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Abstract 22 

Reference evapotranspiration (ET0) modeling is pivotal for irrigation scheduling and water 23 

resources planning. This study presents a hybrid approach integrating Extreme Gradient 24 

Boosting (XGB) with Marine Predators Algorithm (MPA) for daily ET0 estimation in northern 25 

Algeria. The proposed XGB-MPA model was evaluated against traditional empirical models and 26 

assessed using statistical methods. Shapley Additive Explanations (SHAP) was employed to 27 

enhance model interpretability. Various combinations of meteorological variables were tested as 28 

inputs, including air temperature, relative humidity, sunshine hours, wind speed, and 29 

extraterrestrial solar radiation. The XGB-MPA hybrid model achieved superior prediction 30 
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accuracy during testing (R2 = 0.9958, RMSE = 0.1713 mm/day) compared to traditional 31 

empirical models and the standard XGB model. The study demonstrated that ET0 prediction 32 

accuracy increased with the number of meteorological inputs used. Our findings highlight the 33 

XGB-MPA hybrid model's potential for accurate ET0 estimation in northern Algeria, which can 34 

be used for water resource management and irrigation planning. 35 

 36 

Keywords: Extreme Gradient Boosting; Hydroinformatics; Marine Predators Algorithm; 37 

Reference evapotranspiration; Shapley Additive Explanations. 38 

1. Introduction 39 

Reference evapotranspiration (ET0) is an important parameter that reflects the combined impact 40 

of vegetation transpiration and soil evaporation over a given time period. Its estimation is closely 41 

associated with several meteorological variables like solar radiation, precipitation, wind speed, 42 

temperature, as well as other factors such as soil moisture and vegetation characteristics (Feng et 43 

al. 2016, Mehdizadeh et al. 2017, Ferreira et al. 2019). Accurate ET0 estimation is crucial for the 44 

agricultural water management, prediction of crop yield, irrigation systems design, hydrological 45 

modeling, and agrometeorological studies (Gocic et al. 2016, Mystakidis et al. 2016). 46 

The two processes that make up the ET0 are crop transpiration into the atmosphere and soil 47 

evaporation (Chen et al. 2020). The energy and water cycles between the ground and atmosphere 48 

depend on ET (Hadria et al. 2021). Although various approaches have been employed to measure 49 

ET0, such as the vorticity correlation approach, isotope tracer method, liquid flow method, and 50 

lysimeter method, they are usually laborious, time-consuming, costly, and difficult to handle 51 

across vast areas (Jiang et al. 2020). As a result, a number of ET0 calculation models have been 52 
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proposed, with ET0 serving as a key prerequisite for these models (Chen et al. 2020). For these 53 

models, it's essential to calculate ET0 precisely and quickly.  54 

Various statistical approaches have been investigated worldwide to estimate ET0 (Temesgen et al. 55 

2005, Azzam et al. 2023), but the Food and Agricultural Organization of the United Nations (FAO) 56 

considers the FAO56 Penman Monteith equation (FAO56-PM) as the sole benchmark 57 

mathematical approach (Pereira et al. 2015). This method has been demonstrated to be a highly 58 

accurate approach in a variety of climatic conditions (Espadafor et al. 2011, Cordova et al. 2015, Xu 59 

et al. 2018, Zhao et al. 2019). The FAO56-PM equation is dependent on several key meteorological 60 

parameters which may not be obtainable for a particular location, especially in developing 61 

countries, or their calculation is tedious and complicated (Moazenzadeh &Izady 2022). 62 

Consequently, the application of the FAO56-PM model can be significantly constrained in such 63 

areas. Thus, developing models for accurate ET0 estimation with fewer meteorological variables 64 

is essentially required. 65 

Accordingly, researchers have developed empirical approaches that need fewer input 66 

meteorological variables for ET0 calculation. These approaches can be categorized into seven 67 

types (Zhang et al. 2018, Chen et al. 2020): (1) combination approaches, (2) radiation-based 68 

approaches, (3) temperature-based approaches, (4) humidity-based approaches, (5) water budget-69 

based approaches, (6) mass transfer-based approaches, and (7) pan-based approaches. The most 70 

commonly approaches were extensively used are combination approaches, radiation-based 71 

approaches, and temperature-based approaches, whereas have been applied in many studies 72 

across different climate zones (Feng et al. 2017b, Reis et al. 2019, Valle et al. 2020, Adnan et al. 2021, 73 

Bellido-Jimenez et al. 2021). Valle et al. (2020) compared the performance of 21 empirical 74 

approaches for estimation daily ET0 across the tropical semi-humid region in the Brazilian 75 
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savanna. They resulted that the radiation-based approaches were more accurate than the mass 76 

transfer-based and temperature-based approaches. Yang et al. (2021) employed 18 different 77 

empirical approaches to calculate daily ET0 across different climate zones in China. They found 78 

that the combination approaches had the best performance, followed by the radiation-based 79 

approaches, while the temperature-based approaches performed the worst.  80 

Machine Learning (ML) models have recently been utilized successfully for simulation various 81 

hydrological and meteorological variables (Rezaie-Balf et al., 2021; Sun et al., 2021; Zhao et al., 82 

2021). These models are effective tools in ET0 estimation because they have high capabilities to 83 

capture nonlinear relationship between input and target variables (Ferreira &da Cunha 2020). 84 

Various ML models have been studied, such as support vector machine (SVM) (Zhang et al. 2018, 85 

Mohammadi &Mehdizadeh 2020), artificial neural network (ANN) (Yassin et al. 2016, Jing et al. 86 

2019, Gao et al. 2021), generalized regression neural network (GRNN) (Ladlani et al. 2012, Feng et 87 

al. 2017a), adaptive neuro-fuzzy inference system (ANFIS) (Shiri et al. 2015, Keshtegar et al. 2018, 88 

Alizamir et al. 2020), and extreme learning machine (ELM) (Abdullah et al. 2015, Feng et al. 2016). 89 

Generally speaking, ML models outperform empirical approaches for estimating ET0, achieving 90 

greater results when using same input data (Feng et al. 2016, Mehdizadeh et al. 2017, Fan et al. 2019, 91 

Reis et al. 2019, Mohammadi &Mehdizadeh 2020, Abdallah et al. 2022, Achite et al. 2022). When 92 

employing ML approaches for modeling ET0, selecting less expensive and time-consuming 93 

procedures is crucial (Yamac &Todorovic 2020). In addition to these approaches, tree-based ML 94 

models are becoming more and more popular because of their very rapid processing and 95 

acceptable accuracy, such as random forest (RF) (Feng et al. 2017a, Salam &Islam 2020, Zhu et al. 96 

2020), extreme gradient boosting (XGB) (Yu et al. 2020, Abdallah et al. 2022), light gradient 97 
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boosting machine (LightGBM) (Fan et al. 2019, Sarigol &Katipoglu 2023), and gradient boosting 98 

with categorial feature support (CatBoost) (Fan et al. 2018, Huang et al. 2019). 99 

The XGB model was introduced by Chen et al. (2016) for the purpose of producing strong 100 

classification techniques. The XGB calculates model weights and superimposes all inadequate 101 

classifiers to create robust classifiers. As an outcome, the estimation error is considerably 102 

reduced, and a classification outcome with higher prediction accuracy is possible (Jia et al. 2019). 103 

According to optimal accuracy, model flexibility, and computational effectiveness, the XGB 104 

model was recommended for daily ET0 estimation in different climatic zones of China (Fan et al. 105 

2018). There are successful applications of XGB model for ET0 estimation in various 106 

hydroclimatic domains (Fan et al. 2018, Fan et al. 2019, Wang et al. 2019, Ferreira &da Cunha 2020, 107 

Fan et al. 2021, Abdallah et al. 2022, Agrawal et al. 2022, Jayashree et al. 2023). The XGB model 108 

exhibited equivalent accuracy to SVM and ELM when using the limited input data and 109 

outperformed RF and M5Tree models in tropical and subtropical humid climate (Fan et al. 2018). 110 

