 A Model Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Logic Behind MBA . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Number of Solutions with Indistinguishable Habitats . . . . . . 87

5.2.3 Potential Computational Effort Reduction . . . . . . . . . . . . 90

5.3 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Scenario 2: Problem Description . . . . . . . . . . . . . . . . . . 93



CONTENTS ix

5.3.2 Scenario 2: Formulation . . . . . . . . . . . . . . . . . . . . . . 94

5.3.3 Scenario 2: Solution Space Reduction . . . . . . . . . . . . . . . 95

5.3.4 Scenario 2: Results . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 M-CCSB-F and CCSB-F Comparison . . . . . . . . . . . . . . . . . . . 98

5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Selection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.3 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . 100

5.5 Applying MBA to Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 A Rule-Based Heuristic Approach for Solution Space Filtering 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 A Rule-Based Heuristic Approach . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 Three Pieces of Ordering Information . . . . . . . . . . . . . . . 107

6.2.3 Three Solution Dominance Rules . . . . . . . . . . . . . . . . . 109

6.3 Scenario 3: Problem Description . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Scenario 3: Solution Space Reduction . . . . . . . . . . . . . . . . . . . 112

6.4.1 Solution Space Reduction . . . . . . . . . . . . . . . . . . . . . 113

6.4.2 Potential Computational Effort Reduction . . . . . . . . . . . . 115

6.5 Specific Case: Solution Space Reduction . . . . . . . . . . . . . . . . . 116

6.6 Specific Case: H-CCSB-F and CCSB-F Comparison . . . . . . . . . . . 117

6.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6.2 Selection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.6.3 Computational Effort . . . . . . . . . . . . . . . . . . . . . . . . 124

6.7 Applying RBHA to Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS x

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions and Further Work 129

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.1.1 Solving the RSS Problem . . . . . . . . . . . . . . . . . . . . . . 130

7.1.2 Computational Intensity Reduction Approaches . . . . . . . . . 131

7.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.1 Improvement on CCSB-F . . . . . . . . . . . . . . . . . . . . . 133

7.2.2 Solution space filtering approaches . . . . . . . . . . . . . . . . 134

7.2.3 Feasibility tolerance level . . . . . . . . . . . . . . . . . . . . . . 134

7.2.4 Other ways of reducing computational effort . . . . . . . . . . . 135

7.2.5 Future Work on the Wolf Model . . . . . . . . . . . . . . . . . . 135

7.3 Final Comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Appendix: Chapter 2 137

A.1 Systematic Literature Search . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.2 Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.3 Apply Exclusion Criteria . . . . . . . . . . . . . . . . . . . . . . 138

A.1.4 Reference Lists Checking . . . . . . . . . . . . . . . . . . . . . . 139

A.1.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.2 Literature Search - SO in RSS . . . . . . . . . . . . . . . . . . . . . . . 141

B Appendix: Chapter 3 143

B.1 Computer Model Run Logic . . . . . . . . . . . . . . . . . . . . . . . . 143

B.1.1 Flowchart for Single Habitat in Single Replication . . . . . . . . 143



CONTENTS xi

B.1.2 Model Execution Flowchart . . . . . . . . . . . . . . . . . . . . 145

B.2 Assumptions Summary Table . . . . . . . . . . . . . . . . . . . . . . . 147

B.3 Technical Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . 148

B.4 Model Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C Appendix: Chapter 4 150

C.1 Results Table for Scenario 1: 100 Macro-replications of CCSB-F . . . . 150

C.2 Feasibility Estimation Results Table for Scenario 1 . . . . . . . . . . . 153

C.3 Results Table for Scenario 1: 100 Macro-replications of the Benchmark 155

C.4 Chi-squared Test: Selection Accuracy Comparison . . . . . . . . . . . . 156

D Appendix: Chapter 5 158

D.1 Chi-squared Test: Results Comparison . . . . . . . . . . . . . . . . . . 158

D.2 Results Tables for Scenario 2: 100 Macro-replications of CCSB-F . . . . 159

D.3 Results Tables for Scenario 2: 100 Macro-replications of M-CCSB-F . . 160

D.4 Feasibility Estimation Results Table for Scenario 2 . . . . . . . . . . . 161

D.5 Chi-squared Test: Selection Accuracy Comparison . . . . . . . . . . . . 163

E Appendix: Chapter 6 164

E.1 Experiment Settings for Scenario 3 . . . . . . . . . . . . . . . . . . . . 164

E.2 Feasibility Estimation Results for Infeasible Solutions in Scenario 3 . . 165

E.3 Chi-Squared Test: Selection Accuracy Comparison . . . . . . . . . . . . 171

Reference List 172



List of Figures

2.1 Effect of changing the Sequential Feasibility Test parameter values on

the sample size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Illustrative visualisation of the study area of a hypothetical grey wolf

RSS problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Pup in spring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Pup in summer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Juvenile in autumn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Juvenile in winter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Juvenile dispersing mechanism. . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Juvenile in spring (a), summer (b) and autumn (c). . . . . . . . . . . . 51

3.8 Yearling in winter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Mature wolf dispersing mechanism. . . . . . . . . . . . . . . . . . . . . 55

3.10 Yearling alpha in spring, summer and autumn. . . . . . . . . . . . . . . 56

3.11 Yearling non-alpha in spring, summer and autumn. . . . . . . . . . . . 57

3.12 Adult alpha in winter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Adult non-alpha in winter. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.14 Breeding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.15 Possible survival, dispersal, and breeding states for a wolf over 4 years. 61

xii



LIST OF FIGURES xiii

4.1 Map of California with 6 habitats and the current locations of wolf packs. 69

4.2 Scenario 1: feasibility estimation result plot. . . . . . . . . . . . . . . . 76

A.1 Classification result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.1 Flowchart for single habitat in single replication. . . . . . . . . . . . . . 144

B.2 Flowchart for multiple replications. . . . . . . . . . . . . . . . . . . . . 145

B.3 Flowchart for a single simulation run. . . . . . . . . . . . . . . . . . . . 146



List of Tables

3.1 States and transitions of pups. . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 States and transitions of juveniles. . . . . . . . . . . . . . . . . . . . . . 50

3.3 States and transitions of yearlings. . . . . . . . . . . . . . . . . . . . . 57

3.4 Possible alpha status for different age groups. . . . . . . . . . . . . . . 58

3.5 States and transitions of adults. . . . . . . . . . . . . . . . . . . . . . . 60

3.6 Input table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Scenario 1: starting condition. . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Scenario 1: solution space. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Scenario 1: result table for 100 macro-replications of CCSB-F. . . . . . 74

4.4 Scenario 1: feasibility estimation for solutions identified as feasible. . . 76

4.5 Benchmark and CCSB-F selection count comparison with two δγs. . . . 82

5.1 Number of solutions |I| corresponding to the number of indistinguishable

habitats up to H, for B ranging from 1 to 10, when H is (a) 4; (b) 6. . 90

5.2 Upper and lower limits on the number of simulation runs required (in

10,000) for |I| solutions for H = 4 habitats. . . . . . . . . . . . . . . . 91

5.3 Upper and lower limits on the number of simulation runs required (in

10,000) for |I| solutions for H = 6 habitats. . . . . . . . . . . . . . . . 92

5.4 Scenario 2: packs information. . . . . . . . . . . . . . . . . . . . . . . . 94

xiv



LIST OF TABLES xv

5.5 Scenario 2: starting condition. . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Scenario 2: filtered solution space. . . . . . . . . . . . . . . . . . . . . . 95

5.7 Scenario 2: pairs of equivalent solutions. . . . . . . . . . . . . . . . . . 96

5.8 Scenario 2: results table for CCSB-F and M-CCSB-F. . . . . . . . . . . 97

5.9 CCSB-F and M-CCSB-F solutions selection counts comparison with two

δγs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10 Scenario 2: feasibility estimation for solutions identified as feasible. . . 99

5.11 Scenario 1: pairs of equivalent solutions. . . . . . . . . . . . . . . . . . 101

5.12 Average number of runs for the equivalent solutions in Scenario 1, ex-

tracted from Appendix C.1. . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 Study area starting condition definition, and relevant characteristics of

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Scenario 3: starting condition. . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Scenario 3: packs information. . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Scenario 3: solution space size comparison between the original solution

space versus solution space after applying RBHA. . . . . . . . . . . . . 114

6.5 Total number of runs required for one macro-replication (in 10,000), and

the potential computational effort savings of H-CCSB-F. . . . . . . . . 116

6.6 Specific case of Scenario 3: solutions that have been filtered out. . . . . 118

6.7 Specific case of Scenario 3: filtered solution space. . . . . . . . . . . . . 119

6.8 Specific case of Scenario 3: results table for CCSB-F and H-CCSB-F. . 120

6.9 Specific case of Scenario 3: feasibility estimation for solutions identified

as feasible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.10 Estimated Pr{Yi ≥ 14} of dominated solutions and their corresponding

dominating solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



LIST OF TABLES xvi

6.11 Specific case of Scenario 3: computational effort (simulation runs in mil-

lion) comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.12 Solutions removed when applying RBHA to Scenario 1. . . . . . . . . . 126

B1 Summary table for assumptions. . . . . . . . . . . . . . . . . . . . . . . 147

B2 Technical design simplification table. . . . . . . . . . . . . . . . . . . . 148

C1 Scenario 1: random number seed settings for 100 macro-replications of

CCSB-F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C2 Scenario 1: CCSB-F results table (100 macro-replications). . . . . . . . 152

C3 Scenario 1: feasibility estimation results. . . . . . . . . . . . . . . . . . 154

C4 Scenario 1: benchmark results table (100 macro-replications). . . . . . . 155

C5 Scenario 1: random number seed settings for 100 macro-replications of

the benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

D1 Scenario 2: CCSB-F results table (100 macro-replications). . . . . . . . 159

D2 Scenario 2: random number seed settings for 100 macro-replications of

CCSB-F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D3 Scenario 2: random number seed settings for 100 macro-replications of

M-CCSB-F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

D4 Scenario 2: CCSB-F results table (100 macro-replications). . . . . . . . 161

D5 Scenario 2: feasibility estimation results. . . . . . . . . . . . . . . . . . 162

E1 Scenario 3: random number seed settings for macro-replications. . . . . 165

E2 Scenario 3: feasibility estimation results for infeasible solutions. . . . . 166



List of Abbreviations

RSS reserve site selection

OR operational research

MILP mixed integer linear programme

SO simulation optimisation

RnS ranking and selection

PCS probability of correct selection

IZ indifference zone

CCSB chance-constrained selection of the best

CCSB-F sequential feasibility test of procedure CCSB

Pr probability

MBA model-based approach (MBA)

M-CCSB-F MBA coupled with CCSB-F

RBHA rule-based heuristic approach

H-CCSB-F RBHA coupled with CCSB-F

xvii



Chapter 1

Introduction

The International Union for Conservation of Nature (IUCN) reports that over 42,100

species out of the 150,300 evaluated, face extinction (IUCN, 2023). This extensive biodi-

versity loss threatens not only species’ existence but also the stability of ecosystems and

the vital services they offer, including climate regulation, water quality maintenance,

and wildlife habitat provision (IPBES, 2019).

To counteract biodiversity loss, establishing protected areas (also known as nature

reserves, hereafter reserves) has emerged as a key global strategy (Langhammer et al.,

2024). Studies have shown that establishing reserves helps to reduce rates of habitat

loss (Joppa and Pfaff, 2011), maintain species populations (Taylor et al., 2011), and

when appropriately located, may slow the rate at which species are driven towards

extinction (Butchart et al., 2012).

However, the establishment of nature reserves is not without challenges. It necessitates

significant resources, such as land and financial capital, which are often in limited sup-

ply. Additionally, allocating these resources for conservation purposes can conflict with

other economic interests like agriculture, housing, industry, and tourism (Billionnet,

1
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2013). Moreover, areas of the highest biological value are typically more financially, so-

cially and politically costly (Luck, 2007). To address these challenges comes the science

of reserve design.

1.1 Reserve Design

Reserve design is an interdisciplinary science that combines principles from subjects

like ecology, economics, and operational research (OR) (Kingsland, 2002). Simulation

and mathematical optimisation (hereafter optimisation) are two primary OR methods

used in reserve design.

Simulation models in reserve design are typically used to evaluate management op-

tions (e.g. Haight et al. (2002)), understand the ecosystems (e.g. Possingham and

Davies (1995)), or to evaluate the solutions selected by an optimisation algorithm (e.g.

Meester et al. (2004)). Typical simulation models in reserve design are Monte Carlo

(e.g. Haight and Travis (1997)), agent-based (e.g. Miller et al. (2014)), discrete-event

(e.g. Gaucherel et al. (2021) and discrete-time (also known among the ecologists as

individual-based models, e.g. Fahrig (2001)).

Optimisation is typically used in reserve design to identify which areas of land should be

protected to achieve conservation goals, a problem known as the reserve site selection

(RSS) problem (e.g. Camm et al. (2002)).

1.2 Reserve Site Selection

RSS is one of the key topics in reserve design. In the context of RSS, the study area is

divided into small areas, which are called sites. The RSS problem aims to select a subset

of sites amongst a set of potential sites to assemble a reserve to achieve conservation
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goals (Billionnet, 2013).

The analytical methods to solve this problem borrow heavily from OR (Snyder and

Haight, 2016). Optimisation is the primary OR method used in RSS. The RSS prob-

lem in optimisation is usually formulated as a mixed integer linear programme (MILP),

and aims to select the best (optimal) subset of sites that maximises or minimises certain

goals subject to some constraints (Wang, Önal, and Fang, 2018). Two basic formula-

tions are the maximal covering location formulation, where the objective is to maximise

the conservation goal subject to a constraint on the number of sites; and the set covering

formulation, where the objective is to minimise the number of reserve sites subject to

conservation constraints (Williams, ReVelle, and Levin, 2005). The MILP can be solved

with either heuristic (does not guarantee to find the global optimum) or exact methods

(guaranteed to find the global optimum). Heuristic methods include greedy algorithms

(e.g. Clemens, Revelle, and Williams (1999)), simulated annealing (e.g. McDonnell et

al. (2002)) and genetic algorithms (e.g. Delmelle, Desjardins, and Deng (2017)). Exact

methods include the simplex algorithm and interior point methods (for linear program-

ming formulation), and branch and bound (for integer programming formulation) (see

Haight and Snyder (2009) for more detail).

Optimisation is designed to identify the best solutions but often needs to oversimplify

the problem. Simulation allows for the evaluation of more detailed representations of

ecological systems but is not designed to search for the best solutions. Hence, combining

simulation and optimisation seems to be a natural way to model the RSS problem.

1.3 Simulation Optimisation in RSS

The combination of simulation and optimisation is usually referred to as simulation

optimisation (SO) in OR. SO is a process of finding the best input variable values to
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maximise or minimise some performance measure that is estimated using simulation

(Jian and Henderson, 2015).

SO has the potential to overcome the limitations of both optimisation and simulation

by integrating the strengths of both methods. However, running complex ecosystem

simulation models can be time-consuming, and combining optimisation with simulation

can increase the computational burden dramatically, making this approach much less

common (Fulton et al., 2015).

Haight and Travis (1997) and Haight and Travis (2008) are two attempts to solve RSS

using a SO approach. The former minimises the costs of reserve sites subject to a

probabilistic species population size constraint, which is estimated with Monte Carlo

simulation. The latter maximises species persistence (long-term survival) probability,

which is estimated by a discrete-time simulation model, with a constraint on the cost

of sites. However, neither solution method guarantees to find the optimal solution, and

the solution method used by Haight and Travis (1997) does not guarantee that the

optimal solution satisfies the constraints.

Hence, this thesis aims to develop and evaluate SO methods for the RSS problem that

ensure solution accuracy (i.e. provide a ‘statistical guarantee’ of finding the optimal

solution). Solving the RSS problem with SO (Haight and Travis (1997) and Haight and

Travis (2008)) is already computationally intense, and ensuring solution accuracy could

further increase this computational intensity (e.g. Boesel, Nelson, and Ishii (2003)).

The species studied as an example is the grey wolf (Canis lupus). Even though the

grey wolf is currently listed as a species of “Least Concern” on the IUCN Red List

(IUCN, 2023), it was nearly driven to extinction in North America from the 1800s to

the mid-1900s due to wolf eradication campaigns by European settlers and to rapid

environmental changes (Paquet and Carbyn, 2003). Fortunately, human interventions
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have facilitated remarkable comebacks for wolves in some states in the USA. For exam-

ple, Wydeven, Deelen, and Heske (2009) documents the recovery of wolves from diverse

perspectives in the western Great Lakes region. However, despite these successes, the

grey wolf is still listed as endangered and remains a protected species in most states in

the USA (U.S. Fish and Wildlife Service, 2022). Governments continue to develop and

implement grey wolf recovery plans (e.g. California Department of Fish and Wildlife

(2016)) to support their ongoing conservation.

1.4 Thesis Aims

This thesis explores the extent to which SO can be used to solve RSS problems. As

mentioned in Section 1.3, the application of SO in RSS problems is still in its infancy,

and existing works face two major challenges: a lack of solution accuracy and high

computational intensity.

To address the first challenge, this research begins by asking:

RQ1: How well do current SO methods perform (in terms of solution ac-

curacy and computational effort) when applied to RSS problems? Previous

studies have formulated RSS problems as SO problems but did not adequately address

the accuracy of the selected solutions. This thesis aims to evaluate the performance

of SO in solving RSS problems from both solution accuracy and computational effort

perspectives.

Having identified the computational effort challenge, there is a need to explore ap-

proaches for reducing the computational intensity associated with SO in solving RSS

problems. This thesis proposes two approaches for addressing this issue. The first in-

volves looking into the simulation model itself, leading to the second research question:
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RQ2: How and to what extent can computational effort in SO be reduced by

leveraging the simulation model? By answering RQ2, this thesis aims to investi-

gate how information from the simulation model can be utilised to reduce computational

effort without compromising solution quality when using SO to solve RSS problems.

After considering computational effort reduction from a modelling perspective, this re-

search considers a complementary perspective of incorporating domain-specific insights.

In this light, this study asks:

RQ3: How and to what extent can expert opinion be used to reduce the

computational effort in SO? By answering RQ3, this thesis aims to explore the

role of expert knowledge in reducing the computational effort required for SO.

1.5 Thesis Structure

These research questions are examined through a computational study, where different

variations of a SO solution method are applied to solve three scenarios of the RSS prob-

lem. Each scenario is designed to address a specific aspect of the research questions:

Scenario 1 is designed to evaluate the performance of SO (RQ1), Scenario 2 to investi-

gate how leveraging the simulation model can reduce computational effort (RQ2), and

Scenario 3 to investigate how incorporating expert opinion can reduce computational

effort (RQ3).

This thesis consists of seven chapters. Chapter 2 primarily focuses on reviewing the

literature on RSS and SO. The final section of the chapter fully defines the research

questions, outlines the work undertaken to address these questions, and introduces three

RSS scenarios to be investigated further in Chapters 4, 5, and 6.

Chapter 3 details the mathematical formulation of the RSS problem and the simulation
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model used to assess the performance of potential solution methods. This provides the

foundation for evaluating solution accuracy and computational effort.

Chapter 4 defines the first scenario (Scenario 1) and addresses RQ1 by analysing the

performance of a SO solution method that guarantees solution accuracy when applied

to Scenario 1.

Chapter 5 defines the second scenario (Scenario 2) and introduces a model-based ap-

proach that leverages information from the simulation model. It examines RQ2 by

assessing the effectiveness of this approach in solving Scenario 2. Its generalisability

is evaluated by applying it to Scenario 1 and estimating the potential computational

effort savings.

Chapter 6 defines the third scenario (Scenario 3) and introduces a heuristic approach

based on expert opinion. It investigates RQ3 by analysing the performance of the

heuristic approach in solving Scenario 3. To investigate its generalisability, the ap-

proach is also applied to Scenario 1, where its potential computational effort savings

are estimated.

Chapter 7 summarises the research findings, reflects on the potential of SO for solv-

ing the RSS problem, compares the heuristic and model-based approaches, examines

the generalisability of the two proposed approaches, and suggests directions for future

research.



Chapter 2

Literature Review

2.1 Introduction

This chapter reviews relevant literature on RSS and SO. Section 2.2 reviews the litera-

ture on optimisation, simulation and SO in RSS, highlights research gaps, and specifies

the RSS problem formulation this thesis focuses on. Section 2.3 reviews relevant SO

methods, and identifies a solution method to solve the proposed RSS problem. Sec-

tion 2.4 summarises this chapter, states the research questions and outlines the work

undertaken to address the research question.

2.2 Reserve Site Selection

The RSS problem this thesis focuses on considers a study area, which is divided into

smaller areas called ‘sites’. The problem aims to select a set of sites in the study area

so that some conservation goals can be achieved. These possible sets of sites are the

possible solutions to the problem.

8
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To review how simulation and optimisation have been applied to the RSS problem,

relevant literature is searched using a systematic literature search method (detailed in

Appendix A.1). This section reviews relevant literature on the RSS problem. Subsec-

tion 2.2.1 reviews the use of optimisation in RSS. Subsection 2.2.2 reviews the use of

simulation in RSS. Subsection 2.2.3 details existing attempts to use SO to solve the

RSS problem. Subsection 2.2.4 then highlights the research gaps.

2.2.1 Optimisation in RSS

A substantial body of literature formulates the RSS problem as an optimisation prob-

lem. This section provides several examples of these studies.

RSS problems are typically formulated as MILPs. The optimisation models of RSS

problems mainly aim to minimise economic costs subject to constraints defined by con-

servation goals, or vice versa. The economic costs are mainly defined by the number

or the cost of sites. The conservation goals include spatial requirements (e.g. compact-

ness and connectedness of sites, and shape of the reserve), species diversity, and species

survival. See Billionnet (2013) or Cabeza and Moilanen (2001) for a more detailed

discussion on different types of conservation goals.

Two basic examples of such optimisation formulations are the set covering problem

(SCP) formulation and the maximal covering problem (MCP) formulation. The SCP

is a classic integer programming problem first introduced by Berge (1957). One of the

earliest examples of formulating the RSS problem as an SCP is Underhill (1994), where

the objective is to minimise the number of reserve sites so that all species are covered.
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This problem can be mathematically written as follows:

Min
∑
j∈J

xj (2.1)

s.t.
∑
j∈Ji

xj ≥ 1 ∀i ∈ I (2.2)

xj ∈ {0, 1} ∀j ∈ Ji (2.3)

where I is the set of species to be covered in the reserve; J is the set of candidate sites;

Ji is the set of candidate sites that contain species i; xj is a binary variable and xj = 1

if site j is selected, 0 otherwise. Other examples of problems formulated in this way

include: Sætersdal, Line, and Birks (1993), Bonneau et al. (2018), and Álvarez-Miranda

et al. (2021).

The MCP is also a classic integer programming problem, first introduced by Church

and ReVelle (1974). One of the first examples of formulating the RSS problem as an

MCP is Camm et al. (1996), where the objective is to maximise the number of species

covered, subject to a constraint on the number of sites, mathematically written as:

Max
∑
i∈I

yi (2.4)

s.t.
∑
j∈Ji

xj ≥ yi ∀i ∈ I (2.5)

∑
j∈J

xj ≤ k (2.6)

xj ∈ {0, 1} ∀j ∈ J (2.7)

yi ∈ {0, 1} ∀i ∈ I. (2.8)

Here, I, J , Ji, and xj are defined in the SCP. The MCP can be seen as an extension
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of SCP, where there is an added constraint on the total number of sites that may be

selected (denoted as k), and a binary variable yi to ensure species coverage, with yi = 1

if species i is represented in the reserve, 0 otherwise. See Snyder and Haight (2016) for

a review of the RSS problem in this formulation and typical solution methods.

The numerical methods to solve the RSS problem formulated as a MILP borrow heav-

ily from OR (Snyder and Haight, 2016). The problem is typically solved with either

heuristic methods (which do not guarantee finding the global optimum) or exact meth-

ods (which are guaranteed to find the global optimum). Examples of heuristic methods

used to solve RSS problems include greedy algorithms (e.g. Clemens, Revelle, and

Williams (1999)), simulated annealing (e.g. McDonnell et al. (2002)), genetic algo-

rithms (e.g. Delmelle, Desjardins, and Deng (2017)), and metaheuristics (e.g. Bandara

and Weerasena (2016)). Exact methods include the simplex algorithm and interior

point methods (for linear programming formulation), and branch and bound (for inte-

ger programming formulation) (see Haight and Snyder (2009) for more detail).

Other ways of formulating the RSS problem include multi-objective optimisation, dy-

namic programming and nonlinear programming. Snyder, ReVelle, and Haight (2004)

present a multi-objective optimisation formulation that aims to maximise the num-

ber of unique land systems represented while minimising the total area of the selected

sites, subject to constraints on the number of sites and land types coverage, solved

with a multi-objective weighting method. One example of the RSS problem formulated

as dynamic programming is Costello and Polasky (2004). They aim to maximise the

number of species conserved over a given planning horizon subject to a constraint on

the number of sites in each period, solved with a backward induction method. Camm

et al. (2002) provide an example of nonlinear binary integer programming, aiming to

maximise the expected number of species covered (with species coverage probability
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estimated using a logistic regression model), subject to a constraint on the number of

sites. They approximate the nonlinear problem as a mixed integer linear problem and

solve it using a branch and bound algorithm.

2.2.2 Simulation in RSS

Simulation models in RSS are typically used to evaluate optimal solutions selected by

optimisation algorithms or to estimate some parameter values used in the optimisation

formulation. Readers interested in the application of simulation models in the broader

area of designing reserves are referred to Drechsler (2020) for a systematic literature

review on this topic.

Examples of models used for evaluation include Costello and Polasky (2004), which

uses a Monte Carlo model to compare the performance of the solution produced by

their method and with a heuristic method in solving a dynamic RSS problem. Another

example is Arthur et al. (2002), which uses a Monte Carlo model to compare the

performance of two approaches for solving the RSS problem with probabilistic data.

Examples of models used for estimating parameter values include Hof and Raphael

(1997), which uses a discrete-time model for the Northern Spotted Owl to estimate

the ‘connectivity’ function (the population of the sites as a function of the connecting

sites’ population) and the ‘carrying-capacity’ function (the population of the sites as a

function of the sites selected) to incorporate into the optimisation model. Additionally,

the solution from the optimisation model is also evaluated by the same simulation

model.

Another example is Haight et al. (2004), which develops a discrete-time model for the

San Joaquin kit fox. The model simulates the key life events of foxes, including their

reproduction, dispersal, and mortality in discrete time. The model is used to estimate
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the relationship function between extinction risk and the number of sites. This function

is then used as the objective function of the optimisation problem that aims to maximise

the survival probability of the foxes subject to a cost constraint.

2.2.3 Simulation Optimisation in RSS

Formulating the RSS problem as a MILP oversimplifies important things, such as the

movement of species, ecological interactions like predator-prey relationships, and the

stochastic nature of species survival. Simulation models allow for the evaluation of

more detailed representations of ecological systems but are not designed to search for

the best solutions.

SO has the potential to overcome the limitations of both optimisation and simulation

by integrating the strengths of both methods. However, running complex ecosystem

simulation models can be time-consuming, and combining optimisation with simulation

can increase the computational burden dramatically, making this approach much less

common. Two existing attempts of applying SO to the RSS problem are Haight and

Travis (1997) and Haight and Travis (2008).

Haight and Travis (1997)’s optimisation objective is to minimise the cost of reserve

sites for wolf protection. Their constraint is that the probability of the wolf popula-

tion exceeding the targeted size should reach a specified ‘margin of safety’ probability.

The wolf population is estimated using a Monte Carlo simulation, where population

growth is modelled using difference equations that incorporate random environmental

variation. The solution method they use is retrospective optimisation. This involves

estimating the objective value for each site selection option under one set of random

environmental effects and selecting the best-performing solution. This process is re-

peated with a specified number of different sets of environmental effects to calculate
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the confidence interval for the selected solution. Additionally, they use the importance

sampling method as a variance reduction technique by ensuring a significant portion of

the environmental effects considered are extreme cases. One observation they make is

that the use of a simulation model limits the size of the optimisation problem that can

be solved. Their solution method does not provide guarantees on finding the optimal

solution or that the selected solution satisfies the constraint.

Haight and Travis (2008) formulate the RSS problem with a probabilistic objective

function. The optimisation objective is to maximise the probability of species persis-

tence (long-term species survival probability) subject to a limit on the total cost of

sites. This objective function is evaluated using a discrete-time fox model similar to

the one used in Haight et al. (2004). The model is implemented in Arena Professional

simulation software. They solved an example problem with 2,002 solutions using a

search heuristic in OptQuest (a commercial solver). One of their findings is that com-

putational intensity is a significant issue in solving the RSS problem with SO (the time

to solve their example problem with 2,002 solutions required up to 24 hours). As with

Haight and Travis (1997), their solution method does not provide a guarantee of finding

the optimal solution.

Since the papers by Haight and Travis (1997) and Haight and Travis (2008), no more

relevant works on SO to solve the RSS problem have been found (see Appendix A.2 for

the literature searched).

2.2.4 Research Gaps

The limited use of SO in RSS and the lack of any solution accuracy guarantee in the

two existing attempts highlight the research gaps. This thesis aims to investigate the

use of SO with some solution accuracy guarantee in solving the RSS problem.
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As explained in Subsection 2.2.1, RSS problems are typically formulated using either

the maximal covering location formulation or the set covering formulation. The former

aims to maximise a conservation outcome (e.g. the number of species protected) subject

to a cost constraint (e.g. the number of sites). The latter aims to minimise the cost

subject to a conservation goal. Neither approach is intrinsically superior, and both

types of formulations are widely used in RSS literature. This thesis formulates the RSS

problem using the set covering formation.

More specifically, it adopts the SO formulation from Haight and Travis (1997), which

aims to minimise the cost of reserve sites (deterministic) subject to a probabilistic

species survival constraint (stochastic). This type of formulation is also known as a

chance-constrained formulation in SO (e.g., Hong, Luo, and Nelson, 2015).

Another reason for focusing on this formulation is that the constrained SO approach

allows control over whether the best solution meets minimal conservation thresholds.

Specifically, the chance-constrained formulation is chosen for two reasons: first, it aligns

with the recommendation of ecologists like Ellingson and Lukacs (2003), who suggest

that wildlife populations should be defined “in a probabilistic fashion”; second, it lever-

ages the unique properties of probability constraints, as discussed further in Subsection

2.3.3.

2.3 Simulation Optimisation

This section reviews relevant literature on SO. Subsection 2.3.1 describes the general

SO problem. Subsection 2.3.2 focuses on a specific group of SO methods, Ranking and

Selection (RnS), which are particularly relevant to the RSS problem addressed in this

thesis. Subsection 2.3.3 further narrows the focus to methods designed to solve RnS

problems with stochastic constraints and details a solution method used in this thesis
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to solve the proposed RSS problem.

2.3.1 Simulation Optimisation Background

This section provides a general background on SO. Subsection i defines SO and its

general formulations. Subsection ii describes the general classification of SO problems

and explains the focus on RnS. Subsection iii describes the errors associated with SO

methods and highlights the one most relevant to the RSS problem that this thesis

addresses.

i Overview

Generally, Simulation Optimisation (SO) problems can be formulated as:

min
x∈I

f(x) (2.9)

where f represents the objective, x is the decision variable, and I is the solution set. The

variable x can be a vector of variables or a single variable, and it can take continuous or

discrete values. The objective and constraint functions can be linear or nonlinear, but

at least one of them involves randomness and cannot be evaluated exactly (Jian and

Henderson, 2015). A simulation model, such as discrete-event simulation, Monte Carlo,

agent-based simulation, hybrid simulation, or system dynamics, is used to estimate the

value of the objective function and/or the constraints. Minimisation is used for the

objective function here, but if the objective is to maximise, then stating (2.9) as min

−f(x) is sufficient (Nelson and Pei, 2021, p. 231).

Usually, the SO problems have an objective that involves randomness and cannot be

evaluated exactly (i.e. they are stochastic). Extensive reviews on this type of SO

problem can be found in Amaran et al. (2016), Fu and Henderson (2017), chapter 9 of
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Nelson and Pei (2021), and the handbook by Fu (2015).

