
Evaluating Multi-seasonal SAR and Optical Imagery for Above-Ground 1 
Biomass Estimation Using the National Forest Inventory of Zambia 2 
 3 
Kennedy Kanja1,3,4, Ce Zhang2, Peter M. Atkinson1,5,6 4 
1 Lancaster Environment Centre, Faculty of Science and Technology, Lancaster University, Lancaster LA1 4YG, 5 
UK 6 
2 School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK 7 
3 School of Natural Resources, Copperbelt University, Kitwe, Zambia 8 
4 School of Applied Sciences, Kapasa Makasa University, Chinsali, Zambia 9 
5 Geography and Environmental Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK 10 
6 College of Surveying and Geo-Informatics, Tongji University, No.1239, Siping Road, Shanghai, PR China, 11 
200092 12 
 13 
Abstract 14 
 15 
Mapping forest above-ground biomass (AGB) is crucial for monitoring forest ecosystems and 16 
assessing the success of conservation initiatives such as the REDD+ carbon projects. 17 
Traditional field-based approaches to measuring AGB, however, face significant challenges, 18 
due to high financial costs and logistical constraints. Remote sensing, including both active and 19 
passive sensors, presents a promising and cost-effective alternative, yet its practical utility and 20 
accuracy for capturing forest AGB in diverse and complex ecosystems remains largely 21 
unexplored. This research used an extensive national forest inventory (NFI) dataset to evaluate 22 
the ability to map the AGB of the Miombo woodlands in Zambia across four agro-ecological 23 
zones using both multi-seasonal SAR (Sentinel-1A) and optical (Landsat-8 OLI) imagery. A 24 
multi-level experiment was designed to (i) compare the accuracy of AGB estimation using 25 
SAR and optical data when used independently, and in combination, using a Random Forest 26 
regression model, (ii) assess the effect of seasonality on the accuracy of AGB estimation when 27 
using SAR and optical datasets, and (iii) evaluate the effect of variation in climatic and 28 
environmental conditions on AGB estimation. Experimental results show that multi-seasonal 29 
images (across the rainy, hot and dry seasons) outperformed single-season and annual images. 30 
Combining SAR backscatter in the hot season, optical bands in the dry season, and vegetation 31 
indices in the hot season produced the most accurate AGB model (R = 0.69, MAE = 14.01 Mg 32 
ha-1 and RMSE = 18.23 Mg ha-1). The models performed distinctly across different agro-33 
ecological zones (R = 0.44 – 0.79), suggesting that fitting local models could be beneficial. 34 
These results based on the extensive NFI of Zambia demonstrate that seasonal effects and 35 
fitting local models can lead to more accurate AGB estimation within the Miombo woodlands, 36 
which is of significance for ongoing REDD+ carbon projects in Zambia and other African 37 
countries. 38 
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 42 
1. Introduction 43 

 44 
Forest above-ground biomass (AGB) is an indispensable variable for forest monitoring, 45 

estimation of greenhouse gas emissions and sustainable management of carbon stocks, 46 



particularly for the REDD+ carbon projects (Saatchi et al., 2011; Harris, 2012; Wulder et al., 47 
2012). High-quality forest AGB information, however, can be challenging to capture in tropical 48 
developing countries, due to financial costs and logistical constraints (Halperin et al., 49 
2016a). In particular, traditional field-based approaches that are used commonly in developing 50 
countries demand huge time and labour, and may be impractical due to inaccessibility when 51 
conducting regional-to-national scale forest AGB estimation (Atkinson et al., 2000; Ghosh and 52 
Behera, 2018). Remote sensing-based methods, by combining field observed AGB and remote 53 
sensing datasets, can overcome many of these limitations, although they present additional 54 
challenges, dependent upon the satellite sensors and platforms (Carreiras et al., 2012; Lu et al., 55 
2016). Active and passive sensors can both be used to map forest AGB, but active sensors such 56 
as light detection and ranging (LiDAR) and synthetic aperture radar (SAR) can be more 57 
effective for forest AGB estimation compared to passive sensors, thanks to their ability to 58 
interact with vegetation structures (Herold et al., 2019; Li et al., 2020). Challenges associated 59 
with SAR involve susceptibility to water content, terrain variation and the spatial arrangement 60 
of forests (Chen et al., 2023). Forest AGB is highly correlated with optical data, but optical 61 
data are limited by weather conditions, and vegetation indices produced from optical data 62 
commonly saturate at high biomass and dense canopy cover (Halperin et al., 2016b; Joshi et 63 
al., 2016; Zhao et al., 2016; Gascón et al., 2019). 64 

Tremendous efforts have been made in mapping forest AGB in tropical forests using both 65 
active and passive sensors (Cassells et al., 2009; Carreiras et al., 2012; Gizachew et al., 2016; 66 
Ghosh and Behera, 2018; Gou et al., 2019; Van Pham et al., 2019; Zimbres et al., 2021; David 67 
et al., 2022b). However, most studies focused on tropical rainforests, such as the Brazilian 68 
Amazon (Kuplich et al., 2005; Salis et al., 2006; Quijas et al., 2019; Zimbres et al., 2021). L-69 
band SAR data have been used frequently for forest AGB estimation with high accuracy, with 70 
their ability to penetrate tree crowns (Carreiras et al., 2012; Mitchard et al., 2013b; McNicol et 71 
al., 2018b; Gou et al., 2019). ALOS PALSAR L-band data, for example, were adopted to map 72 
forest AGB in Southern Africa and produced the first continental forest AGB map of the 73 
African savannahs and woodlands (Urbazaev et al., 2015; Bouvet et al., 2018). LiDAR, which 74 
has the ability to estimate canopy height and structure, shows potential for retrieval of forest 75 
biophysical parameters, such as volume and biomass (Pirotti, 2011; Kanja et al., 2019a; Pearse 76 
et al., 2019; Demol et al., 2024; Li et al., 2024). Nevertheless, the majority of SAR and LiDAR 77 
data are not freely available and impractical at regional and national scales. Sentinel-1 SAR C-78 
band data from the European Space Agency, on the other hand, are offered free of charge. The 79 
combination of field observed AGB, SAR and optical satellite sensor imagery can be useful to 80 
estimate forest AGB in regions where data are scarce, such as in developing countries (Forkuor 81 
et al., 2020; Li et al., 2020). 82 

