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Abstract

Wind energy, as a popular renewable resource, has gained extensive development and application in recent decades.
Effective condition monitoring and fault diagnosis are crucial for ensuring the reliable operation of wind turbines. While
conventional machine learning methods have been widely used in wind turbine condition monitoring, these approaches
often face challenges such as complex feature extraction, limited model generalization, and high computational costs
when dealing with large-scale, high-dimensional, and complex datasets. The emergence of quantum computing has
opened up a new paradigm of machine learning algorithms. Quantum machine learning combines the advantages of
quantum computing and machine learning, with the potential to surpass classical computational capabilities. This
paper firstly reviews applications and limitations of the state-of-the-art machine learning-based condition monitoring
techniques for wind turbines. It then reviews the fundamentals of quantum computing, quantum machine learning
algorithms and their applications, covering quantum-based feature extraction, classification and regression for fault
detection and the use of quantum neural networks for predictive maintenance. Through comparison, it is observed that
quantum machine learning methods, even without extensive optimization, can achieve accuracy levels comparable to
those of optimized conventional machine learning approaches. The challenges of applying quantum machine learning
are also addressed, along with the future research and development prospects. The objective of this review is to fill
a gap in the published literature by providing a new paradigm approach for wind turbine condition monitoring. By
promoting quantum machine learning in this field, the reliability and efficiency of wind power systems are ultimately
sought to be enhanced.

Keywords: Condition Monitoring (CM), Wind Turbine (WT), Machine Learning (ML), Deep Learning (DL),
Quantum Machine Learning (QML), Fault Detection, Fault Diagnosis, Fault Prognosis

Nomenclature

ALWM-ResNet Loss-Weighted Meta-Residual Network

ANFIS Adaptive Neuro-Fuzzy Inference System

CBAN Convolutional Block Attention Module

CG-CNN Correlation-Graph-CNN

CWT Continuous Wavelet Transform

DAN Deep Adaptive Networks

DeepFedWT Federated Deep Learning Framework
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DRDN Deep Residual Deformable Network

DTL Deep Transfer Learning

GAT Graph Attention Network

GL Graph Learning

HA Hybrid Attention

IPCA Incremental Principal Component Analysis

LMMD Local Maximum Mean Discrepancy

MAML Model-Agnostic Meta-Learning

MC Multi-Channel

MCA Multi-Channel Attention

MDA Mixture Discriminant Analysis

MIP-YOLO Multivariate Information Perception You Look Only Once

MSCNN Multi-Scale Convolutional Neural Network

MSRAN Multi-Scale Residual Attention Network

MSTFAN Multidirectional Spatial-Temporal Feature Aggregation Networks

PCC Pearson Correlation Coefficient

SETCN-MVC Spectrum-Embedded Temporal Convolutional Network Multivariate Coefficient of Variation

SMOTE Synthetic Minority Oversampling Technique

STAGNN Spatial–Temporal Autocorrelation Graph Neural Network

WPT Wavelet Packet Transformation

1. Introduction

Wind energy, as a clean and renewable source, has gained widespread attention globally due to its environmental
and economic benefits. According to the Global Wind Energy Council, by the end of 2023, the global installed wind
power capacity exceeded 906 GW, showing a significant growth compared to the past decades [1]. Figure 1 shows a
continuing trend of growth in installed wind power capacity. As the key part in wind energy conversion and utilization,
wind turbines (WTs) play a crucial role in ensuring the stability and efficiency of wind energy systems. Their stable
and reliable operation not only supports a continuous electricity supply but also significantly impacts operation and
maintenance (O&M) costs, as well as the lifespan of the equipment [2]. However, maintaining reliable operation of
the WTs presents substantial challenges due to the harsh environmental conditions where they operate. Offshore WTs
are particularly susceptible to high salinity, strong winds, humidity, and large waves, leading to accelerated equipment
wear and increased maintenance demands [3, 4]. Onshore turbines, though not exposed to marine conditions, still
experience high wind speeds, temperature fluctuations, sandstorms, and lightning strikes, all of which contribute to
mechanical degradation and operational instability [5, 6]. These environmental factors complicate O&M activities,
necessitating the use of effective condition monitoring (CM) systems to ensure turbine reliability and minimize
unplanned downtimes [7].

The development of WT CM dates back to the earlier maintenance strategies, initially relying on periodic manual
inspections and time-based preventive maintenance strategies. These methods are not only time-consuming and
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Figure 1: Cumulative wind power installations and yearly new installations [1]

labor-intensive but also often fail to capture the early fault signals in WTs, leading to high maintenance costs and
reduced overall operational efficiency [8]. WT CM has gradually adopted more advanced techniques, including
vibration analysis, acoustic monitoring, and oil analysis. These methods monitor physical changes in key turbine
components, enabling a more accurate detection of mechanical faults. However, these traditional methods have
limitations in handling complex data and predicting faults [9]. The development of sensor technology and data
processing techniques has significantly enhanced the efficiency of WT CM. Sensors can collect real-time data on
turbine operating conditions, including vibration, temperature, and pressure parameters, while data analysis can reveal
potential fault risks earlier. Nevertheless, these methods still largely depend on expert knowledge and predefined fault
models, making it challenging to address the complex and variable operating environments of WTs [10].

In recent years, machine learning (ML), a subset of artificial intelligence (AI), has emerged as a prominent research
focus and mainstream direction in WT CM [11]. ML algorithms can automatically extract features, identify fault
patterns, and predict fault trends from large volumes of monitoring data. Compared to traditional methods in the
time and frequency analysis domains, ML offers significant advantages. Firstly, ML algorithms can process vast
amounts of historical operational data, achieving fault detection, diagnosis, and prognosis through model training,
thus reducing reliance on expert knowledge. Secondly, the automatic analysis and processing of real-time monitoring
data enable early fault warnings, thus enhancing monitoring accuracy and reliability. Furthermore, ML models can be
continuously optimized with data updates, improving their ability to recognize new fault patterns [12, 13].

Despite the successes of ML methods, conventional ML techniques face several challenges when applied to WT
CM. One of the primary challenges is the complexity of feature extraction from high-dimensional and heterogeneous
data [14]. WTs generate massive amounts of data from various sensors, and extracting meaningful features from data
requires sophisticated algorithms and substantial computational resources. Moreover, the generalization capability of
conventional ML models can be limited, particularly when dealing with unseen data, which refers to fault conditions
or new operating environments that are not part of the training set and have not been encountered during model
training [15]. Additionally, the high computational cost associated with training and deploying these models on large
datasets poses a significant barrier to their widespread adoption [16]. The conventional ML methods appear to have
reached a saturation point, with recent research focusing on stacking complex network structures but yielding very
little performance gain.

On other hand, Quantum Machine Learning (QML), as an emerging technology that combines quantum computing
and ML, has the potential to address these issues. Currently, QML algorithms, such as Quantum Support Vector
Machine (QSVM), Quantum Boltzmann Machine (QBM) and Quantum Neural Network (QNN) have demonstrated a
superior performance across various domains. For instance, in the financial sector, QSVM and QBM have outperformed
conventional ML in tasks such as fraud detection and risk prediction [17]. Similarly, in the field of chemistry, QNNs
have shown remarkable results in molecular structure exploration and drug synthesis pathway optimization [18]. The
challenges in WT CM, such as processing high-dimensional data, align closely with those addressed by QML in fields
like finance and chemistry. The success of QML in these areas provides valuable insights into potential applications
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of QML in WT CM.
Despite extensive research, no recent reviews provide a comprehensive analysis of advancements in WT CM,

particularly with the role and potential of QML. Although [19] has attempted a broad review of QML applications in
renewable energy, its focus deviates toward materials and chemistry. Additionally, other reviews in the energy sector
primarily emphasize QML-based control and optimization, further highlighting the need for a more balanced and
comprehensive evaluation. To address these gaps, our study systematically examines the transition from conventional
ML-based methods to QML-based approaches to WT CM. The study presents the relevant QML frameworks applicable
to WT CM and discusses the advantages of QML over the conventional ML. We also analyze key challenges in adopting
QML for WT CM, including hardware constraints, algorithm scalability, and real-world implementation, and propose
actionable recommendations for future research. In this manner, the main contributions of our study are:

• The first comprehensive review that bridges the gap between conventional ML techniques and QML-based
methodologies in WT CM.

• Categories and comparisons of different QML algorithms applicable to WT CM, highlighting their strengths
and limitations.

• Critical evaluation of the feasibility of QML adoption in real-world wind energy applications by considering
trade-offs between quantum hardware constraints and algorithmic performance.

• A research roadmap identifying key challenges and future research for WT CM through QML, offering valuable
insights which may lead to a paradigm shift approach to support WT CM activities.

Figure 2a shows the source distribution of the nearly 200 papers selected for this review, while Figure 2b shows
the percentage of JCR (Journal Citation Reports) partitions for the selected articles. The JCR divides journals into
four quartiles, Q1, Q2, Q3, and Q4, based on their impact factor rankings within their respective disciplines, with
proportions of the top 25%, 26%-50%, 51%-75%, and 76%-100%, to evaluate their relative academic influence and
quality.

Section 2 discusses conventional ML methods applied to WT CM, highlighting their applications and limitations.
Section 3 presents the fundamentals of quantum computing and QML, explaining the basic principles and algorithms.
Section 3 also explores the potential applications of QML in WT CM, including quantum-based feature extraction,
classification, and predictive maintenance. Section 4 addresses the challenges and future development in applying
QML to WT CM. Finally, Section 5 concludes the review by summarizing the key findings and contributions. Through
this analysis, a comprehensive understanding of the current landscape and future trends in WT CM is provided,
particularly concerning the development and application of QML to enhance the reliability and efficiency of wind
energy systems.

2. Conventional Machine Learning-based Condition Monitoring

Based on a thorough review of recent literature, it is evident that ML has become the mainstream approach for
WT CM. Figure 3 shows the results of a literature search on Scopus, indicating that ML-related methods have become
increasingly prevalent in recent years, compared to the statistics-based CM. The data were retrieved and refined
through searches using keyword combinations, including "wind turbine," "condition monitoring," "machine learning,"
"deep learning," "statistical," "fault detection," "fault diagnosis," and "prognosis". This shift is largely attributed to
the ability of ML to handle vast amounts of data, adapt to changing operational conditions, and provide accurate
and timely predictions of potential failures. The primary benefits of ML-based CM include higher accuracy in fault
detection, reduced false alarms, and the capability to analyze complex data patterns from multiple sensors in real-time,
thus enhancing maintenance scheduling and minimizing downtime. Numerous recent studies have demonstrated these
advantages, showcasing the effectiveness of ML in improving the reliability and efficiency of WT operations. Ref
[20] categorized ML-based WT CM techniques based on components and subsystems, while [21] reviewed WT CM
methods from the perspective of data sources and employed techniques. Additionally, [22] focused on the development
roadmap of explainable WT CM, highlighting advancements in interpretability.