The XGB model showed equivalent performance to SVM and ELM models when using a full 111 

combination of meteorological data in hyper-arid region (Abdallah et al. 2022). Given its 112 

acceptable reliability, stability, and relatively low computation expenses, the XGB model is thus 113 

appropriate for estimating daily ET0 in data-limited regions. 114 

The parameters of ML models have a large impact on the prediction accuracy of the developed 115 

models. When the input data are very complicated, particularly, adjusting the model parameters 116 

typically needs much effort and expert expertise (Yu et al. 2020). There are several research 117 

employing optimization algorithms to select the optimal parameters in order to increase the 118 

effectiveness of parameter modification of ML models. For instance, Han et al. (2019) optimize 119 

the parameters of XGB model with Bat Algorithm (BA) for estimating daily ET0 in different 120 
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climate zone of China. Yu et al. (2020) developed a novel approach throughout optimizing the 121 

XGB model with Particle Swarm Optimization (PSO) algorithm to estimate daily ET0 by using 122 

limited input data in the Solar Greenhouse. They concluded that the POS-XGB model could 123 

obtain the highest estimation performance. Hybridization of XGB with whale optimization 124 

algorithm (XGB-WOA) for estimating daily ET0 in arid and humid regions was investigated by 125 

Yan et al. (2021). Additionally, there still exist challenges with hyperparameter tuning, and the 126 

optimal parameter of the XGB model for estimating daily ET0 remains to be issued. Recently, 127 

the Marine Predators Algorithm (MPA) was yielded better than PSO, genetic algorithm (GA), 128 

and grey wolf optimization (GWO) when used to optimize the ANN approach for prediction 129 

streamflow (Ikram et al. 2022). The advantages of MPA can be summarized as; (i) having fewer 130 

parameters, simple setting, easy to implement. MPA memorizes optimization results. It requires 131 

less iteration (Abd Elminaam et al. 2021). (ii) Another advantage of MPA is that it mimics 132 

predators' behaviors to increase the probability of escaping from local optima (Abdel-Basset et al. 133 

2021). (iii) The MPA has shown fast convergence rates compared to other optimization 134 

algorithms (Al-Betar et al. 2023). (iv)The MPA is designed to search for the global optimum in 135 

complex and multimodal optimization problems (Faramarzi et al. 2020). 136 

Since the ET0 has significant spatial and temporal variations, further works in new stations 137 

appear to be necessary, with the goal of correct irrigation planning and control and management 138 

of water resource consumption, despite the availability of previous studies. Accordingly, it 139 

appears that it is important to conduct targeted studies in two areas. The first is related to the 140 

parameters, so that the most effective climatic parameters are used. The point here is that in 141 

many developing countries, such as Algeria, the input parameters of empirical ET0 estimator 142 

models may be missing (not measured) or their accuracy may be questionable. On the other 143 
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hand, the existing empirical models have been developed for particular regions and may lead to 144 

unreliable results in other areas. This has been confirmed even after the calibration of empirical 145 

models in various studies (Ferreira et al. 2019, Nourani et al. 2019, Chen et al. 2020). Climate 146 

change, which has gained momentum in recent years, can also affect ET0 estimation by 147 

influencing the changes in the range of variability of parameters, changes in the boundary values 148 

of parameters, and displacement in the trends of parameter variations. Therefore, revisiting the 149 

boundary values and the trend of variations of climatic parameters under the influence of climate 150 

change is an important point that should be considered in future studies. 151 

The second part pertains to ET0 estimator models, which have made significant progress in 152 

recent years. Artificial intelligence models with a better ability to model non-linear relationships 153 

and to recover extrema have played an important role in this progress. Bio-inspired algorithms 154 

have also played an important part in improving ET0 estimation by optimizing the parameters of 155 

base models (e Lucas et al. 2020, Maroufpoor et al. 2020). However, these algorithms may lead to 156 

different results in different regions, and this highlights the importance of evaluating such 157 

algorithms in various stations. Beyond the above-mentioned points, it appears that generalization 158 

of ET0 estimator models to regions other than those whose data have been used in model training 159 

will be a key and major step toward developing models which can be used on a large (global) 160 

scale. For this purpose, application of dimensionless meteorological parameters, similar to what 161 

has been reported for the modeling of the solar radiation process (Mohammadi &Moazenzadeh 162 

2021) can be fruitful. 163 

Estimating ET0 accurately in regions with limited meteorological data, such as northern Algeria, 164 

presents unique challenges. Traditional empirical models, like the FAO56-PM, rely on extensive 165 

meteorological inputs, often unavailable or unreliable in developing regions. This lack of data 166 
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constrains the applicability of such models and can lead to inaccuracies, especially in semi-arid 167 

environments where precise water resource management is critical. Moreover, traditional models 168 

may lack the flexibility to adapt to complex climatic conditions and the increasing variability 169 

brought by climate change. ML methods, particularly when combined with optimization 170 

algorithms, have shown promise in addressing these limitations by improving model accuracy 171 

with fewer inputs and enhancing adaptability across diverse environments. However, these 172 

models require optimized parameter tuning to achieve reliable results. 173 

To address these challenges, this study introduces a novel hybrid ET0 estimation model that 174 

combines the accuracy of XGB with the MPA for optimized hyperparameter tuning. By 175 

integrating these techniques, we aim to develop a model that not only improves ET0 prediction 176 

accuracy in the data-limited, semi-arid Wadi Sly basin but also contributes a versatile and 177 

scalable approach that can be adapted to similar regions. This research ultimately supports 178 

sustainable water resource management by enabling more efficient irrigation planning and 179 

better-informed decision-making in regions facing water scarcity. 180 

2. Materials and methods 181 

2.1. Study area 182 

As shown in Figure 1, the study area is the Wadi Sly basin, which is located in northwest of 183 

Algeria. It has an area of 1225 km2, with coordinates of 35°36'5" - 36°5'53" N and 1°8'16" -184 

1°44'56" E. The basin has a maximum width and length of 30 and 70 kilometers, respectively. 185 

Besides, it has a narrow and long-form as well as a large hydrographic network. The Sidi 186 

Yakoub dam, which was built for agricultural purposes, influences flows in the lower section of 187 

the basin.  188 
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Northern Algeria represents a unique Mediterranean climate zone characterized by distinct 189 

seasonal patterns, with annual rainfall varying between 200-800 mm and significant spatial 190 

variability influenced by complex topographical features and coastal proximity. This region faces 191 

critical water management challenges due to its semi-arid characteristics, where agriculture 192 

consumes approximately 70% of available water resources while supporting a growing 193 

population of over 25 million inhabitants. The area experiences intense solar radiation and high 194 

evaporation rates, particularly during summer months when temperatures regularly exceed 35°C, 195 

making accurate ET0 estimation crucial for agricultural sustainability. The region's agricultural 196 

sector, dominated by cereal cultivation and increasingly moving towards irrigated farming, faces 197 

mounting pressure from climate variability, urbanization, and groundwater depletion. These 198 

challenges are exacerbated by the intersection of traditional farming practices with modern 199 

irrigation requirements, creating a pressing need for precise ET0 modeling to optimize water 200 

resource allocation. The region's unique combination of Mediterranean climate influences, 201 

varying topography from coastal areas to inland plateaus, and diverse agricultural practices 202 

makes it an ideal case study for advancing ET0 prediction methodologies (Tadlaoui, 2018; 203 

Chetioui, and Bouregaa, 2024). 204 

 205 
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 206 

Figure 1. Location of the study area and the meteorological station 207 

 208 

 209 

 210 

2.2. Data collection 211 

The daily meteorological variables, including air temperature (Tmin, Tmax, and Tmean), relative 212 

humidity (RHmin, RHmax, and RHmean), wind speed (U2), sunshine hours (SSH), and pan 213 

evaporation (Epan) were collected from the Sidi Yakoub meteorological station. The dataset 214 
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comprises daily records for 11 years from January 2000 to December 2010. Table 1 shows the 215 

statistical characteristics for all data, training, and testing sets. 216 

Table 1. Statistical measures of the meteorological data for all, train, and test datasets 217 