The Miombo woodlands, found across South and East Africa, are characterised by a closed 83 
canopy that is not too dense, thereby allowing the growth of a herbaceous layer (Campbell, 84 
1996). They extend over Angola, Malawi, Zimbabwe, Mozambique, Zambia, Tanzania, and 85 
part of Congo DRC, making them the most widespread woodland type in Africa. Miombo 86 
woodlands are an important source of livelihoods for people living in these countries, as they 87 
provide multiple ecosystem functions and services (Syampungani et al., 2009; Chidumayo and 88 
Gumbo, 2010; Kalaba et al., 2013; Ryan et al., 2016). Despite progress in combining SAR and 89 
optical data for forest mapping, most previous studies mapped Miombo woodlands using 90 



optical data alone (Gizachew et al., 2016; Halperin et al., 2016a; Mayes et al., 2016; Mareya et 91 
al., 2018), whereas some studies tested SAR data and LiDAR data separately (Cassells et al., 92 
2009; Mitchard et al., 2013a; McNicol et al., 2018a; Gou et al., 2019; Demol et al., 2024; Li et 93 
al., 2024). Few studies used a combination of SAR/LiDAR and optical data to increase the 94 
accuracy of Miombo woodland AGB mapping (Næsset et al., 2016; Egberth et al., 2017; David 95 
et al., 2022a; Macave et al., 2022). For example, David et al. (2022) used Sentinel-1 and 96 
Sentinel-2 data for forest AGB estimation in the tropical dry forests of Botswana, while Macave 97 
et al. (2022) utilized Landsat-8, Sentinel-2A, Sentinel-1B and ALOS/PALSAR-2 to estimate 98 
forest AGB in the Miombo woodlands of Mozambique. Both studies led to an increased 99 
accuracy, although their coverage was limited to National Parks only. To the best of our 100 
knowledge, no studies used national forest inventory (NFI) data to validate models that 101 
combine SAR and optical data to estimate forest AGB in the Miombo woodlands at regional-102 
to-national scales. Gascón et al. (2019) explored the potential to estimate forest AGB at the 103 
national level in Tanzania using national survey data but using optical data (RapidEye) alone 104 
(Gascón et al., 2019). Moreover, very few studies explored the seasonal effects of SAR and 105 
optical data on forest AGB mapping (Laurin et al., 2018; Forkuor et al., 2020; Chen et al., 106 
2023; Tanase et al., 2024), which could be important for the Miombo woodlands as a tropical 107 
dry forest. The use of multi-seasonal data is aimed at taking advantage of the relation between 108 
AGB and images under varying phenological conditions (Zhu and Liu, 2015; Chrysafis et al., 109 
2019). Studies that compared the use of single images and multi-seasonal images for AGB 110 
estimation concluded that multi-seasonal images predicted more accurately than single images 111 
(Zhu and Liu, 2015; Cartus and Santoro, 2019; Chen et al., 2023). However, none of these 112 
studies explored fully the phenological conditions that vary with the seasons by compositing 113 
the mean seasonal images.    114 

To address these gaps, this research aims to test and evaluate multi-seasonal Sentinel-1A 115 
and Landsat-8 OLI imagery to estimate forest AGB in Zambia’s Miombo woodlands across 116 
four agro-ecological zones, using an extensive NFI ground reference dataset available from the 117 
Forestry Department of Zambia that has not been used for this purpose before. Specific 118 
objectives include (1) to evaluate model prediction accuracy when SAR and optical data are 119 
used independently and when they are combined, (2) to determine the optimal time period 120 
(annual, rainy, dry, hot, multi-season) for forest AGB estimation in the Miombo woodlands 121 
when using SAR and optical data, (3) to analyse and compare model uncertainties across four 122 
agro-ecological zones characterised by different climatic conditions, terrain conditions and 123 
vegetation types, and (4) to predict wall-to-wall forest AGB using the best fitting relationship 124 
between NFI and SAR and optical data. This research adds to the improvement of forest AGB 125 
estimation by combining multi-seasonal SAR and optical remote sensing data with an NFI 126 
dataset, providing a novel approach to biomass mapping in tropical dry forests like Zambia’s 127 
Miombo woodlands. The outcomes of this research enhance the accuracy of large-scale AGB 128 
assessments, and thereby making available the much-needed AGB maps for evidence-based 129 
forest management, REDD+ carbon projects, and policy formulation. 130 

 131 
2. Methodology 132 

 133 
2.1 Study Area 134 



 135 
This research was conducted in Zambia (Fig. 1), with its forest landscape being considered 136 

for REDD+ projects presently (Handavu et al., 2021). Our primary focus is on the dominant 137 
Miombo woodlands, and Miombo woodlands mixed with Mopane, Hill and Karahali 138 
woodlands. Both dry and wet Miombo woodlands are represented extensively in Zambia. Dry 139 
Miombo woodlands are characterised by trees with heights less than 15 m and few canopy 140 
overlaps, and receive annual rainfall of less than 1000 mm, represented by agro-ecological 141 
zones I, IIa and IIb (Fig. 1). Agro-ecological zone I is characterised by hot and dry areas, 142 
receives lower annual rainfall of 800 mm and below, and has lower altitudes of 400-900 m. 143 
Agro-ecological zone IIa forms part of an area that receives medium annual rainfall of 800-144 
1000 m with an altitude between 900 and 1300 m. Agro-ecological zone IIb completes the area 145 
that receives medium rainfall comprising of sand and floodplains with an altitude between 900 146 
and 1300 m. Wet Miombo woodlands are characterised by trees of more than 15 m height with 147 
crown overlap in some cases where the annual rainfall received is more than 1000 mm. Wet 148 
Miombo is associated with agro-ecological zone III which receives high rainfall with altitudes 149 
between 1100 and 1500 m (Chidumayo and Gumbo, 2010; Bulusu et al., 2021; Shamaoma et 150 
al., 2022). These zones cover all available environments in Zambia with dry woodlands 151 
extending into neighbouring countries in the south and east, and wet woodlands extending into 152 
countries in the north and east of Zambia. 153 

 154 

 155 
Fig. 1. Study area map and typical ground photos showing Miombo woodlands. (a) The 156 
location of the National Forest Inventory plots used in this research, spread across Zambia’s 157 



four agro-ecological zones I, IIa, IIb and III, together with some summary statistics. (b) and (c) 158 
primary Miombo woodlands, (d) and (e) disturbed Miombo woodlands. 159 
 160 
2.2 Data acquisition 161 
 162 
2.2.1 National Forest Inventory data 163 

