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Abstract
We study an averaging procedure for completely
bounded multipliers on a locally compact quantum
group with respect to a compact quantum subgroup.
As a consequence we show that central approximation
properties of discrete quantum groups are equivalent
to the corresponding approximation properties of their
Drinfeld doubles. This is complemented by a discus-
sion of the averaging of Fourier algebra elements. We
compare the biinvariant Fourier algebra of the Drinfeld
double of a discrete quantum group with the central
Fourier algebra. In the unimodular case these are
naturally identified, but we show by exhibiting a family
of counter-examples that they differ in general.
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1 INTRODUCTION

Approximation properties like amenability, weak amenability, the Haagerup property and the
Haagerup–Kraus approximation property have been studied extensively in the setting of locally
compact quantum groups, see [6] for a survey. In comparison to the case of groups, an inter-
esting new feature in the quantum setting is the interplay between discrete quantum groups,
their Drinfeld doubles, and the associated C∗-tensor categories. In particular, the central versions
of amenability, the Haagerup property, weak amenability and central property (T) for discrete
quantum groups can be recast at the level of C∗-tensor categories [42], thus building a natural
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bridge to the study of subfactors. Central approximation properties, in turn, are key to a range of
fundamental results regarding the analytic structure of discrete quantum groups [18, 21].
In this paper we show that, for all the approximation properties mentioned above, the central

version of the property for a discrete quantum group is equivalent to the corresponding prop-
erty of its Drinfeld double. Special cases of these equivalences were known previously, and our
main point is that they actually hold in complete generality. This yields a succinct conceptual
understanding of central approximation properties, and highlights the key role played by the
Drinfeld double.
We prove in fact a more general result. Namely, for a locally compact quantum group 𝔾 with a

compact quantum subgroup𝕂 ⊆ 𝔾, we show that averaging elements of L∞(𝔾)with respect to left
and right translations by𝕂maps completely boundedmultipliers of𝔾 to𝕂-biinvariant completely
boundedmultipliers of𝔾. The resulting averagingmap is contractive and preserves complete pos-
itivity, the Fourier algebra and other standard properties of multipliers. In the special case that
𝔾 = 𝐷(ℾ) is the Drinfeld double of a discrete quantum group ℾ and 𝕂 = ℾ̂, the 𝕂-biinvariant func-
tion algebras may be identified with the corresponding algebras of central functions on ℾ, and we
show that the same holds for completely bounded multipliers. This yields our result linking the
approximation properties of the Drinfeld double 𝐷(ℾ) with the central approximation properties
of ℾ.
We also discuss a number of related questions. For unimodular discrete quantum groups there

is a well-known averaging procedure sending completely bounded multipliers to central com-
pletely bounded multipliers [6, 32]. We show that this procedure, which is different from the
above averaging with respect to compact quantum subgroups, maps the Fourier algebra to itself.
As a byproduct, we obtain that amenability of the Drinfeld double of a discrete quantum group is
equivalent to its strong amenability, which in turn implies that the discrete quantum group must
be unimodular. Some of these facts seem to be known to experts, but we were unable to locate
precise references in the literature, and so we take the opportunity to use our techniques to give
a self-contained account.
In addition,we study the centre of the Fourier algebra for discrete quantumgroups.Here the sit-

uation is more subtle than for completely bounded multipliers. We show that there is a canonical
inclusion map from the biinvariant Fourier algebra of the Drinfeld double to the central Fourier
algebra, and prove that this map is an isomorphism for unimodular discrete quantum groups.
However,we also show that the biinvariant Fourier algebramay be strictly smaller than the central
Fourier algebra in general. In fact, this happens already for the dual of SU𝑞(2).
Let us explain how the paper is organised. In Section 2, we collect some background mate-

rial and fix our notation. Section 3 contains a brief review of completely bounded multipliers,
and in Section 4 we record the definitions of (strong) amenability, the Haagerup property, weak
amenability and the approximation property in the setting of locally compact quantum groups
and C∗-tensor categories. In Section 5, we construct the averaging map for completely bounded
multipliers of a locally compact quantum group with respect to a closed compact quantum sub-
group. In Section 6, we specialise to the setting of Drinfeld doubles of discrete quantum groups,
and prove our main results concerning approximation properties. Section 7 contains some fur-
ther results on approximation properties for discrete quantum groups and their Drinfeld doubles,
which are related to the underlying discrete quantum group being unimodular.We show that cen-
tral Fourier algebra elements can be approximated by central finitely supported elements in this
case, and that amenability of the Drinfeld double of a discrete quantum group is equivalent to the
discrete quantum group being amenable and unimodular. Finally, in Section 8 we give equiva-
lent characterisations for the biinvariant Fourier algebra of the Drinfeld double to agree with the

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70104 by L

ancaster U
niversity, W

iley O
nline L

ibrary on [11/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 3 of 52

central Fourier algebra of a discrete quantum group. In addition, we show that the centre of the
Fourier algebra of any strongly amenable, non-unimodular, and centrally weakly amenable dis-
crete quantum group is strictly larger than the biinvariant Fourier algebra of its Drinfeld double.
This applies in particular to the dual of SU𝑞(2) for 𝑞 ∈ ]−1, 1[ ⧵ {0}.
We conclude with some general remarks on notation. When is a C∗-algebra we writeM()

for its multiplier algebra. The canonical pairing between a Banach space𝑋 and its dual𝑋∗ will be
denoted via ⟨𝜔, 𝑥⟩ = 𝜔(𝑥) for 𝜔 ∈ 𝑋∗, 𝑥 ∈ 𝑋. Ifℋ is a Hilbert space we write 𝜔𝜉,𝜂 for the vector
functional 𝜔𝜉,𝜂(𝑇) = (𝜉|𝑇𝜂), and abbreviate 𝜔𝜉 = 𝜔𝜉,𝜉 . We write⊙ for the algebraic tensor prod-
uct,⊗ for the tensor product of Hilbert spaces or the minimal tensor product of C∗-algebras, and
M⊗̄N for the spatial tensor product of von Neumann algebrasM,N. We denote by 𝜒 the flip map
for tensor products of algebras.
We would like to thank A. Skalski for several interesting comments on the first version of

this paper.