Conventional ML algorithms can be categorized into classical ML and deep learning (DL) methods. In WT
CM, commonly used classical ML approaches include support vector machine (SVM) [23], decision tree (DT) [24],
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(a) Distribution of the source of papers (b) Distribution of the quartiles of papers

Figure 2: Distribution of selected papers

random forest (RF) [25], extreme gradient boosting (XGBoost) [26], and k-nearest neighbor (KNN) [27]. SVM
algorithm utilizes kernel functions to map data into higher-dimensional spaces, enabling the construction of an optimal
hyperplane for classification tasks. This makes them effective in detecting faults, where distinguishing between normal
and faulty conditions requires clear decision boundaries. However, their performance depends on kernel selection and
is computationally expensive when handling large datasets. DT algorithm classifies data by recursively partitioning
the feature space using threshold-based splitting rules, offering an interpretable model structure for identifying failure
conditions in the WT components. RF algorithm, an ensemble learning method, enhances classification stability by
aggregating multiple DTs, reducing the likelihood of overfitting and improving model robustness against sensor noise.
However, DT tends to overfit smaller datasets, while RF requires significant memory and computational resources as
dataset size increases. XGBoost algorithm refines weak classifiers iteratively by adjusting model weights based on
previous errors, making it particularly effective for health assessment tasks. However, tuning hyperparameters such as
learning rate and tree depth is essential to prevent overfitting and ensure the model performance. KNN algorithm, a
distance-based classifier, determines the categories of samples based on the majority label among its closest training
examples. It is often applied in real-time aerodynamic monitoring of turbine blades, where the aerodynamic response
of different blade positions can be clustered into distinct operational states. However, its computational cost increases
significantly with dataset size, and its performance is sensitive to feature scaling. While these algorithms remain
effective for small datasets, their generalization capabilities diminish as data scales increase. Recent studies therefore
focus on enhancing feature engineering and refining threshold calculation [28], and the present review does not delve
deeply into these classical approaches.

DL models include convolutional neural network (CNN) [29], recurrent neural network (RNN) [30], autoencoder
(AE) [31], generative adversarial network (GAN) [32], and Transformer [33]. CNN extracts local features through
convolution operations and progressively construct higher-level abstractions in deeper layers, enabling effective pattern
recognition in WT operating states. Variants of CNN can capture both spatial and temporal features in data, improving
fault detection accuracy. RNN processes sequential data by maintaining historical information through recurrent
connections, however, standard RNN suffers from the vanishing gradient problem when learning long sequences,
limiting its ability to retain long-range dependencies. Its variants such as long short-term memory (LSTM) network
and gated recurrent unit (GRU) introduce gating mechanism to regulate information storage and forgetting, thus
enhancing the ability to model long-term dependencies and improving performance trend forecasting in WT CM
[34]. AE learns compact representations by encoding input data into a lower-dimensional space and reconstructing
it through a decoder, where the reconstruction error serves as an indicator of deviations. This makes AE suitable
for unsupervised fault detection, aiding in identifying anomalies in sensor data. GAN consists of a generator that
learns the data distribution to produce samples similar to real data and a discriminator that distinguishes between real
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Figure 3: Yearly WT CM papers distributions

and synthetic data. The adversarial training mechanism enables data augmentation, thereby improving fault detection
when failure samples are limited. Transformer models use a self-attention mechanism to capture dependencies across
all elements in an input sequence, allowing it to model long-range relationships more effectively than RNN.

2.1. Machine Learning-based Condition Monitoring
WT CM tasks can be divided into fault detection, fault diagnosis, and fault prognosis. Fault detection identifies

whether a WT has any anomalies or faults [35]. Fault diagnosis determines the type, location, and severity of faults[36].
Fault prognosis forecasts future fault trends or estimates the remaining useful life (RUL) of WTs [37]. The design and
implementation of WT CM needs to be based on the domain knowledge of WT, especially the fault modes of WT. A
WT consists of multiple key components and subsystems, each playing an important role. The blades capture wind
energy and convert it into rotational mechanical energy, which drives the rotor. Common blade faults, including blade
cracks, surface erosion, and imbalance, can lead to blade failure, and compromise the safety and performance of WTs
[38]. The main shaft connects the hub, which links the blades to the rotor and to the gearbox. Faults in the main shaft
such as fatigue, wear, poor lubrication, contamination, installation errors, or overload, can result in costly shutdowns
and secondary damage to the gearbox and generator [39]. The main shaft bearing supports the shaft and reduces
rotational friction. Failures such as insufficient lubrication, fatigue spalling, and corrosion can cause shaft instability,
accelerated wear, or necessitate a full bearing replacement [40]. The gearbox converts low-speed, high-torque energy
from the rotor into high-speed, low-torque energy to drive the generator. Gear wear, bearing failure and oil leakage
are common faults that reduce transmission efficiency, increase mechanical vibrations, and cause further damage
to connected components [41]. The generator transforms mechanical energy into electrical energy. Faults such as
rotor damage, bearing wear, winding issues, cooling failures, and short circuits can lower power output or cause a
complete turbine shutdown [42]. The power converter stabilizes the electrical output from the turbine, ensuring grid
compatibility by regulating voltage, current, and frequency. Common faults, including power module failures, cooling
issues, control circuit problems, and sensor malfunctions can lead to downtime, reduced power quality, and increased
maintenance costs [43]. The yaw system adjusts the direction of WTs to align the blades with the wind. Common
faults include mechanical wear, poor lubrication, sensor failures, and servo motor issues. Extreme weather conditions,
such as icing, strong gusts, or lightning, can worsen wear, damage components, and disrupt normal operation [44]. The
pitch system adjusts blade angles to optimize efficiency and protect against strong winds, using hydraulic or electric
actuators. Faults in the pitch system such as wear, poor lubrication, and control failures can reduce power generation
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and damage components [45]. The common faults in the key components and subsystems and their proportions are
shown in Table 1 and Figure 4, respectively.

Table 1: Common faults in WTs and their causes

Component Common Faults Causes

Rotor Blades
Blade Cracks Fatigue due to cyclic loads, extreme weather (hail,

lightning).
Erosion Exposure to high-speed particles (rain, sand).
Imbalance Accumulated dirt/ice or manufacturing defects.

Gearbox Gear Wear Insufficient lubrication, misalignment, or overloading.
Bearing Failure Contamination, overloading, or high temperatures.
Oil Leakage Seal degradation or improper maintenance.

Generator Electrical Faults (short circuits,
open circuits)

Insulation breakdown, wear of windings, or voltage
surges.

Overheating Inefficient cooling or excessive load.

Control System Communication Failures Faulty sensors, wiring issues, or software errors.
Pitch System Malfunctions Hydraulic or electric actuator failures, sensor errors,

or extreme conditions.

Tower Structural Fatigue Resonance or constant cyclic loading from wind
forces.

Corrosion Exposure to saline or humid environments.

Yaw System Motor Failure Overloading, wear and tear of motors/gears.
Misalignment Faulty sensors or mechanical failure in yaw mecha-

nism.

Electrical System Cable Damage Over-voltage, thermal stresses, or abrasion from vi-
bration.

Converter Failures Thermal stress, voltage fluctuations, or poor-quality
components.

Hydraulic System Leakage Seal degradation or wear of hydraulic lines.

Figure 5 illustrates the key steps involved in WT CM. The process begins with data sensing and acquisition,
where sensors such as vibration sensors, torque sensors, acoustic emission sensors, oil debris sensors, thermal imaging
cameras, and strain gauges are installed either intrusively or non-intrusively on WTs to collect high-sampling-rate data
[47–51]. Additionally, data can be collected through the Supervisory Control and Data Acquisition (SCADA) system,
which captures environmental conditions, electrical characteristics, controller data, and various temperature readings.
Unlike sensor data, SCADA data typically has a lower sampling rate and consists of averaged sensor readings over fixed
time intervals [47]. Once raw data is acquired, data preprocessing is essential, involving steps such as data cleaning,
feature engineering, and data augmentation [52]. Data cleaning addresses issues such as missing values, outliers, noise,
and dirty data [53]. Feature engineering techniques such as feature selection, feature extraction, feature reduction, data
transform, normalization and standardization can shorten the model training time and improve the model performance
[54]. Data augmentation can solve the issues such as over-sampling, under-sampling, and data imbalance that are
common in WT data and improve model performance through techniques including sliding window, random noise
injection [55]. Ref [56] provides a summary of data cleaning techniques. A detailed introduction to common feature
engineering techniques can be found in [57], while additional details on data augmentation techniques are available
in [58]. Fault detection models can be categorized into regression-based anomaly detection and labeled data-based
binary classification, depending on the type of ML task [35]. Fault diagnosis models use multi-class classification to
analyze labeled data, applying pattern recognition techniques to identify fault patterns [36]. Fault prognosis models
use regression or time-series analysis to predict the future faults or to estimate RUL of WTs [37]. The performance of
WT CM models can be evaluated by metrics such as accuracy (Acc), precision (Prec), recall (Rec), F1 score (F1), area
under the curve (AUC), receiver operating characteristic (ROC), mean squared error (MSE), root mean squared error
(RMSE), mean absolute error (MAE), R-squared (R2 or R2), Matthews correlation coefficient (MCC), logarithmic
loss (Log Loss), hinge loss (HL), Cohen’s kappa (Kappa), normalized mutual information (NMI), adjusted Rand index
(ARI), mean Average Precision (mAP) and envelope spectrum correlation kurtosis (ECK) [59].
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Figure 4: Common faults in WTs and their proportions [46]