For SO problems where both the objective and constraints are stochastic, it is more

challenging to solve, as the feasibility of a solution (i.e. if it satisfies the constraints)

needs to be verified before (or concurrently with) estimating the objective. One way to

formulate such a problem is as follows:

min
x

f(x)

s.t. gi(x) ≥ 0, i = 1, ..., n

(2.10)

where n is the number of stochastic constraints.

ii Classification

Depending on the nature of the solution space I, the SO problem is usually categorised

as a discrete SO or continuous SO problem. Since the RSS problem this research

focuses on typically has a finite number of ways to select sites, and its solution space

is naturally discrete, this chapter does not review continuous SO. Interested readers

are referred to Frazier (2018), Nelson and Pei (2021, pp. 259–267), and Fu (2015) for

reviews on different methods in continuous SO.

Discrete SO problems can be further categorised based on the size of I. For prob-

lems with a solution space that is finite but very large, where examining all possible

alternatives is practically impossible, solution methods such as Ordinal Optimisation,

Random Search and Bayesian methods are often used. Ordinal Optimisation selects a

subset of solutions from the solution space and spends the computational effort on this

subset. It focuses on the probability that at least some top solutions are in the subset.

Interested readers are referred to Chen, Jia, and Lee (2013). Random Search explores

the solution space by sampling solutions based on some search strategy and evaluating
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their performance using simulations. See Andradóttir (2006) for more about random

search algorithms.

Bayesian methods treat unknown performance values as random variables with prior

probability distributions; whenever new data are observed, these distributions are up-

dated using Bayes’ rule. One such approach is the Gaussian Markov Random Field

(GMRF) of Salemi et al. (2019), which models these unknowns using a Gaussian Markov

Random Field (GMRF), where each solution is a node and only neighbouring nodes

are directly correlated. This local Markov property makes the precision matrix sparse,

allowing for computationally efficient maintenance of a posterior over all solutions in

large solution spaces.

This research focuses on the RSS problem where all possible solutions can be listed and

evaluated. The method commonly used to solve SO problems where all solutions can

be simulated is Ranking and Selection (RnS).

iii Errors

Three fundamental types of errors could happen while solving SO problems (Nelson

and Pei, 2021, p. 233):

Error 1 The first error occurs when the optimal solution is never simulated. This

error arises when the solution space cannot be exhaustively evaluated, either because

it is impossible to list all solutions or because the solution space is so large that it is

unrealistic to simulate all solutions.

Error 2 The second error occurs when the best solution, which has already been

simulated, is not selected. This can happen regardless of the size or type of the solution

space, as it is influenced by the randomness in the simulation model and how small the
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gap is between the best and second best solution.

Error 3 The third error occurs when the estimate of the value of the selected solution

is inaccurate. In the process of selecting the best solution, there is a natural bias towards

solutions with better simulated values. Once a solution is selected, the estimation of

its value is likely to be lower than its actual value (for minimisation problems).

Since this research focuses on the RSS problem in which all solutions can be listed and

simulated, and with a deterministic objective, Error 1 and Error 3 are not relevant

here.

Error 2 is usually addressed through ‘correct selection’, which guarantees the probabil-

ity that when the algorithm stops, the selected solution (which has the best estimated

value) is the actual best among all simulated solutions (i.e. a statistical guarantee on

solution accuracy). Because of the multiplicity of this probability, the effort required

to control it is directly linked to the total number of solutions. Hence, this method

of controlling the error is typically used for problems with a relatively small solution

space.

2.3.2 Ranking and Selection

Building on the concept of correct selection, RnS is a group of algorithms designed to

address Error 2 through the probability of correct selection (PCS) for problems where

every solution can be listed and simulated. For readers who are not familiar with RnS,

see Nelson (2022) for an introductory tutorial.

There are several ways to classify RnS procedures. This section follows the fixed-

precision and fixed-budget categorisation proposed by Hunter and Nelson (2017) and

Hong, Fan, and Luo (2021).
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Fixed-budget procedures typically focus on the optimal allocation of the simulation

budget. The goal is typically to maximise the PCS subject to a computational budget

constraint, or minimise the total computational budget subject to an ‘Approximate

PCS’ constraint (Lee et al., 2010). One of the first examples of such procedures is

the Optimal Computing Budget Allocation (OCBA) by Chen et al. (2000). However,

this formulation is designed for scenarios where a computational budget is a primary

consideration. In the case of RSS, where the existence of wildlife species could be

directly impacted, this thesis argues that the priority should be on guaranteeing species

survival, with computational efficiency as a secondary concern. Hence, this chapter

does not explore the fixed-budget formulation in detail. Interested readers can find

more details in the book by Chen and Lee (2011) and review papers by Chen et al.

(2015) and Lee et al. (2010).

Fixed-precision procedures aim to achieve an overall PCS by controlling the probability

of making Type I and Type II errors in multiple hypothesis tests on different solutions.

However, the sample size required to achieve such a PCS guarantee can be compu-

tationally infeasible when there is more than one optimal solution or when there are

several solutions very close to the optimum. One typical approach to address this issue

is to assume that the best solution is at least δ better than the second best, where δ

is usually chosen as the smallest difference in solutions’ performance that would begin

to have a practical impact. This approach is known as the indifference zone (IZ). For

other ways of relaxing the PCS condition, details can be found in the review papers by

Hunter and Nelson (2017) and Eckman, Plumlee, and Nelson (2020).

Within the IZ formulation, depending on how samples are collected, procedures can be

further divided into two-stage procedures and fully sequential procedures.
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Two-stage Procedures The general mechanism of two-stage procedures is as fol-

lows: in the first stage, an initial set of samples from each solution is collected. Based

on the mean and variance of those samples, the number of additional samples needed

for the second stage to achieve the overall PCS is calculated. In the second stage, these

additional samples are collected for each solution. The performance of each solution is

then evaluated, and the solution with the best performance is selected.

One example of such a procedure, and one of the earliest, is Rinott’s procedure (R,

Rinott, 1978). R assumes all simulation outputs are independent of each other and

follow a normal distribution. The rationale behind this assumption is that as different

streams of random numbers are used for different solutions, one can safely assume

the simulation outputs are independent. Additionally, because multiple replications

are needed for each solution, the mean outputs of those solutions are approximately

normally distributed based on the central limit theorem. For more examples of two-

stage procedures, see Swisher, Jacobson, and Yücesan (2003) and Kim and Nelson

(2006).

Fully Sequential Procedures The idea of fully sequential procedures is similar to

that of two-stage procedures. Both approaches take an initial set of samples in the first

stage. However, rather than collecting all samples for all solutions at once in the second

stage, fully sequential procedures collect samples sequentially, update the information

based on the samples collected, and repeat this process until either enough evidence is

gathered to select the best solution or the stopping criteria are met.

As fully sequential procedures constantly try to rule out solutions that are not optimal,

a clearly poor solution might be eliminated just by collecting the first-stage samples.

This formulation may require no more simulation runs than two-stage procedures and

may require fewer simulation runs, as it needs fewer samples for solutions identified as
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unlikely to be the best and does not collect extra samples for solutions identified as

the best. However, this does not necessarily mean it is more computationally efficient.

For example, when the procedure operates outside the simulation software, switching

between the procedure and the software can be computationally expensive (Currie and

Monks, 2021).

One of the most famous procedures of this category is the KN procedure (Kim and

Nelson, 2001). KN focuses on the situation where the f(x) in Eq.(2.9) is defined by

the expected performance, i.e. f(x) = E[Y (x)]. The procedure records the means

and covariances of solutions based on the initial samples in the first stage. Then, the

screening stage narrows down these solutions based on the mean and threshold. The

screening stage iterates by collecting one extra sample for all solutions still in contention

and stops when only one solution is left or the maximum number of samples has been

reached. Interested readers can find more about fully sequential procedures in Hong,

Fan, and Luo (2021) and Kim and Nelson (2007).

2.3.3 RnS with Stochastic Constraints

The methods discussed in Subsection 2.3.2 assume that the feasibility of solutions is

known. However, when dealing with stochastic-constrained SO problems such as the

RSS problem, the feasibility of a solution must also be evaluated accordingly. Fur-

thermore, the general SO formulation focuses on optimising the objective function but

does not provide control over whether the value of the best solution meets a minimal

threshold.

One way to formulate such a problem is the Constrained Selection of the Best (CSB)

formulation, where one optimises the objective (primary performance measure) while

satisfying all constraints (secondary performance measures). Since the RSS problem
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this thesis focuses on has one stochastic constraint, the rest of this section focuses on

CSB formulations with a single constraint.

Subsection i reviews two CSB formulations: one with an expectation constraint and

one with a chance constraint. Since the RSS problem this thesis focuses on is chance-

constrained, Subsection ii describes the idea behind a solution method of the chance-

constrained formulation. Subsection iii further details the characteristics of the solution

method. Subsection iv then provides other solution methods for the CSB problem.

i CSB Formulations

When both the objective and constraint are defined by expected performance, one

solution method is the Expectation Constrained Selection of the Best (ECSB) by An-

dradóttir and Kim (2010). The formulation is written as:

min
i=1,2,...,k

E(Xi)

s.t. E(Yi) ≥ 0

(2.11)

where Xi denotes the primary performance measure and Yi denotes the second perfor-

mance measure.

When the secondary performance measure is probabilistically constrained, Hong, Luo,

and Nelson (2015) formulates the Chance Constrained Selection of the Best (CCSB)

as:

max
i=1,2,...,I

E(Xi) (2.12)

s.t. Pr{Yi ≥ N} ≥ 1− γ (2.13)

Following the authors’ explanation, Yi can be understood as a quality of service con-
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straint, where the constraint Yi ≥ N means the outcome is satisfactory, and Yi < N

means the outcome is unsatisfactory. The chance constraint in Eq.(2.13) means the

probability of the outcome of the secondary performance measure being satisfactory is

at least 1 − γ, where γ is the violation probability and 0 < γ < 0.5. Since the event

{Yi ≥ N} is either true or false, it can be formulated as a Bernoulli random variable.

Both CCSB and ECSB determine a solution’s feasibility using the IZ concept (see

Subsection 2.3.2). However, they approach the problem differently. ECSB assumes that

the outputs of the primary and secondary performance measures are jointly normally

distributed with an unknown mean and covariance. Meanwhile, CCSB takes advantage

of the probabilistic constraint and the Bernoulli random variable in its sample size

calculation, thereby avoiding the need to assume the distribution of the secondary

measure’s output.

ii Feasibility Determination

As explained in Subsection 2.2.4, the RSS problem this thesis focuses on has a deter-

ministic objective function. Therefore, the samples required are purely for determining

the feasibility of solution i, i.e. whether i satisfies Eq.(2.13). The feasibility of i can

be determined by performing a hypothesis test to check if Pr{Yi ≥ N} is greater than

1− γ. Hong, Luo, and Nelson (2015) write the hypothesis test as follows:

H0 : pi > γ (i.e. solution i is infeasible)

H1 : pi ≤ γ (i.e. solution i is feasible)

(2.14)

where pi denotes the probability of failing to meet the constraint (pi = Pr{Yi < N}).

As the authors explain, this formulation adopts a conservative view towards solution

feasibility, meaning that declaring an infeasible solution as feasible (i.e. rejecting H0
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when pi > γ, Type I error), is more harmful than declaring a feasible solution infeasible

(i.e. not rejecting H0 when pi ≤ γ, Type II error).

Similar to the IZ approach described in Subsection 2.3.2, to avoid the issue of being

unable to determine the feasibility of a solution when the constraint is tight, CCSB

controls the Type I and II errors by introducing a feasibility tolerance level δγ. The

Type I and II error controls in Hong, Luo, and Nelson (2015) are defined as:

Type I error control: Pr{reject H0 | pi > γ} ≤ β1 (2.15)

Type II error control: Pr{do not reject H0 | pi ≤ γ − δγ} ≤ β2 (2.16)

where β1 and β2 are the target probability of making Type I and II errors, respectively.

Based on these definitions of error controls, there are three possible situations based on

the value of pi as explained by the authors:

Situation 1: If a solution is infeasible (i.e. pi > γ), then the probability of it being

declared as a feasible solution is less than β1.

Situation 2: If a solution is clearly feasible (i.e. pi ≤ γ− δγ), then the probability of

declaring the solution as infeasible is less than β2.

Situation 3: If a solution is close to the feasibility boundary (i.e. γ − δγ < pi ≤ γ),

then there is no explicit control of the probability of Type II error.

The calculation of the sample size n required for achieving the defined selection errors

control is detailed in Hong, Luo, and Nelson (2015). This section highlights the main

ideas they used.

Suppose n simulation runs are performed on solution i, and outputs {Yi1, Yi2, ...Yin}
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have been collected. Let Zn =
∑n

j=1 1{Yij<N} be the total count of the runs that do not

satisfy the requirement (referred to as ‘failure count’ for simplicity).

To achieve the Type I error control in Eq.(2.15), there exists an integer mβ1(n) such

that the probability of Type I error is less than β1 when Zn ≤ mβ1(n), written as:

mβ1(n) = max{m ∈ {0, 1, ..., n} : Pr{Zn ≤ m | pi = γ} ≤ β1} (2.17)

This means that to achieve a probability of making a Type I error of at most β1, out

of n samples collected, the maximum number of failure counts a solution can have is

mβ1(n) before being declared as infeasible.

Also, for Type II error control in Eq.(2.16), there will be a sample size n(β2), such that

the probability of Type II error is less than β2 when Zn ≥ mβ1(n) + 1, written as:

n(β2) = min{n ∈ {0, 1, ...} : Pr{Zn ≥ mβ1(n) + 1 | pi = γ − δγ} ≤ β2} (2.18)

This means that to achieve a probability of making a Type II error of at most β2 given

β1, if the failure counts out of n(β2) samples collected has not reached mβ1(n), then the

solution is declared feasible.

Since {Yij < N} is a Bernoulli random variable, Zn follows a binomial distribution.

Then, the value of mβ1(n) and n(β2) can be calculated by solving both Eq.(2.17) and

Eq.(2.18). For simplicity, Hong, Luo, and Nelson (2015) assume β1 = β2 = β and that

the value of β is the Bonferroni corrected value of the overall significance level of the

test (denoted as α). They use the normal approximation to the binomial to find the

values of mβ(n) and n(β). The equations they provide to calculate n(β) and mβ(n)
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are:

ñ(β) =
Z2

1−β

δ2γ

(√
(γ − δγ)(1− γ + δγ) +

√
γ(1− γ)

)2

n(β) = dñ(β)e (2.19)

m̃β(n) = nγ − Z1−β
√
nγ(1− γ)

mβ(n) = bm̃β(n)c (2.20)

where ñ(β) and m̃β(n) are the continuous approximation of n(β) andmβ(n) respectively.

The feasibility check process becomes straightforward after the values of mβ(n) and

n(β) are calculated. One approach is to collect n(β) samples and count the number of

failures for each solution. Solutions with a failure count less than mβ(n) can be declared

feasible, with a probability of making a selection error less than β when the solution’s

violation probability is outside the (γ − δγ,≤ γ] range. This is the “Fixed-Sample-Size

Feasibility Test” in the Hong, Luo, and Nelson (2015) paper.

Another procedure in their paper – the “Sequential Feasibility Test” – follows the idea

of the fully sequential procedures described in Subsection 2.3.2. Instead of collecting all

n(β) samples for each solution, it uses the sequential nature of the simulation sample

generation process, collecting one sample at a time and checking if the output is a failure

or success. It declares a solution infeasible once the failure count reaches mβ(n)+1 and

stops collecting further samples for this solution. If, after collecting all n(β) samples for

a solution, the failure count does not reach mβ(n) + 1, the solution is declared feasible.

iii Feasibility Tolerance Level

As pointed out by Hong, Luo, and Nelson (2015), when a solution’s violation probability

is in the (γ−δγ, γ] range, there is no explicit control over the Type II error. As a result, a
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feasible solution may be declared as infeasible with a probability larger than β, meaning

the test may reject more feasible solutions than desired. The approach they suggest

to address this problem is to reduce the tolerance level δγ, which requires an increase

in the sample size n. This compromise plays an important role in the analysis of the

solution method performance for the RSS problems discussed in Chapters 4, 5 and 6.

Hence, this section uses an example to show the scale of the sample size change with

changing δγ. The example has 10 solutions and aims to achieve an overall significance

level α of 5%. The error control rate β for each hypothesis test is Bonferroni corrected

to α
10

= 0.005.

Figure 2.1a shows how reducing δγ increases the probability of declaring a solution

feasible given a pi ∈ (γ − δγ, γ] and a β of 0.005. This probability is represented by

the power curve, which charts the probability of rejecting H0 when pi = θ. Since this

section only considers solutions that are feasible and close to the feasibility boundary,

rejecting H0 means correctly selecting the solution as feasible, which is equivalent to

the PCS.

For the example problem with a γ of 0.10, if the violation probability of a solution

is 0.095 (vertical dotted line in Figure 2.1a), and the δγ value is set to 0.05 (the blue

curve), the test has a very low PCS (0.0146). However, if δγ = 0.01 (the orange curve),

the PCS increases to 0.4758. The increase in the PCS is a result of the narrowing of the

range of (γ − δγ, γ], as shown in Figure 2.1a (from the blue curve to the orange curve).
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Figure 2.1: Effect of changing the Sequential Feasibility Test parameter values on the sample
size.

(a) (b)

Figure 2.1b presents the scale of sample size increases required for reducing δγ in the

same example problem. The growth rate of δγ
−2 for the maximum sample size required

n(β) is anticipated due to Eq.(2.19). With such a growth, the sample size goes to

infinity as δγ approaches 0. In the example mentioned above, reducing δγ from 0.05 to

0.01 caused n(β) to increase from 712 to 22,799 per solution.

As the Sequential Feasibility Test stops collecting more samples for a solution when

its failure count reaches the threshold mβ(n), the overall increase in total sample size

depends on the characteristics of the solution space. Four types of solution spaces need

to be considered: those with solutions that are infeasible and far from the feasibil-

ity boundary, those with solutions that are infeasible but not far from the feasibility

boundary, those with solutions that are feasible and close to the feasibility boundary,

and those with solutions that are all clearly feasible.

Assuming a solution i is infeasible and far from the feasibility boundary, i.e. every

simulation output is Yi < N (referred to as clearly infeasible here), then the procedure

will collect mβ(n) runs’ results for i and declare it as infeasible. Hence, if a problem has

a solution space that contains only this type of solution, the total sample size required
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will be mβ(n) multiplied by the number of solutions.

On the contrary, assuming a solution i is clearly feasible, i.e. every simulation output

is Yi ≥ N , the procedure will collect n(β) samples on this solution and declare it as

feasible. Hence, if a problem has a solution space that contains only this type of solution,

the total sample size required will be n(β) multiplied by the number of solutions.

For a problem with solutions that are infeasible but not far from the feasibility boundary

or feasible and close to the feasibility boundary, the total sample size required will be

close to n(β) multiplied by the number of solutions, as the procedure requires more

samples to reach or not reach the failure threshold mβ(n) for each solution. The actual

sample size required in this case cannot be analytically calculated.

iv Other Stochastic Constrained RnS Procedures

Currie and Monks (2021) provide a practical and user-friendly two-stage selection pro-

cedure for chance-constrained SO problems. It differs from CCSB in that it is based

on subset selection, which aims to identify the best m designs out of a total of k pos-

sibilities, rather than using the indifference zone approach. The key idea is to use

bootstrapping to evaluate the performance of each design and assess the likelihood of

violating the chance constraints. They also provide a ready-to-use Python package in

their paper.

Lee, Park, and Park (2018) propose a fully sequential RnS framework for self adjusting

δγ for the ECSB formulation. Their idea is to run two RnS procedures simultaneously

and adjust the δγ at the end of each iteration until both procedures give the same set

of feasible solutions.

Another approach for the ECSB formulation comes from Zhou et al. (2022), who propose

a fully sequential RnS algorithm for constraints with multiple threshold values. This
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procedure is suitable for RSS problems with constraints that have multiple thresholds,

for example, one threshold for the total population of the wildlife species and one

threshold for the number of alpha pairs.

If the problem needs to be solved in a limited time, readers are directed to Han, Kim,

and Park (2021) and Szechtman and Yücesan (2016), where they adapted an OCBA

framework with Bayesian statistics to solve the stochastic constrained RnS problem.

Another way to deal with multiple performance measures is to formulate the problem

as a multi-objective RnS problem. See Yoon and Bekker (2020) for a review of such

methods.

If the solution space is too large (i.e., not all solutions can be evaluated), solution

methods for such a problem include Probabilistic Branch and Bound (e.g., Tsai et al.,

2018), reformulating a stochastic constraint to a non-linear function (see Lam and Qian

(2019) for a review), and heuristics (e.g., Horng and Lin, 2023).

2.4 Summary and Research Question

This chapter reviews the use of simulation and optimisation methods in the RSS prob-

lem and relevant SO methods. The literature on the reserve selection problem primarily

focuses on optimisation, which can evaluate a large number of options but is limited

in its ability to capture the inherent stochasticity and complexity of ecosystems. Sim-

ulation allows for the study of complex ecosystems, but its ability to evaluate a large

number of options is limited. Combining the two methods provides a more balanced

approach to the problem.

However, as highlighted in Subsection 2.2.4, the application of SO in reserve selection

is very limited. Existing studies that formulate the RSS problem as an SO problem
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(Haight and Travis (1997) and Haight and Travis (2008)) do not provide any accuracy

guarantee on the selected solutions. This leads to the first research question of this

thesis:

RQ1: How well do current SO methods perform (in terms of solution accu-

racy and computational effort) when applied to RSS problems? More specif-

ically, this thesis investigates the performance of several adaptations of the Sequential

Feasibility Test procedure from Hong, Luo, and Nelson (2015) on solving variations of a

chance-constrained RSS problem (see Subsection 2.2.4). The problem has a determin-

istic objective, which is to minimise the cost of reserve sites, subject to a probabilistic

species survival constraint (the species survival is estimated using the proposed simula-

tion model). The solution procedure is specially designed for solving chance-constrained

SO problems, and it ensures solution accuracy by providing a guarantee on the PCS

(see Subsection 2.3.3).

As explained in Section 2.3, computational intensity can present a significant chal-

lenge, particularly when solving chance-constrained SO problems. This thesis aims to

reduce computational effort from two perspectives: leveraging insights from the simu-

lation model itself and incorporating expert knowledge. This leads to the following two

research questions:

RQ2: How and to what extent can computational effort in SO be reduced

by leveraging the simulation model? This thesis aims to propose an approach

that utilises model information to reduce computational effort while ensuring that the

selected solution meets a specified PCS. It investigates the performance of such ap-

proaches when applied to a variation of the chance-constrained RSS problem.
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RQ3: How and to what extent can expert opinion be used to reduce the

computational effort in SO? This thesis aims to propose a heuristic approach that

uses expert knowledge to reduce computational effort. It investigates the performance

of this approach when applied to a variation of the chance-constrained RSS problem.

To answer these research questions, this thesis adopts a computational study approach.

The computational study involves solving different versions of the RSS problem using

variations of the solution method. The example species this thesis focuses on is the grey

wolf. To create different versions of the RSS problem, a model capable of simulating

various grey wolf reserve scenarios is required. Such scenarios enable the evaluation of

SO for problems with different challenges. The simulation model is detailed in Chapter

3.

Three scenarios of the grey wolf RSS problem, each with different characteristics, are

studied in Chapters 4, 5, and 6. Scenario 1 is a basic reserve problem. In solving this

scenario, Chapter 4 aims to answer RQ1 by evaluating the effectiveness of the Sequen-

tial Feasibility Test procedure in terms of both selection accuracy and computational

intensity. Scenarios 2 and 3 are designed to demonstrate cases where two different types

of solution space filtering approaches (proposed to answer RQ2 and RQ3, respectively)

can be applied. Chapters 5 and 6 explain these computational intensity reduction ap-

proaches. To answer RQ2 and RQ3, the effectiveness of these approaches is evaluated

in Chapters 5 and 6 by solving Scenarios 2 and 3, respectively. To assess their general-

isability, the approach in Chapter 5 is applied to Scenario 1 towards the end of Chapter

5, and likewise for Chapter 6.



Chapter 3

Problem Formulation and

Simulation Model

3.1 Introduction

To explore the extent to which SO can be applied to the RSS problem, a model capable

of simulating different scenarios of an RSS problem is required. These scenarios will

enable the evaluation of SO methods under various reserve design challenges.

This chapter lays the foundation for Chapters 4, 5, and 6. It provides the essential

background for addressing the research questions detailed in Chapter 2. Section 3.2

explains the grey wolf RSS problem that this research focuses on (Chapters 4, 5, and

6 explore three scenarios of this problem). Section 3.3 presents the chance-constrained

formulation of the problem. Section 3.4 explains the modifications made to the solution

method to better suit the RSS problem (Chapter 4 directly applies this method to

solve the problem, while Chapters 5 and 6 provide adaptations of the method). Section

3.5 describes the conceptual model of the grey wolf model. Section 3.6 explains the

34
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computer model built based on this conceptual model. The computer model is used

in the next three chapters with varying input parameters to create different scenarios.

Section 3.7 explains these input parameters. Section 3.8 provides a summary of this

chapter.

3.2 Grey Wolf RSS Problem

The grey wolf chance-constrained RSS problem studied in this research aims to minimise

the cost of reserve sites (deterministic) subject to a ‘species persistence’ constraint

(stochastic). Figure 3.1 provides an abstract representation of the study area.

Figure 3.1: Illustrative visualisation of the study area of a hypothetical grey wolf RSS problem.

To mimic the variety of terrestrial environments (e.g., deserts or forests) in which grey

wolves realistically live, this thesis adopts Haight and Travis (2008)’s approach and

assumes the study area is divided into regions called habitats (outlined by grey lines
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in Figure 3.1). These habitats are further divided into smaller areas called sites. As

grey wolves are territorial animals, these sites represent their territories. For ease

of understanding the grey wolf problem, the term ‘territory’ is used instead of ‘site’

hereafter.

Territories can be protected territories or not protected territories. This thesis assumes

wolves can only live in protected territories. Protected territories are represented by

zones marked with different colours in Figure 3.1. The protected territories can be

either occupied by wolf packs (such as the blue-shaded territory in Habitat 3) or empty

(such as the purple-outlined territory in Habitat 3). Although wolf territory sizes can

vary, this thesis adopts the idea from Mech and Boitani (2003) that assumes territo-

ries’ sizes are the same and fixed. Both occupied and empty territories can be either

strictly protected (referred to as core territories) or less strictly protected (referred to

as peripheral territories).

The grey wolf RSS problem this thesis focuses on is subject to a constraint on the

species persistence. The species persistence in this thesis is measured through viable

packs. A viable pack is defined as a pack that includes a pair of alpha wolves (i.e.

able to reproduce). Species persistence is considered achieved if the number of viable

packs at the end of the planning horizon (i.e. the timeframe over which the RSS is

planned and assessed) is at least equal to the initial count. Based on examples from

two government grey wolf conservation plans (U.S. Fish and Wildlife Service (1987)

and California Department of Fish and Wildlife (2016)), the planning horizon for this

thesis is set at five years.

The aim of the grey wolf RSS problem is to select a set of additional territories from

available territories in each habitat to minimise the cost of territories subject to a con-

straint on the ‘species persistence’. The problem assumes there is a limit on the number
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of additional territories that can be selected (hereafter budget), existing territories can-

not be removed, and the unit cost of additional territories is one. Hence, the problem

becomes finding the optimal allocation of additional territories between habitats. In-

corporating the monetary cost of territories into the problem is straightforward and

does not alter the problem structure.

3.3 Problem Formulation

The chance-constrained grey wolf RSS described in Section 3.2 can be written as follows:

min
i∈I

H∑
h=1

Xhi (3.1)

s.t. Pr{Yi ≥ N} ≥ 1− γ (3.2)

In the objective function Eq.(3.1), i is the solution index, I is the solution space, Xhi

is the number of additional territories selected in Habitat h under solution i. As this

thesis assumes that existing territories cannot be removed, Xhi should be greater than

or equal to 0. Since the unit territory cost is assumed to be the same for all habitats,

the objective function becomes minimising the total number of additional territories

across all H habitats.

The constraint Eq.(3.2) ensures the probability of at least sustaining the number of

viable wolf packs over a five-year planning horizon is at least 1 − γ. The term γ is

referred to as the violation probability. The variable Yi denotes the simulated number

of viable packs after five years under solution i, and N represents the number of viable

wolf packs at the start of the planning horizon.

The solution space I includes solutions that satisfy the constraint (i.e. feasible solutions)
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and those that do not (i.e. infeasible solutions). The number of solutions, |I|, is

naturally limited by the budget for territories (denoted as b) and can be calculated

analytically.

Mathematically, I is a set containing all possible distributions of additional b territories

across H habitats. Finding |I| is equivalent to the combinatorial problem of distributing

b+ 1 balls (representing territories) into H boxes (representing habitats).

This thesis assumes all additional territories are indistinguishable. In scenarios where

all habitats are distinguishable, enumerating I becomes finding all possible distributions

of up to b indistinguishable territories across H distinguishable habitats. The formula

for calculating the number of possible combinations, C(· , ·), for a given number of

territories j is (Rosen, 2007, p.377):

C(H + j − 1, H − 1) =
(H + j − 1)!

j!(H − 1)!
(3.3)

As the objective is to minimise the number of additional territories selected, all j such

that 0 ≤ j ≤ b should be considered. Thus, the total number of combinations is:

|I| =
b∑

j=0

C(H + j − 1, H − 1) =
b∑

j=0

(H + j − 1)!

j!(H − 1)!
(3.4)

Eq.(3.4) naturally structures the solution space from the smallest cost (i.e. j = 0

additional territories) to the largest cost (i.e. j = b additional territories).

3.4 Solution Method

An algorithm specifically designed for the chance-constrained SO problem is Hong,

Luo, and Nelson (2015)’s CCSB, as explained in Subsection 2.3.3. However, CCSB is
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intended for problems where both the objective and the constraint require simulation.

In the chance-constrained grey wolf RSS problem that this research focuses on, the

objective function (Eq.(3.1)) is deterministic. Therefore, solving the problem essentially

involves determining the feasibility of each solution. As detailed in Subsection 2.3.3,

CCSB offers two procedures for this purpose: the ‘Fixed-Sample-Size Feasibility Test’

and the ‘Sequential Feasibility Test’. Given the authors’ suggestion that the sequential

test never takes more samples than the fixed sample test and may take fewer samples,

this thesis exclusively focuses on the application of the sequential test.

Since the objective function, Eq.(3.1), is deterministic and aims to minimise the number

of additional territories (i.e. cost), with the solution space structured from the smallest

to the largest cost, once a solution that satisfies the constraint is found, it automatically

becomes one of the optimal solutions. Given that multiple combinations are typically

under the same cost, there might be more than one optimal solution.

The feasibility test can be terminated once a feasible solution is found and all other

solutions with the same cost have been simulated. Any remaining solutions would

require a greater cost, meaning that even though they might be feasible, they are

not optimal. Hence, the feasibility test can be terminated, and all feasible solutions

corresponding to the minimum cost are returned.

Intuitively, once a feasible solution is found, the number of solutions that remain to

be checked is reduced, which means the sample size required by the feasibility test

can be further reduced. However, doing so might jeopardise the error control and

introduce randomness and dependency on the sample size. Therefore, this research

takes a conservative view and does not change the sample size.

The Sequential Feasibility Test with this added terminating condition is abbreviated as

CCSB-F in this thesis. Algorithm 1 summarises CCSB-F.
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Algorithm 1: Adapted Sequential Feasibility Test (CCSB-F).

Initialisation: Input I, B, α, β, δγ, n(β) and mβ(n). Set β = α/|I|. Define Ij as

the set of all solutions that selects exactly j additional territories. Initialise Θ as

an empty set to store optimal solutions.

for j = 0 to B do

for each solution i in Ij do

Set sample size counter τ = 0 and failure count z = 0

while τ ≤ n(β) do

τ ← τ + 1

Run one simulation on solution i, get output Yiτ

if Yiτ < N then

z ← z + 1

if failure count z ≥ mβ(n) then

Declare solution i as infeasible

Break

if τ = n(β) then Add i to Θ

if Θ 6= ∅ then

Terminate and output all solutions in Θ as optimal solutions

In the initialisation, I is the set that contains all solutions, B is the budget, α is the

total error allowance (0 < α < 1− 1/|I|), δγ is feasibility tolerance level, and n(β) and

mβ(n) are calculated using Eq.(2.19) and Eq.(2.20)) respectively. The solution set I

should be structured with solutions ordered from the smallest to the largest cost.

For the grey wolf RSS problem, α represents the overall significance level of the CCSB-F

test, γ is the maximum tolerable probability of not achieving the targeted wolf popu-
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lation persistence, and δγ is the tolerance level for ruling out clearly feasible solutions,

which can be chosen based on the maximum differences the decision maker believes

would begin to make a practical impact.

