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Abstract—In navigating the challenges of real-time semantic
communication (SC) codec updates in the 6G-era non-terrestrial
network (NTN)-assisted vehicular networks (NTN-VNs), a crucial
component of intelligent transportation systems (ITS), this article
introduces a novel approach inspired by human society. Facing
complexities like 3-dimensional updating, network dynamism,
and updating costs, NTN-VNs are treated as social networks. The
proposed NTN-VN federated learning (NTN-VN-FL) framework
asynchronously addresses challenges such as uplink and downlink
SC codec updates, device decentralization, and asynchronous
updating. By viewing device behaviors during updating as social
behaviors with economic costs, an NTN-VN social management
system ensures the proper functioning of the social network in the
context of NTN-VN-FL. An economical social behavior selection
mechanism, based on the reverse auction game for NTN-VN-FL,
minimizes training delay and device energy costs, considering
social relationships. The article also presents a two-stage Stack-
elberg game with the Vickrey auction rule to maximize social
welfare in the auction. Simulation results highlight the superiority
of NTN-VN-FL over existing potential application algorithms,
effectively addressing the unique challenges of SC codec updating
in NTN-VN. The efficacy of the social management system and
social behavior selection mechanism is demonstrated in achieving
optimal outcomes.

Index Terms—Semantic communication, non-terrestrial net-
work assisted vehicular networks, federated learning, social
management, game.

I. INTRODUCTION

IN the era of 6G, characterized by advancements in Low Earth
Orbit (LEO) satellites and aerial platforms, vehicles can access
these facilities, benefiting from affordable, high-throughput,
and seamless connectivity services [1], [2]. This led to
the transformation of 2-dimensional (2D) vehicular networks
(VNs), which is a key component of intelligent transportation
systems (ITS). The 2D-VNs, often referred to as traditional
terrestrial VNs, rely on terrestrial-based infrastructure such as
fixed roadside units to provide connectivity. These VNs, while
effective in urban and densely populated areas, face limitations
in regions where deploying infrastructure is challenging or
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economically infeasible. The incorporation of LEO satellites
and aerial platforms into traditional terrestrial VNs, forming 3-
dimensional (3D) non-terrestrial network (NTN) enabled VNs,
i.e., NTN-VNs, is recognized as a crucial element in the
context of 6G [3]. In other words, vehicles can choose the
most suitable access point based on their specific conditions,
ensuring seamless communication. For instance, in remote
areas like deserts or disaster-stricken regions where terrestrial
services are unavailable, vehicles have the option to connect
through existing aerial platforms or satellites.

T-ITS-24-10-4025Nevertheless, in NTN-VNs, the extensive
coverage provided by satellites and aerial platforms leads to a
substantial number of served vehicles, resulting in a significant
volume of content transmission within a given time frame.
A large number of vehicles place immense pressure on lim-
ited spectrum resources. Moreover, considering the extensive
propagation distance and intricate channel conditions, ensuring
the reliability of transmitted information becomes a critical
concern. To tackle these challenges, Semantic Communication
(SC) stands out as a transformative and pivotal technical
enabler [4].

SC enables the extraction of semantic information through
goal-oriented semantic codecs employing machine learn-
ing (ML) techniques. Unlike conventional communication
paradigms that transmit all symbols and bits, SC encoders
selectively transmit semantic information. This approach
markedly enhances spectrum efficiency in VNs and augments
the reliability of transmission information through ML-based
decoding [5]. Envisionably, the adoption of SC codecs in
vehicles for communication with non-terrestrial devices holds
the potential to significantly boost the spectrum efficiency
of NTN-VNs, resulting in increased network throughput and
heightened reliability of transmission information. Hence, the
integration of SC in NTN-VNs is deemed imperative [6]. Yet,
the introduction of SC presents unique technical challenges in
NTN-VN.

A. Challenges

Federated learning (FL) has demonstrated its efficacy as a
machine learning approach for updating SC codecs in conven-
tional terrestrial VNs [9]. In this approach, vehicles locally
train their SC codec models for new content, which is then
uploaded to a coordinator for model aggregation. This allows
the aggregation of an efficient new SC codec model for all



vehicles in the VN. Qin et al. [9] explored the potential of FL
for SC codec updating, while Xie and Qin [10] proposed a lite
federated SC system. However, the latter involves the training
data leaking to devices, posing privacy risks to participants.
Similarly, [11] and [8] both introduced different FL-based
frameworks for training SC codec models for user-transmitted
content.

While relevant, most existing works focus on 2D networks,
addressing vehicles and terrestrial edges, making them less
directly applicable to NTN-VNs. Additionally, current dis-
tributed updating schemes primarily cater to vehicles trans-
mitting content (uplink) and overlook vehicles receiving con-
tent (downlink). Based on these considerations, we iden-
tify challenges in updating SC codecs in general terrestrial
VNs, including the economic imperative for consistent en-
coder/decoder models [8] and the absence of a comprehensive
SC updating framework and algorithm accommodating both
uplink and downlink scenarios.

In the context of updating SC codecs in sophisticated NTN-
VNs, several additional unique challenges emerge alongside
the aforementioned issues. Unlike 2D-VNs, the application of
existing FL-based studies for SC codec updating in NTN-VNs
is not straightforward due to the intricate multi-layer frame-
work inherent to NTN-VNs. Designing a multi-layer updating
framework poses a significant challenge. Moreover, due to the
high mobility of vehicles, vehicles may choose various devices
for SC, such as terrestrial roadside units, aerial base stations,
and satellites. There may be multiple devices in each layer of
the NTN (terrestrial facility layer, aerial platform layer, and
LEO satellite layer) whose SC encoders/decoders for serving
vehicles require updating, reflecting the decentralized nature
of the NTN-VNs.

Coordinating multi-device cooperative SC codec updates be-
comes complex, involving decisions on coordinator selection
and accounting for device heterogeneity. The variable duration
of each aggregation epoch, with the potential for asynchronous
aggregation, adds an additional layer of complexity. Further-
more, compared to VNs, LEO satellites, acting as edges/base
stations, exhibit dynamic movement, while vehicles are rela-
tively geographically stationary.

Building upon the above considerations, the main chal-
lenges associated with updating SC codecs in NTN-VNs
involve tackling multi-layer NTN-VNs, implementing updates
in decentralized NTN-VNs, navigating asynchronous updates
while accounting for device heterogeneity, and adapting to the
dynamic nature of NTN-VNs.

B. Related works

In [6], a PSFed method was first proposed for 3D networks
updating the SC codec for task offloading. Nevertheless, this
method was still for uplink codec updating and neglected the
decentralization and synchronicity of codec updating in NTN-
VNs.

