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ABSTRACT
Current Genetic Improvement (GI) for software systems use pre-
existing program representations, such as abstract syntax trees and
bytecode, to apply genetic operations to. These representations,
however, were designed for the purpose of translating human read-
able source code to machine code. When used to underpin GI, these
representations have drawbacks, such as the risk of breaking a pro-
gram when deploying mutations, and the difficulty of expressing
search trajectories that are not entirely rooted around the initial in-
dividual. We present a novel matrix-based program representation
which is specifically designed for the purpose of GI. Our represen-
tation (i) makes it impossible for mutations or crossover to yield an
invalid program, without the need for any syntactic or semantic
checks, while still making every valid program reachable by search,
and (ii) supports the simple expression of rich, layered probability
distributions atop the program matrix to guide a GI search process
in a wide variety of different ways. We build an end-to-end GI
system using this new representation and demonstrate how we can
layer a range a probability distributions on top of the representa-
tion to gain different effects. We also explore the future research
possibilities that this approach to program representation presents.

1 INTRODUCTION
Genetic Improvement (GI) for software has been used extensively
in automated bug fixing [15], and more recently in automated
performance improvement of software [18]. The state of the art
research in GI uses program representations that borrow from
existing compilation / interpretation pipelines, such as Abstract
Syntax Trees (AST) [2, 12], Bytecode [13], or ASCII source code.

These representations have significant shortcomings when used
to underpin GI processes. One is that extensive checks are needed
to ensure that mutated programs remain within a syntactically-
and semantically- valid envelope. Typically, when considering the
deployment of a mutation, a line of code is selected at random, and
then the set of all possible mutations is filtered to those that are
most-likely-valid at this location; this filtering requires tracking
of in-scope variables, their types, and valid operators on those
types, etc., and is still subject to mistakes [4, 9, 11, 14]. Another
shortcoming is that the trajectories of program search are tightly
bound to the locale of the starting individual, since each mutation
is an incremental delta from this starting individual; this severely
limits the set of search distributions that can be expressed within
the full theoretical program space.

We present a novel matrix-based program representation form
which, as far as we are aware, is the first to be specifically designed
for GI. This representation first allows for the use of any possible
mutation and crossover strategy combination, whilst inherently

guaranteeing that any resulting program is compile-able, without
the need for explicit syntax or semantic checks. This includes the
ability to apply multiple mutations to the same program in parallel,
which in turns lends itself to deployment on SIMD architectures
such as modern GPUs; part of our implemented GI loop is offloaded
onto a GPU to demonstrate this. Second, our novel representation
allows the layering of arbitrary probability distributions atop the
program representation matrix, allowing the expression of rich
search trajectories – including those that are bound to the locale
of the starting individual with an arbitrary weighting, those that
are not bound in any way and can rapidly access the totality of
theoretical program search space, or hybrid distributions which
keep some parts of individuals in a starting locale and allow others
in reach different locales.

We have implemented a mechanism to explore this new space
of mutation strategies, which also offers diverse future research
directions. Our specific contributions in this paper are:

• We present the details of our novel numeric matrix-based
program representation for general-purpose languages (Sec-
tions 3 – 4.2)

• We provide a method for realising source code from nu-
merical matrix instances using our novel representation,
and show that this is entirely general without the need for
validity checks (Sections 4.3 – 4.4)

• We design an end-to-end GI system based on our novel
representation, and show how it is suited to highly parallel
architectures such as GPUs (Sections 4.2, 4.3 and 5);

• We provide a mechanism for exploring the space of muta-
tion strategies using layered probability distributions, and
show how a different set of distributions affects GI perfor-
mance and outcomes: Sections 5.2 and 6.

We conclude the paper by discussing novel future research di-
rections that are made possible by our approach.

2 BACKGROUND
In this section we first examine why current program representa-
tions used in GI may derive programs that are invalid, then show
how we may design a novel representation that mitigates this.

We first define two different spaces: solution space and physical
space. We define solution space as the area of syntactically and
semantically valid programs – in other words, programs which
can be compiled with no errors. We define physical space as the
area of all possible program formulations, many of which will be
syntactically and/or semantically invalid.
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As an example, consider a program represented in an abstract
syntax tree. Such a program will have AST nodes representing oper-
ators and operands, where some operands may be local variables of
a function. If we are to mutate a variable node to be a different local
variable, the solution space here is all other local variables which are
in-scope and type-compatible with the current variable. The physi-
cal space, by comparison, is all other local variables regardless of
whether they are in-scope or type-compatible. The same definition
can be applied to operator nodes of the AST, where one operator
could be mutated to a set of other operators which are compati-
ble with the existing, or a set which exist in the language but are
not compatible with the operands, etc. We can similarly extend
this solution space :: physical space definition to other program
representations, such as bytecode and machine code.