Algorithm 1 guarantees that for the RSS problem defined in Eq.(3.1) and Eq.(3.2),

when the algorithm stops, the selected solutions are the optimal solutions and satisfy

the constraint with a significance level of α given a tolerance level of δγ (i.e. the

statistical guarantee).

This thesis acknowledges that decision makers may have additional factors to consider

when deciding on territory allocation plans. Therefore, all optimal solutions are pre-

sented without bias, allowing decision makers to select the most suitable option.

Since the problem is stochastically constrained with a budget, there is a possibility that

no solution will satisfy the constraint after using the entire budget. In such circum-

stances, the decision maker would be advised to either increase the budget or explore

additional measures to aid species conservation, such as relocating wolves to other lo-

cations.

3.5 Conceptual Modelling

The fundamental modelling belief this research adopts is that “all models are wrong

but some are useful” (Box, 1979). Consequently, the grey wolf model developed in this

research is not intended to replicate every detail of the grey wolf’s life history. Instead,

the model abstracts the important aspects relevant to the RSS problem. This process

of abstraction is known as conceptual modelling (Robinson et al., 2010). This section

explains the conceptual model of the grey wolf developed in this research.

Subsection 3.5.1 describes the life history and behaviours of grey wolves to provide a
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background for the wolf model. Subsection 3.5.2 outlines the requirements of the model.

Based on these requirements, certain simplifications and assumptions are made during

the conceptual modelling process. Subsections 3.5.3 to 3.5.6 detail the conceptual model

from the perspective of an individual wolf’s life history, categorised by the wolf’s age

group. Subsection 3.5.7 specifies the modelling of breeding as it is conceptualised as a

pack-level activity rather than an individual wolf activity. Subsection 3.5.8 provides an

abstracted view of the possible states and activities of a wolf.

3.5.1 Grey Wolf

Wolves live in packs, which inhabit territories. Pack sizes generally vary from 3 to 11

members (Fuller, Mech, and Cochrane, 2003). A typical pack comprises a mated pair

and one or more generations of their offspring (Mech and Boitani, 2003). Most packs

produce only a single litter of pups per year by the dominant female, with breeding

occurring annually under favourable conditions (Harrington et al., 1982).

Generally, the earliest reproduction age is two years (Peterson, Woolington, and Bailey,

1984). The average litter size is six pups, with litter sizes ranging from one to 13 pups

(Mech, 1970). Typically, pups begin travelling with adults on hunts at about six months

old (Jimenez et al., 2008). Most pups disperse from their natal pack between 9 and 36

months.

Wolves disperse throughout the year, but autumn and winter tend to be the peak

seasons (Mech, 1970) (Mech and Boitani (2003) argue peak seasons are autumn and

spring). Pairs form during dispersal. If two dispersers find each other and pair up, they

will seek suitable land and establish their territory together (Packard and Mech, 1980).

If they are unable to establish a territory locally, they may travel some distance before

settling (Mech and Boitani, 2003).
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Wolves die from two primary causes of mortality. One is human-caused mortality,

which includes legal and illegal killing, intentional wolf population control, and car

strikes (Fuller, Mech, and Cochrane, 2003). The other is natural mortality, such as

starvation, accidents, injuries during travelling, hunting, territorial conflicts, conflicts

with other species, old age, and disease (Peterson et al., 1998). Wolves between 6

and 12 months old die primarily due to malnutrition in winter, whereas human-caused

mortality is the primary reason for adult mortality in winter (Mech (1997) and Fuller

(1989)).

3.5.2 Simulation Model Design Requirements

The RSS problem aims to find the optimal allocation of additional territories across

different habitats within a study area while maintaining a targeted probability of at

least sustaining the number of viable wolf packs over a five-year planning horizon. The

simulation model is used to estimate the number of viable packs, Yi, in constraint

Eq.(3.2), under solution i. Hence, the model’s inputs should include the potential

allocations of territories within different habitats (i.e. solutions).

The main requirement of the model is to reflect the impact of different territory alloca-

tion plans on the number of viable packs. To achieve this, the model should simulate

individual wolf activities that affect the number of viable packs, including birth, growth,

dispersal, and death. The model should also include interactions both within and across

habitats (including pack formation and breeding), as these behaviours influence the

overall number of viable packs.

The modelling of the wolf population within habitats borrows heavily from an individual-

based (simulating the behaviour of individual wolves), stage-wise (simulating wolves at

the same life stage collectively), stochastic (considering events as probabilistic), and
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discrete-event (events happen at discrete times) model developed by Haight, Mlade-

noff, and Wydeven (1998).

The key differences between the wolf model used in this study and their model lie in

how dispersal, environmental variability, and the simulation run length are handled. For

dispersal, their model considers only a single habitat, where wolves dispersing beyond

their natal habitat (i.e. long dispersers) are assumed to be lost from the population.

In contrast, this model accounts for multiple habitats, allowing long dispersers to move

across habitats (adapting ideas from the fox model of Haight and Travis (2008)). Ad-

ditionally, in their model, the survival of local dispersers (i.e. wolves dispersing within

their natal habitat) is determined by a function, whereas in this wolf model, dispersal

outcomes depend on the outcomes of other events. For environmental variability, one

variation of their model calculates winter mortality rates as a function of the previ-

ous year’s wolf population. However, for simplicity, this model does not include this

environmental variability.

Neither Haight, Mladenoff, and Wydeven (1998) nor this model incorporates spatial

aspects. However, incorporating such aspects into this model would be straightforward;

for instance, by assigning distinct movement probabilities for long dispersers travelling

to different habitats. This is discussed in more detail in Chapter 7.

The scale of the model is the study area, which is divided into different habitats to mimic

the spatial aspect of wolf habitats. The model should simulate the wolf population over

a defined time horizon and should be able to incorporate realistic starting conditions,

including details of existing individual wolves, packs, territories, and habitats.

The model’s output should be the count of total viable packs at the end of the planning

horizon. Since the focus of this research is to evaluate the use of CCSB-F in solving

the RSS problem, the model should have a fast run speed to facilitate experimentation
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with CCSB-F. Moreover, the model needs to be flexible enough to allow the simulation

of various wolf problem scenarios to evaluate the applicability of CCSB-F.

3.5.3 Pup (0 to 6 Months)

At the start of spring, a pup is born to pack Pa at territory Ta in Habitat Ha. In the

real world, pups may be born at any point from the beginning of spring to the end of

summer. However, the model simplifies this by assuming all pups are born at the start

of spring. Reflecting seasonal patterns, the model operates on discrete three-month

intervals, assuming events occur either at the beginning or end of each season.

If this pup is female, she is denoted as age 0 months, Pa, Ta, Ha, female. If the

pup is male, he is denoted as 0, Pa, Ta, Ha, male. The model does not account for

gender differences except during breeding. Therefore, female and male wolves follow an

identical path before and after breeding.

In reality, not all pups survive their first 3 months. However, for simplicity, this model

assigns all pup mortality to the summer season. As a result, during spring, this pup

will age and become three months old at the end of spring. Figure 3.2 visualises the

timeline of a wolf pup’s age transition from birth at the start of spring to three months

old at the end of spring.

Figure 3.2: Pup in spring.

During summer, two events are considered: ageing and pup mortality. The pup born in

spring could die with a fixed probability of pup mortality. If it survived, it is described
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as age 6, Pa, Ta, Ha (Figure 3.3).

Figure 3.3: Pup in summer.

Table 3.1 summarises the possible states for pups in each season. Since all pups are

born at the start of spring, by autumn, they are more than 6 months old. Wolves aged

between 6 and 18 months are categorised as juveniles in this research, so there are no

pups in the model during autumn or winter. Therefore, pups in autumn or winter are

marked as ‘N/A’ in Table 3.1.

Table 3.1: States and transitions of pups.

Pups (0 to 6 months)

Autumn Winter Spring Summer

N/A N/A Age Age or die

3.5.4 Juvenile (6 to 18 Months)

i Juvenile in Autumn

For the juvenile wolf, it remains at Pa, Ta, Ha at the start of autumn. It ages during

this season to become 9 months old, represented as 9, Pa, Ta, Ha (Figure 3.4). For

simplicity, the model assigns all non-pup wolf mortalities to the winter and does not

differentiate mortality rates by age.
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Figure 3.4: Juvenile in autumn.

ii Juvenile in Winter

When winter arrives, this juvenile wolf could either die (Path a, Figure 3.5) or survive,

with survival being determined by a probability of winter mortality (Part I, bounded

by the orange line in Figure 3.5). Adapting Treves et al. (2017)’s idea, this probability

is lower if Ta is a core territory compared to if it is a peripheral territory. If it survives

the winter, the model then checks if its parents are still alive (Part II, bounded by the

green line).

If both parents have died due to winter mortality, the model assumes the pack will

disassemble due to the absence of a leader. However, if at least one parent survives,

the pack remains intact, and the juvenile wolf may either disperse or stay with the

pack based on a probability of juvenile dispersal (Part III, bounded by the purple line).

The likelihood of a juvenile dispersing from its pack is considered to be relatively low.

Following the conclusions of Kojola et al. (2006) and Blanco and Cortés (2007), all

dispersal rates in the model are assumed to be independent of gender. For simplicity,

the model assumes that dispersal occurs only during winter.

Should the juvenile disperse, either due to the absence of an alpha or the probability

of dispersal, it goes through a dispersal process, defined as the ‘Juvenile Dispersing

Mechanism’. This dispersal process can result in several outcomes for the wolf: it may

die (Path c), successfully occupy an empty territory within its original Habitat Ha (Path

d), or settle in an empty territory in a different Habitat Hx (Path e). This dispersing
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mechanism is detailed in the next subsection.

Figure 3.5: Juvenile in winter.

iii Juvenile Dispersing Mechanism

The model assumes the minimum age for a wolf to reproduce at the start of spring is 21

months. Therefore, a wolf must be at least 18 months old at the start of winter to be

able to reproduce in spring. Juvenile wolves are only 9 months old. Hence, dispersing

juvenile wolves can only find and occupy an empty territory, and they cannot join

another pack or find a mate.

For the juvenile wolf, if it disperses, it could disperse within its original habitat (referred

to as local dispersal, Part V in Figure 3.6) based on a local dispersal probability, or to

another habitat (long dispersal, Part VI) based on a long dispersal probability (i.e. 1

- probability of local dispersal). For simplicity, the model assumes all local dispersers

share one local dispersal probability, and all long dispersers share one long dispersal
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probability.

If the wolf disperses locally, there will be a few territories it could travel to, and the

number of such territories is limited in the model (denoted as Nlimit). The reason is to

mimic the physical limitations on travelling distances, and to account for death caused

by battling other wolves or hunger. These territories are randomly selected (excluding

the wolf’s original territory) under the assumption that wolves have the same level of

pre-knowledge about all other territories.

Within these selected territories, if there are empty territories (denoted as Te), the

disperser is randomly allocated to one of them. This random allocation captures the

stochastic nature of wolves selecting areas to live in reality. Even though this juvenile

wolf cannot find a mate and form a pack at this point, it might do so in the future.

Hence, the situation of a lone wolf occupying a territory is simplified as establishing a

pack Pe that has only one wolf.

In essence, for a juvenile wolf dispersing within its habitat Ha, it could die due to

no suitable territory (Path c.1 in Figure 3.6), or it could establish its own pack Pe

at territory Te in Ha (Path d). If the wolf disperses to another habitat (for example

habitat Hx), it goes through the same allocation process in Hx as in Ha, potentially

ending up in Pe, Te, Hx (Path e) when there is an empty territory available.
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Figure 3.6: Juvenile dispersing mechanism.

iv Juvenile After Winter

Assuming the juvenile wolf survived winter and remained with its original pack, it ages

in the coming spring, summer, and autumn. It becomes 15 months old at the end of

spring (Figure 3.7 (a)), 18 months old at the end of summer (Figure 3.7 (b)), at which

point the wolf is classified as a yearling, and 21 months old at the end of autumn (Figure

3.7 (c)).

Table 3.2 summarises the possible states and transitions of all juveniles at each season

at any point in time.

Table 3.2: States and transitions of juveniles.

Juveniles (6 to 18 Months)

Autumn Winter Spring Summer
Age Age or die or juvenile disperse Age Age
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Figure 3.7: Juvenile in spring (a), summer (b) and autumn (c).

3.5.5 Yearling (18 to 30 Months)

i Yearling in Winter

At the start of winter, when this wolf is 21 months old, it goes through a process similar

to that of the juvenile wolf during the winter season. This includes area-based winter

mortality (Part I, Figure 3.8), the alpha wolf check (Part II), the dispersal decision

(Part III), and the dispersal process (Part IV) if it follows this trajectory. It could

die due to winter mortality (Path a), become a 24-month old, non-alpha wolf in Pa,

Ta, Ha if it remains with its current pack (Path b), die during dispersal (Path c), or

successfully disperse. If it successfully disperses, it might become a 24-month old, alpha

wolf in Px, Tx, Hx (Path d), or a non-alpha wolf in an empty territory at Habitat Hx.

The dispersal process for yearlings differs from that of juveniles. The dispersing mech-

anism for mature wolves (i.e. wolves over 21 months old by the start of winter) is
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detailed in the next subsection.

Figure 3.8: Yearling in winter.

ii Mature Wolf Dispersing Mechanism

This wolf will be 24 months old at the start of the next spring, meaning it will be

old enough to reproduce. If it disperses, it could take over other packs and become

the alpha wolf (Path d, Figure 3.8). For alpha wolves in general, the model assumes

that each pack can have only one pair of alphas, with only the alpha female able to

reproduce. For computational simplification, breeding longevity is not included in the

model. When a pair of alpha wolves are present in a pack, the model assumes they

will not accept new wolves and does not allow a disperser to challenge such a pack.

However, if only one alpha remains, given that wolves mate for life, the pack loses its

reproducibility. In this scenario, if the pack contains a suitable mate for the disperser,

the model allows this disperser to join the pack and become the new alpha pair with a

suitable mate. If a dispersing wolf cannot find a suitable mate, it is assumed to settle

in an empty territory (Path e, Figure 3.8). Another disperser may later join it to form
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a pack. Such an event would result from other events in the simulation, mimicking the

formation of a pair during dispersal in reality (e.g. Morales-González et al. (2022)).

Habitat allocation - Figure 3.9a The dispersal mechanism for mature wolves fol-

lows a pattern similar to juvenile dispersal in deciding between local and long dispersal.

A mature wolf could disperse within its original Habitat Ha based on local dispersal

probability, or to another Habitat Hx based on long dispersal probability (Figure 3.9a).

Once the destination habitat for the wolf is determined, the events it may go through

within Ha or Hx are identical. To simplify the narrative, Hε is used as a generic repre-

sentation for both habitats Ha and Hx in the rest of Subsection ii.

Pack allocation - Figure 3.9b In Habitat Hε, there are up to Nlimit territories

to which a mature disperser could travel, similar to the process for juvenile dispersers

(Figure 3.9b). The model assumes that a mature disperser always prioritises finding

a suitable pack if one is available. If there is more than one suitable pack, the model

assumes the dispersing wolf randomly chooses one to join. If no suitable pack is found

within its travelling limits and empty territories are available, it is allocated to one of

those empty territories (Path e.1 or e.2, Figure 3.9b).

A suitable pack, denoted as Pε, is defined as a pack that has less than one alpha and

a wolf of the opposite gender who is old enough to mate. The gender of the wolf is

considered here, as a female wolf looks for a pack with a suitable male mate, and vice

versa. Under the model assumption that wolves do not inbreed (i.e., mating with close

kin), the randomly selected territories exclude the original territory from which the wolf

came.

If there is a suitable pack, the wolf settles in the pack (Figure 3.9b, Path d). If the

suitable pack has one alpha, the model assumes the original alpha wolf goes through
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a De-alphalise process (Figure 3.9c). Then, the successful disperser go through an

Alphalise process (Figure 3.9d). These two processes are explained in more detail in

the following section.

If there are packs with only one alpha among the territories the disperser can visit, but

none has a suitably aged wolf of the opposite gender (Path e.1, Figure 3.9b), or if there

are no packs with only one alpha (Path e.2, Figure 3.9b), and an empty territory Te

is available, the disperser moves to Te. It then becomes a non-alpha, aged 24 months,

located at Pe, Te, Hε by the end of winter. If none of the above scenarios applies, it

dies (Figure 3.9b, Path c.1 and c.2).

Pack allocation: De-Alphalise and Alphalise - Figure 3.9c and 3.9d De-

alphalise and Alphalise processes occur at the pack level when a dispersing wolf finds

a suitable pack with a potential mate (Figure 3.9b, Part VI). The De-alphalise process

is based on the assumption that alpha wolf pairs are loyal to each other. Therefore, if

only one alpha remains in the pack, it will not form a new pair with any other wolf. The

de-alphalised wolf is considered to no longer be part of the pack and is removed from

the model (Figure 3.9c, Path da.1). After the De-alphalise process, no alpha remains

in the pack. If the pack is without an alpha before the De-alphalise process occurs (i.e.,

both alphas have died or a previous disperser has occupied an empty territory), then

the pack remains unchanged (Figure 3.9c, Path da.2).

The Alphalise process occurs right after the De-alphalise process (Figure 3.9d). Through

this process, the wolf who successfully joins the pack changes its status to ‘alpha’. Its

paired wolf also becomes an alpha after the process. If the pack contains more than

one potential mate, the model randomly selects one.
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Figure 3.9: Mature wolf dispersing mechanism.

(a) Dispersers habitat allocation.

(b) Disperser pack allocation.

(c) De-alphalise process.

(d) Alphalise process.
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iii Yearling Alpha

Suppose the yearling wolf survives the winter and finds a mate (Figure 3.8, Path d).

In spring, it engages in breeding. Breeding occurs at the pack level and is detailed

in Subsection 3.5.7. For this individual wolf, it ages through the upcoming spring,

summer, and autumn (Figure 3.10).

Figure 3.10: Yearling alpha in spring, summer and autumn.

iv Yearling Non-Alpha

Suppose this wolf does not disperse during the winter when it is 21 months old. If it

chooses to stay with its original pack during that winter (Path b in Figure 3.8), it ages

through the upcoming spring, summer, and autumn as a non-alpha (Figure 3.11).
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Figure 3.11: Yearling non-alpha in spring, summer and autumn.

By the end of summer, all wolves born at the same time as this wolf are labelled

as adults, as they are now 30 months old. Table 3.3 summarises the possible state

transitions for all yearlings at each season and at any point in time.

Table 3.3: States and transitions of yearlings.

Yearlings (18 to 30 Months)

Autumn Winter Spring Summer
Alpha N/A N/A Age and breed Age

Not alpha Age
Age or die or

mature wolf disperse
Age Age

3.5.6 Adult (More than 30 Months)

The model, following Haight, Mladenoff, and Wydeven (1998), assumes that adult

wolves have a higher probability of dispersing than yearling wolves during winter. Adult

wolves go through the same process as yearling wolves, with the only distinction being
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the possibility of having alpha status during autumn and winter. No yearling alpha

wolves exist during autumn and winter, as they were too young to successfully disperse

in the previous winter. However, if yearling wolves successfully disperse and become

alpha at the beginning of spring, their alpha status remains unchanged upon reaching

adulthood.

Table 3.4 summarises the possible alpha status for wolves of each age group.

Table 3.4: Possible alpha status for different age groups.

Autumn Winter Spring Summer

Pup N/A N/A Non-Alpha Non-Alpha
Juvenile Non-Alpha Non-Alpha Non-Alpha Non-Alpha

Yearling Non-Alpha Non-Alpha
Non-Alpha
or Alpha

(Figure 3.8)

Non-Alpha
or Alpha

(Figure 3.10, 3.11)

Adult
Non-Alpha
or Alpha

(Figure 3.10,3.11)

Non-Alpha
or Alpha

(Figure 3.12,3.13)

Non-Alpha
or Alpha

Non-Alpha
or Alpha

i Adult Alpha

At the end of winter, alpha wolves may die due to area-based winter mortality (Figure

3.12, Path a). They might also be de-alphalised and die if their mate died during winter

and a new wolf joined their pack (Figure 3.12, Path b, and also explained in Figure

3.9c). If their mate dies but no new wolf joins the pack, or if their mate survives, they

will continue as the alpha, aged 36 months, with their pack Px, on their territory Tx,

within their habitat Hx (Figure 3.12, Path c).
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Figure 3.12: Adult alpha in winter.

ii Adults Non-Alpha

When winter comes, a 33-month old non-alpha wolf at Pa, Ta, Ha goes through the same

process as it did during the winter when it was 21 months old (Figure 3.8). It could

die due to area-based winter mortality (Figure 3.13, Path a); age without dispersing

(Figure 3.13, Path b); die from unsuccessful dispersal (Figure 3.13, Path c); age, find a

suitable mate, and become alpha (Figure 3.13, Path d); or age and settle in an empty

territory as a non-alpha (Figure 3.13, Path e).

For all mature wolves that survived winter mortality and did not disperse during the

previous winter, they go through the same processes every winter. Therefore, apart

from age and the probability of dispersal, there is no difference between Figure 3.13

and Figure 3.8.

Table 3.5 summarises the possible states and transitions of all adult wolves at each

season at any point in time.
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Figure 3.13: Adult non-alpha in winter.

Table 3.5: States and transitions of adults.

Adults (More than 30 Months)

Autumn Winter Spring Summer

Alpha Age Age or die
Age and breed or

de-alphalise and not breed
Age

Not alpha Age
Age or die or
adult disperse

Age Age

3.5.7 Breeding

Breeding is modelled as a pack-level activity. It is assumed to occur every year at

the start of spring when both alpha wolves are alive (Figure 3.14). For every pack

with both alpha wolves alive at the start of spring, a litter of pups is added to the

pack (Figure 3.14, Path a). The size of each litter is determined based on a litter size

distribution, and the gender of each pup is assumed to be equally likely. The model

assumes a litter size of 0 is possible (Figure 3.14, Path b). If the pack has only one
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alpha wolf (regardless of gender), no new pups are added to the pack, and the pack

remains unchanged (Figure 3.14, Path c).

Figure 3.14: Breeding.

3.5.8 Summary Chart

Figure 3.15 summarises the possible states and activities of a single wolf from age 0 to

4 years old.

Figure 3.15: Possible survival, dispersal, and breeding states for a wolf over 4 years.
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3.6 Computer Model

Section 3.5 details the conceptual model by tracing the life history of individual wolves.

In modelling the entire wolf population within the study area, for computational effi-

ciency, individuals are grouped based on their life stage and wolves at the same stage

are simulated collectively. In this chapter, the term ‘stage’ refers collectively to a wolf’s

age group, location, and status. As explained in Section 3.5, age groups are categorised

as pups (0 to 6 months), juveniles (6 to 18 months), yearlings (18 to 30 months), and

adults (over 30 months). The location specifies the specific habitat and territory each

wolf is in. The status of a wolf is either living in a group (non-alpha), or leading a

group (alpha), or dispersing. The simulation advances in three-month intervals for

computational efficiency, also to reflect the seasonal cycle.

The model is coded in Python using a functional programming approach. Two flowcharts

explaining the logic of the computer model are provided in Appendix B.1. The model

assumptions are summarised in Appendix B.2. Simplifications made for computational

efficiency are listed in Appendix B.3. Methods applied for model verification are ex-

plained in Appendix B.4.

3.7 Model Parameters

This section explains the values of the model parameters. It is impractical to examine

the effect of all model parameters on the solution to the RSS problem. Therefore, the

parameters are divided into two categories: Subsection 3.7.1 details the fixed parameters

whose values remain unchanged throughout the research, and Subsection 3.7.2 explains

the parameters that are varied to create different scenarios of the RSS problem (input

parameters).
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3.7.1 Fixed Parameters

Below is the list of the fixed parameters and their corresponding values. Unless specified

otherwise, the values of these parameters are derived from Haight, Mladenoff, and

Wydeven (1998).

• Number of habitats: 6 (Haight and Travis, 2008)

• Probability of dispersal:

– probability of juvenile wolves dispersing = 25%

– probability of yearling wolves dispersing = 50%

– probability of adult wolves dispersing = 90%

– Long dispersal probability for dispersing wolves = 20%

• Maximum number of territories a dispersing wolf is allowed to visit = 6

• Litter size distribution = uniform distribution from 0 to 12, mean of 6 (Haight,

Mladenoff, and Wydeven (1998) uses a model with an empirical distribution that

is not detailed in their paper. According to Mech (1970), the average litter size

is 6. Therefore, this model uses a uniform distribution with a mean of 6 as the

litter size distribution).

3.7.2 Input Parameters

The input parameters defining a study area in the grey wolf simulation model this

research developed include: the starting number of territories, the starting packs, the

maximum number of core territories, mortality rates for wolves in core and peripheral

territories, and mortality rates for pups. Changing these input parameters allows the

generation of varied study areas, leading to varied scenarios for the RSS problem. Table
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3.6 presents a generalised set of starting conditions for a study area.

Table 3.6: Input table.

H1 H2 ... H6

Starting number of territories [ t1 t2 ... t6 ]
Starting packs [ p1 p2 ... p6 ]

Maximum number of core territories [ c1 c2 ... c6 ]
Core territories winter mortality rate [ cm1 cm2 ... cm6 ]

Peripheral territories winter mortality rate [ prm1 prm2 ... prm6 ]
Pup mortality rate [ ppm1 ppm2 ... ppm6 ]

The starting number of territories t is the number of existing territories within each

habitat at the beginning of the simulation. t = 0 means there is no territory in the

corresponding habitat. A habitat without any existing territory is referred to as an

empty habitat in this thesis.

The starting packs p are the initial pack configurations in each habitat. This includes

the count of packs in each habitat and the constitution of each pack. Pack constitution

includes the number of wolves, their ages, genders, and alpha statuses. Starting packs

are classified into three categories based on the number of wolves they contain: big

packs (denoted as pb, with 11 or more wolves), medium packs (denoted as pm, with 5

to 10 wolves), and small packs (denoted as ps, with 0 to 4 wolves). A value of p = 0

means there is no pack in a territory (i.e. empty territory).

The maximum number of core territories, c, represents the number of core territories

a habitat can support. For simplicity, the model assumes this number is fixed and is

provided by the decision maker. This number means: the first c territories in a habitat

are assumed to be core territories, and any additional territories beyond this capacity

are categorised as peripheral territories. For example, if c = 2 and there is initially only

one territory in the habitat, it is a core territory. If one additional territory is selected,
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it also becomes a core territory. However, if a second additional territory is selected, it

becomes a peripheral territory since the maximum number of core territories that the

habitat can support has already been reached.

The mortality rates are self-explanatory. The base mortality rates this research adopts

are from Haight, Mladenoff, and Wydeven (1998): 20% for core territories’ winter

mortality rate, 40% for peripheral territories’ winter mortality rates, and 40% for pup

mortality.

The solution to the problem is expressed in the form of a vector like [X1i, X2i, X3i, X4i, X5i, X6i],

where each Xhi represents the number of additional territories in Habitat h in solution

i (Section 3.3).

3.8 Summary

This chapter provides a foundation for Chapters 4, 5, and 6 by presenting the essential

background needed to address the research questions detailed in Chapter 2. Sections

3.2 to 3.4 explain the grey wolf RSS problem that this research focuses on and detail

the formulation and solution method for the problem. Sections 3.5 to 3.7 detail the grey

wolf model developed in this thesis and highlight the input parameters that Chapters

4, 5, and 6 focus on.

Variations in the input parameters enable the generation of different scenarios for the

RSS problem. Applying CCSB-F to these scenarios allows for the evaluation of its

performance under various characteristics. Chapters 4, 5, and 6 explore the three sce-

narios. Scenario 1 uses real-world wolf data to assess the applicability and effectiveness

of CCSB-F. Scenario 2 introduces specific characteristics designed to evaluate the use

of a model-based approach with CCSB-F. Scenario 3 has more potential solutions than
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Scenario 2, and is designed to evaluate the use of a heuristic approach with CCSB-F.

One of the benefits of solving the RSS problem with SO comes from the simulation

model used to estimate grey wolf persistence. There are two main advantages of using

a simulation model compared to analytical functions in solving the RSS problem. First,

the model can accommodate individual behaviours, interactions, dynamic changes in

habitat, and spatial aspects of the habitat, which allows for more realistic estimations of

species persistence. Second, the model is very accommodating for various performance

measures of interest.

This thesis looks for lessons that can be extrapolated beyond the specific examples in

Chapters 4, 5 and 6. Although this thesis focuses particularly on species persistence

in the constraint, other measures, such as the location of the packs, the number of

pups, or the compactness of the sites, can be easily incorporated into the formulation.

The same applies to the objective. This thesis focuses on the number of sites in the

objective, but other measures, such as the individual costs of each territory or habitat,

can be easily incorporated by amending the objective function.



Chapter 4

Data-Informed Wolf Reserve Site

Selection Problem

4.1 Introduction

Chapter 2 identifies the lack of use of SO in the RSS problem, and explains the choice

of CCSB-F as the representative SO solution method this research focuses on. Chapter

4 addresses RQ1: How well do current SO methods perform (in terms of

solution accuracy and computational effort) when applied to RSS problems?

To investigate this, this chapter introduces a hypothetical RSS problem, referred to as

Scenario 1, which uses real-world information from California wolf packs.

The specifics of Scenario 1 are presented in Section 4.2. The chance-constrained formu-

lation of Scenario 1 and its parameters’ settings are detailed in Section 4.3. To assess

CCSB-F’s effectiveness in solving Scenario 1, multiple replications of CCSB-F are per-

formed. The results are presented in Section 4.4. An analysis of the results is provided

in Section 4.5. To examine the efficiency of CCSB-F, it is compared to a standard

67
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hypothesis testing procedure for solving probabilistically constrained problems. The

comparison and its result are explained in Section 4.6. Section 4.7 provides a summary

of this chapter.

4.2 Scenario 1: Problem Description

This section describes the Scenario 1 problem. As previously discussed in Section 3.2, to

define an RSS problem, the high-level information required is: a study area, a budget,

a conservation goal, and a desired probability of achieving the conservation goal. The

more detailed information required on the study area is the number of habitats, the

number of territories in each habitat, the maximum possible number of core territories

within each habitat, mortality rates associated with each habitat, and information

about existing packs, including pack location, each member wolf’s gender, age, and

alpha status.

The study area of Scenario 1 is based on the state of California, USA. Scenario 1

assumes the government has a budget for protecting up to two additional territories,

with a conservation goal of maintaining at least the starting number of viable packs at

the end of a five-year planning horizon, with at least a 75% probability of achieving

that goal. The budget is intentionally limited to two additional territories to ensure the

problem can be solved within a reasonable timeframe. The objective of Scenario 1 is to

identify the minimal number of additional territories required to reach this probability,

and to determine the optimal allocation plans for these additional territories.

The study area, California, is divided into six distinct habitats, as shown in Figure 4.1.

This division is informed by a map of Antonelli et al. (2016) (downloaded from Boysen

(2016)), which illustrates the likelihood of areas being suitable for wolves to establish

their pack in. The amplified area on the top right of Figure 4.1 shows the current wolf
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packs and their location based on CDFW (2023).

Figure 4.1: Map of California with 6 habitats and the current locations of wolf packs.

Hab
ita

t 1

Habitat 2

Habitat 3

Habitat 4

Habitat 5

Habitat 6

Habitat 4

Habitat 1

Habitat 2

Habitat 3

Lassen Pack

Beckwourth Pack

Whaleback Pack

The starting conditions for Scenario 1 are summarised in Table 4.1. This scenario

assumes there are five existing territories in each of Habitats 1 to 4 and none in Habitats

5 and 6. For the maximum number of core territories (explained in Subsection 3.7.2),

it assumes there is a maximum of two territories in each of Habitats 1 to 4 that can be

core. No territories in Habitats 5 and 6 can be core territories. The mortality rates are

assumed to be the same as the base mortality rates in Subsection 3.7.2. The information
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on existing packs is based on the real conditions in California. Three existing packs in

California have been officially documented by the California Department of Fish and

Wildlife (CDFW), the detailed packs’ constitutions are (CDFW, 2023):

• Lassen pack (Habitat 2): one pair of alphas (the female is around 39 months old,

and the male’s age is unknown, assumed to be 30 months), five yearlings (assumed

to be two males and three females), and five pups (assumed to be three males and

two females) - 12 wolves in total. The pack is assumed to be in a core territory.