Several decentralized techniques leveraging FL show
promise for addressing SC codec updates in NTN-VN. For
instance, Guha Roy et al. [12] introduced the BrainTorrent
framework, randomly designating a node as the coordinator

for each federated aggregation epoch. However, concerns
like latency and energy efficiency were overlooked in this
approach. Similarly, Che et al.’s CMFL [13], inspired by
practical Byzantine fault tolerance (PBFT), enhances training
robustness and employs an election mechanism to select the
coordinator based on trust value. Despite these advantages,
CMFL lacks consideration for latency and energy efficiency
during coordinator selection. Notably, these frameworks ne-
glect the temporal dynamics and asynchronous nature of
nodes, resulting in inefficient training and suboptimal resource
utilization [14].

To address the challenge of asynchronous training, Ghosh
et al. [15] proposed grouping devices with similar training
and transmission capabilities into clusters. This approach
utilizes a synchronous update strategy within clusters and an
asynchronous update strategy between clusters. However, de-
termining cluster divisions poses challenges in a decentralized
dynamic environment. In [16], a semi-asynchronous learning
approach, which aggregates only a portion of participating
devices in each round, is explored. Nevertheless, it necessitates
the availability of aggregation weights from the previous epoch
at the time of aggregation. In a decentralized setting, a new
aggregation node may lack the weights from the previous
epoch. Additionally, Bian et al. [17] suggested using an
unmanned aerial vehicle (UAV) as a relay node, but this
introduces additional training resource consumption and is not
applicable in a decentralized environment.

Moreover, GossipFL [18] tackles both asynchronous and
decentralized challenges by having devices exchange models
with a single peer at each communication round. While this
approach results in devices possessing perfectly convergent
ML models that may not be identical, maintaining uniform
SC codec models after training is economically desirable. Fur-
thermore, GossipFL faces limitations in adapting to dynamic
environments as it necessitates fixed participants. Additionally,
none of the previously mentioned frameworks are directly
applicable to the NTN-VN.

C. Motivation and contributions
Given the above, we contend that there is an urgent need

for a framework and algorithm facilitating SC codec updating
in decentralized, asynchronous, and dynamic environments,
with a specific focus on addressing training latency and energy
concerns. This need is particularly essential in the context of
NTN-VNs. Consequently, the primary aim of this paper is to
introduce a framework and algorithm tailored for updating SC
codecs in NTN-VNs, effectively tackling these challenges.

Drawing inspiration from human socialization, our novel
proposal introduces the NTN-VN Federated Learning (NTN-
VN-FL) framework for asynchronous SC codec updating
across NTN-VNs. Within this innovative approach, vehicles
and non-terrestrial devices autonomously forge social relation-
ships and optimize social behavior and training decisions to
align with both economic and social benefits. To ensure the
stability of the social network and associated behaviors, we
present the NTN-VN Social Management System tailored for
NTN-VN-FL. Additionally, we delve into the selection of so-
cial behavior, considering aspects such as social relationships,



delay, and energy. To address this, we introduce an economic
social behavior selection mechanism grounded in various game
theories.

The main contributions of this paper are as follows:
• Introducing a novel and efficient NTN-VN-FL frame-

work, our proposal extends beyond updating uplink SC
codecs to encompass the crucial aspect of updating down-
links as well. The primary objective of this framework
is twofold: enhancing asynchronous training accuracy
and ensuring convergence in dynamic and decentralized
NTN-VNs. To strike a balance between technical fac-
tors such as delay and energy, we uniquely integrate
sociological and economic concepts into NTN-VN-FL.
Devices achieve economical SC codec updating through
distinct social behaviors—namely, “leading,” “following,”
and “plagiarizing”—while dynamically cultivating social
relationships. This adaptive framework not only addresses
the current challenges of SC codec updating but also
anticipates future VNs, making significant strides in re-
solving both aspects of SC codec updating and codec
updating in NTN-VNs.

• Our subsequent proposition introduces a social manage-
ment system for NTN-VN-FL, meticulously designed to
ensure the stability of both the “social network” and
“social behavior” during training. Central to this system
is the definition of “social relations,” serving as a metric
to quantify the impact of each social behavior on others.
Trustors gain a comprehensive assessment of a trustee’s
social relations, allowing them to act in their best interests
and optimize performance and welfare based on this
evaluation. Empowering trustors further, they can make
informed decisions about including a trustee in their
social networks and participating in SC codec updating
activities. This system’s adaptive nature facilitates the
dynamic adjustment of social management parameters
in response to evolving social relationships, ensuring
ongoing effectiveness.

• Additionally, we introduce an innovative game-theoretical
and economic social behavior selection mechanism for
NTN-VN-FL, leveraging the proposed social NTN-VN
and social management system. This mechanism aims
to optimize social welfare with a focus on fairness,
taking into account social relationships, training delays,
and energy costs. Our approach begins with the design
of a reverse auction framework supporting many-to-one
matching. This framework transforms the “leader” behav-
ior selection problem into a two-fold challenge: “winner
(i.e., leader) selection” and “bidding determination.” To
address the intricate mathematics involved in “bidding
determination,” we present a two-stage Stackelberg game
approach. Furthermore, we apply the Vickrey auction rule
to select the winner and determine their pricing, ensuring
a comprehensive and effective economic social behavior
selection process.

D. Organization of the paper
The remainder of the paper is structured as follows: In

Section II, we present the model of NTN-VNs deployed with

SC and outline the design of the NTN-VN-FL framework in
Section III. Sections IV and V detail the presented social man-
agement system and social behavior selection mechanism for
the proposed NTN-VN-FL. The performance of the framework
and mechanisms is assessed through simulations in Section VI.
Lastly, we conclude the paper in Section VII.

II. SYSTEM MODEL

This section introduces the NTN-VN integrated with SC,
outlining the computing and communication model adopted
during SC codec updating. Additionally, we present the FL-
based SC codec updating model, offering a comprehensive
overview of the underlying processes and methodologies.

A. System description
We consider a holistic NTN-VN requiring the updating of

uplink/downlink SC codecs for vehicles within a terrestrial
area. This network is structured into four layers: the vehicles
layer, terrestrial facility layer, aerial platform layer, and LEO
satellite layer. Vehicles employ SC codecs for the transmission
and reception of various types of information, such as images,
speech, and videos. The transmitter extracts the meaning of the
message, i.e., semantic information, using a semantic encoder
and then transmits such information to a receiver deployed
with a semantic decoder.

Building on prior research in distributed learning for 3D
communication networks [19], [20], we assume that vehicles
in the lowest layers necessitate an upper-layer device as a
coordinator for cooperative learning. For example, models
requiring updates in vehicles require an aerial platform/LEO
satellite as a coordinator. However, due to constraints in
latency, energy, upper-layer device coverage, etc., the optimal
coordinator varies for different vehicles, and there may not be
a single optimal coordinator. The vehicles‘ optimal coordinator
may also change during training due to the high mobility of
vehicles. These coordinators also may distributed at different
layers.