2 PRELIMINARIES

In this section, we review some basic definitions and facts from the theory of locally compact
quantum groups in the sense of Kustermans and Vaes [33–35, 38].
By definition, a locally compact quantum group 𝔾 is given by a von Neumann algebra L∞(𝔾)

together with a normal unital ⋆-homomorphism Δ𝔾∶ L∞(𝔾) → L∞(𝔾)⊗̄ L∞(𝔾) called comulti-
plication, satisfying (Δ𝔾 ⊗ id)Δ𝔾 = (id⊗Δ𝔾)Δ𝔾, and left, respectively, right Haar integrals 𝜑 and
𝜓. These are normal, semifinite, faithful (n.s.f.) weights on L∞(𝔾) satisfying certain invariance
conditions with respect to Δ𝔾. Note that in general the von Neumann algebra L∞(𝔾) is non-
commutative andwill not be an algebra of functions on ameasure space. Following this notational
convention, the predual of L∞(𝔾) is denoted by L1(𝔾), and the GNS Hilbert space of 𝜑 by L2(𝔾).
We write Λ𝜑 ∶ 𝔑𝜑 → L2(𝔾) for the GNS map, where𝔑𝜑 = {𝑥 ∈ L∞(𝔾) |𝜑(𝑥∗𝑥) < ∞}.
With any locally compact quantum group 𝔾 one can associate the dual locally compact quan-

tum group �̂� in such a way that the correspondence between 𝔾 and �̂� extends Pontryagin duality.
Furthermore, the Hilbert spaces L2(𝔾) and L2(�̂�) are identified in a canonical way.
The (left) Kac–Takesaki operator W𝔾 ∈ L∞(𝔾)⊗̄ L∞(�̂�) is the operator on L2(𝔾) ⊗ L2(𝔾)

defined via

((𝜔 ⊗ id)W𝔾∗)Λ𝜑(𝑥) = Λ𝜑((𝜔 ⊗ id)Δ𝔾(𝑥)) (𝜔 ∈ L1(𝔾), 𝑥 ∈ 𝔑𝜑).

It is unitary and implements the comultiplication via Δ𝔾(𝑥) = W𝔾∗(𝟙 ⊗ 𝑥)W𝔾 for 𝑥 ∈ L∞(𝔾). By
duality we also get the Kac–Takesaki operator for �̂�, which is linked to W𝔾 via W�̂� = 𝜒(W𝔾∗).
Tomita–Takesaki theory yields two groups ofmodular automorphisms (𝜎𝜑𝑡 )𝑡∈ℝ, (𝜎

𝜓
𝑡 )𝑡∈ℝ andmod-

ular conjugations 𝐽𝜑, 𝐽𝜓 associated with the weights 𝜑, 𝜓, respectively. We will also use the
right Kac–Takesaki operator defined by V𝔾 = (𝐽𝜑 ⊗ 𝐽𝜑)W

�̂�(𝐽𝜑 ⊗ 𝐽𝜑) ∈ L∞(�̂�)′⊗̄ L∞(𝔾), where
𝐽𝜑 is the modular conjugation for the dual left Haar integral. The operator V𝔾 implements the
comultiplication via Δ𝔾(𝑥) = V𝔾(𝑥 ⊗ 𝟙)V𝔾∗ for 𝑥 ∈ L∞(𝔾).
The antipode 𝑆𝔾 is a densely defined, typically unbounded, operator on L∞(𝔾) such that

(id⊗𝜔)W𝔾 ∈ Dom(𝑆𝔾) and 𝑆𝔾((id⊗𝜔)W𝔾) = (id⊗𝜔)W𝔾∗ (𝜔 ∈ L1(�̂�)),
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4 of 52 DAWS et al.

and the unitary antipode𝑅𝔾 is a bounded, normal,⋆-preserving, antimultiplicativemap on L∞(𝔾)
satisfying Δ𝔾𝑅𝔾 = 𝜒(𝑅𝔾 ⊗ 𝑅𝔾)Δ𝔾, and given by 𝑅𝔾(𝑥) = 𝐽𝜑𝑥

∗𝐽𝜑 for 𝑥 ∈ L∞(𝔾). These maps are
linked via 𝑆𝔾 = 𝑅𝔾𝜏

𝔾
−𝑖∕2

= 𝜏𝔾
−𝑖∕2

𝑅𝔾, where (𝜏𝔾𝑡 )𝑡∈ℝ is the group of scaling automorphisms ofL
∞(𝔾).

The left and right Haar integrals are unique up to a scalar, and we will choose these scalars such
that 𝜑 = 𝜓◦𝑅𝔾.
We will mainly work with the weak∗-dense C∗-subalgebra C0(𝔾) ⊆ L∞(𝔾). It is defined as the

norm-closure of {(id⊗𝜔)W𝔾 |𝜔 ∈ L1(�̂�)}. After restriction, the comultiplication becomes a non-
degenerate⋆-homomorphismC0(𝔾) → M(C0(𝔾) ⊗ C0(𝔾)). Similarly one definesC0(�̂�), and then
one obtainsW𝔾 ∈ M(C0(𝔾) ⊗ C0(�̂�)). Using the comultiplication of L∞(𝔾), we define a Banach
algebra structure on L1(𝔾) via 𝜔 ⋆ 𝜈 = (𝜔 ⊗ 𝜈)Δ𝔾 for 𝜔, 𝜈 ∈ L1(𝔾). As L∞(𝔾) is the dual of L1(𝔾),
we have a canonical L1(𝔾)-bimodule structure on L∞(𝔾), given by 𝜔 ⋆ 𝑥 = (id⊗𝜔)Δ𝔾(𝑥) and
𝑥 ⋆ 𝜔 = (𝜔 ⊗ id)Δ𝔾(𝑥). Treating L1(𝔾) as the predual of the von Neumann algebra L∞(𝔾) yields
an L∞(𝔾)-bimodule structure on L1(𝔾) defined via 𝑥𝜔 = 𝜔(⋅𝑥), 𝜔𝑥 = 𝜔(𝑥 ⋅) for 𝑥 ∈ L∞(𝔾), 𝜔 ∈

L1(𝔾).
There is also a universal version of C0(𝔾) which we denote by C𝑢

0
(𝔾), see [33, 45]. It

comes together with a comultiplication Δ𝑢
𝔾
∶ C𝑢

0
(𝔾) → M(C𝑢

0
(𝔾) ⊗ C𝑢

0
(𝔾)) and a surjective ⋆-

homomorphism Λ𝔾∶ C𝑢
0
(𝔾) → C0(𝔾) which respects the comultiplications. The Kac–Takesaki

operatorW𝔾 admits a lift to a unitary operator𝕎𝔾 ∈ M(C𝑢
0
(𝔾) ⊗ C0(�̂�)) satisfying (Λ𝔾 ⊗ id)𝕎𝔾 =

W𝔾. Using this operator, we can introduce the half-lifted comultiplication

Δ𝑢,𝑟
𝔾
∶ C0(𝔾) ∋ 𝑥 ↦ 𝕎𝔾∗(𝟙 ⊗ 𝑥)𝕎𝔾 ∈ M(C𝑢0(𝔾) ⊗ C0(𝔾)).