• Beckwourth pack (Habitat 2): two wolves in total, assumed to be a pair of alphas

(the male is around 36 months old, the female’s age is unknown, assumed to be

30 months). The pack is assumed to be in a core territory.

• Whaleback pack (Habitat 4): one pair of alphas (the male is around 48 months old,

the female’s age is unknown, assumed to be 30 months), five yearlings (assumed

to be three males and two females), and eight pups (assumed to be four males and

four females) – 15 wolves in total. The pack is assumed to be in a core territory.

Table 4.1: Scenario 1: starting condition.

H1 H2 H3 H4 H5 H6

Starting number
of territories

[ 5 5 5 5 0 0 ]

Starting packs [ 0
Lassen

Beckwourth
0 Whaleback 0 0 ]

Maximum number of
core territories

[ 2 2 2 2 0 0 ]

Core territories winter
mortality rate

[ 0.2 0.2 0.2 0.2 0.2 0.2 ]

Peripheral territories
winter mortality rate

[ 0.4 0.4 0.4 0.4 0.4 0.4 ]

Pup mortality rate [ 0.4 0.4 0.4 0.4 0.4 0.4 ]



CHAPTER 4. DATA-INFORMED WOLF RSS PROBLEM 71

4.3 Scenario 1: Problem Formulation

This section provides the formulation for the Scenario 1 problem. Subsection 4.3.1

explains the formulation. Subsection 4.3.2 details the CCSB-F parameters used and

the solution space of Scenario 1.

4.3.1 Chance-Constrained Formulation

Given that there are three viable packs at the beginning of the planning horizon, the

conservation goal of maintaining at least the starting number of viable packs is Yi ≥ 3,

where Yi is the number of viable packs at the end of the planning horizon, estimated

by the simulation model under an additional territories selection plan i (i.e. solution

i). The requirement of achieving the conservation goal with at least 75% probability is

denoted as Pr{Yi ≥ 3} ≥ 75%.

The aim of finding the minimal number and allocation of additional territories in six

habitats is written as mini∈I
∑6

h=1Xhi, where I is the solution space, and Xhi is the

number of additional territories selected in Habitat h under solution i. The size of the

solution space, calculated from Eq.(3.4), is:

2∑
j=0

C(6 + j − 1, 6− 1) =
2∑
j=0

(6 + j − 1)!

j!(6− 1)!
= 28. (4.1)

A chance-constrained formulation of Scenario 1 can be written as:

min
i=1,2,...,28

6∑
h=1

Xhi

s.t. Pr{Yi ≥ 3} ≥ 75%

(4.2)
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4.3.2 CCSB-F Initialisation

To calculate CCSB-F’s required sample size n(β) (for declaring a solution feasible) and

the failure count threshold mβ(n) (for declaring a solution infeasible), the parameter

values for the violation probability γ, the overall error allowance for the procedure α,

and the feasibility tolerance level δγ need to be defined (detailed in Subsection 2.3.3)

Since the desired probability of achieving the conservation goal is 75%, the violation

probability γ is 0.25. The α (significance level for the CCSB-F procedure) is set to 0.05

in Scenario 1. The total number of possible solutions for the Scenario 1 problem is 28

(Eq.(4.1)). The value of the error allowance β is set to 0.05
28

(explained in Subsection

2.3.3). The full list of all these 28 solutions is presented in Table 4.2.

Table 4.2: Scenario 1: solution space.

Additional Territories 0 1 2

Solutions [5, 5, 5, 5, 0, 0] [5, 5, 5, 5, 0, 1] [5, 5, 5, 5, 0, 2]
[5, 5, 5, 5, 1, 0] [5, 5, 5, 5, 1, 1]
[5, 5, 5, 6, 0, 0] [5, 5, 5, 6, 0, 1]
[5, 5, 6, 5, 0, 0] [5, 5, 6, 5, 0, 1]
[5, 6, 5, 5, 0, 0] [5, 6, 5, 5, 0, 1]
[6, 5, 5, 5, 0, 0] [6, 5, 5, 5, 0, 1]

[5, 5, 5, 5, 2, 0]
[5, 5, 5, 6, 1, 0]
[5, 5, 6, 5, 1, 0]
[5, 6, 5, 5, 1, 0]
[6, 5, 5, 5, 1, 0]
[5, 5, 5, 7, 0, 0]
[5, 5, 6, 6, 0, 0]
[5, 6, 5, 6, 0, 0]
[6, 5, 5, 6, 0, 0]
[5, 5, 7, 5, 0, 0]
[5, 6, 6, 5, 0, 0]
[6, 5, 6, 5, 0, 0]
[5, 7, 5, 5, 0, 0]
[6, 6, 5, 5, 0, 0]
[7, 5, 5, 5, 0, 0]
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There is no straightforward way to set the feasibility tolerance level δγ in this thesis.

Therefore, two values of δγ, 0.025 and 0.010, are used. For δγ = 0.025, n(β) and mβ(n)

(Eq.(2.19) and Eq.(2.20)) are:

n(β) =

⌈
Z2

1−0.05/28

0.0252
·
(√

0.25 · (1− 0.25) +
√

(0.25− 0.025) · (1− (0.25− 0.025))
)2⌉

= 9, 828,

mβ(n) =
⌊
9, 828 · 0.25− Z1−0.05/28

√
9, 828 · 0.25 · (1− 0.25)

⌋
= 2, 331.

Similarly, for δγ = 0.010, n(β) = 62, 805, and mβ(n) = 15,385.

To analyse the performance of CCSB-F in solving Scenario 1, multiple replications of

the entire CCSB-F procedure (hereafter macro-replications) need to be performed due

to the sampling errors embedded in the simulation experiment. For this chapter, 100

macro-replications are carried out.

4.4 Scenario 1: Results

Table 4.3 presents the feasible solutions and their selection counts from 100 macro-

replications of CCSB-F, with feasibility tolerance levels δγ of 0.025 and 0.010. Other

solutions not listed in the table were not selected in any of the macro-replications. The

full result table is in Appendix C.1.
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Table 4.3: Scenario 1: result table for 100 macro-replications of CCSB-F.

Additional
Territories

Solutions identified
as feasible

Selection count

δγ = 0.025 δγ = 0.010
2 [5, 5, 5, 5, 1, 1] 20 100
2 [5, 6, 5, 5, 0, 1] 5 74
2 [5, 6, 5, 5, 1, 0] 8 71

Average number of runs 252,522 1,664,037
Standard deviation 788 2206

From both δγ of 0.025 and 0.010 results, the minimal additional territories required to

ensure a 75% probability of achieving the conservation goal is two territories for the

Scenario 1 problem (with a 5% significance level). The additional territories selection

plans that can achieve this are: one additional territory in both Habitats 5 and 6 ([5, 5,

5, 5, 1, 1]), one in Habitat 2 and one in Habitat 6 ([5, 6, 5, 5, 0, 1]), or one in Habitat

2 and one in Habitat 5 ([5, 6, 5, 5, 1, 0]).

All optimal solutions involve protecting a territory in at least one empty habitat (Habi-

tat 5 or 6). This is largely dependent on the modelling assumption that long dispersers

(those who disperse to a different habitat, see Section 3.5) have a uniform probabil-

ity of moving into any other habitat, and cannot survive if there are no territories

in the habitat they move into. Therefore, having more non-empty habitats increases

their likelihood of survival and, in turn, increases the overall chance of achieving the

conservation goal. This aligns with the findings of Haight, Mladenoff, and Wydeven

(1998).

Another observation is that two of the three optimal solutions involve allocating an

additional territory to Habitat 2. This result is closely linked to the wolf model’s

assumption that dispersers can only survive if they find either a suitable pack or an
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empty territory. As Habitat 2 is the most densely populated among the six habitats,

dispersers (both local and long) in Habitat 2 face a higher likelihood of failing to find

a suitable pack or empty territory compared to other habitats. Hence, allocating an

additional territory to Habitat 2 is likely to reduce this risk, thereby enhancing disperser

survival more effectively than same allocations in other habitats.

4.5 Scenario 1: CCSB-F Performance Analysis

The performance of the CCSB-F is analysed in this section based on the level of com-

putational effort required and the probability of correct selection. Subsection 4.5.1

explores the selection accuracy of CCSB-F, i.e. the probability of correctly identifying

any optimal solutions at the end of the procedure. Subsection 4.5.2 provides an analysis

of the computational effort (measured by the number of simulation runs) required by

CCSB-F.

4.5.1 Selection Accuracy

Since the cost of a solution is deterministic in the problem studied in this thesis, once

the feasibility of the solution is determined, a correct selection is defined as selecting

any feasible solution that uses the least additional territories. Therefore, to evaluate

the selection accuracy of CCSB-F, the feasibility of all solutions needs to be checked.

However, due to the sampling error embedded in simulation experiments, the true

feasibility of solutions cannot be known with certainty. One way to estimate this is by

running the simulation multiple times and calculating a confidence interval for the true

probability of the solutions.
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i Feasibility Estimation

To estimate the feasibility, each solution is run 100,000 times. Table 4.4 lists the

solutions that are identified as feasible (at a 5% significance level). Figure 4.2 is a

visual representation of the full result. The full result table, including each solution’s

test statistics, is in Appendix C.2.

Table 4.4: Scenario 1: feasibility estimation for solutions identified as feasible.

Additional
Territories

Solutions Pr{Yi ≥ 3} Lower
90% CI

Upper
90% CI

Pr{Yi < 3}

2 [5, 5, 5, 5, 1, 1] 0.75999 0.75605 0.76393 0.24001
2 [5, 6, 5, 5, 0, 1] 0.75818 0.75423 0.76213 0.24182
2 [5, 6, 5, 5, 1, 0] 0.75483 0.75087 0.75879 0.24517

Figure 4.2: Scenario 1: feasibility estimation result plot.

Figure 4.2 shows that five solutions have Pr{Yi ≥ 3} above the 75% line, yet only

three are listed as feasible in Table 4.4. This is because the t-tests, based on 100,000

simulation runs for each solution, find insignificant evidence to confirm the feasibility

of two solutions at a 5% significance level ([5,5,5,5,0,2] with a mean of 0.75218 and
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[5,5,5,5,2,0] with a mean of 0.751). Consequently, these two solutions are not considered

feasible in the following analyses.

ii Probability of Correct Selection

Based on the feasibility estimation results, solutions [5, 5, 5, 5, 1, 1], [5, 6, 5, 5, 0, 1] and

[5, 6, 5, 5, 1, 0] are feasible at 5% significance level. As the minimal cost of any feasible

solution is 2 territories, these three solutions are also the optimal solutions. Recall

from Table 4.3 that the only solutions CCSB-F selects are these three solutions. The

total number of times CCSB-F has made any selection is 31 when δγ = 0.025, and 100

when δγ = 0.010. Since all solutions selected by CCSB-F are optimal, the probability

of correct selection based on 100 macro-replications for δγ = 0.025 is estimated at

31%, and for δγ = 0.010 it is 100%. This result aligns with the theory that with an

appropriate feasibility tolerance level, CCSB-F can have a very high level of accuracy

in selecting an optimal RSS plan.

The result also shows the extent to which selection accuracy depends on the feasibility

tolerance level δγ, as explained in Subsection 2.3.3. In Scenario 1, with δγ = 0.025,

CCSB-F does not have explicit control over the Type II errors for solutions whose

violation probability Pr{Yi < 3} falls within the range of (0.225, 0.25] (Subsection

2.3.3). This range shifts to (0.24, 0.25] when δγ decreases to 0.010. According to the

feasibility estimation results (Table 4.4), the Pr{Yi < 3} of all three optimal solutions

(Table 4.3) falls within these intervals for both δγ values. Hence, a decrease in δγ is

expected to result in an increase in selection counts for all three solutions.
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4.5.2 Computational Effort

The computational effort for the Scenario 1 problem, based on the 100 macro-replications

results collected (Table 4.3) is the following: with δγ = 0.010, the average number of

runs per CCSB-F macro-replication required is 1,664,037, the 95% confidence interval

is 1,664,469 – 1,663,604. When δγ = 0.025, the average is 252,522 runs, and the 95%

confidence interval is 252,677 - 252,368.

As expected with CCSB-F (see Subsection 2.3.3), a smaller δγ requires an increase in

the number of simulation runs. In Scenario 1, for a 60% decrease in δγ (from 0.025 to

0.010), CCSB-F requires a 558.97% increase in the number of runs on average (from

252,522 to 1,664,037) to solve the Scenario 1 problem.

4.6 Benchmark and CCSB-F Comparison

Since there is no other established solution method for probabilistically constrained SO

problems with a deterministic objective, a standard statistical hypothesis testing proce-

dure (e.g. Anderson et al. (2014)) that uses power analysis to control the probabilities

of making both Type I and II errors is used as a benchmark. Subsection 4.6.1 describes

the benchmark procedure and compares its computational effort with CCSB-F. Sub-

section 4.6.2 compares the selection accuracy of the benchmark and CCSB-F in solving

the Scenario 1 problem.
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4.6.1 Computational Effort

A standard hypothesis test for testing the population mean µ against the hypothesised

value of the population mean µ0 can be expressed as:

H0 : µ > µ0 vs. H1 : µ ≤ µ0 (4.3)

Type I error rate: Pr{reject H0 | µ > µ0} (4.4)

Type II error rate: Pr{do not reject H0 | µ ≤ µ0} (4.5)

The Type I error may be controlled by setting Pr{reject H0 | µ > µ0} ≤ β1. The Type

II error cannot be controlled for all values, but suppose one would like to control it at

the value of µ less than (or equal to) a specific µ1 such that:

Pr{do not reject H0 | µ ≤ µ1} ≤ β2 (4.6)

Then, the sample size n should satisfy Eq.(4.7).

µ0 − µ1 = Zβ1
σ1√
n

+ Zβ2
σ2√
n

(4.7)

Recall from Subsection 2.3.3, the above hypothesis test and the selection errors in

CCSB-F are denoted as:

H0 : pi > γ vs. H1 : pi ≤ γ (4.8)

Type I error control: Pr{reject H0 | pi > γ} ≤ β1 (4.9)

Type II error control: Pr{do not reject H0 | pi ≤ γ − δγ} ≤ β2 (4.10)

Comparing the CCSB-F hypothesis testing in Eq.(4.8) with the standard hypothesis
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testing in Eq.(4.3), it is clear that γ is µ0. Comparing the CCSB-F Type II error in

Eq.(4.10) and the Type II error control in Eq.(4.6), it is clear γ − δγ is µ1. Then,

σ1 is the same as σγ and σ2 is σγ−δγ . Note that µ0 − µ1 in Eq.(4.7) in CCSB-F is

γ − (γ − δγ) = δγ.

Because the outcome of {Yi ≥ N} follows a Bernoulli distribution, σγ =
√
γ(1− γ) and

σγ−δγ =
√

(γ − δγ)(1− γ + δγ). Also, β1 and β2 are set to β1 = β2 = β in CCSB-F.

Therefore, the Eq.(4.7) becomes:

δγ = Zβ
σγ√
n

+ Zβ
σγ−δγ√
n

(4.11)

Rearranging the terms in Eq.(4.11) and substituting the values of σγ and σγ−δγ gives

the formula to calculate the sample size n:

n =
Z2
β

δ2γ
·
(√

γ(1− γ) +
√

(γ − δγ)(1− (γ − δγ))
)2

(4.12)

This sample size is the same as the sample size n(β) CCSB-F requires to declare a

solution feasible. Nevertheless, because of the sequential feature of CCSB-F, it can

declare a solution as infeasible when the solution fails mβ(n) times before collecting

all n(β) samples. Hence, for some clearly infeasible solutions, CCSB-F does not need

to collect all n(β) samples. As soon as the fail counts reach mβ(n), it can declare the

solution as infeasible and move to the next solution. However, regardless of feasibility,

the benchmark needs to collect n samples for every solution. Therefore, the benchmark

is expected to be more computationally intensive (i.e. requiring more number of runs)

than CCSB-F.

For the Scenario 1 problem, with 28 solutions and a tolerance level of δγ = 0.025, β =

0.05/28, the sample size the benchmark needs to collect for each solution is calculated
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by Eq.(4.12) as:

n =
Z2

0.05/28

0.0252
·
(√

0.25 · (1− 0.25) +
√

(0.25− 0.025) · (1− (0.25− 0.025))
)2

= 9, 828.

The benchmark requires a total sample size of 275,184 (9, 828 · 28) for 28 solutions.

Compared to this, CCSB-F requires an average of 252,522 samples (Table 4.3), which

is 8% fewer runs per macro-replication compared to the benchmark. For a smaller δγ =

0.01, the benchmark requires 62,805 runs per solution (1,758,540 per macro-replication).

CCSB-F requires 5% fewer runs on average (1,664,037 per macro-replication) compared

to the benchmark.

As explained in Subsection 2.3.3, the benefit of the CCSB-F depends on the solution

space characteristics of the problem. For Scenario 1, as shown in Subsection 4.5.1,

most solutions are not far from being feasible, which means CCSB-F needs to collect

more samples (close to n(β)) to determine the feasibility of a solution. Thus, the total

sample size is close to n(β) · 28. On the other hand, if all solutions in Scenario 1

are clearly infeasible (i.e. all simulation outputs have Pr{Yi < N}), then the total

number of samples CCSB-F needs to collect is mβ(n) · 28 (65,268 for δγ = 0.025, and

430,780 for δγ = 0.01). In such an extreme case, compared to the benchmark, CCSB-

F’s computational effort savings will be 76.28% (275,184 to 65,268) for δγ = 0.025, and

75.50% (1,758,540 to 430,780) for δγ = 0.010.

4.6.2 Selection Accuracy

To compare the selection accuracy between the benchmark and CCSB-F, two sets of

100 macro-replications are performed with δγ = 0.025 and 0.010 to compare with the
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previous two sets of CCSB-F results. The full result table and the experiment settings

for the benchmark are in Appendix C.3.

For δγ = 0.025, the benchmark identified the optimal solutions 31 times out of 100

replications, and 100/100 when δγ = 0.01. Table 4.5 compares the number of correct

selections of the benchmark and CCSB-F made. Neither method selected any infeasible

solutions.

Table 4.5: Benchmark and CCSB-F selection count comparison with two δγs.

δγ δγ = 0.025 δγ = 0.01

Solutions Benchmark CCSB-F Benchmark CCSB-F

[5, 5, 5, 5, 1, 1] 19 20 98 100
[5, 6, 5, 5, 0, 1] 7 5 78 74
[5, 6, 5, 5, 1, 0] 12 8 74 71

Total correct selection count 31 31 100 100

There is no difference between the benchmark and CCSB in the total selection count

based on 100 macro-replications. However, two noticeable differences were observed.

The first is in solution [5, 6, 5, 5, 1, 0] when δγ = 0.025, which the benchmark selected

12 times, but CCSB-F selected 8 times. The second is in solution [5, 6, 5, 5, 0, 1], which

the benchmark selected 78 times, but CCSB-F selected 74 times for δγ = 0.01. Two

Chi-squared tests were conducted to test the differences at a 5% significance level. Both

tests suggest that there is insufficient statistical evidence to say that the benchmark

and CCSB perform differently. Details of the Chi-squared tests are in Appendix C.4.

The findings from the 100 macro-replications indicate that CCSB-F requires fewer runs

than the benchmark, and there is no statistical evidence suggesting that the benchmark

and CCSB-F differ in selection accuracies.



CHAPTER 4. DATA-INFORMED WOLF RSS PROBLEM 83

4.7 Summary

To address RQ1: How well do current SO methods perform (in terms of

solution accuracy and computational effort) when applied to RSS problems?,

Chapter 4 uses a SO solution method, CCSB-F, to solve a hypothetical grey wolf RSS

problem that is informed by real-world data (referred to as Scenario 1). Sections 4.2 to

4.5 describe the Scenario 1 problem, its chance-constrained formulation, and the results

of experiments designed to study the performance of CCSB-F in solving the problem.

As expected, the results from solving the Scenario 1 problem show that CCSB-F

achieves a 31% selection accuracy with the feasibility tolerance level δγ of 0.025, and a

100% selection accuracy when δγ is 0.010. This demonstrates that CCSB-F can provide

high selection accuracy when the appropriate level of feasibility tolerance is selected.

Also, as expected, the results show this high level of accuracy comes with a cost of com-

putation intensity: for a small problem with 28 solutions, a single CCSB-F procedure

requires around 1.66 million simulation runs for an overall selection accuracy of 95%

with a 1% feasibility tolerance level.

This computational intensity also depends on how close the solutions are to the feasi-

bility boundary. As explained in Subsection 2.3.3, a solution space mainly consisting of

solutions close to the feasibility boundary will require greater computational effort. In

Scenario 1, all solutions are relatively close to the feasibility boundary (see Appendix

C.2). Consequently, CCSB-F ends up collecting more samples in total compared to a

scenario where more solutions are far from the feasibility boundary. Hence, the total

number of samples required is close to the maximum sample size required, which is

n(β) · 28 = 1, 758, 540.

The results also show the extent of the tradeoff between computational intensity and
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selection accuracy. In Scenario 1, an improvement in selection accuracy from 31% to

100% is achieved through an increase in computational effort from 252,522 to 1,664,037.

This computational intensity is addressed with two solution space filtering approaches

discussed in Chapters 5 and 6.

Section 4.6 further examines CCSB-F by comparing its computational effort to that of

a standard hypothesis testing procedure for solving probabilistically constrained prob-

lems. The comparison results show that the computational savings achieved by CCSB-F

in Scenario 1 are relatively small (5% when δγ = 0.010, and 8% for δγ = 0.025). This

small reduction in computational effort is explained by Scenario 1’s solutions’ close-

ness to the feasibility boundary. Conversely, CCSB-F can be expected to save more

compared to the benchmark in problems where the solution space mainly consists of

infeasible solutions far from the feasibility boundary.



Chapter 5

A Model-Based Approach for

Solution Space Filtering

5.1 Introduction

Chapter 4 shows that the computational effort required can be a challenge when solving

the chance-constrained formulation of the wolf RSS problem using CCSB-F. In response,

this chapter proposes an approach to reduce this computational effort without affecting

the statistical guarantee of the CCSB-F procedure.

RnS algorithms that provide a PCS guarantee typically examine all solutions in the

solution space (see Subsection 2.3.2). However, some solutions, if they have equivalent

alternatives which can be identified based on the characteristics of the simulation model,

maybe ‘temporarily’ removed.

An approach of this kind is developed in this chapter to reduce the computational effort

CCSB-F requires in solving the RSS problem. Since it is based on the characteristics

of the simulation model, it is referred to here as the model based approach (MBA).

85
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Section 5.2 explains the MBA in detail. To demonstrate the scale and effectiveness of

MBA in reducing the computational effort required to solve the RSS problem, it is ap-

plied to a hypothetical grey wolf RSS scenario with 28 solutions, referred to as Scenario

2. Section 5.3 describes Scenario 2, details the application of MBA to it, and presents

the problem formulation. Section 5.4 compares the computational effort and selection

accuracy of using MBA with CCSB-F (referred to as M-CCSB-F) to the use of CCSB-F

alone to assess the effectiveness of MBA. Section 5.5 assesses the generalisability of the

MBA by applying it to Scenario 1. Section 5.6 provides a summary of the findings.

5.2 A Model Based Approach

To explain the MBA, Subsection 5.2.1 introduces the general concept and explains

why and how it can be applied to the grey wolf RSS problem. To demonstrate the ap-

proach’s potential for reducing computational effort, Subsection 5.2.2 provides formulae

for calculating the size of the filtered solution space when using MBA, and two exam-

ples. Then, Subsection 5.2.3 demonstrates the potential computational effort saving of

M-CCSB-F compared to using CCSB-F alone.

5.2.1 Logic Behind MBA

In the grey wolf simulation model developed in this research, the total number of

viable packs of any habitat at the end of a simulation run depends on two factors: the

starting condition of the habitat, and the chance of having a long disperser moving into

the habitat (see Section 3.5).

The model assumes that the probability distribution of long dispersers moving to other

habitats is uniform (i.e. the likelihood of long dispersers moving to any other habitat is

equal), which means all habitats have the same probability of receiving long dispersers.
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Hence, if the starting conditions of the habitats are identical, these habitats will end

up with the same probability distribution of the number of viable packs.

For example, denote Habitat 1’s starting condition as [H11, ..., H1n], where each H1i is

a set that contains all relevant information for the ith territory in Habitat 1. Habitat

2’s starting condition is [H21, ...H2n]. Assuming that Habitats 1 and 2 have identical

starting conditions, i.e. [H11, ..., H1n] = [H21, ...H2n]. Assuming there is a set of ad-

ditional territories selected in Habitats 1 and 2, denoted as t, and since all additional

territories are assumed to be identical, [H11, ..., H1n, t] = [H21, ...H2n, t]. Then, prob-

ability distribution of the output of [H11, ..., H1n, t] will be the same as [H21, ...H2n, t].

Hence, Habitats 1 and 2 are indistinguishable. Such habitats are referred to as ‘indis-

tinguishable habitats’ here.

Hence, solutions that only vary by the locations of the additional territories among

indistinguishable habitats will have equal outcomes (these solutions are referred to as

equivalent solutions here). Therefore, only one of any set of equivalent solutions needs

to be simulated, and other equivalent solutions do not require simulation (referred to

here as temporarily removed). At the end of the selection procedure, if any optimal

(or not optimal) solution has equivalent solutions, these equivalent solutions are also

optimal (or not optimal).

Since all solutions are theoretically checked, and those temporarily removed solutions

are also considered at the end of the procedure, the statistical guarantee of CCSB-F

(see Section 3.4) remains.

5.2.2 Number of Solutions with Indistinguishable Habitats

For an RSS problem with both distinguishable and indistinguishable habitats, to find all

possible combinations of additional territories in habitats (i.e. the number of solutions),
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two types of combination problems need to be considered. The first one is allocating

territories into distinguishable habitats, and the second one is allocating territories into

indistinguishable habitats.

The calculation for the former combination problem is explained in Section 3.3. The

latter problem is equivalent to finding the number of ways of partitioning b ∈ N integers

(e.g. territories) into at most h ∈ N integers (e.g. indistinguishable habitats) (Rosen,

2007, p.378).

The formula for the number of combinations (Ph(b)) of allocating exactly b territories

into h indistinguishable habitats is (Rosen, 2007, p.310):

Ph(b) =



1 if b ∈ {0, 1}

1 if h ∈ {0, 1}

Pb(b) if b < h

1 + Pb−1(b) if b = h > 1

Ph−1(b) + Ph(b− h) if b > h > 1

(5.1)

For the case where there is only a single group of indistinguishable habitats, by the

product rule, the total number of combinations for allocating exactly b additional ter-

ritories into H habitats, where h habitats are indistinguishable and H − h habitats are

distinguishable, is given by (see Eq.(3.3) for C(· , ·)):

b∑
i=0

C(H − h+ i− 1, H − h− 1) · Ph(b− i) (5.2)

Considering all possibilities from allocating 0 up to a budget of B additional territories,
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the total number of solutions is:

B∑
b=0

b∑
i=0

C(H − h+ i− 1, H − h− 1) · Ph(b− i) (5.3)

When there is more than one group of indistinguishable habitats, the calculation be-

comes more complicated. Assume there are G groups of indistinguishable habitats, with

each group k containing hk indistinguishable habitats (k ∈ {1, 2, ..., G}). The number

of distinguishable habitats is denoted as Hd, and Hd = H −
∑G

k=1 hk.

Define bk as the number of territories allocated to group k, and bd as the number of

territories allocated to distinguishable habitats (i.e. bd = b−
∑G

k=1 bk). Then, the total

number of distinct solutions for allocating exactly b territories is:

b∑
b1=0

b−b1∑
b2=0

b−b1−b2∑
b3=0

· · ·
b−

∑G−1
k=1 bk∑

bG=0

C(Hd + bd − 1, Hd − 1) ·
G∏
k=1

Phk(bk) (5.4)

Considering all budget levels from 0 to B, the total number of solutions is:

B∑
b=0

b∑
b1=0

b−b1∑
b2=0

· · ·
b−

∑G−1
k=1 bk∑

bG=0

C(Hd + bd − 1, Hd − 1) ·
G∏
k=1

Phk(bk) (5.5)

Table 5.1 provides two examples illustrating the number of solutions for the case where

there is only a single group of indistinguishable habitats: one with a study area contain-

ing a total of four habitats, and another with six habitats. The number of solutions is

calculated for the number of indistinguishable habitats up to the total habitats number

and for budget levels (B) from 1 to 10. Note that when the number of indistinguishable

habitats equals one, this is the same as all habitats being distinguishable.
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Table 5.1: Number of solutions |I| corresponding to the number of indistinguishable habitats
up to H, for B ranging from 1 to 10, when H is (a) 4; (b) 6.

Total number of habitats H = 4

No. indistinguishable habitats
1 2 3 4

B
1 5 4 3 2
2 15 11 7 4
3 35 24 14 7
4 70 46 25 12
5 126 80 41 18
6 210 130 64 27
7 330 200 95 38
8 495 295 136 53
9 715 420 189 71
10 1001 581 256 94

(a)

Total number of habitats H = 6

No. indistinguishable habitats
1 2 3 4 5 6

B
1 7 6 5 4 3 2
2 28 22 16 11 7 4
3 84 62 41 25 14 7
4 210 148 91 51 26 12
5 462 314 182 95 45 19
6 924 610 337 166 74 30
7 1716 1106 587 275 116 44
8 3003 1897 973 437 176 64
9 5005 3108 1548 670 259 90
10 8008 4900 2379 997 372 125

(b)

From Table 5.1, it is clear that the total number of solutions reduces with an increas-

ing number of indistinguishable habitats. The scale of this reduction depends on the

problem size. The larger the problem, the higher the reduction percentage.

5.2.3 Potential Computational Effort Reduction

In CCSB-F, the sample size required depends on the number of solutions because the

value of β is set to α
|I| to accommodate a Bonferroni correction. Hence, the greater

the number of solutions, the smaller the β will need to be. From CCSB-F’s sample

size calculations (Eq.(2.19) and Eq.(2.20)), assuming other parameter values remain

constant, reducing β increases the sample size required to declare a solution feasible

(n(β)) and to declare a solution infeasible (mβ(n)).

Since the actual sample size required by CCSB-F depends on the problem, the actual

computational effort savings of M-CCSB-F also depend on the problem. To show
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the potential computational effort savings of M-CCSB-F, Tables 5.2 and 5.3 provide

two examples of the extremes in computational effort required when taking habitat

indistinguishability into account, for budget levels (B) from 1 to 10.

Note that when the number of indistinguishable habitats equals one, this is equivalent

to all habitats being distinguishable. Hence, the computational effort required in this

case is the same as that required for CCSB-F without solution space filtering. The

violation probability γ for Tables 5.2 and 5.3 is set at 0.25, the significance level α is

set at 0.05, and the feasibility tolerance level δγ at 0.025.

Table 5.2a specifies the upper limits (n(β) · |I|) on the total number of simulation runs

(in 10,000) as the number of indistinguishable habitats increases from one to four for

four habitats, Table 5.2b specifies the lower limits (mβ(n) · |I|). Table 5.3a details the

upper limits for the six habitats example, and Table 5.3b provides the lower limits.

Table 5.2: Upper and lower limits on the number of simulation runs required (in 10,000) for
|I| solutions for H = 4 habitats.

Total number of habitats H = 4

No. indistinguishable habitats
1 2 3 4

B
1 3.13 2.33 1.57 0.89
2 12.78 8.67 4.86 2.33
3 36.05 22.81 11.73 4.86
4 82.40 50.04 23.98 9.67
5 164.19 96.46 43.60 16.02
6 296.75 170.27 74.12 26.33
7 498.60 280.52 118.04 39.80
8 791.51 438.55 179.45 59.25
9 1200.56 656.59 262.79 83.79
10 1754.25 949.24 372.71 116.58

(a) Upper limit

Total number of habitats H = 4

No. indistinguishable habitats
1 2 3 4

B
1 0.74 0.55 0.37 0.21
2 3.03 2.06 1.15 0.55
3 8.55 5.41 2.78 1.15
4 19.55 11.87 5.69 2.29
5 38.95 22.88 10.34 3.80
6 70.39 40.39 17.58 6.25
7 118.27 66.54 28.01 9.44
8 187.80 104.05 42.57 14.06
9 284.86 155.78 62.35 19.88
10 416.22 225.20 88.42 27.65

(b) Lower limit
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Table 5.3: Upper and lower limits on the number of simulation runs required (in 10,000) for
|I| solutions for H = 6 habitats.