Period Variable Mean Standard 
deviation Median Minimum Maximum Range Skewness 

coefficient Kurtosis 

All  
data 

Tmean (°C) 20.19 7.49 19.38 3.35 40.15 36.8 0.2 -1.05 
Tmax (°C) 25.82 9.05 25 6.3 47.4 41.1 0.18 -1.08 
Tmin (°C) 14.57 6.27 13.9 0.1 33.3 33.2 0.18 -0.9 
SSH  8 3.79 8.8 0 14.2 14.2 -0.58 -0.67 
U2 (m/s) 2.83 1.41 2.6 0 11.4 11.4 1.19 2.92 
RHmean (%) 53.93 13.88 54.38 30 89.5 59.5 0 -0.95 
RHmax (%) 71.83 12.23 74.5 33 99 66 -0.62 -0.5 
RHmin (%) 36.03 17.42 34 2.5 87.5 85 0.33 -0.77 
Ra (MJ/m2/day) 29.64 9.16 30.44 16.03 41.72 25.68 -0.13 -1.5 
Epan (mm/day) 7.63 5.11 6.55 0.1 23 22.9 0.48 -0.82 
ET (mm/day) 4.58 2.66 4.04 0.59 13.77 13.18 0.5 -0.78 

Train 
data 

Tmean (°C) 20.37 7.62 19.75 3.35 40.15 36.8 0.15 -1.12 
Tmax (°C) 26.02 9.16 25.2 6.3 47.1 40.8 0.12 -1.15 
Tmin (°C) 14.73 6.42 14.2 0.1 33.3 33.2 0.13 -0.95 
SSH  7.95 3.76 8.8 0 14.2 14.2 -0.56 -0.64 
U2 (m/s) 2.75 1.24 2.6 0 9.9 9.9 0.93 2 
RHmean (%) 52.86 13.89 53 30 89.5 59.5 0.07 -0.93 
RHmax (%) 70.63 12.28 73 33 99 66 -0.54 -0.62 
RHmin (%) 35.1 17.35 33 2.5 87.5 85 0.39 -0.71 
Ra (MJ/m2/day) 29.64 9.16 30.44 16.03 41.72 25.68 -0.13 -1.5 
Epan (mm/day) 7.74 5.08 7 0.1 23 22.9 0.48 -0.8 
ET (mm/day) 4.63 2.68 4.08 0.59 12.6 12.01 0.46 -0.89 

Test  
data 

Tmean (°C) 19.7 7.1 18.5 4.05 38.85 34.8 0.36 -0.79 
Tmax (°C) 25.28 8.74 24.4 7 47.4 40.4 0.34 -0.82 
Tmin (°C) 14.13 5.83 13.5 1.1 30.7 29.6 0.3 -0.71 
SSH  8.14 3.86 9.1 0 13.9 13.9 -0.61 -0.74 
U2 (m/s) 3.04 1.76 2.8 0 11.4 11.4 1.18 2.07 
RHmean (%) 56.79 13.45 58.5 30 87.75 57.75 -0.2 -0.88 
RHmax (%) 75.06 11.5 78.5 42.5 98 55.5 -0.87 0.01 
RHmin (%) 38.53 17.36 38.5 2.5 85 82.5 0.17 -0.86 
Ra (MJ/m2/day) 29.64 9.17 30.44 16.03 41.72 25.68 -0.13 -1.51 
Epan (mm/day) 7.33 5.16 6.2 0.1 22.1 22 0.51 -0.88 
ET (mm/day) 4.45 2.58 3.95 0.63 13.77 13.14 0.63 -0.43 

 218 

2.3. Empirical approaches and measured pan evaporation 219 



12 
 

For ET0 time series estimation, eight empirical models were applied, including those based on 220 

temperature, mass transfer, radiation, and various meteorological data. As previously stated, the 221 

FAO-56 PM is regarded as a valid technique of estimating ET0, therefore ET0 values of FAO-56 222 

PM were considered as benchmarked values to evaluate other applied models. In addition, seven 223 

other empirical models (by a various number of input variables) were chosen and applied in this 224 

study. These empirical models are Penman (most meteorological factors), Hargreaves-Samani 225 

(temperature-based), Priestley- Taylor (radiation-based), Blaney Criddle (temperature based), 226 

Makkink (temperature and radiation), Ouddin (temperature based) and Pan evaporation. Table 2 227 

lists the mathematical formulae for these models in their original versions. Overall, the values of 228 

Kpan, ranging from a maximum value of around 0.835, a minimum value of 0.570 and a 229 

corresponding mean equal to 0.717. 230 

Table 2. Empirical models used in this study for estimating ET0 231 

Empirical Models Equations 

FAO-56 PM (Allen et al. 2000) 
𝐸𝐸𝐸𝐸0 =

0.408(𝑅𝑅𝑛𝑛 − 𝐺𝐺) + 900𝛾𝛾 𝑈𝑈2
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 273 (𝑒𝑒𝑠𝑠 − 𝑒𝑒𝑎𝑎)

𝛥𝛥 + 𝛾𝛾(1 + 0.34𝑈𝑈2)
 

Penman (1948) ET0 = ∆.𝑅𝑅𝑛𝑛+𝛾𝛾.(2.625 + 0.000479𝑢𝑢2)(𝑒𝑒𝑒𝑒 − 𝑒𝑒𝑒𝑒)
∆+𝛾𝛾

 

Hargreaves–Samani (1985) ET0 = 0.0023 (Tmax − Tmin) 0.5(T + 17.8) Ra 

Priestley–Taylor (1972) 𝐸𝐸𝐸𝐸0 = 1.26
∆

∆ + 𝛾𝛾
(𝑅𝑅𝑛𝑛 − 𝐺𝐺) 

Blaney-Criddle (Blaney 1952) 𝐸𝐸𝐸𝐸0 = 𝑎𝑎 + 𝑏𝑏[𝑝𝑝(0.46𝑇𝑇 + 8.13)] 

Makkink (1957) 𝐸𝐸𝐸𝐸0 = 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀
1
𝜆𝜆

∆
∆ + 𝛾𝛾

𝑅𝑅𝑠𝑠 

Ouddin (Oudin et al. 2005) 𝐸𝐸𝐸𝐸0 = 𝑅𝑅𝑠𝑠[(𝑇𝑇 + 5)/100)] 
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Pan evaporation (Trajkovic &Kolakovic 2010) 𝐸𝐸𝐸𝐸0 = 𝐾𝐾𝑝𝑝  𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝   

 232 

Where, ET0 is the daily reference evapotranspiration (mm d−1), Rn (MJ.m−2.d−1) refers to the net 233 

radiation, G (MJ.m−2.d−1) indicates soil heat, γ (kPa oC−1) is the psychometric constant, U2 (m 234 

s−1) is the average daily wind speed at 2 m height, T (oC) refers to the average daily air 235 

temperature, es and ea refer to the saturation and actual vapor pressures (kPa), respectively, es-ea 236 

indicates the saturation vapor pressure deficit (kPa), and Δ (kPa °C−1) indicates the slope of the 237 

saturation vapor pressure curve, Ra (MJ.m−2.d−1) indicates extraterrestrial radiation, CMAK is an 238 

empirical coefficient depending on climate conditions, p is the mean daily percentage of annual 239 

daytime hours, kp is the pan coefficient, Epan (mm day-1) refers to the pan evaporation. 240 

 241 

2.4. Extreme Gradient Boosting (XGB) model 242 

The XGB (Chen et al. 2016) is a popular ML algorithm that is widely used for supervised learning 243 

tasks such as classification and regression. It belongs to the family of gradient boosting 244 

algorithms, which combine multiple weak models (such as decision trees) to form a strong model 245 

that can make accurate predictions on new data (Murorunkwere et al. 2023). XGB is known for its 246 

speed, scalability, and accuracy, and it has won multiple Kaggle competitions and other ML 247 

challenges. One of the key features of XGB is its ability to handle missing data and outliers 248 

effectively. XGB uses a technique called regularization, which penalizes complex models to 249 

prevent overfitting and improve generalization performance (Bhati et al. 2021, Chelgani et al. 250 

2023). It also uses a technique called gradient boosting, which iteratively adds new weak models 251 

to the ensemble, with each new model correcting the errors of the previous models. This 252 

approach allows XGB to achieve high accuracy while avoiding the common pitfalls of 253 
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overfitting and bias. In addition to its performance and accuracy, XGB also offers a number of 254 

useful features for ML practitioners, such as early stopping, cross-validation, and feature 255 

importance analysis. These features make it easy to optimize hyperparameters, prevent 256 

overfitting, and interpret the results of the model. XGB can be categorized as a capable algorithm 257 

which is suitable for handling ML tasks (Begam et al. 2023). 258 

2.5. Particle Swarm Optimization (PSO) 259 

Proposed by Kennedy and Eberhart in 1995, PSO is a population-based stochastic optimization 260 

technique inspired by the collective behavior of flocking birds. In this method, each candidate 261 

solution is represented as a particle, and a collection of these particles forms a swarm. Every 262 

particle possesses a position and a velocity, which are updated during the k-th iteration using 263 