We illustrate this spatial definition in Fig. 1, where the light-gray
area represents solution space and dark-gray represents physical
space. The boundaries of solution space are irregular, depending
on the direction of travel, which results in the need for extensive
correctness checking for mutations that are expressed relative to
AST or other classical representational forms.

Our novel representation uses a numeral encoding in a rect-
angular matrix, such that the problem maps very closely to our
illustration in Fig. 1 – in other words, some collections of numerical
values for a given matrix instance lie in solution space, and some
lie in physical space. Our aim is for a representation which allows
mutations over a matrix to do anything to the input matrix and
still yield a valid program – i.e., a value inside the solution space
which is syntactically and semantically correct. Due to physical
space being larger than solution space, a corrective approach is
needed to move physical space matrix values into solution space.

Our solution to this is to allow multiple numerical points in
physical space to represent a single point in solution space, such that
solution space is effectively a regular rectangle which encompasses
all of physical space. With this, a mutation can do anything to its
input matrix values and will always return a value that, under our
representation, can be interpreted as a valid program.

In this section we have illustrated the problem and the basic
intuition behind our approach. In the following sections we elabo-
rate on how we move from a numerical matrix to program source
code, and how this transition ensures that we always stay within
solution space. We will also show how we can layer probability
distributions atop the numerical program matrix to define a wide
variety of search constraints or search directions.

3 SYSTEM OVERVIEW
In the following sections (4-5) of this paper we describe how we’ve
taken the above principles, and applied them to build an end-to-end
GI system that can use any mutation and crossover strategy and still
yield output that is guaranteed to be in solution space. An overview
of the complete system is shown in Figure 2, and each of the next
sections will explain one or more of its components. The system
starts from an initial population of compilable source code, shown
at the bottom of the loop. This is then evaluated for fitness using
environment test data, after which it is converted into a numerical
matrix form. This matrix form is used for selection, crossover, and
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Figure 1: Irregular Search Space Geometries
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Figure 2: GI System Overview

mutation, after which we convert matrices of individuals back to
source code for another round of fitness testing.

Elements in the diagram highlighted in green are objects stored
in GPU memory, those in blue on the CPU. Elements in red are
compute processes that execute on the GPU, with those in beige
executing on the CPU. The elements labeled ’flip’ and ’flop’ are
GPU memory areas reserved to store the GI population. Program
Extraction phases one and two translate a program from our nu-
merical matrix representation into source code, and the PDFs at the
top of the loop are probability density functions which inform the
system on how to mutate individuals and navigate search space.
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𝑓 𝑜𝑟 ( 𝑖 ; 𝑖 < 𝑎 ; 𝑖 = 𝑖 + 1 ){}

[ 𝑣0, 𝑣1, 𝑣2, 𝑣3, 𝑣4 ] ∈ N5
2𝑤

Figure 3: Feature Vector Construction

4 OUR REPRESENTATION
4.1 Feature Vectors
Our target programming language is a general-purpose systems
language called Dana [17], which has been used in a range of GI
research [1, 20] and allows individual parts of programs to be im-
proved and dynamically re-injected into a running system with
safety assurance. It has a broadly similar syntax grammar to Java.

Our current representation version focuses on a small subset
of the language, but one which enables a broad range of GI op-
timisation applications. The main constraint is that we currently
ignore most typing concerns, assuming that every variable is an
unsigned integer or array of unsigned integers. Besides this we
support variable assignments, arithmetic operators, and logical
comparison operators of equality and greater-then / less-than. We
also support the control flow constructs of for-loops, while-loops,
and if-statements. Most general purpose languages share these
features, making our approach translatable to other languages.

We model each possible kind of source code line, from assign-
ments, to operators, or control-flow constructs, as a program feature.
Each program feature, such as a for-loop, has its own feature vector
which has an associated schema. Figure 3 illustrates how we do
this in the case of for-loops. In this example vector, 𝑣0 represents
the iterator variable of the for-loop, 𝑣1 represents the termination
condition operator, and 𝑣2 represents the variable containing the
loop limit value. For any given feature vector and a given schema,
we can therefore reconstruct the syntax it represents in source code
by reading the current values from the feature vector.

4.2 Function Matrix
Using the above approach to represent individual features of a
program, we need a way to package them together in memory to
form our search space of all possible combinations of 𝑛 features that
are achievable when producing source code from our encoding.