Total number of habitats H = 6

No. indistinguishable habitats
1 2 3 4 5 6

B
1 4.86 3.98 3.13 2.33 1.57 0.89
2 27.52 20.51 13.85 8.67 4.86 2.33
3 102.15 71.38 43.60 23.98 11.73 4.86
4 296.75 197.98 112.23 56.59 25.15 9.67
5 731.81 471.06 251.56 118.04 48.74 17.13
6 1603.14 1003.08 510.72 226.16 87.99 29.92
7 3209.78 1962.38 960.39 404.64 149.09 47.45
8 5986.18 3590.07 1699.15 686.92 242.00 74.12
9 10540.03 6219.11 2860.55 1115.48 377.75 110.78
10 17694.48 10295.88 4620.49 1746.35 571.73 162.68

(a) Upper limit

Total number of habitats H = 6

No. indistinguishable habitats
1 2 3 4 5 6

B
1 1.15 0.94 0.74 0.55 0.37 0.21
2 6.53 4.86 3.28 2.06 1.15 0.55
3 24.23 16.93 10.34 5.69 2.78 1.15
4 70.39 46.98 26.63 13.43 5.96 2.29
5 173.62 111.75 59.68 28.01 11.57 4.06
6 380.32 237.96 121.15 53.65 20.88 7.10
7 761.56 465.52 227.87 96.00 35.37 11.26
8 1420.12 851.75 403.11 162.96 57.41 17.58
9 2500.50 1475.37 678.64 264.65 89.61 26.28
10 4197.79 2442.65 1096.24 414.35 135.63 38.59

(b) lower limit
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5.3 Scenario 2

While the potential savings can be substantial (as shown in Section 5.2), the actual

impact of indistinguishable habitats on the computational effort required depends on

the problem. The Scenario 2 problem is designed to show the actual computational

effort savings in an RSS problem. Subsection 5.3.1 describes Scenario 2. Subsection

5.3.2 presents the chance-constrained formulation of the Scenario 2 problem. Subsection

5.3.3 details the possible solutions that can be ignored from the Scenario 2 solution space

due to the presence of indistinguishable habitats. Subsection 5.3.4 presents the results

of the Scenario 2 problem for both the M-CCSB-F and CCSB-F methods.

5.3.1 Scenario 2: Problem Description

Scenario 2 assumes the government has a budget for two additional territories, a con-

servation goal of having at least four viable packs at the end of a five-year planning

horizon, and a target probability of at least a 75% chance of achieving such a goal. The

government aims to find the best additional territory allocation plans that not only

achieve this probability but also minimise the number of additional territories used.

The hypothetical study area of the Scenario 2 problem has six habitats. Habitats 1 to

4 each have four territories in which a unique pack occupies the first territory, and the

other three territories are empty. Habitats 5 and 6 are empty. There are a total of four

packs at the beginning. Table 5.4 details the wolves in each pack. For simplicity, all

wolves in the same age group are assumed to have the same starting age, i.e. all pups

are 6 months old, all yearlings are 18 months old, all adults are 30 months old, and all

alpha wolves are 54 months old. Wolves’ gender is assumed to be 50% male and 50%

female.
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All six habitats are assumed to have a maximum number of 2 core territories (ex-

plained in Subsection 3.7.2). Mortality rates are the base mortality rates explained in

Subsection 3.7.2. The starting condition of Scenario 2 is summarised in Table 5.5.

Table 5.4: Scenario 2: packs information.

Number of wolves in each group

Packs Alpha Adults Yearlings Pups Total

p1 2 2 4 4 12
p2 2 2 2 4 10
p3 2 0 2 2 6
p4 2 0 0 2 4

Table 5.5: Scenario 2: starting condition.

H1 H2 H3 H4 H5 H6

Starting number of territories [ 4 4 4 4 0 0 ]
Starting packs [ p1 p2 p3 p4 0 0 ]

Maximum number of core territories [ 2 2 2 2 2 2 ]
Core territories winter mortality rate [ 0.2 0.2 0.2 0.2 0.2 0.2 ]

Peripheral territories winter mortality rate [ 0.4 0.4 0.4 0.4 0.4 0.4 ]
Pup mortality rate [ 0.4 0.4 0.4 0.4 0.4 0.4 ]

5.3.2 Scenario 2: Formulation

The chance-constrained SO formulation of the Scenario 2 problem is:

min
i∈I

6∑
h=1

Xhi

s.t. Pr{Yi ≥ 4} ≥ 75%

(5.6)

where I is the solution space. |I| = 28 for CCSB-F (Eq.(3.4)), |I| = 22 for M-CCSB-F

(Eq.(5.3)).
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5.3.3 Scenario 2: Solution Space Reduction

There are 28 possible solutions for selecting 0, 1 or 2 additional territories in six habitats

(Eq.(3.4)). All possible solutions are listed in Table 5.6. Since Habitats 5 and 6 have the

same starting conditions – i.e. no existing wolves, identical potential core territories, and

the same mortality rates – they are considered indistinguishable habitats, as defined in

Subsection 5.2.1. Hence, from Eq.(5.3), when there are six habitats in total, with two of

them being indistinguishable, the total number of solutions is 22. Table 5.7 details these

six pairs of equivalent solutions. Note that out of the paired equivalent solutions, for

simplicity, this chapter always simulates the solution that selects additional territories

in Habitat 5.

Table 5.6: Scenario 2: filtered solution space.

Additional Territories 0 1 2

Solutions [4, 4, 4, 4, 0, 0] [4, 4, 4, 4, 0, 1] [4, 4, 4, 4, 0, 2]
[4, 4, 4, 4, 1, 0] [4, 4, 4, 4, 1, 1]
[4, 4, 4, 5, 0, 0] [4, 4, 4, 5, 0, 1]
[4, 4, 5, 4, 0, 0] [4, 4, 5, 4, 0, 1]
[4, 5, 4, 4, 0, 0] [4, 5, 4, 4, 0, 1]
[5, 4, 4, 4, 0, 0] [5, 4, 4, 4, 0, 1]

[4, 4, 4, 4, 2, 0]
[4, 4, 4, 5, 1, 0]
[4, 4, 5, 4, 1, 0]
[4, 5, 4, 4, 1, 0]
[5, 4, 4, 4, 1, 0]
[4, 4, 4, 6, 0, 0]
[4, 4, 5, 5, 0, 0]
[4, 5, 4, 5, 0, 0]
[5, 4, 4, 5, 0, 0]
[4, 4, 6, 4, 0, 0]
[4, 5, 5, 4, 0, 0]
[5, 4, 5, 4, 0, 0]
[4, 6, 4, 4, 0, 0]
[5, 5, 4, 4, 0, 0]
[6, 4, 4, 4, 0, 0]
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Table 5.7: Scenario 2: pairs of equivalent solutions.

Additional
Territories

Equivalent Solutions

1 [4, 4, 4, 4, 1, 0] [4, 4, 4, 4, 0, 1]
2 [4, 4, 4, 4, 2, 0] [4, 4, 4, 4, 0, 2]
2 [4, 4, 4, 5, 1, 0] [4, 4, 4, 5, 0, 1]
2 [4, 4, 5, 4, 1, 0] [4, 4, 5, 4, 0, 1]
2 [4, 5, 4, 4, 1, 0] [4, 5, 4, 4, 0, 1]
2 [5, 4, 4, 4, 1, 0] [5, 4, 4, 4, 0, 1]

5.3.4 Scenario 2: Results

Table 5.8 presents the different solutions obtained and their selection counts, based

on two sets of 100 macro-replications of CCSB-F and M-CCSB-F with a total error

allowance α of 0.05 and a tolerance level δγ of 0.025. Other solutions not listed in the

table were not selected in the macro-replications. The sample size CCSB-F required to

declare a solution feasible is n(β) = 9, 828, and the failure counts threshold for declaring

a solution infeasible is mβ(n) = 2, 331 (Eqs.(2.19) and (2.20), respectively). For M-

CCSB-F, since the solutions count is reduced to 22, the sample size is n(β) = 9, 322

and the failure counts threshold is mβ(n) = 2, 211.

The ‘N/A’ in Table 5.8 means that the corresponding solutions have equivalent solutions

and were temporarily removed from the solution space, making the selection count not

applicable.
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Table 5.8: Scenario 2: results table for CCSB-F and M-CCSB-F.

Feasibility Tolerance Level δγ = 0.025

Additional
Territories

Solutions CCSB-F M-CCSB-F

2 [4, 4, 4, 4, 1, 1] 99 94
2 [4, 4, 4, 4, 2, 0] 32 33
2 [4, 4, 4, 4, 0, 2] 34 N/A
2 [5, 4, 4, 4, 1, 0] 3 0
2 [5, 4, 4, 4, 0, 1] 1 N/A

Total selection count 100 98

Ave. runs per macro-rep 247,865 182,084
Standard deviation 890 697

Based on these results, the minimal cost for achieving a 75% probability of reaching the

conservation goal in Scenario 2, given a 5% significance level and a feasibility tolerance

level of 2.5%, is two additional territories.

The optimal allocation plan both CCSB-F and M-CCSB-F selected are [4, 4, 4, 4, 1,

1] (select one additional territory in Habitat 5 and one in Habitat 6), [4, 4, 4, 4, 2, 0]

(two additional territories in Habitat 5), and [4, 4, 4, 4, 0, 2] (two additional territories

in Habitat 6). For the solution [4, 4, 4, 4, 0, 2], which is equivalent to [4, 4, 4, 4, 2, 0],

M-CCSB-F ignores it during the selection process. However, in the macro-replications

where [4, 4, 4, 4, 2, 0] is selected, based on the definition of MBA, [4, 4, 4, 4, 0, 2] is

also ‘selected’.

The solution that M-CCSB-F does not select is [5, 4, 4, 4, 1, 0] (select one additional

territory in Habitat 1 and one in Habitat 5) in any of the 100 macro-replications, while

CCSB-F selected it three times. However, a Chi-squared test at a 5% significance level

suggests there is insufficient statistical evidence to claim a difference in these selection

counts (see Appendix D.1).
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One observation regarding the similarities among optimal solutions is that all involve

protecting territories in empty habitats. This behaviour suggests that protecting terri-

tories in empty habitats may increase species persistence in the general RSS problem

(as explained in Section 4.4).

5.4 M-CCSB-F and CCSB-F Comparison

In addition to the two sets of 100 macro-replications for solving Scenario 2 with a δγ

of 0.025, another two sets of 100 macro-replications with a δγ of 0.050 are performed.

This enables a comparison of M-CCSB-F and CCSB-F performance under conditions

that require less computational effort due to the higher feasibility tolerance level.

Subsection 5.4.1 presents the comparison results. Subsection 5.4.2 compares the selec-

tion accuracy (i.e. the number of correct selections made) of the two methods; and

Subsection 5.4.3 compares their computational effort (i.e. the total number of runs

used).

5.4.1 Results

For δγ = 0.050, n(β) = 2357 and mβ(n) = 527 for CCSB-F. For M-CCSB-F, the n(β)

is 2235, and mβ(n) is 500.

Table 5.9 highlights the results. The complete results table is in Appendix D.2 for

CCSB-F and in Appendix D.3 for M-CCSB-F.
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Table 5.9: CCSB-F and M-CCSB-F solutions selection counts comparison with two δγs.

Feasibility
Tolerance

δγ = 0.05 δγ = 0.025

Solutions CCSB-F M-CCSB-F CCSB-F M-CCSB-F

[4, 4, 4, 4, 1, 1] 21 28 99 94
[4, 4, 4, 4, 2, 0] 2 2 32 33
[4, 4, 4, 4, 0, 2] 10 N/A 34 N/A
[5, 4, 4, 4, 1, 0] 0 1 3 0
[5, 4, 4, 4, 0, 1] 2 N/A 1 N/A
[4, 5, 4, 4, 1, 0] 1 0 0 0

Total selection count 33 31 100 98

Ave. no. runs
per macro-rep

56,218 41,284 247,865 182,084

Standard deviation 381 333 890 697

5.4.2 Selection Accuracy

i Feasibility Estimation

Before comparing the selection accuracy of the two methods, the feasibility of the

solutions is estimated using 100,000 replications for each solution. Table 5.10 lists the

solutions identified as feasible at a 5% significance level. These solutions are also the

optimal solutions as explained in Section 3.4. The full feasibility estimation results are

in Appendix D.4.

Table 5.10: Scenario 2: feasibility estimation for solutions identified as feasible.

Additional
Territories

Solutions Pr{Yi ≥ 4} Lower
90% CI

Upper
90% CI

Pr{Yi < 4}

2 [4, 4, 4, 4, 0, 2] 0.7616 0.7577 0.7655 0.2384
2 [4, 4, 4, 4, 1, 1] 0.7717 0.7679 0.7756 0.2283
2 [5, 4, 4, 4, 0, 1] 0.7540 0.7501 0.7580 0.2460
2 [5, 4, 4, 4, 1, 0] 0.7552 0.7513 0.7592 0.2448
2 [4, 4, 4, 4, 2, 0] 0.7586 0.7547 0.7626 0.2414
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ii Selection Accuracy

Given a violation probability γ of 0.25, a clearly feasible solution should have a violation

probability of less than 0.2 when δγ = 0.050, and less than 0.225 when δγ = 0.025 (see

Subsection 2.3.3). From the feasibility estimation result (Table 5.10), there are five

feasible solutions, none of which are clearly feasible. The solution closest to being

clearly feasible is [4, 4, 4, 4, 1, 1] with a violation probability of 0.2283.

From Table 5.9, CCSB-F selects at least one of the five optimal solutions in 100 out of

100 macro-replications when δγ = 0.025, and it does not select any infeasible solutions.

When δγ = 0.050, CCSB-F selects a solution in 33 out of 100 macro-replications.

However, it also selects a solution not estimated to be feasible once ([4, 5, 4, 4, 1, 0]),

which, given the overall error control rate α of 5%, is statistically expected.

Also from Table 5.9, with δγ = 0.025, M-CCSB-F does not select [5, 4, 4, 4, 1, 0] as a

feasible solution. Consequently, solution [5, 4, 4, 4, 0, 1] is also not identified as feasible

because they are equivalent solutions. However, it correctly selects at least one optimal

solution in 98 out of 100 macro-replications. With δγ = 0.050, M-CCSB-F selects at

least one optimal solution in 31 out of 100 macro-replications and does not select any

infeasible solutions.

Based on a Chi-squared test (Appendix D.5), there is no statistical evidence at a 5%

significance level to suggest a difference in the number of correct selections made by

M-CCSB-F and CCSB-F for both δγ values of 0.025 and 0.050.

5.4.3 Computational Effort

As shown in Table 5.9, for δγ = 0.050, the average number of runs per macro-replication

is 56,218 for CCSB-F (standard deviation of 381), and 41,284 (standard deviation of
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333) for M-CCSB-F. M-CCSB-F saves 26.56% compared to CCSB-F. For δγ = 0.025,

M-CCSB-F saves 26.54% compared to CCSB-F (247,865 to 182,084).

5.5 Applying MBA to Scenario 1

To assess the generalisability of MBA, it is applied to Scenario 1 (defined in Section 4.2).

In Scenario 1, Habitat 1 and 3 have identical starting conditions, as do Habitats 5 and 6

(see Table 4.1). Hence, based on the definitions explained in Subsection 5.2.1, Habitat

1 is indistinguishable from Habitat 3, and Habitat 5 is indistinguishable from Habitat

6. With two groups of indistinguishable habitats, the size of the filtered solution space,

determined using Eq.(5.5), is reduced from 28 (Eq.(4.1)) to 17 solutions. Table 5.11

presents the 11 pairs of equivalent solutions in Scenario 1.

Table 5.11: Scenario 1: pairs of equivalent solutions.

Additional
Territories

Equivalent Solutions

1 [6, 5, 5, 5, 0, 0] [5, 5, 6, 5, 0, 0]
1 [5, 5, 5, 5, 1, 0] [5, 5, 5, 5, 0, 1]
2 [7, 5, 5, 5, 0, 0] [5, 5, 7, 5, 0, 0]
2 [5, 5, 5, 5, 2, 0] [5, 5, 5, 5, 0, 2]
2 [6, 6, 5, 5, 0, 0] [5, 6, 6, 5, 0, 0]
2 [6, 5, 5, 6, 0, 0] [5, 5, 6, 6, 0, 0]
2 [6, 5, 5, 5, 1, 0] [6, 5, 5, 5, 0, 1]
2 [6, 5, 5, 5, 1, 0] [5, 5, 6, 5, 1, 0]
2 [6, 5, 5, 5, 0, 1] [5, 5, 6, 5, 0, 1]
2 [5, 6, 5, 5, 1, 0] [5, 6, 5, 5, 0, 1]
2 [5, 5, 5, 6, 1, 0] [5, 5, 5, 6, 0, 1]

To estimate the computational effort reduction, the average number of runs (over 100

macro-replications) for solving Scenario 1 with CCSB-F (Appendix C.1) is used as a

reference. Table 5.12 presents the average numbers of runs for the equivalent solutions.
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Using this data and assuming the temporary removal of these equivalent solutions, the

estimated savings percentage is calculated as follows (the total average number of runs

for all 28 solutions is obtained from Appendix C.1):

∑
Ave. runs of removed solutions∑

Ave. runs of all 28 solutions
=

(
99,813.09

252,522.15

)
≈ 0.3953.

This result shows the potential computational effort savings that can be achieved by

leveraging the indistinguishability of habitats in Scenario 1. Specifically, applying MBA

reduces the solution space from 28 to 17, leading to an estimated computational savings

of approximately 39.53%. This percentage represents a lower bound, as the temporary

removal of equivalent solutions also decreases the number of runs required per remaining

solution. For example, when MBA is applied to Scenario 1, the number of solutions

decreases from 28 to 17. At δγ = 0.025, n(β) (Eq.(2.19)) is reduced from 9,828 to 8,782,

and mβ(n) (Eq.(2.20)) from 2,331 to 2,083. This reduction in the number of required

runs would further lowers the total computational effort.

Table 5.12: Average number of runs for the equivalent solutions in Scenario 1, extracted from
Appendix C.1.

Equivalent Solution Ave. No. Runs

[5, 5, 6, 5, 0, 0] 8688.56
[5, 5, 5, 5, 0, 1] 9170.06
[5, 5, 7, 5, 0, 0] 8655.80
[5, 5, 5, 5, 0, 2] 9291.94
[5, 6, 6, 5, 0, 0] 9107.50
[5, 5, 6, 6, 0, 0] 8736.99
[6, 5, 5, 5, 0, 1] 9161.91
[5, 5, 6, 5, 1, 0] 9134.30
[5, 5, 6, 5, 0, 1] 9142.52
[5, 6, 5, 5, 0, 1] 9556.72
[5, 5, 5, 6, 0, 1] 9166.79∑

99,813.09
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5.6 Summary

In answering research question RQ2, which asks how and to what extent computational

effort in SO can be reduced by leveraging the simulation model, this chapter introduces

the MBA to address the computational demands of solving the chance-constrained

wolf RSS problem from a modelling perspective. Applied before CCSB-F, MBA saves

computational effort by temporarily removing solutions with equivalent alternatives,

which are identified based on the simulation model’s characteristics. The performance

of the MBA, in terms of selection accuracy and computational effort, is assessed by

combining it with CCSB-F (M-CCSB-F) and comparing it to the use of CCSB-F alone.

Given the number of indistinguishable habitats, the size of the filtered solution space

can be calculated analytically, as provided in Section 5.2. The analytical functions show

that as the problem size increases, the scale of the reduction in the number of solutions

also increases, which implies a corresponding saving in computational effort.

While the theoretical reduction in the number of solutions can be substantial, the actual

computational effort savings of M-CCSB-F depend on the problem. To investigate this,

a small scenario of the RSS problem with two indistinguishable habitats (Scenario 2) is

created. Scenario 2 is a relatively small problem with a budget of 2 additional territories

and 28 solutions.

The comparison of results from M-CCSB-F and CCSB-F in solving Scenario 2 shows

that, as expected, MBA does not affect the statistical guarantee of CCSB-F. In terms of

computational effort, M-CCSB-F reduces computational effort by 26.56% and 26.54%

with δγ = 0.050 and 0.025, respectively, compared to using CCSB-F alone. To assess

the generalisability of MBA, it is applied to Scenario 1. The results in Section 5.5

show that, at the same accuracy level (δγ = 0.025) and problem size, MBA achieves an
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estimated savings of 39.53% in Scenario 1, which has more indistinguishable habitats

than Scenario 2, compared to 26.54% in Scenario 2.



Chapter 6

A Rule-Based Heuristic Approach

for Solution Space Filtering

6.1 Introduction

To reduce the computational intensity of CCSB-F in solving the chance-constrained

wolf RSS problem, Chapter 5 develops an approach that temporarily removes equiva-

lent solutions without affecting the statistical guarantee of the CCSB-F procedure by

utilising habitat indistinguishability informed by the simulation model.

This chapter aims to develop a different approach. The difference compared to the

Chapter 5 approach lies in two aspects. First, this approach does not guarantee finding

the optimal solution, as it might remove the optimal solution before applying CCSB-F.

Second, this approach uses expert knowledge on ordering information (i.e. information

on the superiority of habitats) to inform habitat distinguishability. Note that this

chapter does not assume the expert knowledge is complete or entirely correct.

In essence, this approach uses ordering information to create solution dominance rules,

105
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then removes a set of solutions that are being dominated from the solution space to

reduce the number of solutions CCSB-F needs to consider. Since the solution space

filtering is based on the solution dominance rules, this approach is referred to as the

rule based heuristic approach (RBHA) here.

Section 6.2 explains the RBHA in detail. To demonstrate its potential effectiveness,

RBHA is used with CCSB-F to solve a hypothetical wolf RSS scenario (Scenario 3).

Section 6.3 describes Scenario 3. Section 6.4 describes the solution space reduction and

potential computational effort savings in Scenario 3 across various budget levels with

the use of RBHA. Following this, a specific case of Scenario 3 is used to investigate

the performance of the entire procedure – filtering the solution space using RBHA and

subsequently selecting the optimal solution with CCSB-F (referred to as H-CCSB-F) –

in comparison to the use of CCSB-F alone. The application of RBHA in this specific

case, alongside its chance-constrained formulation, is described in Section 6.5. Section

6.6 presents the empirical results and an analysis of them. Section 6.7 assesses the

generalisability of the MBA by applying it to Scenario 1. The summary of this chapter

and its key findings are in Section 6.8.

6.2 A Rule-Based Heuristic Approach

The RBHA uses expert ordering information to develop solution dominance rules. Sub-

section 6.2.1 describes the assumptions underlying RBHA. Subsection 6.2.2 explains the

three specific pieces of ordering information used for demonstrating how RBHA works

in the context of wolf RSS. Based on this ordering information, three corresponding

solution dominance rules are created. These rules are then explained in Subsection

6.2.3.



CHAPTER 6. A RULE-BASED HEURISTIC APPROACH 107

6.2.1 Definitions

Suppose a grey wolf conservation expert has ordering information (i.e. information on

the superiority/inferiority) on different habitats, where the habitat superiority is defined

for this chapter as follows: a habitat is considered superior to another habitat if, after

having a certain number of additional territories, its probability of having the target

number of viable packs by the end of planning horizon, is higher. By contrast, the

habitat with a lower probability is referred to as the inferior habitat. This information

is the basis of the rules for solution space filtering. The rules are referred to as the

solution dominance rules in this chapter.

Based on this definition of habitat superiority, when comparing two solutions that only

differ in the selection of a certain number of additional territories between superior and

inferior habitats, the solution that selects the additional territories in inferior habitats

is less likely to reach a target number of viable packs than the one that selects the

additional territories in superior habitats. Hence, the former solution is removed from

the solution space before CCSB-F. The former solution is referred to as being dominated

in this chapter.

6.2.2 Three Pieces of Ordering Information

In the grey wolf RSS problem, the input parameters affecting the superiority of habitats

are the number of territories currently in the habitat, the number of packs and wolves in

the habitat, the number of core territories in the habitat, and the three mortality rates

in the habitat (see Section 3.7). Focusing on these input parameters, three pieces of

ordering information are used for demonstrating the RBHA. The first piece of ordering

information focuses on the mortality rates in the habitat and is stated as:
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Ordering information 1: Assuming all other things being equal, a habitat is con-

sidered superior to another if it has lower mortality rates (e.g., Nickel and Walther

(2019)).

The second piece of information focuses on the number of core territories in the habitat

and is stated as:

Ordering information 2: Assuming all other things being equal, habitats that

have more core territories are superior (as core territories have lower mortality rates

compared to peripheral territories, e.g., Treves et al. (2017)).

The third piece of ordering information focus on the pack and population densities.

Pack density in this chapter is defined as the ratio of the number of packs to the

number of territories, and population density is the ratio of the number of wolves to

the number of territories. Accordingly, the third piece of information is stated as:

Ordering information 3: Assuming all other factors remain equal, a habitat is

considered superior to another if: (a) it has both a higher population density (ratio of

wolves to territories) and a higher pack density (ratio of packs to territories); or (b) if

pack densities are equal, the habitat with the higher population density is considered

superior (e.g., Chapron et al. (2016); Hayes and Harestad (2000)).

Note that when two packs have an identical number of wolves but differ in age and gen-

der structure, RBHA assumes they are equivalent. This is based on the understanding

that expert knowledge may not be complete. In this case, expert knowledge on the in-

fluence of both age and gender structures on the superiority of habitats with the same

number of packs is assumed to be lacking, as no existing research specifically addresses

how age and gender structure affect habitat superiority when expanding wolf reserves.

Therefore, this influence is assumed to be unimportant in the context of this study.
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6.2.3 Three Solution Dominance Rules

To aid the explanation of how solution dominance rules are defined based on the three

pieces of ordering information, the study area’s starting conditions, solutions, and rel-

evant solutions’ characteristics are defined in Table 6.1. The in in Table 6.1 is the

number of additional territories in Habitat n in solution i. Pn and Wn are the number

of starting packs and the total number of wolves in the habitat n, respectively.

Table 6.1: Study area starting condition definition, and relevant characteristics of solutions.

H1 H2 ... Hn

Starting number
of territories

[ t1 t2 ... tn ]

Maximum number
of core territories

[ c1 c2 ... cn ]

Core territories winter
mortality rate

[ cm1 cm2 ... cmn ]

Peripheral territories
winter mortality rate

[ prm1 prm2 ... prmn ]

Pup mortality rate [ ppm1 ppm2 ... ppmn ]

Solution i [ t1 + i1 t2 + i2 ... tn + in ]
Pack density [ P1/(t1 + i1) P2/(t2 + i2) ... Pn/(tn + in) ]

Population density [ W1/(t1 + i1) W2/(t2 + i2) ... Wn/(tn + in) ]

With this notation, the three solution dominance rules are defined as follows:

Solution dominance rule 1: From Ordering information 1 , if two habitats

k, l have cmk < cml and prmk < prml and ppmk < ppml, then Habitat k is superior to

Habitat l. Consider two solutions A and B, which only differ in terms of the numbers

of additional territories selected in Habitats k and l. Say solution A has Ak and Al

in Habitats k and l respectively, while solution B has Bk and Bl in Habitats k and l

respectively. If Ak > Bk and Al < Bl then solution A dominates solution B.
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Solution dominance rule 2: From Ordering information 2 , if two habitats

k, l have ck > cl, then Habitat k is superior to Habitat l. Consider two solutions A

and B, which only differ in terms of the numbers of additional territories selected in

Habitats k and l. Say solution A has Ak and Al in Habitats k and l respectively, while

solution B has Bk and Bl in Habitats k and l respectively. If Ak > Bk and Al < Bl

then solution A dominates solution B.

Solution dominance rule 3: From Ordering information 3 , if two habitats k, l

have Wk

tk+ik
> Wl

tl+il
and Pk

tk+ik
≥ Pl
tl+il

, then Habitat k is superior to Habitat l. Consider two

solutions A and B, which only differ in terms of the numbers of additional territories

selected in Habitats k and l. Say solution A has Ak and Al in Habitats k and l

respectively, while solution B has Bk and Bl in Habitats k and l respectively. If Ak > Bk

and Al < Bl then solution A dominates solution B.

6.3 Scenario 3: Problem Description

To demonstrate the potential effectiveness of RBHA, a hypothetical grey wolf RSS

problem, namely Scenario 3, is created. Scenario 3 assumes the government has a

budget for protecting some additional territories, a conservation goal of having at least

14 viable packs at the end of a five-year planning horizon, and at least a 75% chance

of achieving such a goal. The government aims to find additional territories allocation

plans that not only achieve this probability but also minimise the number of additional

territories selected.

The Scenario 3 problem is set to have six habitats. The detailed starting conditions

are presented in Table 6.2. Each starting pack in Table 6.2 is denoted by a unique

label, indicating the habitat location of the pack and its size. Recall that packs are
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categorised as big (pb, 11 or more wolves), medium (pm, 5 to 10 wolves), and small

(ps, 0 to 4 wolves). For a detailed explanation, see Subsection 3.7.2. The details of

individual wolves within each pack are in Table 6.3.

The values highlighted in red in Table 6.2 are the differences between two consecutive

habitats. Habitat 1 is considered as the ‘baseline’ habitat. Compared to Habitat 1, each

mortality rate is 0.1 higher in Habitat 2. Habitat 3 has two fewer core territories than

Habitat 2. Habitat 4 has two medium-sized packs and one small-sized pack compared to

Habitat 3, which has a big pack, a medium-sized pack, and a small-sized pack. Habitat

5, compared to Habitat 4, has only 2 starting territories, with a medium-sized pack and

a small-sized pack in it. Habitat 6 has no territories and no packs in it compared to

Habitat 5.

Table 6.2: Scenario 3: starting condition.

H1 H2 H3 H4 H5 H6

Starting number of territories [ 6 6 6 6 2 0 ]

Starting packs [
pb1
pm1

ps1

pb2
pm2

ps2

pb3
pm3

ps3

pm1
4

pm2
4

ps4

pm5

ps5
0 ]

Maximum number of core territories [ 4 4 2 2 2 2 ]
Core territories winter mortality rate [ 0.1 0.2 0.2 0.2 0.2 0.2 ]

Peripheral territories winter mortality rate [ 0.3 0.4 0.4 0.4 0.4 0.4 ]
Pup mortality rate [ 0.3 0.4 0.4 0.4 0.4 0.4 ]
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Table 6.3: Scenario 3: packs information.

Age
Habitat 1 Habitat 2 Habitat 3

pb1 pm1 ps1 pb2 pm2 ps2 pb3 pm3 ps3

Alpha (54) 2 2 2 2 2 2 2 2 2
Adults (30) 4 2 0 2 0 0 4 2 0
Yearlings (18) 2 0 0 4 2 0 4 2 0
Pups (6) 4 2 0 4 2 0 2 0 0

Location: Core Core Core Core Core Core Core Core Peri.

Total: 12 6 2 12 6 2 12 6 2

Habitat 4 Habitat 5 Habitat 6
pm1

4
pm2

4
ps4 pm5 ps5 0

Alpha (54) 2 2 2 2 2 0
Adults (30) 2 1 0 1 0 0
Yearlings (18) 2 1 0 2 0 0
Pups (6) 2 2 0 1 0 0

Location: Core Core Peri. Core Core

Total: 8 6 2 6 2 0

6.4 Scenario 3: Solution Space Reduction

To demonstrate the scale of the reduction in the solution space when using RBHA,

Subsection 6.4.1 explains three solution dominance rules in Scenario 3, and calculates

the size of the solution space after applying each of those rules. To show the poten-

tial computational savings that can be made by combining the RBHA with CCSB-F

(referred to as H-CCSB-F), Subsection 6.4.2 provides a comparison between the antic-

ipated computational efforts required by H-CCSB-F versus CCSB-F in Scenario 3 for

10 different budget levels.
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6.4.1 Solution Space Reduction

In Scenario 3, all mortality rates of Habitat 1 are lower than those in Habitat 2 (Table

6.2). Hence, based on Solution dominance rule 1 , Habitat 1 is superior to Habitat

2. This implies that: if there exist two solutions that differ only in the numbers of

additional territories each selects in Habitats 1 and 2, the solution that selects more

territories in Habitat 1 and fewer territories in Habitat 2 dominates the other solution.

Habitat 2 has more core territories than Habitat 3 (Table 6.2). Hence, based on So-

lution dominance rule 2 , Habitat 2 is superior to Habitat 3. This implies that: if

there exist two solutions that differ only in the numbers of additional territories each

selects in Habitats 2 and 3, the solution that selects more territories in Habitat 2 and

fewer territories in Habitat 3 dominates the other solution.