 164 
The NFI data used in this research were collected for the Integrated Land-Use Assessment 165 

Phase Two project (ILUA-II), which took place between 2010 to 2016. The ILUA-II was the 166 
largest forest inventory of Zambia, undertaken by the Forestry Department, with technical 167 
assistance from the Food and Agriculture Organisation of the United Nations (FAO) and funded 168 
by the Government of Finland (Shakacite et al., 2016.).  169 

The NFI plots were distributed across all major vegetation types in Zambia and stratified 170 
with forest variation (Shakacite et al., 2016.). The four agro-ecological zones present a variety 171 
of vegetation types with each zone representing a different climatic condition that affects 172 
vegetation type and growth. A total of 1034 NFI plots were used for the current research 173 
covering all four agro-ecological zones (Fig. 1). 60% of these inventory plots covered Miombo 174 
woodlands, 14% Karahali woodlands, 10% Hill woodlands and 7% Mopane woodlands. 175 

Four plots measuring 0.1 ha (20 m by 50 m) formed a cluster. Fig. 2 shows a schematic 176 
representation of the spatial arrangement of four plots within each cluster. The plots, and not 177 
the clusters, within which trees with Diameter at Breast Height (dbh) above 10 cm were 178 
recorded formed the basic sampling units of this research. Refer to Shakacite et al., (2016) for 179 
details. Only those forest inventory plots captured in 2014, and shown in Figure 1, were 180 
considered for this research to correspond as closely as possible to the availability of Sentinel-181 
1 SAR data. However, 951 plots were ultimately used during the regression analysis due to 182 
non-availability of remote sensing data for certain time periods. 183 
 184 



 185 

Fig. 2. Configuration of data collection sites. (a1) cluster design, (a2) plot design, (b) and (c) 186 
two random clusters showing field observed NFI plots (disturbed and intact, respectively) 187 
superimposed on Google Earth Imagery. 188 
 189 
2.2.2 Remote sensing data 190 

 191 
Sentinel-1 Ground Range Detected (GRD) scenes from ESA’s Sentinel 1 satellites (A and 192 

B) in dual polarisation SAR C-band were downloaded from Google Earth Engine (GEE). We 193 
processed the Sentinel-1 (S1) data by filtering based on study area, time period, instrument 194 
mode (IW) and polarisation (VV, VH). Backscatter coefficients for the VH and VV 195 
polarizations, together with texture information, were retrieved and employed as SAR predictor 196 
variables (covariates) in the forest AGB regression analysis.  197 

We used a similar approach for retrieving the optical spectral bands, texture information and 198 
vegetation indices from the Landsat-8 Operational Land Imager (OLI). We used Landsat 8 (L8) 199 
level 2, Collection 2 which contains atmospherically corrected surface reflectance images, with 200 
the cloud cover threshold set as 1%, representing close to cloud free. The Landsat-8 images 201 
were then resampled to 10 m pixel size to align with the Sentinel-1 data and to fit within the 202 
inventory plots. Five spectral vegetation indices were selected based on similar studies, 203 
including the normalised difference vegetation index (NDVI) (Gizachew et al., 2016), 204 
normalised difference moisture index (NDMI) (Halperin et al., 2016a), normalised difference 205 
water index (NDWI) (Jha et al., 2021), bare soil index (BSI) (Xie et al., 2022) and enhanced 206 
vegetation index (EVI) (Lembani et al., 2020).  207 

The Grey Level Co-occurrence Matrix (GLCM) texture method in GEE was utilised to 208 
derive texture metrics with input grey-level images generated using eqs. 1 and 2 for S1 and L8, 209 
respectively, with window sizes of 2 and 5 pixels (Tassi et al., 2021; Vizzari, 2022). 210 



We used Landsat-8 images from 2014, but Sentinel-1 images were limited in number and, 211 
thus, ended up using the 2015 images due to the non-availability of Sentinel-1 images in 2014.  212 
L8 Gray-level Image = (0.3 * NIR) + (0.59 * RED) + (0.11 * GREEN)  (1) 213 
S1 Gray-level Image = (VH - VV) / (VH + VV)     (2) 214 

To assess seasonal effects and determine an optimal time period for forest AGB estimation 215 
using remote sensing SAR and optical data, we considered three distinct seasons: namely, the 216 
wet and rainy season (occurring from mid-November to April, hereafter referred to as rainy 217 
season), the cool and dry season (occurring from May to mid-August, hereafter referred to as 218 
dry season) and the hot and dry season (occurring from mid-August to mid-November, 219 
hereafter referred to as hot season) (Zambia - Climatology | Climate Change Knowledge Portal 220 
(worldbank.org)). The annual average was also created as a comparison. We applied a mean-221 
based reduction filter for each time period. 222 

 223 
2.3 Above ground biomass modelling 224 
 225 

Fig. 3 presents an overview of the methodology. The steps taken from data collection to 226 
producing the forest AGB maps can be summarised as (1) Sentinel-1 and Landsat-8 data 227 
composition, (2) NFI data processing and (3) modelling and evaluation. 228 
 229 

 230 
 231 

Fig. 3. Overview of methodological approach for forest above ground biomass modelling 232 
 233 

2.3.1 Plot AGB calculation 234 
 235 

We estimated plot AGB using tree inventory data collected during the ILUA-II project. All 236 
standing trees measured per plot in line with the ILUA II field protocol, described in Shakacite 237 
et al. (2016), were considered. We used both a locally calibrated allometric model developed 238 
by Chidumayo (eq. 3) and a generalised biomass estimation model for tropical forests 239 
recommended by Chave et al. (eq. 4), to calculate individual tree AGB and establish AGB for 240 
each plot by summation (Chidumayo, 2012.; Chidumayo, 2013; Chave et al., 2014). Plot AGBs 241 
for the two models were highly correlated (r=0.96). We noted that AGB calculated using 242 
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Chidumayo’s allometric model was more consistent compared to Chave’s model which might 243 
be attributed to the non-availability of some tree species’ wood specific densities (𝜌𝜌). The 244 
ILUA II project also adopted the Chidumayo model and, therefore, the plot AGBs were derived 245 
using Chidumayo’s allometric model to allow effective comparison (Chidumayo, 2013; 246 
Shakacite et al., 2016.).  247 
AGBtree = exp(2.342 ∗ ln(dbh) − 2.059)        (3)  248 
AGBtree = 0.0673 × (𝜌𝜌𝐷𝐷2𝐻𝐻)0.976           (4) 249 
where dbh in eq. (3) and 𝐷𝐷 in eq. (4) represent the diameter at breast height, ρ is the wood 250 
specific density and H is the absolute tree height. 251 