We do this via a Function Matrix which has 𝑛 columns, where
each column has a row for each feature schema. We use the indices
of these rows to know which schema to use when translating a
program feature from a feature vector into source code. The first row
of this matrix may therefore be the row representing assignments,
while the second row may represent operators, and the third for-
loops, etc. This is illustrated in Figure 4. The column count is then
set to be as large as needed to provide sufficient space to allow 𝑛

feature combinations. Within this representation, feature vectors of
a given type (e.g. those for if-statements) are packed into a multiple
of n-bits, where n is the default system bit-width. Current GPUs
tend to default to 32-bit number representations, so we use 32-bits
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Figure 4: Feature Column Construction

as our allocation unit; a feature vector needing more than 32-bits
bits will span across multiple 32-bit cells.

When reading out an entire function matrix, we read column 0
first, iterating through each of its rows from the top to the bottom.
For each row that has a non-zero value, we interpret the schema
for that row to translate the numerical value into valid source code.
If the 0’th row of column 0 has a non-zero value, therefore, we
generate a line of code which is an assignment, using variables
according to those indicated by the numerical values of the cell;
if the next row of column 0 has a non-zero value, we generate a
subsequent line of code which represents an operation, and so on,
until we reach the last row of the column. We then move to column
1 to repeat the process, until we reach the end of the columns.

The schema for each row ensures that we derive a syntactically
and semantically-valid overall outcome from this process, in combi-
nation with additional rules around variable declarations as follows.
Variable declarations can be particularly challenging to deal with
when applying genetic operators to software representations. It is
easy to remove a variable declaration that is referenced later in a
program, or reference a variable in a scope where it is not visible.
We avoid this complexity simply by deciding at the outset how
many variables will be available and declaring all of them preced-
ing any other source code, making them visible to all scopes. Each
feature schema is then bounded by the maximum variable name
available when decoding the numeric value of a matrix cell into a
source code representation.

4.3 Extracting Source Code
Our function matrix, along with information on declared variables,
gives us everything we need to construct compiler-safe source code.
Having stored all this information in a matrix, we are able to put
this data on a GPU; this is because our program representation
now appears as a rectangle of numeric values, which is essentially
analogous to an image of pixels. We can then highly parallelize
many of the operations performed on the matrix itself, as well as
parts of the process that decode a matrix instance into source code.

Referring back to our the system overview, an individual in a GI
process is represented by one function matrix, with a population
being a collection of such matrices. In our case, all individuals have
the same dimensions so we can store them contiguously in memory.
This population then has two areas of memory allocated for it,
labeled as Flip and Flop on the system overview on Fig. 2.

Our source code extraction process converts our numerical ma-
trix into ASCII source code. To do this we first pre-allocate some
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memory on the GPU to store the ASCII output, with the knowledge
that this memory region is large enough to store any permutation of
the entire function. This requires some knowledge of the syntax of
the target language and its relation to the length of variable names.
In our case the language feature that requires the most ASCII-
representation syntax is the for-loop. Assuming that each variable
part of the for-statement is filled in with the longest possible value
(characters in the name of a variable or digits in a literal value), we
can calculate the length of the longest possible for-statement as a
whole. We then multiply this by the number of features represented
in our function matrix to get a length able to fit any program when
converted to ASCII – in this case, the length if every single line of
resultant source-code was a for-loop.

We can also calculate all the offsets in the source code array that
mark the limits of where each GPU thread should write to, when
converting an individual feature vector from one cell of our matrix
into ASCII. This pre-allocated and pre-divided array for the source
code ASCII is labeled as Ordered and Un-scoped Source in the system
overview. To extract the features, we assign one GPU thread per
cell of the matrix. We pass to each thread its feature vector, its
offsets into the above ASCII source code memory region, and its
syntax schema. Information on available variables are available as
read-only to each thread.

Each thread then executes the procedure in Alg. 1. The function
call 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 in Alg. 1 is the mechanism by which we take the
space of all possible function matrices (of which a lot, if not most,
will be unable to produce valid source code), and remap them to
values that will produce valid source code. The space of all possible
function matrices is effectively the dark gray space represented in
Figure. 1. The remapping function takes all space coloured in dark
gray to some point inside the light gray shape. Literally, however,
this mapping function takes the integer stored as an element in the
feature vector and uses some auxiliary information (e.g., the list
of available variables) to return another integer with a maximum
value of the number of possible values the syntax can take at that
point, minus one. For example, it is known that the first integer in a
operation feature vector represents the variable that the result of the
operation will be assigned to. Therefore we consult the writeable
variable array for its length then return a number lower than that
value, such that we can then index into the variables array and copy
the variable name into our source code array.