Habitats 3 and 4 have the same pack density, but Habitat 3 has a higher population

density than Habitat 4. Both Habitats 3 and 4 have 3 packs, but Habitat 3 has packs

of sizes 12, 6, and 2 wolves, while Habitat 4 has packs of sizes 8, 6, and 2 wolves

(Table 6.3). Hence, based on Solution dominance rule 3 , Habitat 3 is superior

to Habitat 4. This implies that: if there exist two solutions that differ only in the

numbers of additional territories selected in Habitats 3 and 4, the solution that selects

more territories in Habitat 3 and fewer territories in Habitat 4 dominate the other

solution.

Habitat 3 has 3 packs in 6 territories with a total of 20 wolves, Habitat 4 has 3 packs in

6 territories with a total of 16 wolves, and Habitat 5 has 2 packs with a total of 8 wolves

in 2 territories (Table 6.3). This means that Habitat 5 has a higher pack density and

a higher population density than each of Habitats 3 and 4. Hence, based on Solution

dominance rule 3, Habitat 5 is superior to both Habitat 3 and 4. This implies that: if
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there exist two solutions that differ only in the numbers of additional territories selected

in Habitat 5 and Habitat 3 (or 4), the solution that selects more territories in Habitat

5 and fewer territories in Habitat 3 (or 4) dominates the other solution.

Table 6.4 presents the difference in the number of solutions for Scenario 3 before and

after applying the above three solution dominance rules for each of the 10 budget

levels. The original solution space sizes are calculated by Eq.(3.4). The filtered solution

space sizes are calculated by removing dominated solutions and counting the remaining

solutions. The filtered solution space sizes are presented in the ‘Filtered Solution Space’

column.

Table 6.4: Scenario 3: solution space size comparison between the original solution space
versus solution space after applying RBHA.

Budget
Levels

Original
Solution Space

Filtered
Solution Space

Reduction Percentage

1 7 4 42.86%
2 28 11 60.71%
3 84 24 71.43%
4 210 47 77.62%
5 462 85 81.60%
6 924 145 84.31%
7 1716 235 86.31%
8 3003 366 87.81%
9 5005 551 88.99%
10 8008 807 89.92%

It is clear from Table 6.4 that the bigger the problem in terms of the size of the budget

(and solution space), the greater the percentage reduction in the solution space RBHA

makes in Scenario 3.
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6.4.2 Potential Computational Effort Reduction

To demonstrate the potential computational effort savings that H-CCSB-F can make

compared to CCSB-F, Table 6.5 shows the upper limit on the number of simulation

runs required (in 10,000) for one macro-replication of each of H-CCSB-F and CCSB-F,

and their corresponding reduction percentages for budget levels range from 1 to 10.

For this comparison, the violation probability γ is set to 0.25, overall error allowance

α = 0.05, and feasibility tolerance δγ = 0.025.

The values for CCSB-F’s n(β) (sample size required for declaring a solution feasible)

and mβ(n) (the failure count threshold for declaring a solution infeasible) are calculated

by Eq.(2.19) and Eq.(2.20), with the original solution space sizes from Table 6.4. The

n(β) and mβ(n) values for H-CCSB-F are calculated using the filtered solution space

sizes.

The reduction percentages indicate the potential computational effort savings. These

are calculated under the assumption that all solutions in the Scenario 3 problem are

either clearly feasible (i.e. with Yi ≥ 14 for each simulation output) for the n(β), or

are clearly infeasible (i.e. with Yi < 14 for each simulation output) for the mβ(n).

The actual savings H-CCSB-F achieved will depend on the problem, specifically the

percentage of solutions near the feasibility boundary in the solution space, and on the

characteristics of the solutions that RBHA removes.

Table 6.5 shows that the larger the budget level, the higher the potential computational

savings achievable by H-CCSB-F when compared to CCSB-F in the Scenario 3 problem.

This indicates H-CCSB-F’s potential to reduce computational effort when solving large-

scale RSS problems.
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Table 6.5: Total number of runs required for one macro-replication (in 10,000), and the
potential computational effort savings of H-CCSB-F.

Budget
Levels

CCSB-F
n(β)

H-CCSB-F
n(β)

Reduction
Percentage

CCSB-F
mβ(n)

H-CCSB-F
mβ(n)

Reduction
Precentage

1 4.86 2.33 52.17% 1.15 0.55 52.18%
2 27.52 8.67 68.51% 6.53 2.06 68.50%
3 102.15 22.81 77.67% 24.23 5.41 77.67%
4 296.75 51.34 82.70% 70.39 12.18 82.70%
5 731.81 103.59 85.84% 173.62 24.57 85.85%
6 1603.14 193.33 87.94% 380.32 45.86 87.94%
7 3209.78 337.79 89.48% 761.56 80.14 89.48%
8 5986.18 561.22 90.62% 1420.12 133.15 90.62%
9 10540.03 893.89 91.52% 2500.50 212.08 91.52%
10 17694.48 1376.34 92.22% 4197.79 326.51 92.22%

6.5 Specific Case: Solution Space Reduction

Subsection 6.4.2 shows the potential computational effort savings of H-CCSB-F com-

pared to CCSB-F in Scenario 3 under the assumption that all solutions are either clearly

feasible or clearly infeasible. To demonstrate a more precise example of computational

effort savings, both procedures are applied to a specific case of Scenario 3 with a budget

of four additional territories. This section provides the details of the original solution

space and the filtered solution space for this specific case.

To select four additional territories in six habitats, the number of possible combina-

tions (i.e. original solution space size) is 210 (Eq.(3.4)). Table 6.6 lists all 163 possible

solutions that have been removed from the original solution space for being dominated

by others. These removed solutions are categorised based on the specific solution dom-

inance rule they have violated. Table 6.7 presents the filtered solution space with 47

remaining solutions (which is the solution space for H-CCSB-F).

As detailed in Section 6.3, Scenario 3 has 14 starting wolf packs and six habitats. With
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a budget of four additional territories, the chance-constrained formulation is written as

follows:

min
i∈I

6∑
h=1

Xhi

s.t. Pr{Yi ≥ 14} ≥ 75%

(6.1)

The solution space for the CCSB-F procedure has 210 solutions. The solution space for

H-CCSB-F has 47 solutions. The violation probability γ is 0.25.

6.6 Specific Case: H-CCSB-F and CCSB-F Com-

parison

To compare the performance of H-CCSB-F and CCSB-F in terms of their selection

accuracy and computational effort for the specific case of Scenario 3, an experiment

with 100 macro-replications of each procedure is performed. The overall error allowance

α is set to 5%, and the feasibility tolerance level δγ is set to 0.025 for the experiment.

Subsection 6.6.1 presents the results, Subsection 6.6.2 provides a selection accuracy

comparison, and Subsection 6.6.3 provides an analysis on the computational efforts

comparison.

6.6.1 Results

For 210 solutions with α of 5% and δγ of 0.025, CCSB-F’s n(β) is 14,131 and mβ(n) is

3,352 (calculated from Eq.(2.19) and Eq.(2.20) respectively). For H-CCSB-F, with 47

solutions, n(β) = 10, 924 and mβ(n) = 2, 591. The random seeds for the experiment

are detailed in the Appendix E.1. Table 6.8 presents all the solutions that are declared

as feasible by CCSB-F, the number of times those solutions have been selected out of

100 macro-replications, and their corresponding selection count with H-CCSB-F. The
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‘N/A’ entries mean that the corresponding solution has been filtered out by RBHA,

and hence is not considered in H-CCSB-F.

Table 6.6: Specific case of Scenario 3: solutions that have been filtered out.

Rule 1 Rule 1 cont. Rule 2 Rule 2 cont. Rule 3 Rule 3 cont.

[6,7,6,6,2,0] [6,7,7,7,2,1] [6,6,7,6,2,0] [7,6,7,7,2,1] [6,6,6,7,2,0] [6,6,6,7,3,0]
[6,7,6,6,2,1] [6,8,6,7,2,1] [6,6,7,6,2,1] [6,6,9,6,2,1] [6,6,6,7,2,1] [6,6,6,7,3,1]
[6,7,6,6,3,0] [6,7,8,6,2,1] [6,6,7,6,3,0] [7,6,8,6,2,1] [6,6,6,8,2,0] [6,6,6,7,4,0]
[6,7,6,7,2,0] [6,8,7,6,2,1] [6,6,7,7,2,0] [8,6,7,6,2,1] [7,6,6,7,2,0] [7,6,6,7,3,0]
[6,7,7,6,2,0] [6,9,6,6,2,1] [6,6,8,6,2,0] [6,6,7,6,5,0] [6,6,6,7,2,2] [6,6,6,7,3,2]
[6,8,6,6,2,0] [7,8,6,6,2,1] [7,6,7,6,2,0] [6,6,7,7,4,0] [6,6,6,8,2,1] [6,6,6,7,4,1]
[6,7,6,6,2,2] [6,7,6,6,5,0] [6,6,7,6,2,2] [6,6,8,6,4,0] [7,6,6,7,2,1] [7,6,6,7,3,1]
[6,7,6,6,3,1] [6,7,6,7,4,0] [6,6,7,6,3,1] [7,6,7,6,4,0] [6,6,6,8,3,0] [6,6,6,7,5,0]
[6,7,6,7,2,1] [6,7,7,6,4,0] [6,6,7,7,2,1] [6,6,7,8,3,0] [6,6,6,9,2,0] [6,6,6,8,4,0]
[6,7,7,6,2,1] [6,8,6,6,4,0] [6,6,8,6,2,1] [6,6,8,7,3,0] [7,6,6,8,2,0] [7,6,6,7,4,0]
[6,8,6,6,2,1] [6,7,6,8,3,0] [7,6,7,6,2,1] [7,6,7,7,3,0] [7,7,6,7,2,0] [7,7,6,7,3,0]
[6,7,6,6,4,0] [6,7,7,7,3,0] [6,6,7,6,4,0] [6,6,9,6,3,0] [8,6,6,7,2,0] [8,6,6,7,3,0]
[6,7,6,7,3,0] [6,8,6,7,3,0] [6,6,7,7,3,0] [7,6,8,6,3,0] [7,7,7,6,2,0]
[6,7,7,6,3,0] [6,7,8,6,3,0] [6,6,8,6,3,0] [8,6,7,6,3,0] [6,6,6,7,2,3]
[6,8,6,6,3,0] [6,8,7,6,3,0] [7,6,7,6,3,0] [6,6,7,9,2,0] [6,6,6,8,2,2]
[6,7,6,8,2,0] [6,9,6,6,3,0] [6,6,7,8,2,0] [6,6,8,8,2,0] [7,6,6,7,2,2]
[6,7,7,7,2,0] [7,8,6,6,3,0] [6,6,8,7,2,0] [7,6,7,8,2,0] [6,6,6,8,3,1]
[6,8,6,7,2,0] [6,7,6,9,2,0] [7,6,7,7,2,0] [6,6,9,7,2,0] [6,6,6,9,2,1]
[6,7,8,6,2,0] [6,7,7,8,2,0] [6,6,9,6,2,0] [7,6,8,7,2,0] [7,6,6,8,2,1]
[6,8,7,6,2,0] [6,8,6,8,2,0] [7,6,8,6,2,0] [8,6,7,7,2,0] [7,7,6,7,2,1]
[6,9,6,6,2,0] [6,7,8,7,2,0] [8,6,7,6,2,0] [6,6,10,6,2,0] [8,6,6,7,2,1]
[7,8,6,6,2,0] [6,8,7,7,2,0] [6,6,7,6,2,3] [7,6,9,6,2,0] [7,7,7,6,2,1]
[6,7,6,6,2,3] [6,9,6,7,2,0] [6,6,7,6,3,2] [7,7,8,6,2,0] [6,6,6,9,3,0]
[6,7,6,6,3,2] [7,8,6,7,2,0] [6,6,7,7,2,2] [8,6,8,6,2,0] [7,6,6,8,3,0]
[6,7,6,7,2,2] [6,7,9,6,2,0] [6,6,8,6,2,2] [9,6,7,6,2,0] [6,6,6,10,2,0]
[6,7,7,6,2,2] [6,8,8,6,2,0] [7,6,7,6,2,2] [7,6,6,9,2,0]
[6,8,6,6,2,2] [6,9,7,6,2,0] [6,6,7,6,4,1] [7,7,6,8,2,0]
[6,7,6,6,4,1] [7,8,7,6,2,0] [6,6,7,7,3,1] [8,6,6,8,2,0]
[6,7,6,7,3,1] [6,10,6,6,2,0] [6,6,8,6,3,1] [7,7,7,7,2,0]
[6,7,7,6,3,1] [7,9,6,6,2,0] [7,6,7,6,3,1] [8,7,6,7,2,0]
[6,8,6,6,3,1] [6,6,7,8,2,1] [9,6,6,7,2,0]
[6,7,6,8,2,1] [6,6,8,7,2,1] [8,7,7,6,2,0]
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Table 6.7: Specific case of Scenario 3: filtered solution space.

Additional
Territories=0

Additional
Territories=1

Additional
Territories=2

Additional
Territories=3

Additional
Territories=4

[6, 6, 6, 6, 2, 0] [6, 6, 6, 6, 2, 1] [6, 6, 6, 6, 2, 2] [6, 6, 6, 6, 2, 3] [6, 6, 6, 6, 2, 4]
[6, 6, 6, 6, 3, 0] [6, 6, 6, 6, 3, 1] [6, 6, 6, 6, 3, 2] [6, 6, 6, 6, 3, 3]
[7, 6, 6, 6, 2, 0] [7, 6, 6, 6, 2, 1] [7, 6, 6, 6, 2, 2] [7, 6, 6, 6, 2, 3]

[6, 6, 6, 6, 4, 0] [6, 6, 6, 6, 4, 1] [6, 6, 6, 6, 4, 2]
[7, 6, 6, 6, 3, 0] [7, 6, 6, 6, 3, 1] [7, 6, 6, 6, 3, 2]
[7, 7, 6, 6, 2, 0] [7, 7, 6, 6, 2, 1] [7, 7, 6, 6, 2, 2]
[8, 6, 6, 6, 2, 0] [8, 6, 6, 6, 2, 1] [8, 6, 6, 6, 2, 2]

[6, 6, 6, 6, 5, 0] [6, 6, 6, 6, 5, 1]
[7, 6, 6, 6, 4, 0] [7, 6, 6, 6, 4, 1]
[7, 7, 6, 6, 3, 0] [7, 7, 6, 6, 3, 1]
[8, 6, 6, 6, 3, 0] [8, 6, 6, 6, 3, 1]
[8, 7, 6, 6, 2, 0] [8, 7, 6, 6, 2, 1]
[9, 6, 6, 6, 2, 0] [9, 6, 6, 6, 2, 1]

[6, 6, 6, 6, 6, 0]
[7, 6, 6, 6, 5, 0]
[7, 7, 6, 6, 4, 0]
[8, 6, 6, 6, 4, 0]
[7, 7, 7, 6, 3, 0]
[8, 7, 6, 6, 3, 0]
[9, 6, 6, 6, 3, 0]
[8, 8, 6, 6, 2, 0]
[9, 7, 6, 6, 2, 0]
[10, 6, 6, 6, 2, 0]
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Table 6.8: Specific case of Scenario 3: results table for CCSB-F and H-CCSB-F.

Cost Solutions
CCSB-F
Selection

Count

CCSB-F
Selection

Percentage

H-CCSB-F
Selection

Count

H-CCSB-F
Selection

Percentage

3 [8, 6, 6, 6, 2, 1] 16 16% 33 33%
3 [9, 6, 6, 6, 2, 0] 60 60% 68 68%
4 [6, 6, 6, 6, 4, 2] 1 3% 0 0%
4 [7, 6, 6, 6, 3, 2] 35 100% 24 100%
4 [7, 6, 6, 7, 2, 2] 3 9% N/A N/A
4 [7, 6, 7, 6, 2, 2] 29 83% N/A N/A
4 [7, 7, 6, 6, 2, 2] 35 100% 23 96%
4 [8, 6, 6, 6, 2, 2] 35 100% 24 100%
4 [7, 6, 6, 6, 4, 1] 35 100% 24 100%
4 [7, 6, 7, 6, 3, 1] 26 74% N/A N/A
4 [7, 7, 6, 6, 3, 1] 34 97% 22 92%
4 [8, 6, 6, 6, 3, 1] 35 100% 24 100%
4 [8, 6, 6, 7, 2, 1] 35 100% N/A N/A
4 [8, 6, 7, 6, 2, 1] 35 100% N/A N/A
4 [8, 7, 6, 6, 2, 1] 35 100% 24 100%
4 [9, 6, 6, 6, 2, 1] 35 100% 24 100%
4 [8, 6, 6, 6, 4, 0] 35 100% 24 100%
4 [8, 6, 6, 7, 3, 0] 19 54% N/A N/A
4 [8, 6, 7, 6, 3, 0] 35 100% N/A N/A
4 [8, 7, 6, 6, 3, 0] 35 100% 24 100%
4 [9, 6, 6, 6, 3, 0] 35 100% 24 100%
4 [9, 6, 6, 7, 2, 0] 35 100% N/A N/A
4 [8, 7, 7, 6, 2, 0] 2 6% N/A N/A
4 [9, 6, 7, 6, 2, 0] 35 100% N/A N/A
4 [9, 7, 6, 6, 2, 0] 35 100% 24 100%
4 [10, 6, 6, 6, 2, 0] 35 100% 24 100%

Selection count for a
cost of 3 territories

65 65% 76 76%

Selection count for a
cost ≤ 4 territories

100 100% 100 100%

As noted in Section 3.4, CCSB-F stops its process once a feasible solution is identified

and after it has checked all designs that use the same amount of territories. For the

specific case of Scenario 3, in 65 out of 100 macro-replications, CCSB-F terminates after

checking all solutions with a cost of three additional territories (i.e. from solution 1 to
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84). It checks the entire solution space (i.e. from solution 1 to 210) for the remaining

35 macro-replications. Hence, the ‘Selection Percentage’ column in Table 6.8 represents

the proportion of times a solution is selected corresponding to its cost.

Similarly, in 76 out of 100 macro-replications, H-CCSB-F terminates before checking

solutions that use four additional territories (i.e. from solution 1 to 24). It checks the

entire solution space (i.e. from solution 1 to 47) for the remaining 24 macro-replications.

Both CCSB-F and H-CCSB-F results show that the minimal cost for the Scenario 3

problem is three additional territories. Two different plans can achieve the conservation

goal of having at least 14 viable packs at the end of the 5-year planning horizon with

at least 75% probability. One is to select two additional territories in Habitat 1 and

one additional territory in Habitat 6 (solution [8, 6, 6, 6, 2, 1]). The other is to select

3 additional territories in Habitat 1 (solution [9, 6, 6, 6, 2, 0]).

6.6.2 Selection Accuracy

i Feasibility Estimation

To estimate the true feasibility of solutions, 10,000 simulations are run on each solution

and a t-test with a 5% significance level is performed. From these runs, 17 of them

are identified as feasible (Table 6.9). Among the 193 solutions identified as infeasible

in the initial experiment, 34 of them had an upper 90% confidence interval (Bonferroni

corrected) of over 75%, i.e. solutions which have an estimated violation probability p̂i

such that:

p̂i − t1−0.05/210,10000−1 ·
√
p̂i(1− p̂i)
10000− 1

≤ 0.25

To clarify the feasibility of these solutions, a further examination with 100,000 simu-
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lations on each of them was performed to get a more accurate estimation. From the

result of 34 x 100k runs, a further 11 solutions are identified as feasible, and 23 solutions

are infeasible. Of the 23 solutions considered infeasible, 8 of them had an upper con-

fidence level greater than 75%. These solutions underwent an additional 500,000 runs.

Only one solution is identified as feasible. The remaining 7 solutions are identified as

infeasible.

Table 6.9 shows the 29 feasible solutions and their 90% confidence levels. The remaining

181 solutions are infeasible based on the feasibility estimation result, and their details

are in Appendix E.2.

ii Feasible but Dominated Solutions

Of the 29 feasible solutions identified, 11 (marked in red in Table 6.9) are not in the H-

CCSB-F solution space, as they have been removed by the RBHA prior to the CCSB-F

procedure. Table 6.10 details the estimated probability of Yi ≥ 14 for these dominated

solutions and the specific solution dominance rule each violates. Additionally, this table

presents the corresponding dominating solutions, alongside the dominating solutions’

estimated probabilities and their lower 90% confidence limits.

iii Selection Accuracy Comparison

From the feasibility estimation result, the optimal solutions (i.e. feasible solutions that

use the minimal cost) are [8, 6, 6, 6, 2, 1] and [9, 6, 6, 6, 2, 0], both cost three additional

territories. As expected, CCSB-F and H-CCSB-F do not select any infeasible solutions

in 100 macro-replications.

Based on 100 macro-replications, the probabilities of selecting any of the optimal solu-

tions for CCSB-F and H-CCSB-F are 65% and 76% respectively (Table 6.8). There is



CHAPTER 6. A RULE-BASED HEURISTIC APPROACH 123

not enough statistical evidence at a 5% significance level to say that there is a differ-

ence between the probability of correct selection of CCSB-F and H-CCSB-F based on

a Chi-squared test (Appendix E.3).

Table 6.9: Specific case of Scenario 3: feasibility estimation for solutions identified as feasible.

Solutions Pr{Yi ≥ 14} Lower
90% CI

Upper
90% CI

Feasible after
10k runs

[10, 6, 6, 6, 2, 0] 0.8162 0.8027 0.8297
[9, 6, 6, 6, 3, 0] 0.81 0.7963 0.8237
[9, 6, 6, 6, 2, 1] 0.8081 0.7943 0.8219
[8, 6, 6, 6, 2, 2] 0.8017 0.7878 0.8156
[8, 6, 6, 6, 3, 1] 0.7977 0.7837 0.8117
[8, 7, 6, 6, 2, 1] 0.7868 0.7725 0.8011
[9, 7, 6, 6, 2, 0] 0.7867 0.7724 0.8010
[8, 6, 6, 6, 4, 0] 0.7856 0.7713 0.7999
[7, 6, 6, 6, 3, 2] 0.7815 0.7671 0.7959
[8, 7, 6, 6, 3, 0] 0.7801 0.7656 0.7946
[9, 6, 7, 6, 2, 0] 0.7775 0.7630 0.7920
[8, 6, 6, 7, 2, 1] 0.7758 0.7612 0.7904
[8, 6, 7, 6, 2, 1] 0.7754 0.7608 0.7900
[7, 6, 6, 6, 4, 1] 0.7731 0.7585 0.7877
[9, 6, 6, 7, 2, 0] 0.7729 0.7583 0.7875
[8, 6, 7, 6, 3, 0] 0.769 0.7543 0.7837
[7, 7, 6, 6, 3, 1] 0.7674 0.7526 0.7822

Feasible after
100k runs

[7, 6, 6, 7, 2, 2] 0.7597 0.7557 0.7637
[9, 6, 6, 6, 2, 0] 0.7629 0.7589 0.7669
[8, 6, 6, 7, 3, 0] 0.76441 0.7604 0.7684
[7, 6, 7, 6, 2, 2] 0.76667 0.7627 0.7706
[8, 6, 6, 6, 2, 1] 0.76011 0.7561 0.7641
[6, 6, 6, 6, 4, 2] 0.75575 0.7517 0.7598
[7, 6, 7, 6, 3, 1] 0.76324 0.7592 0.7672
[7, 7, 6, 6, 2, 2] 0.77241 0.7685 0.7764
[8, 7, 7, 6, 2, 0] 0.75945 0.7554 0.7635
[7, 6, 6, 7, 3, 1] 0.75693 0.7529 0.7610
[7, 6, 6, 6, 2, 3] 0.75684 0.7528 0.7609

Feasible after
500k runs

[8, 6, 6, 6, 3, 0] 0.751588 0.7501 0.7531
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Table 6.10: Estimated Pr{Yi ≥ 14} of dominated solutions and their corresponding dominat-
ing solutions.

Dominated
Solutions

Pr
{Yi ≥ 14}

Dominating
Solutions

Pr
{Yi ≥ 14}

Lower
90% CI

Violate
Solution

dominance
rule 2

[9, 6, 7, 6, 2, 0] 0.7775 [9, 7, 6, 6, 2, 0] 0.7867 0.7724
[8, 6, 7, 6, 2, 1] 0.7754 [8, 7, 6, 6, 2, 1] 0.7868 0.7725
[8, 6, 7, 6, 3, 0] 0.769 [8, 7, 6, 6, 3, 0] 0.7801 0.7656
[7, 6, 7, 6, 2, 2] 0.76667 [7, 7, 6, 6, 2, 2] 0.77241 0.7456
[7, 6, 7, 6, 3, 1] 0.76324 [7, 7, 6, 6, 3, 1] 0.7674 0.7526

Violate
Solution

dominance
rule 3

[8, 7, 7, 6, 2, 0] 0.75945 [8, 7, 6, 6, 3, 0] 0.7801 0.7543
[8, 6, 6, 7, 2, 1] 0.7758 [8, 6, 7, 6, 2, 1] 0.7754 0.7608
[9, 6, 6, 7, 2, 0] 0.7729 [9, 6, 7, 6, 2, 0] 0.7775 0.7630
[7, 6, 6, 7, 2, 2] 0.7597 [7, 6, 7, 6, 2, 2] 0.76667 0.7478

Violate
rule 4

[8, 6, 6, 7, 3, 0] 0.76441 [8, 6, 7, 6, 3, 0] 0.769 0.7543
[7, 6, 6, 7, 3, 1] 0.75693 [7, 6, 7, 6, 3, 1] 0.76324 0.7458

6.6.3 Computational Effort

Table 6.11 shows the average number of runs for a single macro-replication of the

CCSB-F and H-CCSB-F, the standard deviation of those averages, and the scale of the

computational effort saving made by H-CCSB-F.

Table 6.11: Specific case of Scenario 3: computational effort (simulation runs in million)
comparison.

CCSB-F H-CCSB-F
Reduction
Percentage

Average (macro-replications
stops at cost=3)

0.8550 0.2071 75.77%

Standard Deviation 0.0014 0.0007

Average (macro-replications
stops at cost=4)

2.3363 0.4469 80.87%

Standard Deviation 0.0020 0.0009

Table 6.11 shows there is a difference in the average savings of the number of runs
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between macro-replications that terminate at a cost of three additional territories versus

those that terminate at a cost of four additional territories. As discussed in Subsection

6.4.2, the more solutions RBHA removes, the more computational effort H-CCSB-F

saves. In the specific case of Scenario 3, out of 210 solutions, solutions 1 to 84 use a

cost of at most three additional territories, and RBHA removes 60 of them (71.43%).

Solutions 85 to 210 use all four territories, and RBHA removes 103 of these (81.75%).

Therefore, when comparing macro-replications that stop at a cost of four additional

territories, it is expected to have a higher reduction percentage in the total number of

runs compared to those that terminate at a cost of three additional territories.

6.7 Applying RBHA to Scenario 1

To assess the generalisability of RBHA, it is applied to Scenario 1 (defined in Section

4.2). In Scenario 1, Habitat 2 has a higher pack and a higher population density than

Habitats 1, 3, and 4. Habitat 4 has a higher pack and a higher population density

than Habitats 1 and 3. Based on Solution dominance rule 3 (Subsection 6.2.3), if two

solutions differ only in the numbers of additional territories each selects in Habitats 2

and 1 (or 3, or 4), then the solution that selects more territories in Habitat 2 and fewer

in Habitats 1 (or 3, or 4) dominates the other solution. Similarly, if two solutions differ

only in the number of additional territories each selects in Habitats 4 and 1 (or 3), then

the solution that selects more territories in Habitat 4 and fewer in Habitats 1 (or 3)

dominates the other solution.

Table 6.12 lists all 17 solutions removed due to being dominated by other solutions

when applying the heuristic approach to Scenario 1, along with their corresponding

average number of runs, extracted from Appendix C.1.
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Table 6.12: Solutions removed when applying RBHA to Scenario 1.

Removed as
less in Habitat 2 (15)

Ave. No. Runs
Removed as

less in Habitat 4 (2)
Ave. No. Runs

[5, 5, 5, 6, 0, 0] 8727.33 [5, 6, 6, 5, 0, 0] 9107.50
[5, 5, 6, 5, 0, 0] 8688.56 [6, 6, 5, 5, 0, 0] 9116.25
[6, 5, 5, 5, 0, 0] 8687.92
[5, 5, 5, 6, 0, 1] 9166.79
[5, 5, 6, 5, 0, 1] 9142.52
[6, 5, 5, 5, 0, 1] 9161.91
[5, 5, 5, 6, 1, 0] 9165.15
[5, 5, 6, 5, 1, 0] 9134.30
[6, 5, 5, 5, 1, 0] 9143.57
[5, 5, 5, 7, 0, 0] 8329.18
[5, 5, 6, 6, 0, 0] 8736.99
[6, 5, 5, 6, 0, 0] 8726.64
[5, 5, 7, 5, 0, 0] 8655.80
[6, 5, 6, 5, 0, 0] 8699.26
[7, 5, 5, 5, 0, 0] 8633.37∑

Ave. runs 151,023.04

The optimal solutions (Section 4.4) are not removed by the heuristic approach when

applied to Scenario 1. The lower bound of the estimated computational effort savings,

calculated using the average run data from Appendix C.1, is given by:

(
151,023.04

252,522.15

)
× 100% ≈ 59.81%.

This result shows the potential computational effort savings achievable when applying

RBHA to Scenario 1. Specifically, RBHA removes 17 dominated solutions, resulting

in an estimated computational savings of 59.81%. This percentage represents a lower

bound, as removing dominated solutions also reduces the number of runs required for

the remaining solutions. For example, when RBHA is applied to Scenario 1, the number

of solutions decreases from 28 to 11. At δγ = 0.025, n(β) (Eq.(2.19)) is reduced from
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9,828 to 7,878, and mβ(n) (Eq.(2.20)) from 2,331 to 1,869. This reduction in the number

of required runs would further decrease the total computational effort.

6.8 Summary

In addressing RQ3: How and to what extent can expert opinion be used

to reduce the computational effort in SO?, Chapter 6 introduces an RBHA that

aims to reduce the computational intensity issue faced by CCSB-F in solving the chance-

constrained RSS problem. The RBHA uses expert knowledge on the ordering of habitats

to create solution dominance rules, then removes solutions that are being dominated

from the solution space to reduce the total simulation runs CCSB-F requires. The

combination of RBHA and CCSB-F is referred to as H-CCSB-F.

An example RSS problem (Scenario 3) is used to demonstrate the potential computa-

tional effort savings of H-CCSB-F in comparison to using CCSB-F alone. The results in

Section 6.4 show that the potential savings made by H-CCSB-F are substantial. They

also suggest that the savings increase not only in absolute terms but also in percentage

terms as the size of the solution space increases.

To investigate the actual impact of H-CCSB-F, it is compared with CCSB-F in solving

a specific case of Scenario 3 described in Section 6.5. The results in Section 6.6 demon-

strate that H-CCSB-F, while maintaining statistically equivalent selection accuracy,

reduces computational effort by an average of 80.73% compared to CCSB-F across 100

macro-replications.

When RBHA is applied to Scenario 1, Section 6.7 shows that the estimated savings

(59.81%) is lower than when applied to Scenario 3 (80.73%). One possible reason for

this lower savings is that only one rule applies to Scenario 1, whereas all three rules
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apply to Scenario 3.

Although RBHA does not remove any optimal solutions in both examples, there is no

guarantee that optimal solutions will never be removed. However, selected solutions

are guaranteed to be feasible and the best among those in the filtered solution space

(under the given feasibility tolerance level and significance level).

Based on the feasibility estimation results, RBHA does remove feasible but not optimal

solutions in the specific case of Scenario 3. Hence, in contexts where a comprehensive

identification of all feasible solutions is required, the use of RBHA should be carefully

considered. However, such a scenario is not the focus of this research, which examines

the RSS problem with the aim of identifying optimal solutions.



Chapter 7

Conclusions and Further Work

This thesis investigates the application of SO to the RSS problem, with a particular

emphasis on solution methods with a statistical guarantee. SO enables the identification

of the statistically guaranteed optimal set of reserve sites while accounting for inherent

stochasticity in species survival. To the best of the author’s knowledge, this is the

first successful attempt to solve an RSS problem with SO that provides a statistical

guarantee. Additionally, contributions are made in developing two approaches to reduce

computational intensity in solving the RSS problem.

This chapter concludes the thesis by reflecting on the contributions made to the wildlife

RSS problem and SO. Section 7.1 summarises these contributions. Section 7.2 identifies

areas for further work.