It satisfies (id⊗Λ𝔾)Δ
𝑢
𝔾
= Δ𝑢,𝑟

𝔾
Λ𝔾. Similarly, writing C0(�̂�′) = 𝐽𝜑C0(�̂�)𝐽𝜑, the right Kac–Takesaki

operator V𝔾 ∈ M(C0(�̂�
′) ⊗ C0(𝔾)) admits a lift to a unitary operator

satisfying . Recall from [35, section 4] the opposite quantum group 𝔾op, and
thatW𝔾op = 𝜒(V𝔾∗). It follows that one way to define is as 𝜒(𝕎𝔾op∗). We define

and find that (Λ𝔾 ⊗ id)Δ𝑢
𝔾
= Δ𝑟,𝑢

𝔾
Λ𝔾. Indeed, one could also defineΔ

𝑟,𝑢
𝔾
usingΔ𝑢,𝑟

𝔾op
. We can iterate

these constructions,whichwe illustrate byway of an example.DefineΔ𝑢,𝑟,𝑢
𝔾

= (Δ𝑢,𝑟
𝔾

⊗ id)Δ𝑟,𝑢
𝔾
, and

observe that

Δ𝑢,𝑟,𝑢
𝔾

Λ𝔾 = (Δ𝑢,𝑟
𝔾

⊗ id)Δ𝑟,𝑢
𝔾
Λ𝔾 = (Δ𝑢,𝑟

𝔾
Λ𝔾 ⊗ id)Δ𝑢𝔾 = (id⊗Λ𝔾 ⊗ id)(Δ𝑢𝔾 ⊗ id)Δ𝑢𝔾

= (id⊗Λ𝔾 ⊗ id)(id⊗Δ𝑢𝔾)Δ
𝑢
𝔾 = (id⊗Δ𝑟,𝑢

𝔾
)(id⊗Λ𝔾)Δ

𝑢
𝔾 = (id⊗Δ𝑟,𝑢

𝔾
)Δ𝑢,𝑟

𝔾
Λ𝔾.

As Λ𝔾 is onto, this shows in particular that also Δ
𝑢,𝑟,𝑢
𝔾

= (id⊗Δ𝑟,𝑢
𝔾
)Δ𝑢,𝑟

𝔾
.

Wedefine 𝜆𝔾 ∶ L1(𝔾) → C0(�̂�) by 𝜆𝔾(𝜔) = (𝜔 ⊗ id)W𝔾, and similarly for �̂�. TheFourier algebra
of𝔾 isA(𝔾) = 𝜆�̂�(L

1(�̂�)). One checks that 𝜆�̂� ismultiplicative, and thatA(𝔾) is a dense subalgebra
of C0(�̂�). As 𝜆�̂� is also injective, we can define an operator space structure on A(𝔾) by imposing
the condition that 𝜆�̂� ∶ L1(�̂�) → A(𝔾) is completely isometric.
Wewill also use two larger algebras: the reduced Fourier–Stieltjes algebraB𝑟(𝔾) and theFourier–

Stieltjes algebra B(𝔾) defined via

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70104 by L

ancaster U
niversity, W

iley O
nline L

ibrary on [11/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 5 of 52

Togetherwith the algebra structure ofL∞(𝔾) and thenorms ‖(id⊗𝜔)(W𝔾∗)‖B𝑟(𝔾) = ‖𝜔‖ onB𝑟(𝔾)
and on B(𝔾), both B𝑟(𝔾) and B(𝔾) become Banach algebras. In fact,
both are dual Banach algebras with preduals given byC0(�̂�) andC𝑢0(�̂�), respectively.When speak-
ing about the weak∗-topology on the (reduced) Fourier–Stieltjes algebra we mean the topology
arising this way. Furthermore we note that A(𝔾) ⊆ B𝑟(𝔾) ⊆ B(𝔾) ⊆ M(C0(𝔾)), and that the first
two inclusions are isometric. We will sometimes write 𝜆�̂�(𝜔) = (id⊗𝜔)W𝔾∗ also for 𝜔 ∈ C0(�̂�)

∗.
A locally compact quantum group 𝔾 is called compact if C0(𝔾) is unital, and in this case we

writeC(𝔾) forC0(𝔾). If𝔾 is compact then 𝜑 = 𝜓 is a normal state, theHaar state, often denoted by
ℎ ∈ L1(𝔾). The representation theory of compact quantum groups shares many features with the
one for classical compact groups. In particular, every irreducible unitary representation of a com-
pact quantum group 𝔾 is finite-dimensional, and every unitary representation decomposes into a
direct sum of irreducibles. We write Irr(𝔾) for the set of equivalence classes of irreducible unitary
representations of 𝔾, and for each 𝛼 ∈ Irr(𝔾) let𝑈𝛼 = [𝑈𝛼

𝑖,𝑗
]dim(𝛼)
𝑖,𝑗=1

∈ 𝕄dim(𝛼)(C(𝔾)) be a represen-
tative. There is a unique positive invertiblematrix ρ𝛼 withTr(ρ𝛼) = Tr(ρ−1𝛼 )which intertwines𝑈𝛼

and the double contragradient representation (𝑈𝛼)𝑐𝑐. Let us also recall the Schur orthogonality
relations

ℎ
((

𝑈
𝛽

𝑖,𝑘

)∗
𝑈𝛼
𝑗,𝑙

)
= 𝛿𝛼,𝛽𝛿𝑘,𝑙

(
ρ−1𝛼

)
𝑗,𝑖

Tr(ρ𝛼)
, ℎ

(
𝑈𝛼
𝑖,𝑗

(
𝑈
𝛽

𝑘,𝑙

)∗)
= 𝛿𝛼,𝛽𝛿𝑖,𝑘

(ρ𝛼)𝑙,𝑗

Tr(ρ𝛼)
(2.1)

for 𝛼, 𝛽 ∈ Irr(𝔾), 1 ⩽ 𝑖, 𝑗 ⩽ dim(𝛼), 1 ⩽ 𝑘, 𝑙 ⩽ dim(𝛽). We often write dim𝑞(𝛼) = Tr(ρ𝛼) the quan-
tum dimension of 𝛼. Recall that the collection {𝑈𝛼

𝑖,𝑗
|𝛼 ∈ Irr(𝔾), 1 ⩽ 𝑖, 𝑗 ⩽ dim(𝛼)} forms a basis

for a dense Hopf ∗-subalgebra ofC(𝔾), which we denote by Pol(𝔾). We have that 𝑆(𝑈𝛼
𝑖,𝑗
) = (𝑈𝛼

𝑗,𝑖
)∗.

The matrices ρ𝛼 allow us to define functionals 𝑓𝑧 ∶ Pol(𝔾) → ℂ by

𝑓𝑧(𝑈
𝛼
𝑖,𝑗) = (𝜌𝑧𝛼)𝑖,𝑗 (𝑧 ∈ ℂ).

Then the scaling and modular automorphism groups are given by

𝜎𝑧 = (𝑓𝑖𝑧 ⊗ id⊗ 𝑓𝑖𝑧)Δ
(2), 𝜏𝑧 = (𝑓𝑖𝑧 ⊗ id⊗ 𝑓−𝑖𝑧)Δ

(2) (𝑧 ∈ ℂ).