This is grounded in FL, a widely used distributed learning
framework. In FL, vehicles train their models locally, upload-
ing only the model (without training data) to a coordinator
in each epoch. The coordinator then aggregates the weighted
models from participants and returns the aggregated model for
the next training epoch. This process ensures rapid and effi-
cient model training while preserving the privacy of training
data. Additionally, the trained models are uniform, meeting
the requirement for SC codec updating.

B. Computing models
We assume there is a set of I = {1, 2, ..., i, ..., I} vehicles

that need updating the SC codec in the NTN-VN. The local
training delay of vehicle i is

Ti =
Mi

fi
, (1)

where Mi is the required CPU-cycle for updating the semantic
codec. Further, fi is the CPU-cycle at device i with the unit
cycles/s. The training energy consumption is, therefore,

Ei = εf3
i

Mi

fi
= εMif

2
i , (2)



where εf3
i is the computing power and ε represents the impact

of underlaying electronics [21].
In addition, cooperative training between multi-vehicles

imposes communication costs due to sharing the SC codec
model. During model sharing, the communication delay of the
device i transmitting the SC codec model to the coordinator
device j, is also estimated by

Ti,j =
D

ri,j
, (3)

where D is the size of the SC codec model and ri,j is the
transmission rate between vehicle i and coordinator device j:

ri,j = Bi,j log(1 +
pi,jgi,j
σ2

). (4)

Here, Bi,j , pi,j and gi,j are bandwidth, transmission power,
and the channel gain of the device i, respectively. Furthermore,
σ2 is the variance of the Gaussian white noise. The energy
consumption of the communication is, therefore,

Ei,j = pi,jTi,j =
pi,jD

B log(1 +
pi,jgi,j

σ2 )
. (5)

Furthermore, given the communication occurs within the
NTN-VN, the extended propagation distance introduces ad-
ditional considerations, including the impact of propagation
delay. Therefore,

TP
i,j =

hi,j

c
, (6)

where hi,j is the distance between vehicle i and device j and
c is the speed of light.

C. FL-based SC codec training

In FL, vehicles train a model locally using their respective
training data in each epoch. The objective of the training is
to minimize the loss between the codec output and the input
content:

min Li(θ) ≜
1

mi

∑
vi,n∈mi

f(θ; vi,n), (7)

where θ is a vector representing the SC codec parameters, Li is
the loss function of device i and f(·) is the user-specified loss
function. In the above, vi,n is the training data, mi is the local
dataset of device i and mi = {vi,1, vi,2, ..., vi,n, ..., vi,mi

}.
After local training, the corresponding local model param-

eters, θ, are then submitted to the coordinator for federated
aggregation. The aggregation process is based on the weighted
average [22], therefore, the objective of aggregation is:

min Li(θ) ≜

∑
i∈F miLi(θ)

M
, (8)

where F is the number of participants that share the model
with the coordinator and M =

∑
i∈F mi.

For easy reference, the main parameters and their descrip-
tion used throughout this paper are presented in Table I.

TABLE I: NOTATION DEFINITION

Symbol Definition
I Set of devices
Ti Training delay of device i
Ti,j Transmission delay between device i and j
TP
i,j Propagation delay between device i and j

Ei Training energy consumption of device i
Li Loss of device i
θ Global model
ω Local model
C Closeness
Ri Effective bid for device i
S Satisfaction
B Bonus
V Gain from increased closeness

III. NTN-VN-FL: SOCIAL FRAMEWORK DESIGN

In this section, we present the framework design of NTN-
VN-FL. We also introduce the three types of social behavior
in the proposed framework, including lead, follow, and plagia-
rize. This is followed by a detailed description of the NTN-
VN-FL.

Fig. 1: The NTN-VN-FL framework.

A. Social behaviors

1) Leader: The leadership role is assumed by a device
acting as a coordinator in the NTN-VN, and the leader’s
location dynamically adapts with each training epoch. The
leader must set a duration limit for the model parameter
collection stage within this epoch, choose the leader for the
next epoch, and identify the device available for training.
Additionally, it gathers high-volume semantic codec model
parameters from followers for information sharing during
devices’ training, specifically for federated aggregation in FL
studies.



2) Followers: Followers refer to devices transmitting SC
codec model parameters to the leader during the duration limit
of the model parameters collection stage in this epoch, essen-
tially serving as distributed participants. Before transmission,
followers are required to locally train/aggregate the SC codec
model parameter θ.

3) Plagiarizer: Plagiarizers are devices incapable of trans-
mitting SC model parameters to the leader within the duration
limit of the model parameters collection stage in this epoch,
i.e., straggling communication devices in federated learning
frameworks. Similar to followers, they also need to locally
train/aggregate the SC codec model parameter θ. The distinc-
tion lies in the fact that their global model θ for this epoch
is acquired through plagiarism from their close partners in
the same layer, according to sociological definitions. While
plagiarism contradicts social values, it is a phenomenon found
in society. The impact of plagiarism on the proposed NTN-VN
society and measures to ensure its stability will be discussed
in Section IV.

Fig. 2: Proposed NTN-VN-FL in the highest layer for asyn-
chronous updating.

B. The proposed framework

In a concise overview, we assume an extensive SC codec
update as an illustrative example, involving the participation
of devices on every layer.

1) Updating uplink and downlink SC codecs in a 3D
network: For the uplink SC codec, handling new transmission
content from vehicles, functioning as followers or plagiarizers.
These vehicles look for nodes in the upper layer to serve as
coordinators/leaders based on criteria such as speed, cover-
age, delay, and energy. Eventually, the SC codec models are
collected and sent to different satellites for the ultimate aggre-
gation. These satellites collectively form a decentralized peer-
to-peer (P2P) cellular network without a master node [23],
necessitating the election of a leader for the final aggregation.

For the downlink SC codec, handling new transmission con-
tent from the upper participant layer, such as the LEO satellite
layer, allows direct training at this layer and aggregates in the
LEO satellite layer. Devices in this layer conduct local training
and subsequently deliver the trained global SC decoder to
vehicles.

Consequently, the challenges of SC codec updating in
the NTN-VN for both uplink and downlink are ultimately
streamlined into executing P2P FL at the highest layer involved

in the updating, namely the LEO satellite layer. The distinction
lies in the fact that uplink SC codec updating comprises two
parts: 1) FL conducted between the lower and upper layers,
and 2) P2P FL executed by the highest layer (refer to Fig.
1). Conversely, downlink SC codec updating only necessitates
considering P2P FL performed at the highest layer.