Both plot AGB and remote sensing variables were extracted based on the basic sampling 252 
unit (0.1ha). Total plot AGB was converted to AGB per ha while the pixel average within the 253 
basic sampling unit was extracted for remote sensing variables.  254 
 255 
2.3.2 Correlation between forest AGB and remote sensing covariates  256 

 257 
Pearson correlation coefficients between forest AGB and the remote sensing covariates were 258 

calculated. We analysed these correlation coefficients for all four time periods and across the 259 
four agro-ecological zones. The results were used to conduct a preliminary selection of optimal 260 
remote sensing variables. Only those covariates with correlation coefficients equal to or above 261 
0.2 (r > = |0.2|) were considered for the subsequent regression analysis (Fagua et al., 2019). 262 

 263 
2.3.3 Remote sensing variable importance 264 

 265 
Variable importance can be useful in selecting optimal variables from a high dimensional 266 

dataset (Li et al., 2020). Here, we made use of the variable importance feature in the random 267 
forest regression algorithm. This analysis assisted in refining the final variable selection for 268 
each model and provided future guidance for optimal remote sensing data acquisition (best 269 
time period and variables to consider) for forest AGB estimation in the Miombo woodlands. 270 
 271 
2.3.4 Random forest regression modelling 272 
 273 

Random forest (RF) regression models were used for forest AGB prediction (Breiman, 274 
2001). RF models work by creating hundreds of decision trees in an ensemble, for making 275 
predictions. The relationship between forest AGB and remotely sensed variables is usually 276 
nonlinear, and non-parametric machine learning algorithms are used widely to increase 277 
accuracy above parametric models (e.g. linear regression), as they do not require a specific 278 
distribution (Ghosh and Behera, 2018; David et al., 2022a). The non-parametric RF algorithm 279 
was adopted to handle high-dimensional features and nonlinear relationships between forest 280 
AGB and remote sensing data, given its wide application for forest AGB estimation (Forkuor 281 
et al., 2020; Li et al., 2020; Chen et al., 2023). We varied the number of trees (maximum 282 
iteration) until optimal results (at 2000 trees) were achieved based on the validation R2 and 283 
RMSE. In contrast, the maximum tree depth was data-driven, and the default was used for the 284 
number of randomly sampled variables. 285 
 286 



2.3.5 Experimental design 287 
 288 

We designed a multi-level experiment using NFI data to compare several forest AGB 289 
estimation models (Table 1): 290 

(1) Using SAR data alone and using optical data alone, against models using combined 291 
SAR and optical data 292 

(2) Using various seasonal datasets for each of the three cases (SAR, optical, and 293 
SAR+optical)  294 

(3) Assessing the effect of varying climatic and environmental conditions across four 295 
agro-ecological zones on the accuracy of forest AGB estimation.  296 

 297 
Table 1 298 
Structure of the multi-level experiment to evaluate approaches for estimating forest AGB in 299 
Zambia’s Miombo woodlands.   300 

Sensor Time period Model Abbreviation  Number of 
variables 

SAR Rainy S1 rainy S1-r  20 
Hot S1 hot S1-h  20 
Rainy and Hot S1 rainy & hot S1-r & h  40 
Annual S1 annual S1-y  20 

Optical Dry L8 dry L8-d  28 
Hot L8 hot L8-h  28 
Dry and Hot L8 dry & hot L8 d & h  56 
Annual L8 annual L8-y  28 

SAR and optical Hot S1L8 hot S1L8-hot  48 
Multi-season S1L8 Multi-season S1L8-m  96 
Annual S1L8 annual S1L8-y  48 

 301 
Note, optical images were not available for the rainy season due to excessive cloud cover, 302 

and Sentinel-1 SAR images were not available for the dry season in 2015. Both were excluded 303 
from the subsequent analysis. 304 
 305 
2.4 Accuracy assessment 306 

 307 
We tested the prediction accuracy of each model using a validation dataset, comprising 15% 308 

of the available data that were not employed during the model training. This single set-aside 309 
validation dataset was maintained for effective comparability of the experiments. The multiple 310 
correlation coefficient (R, eq. 5), mean absolute error (MAE, eq. 6), root mean square error 311 
(RMSE, eq. 7), and the symmetric mean absolute percentage error (SMAPE) were used to 312 
assess model performance (Malhi et al., 2021). We added SMAPE to the three frequently used 313 
error statistics as it is a relative error and works well when comparing model prediction 314 
accuracies (Forkuor et al., 2020; Chen et al., 2023). 315 

𝑅𝑅 = (1 −  ∑ (𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑂𝑂𝑖𝑖 − 𝑀𝑀)2𝑛𝑛
𝑖𝑖=1

 )
1
2        (5) 316 



MAE (Bias)  = 1
𝑛𝑛
∑ ∣  𝑂𝑂𝑖𝑖 −  𝑃𝑃𝑖𝑖 ∣   𝑛𝑛
𝑖𝑖=1        (6) 317 

RMSE = [𝑛𝑛−1  ∑ (𝑃𝑃𝑖𝑖 −  𝑂𝑂𝑖𝑖𝑛𝑛
𝑖𝑖=1 )2]

1
2       (7) 318 

SMAPE = 1
𝑛𝑛

 ∑ ∣ 𝑂𝑂𝑖𝑖− 𝑃𝑃𝑖𝑖 ∣
(∣𝑂𝑂𝑖𝑖∣+ ∣𝑃𝑃𝑖𝑖 ∣)/2

𝑛𝑛
𝑖𝑖=1         (8) 319 

where n is the number of sample plots, O is the field observed forest AGB, P is the predicted 320 
forest AGB, and M is the mean forest AGB calculated from the field observed forest AGB. 321 
 322 
3 Results  323 