Figure 5: Process of ML-based WT CM

2.2. Machine Learning-Based Fault Detection
Recent studies in WT CM have predominantly focused on combining various CNN, RNN, transformer variants

for compound fault detection tasks. Table 2 lists the cutting-edge research in fault detection. CNN has shown
strong capabilities in extracting fault features, processing multi-channel and spatial-temporal data, and handling image
analysis. In [73], a Multi-Channel CNN (MCNN) was applied to learn the data features of 3-Axis vibration sensor
data under four states: normal state, blade angle anomaly, surface damage, and blade breakage, achieving an accuracy
of 87.8%. In another study [74], a 3D squeeze-excitation CNN (3DSE-CNN) was used to detect compound fault.
A sliding window was used to convert 1D SCADA data into 2D images; the attention mechanism in the SE module
was utilized to extract spatial features from the images; and a 2DLSTM was employed to capture spatial-temporal
fused features. This approach achieved an accuracy of 96.7% on a dataset containing compound faults such as feeder
and excitation faults, as well as grid power and air-cooling faults. In [66], a 3D CNN was applied to hyperspectral
imaging (HSI) data of WT blades, achieving 100% accuracy in detecting cracks, erosion, and ice accumulation. A
deep residual network (DRN) was developed in [63], utilizing Convolutional Residual Building Blocks (CRBB) and
Squeeze-and-Excitation (SE) units to enhance fault-related features in raw SCADA data. The DRN, requiring no
preprocessing, achieved 99.68% accuracy in detecting compound faults containing both gearbox and generator faults.
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Table 2: Fault Detection Related Articles

Ref Year Data Component/Subsystem Preprocessing Model Metrics

[60] 2021 SCADA Gearbox
Generator

Data cleaning
Feature selection CNN-LSTM-AM

RMSE: 1.005
MAE: 0.621
R2: 0.988

[61] 2024 SCADA Pitch system Time series filling
Z-score

Hierarchical
STAGNN F1: 91.83%

[62] 2024 SCADA IGBT module Data cleaning
Z-score Transformer F1: 100%

[63] 2023 SCADA Gearbox
Generator - DRN Acc: 99.68%

[64] 2022 SCADA Main bearing
Pitch system Sliding window MSTFAN F1: 93.1%

AUC: 98.1%

[65] 2022 SCADA Gearbox Resampling LSTM-CNN-
DAN Acc: 91.21%

[66] 2024 Hyperspectral
imaging Blade Noise removal

IPCA 3D CNN Acc: 100%
Prec, Rec, F1: 100%

[67] 2021 SCADA Gearbox
Generator

Data cleaning
Standardization LSTM-KLD

Acc: 94%
(gearbox)
92%
(generator)

[68] 2022 SCADA Blades
Generator

Data normaliza-
tion
Downsampling

MSRAN
DeepFedWT

Prec: 96.87%
Rec: 99.87%
F1: 0.984
AUC: 0.9998

[69] 2022 SCADA Nacelle Data cleaning
Feature selection SETCN-MCV

MAE: 0.014
MSE: 0.0007
R2: 0.766

[70] 2023 SCADA Generator Data cleaning 1D-CNN-MAML

MAE: 1.374
RMSE: 1.692
R2: 0.927
Fault detection time: 136.7
hours in advance

[71] 2024 Drone video Blades Data annotation MIP-YOLO

Acc: 98.7%
Detection mAP: 97.1%
Segmentation mAP:
93.9%

[72] 2024 SCADA Pitch bearing Data cleaning BATCN Acc: 95.4%

WT operational data consist of time-series data, which makes algorithms such as RNN variants and Temporal
Convolutional Network (TCN) particularly suitable for WT CM. In [67], LSTM was used for normal behavior
modeling (NBM), with Kullback-Leibler divergence (KLD) being employed to detect faults by comparing probability
distributions of normal and current states. The LSTM-KLD method achieved 94% and 92% accuracy in detecting
gearbox and generator faults. In [72], a Bayesian-augmented TCN (BATCN) was designed to detect pitch bearing
faults. The model used Bayesian augmentation to realize signal filtering, achieving automatically finding of the best
patch length that influences fault signal extraction. TCN was used to capture temporal dependencies in non-stationary
data, achieving better detection of pitch bearing failures than other methods. In [60], CNN was applied to extract
the features and attention mechanisms (AM) was then utilized to re-allocate the weights of features in LSTM to
improve fitting performance, reducing RMSE to 0.875 and achieving a 0.988 R2 on a dataset containing gearbox gear
breakage fault. In [64], a Graph Attention Network (GAT) was applied to SCADA data to model spatial-temporal
relationships, achieving an F1 score of 0.931 and an AUC of 0.981. This method outperformed other models like TCN
and CNN-LSTM. Additionally, the Transformer-based methods have shown satisfactory performance under different
feature selection algorithms, especially F1 and Rec scores [62].

Recent research on fault detection has primarily focused on utilizing SCADA data as the core data source,
supplemented by HSI, drone-based video analysis, and multi-sensor fusion technologies to enhance the monitoring
accuracy of critical components such as gearboxes, generators, pitch systems, and blades. With advancements in
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computational resources and the emergence of high-performance DL models, the research focus has shifted from
complex data preprocessing to optimizing model architectures. Recent work has also prioritized to enhance the model
architectures and feature extraction capabilities.

In terms of DL models, CNN variants remain the dominant choice for spatial feature extraction, while RNN-based
architectures continue to play a key role in modeling temporal dependencies. In recent years, there has been a clear shift
toward optimizing spatial-temporal dependency modeling, with an increasing integration of multiple techniques to
improve the fault detection accuracy. The attention mechanism has become widely adopted, while hybrid architectures
combining CNN, LSTM, TCN, and Transformer models are gaining traction due to their advantages in compound fault
detection. This reflects a growing emphasis on designing models that can better adapt to complex operating conditions
and real-world scenarios.

Additionally, emerging paradigms such as self-supervised learning and federated learning are being explored to
reduce reliance on large-scale labeled datasets and improve generalization across different wind turbine models and
operational environments. Meanwhile, the integration of explainable AI (XAI) is becoming an important research,
addressing the need for model interpretability and decision reliability in high-risk WT fault detection tasks.

2.3. Machine Learning-based Fault Diagnosis
In recent research on WT fault diagnosis, a variety of advanced techniques have been applied to address challenges

such as data imbalance, limited operational data, and the need for effective feature extraction. Table 3 contains a list
of articles related to ML in WT fault diagnosis. WT operational data are predominantly normal, with only a small

Table 3: Fault Diagnosis Related Articles

Ref Year Data Component/Subsystem Preprocessing Model Metrics

[75] 2021 SCADA

Bearings
Gearbox
Generator
Rotor
Blades

Time-domain to
images MC-CNN Acc: 99.85%

[76] 2023 Vibration Bearings CWT DRDSAN Acc: 99.94%

[77] 2022 Vibration Bearings Weighted major-
ity voting

MSCNN-
BiLSTM F1: 97.12%

[78] 2022 Vibration Bearings
gears

Signal compres-
sion DTL-CNN Acc: 97.73%

[79] 2019 SCADA
vibration

Wind wheel
Bearing - LSTM 99.8%

[80] 2023

Accelerometer
sensor
Acoustic
emission
sensor

Bearings CWT Coupled CNN Acc: 98.18%

[81] 2020 Vibration Generator bearings - Concurrent CNN Acc: >98.5%

[82] 2023 Vibration Drivetrain CWT
CBAM

Residual CNN-
CBAM Acc: >90%

[83] 2023 Vibration Drivetrain PCC
Kalman filter CGCNN Acc: 96.7%

[84] 2023 SCADA Pitch system Data cleaning MCA-LSTM Acc: 98.1%
[85] 2021 Vibration Gearbox WPT HA-ResNet Acc: 98.79%
[86] 2021 Vibration Gearbox WPT ALWM-ResNet Acc: 97.1%
[87] 2021 SCADA Drivetrain SMOTE CAE-TL Acc: 92.5%

[88] 2021 SCADA Drivetrain ReliefF
PCA DNN Acc: >97.82%

portion labeled as abnormal, creating a significant data imbalance for fault diagnosis models. GANs address this issue
by generating sufficient fault data, balancing the dataset and improving model training. In [89], GANs were used to
align faulty and normal data distributions, enhancing feature extraction and improving generalization on unseen data.
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With only 30 labeled samples, the model achieved over 90% accuracy in diagnosing various bearing and alignment
faults.

Many newly installed WTs face the challenge of insufficient operational data, making fault diagnosis difficult. In
[87], a fault diagnosis method based on Transfer Learning (TL) and Convolutional Autoencoder (CAE) was proposed
for small-scale datasets. The method used parameter-based TL, where a model trained on similar WT operational
data (source domain) assisted in diagnosing faults in WTs with limited data (target domain). By sharing lower-level
neural network parameters, TL facilitated the extraction of general fault features. CAE was employed for feature
extraction, with its low-dimensional output used for fault classification. The model was trained on the data contains 7
kind of faults including power converter system, low yawing velocity, high temperature of gearbox, high temperature
of generator, low pressure of hydraulic system, emergency stop of cabin and emergency stop of tower, achieved over
90% accuracy, outperforming traditional methods and AEs without TL.

The use of LSTM variants for classifying time-series data from WT sensors has proven highly effective. In [79], a
wind tunnel platform was used to simulate 11 types of WT faults, including rotor, bearing, and shaft faults. The LSTM
model achieved a classification accuracy of 87.58% on multi-sensor data, outperforming methods such as SVM, MLP,
and CNN. In [84], an LSTM model enhanced with a multi-channel attention mechanism (MCA-LSTM) was applied for
WT pitch system fault diagnosis. The attention mechanism fused time-series data across different channels, enabling
key feature extraction at various scales. This model outperformed Support Vector Regression (SVR) and conventional
LSTM in terms of RMSE and other metrics.

CNNs are highly effective for classification tasks. In [76], a deep residual deformable subdomain adaptation
network (DRDSAN) was proposed, replacing standard convolutions with deformable modules to enhance feature
extraction. This adaptation allowed the network to adjust convolutional kernels based on input features, significantly
improving feature representation. DRDSAN achieved a diagnostic accuracy of over 99.86% and an F1 score of 1
in diagnosing WT bearing faults, demonstrating excellent performance. Similarly, transforming time-series data into
images and applying CNN for feature learning is a powerful approach for fault diagnosis. In [75], a multi-channel CNN
(MC-CNN) was used to process data from various WT sensors, converting time-series data into images for analysis.
This method achieved 99.85% accuracy in classifying seven types of faults, automatically extracting effective features
without human intervention, making it well-suited for real-time monitoring and diagnosis.

Building on this, combining LSTM with CNN, attention mechanisms (AM), and other techniques can further
enhance performance. In [77], a multi-scale CNN (MSCNN) was used to extract multi-scale features from raw
vibration signals, while Bi-LSTM captured semantic correlations. A weighted majority voting fusion mechanism,
optimized via genetic algorithms, improved diagnostic performance, achieving an average F1 score of 97.12%. This
method demonstrated strong fault diagnosis capabilities, particularly in noisy environments, due to its noise resistance
and multi-sensor fusion.