7.1 Contributions

129
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7.1.1 Solving the RSS Problem

The first contribution of this thesis, presented in Chapters 3 and 4, is solving the RSS

problem with an SO method that has a statistical guarantee. This thesis focuses partic-

ularly on the chance-constrained RSS problem. A scenario of the problem, informed by

wolf situations in California (Chapter 4), is solved using an established procedure de-

signed for solving chance-constrained SO problems (CCSB-F). As expected, the result

shows that solving the chance-constrained RSS problem with a statistical guarantee

can be computationally intense (defined in terms of the number of simulation runs).

In theory, the computational intensity depends not only on the characteristics of the

solution space (i.e. how close the solutions are to the feasibility boundary), but also on

the selection accuracy one wants to achieve. As detailed in Chapter 2 and in Hong, Luo,

and Nelson (2015), with the indifference zone approach that CCSB-F uses, for a solution

space with solutions close to the feasibility boundary, i.e. with Pr{Y < N} ∈ (γ−δγ, γ],

the computational effort required is likely to be higher than for a solution space mainly

consisting of infeasible solutions. Additionally, the computational intensity depends on

the required selection accuracy. A higher selection accuracy requires a smaller δγ which

in turn increases the computational effort. Chapter 4 provides an example illustrating

the possible scale of this effect through Scenario 1, where most solutions are close to

the feasibility boundary.

Moreover, CCSB-F is expected to be less computationally intense than a standard

hypothesis testing procedure. Chapter 4 uses Scenario 1 to illustrate the extent of this

computational intensity reduction in solving the RSS problem. In theory, the scale of

the computational effort savings depends on the characteristics of the solution space,

and CCSB-F will tend to save more computational effort in problems where the solution
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space mainly consists of infeasible solutions far from the feasibility boundary.

7.1.2 Computational Intensity Reduction Approaches

The second contribution is the development of two approaches, presented in Chapters 5

and 6, that are designed to address the computational intensity of the SO method

highlighted in Chapter 4. Both approaches reduce the computational intensity by

filtering the solution space prior to the use of CCSB-F.

The model-based approach detailed in Chapter 5 is built on the characteristics of the

simulation model. Specifically, it works based on the understanding that when two

habitats have equal parameter values, they become indistinguishable within the model.

Thus, solutions differing only in the locations of additional territories among these

indistinguishable habitats are considered identical. Only one of these solutions requires

simulation, while the rest can be temporarily removed from the solution space. CCSB-

F is then applied to the filtered solution space. Since all solutions are theoretically

checked, and those temporarily removed solutions are also considered at the end of

the procedure, the statistical guarantee still holds for the entire solution space. The

advantage of this combined method compared to the use of CCSB-F alone is that it

keeps the statistical guarantee while reducing the computational intensity of CCSB-F.

Given the number of indistinguishable habitats, the size of the filtered solution space

can be calculated with established formulae. As the problem size and the number

of indistinguishable habitats increases, the scale of the reduction in the number of

solutions also increases, implying a corresponding reduction in computational intensity.

However, since CCSB-F is a fixed-precision procedure and the simulation output is a

random variable, the actual computational effort required is expected to depend on the

characteristics of the solution space. In the Scenario 2 problem with 28 solutions, where
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most solutions are close to the feasibility boundary, the observed computational saving

is approximately 26%.

The second solution space filtering approach discussed in Chapter 6 is a rule-based

heuristic approach. This approach assumes that experts provide some information on

habitat superiority. Such information is then used to create solution dominance rules.

Solutions that are dominated by others are then removed from the solution space.

Then, CCSB-F is applied to the filtered solution space. Since this approach is based

on expert opinion and this thesis does not assume expert opinion is entirely accurate,

optimal solutions may be removed during the filtering process. Therefore, this approach

does not guarantee finding the optimal solution for the entire solution space. However,

since CCSB-F is used in the filtered solution space, the statistical guarantee of finding

the optimal solution in the filtered solution space, and the solution found being feasible,

still holds.

The strength of the heuristic approach is that it reduces the computational effort drasti-

cally. Although an analytical function is not available to calculate the size of the filtered

solution space in this case, the number of solutions can be enumerated. As the Scenario

3 example demonstrates, the reduction in the number of solutions increases with the

problem size. This suggests that the reduction in computational effort required is likely

to also increase with the problem size. However, in theory, this reduction is dependent

on the characteristics of the solution space. In a specific case of Scenario 3 with 210

solutions, a substantial computational effort saving of around 80% is observed.

The key difference between the model-based approach and the heuristic approach is that

the former does not remove solutions from the solution space, while the latter does. This

results in a difference in the statistical guarantees held by the two approaches. In terms

of computational effort, for the same solution space, the heuristic approach is likely to
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filter out more solutions and thus save more computational effort than the model-based

approach. However, this comes at the cost of losing the statistical guarantee for the

entire solution space.

A key limitation of the model-based approach is that it assumes the existence of indis-

tinguishable habitats. If all habitats are distinguishable, it cannot be applied. For the

heuristic approach, it depends on expert opinion, which may not always be available.

Additionally, some solution dominance rules may be problem-specific and not gener-

alisable to a wider range of problems—for example, Solution Dominance Rule 1 and

Solution Dominance Rule 2 do not apply under the starting conditions of Scenario 1.

7.2 Further Work

7.2.1 Improvement on CCSB-F

As detailed in Chapter 2, the CCSB-F works by sequentially collecting samples for each

solution. The feasibility of a solution is determined by collecting up to n(β) samples.

A solution is declared infeasible whenever the failure count threshold is reached. A

solution is declared feasible if, upon collecting n(β) samples, the failure count threshold

has not been reached. However, for some ‘highly feasible’ solutions, it may not be

necessary to collect the full n(β) samples to declare them feasible. The computational

efficiency of the CCSB-F could be improved by reducing the number of samples required

for these solutions. One possible approach is to incorporate a feasibility measurement

into the CCSB-F. Eckman, Henderson, and Shashaani (2023) introduced three potential

methods for measuring feasibility: the feasibility score, the likelihood ratio score, and

the posterior probability of feasibility. Exploring the computational effort of CCSB-F

given some feasibility measurements could contribute to the field of SO.
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7.2.2 Solution space filtering approaches

Despite that this thesis focuses particularly on the species persistence (estimated by

the number of viable wolf packs at the end of the planning horizon) as a secondary

performance measure (constraint), other measures, such as the location of the packs,

number of pups, or the compactness of the sites can be easily incorporated into the

formulation. The same applies to the primary performance measure (objective), this

thesis focuses on the number of sites in the objective, but other measures such as the

individual costs of each territory or habitat, can be incorporated easily by amending

the deterministic objective function. As such changes do not change the structure

of the formulation, the main conclusions of this thesis are still applicable. However,

if the objective function becomes stochastic and requires simulation to evaluate, the

effectiveness of the two approaches in Chapters 5 and 6 requires further investigation.

7.2.3 Feasibility tolerance level

Throughout this thesis, the importance of the feasibility tolerance level δγ is highlighted

multiple times. In theory, this value should be chosen by the decision maker based on

the smallest difference in solution performance that would have a practical impact.

However, choosing this value is not straightforward in practice. One existing approach

in providing a robust method for selecting δγ is from Lee, Park, and Park (2018). They

present a fully sequential RnS framework for self-adjusting δγ in stochastic constrained

SO problems. Their high-level idea involves running two RnS procedures simultaneously

and iteratively, adjusting δγ at the end of each iteration until both procedures yield the

same set of feasible solutions. Since this method involves multiple iterations of two

RnS procedures, the computational intensity problem faced by CCSB-F is likely to be

a more severe problem in their framework. Therefore, exploring a more robust and less
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computationally intense method for selecting δγ could contribute to the application of

SO to RSS.

7.2.4 Other ways of reducing computational effort

One of the established ways of reducing the computational intensity is to use meta-

models (an analytical approximation between the simulation output and input). An ex-

isting attempt of using a meta-model based approach to solve stochastically constrained

SO problems is Tsai, Park, and Chang (2023). The high-level idea is to repetitively fit

meta-models, find the optimal solution by solving the meta-model based optimisation

problem in each iteration, and then add this solution to a set of promising solutions if

it is feasible. The final optimal solution is obtained from the set of promising solutions

using a RnS procedure. Evaluating the performance of this method in solving the RSS

problem will allow for an assessment of the effectiveness of the two approaches devel-

oped in this thesis. Moreover, given the special structure of the solution space in the

RSS problem, a more tailored meta-model could be developed.

7.2.5 Future Work on the Wolf Model

The simulation model described in Chapter 3 provides a baseline for modelling the grey

wolf population. However, several additional aspects could be incorporated into the

model to further test the performance of SO in a more realistic conservation context.

One such aspect is environmental uncertainty. This could be incorporated into the

model by introducing random environmental events, such as wildfires during summer

or extreme cold weather during winter, in different habitats. Another consideration is

spatial aspects. As discussed in Subsection 3.5.2, the current model does not explicitly

account for spatial factors. One way to address this is by incorporating non-uniform
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dispersal probabilities. Currently, the model assumes that dispersers have an equal

chance of moving into any other habitat, regardless of distance or habitat quality. This

may not accurately reflect actual dispersal behaviour. Incorporating a non-uniform

dispersal probabilities matrix that reflects habitat proximity, connectivity, or quality

would be a straightforward way to include spatial aspects in the model.

7.3 Final Comment

This research aims to understand the extent to which SO can be used in RSS. In

addressing this question, it proposes two principles for reducing computational effort

in using SO to solve RSS problems. The first principle is to explore the details of

the simulation model and the structure of the solution space, which may help develop

problem-specific methods for filtering the solution space. The second principle is to use

expert knowledge if available, as this can guide the creation of solution dominance rules

to filter the solution space.
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Appendix: Chapter 2

A.1 Systematic Literature Search

A.1.1 Objectives

Because there is no recent (up to 2019) review of how simulation and optimisation have

been applied to the RSS problem, this literature search aims to provide an overview of

the scope and structure of existing literature and to identify the most relevant studies

in the broader field of reserve design.

A.1.2 Search Strategy

Search terms were divided into two dimensions: the application area and the method

used. A scoping search was initially conducted in Scopus to identify key studies and the

thesaurus of the literature on reserve design problems. Method-wise, since this thesis

aims to identify the use of SO in RSS, the focus is on simulation and optimisation

(heuristics and stochastic programming are included in the search terms in case papers

do not mention optimisation).

137
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The following search strings were used: “Reserve Design*” OR “Reserve Site Select*”

OR “Reserve selection” AND Simulation OR Optimi?ation OR “Stochastic Program*”

OR Heuristic*. These terms were searched in the following bibliographic databases:

• EBSCOhost (EBSCOhost, 2019), including:

– Academic Search Ultimate: multi-disciplinary bibliographic database.

– Business Source Complete: includes scholarly business journals.

– EconLit: source of references to economic literature.

– GreenFILE: offers well-researched information covering all aspects of human

impact on the environment.

– MathSciNet via EBSCOhost: mathematical bibliographic database.

– OpenDissertations: access to past dissertations.

• Scopus (Scopus, 2019)

The search terms were searched in any field using EBSCOhost, and in the title, abstract,

and keywords using Scopus on the 8th of October, 2019.

EBSCOhost initially identified 274 results, including 254 academic journals, 7 reviews,

2 conference papers, 2 dissertations, and 2 working papers. Scopus returned 301 re-

sults, including 257 articles, 27 conference papers, 13 reviews, and 4 other materials.

These results were exported to Endnote X9, and after both automatic and manual

deduplication, 324 references remained.

A.1.3 Apply Exclusion Criteria

Abstracts of 324 references were examined manually, and exclusion criteria were ap-

plied. Since the aim of the search was to provide an overview of existing literature
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on SO methods applied to RSS problems, only studies that focus on using either sim-

ulation, optimisation, or other relevant OR methods to solve RSS problems, or that

introduce criteria or decision rules for reserve design to use with simulation or optimi-

sation methods, were included. Hence, articles were excluded if they were either not

available in English, not related to wildlife conservation, or did not use either simulation

or optimisation. Fifty-four studies were removed after applying the exclusion criteria.

A.1.4 Reference Lists Checking

While reviewing the search results, 15 review papers and one SO paper were identified.

The references of the review papers and the citation list of the SO paper were checked,

leading to the addition of 74 relevant papers, resulting in a total of 344 papers.

A.1.5 Classification

These 344 studies were then classified into different categories. Most studies were

classified twice: once based on the method applied and once based on the application

area. Each of these categories contains sub-categorises. The following graph presents

the categorisation, but due to the large number of sub-categories in each categorise,

only the most popular sub-categorises (with more than 5 papers on the subject) are

presented.
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Figure A.1: Classification result
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A.1.6 Results

Based on the search results, mathematical optimisation is the most popular technique

compared to simulation in the field of reserve design. Within optimisation papers,

most are formulated as static models rather than stochastic models, and many have

multiple objectives. Heuristics is the most popular solution method applied. Other

formulations include, but are not limited to, mixed integer linear programming, and

nonlinear programming. Other solution methods include metaheuristics and dynamic

programming.

Papers that used simulation techniques usually did not specify which simulation tech-

nique they used in their abstracts. Most used simulation as a tool to test possible

management plans, understand ecosystem interactions, or evaluate current reserves.

Some simulation models are also used with optimisation to either determine parameter
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values or evaluate results from optimisation.

Application-wise, most of the papers focus on RSS. Others discuss the evaluation of

reserve design or the search for new and better decision rules or decision indexes. These

are more focused on the ecological side of the problem and hence have been separated

from the main reserve design category.

A.2 Literature Search - SO in RSS

Search date: 2024 May the 14th.

Database searched:

• Scopus: search within the article title, abstract and keywords.

• EBSCOhost: search within the article title, abstract and keywords. The databases

searched are:

– Academic Search Ultimate

– Applied Science & Technology Full Text (H.W. Wilson)

– Business Source Alumni Edition

– Business Source Complete

– eBook Collection (EBSCOhost)

– EconLit

– Environment Complete

– GeoRef

– GreenFILE
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– MathSciNet via EBSCOhost

– OpenDissertations

Search terms: “site* select*” OR “reserve* design*” AND “simulation optimi?ation”

OR “optimi?ation via simulation”.

Out of 12 resulting papers from Scopus, apart from Haight and Travis (2008), none

addresses SO in RSS. Out of 5 resulting papers from EBSCOhost, apart from Haight

and Travis (2008), none addresses SO in RSS.

All 20 papers from Scopus that cited Haight and Travis (2008) were checked, and none

of them addresses SO in RSS.



Appendix B

Appendix: Chapter 3

B.1 Computer Model Run Logic

B.1.1 Flowchart for Single Habitat in Single Replication

Figure B.1 describes the logic of the computer model based on a single habitat and a

single replication. The processes within each habitat are identical, and the habitats are

linked together by the long dispersers.

This method of coding the conceptual model simplifies the simulation compared to

modelling every single individual activity at every time step. Such simplification is

achieved by grouping wolves that are in the same stage and modelling their group

activities at corresponding time steps.
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Figure B.1: Flowchart for single habitat in single replication.
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B.1.2 Model Execution Flowchart

The above logic is coded in Python using functional programming. The code structure

for multiple replications is summarised in Figure B.2. The execution of the functions

for single replication is summarised in Figure B.3.

Figure B.2: Flowchart for multiple replications.



APPENDIX B. APPENDIX: CHAPTER 3 146

Figure B.3: Flowchart for a single simulation run.
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B.2 Assumptions Summary Table

Table B1 summarises the assumptions the model made.

Table B1: Summary table for assumptions.

Real World Assumptions

Pack size varies from 3 to 11 in general No limit

In rare cases, a pack can have more than

one pair of wolves producing offspring

Only 1 alpha pair per pack

Rare cases of more than one female

giving birth within a pack

Only 1 litter per pack per year

In general, the earliest reproduction age

is two years, with the youngest recorded

at 10 months and the oldest at five years

The minimal mating age is 21 months

for both genders

Breeding longevity is four to five years

in the wild

No upper limit on breeding longevity

Some packs may allow young, typically

male, dispersers to remain in the pack

for a short time

Dispersers only stay in another pack if

they find a mate or if the territory is

empty

Younger wolves travel further than older

wolves

There is no age or gender difference in

dispersal distance and success rate

The size of territories changes, but the

territory core remains the same

The sizes of territories are uniform and

do not change
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B.3 Technical Simplifications

Table B2 summarises the simplifications made to enhance computational efficiency.

Table B2: Technical design simplification table.

Real World Technical Design Simplification

Litter size average is six pups, ranging

from 1 to 13 pups

Litter size average is 6, ranging from

0-12 pups, with equal probability

Most pups disperse from their natal

pack between 9 and 36 months

The youngest disperser is 9 months,

increasing the probability of dispersal

for each age group

Wolves disperse throughout the year Wolves only disperse during winter

If a pup is orphaned, it can be reared by

other pack members

Not applicable. By the time of the

dispersal process, wolves will be at least

9 months old

Pairs form during dispersal and find

suitable land to establish a pack

If a disperser settles in an empty

territory, another suitable disperser

mate can find them later and pair up

Wolves die all year round Accumulate adult mortality to winter

Wolves between 6 and 12 months die

primarily because of malnutrition in

winter

Accumulate all pup mortality to summer
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B.4 Model Verification

Based on Balci (1994) framework for validation, verification, and testing, consistency

checking and desk checking are performed with the formulated problem, the system and

objective definition, and the conceptual model. For the programmed model verification,

bottom-up testing, debugging, execution monitoring, execution tracing, and black box

testing are performed.

Consistency checking is done by ensuring that the language, parameters, notations,

and graph representations do not contain contradictions and are used consistently.

Desk checking is undertaken by thoroughly examining the work to ensure correctness,

completeness, consistency, and clarity.

Bottom-up testing is completed by testing each function from the minimal functional

level to the whole model level, ensuring each function acts as expected. Debugging is

executed by identifying and fixing possible bugs in the code. Execution monitoring and

execution tracing are carried out by monitoring and tracing the running of the code

step by step. Black box testing is performed by inputting extreme values for which the

output can be predicted and checking if the output aligns with the expectations.
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Appendix: Chapter 4

C.1 Results Table for Scenario 1: 100 Macro-replications

of CCSB-F

To speed up the experiments, some macro-replications were run in parallel. To en-

sure the independence of each replication, different random number seeds were used

for parallel macro-replications. The random number seed is generated randomly with

random.randrange(0, 232 − 1) function in Python (232 − 1 is the maximum seed num-

ber the random package can take). The first 10,000 random numbers produced by this

function were stored. And those random numbers were used sequentially as the random

number seed for each experiment. Table C1 documents the starting random number

seed for each parallel macro-replication in Scenario 1.
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Table C1: Scenario 1: random number seed settings for 100 macro-replications of CCSB-F.

Random
Number
Index

Random Number
Seed

Problem
macro-replications

Index

19 36772 Scenario 1 CCSB-F δγ = 0.025 1-20
20 2847821818 Scenario 1 CCSB-F δγ = 0.025 21-40
21 2830182769 Scenario 1 CCSB-F δγ = 0.025 41-60
22 3089602841 Scenario 1 CCSB-F δγ = 0.025 61-80
23 224252415 Scenario 1 CCSB-F δγ = 0.025 81-100
29 507094555 Scenario 1 CCSB-F δγ = 0.01 1-20
30 1034920211 Scenario 1 CCSB-F δγ = 0.01 21-40
31 1366554720 Scenario 1 CCSB-F δγ = 0.01 41-60
32 4009340797 Scenario 1 CCSB-F δγ = 0.01 61-80
33 3988537505 Scenario 1 CCSB-F δγ = 0.01 81-100

The experiments were run on Lenovo with Inter(R) Core(TM) i5-6500T CPU@2.50GHz

and Mac mini with Apple M1, macOS 13.4 (22F66) computers. The average run time

per macro-replications of CCSB-F for δγ = 0.025 is 29.8288 seconds with a standard

deviation of 1.6563 seconds. For δγ = 0.01, the average time is 6.9660 hours, with

a standard deviation of 0.3825 hours. Table C2 presents the results for 100 macro-

replications of CCSB-F in solving Scenario 1. The average total number of runs for all

28 solutions is 252,522.15.
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Table C2: Scenario 1: CCSB-F results table (100 macro-replications).

Tolerance Level δγ = 0.025 δγ = 0.01

Additional
Territories

Solutions
Selection

Count

Average
Number
of Runs

Selection
Count

Average
Number
of Runs

0 [5, 5, 5, 5, 0, 0] 0 8705.71 0 57477.41
1 [5, 5, 5, 5, 0, 1] 0 9170.06 0 60350.71
1 [5, 5, 5, 5, 1, 0] 0 9134.73 0 60332.75
1 [5, 5, 5, 6, 0, 0] 0 8727.33 0 57481.44
1 [5, 5, 6, 5, 0, 0] 0 8688.56 0 57385.1
1 [5, 6, 5, 5, 0, 0] 0 9097.84 0 59978.15
1 [6, 5, 5, 5, 0, 0] 0 8687.92 0 57363.21
2 [5, 5, 5, 5, 0, 2] 0 9291.94 0 61515.59
2 [5, 5, 5, 5, 1, 1] 20 9633.27 100 62805
2 [5, 5, 5, 6, 0, 1] 0 9166.79 0 60508.56
2 [5, 5, 6, 5, 0, 1] 0 9142.52 0 60347.34
2 [5, 6, 5, 5, 0, 1] 5 9556.72 74 62741.94
2 [6, 5, 5, 5, 0, 1] 0 9161.91 0 60284.48
2 [5, 5, 5, 5, 2, 0] 0 9331.23 0 61475.55
2 [5, 5, 5, 6, 1, 0] 0 9165.15 0 60506.54
2 [5, 5, 6, 5, 1, 0] 0 9134.3 0 60309.91
2 [5, 6, 5, 5, 1, 0] 8 9558.23 71 62697.91
2 [6, 5, 5, 5, 1, 0] 0 9143.57 0 60279.17
2 [5, 5, 5, 7, 0, 0] 0 8329.18 0 55032.73
2 [5, 5, 6, 6, 0, 0] 0 8736.99 0 57459.76
2 [5, 6, 5, 6, 0, 0] 0 9087.16 0 60130.6
2 [6, 5, 5, 6, 0, 0] 0 8726.64 0 57510.41
2 [5, 5, 7, 5, 0, 0] 0 8655.8 0 57003.53
2 [5, 6, 6, 5, 0, 0] 0 9107.5 0 59899.88
2 [6, 5, 6, 5, 0, 0] 0 8699.26 0 57412.63
2 [5, 7, 5, 5, 0, 0] 0 8932.22 0 58965.63
2 [6, 6, 5, 5, 0, 0] 0 9116.25 0 59889.57
2 [7, 5, 5, 5, 0, 0] 0 8633.37 0 56891.31
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C.2 Feasibility Estimation Results Table for Sce-

nario 1

Each solution is run 100,000 times. The significance level is set to 5%, and the critical

value from student t distribution is t1−0.05/28,99999 = 2.913795. A solution is declared

feasible when the test statistics (calculated based on the sample values) are greater

than the critical value. The random number starting seed is 36772.
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Table C3: Scenario 1: feasibility estimation results.

Additional
Territories

Solutions
Pr

{Yi ≥ 3}
Test

Statistics
Lower

90% CI
Upper
90% CI

Feasibility
Pr

{Yi < 3}

0 [5,5,5,5,0,0] 0.73293 -12.2008 0.7289 0.7370 Infeasible 0.2671
1 [5,5,5,5,0,1] 0.74526 -3.4401 0.7412 0.7493 Infeasible 0.2547
1 [5,5,5,5,1,0] 0.74453 -3.9662 0.7405 0.7485 Infeasible 0.2555
1 [5,5,5,6,0,0] 0.73504 -10.7198 0.7310 0.7391 Infeasible 0.2650
1 [5,5,6,5,0,0] 0.73224 -12.6836 0.7282 0.7363 Infeasible 0.2678
1 [5,6,5,5,0,0] 0.74452 -3.9734 0.7405 0.7485 Infeasible 0.2555
1 [6,5,5,5,0,0] 0.73084 -13.6609 0.7268 0.7349 Infeasible 0.2692
2 [5,5,5,5,0,2] 0.75218 1.5967 0.7482 0.7562 Infeasible 0.2478
2 [5,5,5,5,1,1] 0.75999 7.3969 0.7561 0.7639 Feasible 0.2400
2 [5,5,5,6,0,1] 0.74499 -3.6348 0.7410 0.7490 Infeasible 0.2550
2 [5,5,6,5,0,1] 0.74585 -3.0142 0.7418 0.7499 Infeasible 0.2542
2 [5,6,5,5,0,1] 0.75818 6.0412 0.7542 0.7621 Feasible 0.2418
2 [6,5,5,5,0,1] 0.74256 -5.3811 0.7385 0.7466 Infeasible 0.2574
2 [5,5,5,5,2,0] 0.751 0.7313 0.7470 0.7550 Infeasible 0.2490
2 [5,5,5,6,1,0] 0.74262 -5.3381 0.7386 0.7466 Infeasible 0.2574
2 [5,5,6,5,1,0] 0.74523 -3.4618 0.7412 0.7492 Infeasible 0.2548
2 [5,6,5,5,1,0] 0.75483 3.5505 0.7509 0.7588 Feasible 0.2452
2 [6,5,5,5,1,0] 0.74652 -2.5298 0.7425 0.7505 Infeasible 0.2535
2 [5,5,5,7,0,0] 0.72026 -20.9517 0.7161 0.7244 Infeasible 0.2798
2 [5,5,6,6,0,0] 0.73546 -10.4241 0.7314 0.7395 Infeasible 0.2645
2 [5,6,5,6,0,0] 0.74066 -6.7391 0.7366 0.7447 Infeasible 0.2593
2 [6,5,5,6,0,0] 0.7307 -13.7585 0.7266 0.7348 Infeasible 0.2693
2 [5,5,7,5,0,0] 0.72824 -15.4678 0.7241 0.7323 Infeasible 0.2718
2 [5,6,6,5,0,0] 0.74225 -5.6031 0.7382 0.7463 Infeasible 0.2578
2 [6,5,6,5,0,0] 0.73102 -13.5354 0.7269 0.7351 Infeasible 0.2690
2 [5,7,5,5,0,0] 0.73568 -10.2691 0.7316 0.7397 Infeasible 0.2643
2 [6,6,5,5,0,0] 0.74307 -5.0155 0.7390 0.7471 Infeasible 0.2569
2 [7,5,5,5,0,0] 0.73281 -12.2849 0.7287 0.7369 Infeasible 0.2672

There are 3 feasible solutions, [5, 5, 5, 5, 1, 1], [5, 6, 5, 5, 0, 1] and [5, 6, 5, 5, 1, 0]

(highlighted in grey in Table C3).
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C.3 Results Table for Scenario 1: 100 Macro-replications

of the Benchmark

Table C4: Scenario 1: benchmark results table (100 macro-replications).

Tolerance Level δγ = 0.025 δγ = 0.01

Additional Territories Solutions Selection Count Selection Count
0 [5, 5, 5, 5, 0, 0] 0 0
1 [5, 5, 5, 5, 0, 1] 0 0
1 [5, 5, 5, 5, 1, 0] 0 0
1 [5, 5, 5, 6, 0, 0] 0 0
1 [5, 5, 6, 5, 0, 0] 0 0
1 [5, 6, 5, 5, 0, 0] 0 0
1 [6, 5, 5, 5, 0, 0] 0 0
2 [5, 5, 5, 5, 0, 2] 0 0
2 [5, 5, 5, 5, 1, 1] 19 98
2 [5, 5, 5, 6, 0, 1] 0 0
2 [5, 5, 6, 5, 0, 1] 0 0
2 [5, 6, 5, 5, 0, 1] 7 78
2 [6, 5, 5, 5, 0, 1] 0 0
2 [5, 5, 5, 5, 2, 0] 0 0
2 [5, 5, 5, 6, 1, 0] 0 0
2 [5, 5, 6, 5, 1, 0] 0 0
2 [5, 6, 5, 5, 1, 0] 12 74
2 [6, 5, 5, 5, 1, 0] 0 0
2 [5, 5, 5, 7, 0, 0] 0 0
2 [5, 5, 6, 6, 0, 0] 0 0
2 [5, 6, 5, 6, 0, 0] 0 0
2 [6, 5, 5, 6, 0, 0] 0 0
2 [5, 5, 7, 5, 0, 0] 0 0
2 [5, 6, 6, 5, 0, 0] 0 0
2 [6, 5, 6, 5, 0, 0] 0 0
2 [5, 7, 5, 5, 0, 0] 0 0
2 [6, 6, 5, 5, 0, 0] 0 0
2 [7, 5, 5, 5, 0, 0] 0 0

All experiments were run on a Lenovo with Intel(R) Core(TM) i5-6500T CPU @

2.50GHz and a Mac mini with Apple M1, macOS 13.4 (22F66). Some of the experi-



APPENDIX C. APPENDIX: CHAPTER 4 156

ments were run in parallel. The parallel runs and starting random number seeds are

detailed in Table C5.

Table C5: Scenario 1: random number seed settings for 100 macro-replications of the bench-
mark.

Random
Number
Index

Random Number
Seed

Problem
macro-replications

Index

19 36772 Scenario 1 Benchmark δγ = 0.025 1-100
24 3809321646 Scenario 1 Benchmark δγ = 0.01 1-20
25 2683149395 Scenario 1 Benchmark δγ = 0.01 21-40
26 2807176977 Scenario 1 Benchmark δγ = 0.01 41-60
27 2145564691 Scenario 1 Benchmark δγ = 0.01 61-80
28 329900673 Scenario 1 Benchmark δγ = 0.01 81-100

C.4 Chi-squared Test: Selection Accuracy Compar-

ison

For δγ = 0.025:

H0: There are equal numbers of correct selections for the benchmark and CCSB

H1: There are unequal numbers of correct selections for the benchmark and CCSB

Solutions
Hypothesised
Proportion

Benchmark CCSB Expected χ2 Critical
Value

[5, 6, 5, 5, 1, 0] 0.5 12 8 10 0.8 3.8415

Since the χ2 is less than the critical value with an α of 5%, there is no statistical

evidence at a 5% significance level to support that there is a difference in the number
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of correct selections made by the benchmark and CCSB for solution [5, 6, 5, 5, 1, 0].

For δγ = 0.010:

H0: There are equal numbers of correct selections for the benchmark and CCSB

H1: There are unequal numbers of correct selections for the benchmark and CCSB

Solutions
Hypothesised
Proportion

Benchmark CCSB Expected χ2 Critical
Value

[5, 6, 5, 5, 0, 1] 0.5 78 74 76 0.8 3.8415

Since the χ2 is less than the critical value with an α of 5%, there is no statistical

evidence at a 5% significance level to support that there is a difference in the number

of correct selections made by the benchmark and CCSB for solution [5, 6, 5, 5, 0, 1].
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Appendix: Chapter 5

D.1 Chi-squared Test: Results Comparison

H0: There are equal numbers of selections for M-CCSB-F and CCSB-F

H1: There are unequal numbers of selections for M-CCSB-F and CCSB-F

δγ
Hypothesised
Proportion

CCSB-F M-CCSB-F Expected χ2 Critical
Value

0.025 0.5 3 0 1.5 3 3.8415

With an α of 5%, there is no statistical evidence to support that there is a difference

in the number of selections made by M-CCSB-F and CCSB-F.

158
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D.2 Results Tables for Scenario 2: 100 Macro-replications

of CCSB-F

Table D1: Scenario 2: CCSB-F results table (100 macro-replications).