For 𝛼 ∈ Irr(𝔾), the contragradient representation has matrix [(𝑈𝛼
𝑖,𝑗
)∗]dim(𝛼)

𝑖,𝑗=1
and is similar to the

unitary representation 𝑈𝛼.
We say that ℾ is discretewhen ℾ̂ is compact, and write c0(ℾ) for C0(ℾ) in this case. The represen-

tation theory of ℾ̂ implies that c0(ℾ) is the c0-direct sum of finite-dimensional matrix algebras,
and that 𝓁∞(ℾ) = L∞(ℾ) is the 𝓁∞-direct product. We write c00(ℾ) ⊆ c0(ℾ) for the dense sub-
algebra of finitely supported elements with respect to the direct sum structure. We can write
Wℾ̂ ∈ L∞(ℾ̂)⊗̄𝓁∞(ℾ) explicitly as

Wℾ̂ =
∑

𝛼∈Irr(ℾ̂)

dim(𝛼)∑
𝑖,𝑗=1

𝑈𝛼
𝑖,𝑗 ⊗ 𝑒𝛼𝑖,𝑗, (2.2)

where {𝑒𝛼
𝑖,𝑗
}dim(𝛼)
𝑖,𝑗=1

are the matrix units of the matrix block𝕄dim(𝛼)(ℂ) ⊆ c0(ℾ).
If there is no risk of confusionwewill sometimes omit subscripts and abbreviate, for example,Δ

for Δ𝔾 and Δ̂ for Δ�̂�.
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6 of 52 DAWS et al.

3 COMPLETELY BOUNDEDMULTIPLIERS

In this section, we recall some background onmultipliers of locally compact quantum groups and
C∗-tensor categories. We follow the notation and conventions in [17], and refer to [13, 25, 42] for
more information.
A left centraliser of a locally compact quantum group 𝔾 is linear map 𝑇∶ L1(�̂�) → L1(�̂�) such

that

𝑇(𝜔 ⋆ 𝜔′) = 𝑇(𝜔) ⋆ 𝜔′ (𝜔, 𝜔′ ∈ L1(�̂�)).

We denote by 𝐶𝑙
𝑐𝑏
(L1(�̂�)) the space of completely bounded left centralisers. Together with the

completely bounded norm and composition,𝐶𝑙
𝑐𝑏
(L1(�̂�)) becomes a Banach algebra.We equip this

space with an operator space structure by requiring that the embedding 𝐶𝑙
𝑐𝑏
(L1(�̂�)) ↪ CB(L1(�̂�))

is completely isometric. This turns 𝐶𝑙
𝑐𝑏
(L1(�̂�)) into a completely contractive Banach algebra.

An operator 𝑏 ∈ L∞(𝔾) is said to be a completely bounded (CB) left multiplier if 𝑏 A(𝔾) ⊆ A(𝔾)

and the associated map

Θ𝑙(𝑏)∗ ∶ L1(�̂�) → L1(�̂�) satisfying 𝑏𝜆(𝜔) = 𝜆(Θ𝑙(𝑏)∗(𝜔)) (𝜔 ∈ L1(�̂�))

is completely bounded. As 𝜆 ismultiplicativewe haveΘ𝑙(𝑏)∗ ∈ 𝐶𝑙
𝑐𝑏
(L1(�̂�)) for any 𝑏 ∈ M𝑙

𝑐𝑏
(A(𝔾)).

WewriteΘ𝑙(𝑏) = (Θ𝑙(𝑏)∗)
∗, and denote the space of CB leftmultipliers byM𝑙

𝑐𝑏
(A(𝔾)). Any Fourier

algebra element 𝜆(𝜔) ∈ A(𝔾) is a CB left multiplier, with Θ𝑙(𝜆(𝜔))∗ ∈ CB(L1(�̂�)) being the left
multiplication by 𝜔 and Θ𝑙(𝜆(𝜔)) = (𝜔 ⊗ id)Δ̂. Let us also note thatM𝑙

𝑐𝑏
(A(𝔾)) ⊆ M(C0(𝔾)).

If 𝑇 ∈ 𝐶𝑙
𝑐𝑏
(L1(�̂�)) is a left centraliser then its Banach space dual 𝑇∗ is a normal CB map on

L∞(�̂�)which is a left L1(�̂�)-module homomorphism, that is, 𝑇∗ ∈ L1(�̂�)CB
𝜎(L∞(�̂�)). Then, by [26,

Corollary 4.4], there exists a unique CB left multiplier 𝑏 ∈ M𝑙
𝑐𝑏
(A(𝔾)) satisfying Θ𝑙(𝑏) = 𝑇∗, that

is, Θ𝑙(𝑏)∗ = 𝑇. It follows that the map Θ𝑙(⋅)∗ ∶ M𝑙
𝑐𝑏
(A(𝔾)) → 𝐶𝑙

𝑐𝑏
(L1(�̂�)) is bijective. We define

the operator space structure onM𝑙
𝑐𝑏
(A(𝔾)) so that these spaces become completely isometric.

If 𝑏 ∈ M𝑙
𝑐𝑏
(A(𝔾)) is such that Θ𝑙(𝑏) is completely positive, we say that 𝑏 is a completely positive

(CP) left multiplier. Furthermore, 𝑏 is normalised if Θ𝑙(𝑏) is unital.

Lemma 3.1. Let 𝑎 = 𝜆(𝜔) ∈ A(𝔾) for some 𝜔 ∈ L1(�̂�). Then 𝑎 is a CP multiplier if and only if 𝜔 is
positive, and 𝑎 is normalised if and only if 𝜔(𝟙) = 1.

Proof. We know thatΘ𝑙(𝑎) = (𝜔 ⊗ id)Δ̂ and soΘ𝑙(𝑎)(𝟙) = 𝟙 if and only if𝜔(𝟙) = 1. If𝜔 is positive
then Θ𝑙(𝑎) is CP. Hence, it remains to prove that if Θ𝑙(𝑎) is CP then 𝜔 is positive. By [13, Theo-
rem5.2] there is a positive linear functional𝜇 ∈ C𝑢

0
(�̂�)∗with . TheBanach space

adjointΛ∗
�̂�
∶ C0(�̂�)

∗ → C𝑢
0
(�̂�)∗ is isometric. Let 𝜙 be the composition of L1(�̂�) → C0(�̂�)

∗ withΛ∗
�̂�
,

so 𝜙 is also isometric. We see that

As is norm dense in C𝑢
0
(�̂�), it follows that 𝜙(𝜔) = 𝜇, and so 𝜔 is

positive, as required. □
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 7 of 52

As the inclusion M𝑙
𝑐𝑏
(A(𝔾)) ↪ L∞(𝔾) is contractive, we can consider the restriction of the

Banach space adjoint of this map, giving a map L1(𝔾) → M𝑙
𝑐𝑏
(A(𝔾))∗. Let us define 𝑄𝑙(A(𝔾)) ⊆

M𝑙
𝑐𝑏
(A(𝔾))∗ as the closure of the image of this map. According to [25, Theorem 3.4], the space

𝑄𝑙(A(𝔾)) is a predual ofM𝑙
𝑐𝑏
(A(𝔾)), that is, we have

𝑄𝑙(A(𝔾))∗ ≅ M𝑙
𝑐𝑏
(A(𝔾))

completely isometrically. Whenever we speak about the weak∗-topology on M𝑙
𝑐𝑏
(A(𝔾)) we will

have in mind this particular choice of predual. In this way, M𝑙
𝑐𝑏
(A(𝔾)) becomes a dual Banach

algebra, that is, the multiplication ofM𝑙
𝑐𝑏
(A(𝔾)) is separately weak∗-continuous.