Current research on fault diagnosis primarily focuses on precisely identifying fault types, addressing data imbalance,
and improving small-sample learning capabilities. In terms of data sources, vibration signals, acoustic emission
signals, and accelerometer data remain the primary inputs for fault diagnosis. Additionally, SCADA data, HSI,
acoustic monitoring, and ultrasonic inspection are increasingly employed to enhance diagnostic accuracy for gearboxes,
generators, bearings, and pitch systems.

From a methodological perspective, frequency-domain DL methods (e.g., wavelet transform combined with
CNNs), TL, and GANs have been widely adopted to address challenges related to insufficient labeled data, data
distribution shifts, and small-sample learning. Specifically, TL facilitates faster fault identification for newly deployed
wind turbines, while GANs are used to generate synthetic fault samples, mitigating data imbalance and enhancing
model robustness. Additionally, attention mechanisms, which have been extensively employed in fault detection, are
increasingly applied to fault diagnosis, significantly improving feature extraction for complex fault patterns.

An emerging research focus is multi-sensor fusion, where integrating heterogeneous sensor data sources can
improves diagnostic comprehensiveness and accuracy. Furthermore, XAI is also gaining prominence in fault diagnosis,
aiming to enhance model transparency and decision reliability, particularly for high-stakes fault classification tasks.
These trends indicate that future research will increasingly prioritize high-precision fault diagnosis, multimodal data
fusion, and enhanced interpretability, aligning with the growing operational and maintenance requirements of the wind
energy sector.

11



2.4. Machine Learning-based Fault Prognosis
Recent research on fault prognosis based on ML is relatively limited, and the performance of ML methods has not

been as impressive as in the fields of detection and diagnosis. More studies have relied on statistical methods, which
have yielded better results. Table 4 contains a list of articles related to ML in WT fault prognosis.

Table 4: Fault Prognosis Related Articles

Ref Year Data Component/Subsystem Preprocessing Model Horizon Metrics

[90] 2017 Vibration High-speed shaft bear-
ings Spectral kurtosis SVR - Close to the actual

RUL

[91] 2023 Vibration High-speed shaft bear-
ings

Degraded feature
fusion

Self-constraint state-
space estimator - RUL Predicted Error:

0.4823

[92] 2022 Stress Blades Zonotopic Kalman
filter

Zonotopic Kalman fil-
ter - Close to the actual

RUL

[93] 2020 Vibration Blades Histogram features Lazy classifiers -
Acc: 93.83%
MAE: 0.0423
RMSE: 0.1344

[94] 2013 SCADA Pitch system Signal extraction ANFIS 21 days Acc: 88.3%

[95] 2018 - Drivetrain
Sensor layout
Euclidean distance
calculation

Physical model
Data clustering 65 hours Acc: >0.7

[96] 2020 Vibration Bearings Wavelet transform Bayesian framework
Particle filter - Close to the actual

RUL

[97] 2020 Vibration Gearbox
Signal intensity es-
timator
PCA

SVM
ANN
GP
MDA
DT

177
hours

Minimal RUL predic-
tion error in GP model

[98] 2022 Vibration Shaft bearings Spectral shape fac-
tor Elman neural network 35 days RMSE: 1.6514e05

[99] 2023
SCADA
Accelerometer
data

Tower-transition piece
interface Data cleaning Physics-guided ML

ANN
9
months

Cumulative fatigue
prediction error <3%

[100] 2023 SCADA Drivetrain Cosine similarity
measure

GAT
GL

Short-
term

RMSE: 18.32-28.49
MAE: 6.36-11.49
R2: 0.71-0.73

[101] 2024 IoT Drivetrain Data cleaning PM-C-LSTM -
Acc: 96.77%
Prec: 98.98%
F1: 86.29

In RUL prediction, statistical methods are often combined with ML techniques. In [95], both time-domain and
frequency-domain features were extracted from the vibration data from the WT transmission system. Spearman
rank correlation and hierarchical clustering were used for feature selection, and PCA was applied for dimensionality
reduction. The principal components with the highest variance were used as a fused feature and health indicator.
An exponential degradation model estimated the RUL, with a T-test detecting the first prediction. Results showed
a high precision, particularly in later predictions, with a 95% confidence interval. In [98], vibration data from the
high-speed shaft bearing (HSSB) were used to train an Elman Neural Network (ENN) for RUL prediction. The teager
energy operator (TEO) and short-time Fourier transform (STFT) were applied to enhance impulsive components and
calculate the spectral shape factor (SSF). The ENN outperformed other methods, achieving an RMSE of 0.0025. In
[97], various models, including SVM, ANN, Mixture Discriminant Analysis (MDA), and Gaussian Process (GP), were
trained on WT gear vibration data. The GP achieved the lowest prediction error, providing RUL estimates closest to
actual values.

To predict potential failures, ML methods are often combined with statistical, physics-based, and signal processing
techniques. In [94], an Adaptive Neuro-Fuzzy Inference System (ANFIS) was proposed for the fault prognosis of
the WT pitch system, integrating ANN and Fuzzy Inference Systems (FIS) with a six-fault pitch feature database to
enhance generalization. Tested on 26 WTs, the model predicted pitch faults 21 days in advance, achieving 85.9%
accuracy, 62.2% recall, and 94.4% precision, significantly outperforming the SCADA alarm system. In [90], a SVR
model was trained on vibration data from the high-speed shaft bearing (HSSB) to predict RUL. Spectral Kurtosis
(SK) features, such as kurtosis, skewness, and peak value, were extracted to monitor early stage faults, showing better
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trendability and monotonicity compared to time-domain features. In [101], a Predictive Maintenance Convolutional
LSTM (PM-C-LSTM) framework was introduced, combining CNNs for spatial feature extraction with LSTM networks
for sequential data analysis. The model achieved an accuracy of 96.77% on data collected over 16 months from a
wind farm, demonstrating its superior performance in predicting turbine failures compared to traditional models. For
a more comprehensive review of prognosis techniques, [102] examined the current state and development trends of
prognosis methods for low-speed bearings and gearboxes. Ref [103] focused on control strategies aimed at achieving
the expected service life. Ref [104] reviewed recent advancements in health state management, while [105] provided
a comprehensive summary of progress in structural health management.

Current research on fault prognosis remains relatively limited compared to fault detection and diagnosis, with
statistical methods often outperforming ML approaches in RUL prediction and failure trend analysis. In terms of
data usage, vibration signals remain the primary data source, particularly for drivetrain components such as bearings
and gearboxes. Meanwhile, SCADA data, stress measurements, and physics-informed features are increasingly
incorporated to enhance the accuracy of long-term degradation modeling. Compared to detection and diagnosis,
prognosis focuses on predictive modeling rather than classification, imposing higher demands on the completeness
and consistency of historical degradation data.

From a technical perspective, SVR, ANN, GP, and LSTM are the most commonly used ML methods, often combined
with signal processing techniques and physics-based models to improve prediction reliability. In recent years, hybrid
frameworks have demonstrated strong performance in fault prognosis, such as CNN-LSTM based spatiotemporal
feature extraction models, ANFIS, and GAT, particularly in extracting spatial-temporal degradation patterns from WT
operational data. A key research trend in fault prognosis is the shift toward “physics-guided machine learning”, where
data-driven models incorporate engineering constraints to improve generalization and interpretability.

Overall, current research on WT CM is evolving from single-source data analysis to multi-modal data fusion, from
single-task learning to multi-task collaborative modeling, and from ML methods to more efficient and interpretable
intelligent algorithms. However, as models become increasingly complex, their performance improvements have
begun to plateau, indicating diminishing returns from merely increasing model depth or computational capacity. This
limitation highlights the need for novel approaches to enhance model performance, efficiency, and robustness in WT
CM. The boundaries between detection and diagnosis are becoming increasingly blurred, as researchers explore end-
to-end WT CM frameworks to enable early anomaly detection, precise fault diagnosis, and reliable RUL through a fully
integrated intelligent monitoring system. In the future, key research in WT CM will include physics-informed ML,
self-supervised learning, TL and XAI, as well as edge computing and distributed intelligent maintenance, addressing
the challenges of data heterogeneity and high-reliability O&M activities due to the large-scale wind farm deployment.

3. Quantum Machine Learning-based Condition Monitoring

QML is an emerging interdisciplinary field that combines the strengths of quantum computing and ML [106].
Quantum computing, based on fundamental principles of quantum mechanics such as superposition, entanglement,
and interference, introduces a novel computational paradigm with significant parallel processing capabilities [107].
The foundational work in [108] outlined the theoretical potential of quantum computing, highlighting its anticipated
advantages. Recent advancements, as reviewed in [109], have validated many of these early projections, demonstrating
the tangible progress in quantum algorithms and hardware performance. Concurrently, ML, as a cornerstone of artificial
intelligence, has achieved remarkable successes in areas such as image recognition, natural language processing (NLP),
and predictive analytics by learning and discovering patterns from data [110]. QML aims to harness the formidable
computational power of quantum computing to enhance ML tasks, with the expectation that quantum algorithms
will significantly improve the performance and efficiency of ML models [111]. By merging the advance of ML and
quantum computing, QML is poised to demonstrate unique advantages in WT CM.

3.1. Quantum Computing
In classical computer, the fundamental unit of information is the bit, which can exist in one of two states: 0 or 1

[112]. Classical computers perform data operations using different logic gate circuits such as AND, OR, and XOR,
which manipulate these bits. A myriad of such circuits stacked together ultimately forms the modern general-purpose
classical computer. In contrast, quantum computing uses quantum bits, or qubits [113]. Unlike classical bits, qubits
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can exist simultaneously in a superposition of states. This means a qubit can be in a state |0⟩, a state |1⟩, or any quantum
superposition of these states [114]. Mathematically, the state of a qubit can be represented as equation (1), where
𝛼 and 𝛽 are complex numbers that satisfy the normalization condition equation (2). This property enables quantum
computers to process a vast amount of information simultaneously, offering potential exponential speedups for certain
computations. Similarly, in quantum computing, various logic gates such as the CNOT gate and the Pauli-X gate are
employed to manipulate qubits. These quantum logic gates function in a manner analogous to classical logic gates in
classical computers. By stacking and combining multiple quantum logic gates, quantum circuits can be constructed to
perform specific quantum computing tasks, thereby enabling the execution of a complex quantum algorithm [115].