Equations (1) and (2). 264 

𝒗𝒗𝑖𝑖𝑘𝑘+1 = 𝑤𝑤𝒗𝒗𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝒓𝒓1�𝒑𝒑𝑖𝑖𝑘𝑘 − 𝒙𝒙𝑖𝑖𝑘𝑘� + 𝑐𝑐2𝒓𝒓2�𝒑𝒑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 − 𝒙𝒙𝑖𝑖𝑘𝑘� (1) 

𝒙𝒙𝑖𝑖𝑘𝑘+1 = 𝒙𝒙𝑖𝑖𝑘𝑘 + 𝒗𝒗𝑖𝑖𝑘𝑘+1 (2) 

where 𝒙𝒙𝑖𝑖𝑘𝑘 and 𝒗𝒗𝑖𝑖𝑘𝑘 represent the position and velocity of the 𝑖𝑖th particle at the 𝑘𝑘th iteration, 265 

respectively. 𝒑𝒑𝑖𝑖𝑘𝑘 and 𝒑𝒑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘  denote the personal best position of the 𝑖𝑖th particle and the global 266 

best position of the swarm, respectively. 𝑤𝑤 is the inertia weight. 𝑐𝑐1 and 𝑐𝑐2 are cognitive and 267 

social acceleration coefficients determining the relative importance of 𝒑𝒑𝑖𝑖𝑘𝑘 and 𝒑𝒑𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 . 𝒓𝒓1 and 𝒓𝒓2 268 

are uniformly distributed random vectors within the interval [0, 1] (Nasiri et al., 2022). 269 

 270 

2.6. Marine Predators Algorithm (MPA) 271 
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The MPA (Faramarzi et al. 2020) is a recent optimization algorithm inspired by the hunting 272 

behavior of marine predators, such as sharks and dolphins. The MPA algorithm works by 273 

simulating the movement of a group of predators in search of a prey target. Each predator in the 274 

group represents a candidate solution to the optimization problem, and their movements are 275 

guided by a set of rules that mimic the behavior of marine predators. 276 

The MPA algorithm has been shown to be effective in solving a wide range of optimization 277 

problems, including continuous and discrete optimization problems, as well as multi-objective 278 

optimization problems. One of the key advantages of the MPA algorithm is its ability to balance 279 

exploration and exploitation of the search space (Sun et al. 2023). The algorithm is designed to 280 

explore the search space broadly in the early stages of the search, and then focus on exploiting 281 

promising regions as the search progresses. This helps to avoid getting trapped in local optima 282 

and improves the chances of finding the global optimum (Ewees et al. 2022). In terms of 283 

mathematical equation, when current iteration is in the first third of a maximum number of 284 

iterations (i.e., first stage of MPA), the best strategy for predator is not moving at all (Faramarzi et 285 

al. 2020). Note that this strategy leads to exploration. The mathematical formulation of this 286 

strategy is as follows: 287 

𝜂𝜂𝑖𝑖 = 𝑅𝑅�⃗ 𝐵𝐵⨂�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������⃗ 𝑖𝑖 − 𝑅𝑅�⃗ 𝐵𝐵⨂𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃����������⃗ 𝑖𝑖�  𝑖𝑖 = 1, … ,𝑛𝑛 (3) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃����������⃗ 𝑖𝑖=𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃����������⃗ 𝑖𝑖 + 0.5 × 𝑅𝑅�⃗ ⨂𝜂𝜂𝑖𝑖 (4) 

where 𝜂⃗𝜂𝑖𝑖 denotes the step size, 𝑅𝑅�⃗ 𝐵𝐵 represents the random vector generated by Brownian motion, 288 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸����������⃗ 𝑖𝑖 is the matrix built by the top predator with the best fitness, n denotes the population size, 289 

and 𝑅𝑅�⃗  is a random vector, uniformly distributed in [0,1] (Liang et al. 2022).  290 
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During the transition from exploration to exploitation stage (i.e., second stage of MPA), the 291 

population is divided into two groups: one for global exploration, where the predator explores 292 

the search space using Brownian motion, and the other for local exploitation, where the prey is 293 

exploited using Lévy motion. Finally, during the exploitation stage (i.e., third stage of MPA), 294 

which occurs in the last two-thirds of the maximum allowed iterations when the predator is 295 

slower than the prey, the predator uses the Lévy migration strategy (Ewees et al. 2022, Liang et al. 296 

2022). MEALPY open-source library (Van Thieu and Mirjalili, 2023) was used for implementing 297 

the MPA algorithm. 298 

 299 

2.7. Combination of meteorological variables for ET0 estimation 300 

This study aims to compare the performances of several empirical models and a ML and nature-301 

inspired optimization technique to predict ET0. Tmean, Tmax, Tmin, SSH, W, RHmean, RHmax, 302 

Rhmin, extraterrestrial solar radiation (Ra), and Epan values are presented as inputs to XGB and 303 

XGB-MPA models for constructing ET0 prediction models. Twenty independent runs were 304 

performed for XGB and XGB-MPA models in each scenario to ensure the robustness of the 305 

results and evaluate the performance of models more accurately. Various input combinations of 306 

the XGB and XGB-MPA models constructed for estimating ET0 values are presented in Table 3. 307 

Also, Figure 2 shows the flowchart of the current study.  308 

 309 

Table 3. Various input combinations of the established models 310 

No. Input(s) Output Models 

1 Tmean ET0 XGB1 XGB-MPA1 
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2 Tmean, Tmax, Tmin ET0 XGB2 XGB-MPA2 

3 Tmean, Tmax, Tmin, SSH ET0 XGB3 XGB-MPA3 

4 Tmean, Tmax, Tmin, SSH, W ET0 XGB4 XGB-MPA4 

5 Tmean, Tmax, Tmin, SSH, W, RHmean ET0 XGB5 XGB-MPA5 

6 Tmean, Tmax, Tmin, SSH, W, Rhmean, Rhmax, Rhmin ET0 XGB6 XGB-MPA6 

7 Tmean, Tmax, Tmin, SSH, W, Rhmean, Rhmax, Rhmin, Ra ET0 XGB7 XGB-MPA7 

8 Tmean, Tmax, Tmin, SSH, W, Rhmean, Rhmax, Rhmin, Ra, Epan ET0 XGB8 XGB-MPA8 

 311 

 312 

Figure 2. Flowchart of the current study 313 

 314 

2.8. SHAP post-processing method 315 
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SHAP (short for SHapley Additive exPlanations) (Lundberg &Lee 2017) is a recently developed 316 

algorithm that provides a framework for interpreting the predictions of complex ML models. It is 317 

based on the Shapley value from cooperative game theory, which is a mathematical concept used 318 

to distribute the payout of a game among its players in a fair way. In the context of ML, SHAP 319 

uses the Shapley value to assign a contribution score to each feature in a prediction, indicating 320 

how much each feature contributes to the prediction compared to the other (Heuillet et al. 2022) 321 

features . 322 

One of the key advantages of SHAP is its ability to provide both local and global explanations of 323 

a model's predictions. Local explanations show how a model arrived at a particular prediction for 324 

a specific instance, while global explanations show how the model behaves in general and which 325 

features are most important overall. This is particularly useful in situations where the 326 

performance of the model needs to be justified or its behavior needs to be understood. Another 327 

strength of the SHAP algorithm is its versatility and compatibility with a wide range of ML 328 

models and architectures. It can be used with both linear and non-linear models, as well as with 329 

tree-based models, deep learning models, and ensemble models (Fatahi et al. 2022, Zhang et al. 330 

2023). This makes it a powerful tool for interpreting the predictions of complex models in a 331 

variety of domains, from healthcare and finance to natural language processing and computer 332 

vision. SHAP presents a remarkable understanding in the realm of explainable AI as it provides a 333 

robust and versatile approach to discerning the outcomes of intricate ML models. 334 

 335 

2.9. Evaluation metrics 336 
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To evaluate the performance of the proposed models, statistical measures such as the coefficient 337 

of determination (R2) and root mean square error (RMSE) were utilized. The R2 value indicates 338 

the linear correlation between the predicted and observed values, while the RMSE represents the 339 

overall accuracy of the simulation. R² is dimensionless and can be range from 0 to 1; unit of 340 