Algorithm 1 Program Extraction Phase One
1: 𝑢𝑛𝑠𝑐𝑜𝑝𝑒𝑑𝑃𝑟𝑜𝑔𝑟𝑎𝑚
2: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟

3: 𝑠𝑦𝑛𝑡𝑎𝑥𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒

4: 𝑖 ← 0
5: while 𝑖 < 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 .𝑙𝑒𝑛𝑔𝑡ℎ do
6: 𝑢𝑛𝑠𝑐𝑜𝑝𝑒𝑑𝑃𝑟𝑜𝑔𝑟𝑎𝑚.𝑎𝑑𝑑 (𝑠𝑦𝑡𝑛𝑎𝑥𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 [𝑖])
7: 𝑛𝑒𝑥𝑡𝑆𝑡𝑟𝑖𝑛𝑔←𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 [𝑖], 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑁𝑎𝑚𝑒𝑠)
8: 𝑢𝑛𝑠𝑐𝑜𝑝𝑒𝑑𝑃𝑟𝑜𝑔𝑟𝑎𝑚.𝑎𝑑𝑑 (𝑛𝑒𝑥𝑡𝑆𝑡𝑟𝑖𝑛𝑔)
9: end while
10: 𝑙 ← 𝑠𝑦𝑛𝑡𝑎𝑥𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒.𝑙𝑒𝑛𝑔𝑡ℎ

11: if 𝑠𝑦𝑛𝑡𝑎𝑥𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒.𝑙𝑒𝑛𝑔𝑡ℎ > 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑉𝑒𝑐𝑡𝑜𝑟 .𝑙𝑒𝑛𝑔𝑡ℎ then
12: 𝑢𝑛𝑠𝑐𝑜𝑝𝑒𝑑𝑃𝑟𝑜𝑔𝑟𝑎𝑚.𝑎𝑑𝑑 (𝑠𝑦𝑛𝑡𝑎𝑥𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒 [𝑖 : 𝑙 − 1])
13: end if

The obvious mathematical implementation method for collaps-
ing this space is performing a modular operation on the integer
found in the feature vector, by the number of possible valid syntax
options we have. Such a modular operator would, however, result in
the property that notionally equivalent source code results (where
the same numerical value has the same ASCII output) would not
be adjacent in the output space. We therefore use an alternative
method to collapse the space, defined as:
𝑧 = 𝑠

𝑁
𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑥, 𝑁 ) = 𝑛 ⇐⇒ 𝑧𝑛 < 𝑥 ≤ 𝑧 (𝑛 + 1)
Where 𝑠 the biggest number for our system width, and 𝑁 is the
number of actual categories in this dimension of the search space.
Here 𝑥 is the numerical value we find in the feature vector cell. We
map it to 𝑛 if and only if the inequality is satisfied. This approach
has the property of having all binary strings that will be mapped
to the same value are adjacent in the larger output space.

4.4 Scope Handling
Finally, some of our feature types (ifs/whiles/for-loops) introduce
scoped segments of code. The start of a scope is part of the syntax
associated with such feature types when converting the feature vec-
tor to ASCII source code strings. However, as currently described,
the function matrix has no way of encoding where such an opened
scope should be closed. For this, our encoding treats repeated iden-
tical feature vectors of the same type, in separate columns of our
function matrix, as the start and end of a scope. Where feature
vectors inside the function matrix can be processed into strings
in parallel, for scoped features, knowing whether this is the only
instance of this feature vector inside the matrix requires knowledge
of other columns of the matrix. We therefore ignore scoping in the
parallel ASCII conversion stage and allow a single thread back on
the CPU to convert any necessary strings from full statements to
tokens that denote the end of a scope.

5 IMPLEMENTING GI
In this section we describe how a GI process is layered atop our
matrix-based representation and its accompanying source code
translation approach. Much of this element of our framework looks
fairly typical at a high level, however there are key differences due
to our numerical matrix-based program representation.

5.1 Mutations and Crossover
Mutations in our approach are realised by simply changing the
numerical value of one selected n-bit (e.g. 32-bit) cell in a function
matrix, using a source of randomness to derive the mutated nu-
merical value. Because every combinatorial matrix value results
in a valid program, the resulting numerical value of a mutation is
assured to yield a program in solution space. However, the effect of
mutations has subtle differences to those on an AST representation.