Next we recall the definition ofmultipliers on rigidC∗-tensor categories from the work of Popa-
Vaes [42, section 3]. If 𝐓 is a C∗-category and 𝑋,𝑌 ∈ 𝐓 are objects we write 𝐓(𝑋,𝑌) for the space
of morphisms from 𝑋 to 𝑌. We denote by id𝑋 or id the identity morphism in 𝐓(𝑋,𝑋). By defini-
tion, a C∗-tensor category is a C∗-category 𝐓 together with a bilinear ∗-functor⊗∶ 𝐓 × 𝐓 → 𝐓, a
distinguished object 11 ∈ 𝐓 and unitary natural isomorphisms

11 ⊗ 𝑋 ≅ 𝑋 ≅ 𝑋 ⊗ 11, (𝑋 ⊗ 𝑌) ⊗ 𝑍 ≅ 𝑋 ⊗ (𝑌 ⊗ 𝑍)

satisfying certain compatibility conditions. For simplicity we shall always assume that 𝐓 is strict,
which means that these unitary natural isomorphisms are identities, and that the tensor unit 11
is simple.
We also assume that 𝐓 is rigid. Every rigid C∗-tensor category 𝐓 is semisimple, that is, every

object of 𝐓 is isomorphic to a finite direct sum of simple objects. We write Irr(𝐓) for the set of
isomorphism classes of simple objects in 𝐓, and choose representatives 𝑋𝑖 ∈ 𝐓 for elements 𝑖 =
[𝑋𝑖] ∈ Irr(𝐓).
Let 𝐓 be a rigid C∗-tensor category. By definition, a multiplier on 𝐓 is a family 𝜃 = (𝜃𝑋,𝑌) of

linear maps 𝜃𝑋,𝑌 ∶ 𝐓(𝑋 ⊗ 𝑌,𝑋 ⊗ 𝑌) → 𝐓(𝑋 ⊗ 𝑌,𝑋 ⊗ 𝑌) for 𝑋,𝑌 ∈ 𝐓 such that

𝜃𝑋2,𝑌2(g𝑓ℎ
∗) = g𝜃𝑋1,𝑌1(𝑓)ℎ

∗,

𝜃𝑋2⊗𝑋1,𝑌1⊗𝑌2
(id𝑋2 ⊗ 𝑓 ⊗ id𝑌2) = id𝑋2 ⊗ 𝜃𝑋1,𝑌1(𝑓) ⊗ id𝑌2 ,

for all 𝑋𝑖, 𝑌𝑖 ∈ 𝐓, 𝑓 ∈ 𝐓(𝑋1 ⊗ 𝑌1, 𝑋1 ⊗ 𝑌1) and g , ℎ ∈ 𝐓(𝑋1, 𝑋2) ⊗ 𝐓(𝑌1, 𝑌2) ⊆ 𝐓(𝑋1 ⊗

𝑌1, 𝑋2 ⊗ 𝑌2). A multiplier 𝜃 = (𝜃𝑋,𝑌) on 𝐓 is said to be completely positive (or a CP multi-
plier) if all the maps 𝜃𝑋,𝑌 are completely positive. A multiplier 𝜃 = (𝜃𝑋,𝑌) on 𝐓 is said to be
completely bounded (or a CB multiplier) if all the maps 𝜃𝑋,𝑌 are completely bounded and‖𝜃‖𝑐𝑏 = sup𝑋,𝑌∈𝐓 ‖𝜃𝑋,𝑌‖𝑐𝑏 < ∞.
It is shown in [42, Proposition 3.6] that multipliers on 𝐓 are in canonical bijection with func-

tions Irr(𝐓) → ℂ, and we will identify a multiplier 𝜃 = (𝜃𝑋,𝑌) with its associated function 𝜃 =

(𝜃(𝑘))𝑘∈Irr(𝐓). Note that we have ‖(𝜃(𝑘))𝑘∈Irr(𝐓)‖∞ ⩽ ‖𝜃‖𝑐𝑏.
We write M𝑐𝑏(𝐓) for the space of CB multipliers on 𝐓. Via composition of maps and the CB

norm this becomes naturally a Banach algebra, such that the product onM𝑐𝑏(𝐓) corresponds to
pointwise multiplication of functions on Irr(𝐓). In fact,M𝑐𝑏(𝐓) is a dual Banach algebra, whose
predual 𝑄(𝐓) can be constructed using the tube algebra of 𝐓, see [2, Corollary 5.3].
A standard example of a rigid C∗-tensor category is the category 𝐓 = Rep(𝔾) of finite dimen-

sional unitary representations of a compact quantum group𝔾. For a discrete quantum group ℾ we
shall write 𝖢𝗈𝗋𝖾𝗉(ℾ) = Rep(ℾ̂). Such C∗-tensor categories will be the only ones of interest to us in
this paper.
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8 of 52 DAWS et al.

4 APPROXIMATION PROPERTIES

In this section, we review the definition of various approximation properties in the theory of
locally compact quantum groups and rigid C∗-tensor categories.
We begin with the case of locally compact quantum groups, compare [5, 6, 15, 17].

Definition 4.1. Let 𝔾 be a locally compact quantum group. Then we say that 𝔾

∙ is strongly amenable if there exists a bounded approximate identity of A(𝔾) consisting of CP
multipliers of 𝔾;

∙ has the Haagerup property if there exists a bounded approximate identity of C0(𝔾) which
consists of CP multipliers of 𝔾;

∙ is weakly amenable if there exists a left approximate identity (𝑒𝑖)𝑖∈𝐼 of A(𝔾) satisfying
lim sup𝑖∈𝐼 ‖𝑒𝑖‖𝑐𝑏 < ∞. In this case, the smallest𝑀 such that we can choose ‖𝑒𝑖‖𝑐𝑏 ⩽ 𝑀 for all
𝑖 ∈ 𝐼 is the Cowling–Haagerup constant of 𝔾, denoted Λ𝑐𝑏(𝔾);

∙ has the approximation property if there exists a net (𝑒𝑖)𝑖∈𝐼 in A(𝔾) which converges to 𝟙 in the
weak∗ topology ofM𝑙

𝑐𝑏
(A(𝔾)).