RMSE is mm/day in this study and it can be ranged from 0 to ∞. These statistical measures are 341 

presented as follows: 342 

R2=(
∑ (ETi

o − ETo�����)(ETi
p − ETp�����)n

i=1

�∑ (ETi
o − ETo�����)

2
∑ (ETi

p − ETp�����)
2n

i=1
n
i=1

)
2

 
(5) 

RMSE = �
1
n
�(
n

i=1

ETi
p − ETio)2  

(6) 

where, n denotes the number of the data; ETi
o and ETi

p are the ith observed and forecasted ET0, 343 

respectively; ETo�����and ETp����� are the average of the observed and forecasted ET0, respectively. 344 

 345 

 3. Results 346 

The proposed model was implanted using Python programming language and Scikit-learn ML 347 

library (Pedregosa et al., 2011). The experiments were run on an Intel Core i7-6700HQ, 348 

2.60GHz CPU with 12 GB RAM, running Windows 10 operating system. In all experiments, the 349 

XGB parameters for the XGB-MPA model were tuned by the MPA algorithm, and the 350 

parameters for the XGB model were acquired by trial and error. The obtained parameters for the 351 

best models (i.e., XGB-MPA7 and XGB7) are shown in Table 4. Moreover, for the MPA 352 
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algorithm, the default values of the parameters were used except for two parameters: the 353 

population size was set to 50, and the maximum number of train epochs was set to 10. 354 

Table 4. Parameter setting for machine learning models (for the best XGB-based scenario 355 

(XGB7) and the best XGB-MPA-based scenario (XGB-MPA7)) 356 

Parameter Value 
XGB7 

Base learner Gradient boosted tree 
Number of gradient boosted trees 100 
Learning rate 0.3 
Lagrange multiplier 0 
Maximum depth of trees 6 

XGB-MPA7 
Base learner Gradient boosted tree 
Number of gradient boosted trees 300 
Learning rate 0.060 
Lagrange multiplier 0.007 
Maximum depth of trees 6 

 357 

The results of ET0 estimation in testing set with various data input combinations of XGB model 358 

are shown in Table 5. The XGB model has been tested using seven different variations (XGB1-359 

XGB8), and for each variation, the model has been tested using 20 different random state values 360 

(0-19). Looking at the table, we can see that the model’s performance varies depending on the 361 

random state value used during training. According to the average statistical metrics, the lowest 362 

RMSE (0.2727 mm/day) and highest R2 (0.9889) values were produced with the 7th combination 363 

(inputs: Tmean, Tmax, Tmin, SSH, W, Rhmean, Rhmax, Rhmin, and Ra). Moreover, the 364 

precision of ET0 prediction generally enhanced during the testing phase with an increase in the 365 

number of meteorological input variables utilized in the models. For example, analyzing the 366 
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average values, XGB1 attained an R2 score of 0.7603and an RMSE of 1.2675(mm/day), whereas 367 

XGB8 obtained an R2 score of 0.9881and an RMSE of 0.2831 (mm/day). These findings suggest 368 

that XGB8 outperformed XGB1. Similarly, we can ascertain the model that shows the best 369 

overall performance by comparing the metrics across various random states. In addition, when 370 

the R2 and RMSE values of the meteorological variables of model 2, 3, 4 and 5 combinations are 371 

examined, it is found that the prediction performance of the XGB model increases significantly 372 

especially from combination 2 to 3, 3 to 4 and 4 to 5. Consequently, one can deduce that the 373 

influence of supplementary meteorological factors such as SSH, W, and RHmean on the ET0 374 

prediction is significant. In conclusion, the incorporation of the W variable in the model has a 375 

noteworthy impact on the ET0 prediction, specifically regarding the transportation of water vapor 376 

from the crop surface. The SSH variable considers the availability of solar energy, and the Epan 377 

variable accounts for water evaporation from an open pan placed under specific meteorological 378 

conditions. 379 

Table 5. Results for the XGB model during the test section (the best R2 and RMSE values for 380 

each run are in bold) 381 

 XGB1 XGB2 XGB3 XGB4 XGB5 XGB6 XGB7 XGB8 

Random 
State R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

0 0.7622 1.2611 0.7447 1.3194 0.8324 1.071 0.9348 0.6839 0.9543 0.5514 0.9542 0.5518 0.9889 0.2729 0.9865 0.3033 

1 0.7602 1.2678 0.743 1.3268 0.823 1.099 0.9386 0.6594 0.9562 0.5398 0.9543 0.5507 0.989 0.2721 0.9874 0.2917 

2 0.7644 1.2563 0.7486 1.311 0.83 1.075 0.9365 0.6792 0.9566 0.537 0.9536 0.5554 0.99 0.2598 0.9896 0.2648 

3 0.763 1.2603 0.7527 1.2949 0.8306 1.0701 0.9365 0.6748 0.9558 0.5418 0.9561 0.5401 0.9884 0.2803 0.9879 0.2843 

4 0.7619 1.2633 0.7497 1.3046 0.8263 1.0873 0.9378 0.6668 0.9579 0.5288 0.9579 0.53 0.9891 0.2706 0.9885 0.2779 

5 0.7564 1.2784 0.7498 1.3104 0.8301 1.0775 0.9357 0.6791 0.9559 0.5421 0.9541 0.5521 0.9903 0.2547 0.9883 0.2792 

6 0.7607 1.2663 0.7488 1.3115 0.8286 1.082 0.9359 0.6733 0.9561 0.5402 0.9553 0.5449 0.9885 0.281 0.9869 0.299 

7 0.7579 1.2749 0.7433 1.324 0.8252 1.0883 0.9337 0.6856 0.959 0.5228 0.9539 0.5536 0.9882 0.2816 0.9882 0.2828 

8 0.7634 1.2579 0.7499 1.3049 0.8332 1.0648 0.9364 0.6818 0.9546 0.5499 0.9558 0.5431 0.9897 0.2626 0.9895 0.2647 

9 0.7567 1.277 0.7462 1.3159 0.8294 1.0766 0.9335 0.6859 0.9565 0.5381 0.9518 0.5668 0.9884 0.2799 0.988 0.283 

10 0.7584 1.2731 0.7522 1.2989 0.8259 1.0959 0.9368 0.6713 0.9559 0.5416 0.9543 0.5519 0.9889 0.2761 0.988 0.2842 

11 0.7554 1.2803 0.7542 1.2944 0.8323 1.0643 0.9347 0.6828 0.9552 0.5466 0.9555 0.5438 0.9898 0.2611 0.9887 0.2749 

12 0.7587 1.2707 0.7449 1.3212 0.8343 1.0594 0.933 0.6896 0.9542 0.5515 0.9529 0.5599 0.9883 0.2809 0.9879 0.286 

13 0.7599 1.2694 0.7487 1.3087 0.8297 1.0733 0.9377 0.6667 0.9582 0.5275 0.9568 0.5357 0.9881 0.2813 0.986 0.3067 
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14 0.7615 1.2632 0.7474 1.3146 0.8324 1.0704 0.9349 0.6764 0.9557 0.5424 0.9534 0.5563 0.9884 0.2771 0.9883 0.28 

15 0.7611 1.2649 0.7433 1.3255 0.8256 1.089 0.938 0.6646 0.9567 0.5372 0.9521 0.5649 0.9886 0.2783 0.9886 0.2788 

16 0.7588 1.2736 0.7546 1.2973 0.8242 1.1002 0.9368 0.6753 0.9555 0.5444 0.9559 0.542 0.9897 0.262 0.9879 0.2856 

17 0.7646 1.2554 0.7469 1.3145 0.8295 1.078 0.9339 0.6865 0.9565 0.5384 0.9564 0.5385 0.9887 0.2759 0.9886 0.2771 

18 0.7604 1.2682 0.7445 1.3225 0.8295 1.0786 0.9369 0.6762 0.9556 0.5435 0.9541 0.5519 0.9882 0.2814 0.9887 0.2758 

19 0.7605 1.267 0.7458 1.3196 0.8186 1.111 0.9357 0.6801 0.9551 0.547 0.9523 0.5629 0.9897 0.2646 0.9882 0.2816 

Average 0.7603 1.2675 0.748 1.312 0.8286 1.0806 0.9359 0.677 0.9561 0.5406 0.9545 0.5498 0.9889 0.2727 0.9881 0.2831 