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ (1)

|𝛼 |2 + |𝛽 |2 = 1 (2)

To illustrate the principles of quantum computing, the exclusive OR (XOR) gate can be used as an example. In
classical computing, the XOR gate outputs true if the inputs are different, and false if they are the same. In quantum
computing, the functionality of the XOR gate can be implemented using the controlled-NOT (CNOT) gate. The CNOT
gate takes two inputs: the control qubit and the target qubit, and its output is the updated state of the target qubit. When
the control qubit is in the state |1⟩, the target qubit flips its state. When the control qubit is in the state |0⟩, the target
qubit remains unchanged. Figure 6 shows the functional verification of the CNOT gate by testing it with different input
states and comparing its outputs. The top section of each column depicts the quantum circuit. The bottom section
illustrates the transformation of the ground state into the input state for the CNOT gate through quantum operations,
followed by its transition into the output state. In the first column, the circuit contains two qubits, 𝑞0 and 𝑞1, and one
classical bit, 𝑐. The quantum state of the quantum circuit is represented as |𝑞1𝑞0⟩. Both qubits are initialized to |0⟩,
as quantum computers typically prepare qubits in the |0⟩ state. Therefore, the initial (ground) state of the circuit is
|00⟩. The blue plus symbol (’+’) and the connected dot represent the CNOT gate, where 𝑞0 acts as the control qubit
and 𝑞1 as the target qubit. Since the input state to the CNOT gate is |00⟩ and the control qubit is in the |0⟩ state,
the target qubit remains unchanged, resulting in an output state of |00⟩. The gray square in the circuit represents the
measurement operation, which collapses the quantum state of the target qubit 𝑞1 into classical bit 𝑐. In the second
column, the blue box labeled ’X’ represents the Pauli-X gate, which flips the state of the qubit it acts on. The circuit
starts from the ground state |00⟩, the Pauli-X gate is applied to 𝑞1, flipping its state to |1⟩. Thus, the input state to the
CNOT gate becomes |10⟩. As the control qubit is 0, the target qubit remains unchanged, resulting in an output state of
|10⟩. In the third column, the circuit also begins in the ground state |00⟩. The Pauli-X gate is applied to 𝑞0, flipping
its state to |1⟩, The resulting input state to the CNOT gate is |01⟩. As the control qubit 𝑞0 is now in the state |1⟩, the
target qubit flips its state, producing an output state of |11⟩. In the fourth column, the circuit starts in the ground state
|00⟩. The Pauli-X gates are applied to both 𝑞0 and 𝑞1, flipping their states to |1⟩. The input state to the CNOT gate is
|11⟩, resulting in an output state of |01⟩. These results verify the implementation of the XOR operation by the CNOT
gate. They demonstrate the capacity of quantum logic gates to replicate classical operations while utilizing quantum
principles. This provides a foundation for the development of advanced quantum circuits and algorithms that exceed
the limits of classical computing.

The continued breakthroughs in quantum algorithm research are making ML tasks increasingly feasible on quantum
computers. Quantum Fourier Transform (QFT) [116] is a quantum analogue of the discrete Fourier transform, widely
used in spectrum analysis for identifying frequency components in data, while Quantum Phase Estimation (QPE)
[117] leverages QFT to extract eigenvalues, which are critical for feature extraction in quantum systems. The Shor
algorithm [118], specifically designed for integer factorization and solving discrete logarithms, provides exponential
speedups and has potential applications in certain optimization problems. The Grover algorithm [119] achieves
quadratic speedups for unstructured search tasks, forming a foundational tool for optimization in QML. Variational
algorithms are widely used in ML for probabilistic inference and optimization by approximating complex distributions
or cost functions. In QML, Variational Quantum Algorithms (VQAs), such as the Variational Quantum Eigensolver
(VQE) and Quantum Approximate Optimization Algorithm (QAOA), employ a hybrid quantum-classical optimization
to solve the specific problems in quantum chemistry and combinatorial optimization [120]. VQAs leverage quantum
properties such as superposition and entanglement to enhance certain optimization tasks, making them a potential
bridge between quantum computing and ML-related applications. Quantum matrix operations, including matrix
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Figure 6: Functional verification of the CNOT gate

multiplication and inversion, provide a mathematical backbone for QML algorithms [121], with the Harrow-Hassidim-
Lloyd (HHL) algorithm [122] solving linear equations under specific conditions, such as sparsity and well-conditioned
matrices, thus achieving exponential speedup. Quantum Principal Component Analysis (QPCA) [123] accelerates
dimensionality reduction and feature extraction, assuming efficient encoding of classical data into quantum states.
Adiabatic Quantum Computing (AQC) [124], which finds near-optimal solutions by gradually evolving the quantum
system, is particularly suitable for solving the complex combinatorial optimization problems. Quantum boosting
algorithms [125] enhance QML performance by combining classical boosting techniques with quantum methods,
such as leveraging quantum-enhanced weak learners. Lastly, Quantum Amplitude Amplification [126] generalizes
Grover’s algorithm to further improve search efficiency in applications where initial success probabilities exceed
uniform distributions.

3.2. Quantum Machine Learning
QML tasks can be divided into two categories. One involves using QML algorithms to process quantum data,

and the other involves using QML algorithms to process classical data [106]. Quantum data originates from quantum
systems and is not applicable to the scenarios of this study, and therefore it will not be further discussed. From the
implementation perspective, QML can be divided into pure QML and hybrid quantum-classical QML [127]. Pure
QML relies entirely on quantum circuits, but its applicability is severely constrained by current quantum hardware,
making it impractical for large-scale tasks such as WT CM. In contrast, hybrid quantum-classical methods incorporate
quantum circuits into the conventional machine learning models by replacing key computational steps, neurons, or
network layers to enable execution on existing quantum hardware. These circuits are known as parameterized quantum
circuits (PQCs). For WT CM, the appropriate approach is to train the hybrid quantum-classical QML models using
classical data.

As shown in Figure 7, the implementation of QML in WT CM follows a structured process that combines classical
neural networks with quantum circuits. The overall workflow is similar to the conventional ML-based WT CM in
Figure 5, with the main difference being the introduction of a hybrid quantum-classical QML model in the model
design stage. Specifically, the preprocessed operational data from WTs is first fed into the classical neural network.
Next, the classical data is encoded into quantum states through data encoding before being processed by the PQC. The
encoded quantum states are then inputted into the PQC that implements the ML algorithm. Finally, the output of the
hybrid neural network is used for WT CM tasks.

3.2.1. Data Encoding
Classical data can be used by QML algorithms after being processed by quantum circuits that implement encoding

algorithms [128]. Encoding circuits usually contain quantum gates such as Hadamard gates that can excite classical
data into quantum states, and common encoding methods include direct encoding, amplitude encoding, and density
matrix encoding [129]. Direct encoding maps each data feature to a corresponding qubit, making the number of qubits
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Figure 7: Hybrid quantum-classical QML architecture for WT CM

equal to the data dimensionality 𝑛, suitable for low-dimensional data. Amplitude encoding normalizes data features
and maps them to the amplitudes of a quantum state, efficiently representing high-dimensional data, where the number
of qubits required is the logarithm of the data dimensionality, log2 (𝑛). Density matrix encoding maps data features
to the density matrix of a quantum state, typically requiring more qubits than the data dimensionality, such that the
number of qubits 𝑞 satisfies 𝑞 > 𝑛. Each encoding method imposes different requirements on the number of qubits
and the input data dimensionality. Suitable encoding method can significantly affect the efficiency of the QML. More
technical details on data encoding can be found in [130].

3.2.2. Parameterized Quantum Circuits
The PQC is used to implement ML algorithms and serve as a core component of QML. It has a layered structure

similar to a neural network and consists of layers of parametrized quantum gates and measurement operations. The
layers of parametrized quantum gates include rotation gates such as 𝑅𝑋, 𝑅𝑌 , 𝑅𝑍 , and controlled gates like 𝐶𝑅𝑍 and
CNOT. These gates function similarly to the parameters in a neural network, represented by values such as rotation
angles. These parameters function similarly to weights in a neural network, allowing the PQC to learn and adapt to
specific tasks. The measurement operations convert the quantum states in the PQC into classical data, which can
then be fed into an optimizer. Through parameter optimization, the optimizer adjusts the parameters of the quantum
gates to improve the performance of the PQC [131]. The operation of a PQC is illustrated in Figure 8. First, it is
necessary to encode the classical data into quantum states and initialize the parameters. Next, the quantum circuit
runs on a quantum computer with the current parameters to generate quantum states. Then, these quantum states are
measured to obtain output results. The loss value of the cost function is calculated based on the measurement results.
A optimization algorithm is employed to update the parameters of the quantum circuit. Finally, the above steps are
repeated until the loss function converges to the desired value. Complex PQCs can be constructed by stacking multiple
layers of parameterized quantum gates, enabling the implementation of different QML algorithms.

Figure 9 illustrates a PQC designed for binary classification, comprising a data encoder and two layers of parame-
terized quantum gates. The circuit operates on two qubits (𝑞0 and 𝑞1), and uses two classical bits (𝑐0 and 𝑐1) to store
the measurement results. Initially, classical data is encoded into quantum states using 𝑅𝑌 gates applied to 𝑞0 and 𝑞1.
A barrier is inserted to separate the encoding phase from the parameterized circuit, enhancing the readability of the
circuit. The first layer of the parameterized circuit includes parameterized 𝑅𝑋 and 𝑅𝑌 gates acting on both 𝑞0 and 𝑞1,
followed by a CNOT gate that entangles the qubits. The second layer similarly applies parameterized 𝑅𝑋 and 𝑅𝑌 gates
and another CNOT gate. Finally, the quantum states are measured, with the results stored in classical bits 𝑐0 and 𝑐1.
The 𝑅𝑋 and 𝑅𝑌 gates represent rotations around the X and Y axes, respectively, while the CNOT gates (depicted by
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Figure 8: Flowchart of PQC

the blue plus symbol and connected dot) conditionally flip the target qubit based on the state of the control qubit. The
measurement operations (grey squares) collapse the quantum states into classical bits to produce the final classification
output.

Figure 9: Quantum binary classifier circuit

PQCs offer a broad application prospect in QML. By combining the parallel computing capabilities of quantum
computation with the classical optimization techniques, PQCs can demonstrate a superior performance in specific ML
tasks. More details about PQC can be found in [132].

3.2.3. QML Algorithms
Currently, many conventional ML algorithms have been extended to their quantum counterparts, including both

pure QML models and hybrid quantum-classical QML models. These algorithms have demonstrated their performance
on various public datasets that is comparable to or even surpasses the performance of the conventional ML, while also
exhibiting a greater potential in terms of explainability and model interpretability. This suggests that QML is already
capable of being applied to WT CM to enhance wind energy efficiency.