2) Asynchronous updating: Here we first examine a P2P
network comprising LEO satellites for FL. Given the hetero-
geneity among devices, the leader’s time to collect aggregated
models varies due to asynchronous training. In this context,
we assume the leader is determined. For leader election
mechanism refer to Section V.

In the asynchronous updating of NTN-VN-FL (see Fig. 2),
at the initiation stage, the leader establishes the duration limit
for the model parameters collection stage and communicates
this to all devices. Notably, devices with more local training
data may have longer training times based on Eq. (1), indicat-
ing that they carry more information. Therefore, the duration
limit for the collection stage should consider these devices.

During the model parameters collection stage, satellites
collect the trained SC codec model for initial aggregation
and transmit it to the satellite leader where possible. If a
satellite fails to transmit the model parameters within the
stipulated time, it becomes a plagiarizer, sending a request to
its “best friend” in the same layer for the newest global model.
However, this comes at the cost of diminished social relations.
If a device is sporadically plagiarized without remedy, it faces
exclusion from training by society.

In the sharing stage, the leader performs model aggregation
and sends it back to followers. Some followers then share this
model with accredited plagiarizers.

In the election stage, devices share real-time information
with the leader to collectively and fairly elect the next epoch
leader, considering both fairness and economic efficiency.

Turning our perspective to FL performed between the lower
and upper layers, devices in the lower layer, such as a
terrestrial facility, can only choose to be a follower or a
plagiarizer. If it fails to upload the model timely to the leader
in the aerial platform layer, it may choose to plagiarize other
terrestrial facilities. However, it also serves as the leader of
the lower layer (i.e., the subscriber layer) and determines the
time limit for model collection.

3) Network’s dynamic and decentralization: For devices
newly added to the training, they also receive the latest
model through plagiarism behavior, similar to plagiarizers.
Furthermore, we will outline social behavior selection in this
decentralized environment in Section V.

C. Discussion
We first consider the uplink SC codec updating. If vehicle

i is a follower in training epoch k, the updating objective is
the same as in (7). The iteration for local updating of the SC
codec model is

θik+1 = θk − ηi ▽ Li(θk), (9)

where θk is the global model sent from the leader in epoch k
and ηi is the learning rate of vehicle i. In addition, θik+1 is
the local model parameter of vehicle i in epoch k + 1.



If subscriber vehicle i is a plagiarizer, the updated parame-
ters ωi

k+1 of plagiarizer i in epoch k + 1 is:

ωi
k+1 = θi

′

k − ηi ▽ Li(θ
i′

k ), (10)

where θi
′

k =
θ
′
k+ρiω

i
k

1+ρi
. Here, ρi is the weight parameter and

θ
′

k is the SC codec model parameter via weighted average.
Since no staleness exists, i.e., vehicles have the latest global
model for each epoch, we have ωi

k+1 = θik+1 if the plagiarizer
participates in the epoch k + 1 aggregation, based on [16].

Therefore, the leader j in the terrestrial facility layer per-
forms the global updating by

θjk+1 =

∑
i∈F j

k+1
miθ

j
k+1∑

i∈F j
k+1

mi
, (11)

where F j
k+1 is the number of subscribers who choose the

device j as the leader. The terrestrial facility j can update
θjk+1 and upload it to the leader in the aerial platform layer.
Similarly, the final global model updated by a satellite leader
can be denoted by the same formula, i.e., (10). Different from
(7), the aggregation in (10) is partial model aggregation. Nev-
ertheless, partial model aggregation is still rapidly convergent
as shown in [24] and [25].

Moreover, our framework presentation is predicated on
the involvement of devices across all layers, namely, the
subscriber layer, terrestrial facility layer, aerial platform layer,
and LEO satellite layer. Nevertheless, it can be implemented
across any number of layers. This adaptability stems from
the framework’s division into two main components: 1) FL
executed between the lower and upper layers, and 2) P2P
FL performed by the highest layer. For instance, when the
downlink SC codec of devices in the aerial platform layer
requires updating, they can undergo local training and submit
to corresponding leaders in the LEO satellite layer, i.e., FL.
Subsequent satellites then execute decentralized aggregation,
i.e., P2P FL, of these models.

IV. NTN-VN-FL: SOCIAL MANAGEMENT

We introduce an Individual Social Relation Metric (ISRM)
for social management, enabling individual devices to assess
the social relationships of other nodes during training. Each
device utilizes ISRM to determine its willingness to share
information with plagiarizers and to elect a preferred leader.
For example, when low-layer devices (e.g., terrestrial devices)
seek an upper-layer device (e.g., aerial platform device) as the
leader, each low-layer device can solicit information from sev-
eral surrounding upper-layer devices and calculate its ISRM.
By evaluating the ISRM of different upper-layer devices, the
low-layer device can elect the optimal upper-layer device as
the leader based on the chosen behavior mechanism.

ISRM is also employed by the leader to assess whether
a device can participate in training. For instance, when a
low-layer device (e.g., terrestrial device) applies to aggregate
the training model in an upper-layer leader device (e.g.,
aerial platform device), the upper-layer device can request
information from several surrounding low-layer devices and

calculate the device’s ISRM. Based on the ISRM, the upper-
layer device can determine if the low-layer device is eligible
to join the aggregation. Furthermore, ISRM is applicable in
the highest-layer P2P network, with inspection devices being
replaced by other devices on the same layer.

In alignment with sociological theories, trust plays a pivotal
role in measuring the dynamics of social relations [26]. In
this paper, we evaluate NTN-VN device social relations based
on social trust, categorizing our ISRM into direct trust and
indirect trust, akin to conventional trust metrics [27], [28].

A. Direct trust
We utilized three key social trust attributes, drawing inspi-

ration from prior studies on the Internet of Things (IoT) social
trust [29], [30]. These attributes include community interest,
friendship similarity, and honesty, as these three trust attributes
are some of the most salient indicators to characterize social
IoT systems.

Community-interest trustworthiness [31] serves as a metric
for assessing whether the trustor node and trustee nodes
belong to the same social community. In the context of
devices, community-interest trustworthiness can be determined
by factors such as shared workplaces or similar capabilities.
The community-interest trust value (CITV) of trustee node j
from trustor node i is expressed as follows:

TC(i, j) =
|Ci ∩ Cj |
|Ci|

, (12)

where | · | denotes the cardinality of a set, and Ci and Cj

denote the set of community interests of trustor i and trustee
j, respectively.

Friendship similarity trustworthiness is a metric used to
assess whether the trustor node and trustee nodes share similar
social relationships. This measure considers the extent of
interaction a device has had with other nodes for specific
content or tasks recently. The friendship similarity trust value
(FSTV) of trustee node j from trustor node i can therefore be
determined by

TF (i, j) =
|Fi ∩ Fj |
|Fi| − 1

, (13)

where Fi and Fj denote the set of friends of trustor i and
trustee j, respectively.