The main difference is the lower level of semantic meaning to
mutations, in particular that applying the same mutation to two
different matrices may yield different outcomes. This is never the
case in AST representations, where inserting a new operator at
the same position in two AST individuals will definitely result in
both individuals now having that same operator present at this
location (assuming it was syntactically and semantically legal for



Final version appears at GECCO 2025 Author accepted draft version, March 2025

both individuals). To contrast this with our case, consider two
different function matrix instances which currently the same ASCII
source code translation. It is possible for this to be true even if the
numerical values of the two matrices have minor differences, since
multiple numerical values necessarily map to the same point in
space in order to convert our solution space to a regular rectangle
(as discussed in Sec. 2). In conditions, we can add the value 10 to the
same coordinate cell in both matrices, and yield different outcomes
in the resultant ASCII. This is because the value of one cell may
have been closer to a threshold of a different ASCII effect than the
value of the other cell. The inverse effect can also arise, where two
different mutations on two different individuals can result in those
individuals having the same ASCII output where they previously
did not. Our results show that GI proceeds in a similar way to
AST-based approaches, seemingly impervious to this subtlety, but
analysis approaches such as phylogenetics may require additional
information to understand mutational causes and effects.

Crossover has a similarly numeric basis; a crossover between two
individuals simply copies X cells from one individual’s matrix, and
Y cells from another, to form a new individual. The number of cells
taken from each individual is configurable, as are the coordinates
of those cells within their respective donor individuals’ matrices.

5.2 Probabilistic Search Space Navigation
As mentioned in Sec. 1, existing GI program representations tend
to inherently center their search on their starting individuals. Each
mutation represents an incremental step away from this starting
individual, but reaching distant parts of a search space requires
many sequential mutation steps and must deal with the phenomena
of neutral drift [4, 11, 14]; in practice this tends to keep mutated
individuals in the close vicinity of the opening progenitor.

In our approach, there is no need to center our search on any-
thing. Indeed, in each generation we could randomly mutate every
cell of a function matrix to jump to wildly different points in pro-
gram search space, knowing that every point yields a valid program.
In practice this may be unlikely to yield individuals useful to the
problem at hand, but it shows an entirely new degree of freedom.

In our current implementation we use probability distributions
to allow us to strike a balance between constraining the search
to useful areas and enabling wider exploration. Each cell in our
function matrix can have a probability distribution associated with
it, which is consulted when that cell has been selected for mutation.
The purpose of this distribution is to take the entire range of values
possible our cell could be mutated to (i.e., any value our system’s
width can represent) and encourage it to take a value that will be
useful for locating an optimized program in our wider GI system.

More specifically, these probability distributions (represented
as vectors of real numbers) give the probability that a random
variable, between zero and the maximum unsigned integer our
systems width allows, is in some range of contiguous values.

Retaining a parent-child relationship between the cell’s original
value and the mutated value, this random value we have pulled
from the distribution is combined in some way with the original
value to derive the final muted value. This can be as simple as:
𝑣1 = 𝑥 + 𝑣0
Where 𝑣 is the cell value and 𝑥 is a random variable.

This begs the question of whether we can find a set of probability
distributions whichwill producemutations that facilitate GI in ways
that match or exceed current approaches.

We know that in our encoding, representation different function
matrices map to the same source code, and all these equivalent
permutations cluster together (section 4.3). Therefore a desirable
property of our mutations is for them to be “aggressive”, i.e., larger
jumps in physical numerical space is better up to a point.

We can represent this desire in our probability distribution using
an S-curve that gives larger numbers a larger probability of being
chosen up to some plateau. The effect this gives is that numerical
mutations are more likely to manifest in the source code itself
when we convert. Doing these operations on physical space also
means that should we meet the case where 𝑥 + 𝑣0 is greater than
the maximum value of our system width (e.g. 32-bits), we will roll
back over to 0 and still have a successful mutation that has our
desired property of being “aggressive”. This S-curve mechanic is
likely to minimise the phenomena of ‘non-deterministic’ mutations
discussed in the above subsection.

In future work we intend to examine the effect of other curve
geometries to describe search distributions, and their impact on mu-
tations, or to make the shapes and degrees of these curves dynamic
depending on search results so far. This may include attention-
based approaches [25] with distributions that share their state to
influence the value of other distributions to encode context about
other parts of the program.

6 GI PERFORMANCE TESTING
In this section we experiment with our GI framework to answer
two questions. Our first is whether our program representation, and
consequent mutation and crossover implementation, does indeed
result in a search process that reflects classical GI for source code.
Second, we examine a range of different probability distributions
to control that search process to show their effects.

Our application domain for GI is performance improvement,
inspired by recent work in this area [19]. As in [19], we use a hash
table implementation as our target for improvement, specifically
targeting the hash function. We supply various input sequences
of put/get calls to this hash function, and use execution time of
these sequences as our fitness function. Our GI process is generally
aiming to identify a hash function which (a) yields a distribution
that reflects our training data, and (b) is fast to execute. Achieving
both of these effects will minimize the average lookup time for any
key stored in the hash table.