Variational Quantum Classifier (VQC) is a classifier based on the VQA, which maps input data into a high-
dimensional Hilbert space using PQC and obtains classification results through quantum measurement [133]. Com-
pared to SVM and neural networks, VQC benefits from quantum superposition and entanglement, enabling stronger
feature representation in high-dimensional nonlinear classification tasks, making it particularly suitable for learning
complex data distributions. In terms of explainability, the measurability of quantum states allows VQC to provide
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a more intuitive interpretation of decision boundaries, making it more transparent than the deep neural networks.
However, compared to classical SVM, its decision-making process remains relatively complex.

Quantum Markov Chain Monte Carlo (QMCMC) leverages quantum computation to accelerate MCMC sampling,
improving the computational efficiency of Bayesian inference and probabilistic reasoning [134]. MCMC methods
suffer from slow convergence in high-dimensional spaces, whereas QMCMC utilizes quantum superposition to par-
allelize multiple possible state transitions, reducing the mixing time of the Markov chain and thereby accelerating
the sampling process. Compared to MCMC, QMCMC operates directly on probability distributions and provides
statistical information during quantum measurement, making the inference process more transparent and facilitating a
better understanding of model convergence and parameter estimation.

Quantum Boltzmann Machine (QBM) models probability distributions using the energy levels of quantum states,
making it suitable for probabilistic generative modeling and feature learning [135]. Compared to the Boltzmann
Machine (BM), QBM leverages quantum tunneling and quantum entanglement to escape local optima more efficiently,
enhancing its ability to approximate complex energy distributions and thereby accelerating training and improving
generalization performance. Parameter adjusting in QBM relies on quantum partition function computation, providing
stronger physical interpretability than BM. However, due to the complex evolution of quantum states, its training
process still requires further optimization to reduce computational overhead and mitigate error accumulation.

Quantum SVM (QSVM) utilizes Quantum Kernel Estimation (QKE) to classify high-dimensional data. Unlike
SVM, which requires computing kernel function values for all pairs of data points, QSVM directly constructs quan-
tum states in Hilbert space and measures their similarity using quantum computation, reducing the computational
complexity from 𝑂 (𝑁2) to 𝑂 (𝑙𝑜𝑔𝑁) [136]. Since QSVM relies on quantum state similarity calculations, its decision
boundaries can be derived through quantum measurements, making it more interpretable than the classical kernel
SVM and facilitating a clearer understanding of the classification process.

The Quantum Gaussian Process (QGP) utilizes quantum kernel methods for Bayesian regression and has the
potential to offer computational advantages over Gaussian Process Regression (GPR) in high-dimensional regression
tasks [137]. GPR suffers from high computational complexity due to the need to invert the covariance matrix, making
it inefficient for large datasets. In contrast, QGP leverages quantum computation to accelerate covariance matrix
calculations, reducing computational complexity and improving regression efficiency. Since QGP follows a Bayesian
inference framework, it provides a stronger interpretability in uncertainty estimation compared to deep learning
models. However, the quantum computation component, which involves high-dimensional quantum mappings, may
still introduce some degree of black-box behavior.

The Quantum Genetic Algorithm (QGA) integrates quantum computing with evolutionary optimization by encod-
ing individuals as quantum states and applying quantum gate operations for mutation and evolutionary search, enabling
population evolution to occur across a larger search space simultaneously, thereby enhancing global search capability
[138]. Compared to the conventional Genetic Algorithm (GA), QGA has the potential to achieve a faster convergence
in large-scale search problems and can mitigate the impact of local optima, particularly in complex optimization tasks.

Quantum Particle Swarm Optimization (QPSO) integrates quantum computing with particle swarm optimization
(PSO) by encoding particle information in quantum superposition states and updating their positions using quantum
gate operations, enabling a faster convergence during the search process and reduces the likelihood of getting trapped
in local optima [139]. Compared to PSO, QPSO demonstrates an improved search efficiency in high-dimensional
non-convex optimization problems.

Quantum Neural Network (QNN) is constructed using PQC. Unlike neural networks such as MLP and CNN, QNN
leverages quantum superposition and entanglement to enhance information representation, potentially offering superior
computational efficiency in high-dimensional data processing tasks [140]. Additionally, since the core computations
of QNN rely on quantum gate operations, its computational complexity may be lower than that of classical neural
networks for certain tasks. Compared to classical deep learning, QNN benefits from the transparency of quantum
measurements, allowing feature extraction and decision-making processes to be analyzed through quantum state
interpretation, thereby improving model explainability.

Quantum CNN (QCNN) utilizes Quantum Feature Mapping (QFM) [141] to project data into a high-dimensional
Hilbert space and employ Quantum Pooling to reduce dimensionality, thereby lowering computational complexity
while preserving key features [142]. Due to the parallelism inherent in quantum computing, QCNN can achieve the
feature extraction performance comparable to classical CNN with fewer parameters. In terms of explainability, since
QCNN performs feature extraction through quantum state transformations, its learning process can be analyzed via
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quantum measurements, making its feature representation and decision-making mechanism more interpretable than
classical CNNs.

Hybrid QCNN combines the strengths of CNN and QCNN. A common implementation involves using a CNN for
initial feature extraction, followed by a QNN for high-dimensional feature mapping and classification [143]. Compared
to CNN, Hybrid QCNN may exhibit superior feature extraction performance in complex pattern recognition tasks due
to the introduction of quantum computing. However, since hybrid QCNN still partially relies on classical computation,
its overall computational cost may not necessarily be lower than that of CNN.

Quantum LSTM (QLSTM) utilizes PQC to implement the gating mechanisms of LSTM, enabling information
storage and updates within quantum states while leveraging the parallelism of quantum computing to enhance computa-
tional efficiency [144]. Compared to LSTM, QLSTM benefits from the storage capacity of quantum states, allowing it
to retain long-term dependencies more effectively and improve prediction accuracy. Since QLSTM stores information
in quantum states, its temporal state transitions can be visualized through quantum measurements, making it more
interpretable than LSTM in understanding state evolution.

Quantum GAN (QGAN) integrates a quantum generator and a quantum discriminator, making it well-suited for
data generation tasks [145]. Compared to GAN, QGAN leverages quantum superposition to generate data, resulting
in more diverse data distributions while mitigating the mode collapse problem, thereby improving data generation
quality. Additionally, due to the advantages of quantum computing, QGAN exhibits better generalization in small-
sample learning scenarios and has the potential for computational speedups in high-dimensional data generation tasks.
Since quantum states can be directly measured and analyzed probabilistically, the generated data distribution can be
explicitly interpreted through quantum measurements, offering improved explainability over GAN.

Quantum Reinforcement Learning (QRL) integrates reinforcement learning with quantum computing, leveraging
quantum Q-learning and quantum policy gradient methods to enhance learning efficiency [146]. In reinforcement
learning (RL), an agent needs extensive interactions and sample collections to optimize its policy, leading to high
computational costs, particularly in high-dimensional state spaces. QRL utilizes quantum parallelism, allowing
the agent to explore multiple states simultaneously in quantum state space, thereby improving policy optimization
efficiency and reducing convergence time. This advantage is especially significant in sparse reward environments,
where QRL may converge faster than RL. Compared to RL, QRL benefits from the measurability of quantum states,
making the policy optimization process more transparent and improving its interpretability of decision-making.

3.2.4. QML vs. Conventional ML
In neural networks, the output of a neuron in the 𝑙-th layer is given by equation (3), where 𝑎 (𝑙) is the output of

the 𝑙-th layer, 𝑊 (𝑙) is the weight matrix, 𝑏 (𝑙) is the bias vector, and 𝑓 is the activation function. The loss function is
typically defined as equation (4), where 𝑦𝑖 is the true output, �̂�𝑖 is the predicted output, and ℓ is the loss function (e.g.,
cross-entropy loss).

𝑎 (𝑙) = 𝑓

(
𝑊 (𝑙)𝑎 (𝑙−1) + 𝑏 (𝑙)

)
(3)

𝐿 =
1
𝑁

𝑁∑︁
𝑖=1

ℓ (𝑦𝑖 , �̂�𝑖) (4)

In PQCs, the parameterized quantum state is given by equation (5), where 𝑈 (𝜃) is the quantum circuit dependent
on parameters 𝜃, and |𝜓0⟩ is the initial quantum state. The expectation value of a measurement operator 𝑂 is defined
by equation (6). The loss function can be defined by equation (7), where 𝑦𝑖 are the true outputs and 𝑝𝑖 (𝜃) are the
probabilities predicted by the quantum circuit. Figure 10 briefly compares the differences between conventional ML
and QML. A two-layer ANN is shown in the upper left corner of the figure, and a schematic of an LSTM is shown in
the lower left corner. The top right corner is a QNN with the same function as the ANN, and the blue boxes in the
QNN are the PQCs, where a layer of PQC can be regarded as a hidden layer. The lower right corner is a schematic
diagram of QLSTM, where the gate computation in LSTM is replaced by PQC. This figure depicts the correspondence
between QML and ML.
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Figure 10: Comparison of conventional ML and QML

|𝜓(𝜃)⟩ = 𝑈 (𝜃) |𝜓0⟩ (5)
⟨𝑂⟩𝜃 = ⟨𝜓(𝜃) |𝑂 |𝜓(𝜃)⟩ (6)

𝐿 (𝜃) = −
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𝑖

𝑦𝑖 log(𝑝𝑖 (𝜃)) (7)

3.2.5. Running of Quantum Machine Learning
QML programs consist of classical computing platforms and quantum computing platforms. The classical comput-

ing platform includes development environments and ML frameworks. Development environments refer to integrated
development environments (IDEs) such as PyCharm, Jupyter Notebook, and VS Code, as well as programming lan-
guages such as Python and C++. Quantum-specific programming languages, such as Q# and Cirq, are also used. ML
frameworks include tools such as TensorFlow Quantum and PyTorch Quantum, which support quantum computing.
The quantum computing platform includes quantum software development kits (SDKs), real quantum hardware, and
quantum simulators. Quantum SDKs are based on classical or quantum-specific programming languages, which are
used to organize and execute tasks on real quantum hardware or quantum simulators.

Qiskit, PennyLane, Braket, and Microsoft Quantum Development Kit are the current popular quantum SDKs.
Qiskit is developed by IBM for designing, simulating, and executing quantum circuits on quantum computers of
IBM, and provides a library of well-established QML algorithms, including QSVM, QNN, which can be seamlessly
integrated with Pytorch and TensorFlow. PennyLane is well-suited for VQA research, but it can be cumbersome to
construct the QNN. Braket supports various quantum hardware platforms and simulators, making it convenient for
researchers to experiment with quantum algorithms in the cloud. The Microsoft Quantum Development Kit is based on
Q#, and focuses on quantum algorithm development. It provides comprehensive libraries, simulators, and integration
with Azure Quantum, making it ideal for large-scale quantum research.