While the definitions of theHaagerup property, weak amenability and the approximation prop-
erty for 𝔾 in Definition 4.1 are standard, this is not quite the case for strong amenability. Our
terminology here follows [19, 48]. Usually, strong amenability of 𝔾 is phrased in terms of the dual,
by equivalently saying that �̂� is coamenable.
A number of equivalent characterisations of coamenability can be found in [5]. In particular,

conditions (6)–(8) in [5, Theorem 3.1] say that �̂� is coamenable if and only if L1(�̂�) ≅ A(𝔾) has a
bounded (left, right, or two-sided) approximate identity. An examination of the proof (in particu-
lar, that condition (5) implies conditions (6)–(8)) shows that when �̂� is coamenable, the Banach
algebra L1(�̂�) has a bounded (two-sided) approximate identity consisting of states; compare also
[24, Theorem 2]. That is,A(𝔾) has a bounded approximate identity consisting of CPmultipliers. It
follows that our definition of strong amenability is compatible with [5, Definition 3.1]. As we can
in fact choose the approximate identity to consist of states the associated multipliers will be nor-
malised. Therefore, we could equivalently strengthen the CP condition in the definition of strong
amenability to UCP.
Let us add that amenability of 𝔾 is defined in terms of the existence of an invariant mean on

L∞(𝔾), see Definition 7.6. This is an a priori weaker notion than strong amenability, and the two
concepts are known to be equivalent only in special cases, compare [6, 48].
For equivalent characterisations of the Haagerup property see [15, Theorem 6.5]; however

be aware that some equivalent conditions in this reference may require a second countabil-
ity assumption.
In the setting of discrete quantum groups, one also considers central approximation properties.

We recall that a multiplier 𝑎 ∈ M𝑙
𝑐𝑏
(A(𝔾)) ⊆ L∞(𝔾) is called central if it is contained in the centre

ofM𝑙
𝑐𝑏
(A(𝔾)), or equivalently, in the centre of L∞(𝔾).

Definition 4.2. Let ℾ be a discrete quantum group. Then we say that ℾ

∙ is centrally strongly amenable if there is a net (𝑒𝑖)𝑖∈𝐼 consisting of finitely supported central CP
multipliers of ℾ converging to 𝟙 pointwise;

∙ has the central Haagerup property if there exists a bounded approximate identity of c0(ℾ)which
consists of central CP multipliers of ℾ;
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 9 of 52

∙ is centrally weakly amenable if there exists a net (𝑒𝑖)𝑖∈𝐼 of finitely supported central multipliers
converging to 𝟙 pointwise and satisfying lim sup𝑖∈𝐼 ‖𝑒𝑖‖𝑐𝑏 < ∞. In this case, the smallest 𝑀
such that we can choose ‖𝑒𝑖‖𝑐𝑏 ⩽ 𝑀 for all 𝑖 ∈ 𝐼 is the central Cowling–Haagerup constant of ℾ,
denoted Λ𝑐𝑏(ℾ);

∙ has the central approximation property if there exists a net (𝑒𝑖)𝑖∈𝐼 of finitely supported central
multipliers which converges to 𝟙 in the weak∗ topology ofM𝑙

𝑐𝑏
(A(𝔾)).

Note that c00(ℾ) ⊆ A(ℾ) is a dense subspace for the Fourier algebra norm. It follows that a
bounded approximate identity of A(ℾ) is the same thing as a bounded net (𝑒𝑖)𝑖∈𝐼 in A(ℾ) con-
verging to 𝟙 pointwise. If ℾ is strongly amenable then there is such a net which consists of finitely
supported CPmultipliers, as can be seen by suitably approximating the associated states in L1(�̂�).
Thus, central strong amenability is a natural central version of our definition of strong amenabil-
ity. However, we do not knowwhether the a prioriweaker requirement of existence of a net (𝑒𝑖)𝑖∈𝐼
of CP multipliers in the centre of A(ℾ) converging to 𝟙 pointwise is equivalent to central strong
amenability; though this is true when ℾ is unimodular, see Proposition 7.4.
Finally, let us review the corresponding notions for rigid C∗-tensor categories [17, 42].

Definition 4.3. Let 𝐓 be a rigid C∗-tensor category. Then 𝐓

∙ is amenable if there exists a net (𝜑𝑖)𝑖∈𝐼 of finitely supported CP multipliers of 𝐓 converging to 𝟙
pointwise;

∙ has the Haagerup property if there exists a net of CP multipliers (𝜑𝑖)𝑖∈𝐼 of 𝐓 converging to 𝟙

pointwise such that 𝜑𝑖 ∈ c0(Irr(𝐓)) for all 𝑖 ∈ 𝐼;
∙ isweakly amenable if there exists a net of finitely supported CBmultipliers (𝜑𝑖)𝑖∈𝐼 of 𝐓 converg-
ing to 𝟙 pointwise such that lim sup𝑖∈𝐼 ‖𝜑𝑖‖𝑐𝑏 < ∞. In this case, the smallest constant𝑀 such
that we can choose ‖𝜑𝑖‖𝑐𝑏 ⩽ 𝑀 for all 𝑖 ∈ 𝐼 is the Cowling–Haagerup constant of 𝐓, denoted
Λ𝑐𝑏(𝐓);

∙ has the approximation property if there exists a net of finitely supported CB multipliers of 𝐓
converging to 𝟙 in the weak*-topology ofM𝑐𝑏(𝐓).

If ℾ is a discrete quantum group then central multipliers for ℾ and categorical multipliers for
𝖢𝗈𝗋𝖾𝗉(ℾ) can both be viewed as functions on Irr(ℾ̂) = Irr(𝖢𝗈𝗋𝖾𝗉(ℾ)). It turns out that, in this
way, the space of central CB-multipliers of ℾ identifies isometrically with the space of CB mul-
tipliers of 𝖢𝗈𝗋𝖾𝗉(ℾ). Moreover, the weak∗-topologies agree, and this identification restricts to a
bijection between the corresponding CP-multipliers [42, Proposition 6.1; 17, Lemma 8.6]. By defi-
nition, finite support, being c0 and pointwise convergence of multipliers have the same meaning
in either case.
As a consequence, the categorical approximation properties for theC∗-tensor category𝖢𝗈𝗋𝖾𝗉(ℾ)

in Definition 4.3 are equivalent to the corresponding central approximation properties for ℾ in
Definition 4.2.

5 THE AVERAGING CONSTRUCTION

In this section, we discuss the averaging construction for multipliers on a locally compact quan-
tum group with respect to a compact quantum subgroup. Let us note that averaging with respect
to compact quantum subgroups has been widely used previously in different contexts, most
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10 of 52 DAWS et al.

notably in the study of quantum homogeneous spaces and compact quantum hypergroups, see,
for instance, [8, 11].
Let 𝔾 be a locally compact quantum group and let 𝕂 ⊆ 𝔾 be a compact quantum subgroup [16,

section 6.1]. Thismeans that there is a non-degenerate⋆-homomorphism𝜋∶ C𝑢
0
(𝔾) → C𝑢(𝕂)

Λ𝕂
���→

C(𝕂), compatible with comultiplications, such that the dual non-degenerate ⋆-homomorphism
c0(̂𝕂) → M(C𝑢

0
(�̂�)) drops to a normal injective unital ⋆-homomorphism 𝜋∶ 𝓁∞(̂𝕂) → L∞(�̂�).