The honesty trustworthiness indicates whether or not a node
is honest. A dishonest node is extremely susceptible as a
malicious node and incurs significant damage to the network
[29]. We write

TH(i, j) =

{
|Hi,j−Hu|

|Hi,j | e
− Hu

Hi,j ,

0, if dishonest
(14)

where Hi,j =
∑

ρi,jhi,j is the number of total interactions
between trustor i and trustee j. Here, ρi,j is the interaction
importance weight factor of the single interaction hi,j . Further,
Hu =

∑
ρuhu is the number of unsuccessful interactions

between them.
Therefore, we have the device i’s direct trust in device j as:

TD(i, j) = α1TC(i, j) + α2TF (i, j) + α3TH(i, j), (15)

where α1, α2 and α3 are weight parameters.



B. Indirect trust

Indirect trust is employed by the trustor to exchange in-
formation about the trust relationships with the trustee among
other nodes. In conventional IoT social trust mechanisms [29],
[30], we have

TI(i, j) =

∑I
n=1,n̸=i,j TD(n, j)

I − 2
. (16)

C. Closeness-associated ISRM

However, whether considering direct or indirect trust, the
conventional assessment of social trust in IoT fails to ac-
count for the influence of specific social behaviors, such as
leading, following, or plagiarizing. Consequently, it struggles
to accurately map social relations. Furthermore, within social
networks, we contend that not every device involved in ex-
changing trust information for indirect trust holds the same
value.

Fortunately, sociality theories emphasize that closeness is a
key indicator for identifying opinion leaders [32]. Information
from opinion leaders has a greater impact on influencing the
attitudes of follower devices [33]. Additionally, in line with
academic plagiarism, instances of plagiarism tend to decrease
the closeness among individuals involved [34]. Hence, we
firstly and innovatively introduce the sociological concept of
closeness into our proposed novel social management system.

Closeness is primarily associated with group type and
interaction type [35], [36]. Consequently, we assess the close-
ness of devices based on the average interaction times at a
given moment and the ownership object relationship. Here we
express the closeness Ct(i, j) of device i and device j related
to average interaction times as:

Ct(i, j) =
1

t

Hi,j∑
h=1

ωh, (17)

where t is the assessment time and ωh is the importance of
interaction h. In addition, the ownership object relationship
presents among objects belonging to the same owner [31],
e.g., whether they belong to the same mobile network operator
(MNO). For devices, it can be considered the homogeneity
proportion of devices’ software or hardware. Hence, we write
the closeness Cs(i, j) of device i and device j related to the
ownership object relationship as:

Cs(i, j) =
|Si ∩ Sj |
|Si ∪ Sj |

, (18)

where Si and Sj are the set of ownership objects.
Therefore, we denote the closeness between node i and node

j as:
C(i, j) = β1Ct(i, j) + β2Cs(i, j), (19)

where β1 and β2 are weight parameters.
In addition, when a plagiarizer j wishes to copy training in-

formation from device i, the closeness of the device i towards
plagiarizer j is inevitably reduced. Because the occurrence of
plagiarism decreases the corresponding closeness. Closeness
C(i, j) in each training epoch should be rewritten as:

C(i, j) = β1Ct(i, j) + β2Cs(i, j)− vλ, (20)

where λ is the plagiarism penalty factor and λ = 0, if no
plagiarism or the closeness before plagiarism is less than the
closeness threshold Γ. Furthermore, v is the weight factor
related to the training epoch. In case all devices’ closeness of
a plagiarizer device decreases under Γ, plagiarism is also not
possible, thus forcing the withdrawal of training. In addition,
choosing to lead or follow both can increase closeness due to
interaction.

Therefore, we can update the indirect trust value of trustee
j from the trustor i by

TI(i, j) =

∑I
n=1,n̸=i,j C(n, j)TD(n, j)∑I

n=1,n̸=i,j C(n, j)
. (21)

Combine with direct trust, indirect trust, and [21]–[25], the
ISRM for trustor i and trustee j can be expressed by

TISRM (i, j) = γ1TD(i, j) + γ2TI(i, j), (22)

where γ1 and γ2 are weight parameters related to closeness
Cs(i, j) between node i and node j, and TISRM (i, j) = 0 if
TISRM (i, j) is less than the security threshold Υ.

Therefore, the trustor only needs to be informed about some
main friends around the trustee to obtain an accurate social
relationship with the trustee, rather than a comprehensive,
all-device-involved assessment. Additionally, the decrease in
closeness results in a decrease in social relations. After drop-
ping below the threshold, the plagiarizing device will not be
included in the training unless behaviors are performed that
increase closeness. In our frameworks, being a leader increases
the number of socializations with other devices in the same
layer, thus improving closeness.

V. NTN-VN-FL: SELECTING THE SOCIAL BEHAVIOR OF
THE NODES

In this section, we explore the optimal selection of social
behavior within NTN-VN social networks. For FL performed
between the lower and upper layers, the involvement of
multiple plagiarizers is precluded from FL aggregation due to
the diminished closeness and social relations resulting from
multiple instances of plagiarism. While social relations can
be utilized to ascertain a device’s availability for training,
it does not influence the social behavior selection in the
lower layer. Additionally, numerous studies have extensively
discussed follower selection for coordinators (leaders), as seen
in [2], [21] and our previous work [6].

Therefore, we do not delve into that aspect here. This
section concentrates on behavior selection in the highest-layer
P2P decentralized environment. Individual devices’ varied so-
cial behaviors incur diverse computational and communication
costs, influencing changes in social relationships. Drawing
inspiration from economics in the social realm, we quantify
computational and communication costs as economic costs
resulting from these social behaviors. The optimal social
behavior can then be derived based on the economic costs
associated with social behaviors and the dynamic changes in
the social environment.

In a society where only one leader can be elected, we have
designed a reverse auction game to determine the optimal



leader in each epoch, with the remaining devices acting as
followers. Those who fail to keep up with training in a timely
manner are categorized as plagiarists. The social behavior
selection aims to optimize social welfare, considering factors
such as social relations, fairness, training delays, and energy
costs.

In this game, the NTN-VN (i.e., MNO) functions as the
buyer seeking to acquire aggregation resources from devices.
Devices, acting as bidders, aim to sell their computing and
communication resources to maximize revenue and secure the
position of a leader. As a result, the game can be divided into
a “winner (i.e., leader) selection” problem and a “bidding de-
termination” problem which involves determining the bidding
strategy of devices.