To run a QML model on a real quantum computer needs to rely on a quantum computing resource provider on
the cloud. Platforms providing quantum hardware computing resources include IBM Quantum, Google Quantum,
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Rigetti Computing, D-Wave Systems, IonQ, and Xanadu. These platforms operate their own quantum computers and
make quantum computing resources available through cloud services. Google have recently introduced a quantum
chip named Willow, equipped with 105 qubits [147]. Willow demonstrates exponential error reduction, meaning
that as the number of qubits increases, errors decrease, and all error rates remain below the surface code threshold.
Reducing error rates in quantum hardware and quantum algorithms presents significant challenges. [148] introduces
the fundamental concepts and techniques of quantum error correction. [149] identifies error correction challenges
associated with different quantum hardware materials and discusses potential solutions. [150] explores methods for
mitigating quantum errors in current quantum hardware. [151] provides an outlook on how quantum error correction
can drive the development of next-generation quantum hardware toward more general-purpose quantum computing.
The most advanced quantum computer of IBM contains 1,000 qubits, with up to 156 qubits accessible via cloud
services [152]. Amazon provides access to quantum computers with 84 qubits [153]. However, the implementation of
fault-tolerant quantum circuits is extremely costly; therefore, quantum computing resource providers generally offer
very limited free access. As a result, the availability of real quantum hardware for QML research is significantly
constrained. When quantum computers are not yet fully developed or resources are limited, quantum simulators play
a key role in QML research. These simulators replicate the behavior of quantum computers, accurately modeling
the evolution of quantum states and the execution of quantum circuits. They are widely used for testing quantum
algorithms, optimizing quantum circuits, and studying physical phenomena in quantum systems. Popular quantum
simulators include Qiskit Aer, Cirq simulator, Amazon Braket simulator. SDKs such as Qiskit and PennyLane
support switching the runtime environment of QML programs between different real quantum hardware and quantum
simulators with minimal code.

3.3. QML Applications
3.3.1. Wide applications

QML has shown significant potential across various fields by processing large and complex datasets more effectively
than conventional ML methods. The physics is one of the earliest fields to explore QML. In [154], the quantum
variational classifier (QVC) was applied to datasets generated by the Large Hadron Collider to distinguish between
signal and background, demonstrating a higher classification accuracy compared to SVM and RF. Similarly, QSVM
has been proven to outperform SVM in signal and background classification tasks on quantum hardware provided by
IBM, Google, and Amazon [155]. Ref [156] provides a comprehensive review of QML applications in high-energy
physics.

In the field of NLP, QML has been widely discussed. The feasibility of applying QML to NLP was explored in
[157]. Ref [158] discussed the potential of QML in translation, while [159] provided a comprehensive classification
and analysis of QML applications in various NLP tasks. In [160], QLSTM networks have outperformed conventional
LSTM networks in part-of-speech tagging tasks on social media code-mixed datasets, such as Twitter and Facebook.
As NLP has evolved into large language model (LLM), the potential of QML in LLM has also been discussed. The
feasibility of implementing LLM with QML was discussed in [161]. The prospects of QML-based LLM were explored
in [162], while ref [163] investigated the design of QML algorithms tailored for LLM.

QML has also shown significant potential in chemistry and materials. For instance, a QNN combined with a
quantitative structure-property relationship (QSPR) model was used to predict the corrosion inhibition efficiency of
pyrimidine compounds [164]. Similarly, variational quantum circuits (VQC) were employed to predict the corrosion
inhibition efficiency of pyridine-quinoline compounds [165]. In terms of more advanced applications, a framework
named QMLMaterial was developed as a universal QML-based materials design and discovery tool [166]. The
application of Quantum Machine Learning (QML) in compound space exploration was reviewed in [167]. Ref [168]
focused on QML applications in medicinal chemistry, while a comprehensive review and outlook on QML in chemistry
and materials science were provided in [169].

In medical and cancer research, QML offers new opportunities for improving diagnostics and treatments. By
processing medical imaging and genomic data, QML has significantly advanced cancer diagnosis and therapeutic
strategies [170]. Hybrid quantum-classical GANs have also been applied for image generation, showcasing QML’s
ability to learn discrete distributions effectively and its capabilities in image processing tasks [171]. Besides, QML
has enhanced protein function prediction and drug design by accurately predicting protein PKA [172].

In fluid dynamics and hydrodynamics, QML has been applied to model complex processes, such as liquid-solid
circulating fluidized bed risers, providing valuable insights for fluid dynamics research [173]. Contributions of the
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QML to distributed computing and data security include secure implementations within distributed systems, enhancing
both data privacy and big data analysis capabilities [174]. QML has also been used for health monitoring, such as
drowsiness detection via EEG signals, offering efficient solutions for fatigue detection and health management [175].

In the broader context of ML, [176] systematically reviewed QML advancements, emphasizing its computational
benefits and implementation strategies. However, the review largely focuses on theoretical developments, lacking
critical discussion on the scalability and feasibility of these approaches in real-world applications. [177] explored the
practical applicability of QML, yet failed to propose the fundamental challenges posed by current quantum hardware,
such as noise sensitivity and the limited number of qubits, which significantly hinder its deployment beyond small-
scale experimental settings. In image processing, [178] surveyed QML techniques for image classification, however,
its discussion remains largely speculative, as existing quantum models struggle to handle high-dimensional data
efficiently due to the limitations in quantum hardware. Similarly, [179] analyzed the role of QML in medical imaging
but overlooked the critical issue of data availability, as medical datasets are often too large for current quantum devices
to process, making the claimed advantages largely theoretical. The application of QML in hybrid quantum-classical
communication networks was discussed in [180], yet the study lacks concrete evidence on how QML can outperform
conventional ML in this domain, particularly in terms of reliability and scalability. [181] reviewed the HHL algorithm
and its application in QML, however, as with many studies on quantum algorithms, it assumes idealized conditions
that do not align with the constraints of near-term quantum hardware, raising questions about its practical relevance.
Additionally, [182] provided a state-of-the-art review on hybrid quantum-classical ML but largely avoided discussing
the lack of empirical validation, which remains a major bottleneck in this field. These studies collectively illustrate
both the potential and the limitations of QML, yet they have not addressed the pressing issues of hardware scalability,
error mitigation, and real-world implementation.

3.3.2. Applications in Industrial and Power Sector
In the industrial and power sectors, QML has been extensively studied for its potential to improve system monitoring

and optimization. For example, QML was used to classify if a wave energy device has a negative impact on the
environment, achieving accuracies of 98% with a QSVM and 87.5% with a conventional SVM [183]. In photovoltaic
systems, QML has been used for fault detection by optimizing QNNs through parameters such as the number of
qubits, encoding methods, and the depth of PQC, by considering various factors affecting QNN performance and
conducting extensive evaluations. As a result, the QNN achieved a peak accuracy of 93.89% while requiring
significantly fewer convergence steps compared to ANN, demonstrating the superiority of QNN over ANN in both
accuracy and training efficiency [184]. To predict solar irradiance, two ANNs embedded with 1 and 2 QNN layers,
respectively, were compared to a conventional ANN, with the ANN containing 2 QNN layers achieving the lowest error
rate. In addition to outperforming the conventional ANN, the model with 2 QNN layers required significantly fewer
parameters, demonstrating the efficiency advantage of QNN in reducing model complexity while maintaining superior
performance [185]. QML has also been applied to transient stability assessment (TSA) in power systems, where a
quantum gradient descent method has enhanced model accuracy and robustness [186]. Furthermore, a multi-agent
grid control framework based on quantum Q-learning was proposed, where QNNs replaced the key computational
units of Q-learning, significantly improving grid control performance and reducing carbon emissions compared to
conventional algorithms [187]. In another study, a QML-based deep belief network (DBN) was employed to monitor
the Continuous Stirred Tank Reactor (CSTR) and the Tennessee Eastman (TE) processes, achieving 79.2% accuracy
for the CSTR and 99.39% for the TE process [188]. A hybrid QML-based deep learning framework was tested on a
simulated power system with 30 bus bars, addressing substation and transmission line faults. By embedding a quantum
computing unit into the Conditional Restricted Boltzmann Machine (CRBN), the framework achieved improved false
alarm and missed detection rates compared to conventional models like ANN and DT [189].

For further insights into QML applications in the energy sector, readers may refer to studies as follows. [190]
provided an overview of quantum computing applications in power system analysis, covering topics such as quantum
optimization and quantum security. [191] discussed the potential of QML in smart grid control, highlighting their role
in enhancing grid efficiency and security. [192] reviewed recent advances in QML for grid analytics and optimization.
These studies indicate the growing interests in leveraging QML for improving power system performance. However,
these studies primarily concentrate on control and optimization aspects.
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3.3.3. Applications in Wind Turbine Condition Monitoring
QML has had many studies in fault detection and fault diagnosis. In [193], quantum genetic algorithm (QGA)

was combined with least squares support vector machine (LSSVM) to detect the wind turbine gearbox fault. QGA-
LSSVM gained a higher accuracy than GA-LSSVM and other methods. In [194], QVE was applied to detect
multi-class faults for WTs with the available public datasets. Despite multiple adjustments to the structure of QVE, it
consistently outperformed Multi-Layer Perceptron (MLP) models in accuracy, F1, particularly in heavyweight datasets
characterized by large data volumes, high dimensionality, and numerous variables. Ref [195] employed a hybrid
quantum-classical ML approach to analyze WT blade ultrasonography data for blade damage detection. The results
demonstrated that QNNs achieved over a 20% accuracy improvement compared to ANNs. In [196], PCA and AE were
used for feature reduction of SCADA data with pitch fault, and different dimensions were selected for model training
respectively. This study compared the performance of SVMs with different kernels and QSVM, where the Gaussian
SVM achieved an accuracy of 94.5%, while the QSVM achieved an accuracy of 92.5%. A Hybrid Quantum-Classical
CNN (QC-CNN) integrated with Adaptive Moment Estimation (Adam) was used to detect high-temperature faults in
wind turbine intermediate bearings, achieving an accuracy of 99.2%, outperforming the conventional CNN models
[197]. These studies initially proved the preliminary feasibility of QML in WT CM as well as the research prospect in
WT CM.