 382 

Test estimation results of the XGB-MPA model are presented in Table 6. When evaluated 383 

according to the average of the test statistics, it was revealed that the combination number 7 384 

produced the most accurate predictions with the highest R2 (0.9958) and lowest RMSE (0.1713 385 

mm/day) values. In addition, it is noteworthy that the increase in the number of meteorological 386 

input variables used in the models increases the success of ET0 prediction. Because all 387 

meteorological variables used are directly dependent on ET0 parameters. In addition, it was 388 

revealed that the accuracy of estimating the MPA-optimized XGB algorithm during the test 389 

phase was slightly improved according to increasing R² and decreasing RMSE values. 390 

Examining the average values of the table, XGB-MPA1 obtained an R2 value of 0.7864 and an 391 

RMSE of 1.1931 (mm/day), whereas XGB-MPA2 achieved an R2 score of 0.8054 and an RMSE 392 

of 1.1384 (mm/day). These findings indicate that XGB-MPA2 exhibited superior performance 393 

compared to XGB-MPA1. According to the results of 20 different random states, the XGB-394 

MPA2 algorithm consisting of Tmean, Tmax, Tmin meteorological input combinations has an R2 395 

score of 0.8054 and RMSE of 1.1384 mm/day, while the XGB-MPA5 algorithm consisting of 396 

Tmean, Tmax, Tmin, SSH, W, RHmean input combinations has an R2 score of 0.9682 and 397 

RMSE of 0.4598 mm/day. Accordingly, it can be inferred that the SSH, W, RHmean variables 398 

added to the model contribute significantly to the ET0 prediction. Moreover, it is noteworthy that 399 

the most accurate prediction results are obtained when all meteorological variables are presented 400 

as inputs to the XGB-MPA7 model. 401 
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Table 6. Results for the XGB-MPA model during the test section (the best R2 and RMSE values 402 

for each run are in bold) 403 

 XGB-MPA1 XGB-MPA2 XGB-MPA3 XGB-MPA4 XGB-MPA5 XGB-MPA6 XGB-MPA7 XGB-MPA8 

Random 
State R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

0 0.7852 1.1962 0.8051 1.1397 0.8676 0.9386 0.9496 0.5813 0.9686 0.4571 0.969 0.455 0.9956 0.1752 0.9959 0.1695 

1 0.7852 1.1951 0.804 1.1424 0.8681 0.9374 0.9485 0.5862 0.968 0.4612 0.9689 0.4549 0.9955 0.1776 0.9953 0.1798 

2 0.787 1.1915 0.8057 1.1369 0.8686 0.935 0.9494 0.5821 0.9681 0.4608 0.9687 0.4567 0.9961 0.1649 0.9959 0.1681 

3 0.7864 1.1936 0.8056 1.1379 0.868 0.9373 0.9502 0.5777 0.9687 0.4559 0.9696 0.45 0.9959 0.1687 0.9959 0.1694 

4 0.7867 1.1925 0.8049 1.1399 0.8683 0.9365 0.9497 0.5804 0.9677 0.4635 0.9694 0.4515 0.9957 0.1713 0.9958 0.1702 

5 0.7856 1.1953 0.8066 1.1335 0.8696 0.932 0.9497 0.58 0.9681 0.4604 0.9688 0.456 0.9957 0.1718 0.9957 0.1736 

6 0.7876 1.1892 0.8064 1.1352 0.8687 0.9348 0.9504 0.5785 0.9681 0.4607 0.9682 0.46 0.9958 0.1714 0.9956 0.1762 

7 0.7857 1.1951 0.8052 1.1388 0.8678 0.9375 0.9493 0.5826 0.9682 0.4594 0.9684 0.4584 0.9958 0.1705 0.9955 0.1758 

8 0.7868 1.1927 0.8051 1.139 0.8684 0.9363 0.9493 0.5826 0.9683 0.4588 0.9691 0.4534 0.9957 0.1712 0.9957 0.1728 

9 0.787 1.1918 0.8053 1.1387 0.8693 0.9337 0.9491 0.5839 0.9682 0.4598 0.9692 0.453 0.9957 0.1712 0.9955 0.1776 

10 0.7871 1.1901 0.8045 1.1413 0.8684 0.9365 0.9496 0.5804 0.9686 0.4566 0.9689 0.4554 0.9957 0.1722 0.9956 0.1728 

11 0.7866 1.1927 0.8056 1.138 0.8684 0.9357 0.9492 0.5839 0.9678 0.4628 0.969 0.4547 0.9958 0.1707 0.9956 0.1762 

12 0.7859 1.1951 0.8045 1.1408 0.8675 0.9384 0.9494 0.5822 0.9682 0.4594 0.969 0.4543 0.9957 0.1722 0.9956 0.1741 

13 0.7862 1.1932 0.8061 1.1367 0.8693 0.9329 0.9495 0.5823 0.968 0.4613 0.9686 0.4569 0.9955 0.1753 0.9954 0.1803 

14 0.7863 1.1942 0.8044 1.1416 0.8675 0.9384 0.95 0.5806 0.9682 0.4599 0.9685 0.458 0.9958 0.1705 0.9959 0.169 

15 0.7858 1.1945 0.8062 1.1358 0.8684 0.9357 0.9498 0.5799 0.9682 0.4593 0.969 0.4541 0.9957 0.1721 0.9958 0.1717 

16 0.7878 1.1889 0.8071 1.1338 0.8684 0.9362 0.9494 0.5823 0.9684 0.4582 0.9692 0.4532 0.996 0.1664 0.9955 0.1765 

17 0.7867 1.1922 0.8044 1.1405 0.8665 0.9423 0.95 0.5796 0.9685 0.4572 0.9689 0.4556 0.9958 0.1709 0.9958 0.1717 

18 0.7864 1.193 0.8048 1.1403 0.8671 0.9401 0.9498 0.5813 0.9682 0.4602 0.9692 0.4531 0.9958 0.171 0.9958 0.1724 

19 0.7858 1.1953 0.8059 1.1367 0.8679 0.9375 0.9496 0.5814 0.9675 0.4644 0.9683 0.4596 0.9958 0.1701 0.9958 0.1705 

Average 0.7864 1.1931 0.8054 1.1384 0.8682 0.9367 0.9496 0.5815 0.9682 0.4598 0.9689 0.4552 0.9958 0.1713 0.9957 0.1734 

 404 

In Figure 3, the FAO-56-based ET0 values and the ET0 values estimated by various empirical 405 

equations were evaluated employing a scatter plot. Furthermore, the relationship between the 406 

benchmarked and predicted values in the scattering diagrams was evaluated. Accordingly, the 407 

optimal model was chosen as the empirical equation showing distribution on the regression line. 408 

According to these criteria, it was found that Ouddin (2005) equation had the highest similarity 409 

with FAO-56-based ET0. In addition, it can be seen that the Epan values have the weakest 410 

relationship with the ET0 values because they show random scattering. In addition, it is 411 

noteworthy that the ET0 values calculated with the (Hargreaves &Samani 1985) and (Penman 1948) 412 

equations deviate significantly from the FAO-56-based ET0 values, especially at values greater 413 
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than 5 mm/day, and the errors increase. The ET0 values calculated according to the (Oudin et al. 414 

2005), (Makkink 1957) and (Priestley &Taylor 1972) equation were found to deviate significantly 415 

from the FAO-56-based ET0 values, especially at values greater than 10 mm/day. 416 

 417 

Figure 3. Comparison of empirical models through test section scatter plots 418 

In Figure 4, the estimation results of the XGB model established with the combinations of 419 

various meteorological variables for the estimation of ET0 values are shown. In the scatter 420 

diagrams, the relationship between the benchmarked and predicted values was interpreted 421 

according to the closeness to the regression line. Accordingly, the XGB7 model, which is 422 

distributed over the regression line, was chosen as the optimal model. It is also noteworthy that 423 

the XGB 2 model has the lowest accuracy. In addition, according to the scattering diagrams, it is 424 
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seen that there is a little deviation from the regression line in the estimation results of the XGB1, 425 