 324 
3.1  Ground observed forest AGB and tree density 325 

 326 
Fig. 4 (a) and (b) show the distribution of forest AGB and tree density, respectively, across 327 

the four agro-ecological zones. Agro-ecological zone III, wet Miombo, recorded the largest 328 
mean forest AGB and the highest mean tree density. The agro-ecological zones covering dry 329 
Miombo had lower mean forest AGBs and tree densities with minimal differences, compared 330 
to wet Miombo. Dry Miombo Agro-ecological zones I, IIa and IIb recorded small forest AGB 331 
standard deviations (SD), relative to agro-ecological zone III (Fig. 1 A).  332 

 333 
 334 

 335 
 336 
Fig. 4. Boxplots showing (a) plot AGB and (b) tree density across the four agro-ecological zones. 337 
 338 
3.2  Correlation analysis between forest AGB and predictor variables  339 

 340 
We computed the Pearson product-moment correlation coefficient between forest AGB and 341 

the predictor variables, Figs. S1-S9. For the SAR data, both raw polarisations (VV, VH) 342 
produced large correlation coefficients with forest AGB compared to the SAR texture bands. 343 
VH backscatter was correlated with forest AGB higher than VV backscatter. For optical data, 344 
the visible and shortwave infrared bands produced larger correlation coefficients compared to 345 
the near infrared band across all seasons. All the vegetation indices considered in this research 346 
produced correlations above the set threshold. Among the texture variables that produced larger 347 
correlations with forest AGB, the difference variance (dvar) was the largest.  348 

Overall, the largest correlations for SAR data were found between forest AGB and the 349 
annual images, followed by the hot season, and least for the rainy season. We observed a larger 350 
correlation between forest AGB and the dry season images, followed by the annual images and, 351 



lastly, the hot season images for optical data. These correlation results are similar to those 352 
obtained by other studies (Fagua et al., 2019; Li et al., 2020; Chen et al., 2023). 353 

 354 
3.3 SAR and optical predictor variable importance 355 

 356 
Fig. 5 shows the predictor variable importance for the four models that used SAR data alone. 357 

The raw polarisation bands were the best predictors for all models, with VH as the most 358 
important variable except for the rainy season. There was no consistency with the texture 359 
variables. The quotient, VV/VH appeared consistently among the best 10 predictor variables 360 
for all four models.  361 
 362 

 363 
 364 

Fig. 5. Variable importance charts of forest AGB models that used SAR data alone. 365 
 366 

Fig. 6 shows the predictor variable importance for the four models that used optical data 367 
alone. Spectral bands were more important predictors of forest AGB compared to vegetation 368 
indices and texture bands for the dry season. Vegetation indices were more important predictors 369 
than the spectral bands for the hot season. When the dry and hot season images were combined, 370 
the spectral bands from the dry season were more important predictors than the vegetation 371 
indices from the hot season images.  372 
 373 

 374 
 375 
 376 



 377 
Fig. 6. Variable importance of forest AGB models that used optical data alone. 378 

 379 
Fig. 7 shows the predictor variable importance for the three models that combined SAR and 380 

optical data. The VH band was the most important predictor variable in all three models. The 381 
model showed spectral bands from the dry season as more important forest AGB predictor 382 
variables compared to vegetation indices. 383 

 384 

 385 
Fig. 7. Variable importance of forest AGB models that used SAR and optical data combined. 386 
 387 
3.4 Forest AGB models of SAR, Optical and SAR-Optical data combined 388 

 389 
Tables 2 and 3 show the regression modelling results obtained from all 55 models fitted in 390 

this research based on validation data and Tables S10 and S11 are based on training data.  391 
 392 
3.4.1 AGB models based on the entire study area 393 
 394 

When we compared time periods, the most accurate prediction with SAR data was achieved 395 
using the annual images, followed by the hot season, and lastly the rainy season images, while 396 
for optical data the most accurate prediction was achieved using the dry season images, 397 
followed by the hot season images, with the annual images being the least accurate.  398 
 399 
Table 2  400 



Forest AGB model validation results for the 11 models based on entire study area (142 plots)  401 
Model Abbreviation R MAE  RMSE SMAPE 
SAR-rainy S1-r 0.30 19.24 23.65 0.65 
SAR-hot S1-h 0.55 15.79 20.60 0.57 
SAR-rainy and hot S1-r & h 0.61 15.38 19.64 0.58 
SAR-annual S1-y 0.59 15.80 19.92 0.60 
Optical-dry L8-d 0.55 15.98 20.55 0.59 
Optical-hot L8-h 0.54 16.12 20.81 0.61 
Optical-dry and hot L8 d & h 0.62 14.94 19.45 0.58 
Optical-annual L8-y 0.51 16.55 21.31 0.61 
SAR and Optical-hot S1L8-hot 0.65 14.41 18.80 0.56 
SAR and Optical-multi-season S1L8-m 0.69 14.01 18.23 0.55 
SAR and Optical-annual S1L8-y 0.61 15.45 19.65 0.59 

 402 
Combining the seasonal images predicted forest AGB more accurately compared to using 403 

single season and annual images for both SAR and optical data. In this case, using optical data 404 
was more accurate than using SAR images with an R of 0.62 compared to 0.61 and RMSE of 405 
19.45 Mg ha-1 compared to 19.65 Mg ha-1 respectively. 406 

Combining SAR and optical data increased the prediction accuracy compared to using the 407 
individual datasets. Multi-seasonal SAR and optical images produced the smallest RMSE of 408 
18.23 Mg ha-1 and largest correlation (R = 0.69). Fig. 8 shows scatterplots of the observed 409 
against predicted forest AGB based on the NFI validation data.  410 

In terms of SMAPE, the prediction accuracies were ordered as follows: SAR and optical 411 
multi-seasonal at 0.55, SAR and optical hot season at 0.56, SAR hot season at 0.57, SAR rainy 412 
and hot seasons at 0.58, optical dry and hot seasons at 0.58, SAR and optical annual at 0.59, 413 
optical dry season at 0.59, SAR annual at 0.60, optical hot season at 0.61, optical annual at 0.61 414 
and SAR rainy season at 0.65. 415 