6.1 Methodology
We conduct experiments under three different conditions, which
loosely envision three different levels of knowledge that an operator
of GI might have about the problem domain of a hash function.

Our first condition assumes a user with only general knowledge
of GI. This user may control parameters of the GI process, but not
constrain the search space itself; in this condition all cells in the
function matrix are therefore eligible for mutation, allowing the
system to jump arbitrarily to any part of program search space.

Our second experiment condition assumes the operator has some
domain-specific knowledge about hash functions, knowing that we
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generally need a single for-loop which iterates over each character
of the string input key and performs some mathematical operators
to yield an integer value which is related to those characters. In this
condition some cells will be not be able to be selected for mutation;
this will have the effect of fixing the existing of a single for-loop,
and disallowing any new scopes to be added. Any arithmetic before,
inside or after the for-loop is allowed.

Our third experiment assumes the operator wishes to further
constrain a search to allow only the addition of a single line of
additional arithmetic within the scope of the for-loop; all other
mutation effects across other cells are disallowed.

Across all three conditionswe otherwise keep the same overall GI
parameters, which are as follows: Population size of 30, generation
count of 30, static training set of 1000 keys, fitness test as runtime.

The only difference between each scenario in testing is therefore
which cells in the function matrix of an individual will be open
for mutation. All mutations follow the S-Curve method discussed
in Section 5.2. We repeat each scenario ten times with different
random seeds, averaging the results.

6.2 Results
Generation 0 in all three results figures shows the execution time
of our original hash function.

We begin with the results from our first condition, where all
matrix cells are equally available to mutation, allowing the search
to jump to arbitrary points in program space. Figure 5 shows the re-
sult. Here we see, on average, only a moderate improvement effect,
with extremely wide standard deviation across the 10 experiments.
The large deviation has two reasons. Firstly is the introduction of
the ability to insert new scoped program features in this experiment
condition (i.e., new loops and if-statements). This introduces more
instances of undecidability to our pool of candidate programs, in-
creasing the ratio of programswhich end in seemingly infinite loops
and so are forcibly killed and given a very poor fitness. Secondly
is the well-documented propensity for bloat under this condition
[6, 23, 26], which means the performance boosts provided by help-
ful mutations are often negated by large numbers of extra lines
of code taking up CPU cycles. It is also interesting, however, that
even in this entirely unrestricted condition, we do see some very
good individuals emerging in some experiments, indicating that the
GI process is still somewhat able to function in gaining improved
individuals. This suggests that unrestricted searches of this form
may be a good source of genetic diversity, while still remaining in
the area of reasonable solutions.

Figure 6 shows the results for our second condition, where we
constrain the search by disallowing new scopes / control constructs,
therefore forcing a single for-loop to exist, but otherwise allowing
new operators either inside or outside of that for-loop, along with
general mutations to those lines of code. Here we see an extremely
fast average convergence to a very good individual, reaching that
point in 3 generations. Further minor fine-tuning happens after
this point, and the standard deviation around the average is very
low, making this search trajectory very predictable. This shows the
value of being able to declare a probability distribution over our
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Figure 5: Condition one Zero Performance Test
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Figure 6: Condition Two Performance Test

program representation, allowing us to target known good areas of
the search space.

Finally, Figure 7 shows the results for our third condition, where
we are permitted to only add a single extra operation inside the
existing for-loop. The results here are a more mixed picture. They
show good convergence on an improved individual, but this takes
more generations to achieve, with the earlier generations having a
much wider standard deviation than in our second condition. Both
effects are somewhat counter-intuitive, since the search space is
smaller. Our assumption here is that, aligning with wider research
on GI processes [14], we may have a poor ratio between affective
and non-affective mutations possible at certain points in the GI
process. While condition two has the larger search space, there may
therefore be a greater ratio of affective mutations allowing it to
traverse neutral space faster than in the smaller space of scenario
three.

Overall our results show our ability to exercise clear control over
the search trajectory of a GI process, using a unified paradigm of
probability distributions over program matrices. The results from
each condition are relatively predictable, and may serve as a novel
control interface between diversity and convergence of GI.
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Figure 7: Condition Three Performance Test

7 DISCUSSION
Our results demonstrate that our novel program representation,
and its associated GI framework, provide familiar search dynamics
compared to classic GI for source code. We are also able to express a
range of probability distributions to control the degrees of freedom
that a GI search is given. In this section we discuss the qualitative
aspects of our approach, and potential future work directions.