A. Winner selection
On the NTN-VNs/MNOs, the sooner a functional semantic

codec is trained, the earlier it can be deployed, thereby
generating benefits. We can define the effective bid for device
j to be a leader as:

Rj = Sj,uRu + Sj,dRd + Sj,cRc, (23)

where Sj,u, Sj,d and Sj,c are the un-aggregated semantic
codec transmission (followers to leader) delay satisfaction,
aggregated semantic codec transmission (leader to followers)
delay satisfaction, and aggregation delay satisfaction of the
MNO in this training epoch, respectively. Further, Ru, Rd

and Rc are the corresponding greatest revenue from MNOs.
Similar to previous studies [37], [38], we set the satisfaction
as the same logarithmic function. Here there exist I devices
in this society and hence have the Sj,u, Sj,d and Sj,c as:

Sj,u = ln(1 + ϑu −max{Ti,j + TP
i,j}), ∀i ∈ I, j ̸= i (24)

Sj,d = ln(1 + ϑd −max{Tj,i + TP
j,i}), ∀i ∈ I, j ̸= i (25)

Sj,c = ln(1 + ϑc − Tj), (26)

where ϑu, ϑd and ϑc are parameters to ensure that satisfaction
indicators are available in most situations. Moreover, Ti,j , TP

i,j ,
Tj,i, TP

i,j and Tj are the transmission delay (i to j), propaga-
tion delay (i to j), transmission delay (j to i), propagation
delay (j to i), and aggregation computing delay of device j,
respectively.

These bids are determined by the Tj and Tj,i from device
j and Ti,j from device i. Mathematically, to maximize social
welfare, the “winner selection” problem can be expressed as:
Problem 1:

max
xi,Ri

I∑
i=1

Rixi, (27a)

s.t.

I∑
i=1

xi = 1, (27b)

xi = {0, 1}, (27c)
q < I/2, (27d)

where xi is the decision variable and q is the number of
plagiarizers. It is observed that the winner can be chosen in
descending order, subject to obtaining key elements of bids.
e.g., Tj , Ti,j and Tj,i.

B. Bidding determination

We note that the leader’s bidding Rj from a device, j is
related to Ti,j from another device i. How leader j motivates
them to generate the Ti,j that is optimal for them and hence
increasing the bidding has become an issue. To address the
bidding problem in a reverse auction, increase the training
motivation, and determine Ti,j , we further proposed a two-
stage Stackelberg game approach. Before that here, we first
discuss the utility of different devices in case device j bids
for leadership.

1) Utilities for followers: For a follower i when the leader
is j, participating in training costs them energy. We formulate
the energy cost as the followers’ monetary cost. Moreover,
to motivate the followers to participate in the training with
more power and thus increase their auction chips, the leader
should give some bonuses to followers. Influenced by a
combination of social relations, without loss of generality, the
utility function for followers can be expressed as:

ui,j(Ti,j , bj) = Bi,j + Vi,j − φEi,j , (28)

where Bi,j is the bonus that device i receives from device j
and bj is the unit bonus price decided from device j related
to transmission delay. To ensure fairness among devices, a
function related to delay satisfaction is set to model Bi,j ,
therefore,

Bi,j = bj ln(1 + ϑu − Ti,j − TP
i,j). (29)

Moreover, Vi,j is the gains of follower i due to increased
closeness/trust value via this training when the leader is j.
During training, the closeness value and trust value increase
for each successful interaction. Furthermore, a device with
fewer interactions with other devices gets a lower interaction
demand. The demand vi is therefore inversely proportional to
total closeness, i.e., vi ∝ 1∑I

i=1,i ̸=j C(i,j)
. We have the follower

Vi,j as:
Vi,j = γvi =

γ∑I
i=1,i̸=j C(i, j)

, (30)

where γ is the monetary factor.
Therefore, we write the optimization problem for device i

as:
Problem 2:

max
Ti,j ,bj

bj ln(1 + ϑu − Ti,j − TP
i,j) +

γ∑I
i=1,i̸=j C(i, j)

− φEi,j , (31a)

s.t. Tmin
i ≤ Ti,j , (31b)

where Tmin
i is the minimum transmission delay related to

maximum transmission power.
2) Utility for the leader: Similar to the utility function for

followers, we denote the leader’s utility function by

Uj(Ti,j , Tj,i, Tj , bj) = Rj + Vj − φEj − φEj,i −Bj , (32)

where Vj is the gains due to increased closeness. Furthermore,
Ej,i =

∑I
i=1,i̸=j pi,jTj,i and Ej are the total communi-

cation energy cost and aggregation computing energy cost
of a device j, respectively. The factor φ is the monetary



factor to convert energy consumption into monetary cost and
Bj =

∑I
i=1,i̸=j Bi,j is the total bonus for encouraging non-

aggregating nodes to transmit speedily to the device j. Note
that, Rj (in (23)) is the network/MNO revenue achieved by
device j if bidding is successful.

Similar to Eq. (30), we can express the leader Vj by

Vj =
(I − 1)γ∑I

i=1,i̸=j C(j, i)
, (33)

The optimization problem for an aggregation node is, there-
fore,
Problem 3:

max
Ti,j ,Tj,i,Tj ,bj

Rj +
(I − 1)γ∑I

i=1,i̸=j C(i, j)
− φEj − φEj,i −Bj ,

(34a)

s.t. Tmin
j ≤ Tj , (34b)

Tmin
j,i ≤ Tj,i, (34c)

where Tmin
j is the minimum computing delay related to the

maximum available CPU-cycle frequency fj and Tmin
j,i is the

minimum transmission delay related to the maximum available
transmission power. Moreover, for simplicity and fairness, we
assume that Tj,i for each device i are the same.

3) Two-stage Stackelberg game for bidding determination:
We note that the strategies of the leader and followers are all
related to Ti,j and bj . Therefore, we construct a two-stage
Stackelberg game. First, the optimization problem of aggre-
gation devices is divided into three sub-problems. The two
optimization problems are then solved by convex optimization
methods in the first stage. We then formulate a Stackelberg
game which is treated in Stage 2.

In the first step, we can decompose three sub-optimization
problems from Problem 3, i.e.,
Problem 4:

max
Tj

Sj,cRc − φEj , (35a)

s.t. Tmin
j ≤ Tj , (35b)

Problem 5:

max
Ti,j ,bj

Sj,uRu + Vj −Bj , (36a)

s.t. Tmin
i ≤ Ti,j , (36b)

Problem 6:

max
Tj,i

Sj,dRd − φEj,i, (37a)

s.t. Tmin
j ≤ Tj,i, (37b)

For problem 4, the first-order derivative equation of Eq.
(35) can be written as

2M3
j φε

T 3
j
− 1

ϑc−Tj+1 . In the domain of
definition, this problem can be easily solved by basic convex
optimization methods.