 416 
 417 
 418 
 419 
 420 
 421 



 422 
 423 

Fig 8. Scatterplots of observed against predicted forest AGB in Mg ha-1 for the 11 models based 424 
on the entire study area using the 15% NFI validation dataset: (a) SAR rainy season model, (b) 425 
SAR hot season model, (c) SAR rainy and hot, (d) SAR  annual, (e) optical dry season, (f) 426 
optical hot season, (g) optical dry and hot, (h) optical annual, (i) SAR and optical hot season, 427 
(j) SAR and optical multi-season and (k) SAR and optical annual. 428 
 429 
3.4.2 Forest AGB models based on individual agro-ecological zones 430 
 431 

We observed an increased forest AGB prediction accuracy when we considered agro-432 
ecological zones as the individual study units, especially for agro-ecological zones I and III 433 
(Table 3).  434 

For agro-ecological zone I, large correlations between observed and predicted forest AGBs 435 
were observed in most models, with the one that combined SAR and optical annual images 436 
producing a very large correlation. Annual images for both SAR and optical images were more 437 
useful than seasonal images in this zone. Overall, optical data produced higher accuracy than 438 
SAR data in this agro-ecological zone.  439 

For agro-ecological zone IIa, the largest correlation was observed for the model that 440 
combined SAR and optical annual images. In this zone, optical data produced greater accuracy 441 
than the SAR data.  442 

For agro-ecological zone IIb, we observed a moderate correlation across all 11 models. The 443 
largest correlation was recorded for the model that combined the rainy and hot season SAR 444 
images. In this zone, the SAR data produced a greater accuracy than the optical data.  445 

For agro-ecological zone III, a generally larger correlation in all 11 models was observed 446 
compared to the other zones. SAR and optical competed favourably in predicting forest AGB.  447 



 448 
 449 
Table 3 450 
Forest AGB model validation results for 11 models replicated across the four agro-ecological 451 
zones. Agro-eco I (26 plots), Agro-eco IIa (47 plots), Agro-eco IIb (31 plots) and Agro-eco 452 
III (37 plots). RMSE (Mg ha-1).    453 

Model 
Agro-eco I Agro-eco IIa Agro-eco IIb  Agro-eco III  
R RMSE R RMSE R RMSE R RMSE 

S1-rainy 0.32 30.83 0 22.84 0.46 30.05 0.14 30.85 
S1-hot 0.41 29.69 0.32 19.80 0.44 32.11 0.81 18.06 
S1-rainy and hot 0.55 28.18 0.32 19.41 0.53 31.00 0.78 19.30 
S1-annual 0.61 26.58 0.41 18.67 0.45 31.81 0.64 22.67 
L8-dry 0.61 26.88 0.28 19.61 0.48 31.17 0.62 23.15 
L8-hot 0.27 31.18 0.33 19.01 0.39 32.72 0.60 23.90 
L8 dry and hot 0.63 27.15 0.42 18.17 0.42 32.15 0.67 22.41 
L8-annual 0.71 25.66 0.42 18.50 0.42 32.16 0.71 21.47 
S1L8-hot 0.39 29.85 0.4 18.63 0.45 31.74 0.77 19.71 
S1L8-multi-season 0.73 26.31 0.43 18.17 0.49 31.21 0.78 19.33 
S1L8-annual 0.75 24.61 0.44 18.37 0.44 31.83 0.79 18.93 

 454 
Fig. 9 shows a visual comparison of forest AGB estimation with optical data alone, SAR 455 

data alone and their synergy and with ESA biomass climate change initiative. The optimal 456 
models for SAR (S1 rainy & hot), optical (L8 dry & hot) and their synergy (S1L8 multi-season) 457 
were used to produce these forest AGB maps. The map produced from SAR and optical multi-458 
seasonal images appears to be in accordance with the shortwave infrared image, with larger 459 
forest AGB values shown in dark green. The map produced from the optical images appears to 460 
identify the areas with small forest AGB values, but misses areas with larger forest AGB values, 461 
while the opposite is true for the map produced from SAR images. The global biomass map by 462 
ESA appears to underestimate lower values of AGB while at the same time overestimating 463 
higher values of AGB compared to this research. 464 
 465 
 466 
 467 
 468 
 469 



 470 
 471 

Fig. 9. Forest AGB maps produced from optimal models comparing (a) SAR alone, (b) Optical alone, 472 
(c) SAR and optical combined, (d) ESA Biomass Climate Change Initiative AGB for 2015 (e) 473 
Shortwave Infrared 753 L8 image for the Machinje Hills national forest reserve in Mambwe District.  474 
 475 
3.5 Spatial distribution of modelled forest AGB across four agro-ecological zones  476 

 477 
Fig. 10 shows the spatial distribution of modelled forest AGB across four agro-ecological 478 

zones in Zambia using the S1-L8 multi-seasonal model, developed based on the entire study 479 
area. The model was trained using all 951 NFI plots. The model diagnostic errors are presented 480 
in Table S12. We sampled one district to represent each agro-ecological zone.  481 

The model-predicted District wall-to-wall forest AGB maps are consistent with the NFI data. 482 
Model predicted mean AGB was 38.08 Mg ha-1 against the NFI plot AGB of 41.98 Mg ha-1 for 483 
Kawambwa, 22.18 Mg ha-1 against 25.42 Mg ha-1 for Mongu, 36.18 Mg ha-1 against 29.70 Mg 484 
ha-1 for Mambwe and 31.95 Mg ha-1 against 24.76 Mg ha-1 for Kazungula (Table S13).  485 
 486 
 487 

 488 



 489 

Fig. 10. Modelled forest AGB wall-to-wall maps of four Districts representing the four agro-490 
ecological zones in Zambia. (a) Kazungula District – agro-ecological zone I, (b) Mambwe District – 491 
agro-ecological zone IIa, (c) Mongu District – agro-ecological zone IIb and (d) Kawambwa – agro-492 
ecological zone III. 493 

4 Discussion 494 
 495 

4.1 Effectiveness of SAR images for forest AGB estimation 496 
 497 

SAR backscattering is affected by features that constitute the plant macro-structure such as 498 
leaves, branches, and trunks (Jones and Vaughan, 2010). SAR backscatter is also dependant on 499 
the size, shape, orientation, and water content of green leaves (Jones and Vaughan, 2010; 500 
Ghosh and Behera, 2018). A positive correlation between forest AGB and SAR was reported 501 
in previous studies (Kuplich et al., 2005; McNicol et al., 2018b; David et al., 2022a). 502 