7.1 Parallel mutations and Predictive search
An advantage to having unconstrained mutations over numerical
representations of programs is the opportunity to explore mutation
strategies that may otherwise seem unfeasible. One of these strate-
gies is having a mutation that edits separate parts of a program
independently (from a processing perspective). Mutations in our
approach are realised by simply changing the numerical value of
one selected feature vector cell in a function matrix. Because every
collective matrix value results in a valid program, we can freely
change multiple cells at the same time; this would be extremely
challenging to achieve safely in an AST-based representation. This
parallelism extends to the ability to mutate many individuals in
a population at the same time. While fitness testing tends to be
the main performance bottleneck in GI systems, in future work
we intend to examine sub-sampling of fitness with prediction of
search direction so that we can rapidly mutate individuals towards
predicted high-value areas.

7.2 Predictability of Encoding Cost
An advantage to using matrices, rather than dynamic structures like
ASTs, is that we can easily model the memory space requirements
for a population. We can do this given a few parameters, as follows:

• 𝑤 : The width in bits of our system (we have assumed 32-bits
in our current implementation).

• 𝑓 : The number of program features in the source code we’re
attempting to improve.

• 𝑔: The growth potential of our program to encompass a
higher feature number (i.e., more lines of code). We will
first calculate the minimum size of our function matrix to
describe all possible programswith 𝑓 features, then increase
this size by a factor of 𝑔.

• 𝑙 : The length of the longest feature schema, in bits.
• 𝐺 : The number of unique program feature schemata, indi-

cating the number of rows in our matrix.
• 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 : The number of individuals in a population.

Using the above can describe the size of an individual 𝐼 in our
system as follows:

𝐼 = 𝑤 × ⌈𝑙 × 𝑓 × 𝑔⌉
This is used to calculate the memory requirement for a popula-

tion of function matrices. We multiply this value by two, as even
though the population can be stored in half the space, the popula-
tion is transferred from one memory to the other during mutation,
and the reverse when crossover is applied:

𝑃 = 2 × 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 × 𝐼
An area of memory equal to that required by one mirror of our

population is needed to store our mutation matrix:
𝑀 = 𝑃

2
The number of declared variables available to the search is then

defined by the user (𝑣). From this we can calculate the space required
for variable information.Wemultiply by two due to having separate
arrays for writeable and read-only variables:

𝑉 = 2 ×𝑤 × 𝑣 ×𝑚𝑎𝑥 (𝑣𝑎𝑟𝑁𝑎𝑚𝑒𝐿𝑒𝑛)
Finally we have the memory required to store a program in ASCII

for the target language’s syntax (𝑆). For this we need to know the
string length (𝑠) needed per feature in the function matrix (𝑒):

𝑠 = 𝜆(𝑔𝑟𝑎𝑚𝑚𝑎𝑟,𝑚𝑎𝑥 (𝑣𝑎𝑟𝑁𝑎𝑚𝑒𝐿𝑒𝑛))
𝑒 = 𝑓 ×𝐺
𝑆 = 𝑤 × 𝑝𝑜𝑝𝑆𝑖𝑧𝑒 × 𝑠 × 𝑒
The total number of bits needed for our search is then given by:
𝑃 +𝑀 +𝑉 + 𝑆
With this ability of having a known memory size, we have a

bounded search space fromwhich to predict required computational
memory resources for a GI run of certain parameters, giving human
operators an indication as to what degree of freedom to give a
potential search. Because we can describe the bounds of search
space, it may also be possible to accurately estimate upper and
lower bounds on the compute cost of a search process. We intend
to examine both dimensions of predictability in future work.

7.3 Human Guidance Mechanisms
An under-explored approach in GI is the deployment of Human
Guidance mechanisms to help steer a search through the high-
dimensional space of programs [5] – for example to aid in over-
coming areas of neutral drift. The goal of such an approach would
be to build a toolset which allows a human engineer interact with
the evolutionary process in real-time, imparting their intuition for
software engineering onto the search.

Our novel program representation, and its probability distribu-
tion control interface, opens a wide range of possibilities in this
research area. Firstly, matrices are inherently amenable to visual
representation; simple form of this could use heatmap-like coloring
to show coverage of the space so far. We can also directly translate
sketched geometry on a matrix into probability distributions for the
ongoing GI process, allowing operators to directly point to specific
areas they would like the search to explore.

In future work we will explore a range of guidance approaches
and how they interact with the serendipitous nature of GI.
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8 RELATEDWORK
Genetic Improvement for source code has been explored widely
in software engineering over the last two decades, as covered in
the survey by Petke et al in 2018 [15]. Our work intersects with
that of GI and wider work on general program and learning repre-
sentations. We also consider existing mechanisms to direct search
trajectories, compared to our layered probability distributions.