The morphisms 𝜋 and 𝜋 can also be encoded at the level of the Kac–Takesaki operators, see,
for instance, [37]. If 𝕎𝔾 ∈ M(C𝑢

0
(𝔾) ⊗ C0(�̂�)) is the half-universal lift of W𝔾 then we obtain a

bicharacter (𝜋 ⊗ id)(𝕎𝔾) ∈ M(C(𝕂) ⊗ C0(�̂�)) and a left action 𝜆𝜋 ∶ C0(𝔾) → M(C(𝕂) ⊗ C0(𝔾))

given by
𝜆𝜋(𝑎) = (𝜋 ⊗ id)(𝕎𝔾)∗(𝟙 ⊗ 𝑎)(𝜋 ⊗ id)(𝕎𝔾).

This is the restriction, to 𝕂, of the left translation action of 𝔾 on itself, and extends to an action
L∞(𝔾) → L∞(𝕂)⊗̄ L∞(𝔾) on the level of von Neumann algebras. In a similar way, using the
right Kac–Takesaki operator, one obtains a right action 𝜌𝜋 ∶ C0(𝔾) → M(C0(𝔾) ⊗ C(𝕂)) and the
corresponding normal extension L∞(𝔾) → L∞(𝔾)⊗̄ L∞(𝕂).
Combining 𝜆𝜋 and𝜌𝜋 with theHaar stateℎ ofL∞(𝕂)wedefine the averagingmapΞ∶ L∞(𝔾) →

L∞(𝔾) by
Ξ = (ℎ ⊗ id⊗ ℎ)(id⊗ 𝜌𝜋)𝜆𝜋 = (ℎ ⊗ id⊗ ℎ)(𝜆𝜋 ⊗ id)𝜌𝜋. (5.1)

Clearly, Ξ is a normal unital contractive CP map.
This construction behaves well on the level of C∗-algebras. For the following, recall from

Section 2 the maps Δ𝑟,𝑢, Δ𝑢,𝑟 and their iterated counterparts.

Lemma 5.1. The averaging map Ξ restricts to a contractive CP map C0(𝔾) → C0(𝔾) such that

Ξ(𝑎) = (ℎ𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎) (𝑎 ∈ C0(𝔾)). (5.2)

It also restricts to a strictly continuous unital CP map M(C0(𝔾)) → M(C0(𝔾)), given by the
same formula.

Proof. For 𝑎 ∈ C0(𝔾) we have

𝜆𝜋(𝑎) = (𝜋 ⊗ id)(𝕎𝔾)∗(𝟙 ⊗ 𝑎)(𝜋 ⊗ id)(𝕎𝔾)

= (𝜋 ⊗ id)(𝕎𝔾∗(𝟙 ⊗ 𝑎)𝕎𝔾) = (𝜋 ⊗ id)Δ𝑢,𝑟(𝑎).

Similarly, 𝜌𝜋(𝑎) = (id⊗𝜋)Δ𝑟,𝑢(𝑎). Thus, for 𝑎 ∈ C0(𝔾),

Ξ(𝑎) = (ℎ ⊗ id⊗ ℎ)((𝜋 ⊗ id)Δ𝑢,𝑟 ⊗ id)(id⊗𝜋)Δ𝑟,𝑢(𝑎) = (ℎ𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎),

as claimed.
From [33, Proposition 6.1], we know that (Δ𝑢 ⊗ id)(𝕎𝔾) = 𝕎𝔾

13
𝕎𝔾

23
. Thus

(Δ𝑢,𝑟 ⊗ id)(W𝔾) = (Δ𝑢,𝑟Λ𝔾 ⊗ id)(𝕎𝔾) = (id⊗Λ𝔾 ⊗ id)(Δ𝑢 ⊗ id)(𝕎𝔾)

= (id⊗Λ𝔾 ⊗ id)(𝕎𝔾
13𝕎

𝔾
23) = 𝕎𝔾

13W
𝔾
23.
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 11 of 52

Hence, given 𝑎 = (id⊗𝜔)(W𝔾∗) ∈ A(𝔾) ⊆ C0(𝔾) for some 𝜔 ∈ L1(�̂�), we see that

(ℎ𝜋 ⊗ id)Δ𝑢,𝑟(𝑎) = (ℎ𝜋 ⊗ id⊗𝜔)(W𝔾∗
23 𝕎

𝔾∗
13 ) = (id⊗𝜔)

(
W𝔾∗(1 ⊗ (ℎ𝜋 ⊗ id)(𝕎𝔾∗))

)
.

This equals (id⊗ 𝑏𝜔)(W𝔾∗) ∈ A(𝔾) ⊆ C0(𝔾) for 𝑏 = (ℎ𝜋 ⊗ id)𝕎𝔾∗ ∈ M(C0(�̂�)). By density, we
conclude that (ℎ𝜋 ⊗ id)Δ𝑢,𝑟 maps C0(�̂�) to itself.
Analogously, (Δ𝑟,𝑢 ⊗ id)(W𝔾) = W𝔾

13
𝕎𝔾

23
, and so

(id⊗ ℎ𝜋)Δ𝑟,𝑢(𝑎) = (id⊗ ℎ𝜋 ⊗ 𝜔)(𝕎𝔾∗
23 W

𝔾∗
13 ) = (id⊗𝜔𝑏)(W𝔾∗) ∈ A(𝔾),

so also (id⊗ ℎ𝜋)Δ𝑟,𝑢mapsC0(�̂�) to itself. By composition,Ξ(𝑎) ∈ A(𝔾) andΞmapsC0(�̂�) to itself.
By [33, Proposition 6.1], we know thatΔ𝑢 is a non-degenerate ∗-homomorphism, and hence the

same is true ofΔ𝑢,𝑟,𝑢. As𝜋 is non-degenerate, it follows that (𝜋 ⊗ id⊗𝜋)Δ𝑢,𝑟,𝑢 is non-degenerate,
hence strictly continuous. The strict extension toM(C0(𝔾)) hence agrees with (id⊗ 𝜌𝜋)𝜆𝜋 when
restricted from L∞(𝔾) toM(C0(𝔾)). As ℎ is strictly continuous, and slice maps are strictly contin-
uous, [36, Proposition 8.3], it follows that Ξ∶ C0(𝔾) → C0(𝔾) is strictly continuous, and again, the
strict extension toM(C0(𝔾)) agrees with the restriction of Ξ∶ L∞(𝔾) → L∞(𝔾). □

Remark 5.2. The structure of this proof shows that we could analogously define one-sided aver-
aging maps Ξ𝑙 ∶ L∞(𝔾) → L∞(𝔾), Ξ𝑙(𝑎) = (ℎ𝜋 ⊗ id)Δ𝑢,𝑟(𝑎) and Ξ𝑟 ∶ L∞(𝔾) → L∞(𝔾), Ξ𝑟(𝑎) =

(id⊗ ℎ𝜋)Δ𝑟,𝑢(𝑎). These maps Ξ𝑙, Ξ𝑟 are both contractive, CP and map C0(𝔾) to itself.