More advanced applications of QML in WT CM are associated with the control optimization. QNN was used
for the optimization of maximum power point tracking (MPPT) control parameters, which captures the maximum
wind energy compared to methods such as CNN [198]. In [199], a novel quantum parallel multi-layer Monte
Carlo optimization algorithm (QPMMCOA) was proposed to optimize the rotor-side controller (RSC) parameters
to maximize the power output, achieving better MPPT than methods such as GA. Ref. [200] proposed a Quantum
Deep Reinforcement Learning (QDRL) algorithm for double-fed induction generator-based WTs. By integrating
quantum layers with reinforcement learning, this approach enabled real-time control updates while avoiding offline
computation. The QDRL model exhibited a superior control performance under varying wind speeds and voltage
conditions, outperforming other techniques in terms of metrics such as Integrated Absolute Error (IAE), Integral
Squared Error (ISE), and Integrated Time-Weighted Absolute Error (ITAE).

Methods such as WT layout optimization, wind speed forecasting, power prediction can improve the efficiency of
wind farm [201–203]. Quantum annealing algorithm was used to find the best layout of wind farm to maximize the
available wind speed of each WT in the wind farm [204]. In [205], CNN, LSTM, and QNN were concatenated to form
a hybrid quantum-classical model to predict environmental data with seasonality, achieving an R2 that outperforms
other methods in all seasons, ensuring that the WT operates at safe wind speeds. QGA was combined with fuzzy neural
network to predict the power generation and gained an accuracy of 87.12%, improving the stability and reliability
of grid-connected wind power [206]. In another study, QDRL was used to predict power output, achieving a 13%
improvement in prediction accuracy and a 20% improvement in power generation [207].

Through a detailed view of the literature, it is evident that although the application of QML in WT CM is limited, it
appears from the performance comparison that QML is of a great research value for WT CM. Table 5 presents the limits
of the reviewed studies on conventional ML and QML applied to WT CM. Given that conventional ML and QML utilize
different datasets, feature engineering methods, and network architectures in the current body of research, a direct
performance comparison between the two is not entirely feasible. Conventional ML studies typically rely on highly
optimized or stacked complex network structures combined with specific feature engineering techniques, whereas
QML research often employs original network architectures and simpler datasets. Consequently, the performance
differences between the two are influenced not only by the algorithms themselves but also by experimental conditions.
Existing research demonstrates that QML has undergone initial validation on relatively simple datasets, showing
comparable performance to the conventional ML in key metrics such as accuracy, precision, and F1 score. With
its foundational performance established, QML holds a significant potential for further application to more complex
datasets and tasks, suggesting that it may achieve even better performance in handling more intricate data. Additionally,
QML offers several theoretical advantages, including lower dependency on feature engineering, stronger generalization
ability, and reduced risk of overfitting. These characteristics make it potentially more efficient when handling complex
and large-scale data. Although these theoretical advantages still require further validation in practical scenarios, as
future research delves deeper, particularly under comparable data preprocessing methods, network architectures, and
experimental conditions, QML is expected to demonstrate performance on par with, or even superior to the conventional
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ML. Therefore, while conventional ML currently dominates in practical applications, the potential demonstrated by
QML suggests it may lead to breakthrough developments in the future, particularly in optimizing resource utilization
and addressing more complex tasks in the WT CM field.

Table 5: Comparison of current research in ML and QML

Criteria Conventional ML QML
Simple ML ANN-Based CNN-Based RNN-Based QVC QSVM QNN QCNN QLSTM

Accuracy 92%-96.9% 93.53%-
99.68%

97%-99.85% <=96.1% <=98.47% <=97.4% <=97.4% 78.8%-97% 85.9%-
95.12%

Precision 87.2%-
90.85%

<=98.98% <=98%

F1 Score 70%-87.5% 80.2%-98% 86.29%-97.6% <=97% 70.86%-
87.67%

Feature Engineer-
ing

High Moderate Low Low Low Low Low Low Low

Overfitting Risk Low Low High High Low Low Moderate Moderate Moderate
Generalization
Ability

Low Moderate High High Low Low Moderate High High

Real-World Appli-
cation

High High High High Research stage Research stage Research stage Research stage Research stage

4. Challenges and Future Prospects

4.1. Challenges
4.1.1. Limitations of Quantum Computing

QML in WT CM faces significant challenges due to limitations in current quantum hardware. These include
unreliable qubits, hardware instability, shallow circuit depths, and limited resource availability [208]. For example,
IBM’s Condor chip, released in December 2023, features 1,121 qubits but suffers from a high error rate [209]. In
contrast, the Willow chip from Google represents a more advanced solution with 105 qubits and lower error rates
[210]. WT SCADA data often involves over 100 dimensions (variables), exceeding the current capabilities of quantum
hardware. Most existing quantum computers fall under the category of Noisy Intermediate-Scale Quantum (NISQ)
systems [211]. These systems are particularly vulnerable to quantum decoherence, noise, and computational errors,
which lead to unstable results. Deeper quantum circuits further exacerbate these issues, increasing noise levels,
decoherence, and computational errors, thus limiting both the performance and scalability of QML models [211].
Additionally, the high cost of quantum computing resources restricts access to real quantum hardware for extensive
QML research. Researchers often resort to quantum simulators, which have limitations in scalability and efficiency.
Integrating quantum computing components into existing classical computing infrastructure for WT CM also remains
a significant technical challenge.

4.1.2. Limitations of QML Algorithm
Research on QML-based WT CM is constrained by high learning costs, long model training times, and low

training efficiency. These challenges arise due to the complex nature of QML, which combines advanced mathematics,
quantum physics, artificial intelligence, and engineering [212]. This interdisciplinary nature would make QML far
more difficult to implement compared to conventional algorithms and increase the steep learning curve for researchers.
For instance, there is currently no open-source framework for QLSTM-based time-series analysis. As a result,
implementing QLSTM for WT CM requires extensive time for quantum circuit design and adaptation. Furthermore,
due to the high cost and limited availability of quantum hardware, most QML models are trained on quantum simulators.
These simulators significantly prolong training times, particularly as model complexity increases and more qubits are
required [213]. Simulators also introduce noise models to simulate real hardware conditions, which coupled with
long training durations, frequently result in training failures and low efficiency [214]. Addressing these challenges
requires substantial optimization efforts to improve QML algorithms, reduce computational demands, and streamline
the training process.
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4.2. Future Prospects
4.2.1. Benchmark Framework

The research on QML in WT CM is still in the early stages, with studies primarily focusing on validating
feasibility through simple algorithms. Key algorithms such as QNN, QCNN, QLSTM, QTransformer, and QGAN
hold a significant promise for WT CM, however, their effectiveness must be scientifically validated under controlled
conditions. For example, a comparative study between LSTM and QLSTM needs to be conducted under identical
network architectures for NBM of SCADA data, allowing a precise analysis of their fitting performance. Similarly, a
structured comparison between QGAN and GAN should be performed to determine whether QGAN can effectively
address data imbalance in WT datasets, thereby improving fault diagnosis accuracy. Beyond algorithmic evaluation,
multi-modal data fusion and end-to-end WT CM techniques need to be investigated to facilitate the scalable deployment
of QML for condition monitoring of large-scale wind farms.

To systematically and rigorously assess the potential of QML in WT CM, a benchmark framework is recommended
to develop, which is driven and evaluated by task-specific goals. This framework will leverage unified datasets,
standardized interfaces, and a consistent evaluation protocol, thus enabling a fair and comprehensive assessment of
various QML algorithms across different WT CM tasks. This initiative could bridge the gap between theoretical
feasibility and practical implementation of the QML-based WT CM. The authors of this review paper are currently
working on this innovative research.

Beyond algorithmic evaluation, this framework will also support research on multi-modal data fusion and end-to-
end WT CM techniques, facilitating the scalable deployment of QML for large-scale wind farm condition monitoring.
By establishing a scientifically rigorous, comprehensive, and task-driven benchmark, this initiative aims to provide the
wind energy sector with a reliable foundation for the advancement and practical adoption of QML-based WT CM.

4.2.2. QML algorithm Optimization
Optimizing QML algorithms to meet the specific demands of WT CM is critical due to the limitations of current

quantum hardware and algorithms. Key research should focus on encoding optimization, circuit optimization, and
algorithm refinement. Efficient encoding methods can transform SCADA data into quantum states while reducing
qubit requirements. This ensures same or better performance with fewer computational resources [215]. For example,
encoding methods such as direct encoding, amplitude encoding, and qubit-efficient algorithms like "Word2Ket" [216]
tailored for WT CM, could be explored. These encoding approaches can be combined with QSVM, QNN, and QLSTM
models to evaluate whether they reduce qubit usage in WT CM without compromising, or even improving the model
performance. Reducing circuit depth and gate complexity can improve model convergence, decrease computational
costs, and accelerate inference speeds [217]. The most challenging yet impactful prospect is the optimization of QML
algorithm structures. The goal is to design simpler and more efficient QML models capable of delivering equivalent or
superior functionality. For instance, with advancements in quantum computing technology, the proportion of quantum
circuits in previously mentioned hybrid quantum-classical neural networks can be gradually increased to investigate
potential improvements in model performance. By addressing these areas, researchers can significantly enhance the
efficiency, scalability, and practical applicability of QML-based WT CM models.

5. Conclusion

This review explores the progress of WT CM, tracing the transition from conventional ML approaches to QML.
While ML techniques have achieved significant success in fault detection, diagnosis, and prognosis, their generalization
capabilities remain limited. Additionally, the increasing complexity of ML models has led to diminishing returns in
performance improvements. QML represents a promising direction by combining quantum computing with ML,
offering potential advantages in improving model performance and scalability. Preliminary studies suggest its strong
feasibility in WT CM. However, QML applications remain constrained due to the limitations of current quantum
hardware and the algorithm development is presently still at the early stage.

This study highlights several unresolved challenges that must be addressed to unlock the full potential of QML for
WT CM. Key areas of focus include the scalability of QML algorithms, integration with real-world energy systems,
and the development of robust and interpretable models. Practical implementation also demands further advancements
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in quantum hardware, efficient data encoding techniques, and hybrid quantum-classical frameworks to manage the
computational loads of large-scale applications.

Future research should focus on creating efficient and scalable QML algorithms tailored to specific WT CM tasks.
Key priorities are suggested to include optimizing data encoding, reducing quantum circuit depth, and improving
quantum-classical hybrid models. Comparative studies between QML and state-of-the-art ML methods using large-
scale datasets are essential to validate the advantages of QML in practical applications.

The findings of this review should have broader implications for policymakers and industry stakeholders. To
enhance WT CM systems enabled by QML presents a strong potential to significantly improve the reliability of wind
energy, reduce operation and maintenance costs, and support global sustainability goals. Policymakers can play a
pivotal role by spurring and investing in innovation in quantum technology development and fostering collaborations
between academia and industry. Overcoming the current limitations of QML will pave the way for offering a paradigm
shift approach to wind turbine condition monitoring activities.
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