For problem 5, Ti,j and bj need to be achieved from the
joint strategies of the leader and followers. Based on the above,
we design a Stackelberg game as the second step to address
this problem. We have

Uj(T
∗
i,j , b

∗
j ) ≥ Uj(T

∗
i,j , bj), (38)

Algorithm 1 Social behavior selection mechanism

Initialization: Ti,j , Tj,i, Tj , bj , the training epochs K, the
maximum number of iterations Z, the stopping criterion
threshold ξ > 0, step length τ , and the leader position, first
winner bid Rj0 = R1, second winner bid Rj1 = R1, winner
n = 1

1: for each device j = 1, 2, ..., I:
2: Tj ← Eq.(35) & Tj,i ← Eq.(37)
3: while z < Z:
4: Ti,j ← SMO
5: bj = bj + τ
6: Adjust τ , reduce the value of τ
7: Until Uj(z)− Uj(z − 1) < ξ
8: end while
9: Rj ← Eq.(20)

10: end for
11: for each device j = 1, 2, ..., I:
12: if Rj ≥ Rj−1:
13: Rj0 = Rj&Rj1 = Rj0&n = j
14: end if
15: end for
16: Leader ← device n

Pricing ← R
′

j0
= Rj1

ui,j(T
∗
i,j , b

∗
j ) ≥ ui,j(Ti,j , b

∗
j ), (39)

where T ∗
i,j , b∗j are the maximum social welfare solution.

NE Existence: According to the Debreu-Glicksberg-Fan the-
orem [39], a pure Nash Equilibrium (NE) exists when the
strategy set of followers is both compact and convex. Further,
the ui,j should be continuous and concave in Ti,j . The second-
order partial derivative of Eq. (28) with respect to Ti,j thus
is:

∂2µi,j

∂T 2
i,j

= − bj
(Ti,j + TP

i,j − ϑu − 1)
− 2

D
BTi,j

D2φσ2ln22

B2T 3
i,jgi,j

. (40)

Combining practical communication systems, ∂2µi,j

∂T 2
i,j

< 0 and
Eq. (28) is concave in Ti,j . Since the strategy set of followers
is also compact and convex, a pure NE exists.

To find the NE point, the followers’ strategies need to
be derived first followed by the leaders’ strategy based on
the backward induction. Specifically, we should obtain the
relational Ti,j ↔ f(bj) via ∂ui,j

∂Ti,j
= 0, where f(bj) is bj

related function. The Ti,j in Uj should be replaced by f(bj)

and b∗j can be obtained via ∂Uj

∂bj
= 0.

However, the solution of Ti,j cannot be obtained in a closed
form. As ui,j is concave, for such a non-linear equilibrium
problem, sequential minimal optimal (SMO) is a candidate
powerful tool to achieve the optimal solution with constraints.
The similar problem 6 can be derived from the same approach.
We first give a fixed value bj . Following the SMO, the pi,j
could be tightened iteratively until convergence. The b∗j is
subsequently obtained by the step length acceleration method.



Algorithm 2 NTN-VN-FL

Initialization: dataset mi, leader i, global SC codec model
θ

1: for each epoch k = 1, 2, ...,K:
2: for each follower device a = 1, 2, ..., A:
3: θak+1 = θk − ηa ▽ La(θk)
4: Upload θak+1 and bidding Ra to the leader i
5: end for
6: for each plagiarizer device b = 1, 2, ..., B:
7: Plagiarize a close friend and get punished
8: θb

′

k =
θk+ρbω

b
k

1+ρb

9: ωb
k+1 = θb

′

k − ηb ▽ Lb(θ
b′

k )
10: Upload ωb

k+1 and bidding Rb to the leader i
11: end for
12: Leader i receives weights and verifies that the device

can participate in the training
13: Leader i: θk+1 ← Eq.(10)
14: Leader i delivery the θk+1 and elect the leader according

to the bidding
15: end for

4) Pricing: Determining the leader j0 and corresponding
Rj0 we then obtain the allocation prices according to the
Vickrey auction rule. By the Vickrey auction rule, the actual
delivery bid R

′

j0
is determined according to the next winner

j1’s bid, i.e., Rj1 . If leader j0 is not achievable, the social trust
value is reduced to zero according to Eq. (14). The leader j0
thus should set a follower training deadline and if followers
fail to achieve the requirement, they will become plagiarizers.
The procedure of the social behavior selection mechanism is
demonstrated in Algorithm 1. Further, the full procedure of
the NTN-VN-FL is presented in Algorithm 2 (downlink as an
example)

VI. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the performance of the proposed NTN-VN-FL framework,
conducting a primary comparison with four state-of-the-art
learning frameworks: BrainTorrent [12], CMFL [13], Clus-
terFL [15], and FedSA [16]. The details of these methods
could refer to related works in the Introduction.

Our focus is on devices in the highest layer, specifically
the satellite layer, utilizing the SC codec for transmission
images with vehicles on the terrestrial. The semantic codecs
from vehicles and satellites are aggregated on the satellite
layer. As satellites in space can be likened to a cellular
network over a terrestrial area [23], we model a satellite
network over a terrestrial area as a 1-tier cellular edge network.
The choice of 1-tier is influenced by the limited number of
satellites over a terrestrial area simultaneously [2]. All satellite
devices collaborate to train an image semantic transmission
codec model. Due to asynchrony, one device consistently takes
longer to train than others.

TABLE II: The setting of the semantic codec.

Encoder Neuron num Decoder Neuron num
Conv+PReLU 32 transConv+PReLU 32
Conv+PReLU 32 transConv+PReLU 32
Conv+PReLU 32 transConv+PReLU 32
Conv+PReLU 32 transConv+PReLU 32
Conv+PReLU 32 transConv+PReLU 16

Unless stated otherwise, the plagiarizer attempts to become
a leader twice in every 10 epochs. Consequently, in ClusterFL
settings, devices are divided into two clusters. We retrain
an efficiency-designed end-to-end SC codec model following
the previous SC codec study [40] in such an environment.
Consistent with [40], the training data are sourced from the
CIFAR-10 [41] and CIFAR-100 [42] image datasets. We
assume all satellite devices are in the same state and have
a few training images. The convolutional autoencoder (CAE)
is considered the semantic encoder and semantic decoder [6],
[41]. The specific settings of the CAE are detailed in Table II.

(a) CIFAR 10 dataset (b) CIFAR 100 dataset

Fig. 3: Accuracy and convergence speed of various learning
frameworks in a static environment.

In Fig. 3, we illustrate the convergence speed and accuracy
of various frameworks. In this paper, accuracy is defined
as the mean square error between the input image and the
transmitted image. Peak Signal-to-Noise Ratio (PSNR) serves
as a crucial metric for evaluating the semantic communication
model’s performance [40], [43]. A higher PSNR signifies more
accurate semantic communication encoder transmission.