2 and 3 models above 10 mm/day. In addition, in other estimation models, it is seen that it 426 

gathers around the regression line. When evaluating all scatter plots, it is observed that the 427 

combination of XGB4-7 models significantly improves the ET0 prediction performance 428 

compared to the XGB1-3 combinations. Therefore, it can be inferred that presenting wind speed 429 

values as input to the model significantly reduces the error value. 430 

 431 

 432 

Figure 4. Evaluation of XGB model combinations used in ET0 estimation through test section 433 

scatter plots  434 

 435 
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The prediction performance of tree-based XGB and bio-inspired MPA algorithms for ET0 436 

estimation is depicted in the scatter plots in Figure 5. Accordingly, the XGB7 model, distributed 437 

over the regression line, was assessed as superior. It was revealed that the MPA algorithm 438 

increased the prediction accuracy of the single XGB algorithm in estimating ET0. In addition, 439 

when the estimation results were evaluated according to the scattering diagrams, it was 440 

determined that there was some deviation from the regression line in the estimation results of the 441 

XGB-MPA1, 2 and 3 models above 10 mm/day values. It can be resulted that XGB-MPA4, 5, 6 442 

and 7 estimation models have high accuracy due to their distribution around the regression line. 443 

When the error values of the scatter diagrams were examined, it was seen that the error value 444 

decreased to the hybrid model as of the XGB-MPA4 model. This can be explained by the 445 

inclusion of wind speed values in the hybrid models.  446 
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447 
Figure 5. Evaluation of XGB-MPA model combinations used in ET0 estimation through test 448 

section scatter plots  449 

In Figure 6, the evaluation of the results of ET0 estimation based on the FAO-56 method during 450 

the training and testing phases using empirical equations, XGB, and XGB-MPA algorithms are 451 

presented through boxplot graphs. The median, outliers, distribution, and percentile ranges of the 452 

ET0 time series and estimated time series were determined to determine the most accurate model. 453 

According to the results, the Oudin et al. (2005) equation, XGB7, and XGB-MPA7 algorithms 454 

demonstrated the highest similarity and distribution in modeling ET0 values during the training 455 

and testing phases. In addition, the Perman equation showed the weakest accuracy. Notably, all 456 

XGB and XGB-MPA models established had satisfactory prediction accuracy. 457 
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 458 

Figure 6. Box plots: (a) for empirical models, (b) for the XGB-based models, (c) for the XGB-459 

MPA-based models 460 

The entire dataset was analyzed using SHAP to explore associations and identify variable 461 

significance assessments to generate a robust ET0 estimate. Figure 7 shows the SHAP beeswarm 462 

plots of the variables used to estimate ET0. Through these graphs, the direction and strength of 463 

the effects of a particular sample on the model output can be evaluated. The x-axis location of 464 

the point expresses the effect of the feature on the model output. The dots show the possible 465 

positive effect on the right and the possible negative effect on the left. In Figure 8, the order of 466 
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importance from top to bottom showing the effect of the variables on the output is given. The 467 

contribution of each feature to the model output is expressed through the length of the bar. 468 

Accordingly, it has been determined that Tmax values have the highest importance in predicting 469 

ET0 values among all variables in the dataset, while RHmax values have the lowest importance. 470 

In addition, it is seen that there is a positive relationship between estimated ET0 values and 471 

Tmax, Ra, W, SSH, Tmean, Epan, and Tmin values, and a negative relationship with RHmean, 472 

RHmin and RHmax values. 473 

 474 

Figure 7. SHAP beeswarm plot 475 
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 476 

Figure 8. SHAP bar plot 477 

 478 

Figure 9 compares the results of ET0 estimation based on the FAO-56 method during the training 479 

and testing phases using empirical equations and XGB-based models through Taylor diagrams. 480 

The most accurate model was determined by comparing the correlation, RMSE, and standard 481 

deviation values of the benchmarked and estimated time series on the Taylor diagram. According 482 

to the results, the Oudin et al. (2005) equation, XGB7, and XGB-MPA7 algorithms provided the 483 

most accurate results in predicting ET0 values during the training and testing phases. 484 

 485 



31 
 

 486 

Figure 9. Taylor diagram of training set (a, b, and c) and testing set (d, e, and f) 487 

    488 

Precise calculation of ET0 is crucial in numerous areas, such as designing irrigation schedules, 489 

managing agricultural water, modeling crop growth, and evaluating drought conditions. This 490 

study aimed to compare the performance of several empirical models and ML and nature-491 

inspired optimization techniques in predicting ET0. FAO-56-based ET0 values were selected as 492 

observed data and estimated with XGB and XGB-MPA. Tmean, Tmax, Tmin, SSH, W, 493 

RHmean, RHmax, Rhmin, and Epan values were presented as inputs to the XGB and XGB-MPA 494 

models for constructing the ET0 prediction models. According to the presented findings, it can be 495 

concluded that wind speed, sunshine hours and average relative humidity are among the most 496 

important inputs of ET0 simulator models in the study area, and the boundary values (minimum 497 

and maximum) of relative humidity and pan evaporation have not occupied a substantial role in 498 

estimation of this component.  499 
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Fan et al. (Fan et al. 2019) showed that ET0 values could be predicted satisfactorily by using 500 

various ML algorithms with Tmax, Tmin, RH, wind speed at 2m height, extraterrestrial solar 501 

radiation (Ra) and global solar radiation (Rs) variables in China. Moreover, it has been 502 

determined that the LightGBM model outperforms other ML models with R2 (1) and RMSE 503 

(0.08 mm/day) values in the testing phase. In this region, the estimation of daily ET0 was 504 

primarily influenced by Tmax and W. At the same time, RH had a comparatively lesser impact 505 

and Tmin had the least influence. The average R2 (0.9602) and RMSE (0.5064 mm/day) values 506 

in the testing phase of the GBM model showed satisfactory results in estimating ET0. The study's 507 

results significantly overlap with Fan et al. (Fan et al. 2019) in terms of the performance of the 508 

GBM algorithm and the effect of the meteorological parameters used. However, the high effect 509 

of Tmin values in estimating ET0 contradicts the study. In the study of Ferreira et al. (Ferreira 510 

&da Cunha 2020), ML and deep learning techniques were used to predict daily ET0 values 511 

according to hourly temperature and relative humidity values. The study results showed that deep 512 

learning methods are superior in ET0 prediction. It also supports the research on producing 513 

satisfactory outputs with the XGB algorithm. Yu et al. (Yu et al. 2020) proposed a new model 514 

named PSO-XGB using XGB and PSO of ET0 values calculated according to the Penman-515 

Monteith equation. As a result, it has been determined that the bio-inspired PSO algorithm 516 

improves the performance of the XGB model and the prediction accuracy increases with the 517 

increase in the number of meteorological input combinations. The XGB-MPA7 model with the 518 

most input variables gives the most accurate results in the study. The nature-inspired MPA 519 

algorithm overlaps with the study of  Yu et al. (2020) in terms of increasing the success of the 520 

XGB model. Yan et al. (2021) estimated daily ET0 using XGB and whale optimization algorithm 521 

(WOA) in arid and humid regions in China. The results showed that wind speed is the most 522 
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influential variable in the arid region, while the relative sunshine duration is more important in 523 

the humid region. WOA-XGB models performed 40% higher than FAO-56 PM models. The 524 

study results are consistent with the nature-inspired MPA improving the ET0 prediction success 525 

of XGB. 526 

Histograms of the percentage changes of R2 and RMSE values of ET0 prediction models are 527 

presented in Figure 10. The success of the prediction models was compared to the XGB1 and 528 

XGB-MPA1 models. It was found that the model's performance was significantly improved by 529 

increasing the number of input variables in ET0 prediction. Accordingly, the XGB and XGB-530 

MPA models established with the input variables Tmean, Tmax, Tmin, SSH, W, RHmean, 531 

RHmax, RHmin, and Epan emerged as superior models. In addition, the XGB7 model improved 532 

the R2 and RMSE values in the testing phase by 94.2% and 78.5%, respectively, in ET0 533 

prediction. Moreover, the XGB-MPA7 model improved the R2 and RMSE values in the testing 534 

phase by 95.9% and 85.6%, respectively, in ET0 prediction. 535 
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 536 

Figure 10. Percentage changes of R2 (a and b) and RMSE (c and d) based on the first scenario 537 