In the current research, we assessed the effectiveness of SAR data when used alone and 503 
when combined with optical data for forest AGB estimation in a tropical dry forest dominated 504 
by Miombo woodlands. HV polarisation from Sentinel-1 C band was found to be the most 505 
accurate predictor variable for forest AGB as observed in all the models that used it. Other 506 
similar studies found forest AGB of Miombo woodlands to correlate well with HV backscatter 507 
(Mitchard et al., 2009; Mitchard et al., 2013a; Gou et al., 2019), across four different African 508 
landscapes (Navarro et al., 2019). To the contrary, David et al. (2022) found forest AGB to be 509 
more correlated with VV polarisation for a similar dry forest but using an image from the rainy 510 
season. They justified the minimum influence of rainfall and soil moisture on the backscatter 511 
because their image was acquired during a period when there was drought. Our results from 512 
correlation analysis, as well as variable importance analysis, for SAR-rainy season concur with 513 



David et al. (2022) where VV and VH produced similar correlations with forest AGB, and 514 
where VV was a slightly more accurate predictor compared to VH. Because our study was 515 
spatially extensive, with many sample plots across different ecological zones, and it also 516 
considered seasonal images, we confirm that the VH polarisation of Sentinel-1 is generally a 517 
more accurate predictor of forest AGB than the VV polarisation for the dry forests of Southern 518 
Africa such as the Miombo woodlands. Our findings can be attributed to the fact that cross-519 
polarised SAR (VH) is associated with measuring volume scattering (biomass) while co-520 
polarised SAR (VV) is associated with surface scattering (Flores-Anderson et al., 2019). 521 

Overall, our model results show that Sentinel-1 SAR data compare favourably with Landsat-522 
8 optical data in predicting forest AGB for Zambia’s Miombo woodlands when single time 523 
periods are considered. Similar studies have reported SAR to be a more accurate predictor 524 
compared to optical data (Lu Zhang, 2019; David et al., 2022a) contrary to other similar studies 525 
(Li et al., 2020; Zimbres et al., 2021; Qadeer et al., 2024). The higher accuracy of SAR 526 
compared to optical data can be attributed to the closed, but not-so-dense canopy of the 527 
Miombo woodlands, thereby, making SAR interactions with tree leaves, branches and trunks 528 
informative. The C-band from Sentinel-1 SAR, although having a shorter wavelength 529 
compared with the L and P bands, is suitable for less dense forests such as the Miombo 530 
woodlands. David et al. (2022) reported a similar result for the tropical dry forests of Botswana, 531 
a neighbouring country to Zambia. However, combined seasonal images for Landsat-8 (dry 532 
and hot season images) were more accurate predictors of forest AGB compared to combined 533 
seasonal images for Sentinel-1 (rainy and hot season images). Combining SAR and optical data 534 
produced the highest accuracy, similar to other studies that combined SAR and optical images 535 
for forest AGB estimation (Cutler et al., 2012; Forkuor et al., 2020; David et al., 2022a). 536 

4.2 Seasonal effects of remote sensing data on forest AGB estimation 537 
 538 

The model results show that annual SAR images predicted forest AGB more accurately than 539 
the hot season and rainy season images, but combining the rainy and hot season images 540 
surpassed the accuracy achieved using annual images. The rainy season images were the least 541 
accurate. Other studies reported similar results with SAR data performing poorly, and with less 542 
accurate forest AGB estimation for the rainy season when water content is high in the soil and 543 
leaves (Forkuor et al., 2020; Chen et al., 2023). We anticipated that a larger correlation would 544 
exist between forest AGB and SAR during the rainy season because vegetation is at its peak 545 
production during this season. However, our results suggest that the higher soil water content 546 
and greater vegetation cover that characterise the rainy season leads to increased vegetation 547 
water content and this, coupled with the relatively short wavelength SAR C-band used, leads 548 
to reduced sensitivity of SAR to forest AGB as backscatter from the canopy is enhanced. Also, 549 
the dielectric constant is higher in the rainy season (increased canopy backscattering) due to 550 
increased water content in soils and vegetation. Therefore, vegetation amount, which changes 551 
with the seasons, has a large effect on SAR backscattering and, thus, the predictive ability of 552 
the SAR images. For example, a larger correlation was recorded when using the hot season 553 
images, as this season is characterised by dry and open crowns with leaves just beginning to 554 
appear, thereby, exposing branches and trunks (Laurin et al., 2018).  This might explain why 555 
combining Sentinel-1 SAR data from different seasons predicted more accurately. It would be 556 



interesting to note how Sentinel-1 SAR data perform in the dry season, when Sentinel-1 SAR 557 
dry season images are available.  558 

For the optical data, the dry season images produced the largest correlations between the 559 
observed and predicted forest AGB, followed by the hot season images, and lastly the annual 560 
images. These results conform with other studies that reported large correlations when dry 561 
season images were used (Halperin et al., 2016a; Macave et al., 2022; Chen et al., 2023). The 562 
dry season occurs immediately after the rainy season when the trees shed their leaves, and leaf 563 
litter and grass senesce. The greater accuracy attained when using dry season images could be 564 
attributed to exposure of branches and trunks which store carbon and, therefore, reflectance 565 
coming directly from branches and trunks with little effect of leaves. Additionally, the dry 566 
season is mostly clear with minimal cloud cover and aerosol effects that affect the image quality 567 
as compared to the hot season (and annual images). 568 

Combining images of different seasons, whether single sensor or combined, produced 569 
greater forest AGB estimation accuracies compared to the annual images, similar to the 570 
findings from previous studies (Rodriguez-Galiano et al., 2012; Laurin et al., 2018; Chen et al., 571 
2023). This can be attributed to the richness of vegetation phenology information that is 572 
captured in seasonal images as reported in similar studies (Castillo et al., 2017; Chen et al., 573 
2023). 574 

4.3 Performance of forest AGB models across the four agro-ecological zones 575 
 576 

The accuracy of the 11 models across the four agro-ecological zones varied. This is as 577 
expected due to the distinctive climatic conditions, topography, soil and terrain, which affect 578 
the predominant vegetation types as well as tree growth patterns. 579 