PSNR = 10 log
MAX2

MSE
(dB), (41)

where MAX is the maximum value for a pixel and MSE
is the mean square error. The accuracy increases with a lower
mean square deviation for the same dataset. For simplicity, we,
therefore, denote the performance metric as MSE, the same as
[6]. It is evident that all frameworks exhibit nearly identical
convergence speeds. Our framework demonstrates comparable
accuracy to BrainTorrent and CMFL. However, these latter
frameworks neglect the impact of asynchrony, requiring an
extended period for federated aggregation. In contrast, NTN-
VN-FL achieves superior accuracy compared to ClusterFL
and FedSA. The latter frameworks struggle in decentralized
scenarios due to ineffective measures and the presence of a
staleness model, resulting in the loss of training information
and global weights from laggard devices in the last epoch. The
proposed social management system in NTN-VN-FL mitigates
model staleness and the constant sharing and aggregation of



TABLE III: Accuracy of different models.

CIFAR-10 CIFAR-100 CIFAR-10
Dynamic

CIFAR-100
Dynamic

BrainTorrent/CMFL 100% 100% 100% 100%
NTN-VN-FL(1) 102.95% 101.45% 92.20% 91.66%
NTN-VN-FL(2) 102.43% 101.21% 91.73% 91.44%
NTN-VN-FL(3) 101.39% 100.73% 90.79% 91.01%

FedSA 112.53% 106.21% 122.51% 132.07%
ClusterFL 124.56% 107.72% 125.92% 136.48%

information by plagiarists aspiring to become leaders further
contribute to its success.

Fig. 4 depicts the accuracy and convergence speed of
various frameworks in dynamic environments, considering the
introduction of a new participant in epochs 50 and 100. No-
tably, NTN-VN-FL consistently attains the highest accuracy,
irrespective of whether the dataset is CIFAR-10 or CIFAR-
100. This consistent performance is attributed to the presence
of the proposed social management system. The integration
of a new participant into the training process, facilitated by
plagiarism, allows the newcomer to obtain the latest global
model without disrupting the accuracy of the overall model.

(a) CIFAR 10 dataset (b) CIFAR 100 dataset

Fig. 4: Accuracy and convergence speed of various learning
frameworks in a dynamic environment.

In Table III, we present the impact of social behavior
on accuracy. Assuming a trusted device resorts to repeated
plagiarism due to unforeseen circumstances, it seeks leadership
roles through the social behavior selection mechanism to
restore closeness, social trust, etc. We explore scenarios where
the device applies to become a leader 1, 2, and 3 times
in every 10 epochs, denoted as NTN-VN-FL(1), NTN-VN-
FL(2), and NTN-VN-FL(3). Employing BrainTorrent/CMFL
as a benchmark with 100% accuracy in Mean Squared Error
(MSE), lower percentages in our results indicate more accurate
image transmission.

It is seen that there is a positive correlation between the
frequency of leadership roles and accuracy. Increased lead-
ership instances contribute to higher accuracy as the shar-
ing of training results and data information becomes more
frequent. Notably, in non-dynamic environments, NTN-VN-
FL demonstrates accuracy comparable to BrainTorrent/CMFL
but outperforms FedSA and ClusterFL by approximately 5%
to 12%. In dynamic environments, NTN-VN-FL exhibits the
highest accuracy, surpassing all frameworks by 9% to 36%,
showcasing the superior performance of our NTN-VN-FL
model.

(a) Relations variation (b) Labelling of satellites

Fig. 5: Closeness and social relations variation of the plagia-
rizer.

Fig. 6: Communication cost of various learning frameworks.

In Fig. 5, we depict the fluctuation in closeness and social
relations of a plagiarizer. The determination of social relations
is based on the leader’s assessment. For the illustration, we
designate satellite “6” (see Fig. 5 (b)) as the plagiarizer. To set
the initial conditions, we assign a closeness and social relations
value of 0.8 to satellites “0”, “1”, and “5”, while satellites
“2”, “3”, and “4” are assigned values of 0.6. The observed
trend reveals a decrease in the social relations of satellite “7”
as the training commences. This decline is a consequence
of its plagiarism from the closest devices, namely “0”, “1”,
and “5,” resulting in reduced aggregation weights despite high
social relations. Both closeness and social relations approach
precarious thresholds. Recognizing this, in communication
round 4, satellite “6” undergoes an auction to become the
leader, leading to an increase in closeness and threshold values.

Fig. 6 illustrates the fluctuation in communication costs
during the training of various frameworks. We assume uniform
trust values and closeness for all devices. To enhance clarity,
we express communication costs in terms of the number of
communication hops per training epoch. The initial aggre-
gation node is designated as device “6,” and half of the
participants operate asynchronously.



Observing the results, CMFL incurs the highest commu-
nication costs, primarily due to its social behavior selection
relying on the device’s trust value. This results in an aggre-
gation process akin to traditional FL when the leader’s trust
value remains constant. Conversely, FedSA exhibits the lowest
communication costs, as only half of the devices participate
in the aggregation process. However, this efficiency comes at
the expense of losing some training information.

The communication cost of our proposed NTN-VN-FL,
integrated with a game, falls between ClusterFL and FedSA,
attributed to the inclusion of a plagiarism mechanism. Notably,
our framework is tailored for decentralized, dynamic, and
3D networks, outperforming these counterparts in achieving
higher transmission accuracy. Furthermore, NTN-VN-FL, en-
hanced by economic game theory, not only improves accuracy
but also achieves this with reduced communication costs.

VII. CONCLUSION

In this paper, we explored the challenges associated with SC
codec updating in 3D NTN-VN networks and introduced a pio-
neering framework called NTN-VN-FL. Leveraging sociologi-
cal concepts such as closeness, NTN-VN-FL categorizes vehi-
cles and devices as “leaders,” “followers,” and “plagiarizers,”
optimizing various social and training behaviors. Technical
challenges within NTN-VN-FL, including dynamic, training
latency, and energy costs, were scrutinized. To address these
challenges, a social trust management system was introduced
to uphold the stability of NTN-VN-FL. Furthermore, a social
behavior selection mechanism, based on economic game the-
ories like the reverse auction game and Stackelberg game, and
aligned with the designed social trust management system, was
proposed. This mechanism reduces training communication
costs, taking into account the trust value and closeness of
devices. Simulation results showcased the superiority of our
proposed NTN-VN-FL frameworks and related approaches,
outperforming baseline frameworks by 5% to 12%. In dynamic
environments, NTN-VN-FL exhibited the highest accuracy,
surpassing all frameworks by 9% to 36%. Moreover, in the 3D
NTN-VN dynamic environment, transmission accuracy saw an
improvement of 9% to 36% relative to baseline frameworks.
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