Tolerance Level δγ = 0.05 δγ = 0.025

Additional
Territories

Solutions
Selection

Count

Average
Number
of Runs

Selection
Count

Average
Number
of Runs

0 [4, 4, 4, 4, 0, 0] 0 1906.71 0 8381.16
1 [4, 4, 4, 4, 0, 1] 0 2072.24 0 9185.65
1 [4, 4, 4, 4, 1, 0] 0 2080.36 0 9183.83
1 [4, 4, 4, 5, 0, 0] 0 1884.29 0 8319.05
1 [4, 4, 5, 4, 0, 0] 0 1887.58 0 8337.65
1 [4, 5, 4, 4, 0, 0] 0 1920.58 0 8470.42
1 [5, 4, 4, 4, 0, 0] 0 1939.99 0 8630.63
2 [4, 4, 4, 4, 0, 2] 10 2215.7 34 9699.25
2 [4, 4, 4, 4, 1, 1] 21 2283.19 99 9827.26
2 [4, 4, 4, 5, 0, 1] 0 2060.42 0 9105.09
2 [4, 4, 5, 4, 0, 1] 0 2062.22 0 9113.16
2 [4, 5, 4, 4, 0, 1] 0 2109.83 0 9251.48
2 [5, 4, 4, 4, 0, 1] 2 2141.74 1 9450.66
2 [4, 4, 4, 4, 2, 0] 2 2200.14 32 9716.8
2 [4, 4, 4, 5, 1, 0] 0 2057.99 0 9092.15
2 [4, 4, 5, 4, 1, 0] 0 2046.08 0 9095.38
2 [4, 5, 4, 4, 1, 0] 1 2099.59 0 9297.87
2 [5, 4, 4, 4, 1, 0] 0 2150.26 3 9427.53
2 [4, 4, 4, 6, 0, 0] 0 1864.22 0 8232.09
2 [4, 4, 5, 5, 0, 0] 0 1860.07 0 8261.43
2 [4, 5, 4, 5, 0, 0] 0 1905.67 0 8380.68
2 [5, 4, 4, 5, 0, 0] 0 1932.85 0 8562.84
2 [4, 4, 6, 4, 0, 0] 0 1859.48 0 8215.59
2 [4, 5, 5, 4, 0, 0] 0 1905.06 0 8409.25
2 [5, 4, 5, 4, 0, 0] 0 1945.36 0 8566.18
2 [4, 6, 4, 4, 0, 0] 0 1906.06 0 8362.78
2 [5, 5, 4, 4, 0, 0] 0 1984.87 0 8689.08
2 [6, 4, 4, 4, 0, 0] 0 1935.56 0 8600.17
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Table D2: Scenario 2: random number seed settings for 100 macro-replications of CCSB-F.

Random
Number
Index

Random Number
Seed

Problem
macro-replications

Index

0 1623527968 Scenario 2 CCSB-F δγ = 0.05 1-100
2 3631723266 Scenario 2 CCSB-F δγ = 0.025 1-25
3 248154644 Scenario 2 CCSB-F δγ = 0.025 26-50
4 2000033036 Scenario 2 CCSB-F δγ = 0.025 51-75
5 3839190294 Scenario 2 CCSB-F δγ = 0.025 76-100

D.3 Results Tables for Scenario 2: 100 Macro-replications

of M-CCSB-F

Table D3: Scenario 2: random number seed settings for 100 macro-replications of M-CCSB-F.

Random
Number
Index

Random Number
Seed

Problem
macro-replications

Index

1 3836883120 Scenario 2 M-CCSB-F δγ = 0.05 1-100
6 615377162 Scenario 2 M-CCSB-F δγ = 0.025 1-25
7 2659974823 Scenario 2 M-CCSB-F δγ = 0.025 26-50
8 1283674829 Scenario 2 M-CCSB-F δγ = 0.025 51-75
9 3574523394 Scenario 2 M-CCSB-F δγ = 0.025 76-100
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Table D4: Scenario 2: CCSB-F results table (100 macro-replications).

Tolerance Level δγ = 0.05 δγ = 0.025

Additional
Territories

Solutions
Selection

Count

Average
Number
of Runs

Selection
Count

Average
Number
of Runs

0 [4, 4, 4, 4, 0, 0] 0 1803.08 0 7951.01
1 [4, 4, 4, 4, 1, 0] 0 1966.04 0 8719.94
1 [4, 4, 4, 5, 0, 0] 0 1787.44 0 7876.79
1 [4, 4, 5, 4, 0, 0] 0 1782.74 0 7872.78
1 [4, 5, 4, 4, 0, 0] 0 1809.1 0 8024.36
1 [5, 4, 4, 4, 0, 0] 0 1849.93 0 8167.79
2 [4, 4, 4, 4, 1, 1] 28 2176.12 94 9315.26
2 [4, 4, 4, 4, 2, 0] 2 2097.96 33 9200.04
2 [4, 4, 4, 5, 1, 0] 0 1944.27 0 8615.12
2 [4, 4, 5, 4, 1, 0] 0 1946.83 0 8623.95
2 [4, 5, 4, 4, 1, 0] 0 1985.15 0 8800.1
2 [5, 4, 4, 4, 1, 0] 1 2020.91 0 8991.3
2 [4, 4, 4, 6, 0, 0] 0 1775.14 0 7816.52
2 [4, 4, 5, 5, 0, 0] 0 1774.09 0 7827.15
2 [4, 5, 4, 5, 0, 0] 0 1798.54 0 7963.48
2 [5, 4, 4, 5, 0, 0] 0 1825.98 0 8110.05
2 [4, 4, 6, 4, 0, 0] 0 1770.32 0 7799.17
2 [4, 5, 5, 4, 0, 0] 0 1806.12 0 7952.78
2 [5, 4, 5, 4, 0, 0] 0 1835.81 0 8108.13
2 [4, 6, 4, 4, 0, 0] 0 1800.15 0 7934.85
2 [5, 5, 4, 4, 0, 0] 0 1874.61 0 8279.83
2 [6, 4, 4, 4, 0, 0] 0 1854.15 0 8133.7

D.4 Feasibility Estimation Results Table for Sce-

nario 2

Each solution is run 100,000 times. The significance level is set to 5%, and the critical

value from student t distribution is t1−0.05/28,99999 = 2.913795. A solution is declared

feasible when the test statistics (calculated based on the sample values) are greater than

the critical value. The random number seed used is 1258189053. For the extra 100,000
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replications for solution [4, 5, 4, 4, 1, 0], the random number seed used is 2948196755.

Table D5: Scenario 2: feasibility estimation results.

Additional
Territories

Solutions Pr{Yi ≥ 4} Test
Statistics

Upper
90% CI

Lower
90% CI

Feasibility

0 [4, 4, 4, 4, 0, 0] 0.7195 -21.4625 0.7236 0.7154 Infeasible
1 [4, 4, 4, 4, 0, 1] 0.7454 -3.3391 0.7494 0.7414 Infeasible
1 [4, 4, 4, 4, 1, 0] 0.7450 -3.6348 0.7490 0.7410 Infeasible
1 [4, 4, 4, 5, 0, 0] 0.7170 -23.1394 0.7212 0.7129 Infeasible
1 [4, 4, 5, 4, 0, 0] 0.7195 -21.4557 0.7237 0.7154 Infeasible
1 [4, 5, 4, 4, 0, 0] 0.7266 -16.6023 0.7307 0.7225 Infeasible
1 [5, 4, 4, 4, 0, 0] 0.7302 -14.1136 0.7343 0.7261 Infeasible
2 [4, 4, 4, 4, 0, 2] 0.7616 8.6088 0.7655 0.7577 Feasible
2 [4, 4, 4, 4, 1, 1] 0.7717 16.3720 0.7756 0.7679 Feasible
2 [4, 4, 4, 5, 0, 1] 0.7420 -5.7820 0.7460 0.7380 Infeasible
2 [4, 4, 5, 4, 0, 1] 0.7432 -4.9078 0.7472 0.7392 Infeasible
2 [4, 5, 4, 4, 0, 1] 0.7490 -0.7657 0.7529 0.7450 Infeasible
2 [5, 4, 4, 4, 0, 1] 0.7540 2.9666 0.7580 0.7501 Feasible
2 [4, 4, 4, 4, 2, 0] 0.7586 6.3701 0.7626 0.7547 Feasible
2 [4, 4, 4, 5, 1, 0] 0.7417 -5.9751 0.7458 0.7377 Infeasible
2 [4, 4, 5, 4, 1, 0] 0.7438 -4.4841 0.7478 0.7398 Infeasible
2 [4, 5, 4, 4, 1, 0] 0.7481 -1.3695 0.7521 0.7441 Infeasible
2 [5, 4, 4, 4, 1, 0] 0.7552 3.8392 0.7592 0.7513 Feasible
2 [4, 4, 4, 6, 0, 0] 0.7170 -23.1936 0.7211 0.7128 Infeasible
2 [4, 4, 5, 5, 0, 0] 0.7152 -24.4105 0.7193 0.7110 Infeasible
2 [4, 5, 4, 5, 0, 0] 0.7232 -18.9624 0.7273 0.7190 Infeasible
2 [5, 4, 4, 5, 0, 0] 0.7285 -15.3222 0.7325 0.7244 Infeasible
2 [4, 4, 6, 4, 0, 0] 0.7184 -22.2443 0.7225 0.7142 Infeasible
2 [4, 5, 5, 4, 0, 0] 0.7244 -18.1455 0.7285 0.7202 Infeasible
2 [5, 4, 5, 4, 0, 0] 0.7250 -17.7122 0.7291 0.7209 Infeasible
2 [4, 6, 4, 4, 0, 0] 0.7186 -22.0541 0.7228 0.7145 Infeasible
2 [5, 5, 4, 4, 0, 0] 0.7320 -12.8723 0.7361 0.7279 Infeasible
2 [6, 4, 4, 4, 0, 0] 0.7291 -14.8782 0.7332 0.7250 Infeasible

The solutions highlighted in grey are feasible based on the 100k results. There are 5

feasible solutions: [4, 4, 4, 4, 0, 2], [4, 4, 4, 4, 1, 1], [5, 4, 4, 4, 0, 1], [4, 4, 4, 4, 2, 0] and

[5, 4, 4, 4, 1, 0].
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D.5 Chi-squared Test: Selection Accuracy Compar-

ison

H0: There are equal numbers of correct selections for M-CCSB-F and CCSB-F

H1: There are unequal numbers of correct selections for M-CCSB-F and CCSB-F

δγ
Hypothesised
Proportion

CCSB-F M-CCSB-F Expected χ2 Critical
Value

0.05 0.5 33 31 32 0.0625 5.0239
0.025 0.5 100 98 99 0.0202 5.0239

With an α of 5% (with Bonferroni correction), there is no statistical evidence to support

that there is a difference in the number of correct selections made by M-CCSB-F and

CCSB-F.
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Appendix: Chapter 6

E.1 Experiment Settings for Scenario 3

All experiments are conducted on a Lenovo with an Intel(R) Core(TM) i5-6500T CPU

@ 2.50GHz and a Mac mini with an Apple M1, running macOS 13.4 (22F66).

For feasibility estimations, the random number seed is 2000033036, and the run time

for all 210 solutions is 7.3305 hours for 1 macro-replication.

For 100 macro-replications of CCSB-F and H-CCSB-F, the experiments are run in par-

allel. Table E1 provides details of the random number seeds used for each experiment.

164
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Table E1: Scenario 3: random number seed settings for macro-replications.

Random
Number
Index

Random Number
Seed

Problem
macro-replications

Index

5 3839190294 Scenario 3: CCSB-F 1-11
6 615377162 Scenario 3: CCSB-F 12-22
7 2659974823 Scenario 3: CCSB-F 23-33
8 1283674829 Scenario 3: CCSB-F 34-44
9 3574523394 Scenario 3: CCSB-F 45-55
10 1258189053 Scenario 3: CCSB-F 56-66
11 2948196755 Scenario 3: CCSB-F 67-77
12 1821795604 Scenario 3: CCSB-F 78-89
13 1298501725 Scenario 3: CCSB-F 90-100
14 892462304 Scenario 3: H-CCSB-F 1-20
15 1298749205 Scenario 3: H-CCSB-F 21-40
16 3596989659 Scenario 3: H-CCSB-F 41-60
17 822626078 Scenario 3: H-CCSB-F 61-80
18 830021159 Scenario 3: H-CCSB-F 81-100

E.2 Feasibility Estimation Results for Infeasible So-

lutions in Scenario 3
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Table E2: Scenario 3: feasibility estimation results for infeasible solutions.

Solutions Pr{Yi ≥ 14} Lower
90% CI

Upper
90% CI

Critical Value Test Statistics

[6, 7, 6, 6, 3, 2] 0.748478 0.7469 0.7500 2.3264 -2.4804
[7, 7, 6, 6, 4, 0] 0.750176 0.7486 0.7517 2.3264 0.2875
[7, 7, 7, 6, 2, 1] 0.748698 0.7472 0.7502 2.3264 -2.1225
[8, 8, 6, 6, 2, 0] 0.750628 0.7491 0.7522 2.3264 1.0264
[6, 6, 6, 7, 3, 2] 0.73318 0.7290 0.7373 2.9739 -12.0257
[8, 6, 7, 7, 2, 0] 0.7423 0.7382 0.7464 2.9739 -5.5673
[6, 6, 7, 6, 3, 2] 0.74477 0.7407 0.7489 2.9739 -3.7934
[7, 6, 7, 6, 4, 0] 0.746392 0.7449 0.7479 2.4977 -5.8639
[7, 7, 7, 6, 3, 0] 0.73975 0.7356 0.7439 2.9739 -7.3873
[6, 6, 6, 6, 3, 3] 0.73049 0.7263 0.7347 2.9739 -13.9047
[7, 6, 6, 6, 2, 2] 0.74532 0.7412 0.7494 2.9739 -3.3969
[7, 6, 6, 6, 3, 1] 0.74165 0.7375 0.7458 2.9739 -6.0323
[7, 6, 6, 7, 4, 0] 0.7379 0.7338 0.7420 2.9739 -8.7007
[7, 8, 6, 6, 2, 1] 0.74161 0.7375 0.7457 2.9739 -6.0609
[8, 7, 6, 7, 2, 0] 0.749024 0.7475 0.7506 2.4977 -1.5917
[7, 6, 7, 7, 2, 1] 0.7359 0.7318 0.7400 2.9739 -10.1141
[7, 6, 6, 6, 5, 0] 0.74666 0.7451 0.7482 2.4977 -5.4302
[7, 7, 6, 7, 2, 1] 0.74201 0.7379 0.7461 2.9739 -5.7748
[8, 6, 8, 6, 2, 0] 0.74154 0.7374 0.7457 2.9739 -6.1109
[8, 7, 6, 6, 2, 0] 0.73418 0.7300 0.7383 2.9739 -11.3243
[7, 6, 8, 6, 2, 1] 0.73192 0.7278 0.7361 2.9739 -12.9073
[6, 7, 6, 6, 4, 1] 0.73754 0.7334 0.7417 2.9739 -8.9556
[6, 6, 7, 6, 4, 1] 0.7342 0.7188 0.7496 3.4950 -3.5764
[7, 7, 6, 6, 2, 1] 0.7322 0.7167 0.7477 3.4950 -4.0196
[8, 6, 7, 6, 2, 0] 0.7321 0.7166 0.7476 3.4950 -4.0417
[7, 6, 7, 7, 3, 0] 0.732 0.7165 0.7475 3.4950 -4.0638
[7, 7, 6, 7, 3, 0] 0.732 0.7165 0.7475 3.4950 -4.0638
[6, 6, 6, 6, 5, 1] 0.7315 0.7160 0.7470 3.4950 -4.1742
[7, 8, 6, 6, 3, 0] 0.7285 0.7130 0.7440 3.4950 -4.8341
[7, 6, 6, 6, 4, 0] 0.7283 0.7128 0.7438 3.4950 -4.8780
[7, 6, 8, 6, 3, 0] 0.7276 0.7120 0.7432 3.4950 -5.0313
[6, 6, 6, 7, 4, 1] 0.7271 0.7115 0.7427 3.4950 -5.1406
[6, 7, 7, 6, 3, 1] 0.7257 0.7101 0.7413 3.4950 -5.4462
[8, 6, 6, 8, 2, 0] 0.7251 0.7095 0.7407 3.4950 -5.5769
[6, 7, 7, 6, 2, 2] 0.7239 0.7083 0.7395 3.4950 -5.8378
[7, 7, 6, 6, 3, 0] 0.7212 0.7055 0.7369 3.4950 -6.4224
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Solutions Pr{Yi ≥ 14} Lower
90% CI

Upper
90% CI

Critical Value Test Statistics

[7, 6, 7, 6, 2, 1] 0.721 0.7053 0.7367 3.4950 -6.4656
[8, 6, 6, 7, 2, 0] 0.7187 0.7030 0.7344 3.4950 -6.9609
[6, 7, 6, 7, 2, 2] 0.7181 0.7024 0.7338 3.4950 -7.0897
[7, 6, 7, 6, 3, 0] 0.7169 0.7012 0.7326 3.4950 -7.3469
[6, 8, 6, 6, 3, 1] 0.715 0.6992 0.7308 3.4950 -7.7530
[7, 6, 6, 8, 2, 1] 0.7146 0.6988 0.7304 3.4950 -7.8383
[6, 8, 6, 6, 2, 2] 0.7145 0.6987 0.7303 3.4950 -7.8596
[7, 6, 6, 7, 2, 1] 0.7136 0.6978 0.7294 3.4950 -8.0513
[6, 6, 7, 7, 3, 1] 0.7124 0.6966 0.7282 3.4950 -8.3063
[6, 7, 6, 6, 2, 3] 0.7119 0.6961 0.7277 3.4950 -8.4124
[7, 7, 8, 6, 2, 0] 0.7111 0.6953 0.7269 3.4950 -8.5820
[6, 6, 6, 6, 3, 2] 0.7109 0.6951 0.7267 3.4950 -8.6244
[7, 8, 7, 6, 2, 0] 0.7107 0.6949 0.7265 3.4950 -8.6667
[6, 7, 6, 7, 3, 1] 0.7106 0.6948 0.7264 3.4950 -8.6879
[6, 7, 7, 6, 4, 0] 0.7104 0.6945 0.7263 3.4950 -8.7302
[6, 6, 6, 6, 4, 1] 0.7097 0.6938 0.7256 3.4950 -8.8781
[8, 6, 6, 6, 2, 0] 0.7091 0.6932 0.7250 3.4950 -9.0048
[6, 7, 6, 6, 2, 2] 0.709 0.6931 0.7249 3.4950 -9.0259
[6, 7, 6, 6, 5, 0] 0.709 0.6931 0.7249 3.4950 -9.0259
[6, 6, 7, 7, 2, 2] 0.7081 0.6922 0.7240 3.4950 -9.2157
[7, 6, 6, 7, 3, 0] 0.7075 0.6916 0.7234 3.4950 -9.3420
[7, 7, 7, 7, 2, 0] 0.7072 0.6913 0.7231 3.4950 -9.4051
[7, 6, 6, 8, 3, 0] 0.707 0.6911 0.7229 3.4950 -9.4472
[6, 6, 8, 6, 2, 2] 0.7055 0.6896 0.7214 3.4950 -9.7622
[6, 6, 7, 6, 2, 3] 0.7052 0.6893 0.7211 3.4950 -9.8251
[6, 6, 7, 6, 5, 0] 0.705 0.6891 0.7209 3.4950 -9.8670
[6, 6, 8, 6, 3, 1] 0.7048 0.6889 0.7207 3.4950 -9.9089
[6, 6, 7, 6, 2, 2] 0.7046 0.6887 0.7205 3.4950 -9.9508
[6, 8, 6, 6, 4, 0] 0.7024 0.6864 0.7184 3.4950 -10.4106
[6, 7, 6, 6, 3, 1] 0.7014 0.6854 0.7174 3.4950 -10.6191
[6, 6, 6, 7, 5, 0] 0.7013 0.6853 0.7173 3.4950 -10.6399
[7, 8, 6, 7, 2, 0] 0.7007 0.6847 0.7167 3.4950 -10.7648
[7, 6, 8, 7, 2, 0] 0.6999 0.6839 0.7159 3.4950 -10.9311
[6, 6, 7, 6, 3, 1] 0.6978 0.6817 0.7139 3.4950 -11.3667
[6, 7, 6, 7, 4, 0] 0.6975 0.6814 0.7136 3.4950 -11.4289
[7, 7, 6, 7, 2, 0] 0.6973 0.6812 0.7134 3.4950 -11.4702
[6, 8, 7, 6, 2, 1] 0.6947 0.6786 0.7108 3.4950 -12.0072
[6, 6, 6, 7, 3, 1] 0.6941 0.6780 0.7102 3.4950 -12.1308
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Solutions Pr{Yi ≥ 14} Lower
90% CI

Upper
90% CI

Critical Value Test Statistics

[6, 6, 8, 6, 4, 0] 0.694 0.6779 0.7101 3.4950 -12.1514
[6, 6, 6, 7, 2, 3] 0.6937 0.6776 0.7098 3.4950 -12.2131
[6, 7, 7, 7, 2, 1] 0.6936 0.6775 0.7097 3.4950 -12.2337
[6, 6, 6, 8, 2, 2] 0.6934 0.6773 0.7095 3.4950 -12.2749
[6, 8, 7, 6, 3, 0] 0.6931 0.6770 0.7092 3.4950 -12.3366
[6, 6, 7, 7, 4, 0] 0.693 0.6769 0.7091 3.4950 -12.3571
[7, 6, 6, 6, 2, 1] 0.6929 0.6768 0.7090 3.4950 -12.3777
[7, 7, 7, 6, 2, 0] 0.6924 0.6763 0.7085 3.4950 -12.4804
[7, 9, 6, 6, 2, 0] 0.6907 0.6745 0.7069 3.4950 -12.8292
[7, 8, 6, 6, 2, 0] 0.6898 0.6736 0.7060 3.4950 -13.0134
[7, 7, 6, 8, 2, 0] 0.6879 0.6717 0.7041 3.4950 -13.4017
[7, 6, 6, 6, 3, 0] 0.6878 0.6716 0.7040 3.4950 -13.4221
[6, 6, 6, 6, 6, 0] 0.6877 0.6715 0.7039 3.4950 -13.4425
[6, 7, 8, 6, 2, 1] 0.6874 0.6712 0.7036 3.4950 -13.5037
[6, 7, 7, 7, 3, 0] 0.6874 0.6712 0.7036 3.4950 -13.5037
[6, 6, 6, 8, 3, 1] 0.6873 0.6711 0.7035 3.4950 -13.5241
[6, 7, 8, 6, 3, 0] 0.6867 0.6705 0.7029 3.4950 -13.6464
[6, 6, 6, 6, 2, 3] 0.6863 0.6701 0.7025 3.4950 -13.7279
[7, 6, 7, 8, 2, 0] 0.6858 0.6696 0.7020 3.4950 -13.8297
[6, 6, 6, 6, 2, 4] 0.6853 0.6691 0.7015 3.4950 -13.9314
[6, 6, 6, 7, 2, 2] 0.6844 0.6682 0.7006 3.4950 -14.1143
[7, 6, 8, 6, 2, 0] 0.6834 0.6671 0.6997 3.4950 -14.3172
[6, 6, 8, 7, 2, 1] 0.683 0.6667 0.6993 3.4950 -14.3984
[6, 8, 6, 6, 2, 1] 0.6819 0.6656 0.6982 3.4950 -14.6212
[6, 7, 6, 6, 4, 0] 0.6818 0.6655 0.6981 3.4950 -14.6414
[6, 9, 6, 6, 2, 1] 0.6808 0.6645 0.6971 3.4950 -14.8437
[6, 8, 6, 7, 2, 1] 0.6807 0.6644 0.6970 3.4950 -14.8639
[7, 6, 9, 6, 2, 0] 0.6798 0.6635 0.6961 3.4950 -15.0458
[6, 6, 6, 6, 3, 1] 0.6776 0.6613 0.6939 3.4950 -15.4893
[6, 7, 7, 6, 2, 1] 0.6766 0.6603 0.6929 3.4950 -15.6906
[6, 8, 6, 7, 3, 0] 0.6766 0.6603 0.6929 3.4950 -15.6906
[7, 6, 7, 7, 2, 0] 0.6761 0.6597 0.6925 3.4950 -15.7911
[6, 6, 7, 6, 4, 0] 0.6743 0.6579 0.6907 3.4950 -16.1525
[6, 6, 6, 6, 5, 0] 0.6742 0.6578 0.6906 3.4950 -16.1725
[6, 6, 8, 7, 3, 0] 0.6737 0.6573 0.6901 3.4950 -16.2728
[7, 7, 6, 6, 2, 0] 0.6715 0.6551 0.6879 3.4950 -16.7131
[6, 9, 6, 6, 3, 0] 0.6678 0.6513 0.6843 3.4950 -17.4513
[6, 7, 6, 7, 2, 1] 0.667 0.6505 0.6835 3.4950 -17.6105
[6, 7, 6, 8, 2, 1] 0.667 0.6505 0.6835 3.4950 -17.6105
[6, 8, 6, 6, 3, 0] 0.6668 0.6503 0.6833 3.4950 -17.6503
[6, 6, 6, 7, 4, 0] 0.6654 0.6489 0.6819 3.4950 -17.9285
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Solutions Pr{Yi ≥ 14} Lower
90% CI

Upper
90% CI

Critical Value Test Statistics

[6, 7, 7, 6, 3, 0] 0.665 0.6485 0.6815 3.4950 -18.0079
[6, 6, 9, 6, 3, 0] 0.665 0.6485 0.6815 3.4950 -18.0079
[6, 6, 7, 8, 2, 1] 0.6648 0.6483 0.6813 3.4950 -18.0476
[6, 7, 6, 7, 3, 0] 0.6644 0.6479 0.6809 3.4950 -18.1270
[6, 7, 6, 8, 3, 0] 0.6623 0.6458 0.6788 3.4950 -18.5432
[6, 6, 9, 6, 2, 1] 0.6613 0.6448 0.6778 3.4950 -18.7411
[6, 6, 6, 8, 4, 0] 0.6613 0.6448 0.6778 3.4950 -18.7411
[6, 6, 8, 6, 2, 1] 0.6612 0.6447 0.6777 3.4950 -18.7609
[6, 6, 6, 6, 2, 2] 0.6607 0.6442 0.6772 3.4950 -18.8597
[6, 6, 6, 6, 4, 0] 0.6589 0.6423 0.6755 3.4950 -19.2153
[6, 6, 7, 8, 3, 0] 0.6589 0.6423 0.6755 3.4950 -19.2153
[6, 6, 7, 7, 3, 0] 0.6576 0.6410 0.6742 3.4950 -19.4716
[7, 6, 6, 7, 2, 0] 0.657 0.6404 0.6736 3.4950 -19.5899
[7, 6, 7, 6, 2, 0] 0.6568 0.6402 0.6734 3.4950 -19.6293
[7, 6, 6, 9, 2, 0] 0.6566 0.6400 0.6732 3.4950 -19.6687
[6, 7, 6, 6, 2, 1] 0.6563 0.6397 0.6729 3.4950 -19.7277
[6, 8, 8, 6, 2, 0] 0.6558 0.6392 0.6724 3.4950 -19.8261
[6, 6, 7, 7, 2, 1] 0.6549 0.6383 0.6715 3.4950 -20.0032
[6, 7, 8, 7, 2, 0] 0.6542 0.6376 0.6708 3.4950 -20.1408
[6, 6, 8, 6, 3, 0] 0.6532 0.6366 0.6698 3.4950 -20.3372
[6, 8, 7, 7, 2, 0] 0.6512 0.6345 0.6679 3.4950 -20.7295
[7, 6, 6, 8, 2, 0] 0.6486 0.6319 0.6653 3.4950 -21.2386
[6, 9, 7, 6, 2, 0] 0.6477 0.6310 0.6644 3.4950 -21.4146
[6, 6, 6, 9, 2, 1] 0.6474 0.6307 0.6641 3.4950 -21.4733
[6, 6, 7, 6, 2, 1] 0.6468 0.6301 0.6635 3.4950 -21.5905
[6, 6, 7, 6, 3, 0] 0.6448 0.6281 0.6615 3.4950 -21.9809
[6, 7, 9, 6, 2, 0] 0.643 0.6263 0.6597 3.4950 -22.3317
[6, 8, 7, 6, 2, 0] 0.6398 0.6230 0.6566 3.4950 -22.9544
[6, 7, 7, 7, 2, 0] 0.6387 0.6219 0.6555 3.4950 -23.1681
[6, 7, 6, 6, 3, 0] 0.6379 0.6211 0.6547 3.4950 -23.3235
[6, 7, 8, 6, 2, 0] 0.6379 0.6211 0.6547 3.4950 -23.3235
[6, 7, 7, 8, 2, 0] 0.6374 0.6206 0.6542 3.4950 -23.4205
[6, 6, 6, 8, 2, 1] 0.6369 0.6201 0.6537 3.4950 -23.5176
[6, 9, 6, 7, 2, 0] 0.6352 0.6184 0.6520 3.4950 -23.8472
[6, 6, 6, 8, 3, 0] 0.6338 0.6170 0.6506 3.4950 -24.1184
[6, 8, 6, 8, 2, 0] 0.6317 0.6148 0.6486 3.4950 -24.5249
[6, 6, 6, 9, 3, 0] 0.6304 0.6135 0.6473 3.4950 -24.7762
[6, 6, 9, 7, 2, 0] 0.629 0.6121 0.6459 3.4950 -25.0467
[7, 6, 6, 6, 2, 0] 0.6279 0.6110 0.6448 3.4950 -25.2592
[6, 6, 6, 7, 2, 1] 0.6278 0.6109 0.6447 3.4950 -25.2785
[6, 6, 8, 8, 2, 0] 0.6244 0.6075 0.6413 3.4950 -25.9342
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Solutions Pr{Yi ≥ 14} Lower
90% CI

Upper
90% CI

Critical Value Test Statistics

[6, 8, 6, 7, 2, 0] 0.6242 0.6073 0.6411 3.4950 -25.9728
[6, 6, 6, 6, 2, 1] 0.6241 0.6072 0.6410 3.4950 -25.9921
[6, 9, 6, 6, 2, 0] 0.6231 0.6062 0.6400 3.4950 -26.1847
[6, 6, 6, 7, 3, 0] 0.6219 0.6050 0.6388 3.4950 -26.4158
[6, 6, 8, 7, 2, 0] 0.6191 0.6021 0.6361 3.4950 -26.9545
[6, 7, 7, 6, 2, 0] 0.618 0.6010 0.6350 3.4950 -27.1660
[6, 10, 6, 6, 2, 0] 0.616 0.5990 0.6330 3.4950 -27.5503
[6, 7, 6, 8, 2, 0] 0.6156 0.5986 0.6326 3.4950 -27.6272
[6, 7, 6, 9, 2, 0] 0.6111 0.5941 0.6281 3.4950 -28.4909
[6, 6, 10, 6, 2, 0] 0.6106 0.5936 0.6276 3.4950 -28.5867
[6, 6, 9, 6, 2, 0] 0.6066 0.5895 0.6237 3.4950 -29.3534
[6, 6, 7, 9, 2, 0] 0.6056 0.5885 0.6227 3.4950 -29.5450
[6, 8, 6, 6, 2, 0] 0.6051 0.5880 0.6222 3.4950 -29.6408
[6, 6, 7, 8, 2, 0] 0.6048 0.5877 0.6219 3.4950 -29.6982
[6, 7, 6, 7, 2, 0] 0.6047 0.5876 0.6218 3.4950 -29.7174
[6, 6, 6, 6, 3, 0] 0.6035 0.5864 0.6206 3.4950 -29.9472
[6, 6, 8, 6, 2, 0] 0.5964 0.5793 0.6135 3.4950 -31.3058
[6, 7, 6, 6, 2, 0] 0.5916 0.5744 0.6088 3.4950 -32.2238
[6, 6, 7, 7, 2, 0] 0.5891 0.5719 0.6063 3.4950 -32.7018
[6, 6, 7, 6, 2, 0] 0.5847 0.5675 0.6019 3.4950 -33.5431
[6, 6, 6, 8, 2, 0] 0.5762 0.5589 0.5935 3.4950 -35.1691
[6, 6, 6, 10, 2, 0] 0.5743 0.5570 0.5916 3.4950 -35.5327
[6, 6, 6, 9, 2, 0] 0.5732 0.5559 0.5905 3.4950 -35.7433
[6, 6, 6, 7, 2, 0] 0.5714 0.5541 0.5887 3.4950 -36.0881
[6, 6, 6, 6, 2, 0] 0.5458 0.5284 0.5632 3.4950 -41.0104
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E.3 Chi-Squared Test: Selection Accuracy Com-

parison

H0: There are equal rates of correct selections between CCSB-F and H-CCSB-F.

H1: There are unequal rates of correct selections between CCSB-F and H-CCSB-F.

CCSB-F H-CCSB-F Expected χ2 Critical Value
65 76 70.5 0.8582 3.8415

With a significance level of 5%, there is no statistical evidence to support that M-

CCSB-F and CCSB-F made different numbers of correct selections.
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Andradóttir, S. (2006). “Chapter 20 An Overview of Simulation Optimization via Ran-

dom Search”. In: Simulation. Ed. by S. G. Henderson and B. L. Nelson. Vol. 13.

Handbooks in Operations Research and Management Science. Elsevier, pp. 617–631.
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