For agro-ecological zone I, correlations (R) between the observed and predicted forest AGB 580 
of above 0.70 were recorded for models that used annual optical images, combined annual 581 
optical and SAR images, and combined seasonal optical and SAR images. The greater 582 
performance of optical data over SAR data in this agro-ecological zone can be attributed to the 583 
lower tree density that characterise this zone. SAR data have been reported to be inaccurate on 584 
heavily disturbed/sparse forests (Nicolau et al., 2021). This zone is dominated by Mopane 585 
woodlands and dry Miombo woodlands. Colophospermum mopane, the dominant tree in this 586 
Mopane woodland, is an adapted tree species capable of withstanding drought, low nutrients 587 
and disturbances (Makhado et al., 2014). However, despite the low tree density, the sampled 588 
plots from the Mopane woodlands had a large mean forest AGB (Mg ha-1), indicating the 589 
presence of some sparsely distributed, but very large trees. The drought resistant adaptability 590 
coupled with lower tree density, and propensity for mixed pixels, might explain why forest 591 
AGB had a small correlation with both the SAR and optical data in this zone. Halperin et al. 592 
(2016) also noted an irregular pattern where a large range of observed forest AGB 593 
corresponded to smaller observed values of vertical canopy cover for the Mopane woodlands 594 
(Halperin et al., 2016a).  595 

Agro-ecological zone IIa is dominated by Miombo woodlands and Hill (Miombo) 596 
woodlands. The relatively low accuracy of our predictor variables in this zone might be because 597 
of the terrain, as this zone includes mountains and valleys. For example, Li et al. (2020) 598 
reported low accuracies using SAR data due to the terrain. The other reason for small 599 



correlations between observed forest AGB and SAR/optical data in agro-ecological zone IIa is 600 
that forest patches lead to mixed pixels, as this zone is reported to experience substantial 601 
encroachment by agricultural expansion and charcoal burning (Kanja et al., 2019b; Phiri et al., 602 
2023). 603 

Agro-ecological zone IIb, dominated by Kalahari (47%) and Miombo (37%) woodlands, 604 
showed moderate correlations, evident when observed forest AGB was plotted against 605 
predicted forest AGB. This zone has a stable terrain with elevation ranging from 1000 m to 606 
1200 m above sea level.  607 

Agro-ecological zone III, which is dominated by wet Miombo woodlands (87% of the 608 
sample plots), showed very large correlations between observed and predicted forest AGB. A 609 
similar observation was made by Halperin et al. (2016) who reported a more regular pattern for 610 
the Miombo woodlands compared to other vegetation types when they plotted forest AGB 611 
against canopy cover. Both SAR and optical predictors correlated well with forest AGB in this 612 
zone. The high predictive accuracy of SAR can be attributed to the structure of the vegetation 613 
canopy for Miombo woodlands, with fewer canopy overlaps, thereby allowing the C-band SAR 614 
to penetrate and interact optimally with the vegetation canopy, producing a high local variance 615 
in the observed forest AGB.  Pham et al. (2019) also reported the usefulness of Sentinel-1A 616 
images for biomass estimation and mapping in tropical forest types.  617 

 618 
4.4 Future research 619 

 620 
Future research should consider stratifying the forest into distinct classes, to increase the 621 

estimation accuracy of forest AGB for the Miombo woodlands using remote sensing data from 622 
space combined with NFI data. Previous studies that utilised SAR, optical and combinations 623 
of both types of imagery to map the Miombo woodlands (McNicol et al., 2018b; Macave et al., 624 
2022; David et al., 2022a) used single date remote sensing data. The current study explored the 625 
seasonal variation of SAR/optical imagery to increase the accuracy of AGB estimation. The 626 
datasets available for the analysis were limited in some seasons (e.g., optical for the rainy 627 
season and SAR for the dry season). We recommend exploring the use of finer temporal 628 
resolution optical data such as from Sentinel-2 and using commercial SAR data where available. 629 
Global LiDAR datasets such as global ecosystem dynamic investigation (GEDI) should be 630 
explored while paying attention to their local calibration (Liang et al., 2023; Li et al., 2024). 631 
The spectral unmixing of mixed pixels, especially when working with medium spatial 632 
resolution images such as Landsat images, and in areas where tree density is low, such as in 633 
agro-ecological zone I, may help increase the estimation accuracy of forest AGB from space. 634 
Inclusion of auxiliary variables such as elevation, proximity to developed infrastructure (such 635 
as roads) and protection status might also help to increase prediction model accuracies, as 636 
reported in other similar studies (Halperin et al., 2016a; Liu et al., 2024). 637 
 638 
5 Conclusion 639 

 640 
This research used extensive NFI data in Zambia to evaluate the potential of SAR and optical 641 

data for estimating the forest AGB of Miombo woodlands. We compared the effectiveness of 642 
SAR and optical data when used independently and when combined. We also assessed the 643 



efficacy of SAR and optical images in different seasons. A multi-level experiment involving 644 
11 models was developed to address the objectives of this research. The 11 models were 645 
replicated across four agro-ecological zones found in Zambia, resulting in 44 models, to 646 
evaluate the impact of climatic and environmental variation on the results.  647 

The models that used combined seasonal images produced greater accuracy compared to 648 
single season images and annual images. For SAR data, the annual images produced greater 649 
accuracy than the hot season and rainy season images. For optical data, the dry season images 650 
led to greater accuracy than the hot season and annual images. The SAR VH band was the most 651 
accurate predictor variable for all the models that used SAR data alone or combined with 652 
optical data. Spectral bands were more accurate predictors of forest AGB using the dry season 653 
images, while vegetation indices were more accurate predictors of forest AGB using the hot 654 
season images.  655 

We conclude that considering seasonal effects is important when using SAR and optical 656 
images for forest AGB estimation in the Miombo woodlands. Combining SAR bands from the 657 
hot season, optical bands from the dry season and vegetation indices from the hot season 658 
produced the most accurate forest AGB estimation model for the present study in Zambia. 659 
However, the 11 models representing different data combinations performed differently across 660 
the four agro-ecological zones. This implies that both SAR and optical images interact 661 
differently with the different vegetation cover types in Zambia. We recommend that the 662 
ongoing REDD+ carbon projects in Zambia and other countries in southern Africa adopt the 663 
findings of this research where seasonal effects are considered when selecting satellite sensor 664 
imagery (in particular, using SAR and optical data from different seasons) for mapping the 665 
forest AGB of the Miombo woodlands. 666 
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