(XGB1 and XGB-MPA1) 538 

In addition, using XGB independently, without any optimization algorithm for hyperparameter 539 

tuning, has several disadvantages, including: (i) XGB has several hyperparameters that need to 540 

be set before training the model, such as the learning rate, maximum depth of trees, number of 541 

trees, regularization parameters, and more. Manually tuning these hyperparameters can be a 542 

time-consuming and iterative process. It requires domain knowledge, experience, and multiple 543 

trial-and-error iterations to find the optimal combination. (ii) Suboptimal performance: without 544 

proper hyperparameter optimization, the performance of XGB may not reach its full potential. 545 

Suboptimal hyperparameter settings can result in a model that underfits or overfits the data, 546 

leading to poor generalization on unseen samples. This can result in lower accuracy, higher bias, 547 
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or higher variance in the model's predictions. By contrast, using an optimization algorithm like 548 

MPA for hyperparameter optimization can help mitigate these disadvantages. MPA and similar 549 

approaches utilize optimization techniques and search algorithms to automatically explore the 550 

hyperparameter space and find the optimal combination of hyperparameters for XGB. This can 551 

lead to improved performance, reduced overfitting, and better generalization on unseen data. 552 

To further strengthen this study, we compared the performance of the MPA algorithm with PSO 553 

in hyperparameter tuning of the XGB algorithm. For each model, twenty independent runs were 554 

performed, and the average of the results was reported. For the PSO and MPA algorithm, the 555 

population size was set to 50, and the maximum number of train epochs was set to 10. Moreover, 556 

the training time of each algorithm is presented in Table 7. As can be seen, the XGB-MPA 557 

model has less training time compared to the XGB-PSO model in all scenarios. Moreover, the 558 

XGB-MPA outperformed XGB-PSO in all experiments. 559 

Table 7. Comparison of the XGB-MPA and XGB-PSO models  560 

Model R2 (Test) RMSE (Test) Training Time (s) 
XGB-MPA1 0.7864 1.1931 57.82 
XGB-PSO1 0.7858 1.1953 70.58 
XGB-MPA2 0.8054 1.1384 87.46 
XGB-PSO2 0.8048 1.1401 89.50 
XGB-MPA3 0.8682 0.9367 93.11 
XGB-PSO3 0.8668 0.9414 98.63 
XGB-MPA4 0.9496 0.5815 96.18 
XGB-PSO4 0.9490 0.5864 108.18 
XGB-MPA5 0.9682 0.4598 120.12 
XGB-PSO5 0.9675 0.4653 125.53 
XGB-MPA6 0.9689 0.4552 121.90 
XGB-PSO6 0.9680 0.4618 135.82 
XGB-MPA7 0.9958 0.1713 148.14 
XGB-PSO7 0.9954 0.1780 149.82 
XGB-MPA8 0.9957 0.1734 145.84 
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XGB-PSO8 0.9955 0.1776 172.64 
 561 

4. Discussion 562 

The development of accurate ET0 prediction models remains a critical challenge in water 563 

resource management, particularly in arid regions like Northern Algeria, where efficient 564 

irrigation scheduling and water infrastructure planning are paramount. While traditional 565 

empirical models have been widely used, they often fall short in capturing the complex 566 

interactions between meteorological variables in arid climates, creating a pressing need for more 567 

sophisticated modeling approaches. This research addresses several gaps in the current literature, 568 

including the limited application of hybrid ML approaches in ET0 modeling, insufficient 569 

validation of modern computational methods in arid regions, and the lack of comprehensive 570 

interpretability in advanced prediction models. The current study, while showcasing the potential 571 

of XGB coupled with the MPA for ET0 estimation in northern Algeria, faces several important 572 

limitations. The temporal scope of our dataset (2000-2010) may not fully capture recent climate 573 

change impacts on ET0 patterns. In our pursuit of building an accurate model, we employed 574 

specific meteorological variables, but overlooked others that might hold significance, such as 575 

wind direction, soil moisture, and albedo. Additionally, the computational intensity of the XGB-576 

MPA hybrid approach, while justified by its improved accuracy, may present challenges for real-577 

time applications or resource-limited settings. The intricate interactions with climatic conditions 578 

and the scarcity of reliable ET0 data affect ET0 modeling in Algeria. In the case of Algeria, 579 

where most sites' meteorological datasets are either completely absent or inaccessible because of 580 

technical difficulties, this becomes important. In this situation, it should be examined further to 581 

ascertain ET0 for those sites that take into account adjacent locations or pooled data. 582 
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The implications of this study extend well beyond the northern Algerian context, offering 583 

valuable insights for ET0 estimation across diverse geographical and climatic conditions. The 584 

model's demonstrated ability to handle multiple input combinations makes it particularly 585 

adaptable to different data availability scenarios - from data-rich environments where all 586 

meteorological variables are available, to data-scarce regions where only basic parameters can be 587 

measured. In arid and semi-arid regions similar to our study area, such as parts of the 588 

Mediterranean basin, Middle East, and North Africa, the model could be directly applicable with 589 

minimal modifications. For regions with different climatic characteristics, such as tropical or 590 

temperate zones, the model's flexible architecture allows for recalibration of the MPA 591 

optimization parameters and adjustment of the XGB hyperparameters to account for local 592 

meteorological patterns. The SHAP-based interpretability approach provides a systematic 593 

framework for understanding variable importance in different climatic contexts, potentially 594 

helping identify region-specific drivers of ET0. This adaptability is particularly relevant for 595 

developing countries facing similar challenges in water resource management, where the trade-596 

off between model complexity and data availability often constrains the application of 597 

sophisticated ET0 estimation techniques. Furthermore, the model's demonstrated improvement in 598 

accuracy with increased input variables suggests it could be particularly valuable in regions 599 

transitioning from basic to more comprehensive meteorological monitoring systems. 600 

Based on our findings and identified limitations, several promising directions for future research 601 

emerge. First, investigating the model's transferability across diverse climatic zones and testing 602 

its performance with different temporal resolutions (hourly, monthly) would enhance its broader 603 

applicability. Second, incorporating advanced data preprocessing techniques, such as wavelet 604 

transformation or empirical mode decomposition, could potentially improve the model's ability 605 
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to capture non-linear patterns in ET0 dynamics. Third, developing an ensemble framework that 606 

combines multiple optimization algorithms could potentially enhance model robustness and 607 

reliability. Fourth, investigating the model's performance under future climate scenarios using 608 

downscaled climate projections would make the approach more valuable for long-term water 609 

resource planning.  610 

 611 

5. Conclusions 612 

This study demonstrates that combining XGB with the Marine Predators Algorithm offers a 613 

powerful and practical solution for estimating daily evapotranspiration, particularly valuable for 614 

regions with limited weather data. Our hybrid model achieved exceptional accuracy (R² = 615 

0.9958, RMSE = 0.1713 mm/day) in northern Algeria, significantly outperforming traditional 616 

approaches. The analysis revealed that maximum daily temperature, solar radiation, and wind 617 

speed were the most influential factors in predicting evapotranspiration, while relative humidity 618 

had less impact than conventionally assumed. The model's ability to maintain high accuracy with 619 

varying levels of input data makes it particularly suitable for developing regions where 620 

comprehensive weather measurements may not be available. Notably, the processing time 621 

improvements over existing methods and the model's consistent performance across different 622 

weather conditions suggest its potential for practical, real-time applications in water resource 623 

management. 624 

While these results are promising, several considerations warrant attention for future applications 625 

and research. Although the model proved highly effective in northern Algeria's semi-arid 626 

climate, its performance in other climatic zones requires further validation. The current 627 
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implementation could benefit from incorporating additional environmental factors such as soil 628 

characteristics and landscape features, particularly for regions with diverse topography. Future 629 

research should focus on testing the model's adaptability across different geographical and 630 

climatic conditions, developing more user-friendly interfaces for practical applications, and 631 

exploring the integration of remote sensing data to enhance coverage in data-scarce regions. 632 

Despite these limitations, our findings suggest that this hybrid approach offers a reliable tool for 633 

irrigation planning and water resource management, particularly valuable for regions facing 634 

water scarcity challenges. The model's success demonstrates the potential of combining 635 

advanced machine learning techniques with optimization algorithms to address real-world water 636 

management challenges. Future research should consider evaluating XGB against other 637 

advanced algorithms such as Random Forest, Support Vector Regression, and Long Short-Term 638 

Memory networks for ET0 estimation. Also, future studies can explore the integration of 639 

automated feature selection techniques with XGB-MPA to develop more efficient yet robust ET0 640 

estimation models for different data availability scenarios. 641 
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