8.1 GI program representations
In the GI domain, program representations tend to focus onAbstract
Syntax Trees (ASTs) [2, 12, 19], bytecode [13], or BNF-inspired
forms [16]. We conjecture that the use of these representational
forms is largely due to their pre-existence in compilation processes,
rather than their inherent suitability to GI.

ASTs are an intermediate compile stage when translating textual
source code to executable machine code. GI for source code is
often conceptualized as the mutation of operators or operands, or
the transplanting of selected code from one individual to another
(commonly used in crossover). At first glance, both procedures
appear to fit well with an AST representation, where operators and
operands are represented by nodes, and the transplanting of code
can be achieved by injecting a sub-tree from one AST into another.
However, because an AST does not include semantic information
for things like data types, and does not embed the grammar of the
language, extensive cross-checks are needed to verify whether or
not a change is valid. AST representations also create an inherent
bias to contain a GI search in the close vicinity of the starting
individual, where each mutation is an incremental step away from
this. While this is not necessarily a bad thing (it avoids steps into
the extremely high-dimensional space of general program search),
it tends to preclude more general expressions of search freedom.

GI approaches that operate on bytecode have the advantage of
compressing the representation of a program, but again require
associated rules on mutations that are viable within the instruction
set of the specification, and require augmentation with data type
information to avoid invalid operands being used in operations.

BNF-oriented representations are often used to augment the
above approaches, and help to enforce syntax rules, lowering the
likelihood of invalid programs.

In the context of the above, as far as we are aware our contribu-
tion is the first to support context-free mutations with guaranteed
validity of the resulting code for a general-purpose programming
language, and the first to support a highly configurable set of prob-
ability distributions to guide an ongoing search.

8.2 Alternative program representations
Outside of the GI domain, in more general program synthesis re-
search, a set of alternative representations for programs has been
examined. This includes graph-based representations of possible
paths between input and output examples [8]; vector-based repre-
sentations of potential operators [3]; and internal representations
within neural network models [7].

The FlashFill approach, used within Microsoft Excel, synthesises
programs using input/output examples [8]. Using a constrained
domain-specific language, it represents potential programs by cre-
ating a set of so-called ‘traces’. A trace is a graph that contains all

possible paths from on input example to it’s corresponding output
example. An inductive algorithm is run to find the intersection of all
of these graphs, yielding a final program which converts the given
input to the given output example. This approach proves useful
for inductive synthesis, but appears less ideal for the mutation and
crossover dynamics of GI.

DeepCoder [3] uses a neutral network to make help synthesise
programs from input/output examples of the desired function (such
as {2, 2} as an input and {4} as an output). Using a domain-specific
language comprised of relatively high-level operators, a numerical,
vector-based representation of programs is used where each cell is a
line of a program. The neural network is trained on various random
input/output examples from random arrangements of cells in this
vector, and is then able to predict likely values for unseen problems.
Our approach is somewhat related in the numeric representation,
but encompasses a general-purpose programming language com-
plete with variable declarations and control-flow operators.

The Differential Neural computer [7] is an example of repre-
senting programs directly within the trained model of a neural
network, again for the purpose of solving problems framed as in-
put/output examples. This encoding allows neural training, similar
to the previous approach, but makes it impossible to gain a symbolic
representation of a program; it is also not clear that this approach
would map to a GI domain.

While more exotic program representations have been explored,
therefore, we are not aware of any that are targeted specifically at
the GI domain, for general-purpose languages, and with the benefit
of a link to symbolic representations of programs.

8.3 Search guidance approaches
Finally, our approach supports a range of search guidance ap-
proaches expressed as probability distributions over our matrix
representation. Search guidance is a topic that is often visited in GI,
most commonly to constrain the dimensionality of the search space
to complete GI processes in reasonable time, while addressing the
challenges of neutral drift [21, 22].

The main approaches to this are the use of phylogenetics to help
analyze useful search trajectories [20], and templating or sketching
to aid in isolating the parts of a program that are available for
GI operations and those which should remain fixed [10, 24]. Our
probability distribution approach supports many of these same
constraint techniques, but through a unified paradigm; we therefore
see research in this area as highly complementary to our method.

9 CONCLUSION
We have presented a geometric interpretation of program space,
method to project irregular program space geometries to a uniform
one. Using an associated GI framework, this allows us to arbitrar-
ily mutate and crossover individuals and yield valid programs in
solution space; it also supports the use of probability distributions
to describe search trajectories. Our system performs comparably to
other AST-based GI systems, and demonstrates predictable effects
of different probability distributions.

In future work we will further explore the use of this paradigm
across parallel architectures, predictability of search space and time,
and human guidance approaches.
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