From now on we will freely view Ξ as an endomorphism of L∞(𝔾),M(C0(𝔾)) or C0(𝔾), but
for the sake of clarity we shall sometimes indicate which version we are using. We remark that
the proof of Lemma 5.1 shows that Ξ maps A(𝔾) to itself; see Lemma 5.5 for a different way to
verify this.
Let us write C0(𝕂∖𝔾∕𝕂) ⊆ C0(𝔾) for the image of C0(𝔾) under Ξ.

Lemma 5.3. The following hold.

∙ C0(𝕂∖𝔾∕𝕂) is a C∗-subalgebra of C0(𝔾) and

C0(𝕂∖𝔾∕𝕂) = {𝑎 ∈ C0(𝔾) ∣ (𝜋 ⊗ id⊗𝜋)Δ𝑢,𝑟,𝑢(𝑎) = 𝟙 ⊗ 𝑎 ⊗ 𝟙}

= {𝑎 ∈ C0(𝔾) ∣ (𝜋 ⊗ id)Δ𝑢,𝑟(𝑎) = 𝟙 ⊗ 𝑎, (id⊗𝜋)Δ𝑟,𝑢(𝑎) = 𝑎 ⊗ 𝟙}.

∙ The map Ξ∶ C0(𝔾) → C0(𝔾) is a conditional expectation onto C0(𝕂∖𝔾∕𝕂).

Proof. Let 𝑎 ∈ C0(𝔾) so that Ξ(𝑎) ∈ C0(𝕂∖𝔾∕𝕂). Then

(𝜋 ⊗ id)Δ𝑢,𝑟(Ξ(𝑎)) = (𝜋 ⊗ id)Δ𝑢,𝑟((ℎ𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎))

= (ℎ𝜋 ⊗ 𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑢,𝑟,𝑢(𝑎) = ((ℎ𝜋 ⊗ 𝜋)Δ𝑢 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎)

= ((ℎ ⊗ id)Δ𝕂𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎)

= 𝟙 ⊗ (ℎ𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎) = 𝟙 ⊗ Ξ(𝑎).
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12 of 52 DAWS et al.

An entirely analogous calculation shows that (id⊗𝜋)Δ𝑟,𝑢(Ξ(𝑎)) = Ξ(𝑎) ⊗ 𝟙. Conversely, let 𝑎 ∈

C0(𝔾) be such that (𝜋 ⊗ id)Δ𝑢,𝑟(𝑎) = 𝟙 ⊗ 𝑎 and (id⊗𝜋)Δ𝑟,𝑢(𝑎) = 𝑎 ⊗ 𝟙. Then

(𝜋 ⊗ id⊗𝜋)Δ𝑢,𝑟,𝑢(𝑎) = ((𝜋 ⊗ id)Δ𝑢,𝑟 ⊗ id)((id⊗𝜋)Δ𝑟,𝑢(𝑎)) = ((𝜋 ⊗ id)Δ𝑢,𝑟 ⊗ id)(𝑎 ⊗ 𝟙)

= 𝟙 ⊗ 𝑎 ⊗ 𝟙.

Now suppose that 𝑎 ∈ C0(𝔾) with (𝜋 ⊗ id⊗𝜋)Δ𝑢,𝑟,𝑢(𝑎) = 𝟙 ⊗ 𝑎 ⊗ 𝟙. Then

𝑎 = (ℎ𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎) = Ξ(𝑎).

We have shown the stated forms for elements of C0(𝕂∖𝔾∕𝕂). It follows easily that C0(𝕂∖𝔾∕𝕂) is
a C∗-subalgebra.
It is clear from construction that Ξ is a contraction. For 𝑎 ∈ C0(𝕂∖𝔾∕𝕂) we obtain, using the

above obtained description,

Ξ(𝑎) = (ℎ𝜋 ⊗ id⊗ ℎ𝜋)Δ𝑢,𝑟,𝑢(𝑎) = (ℎ ⊗ id⊗ ℎ)(𝟙 ⊗ 𝑎 ⊗ 𝟙) = 𝑎.

Hence, Ξ is a contractive projection. From Tomiyama’s theorem, [7, Theorem 1.5.10], it follows
that Ξ is a conditional expectation. □

Remark 5.4. We could analogously define C0(𝕂∖𝔾) to be the image of (ℎ𝜋 ⊗ id)Δ𝑢,𝑟, and then the
same argument shows that

C0(𝕂∖𝔾) = {𝑎 ∈ C0(𝔾) | (𝜋 ⊗ id)Δ𝑢,𝑟(𝑎) = 𝟙 ⊗ 𝑎}.

Similarly, denote by C0(𝔾∕𝕂) the image of (id⊗ ℎ𝜋)Δ𝑟,𝑢, and then

C0(𝔾∕𝕂) = {𝑎 ∈ C0(𝔾) | (id⊗𝜋)Δ𝑟,𝑢(𝑎) = 𝑎 ⊗ 𝟙}.

Hence, we have shown that C0(𝕂∖𝔾∕𝕂) = C0(𝕂∖𝔾) ∩ C0(𝔾∕𝕂).

We now discuss some properties of slicing with functionals defined at the universal level. Given
𝜔 ∈ C𝑢

0
(𝔾)∗ and 𝑎 ∈ M(C0(𝔾)) we write

𝜔 ⋆ 𝑎 = (id⊗𝜔)Δ𝑟,𝑢(𝑎), 𝑎 ⋆ 𝜔 = (𝜔 ⊗ id)Δ𝑢,𝑟(𝑎).

A priori both 𝜔 ⋆ 𝑎 and 𝑎 ⋆ 𝜔 belong to the multiplier algebra M(C0(𝔾)), but as shown in
Lemma 5.5, we have in fact 𝜔 ⋆ 𝑎, 𝑎 ⋆ 𝜔 ∈ C0(𝔾) for any 𝑎 ∈ C0(𝔾). These operations turn C0(𝔾)
andM(C0(𝔾)) into a bimodule over C𝑢0(𝔾)

∗.
By taking the Banach space dual of the map 𝜋∶ C𝑢

0
(𝔾) → C(𝕂), we obtain a contractive alge-

bra homomorphism 𝜋∗ ∶ C(𝕂)∗ → C𝑢
0
(𝔾)∗, with respect to the convolution product. In particular,

𝜋∗(ℎ) is an idempotent state in C𝑢
0
(𝔾)∗. Notice that the averaging map Ξ can be written as

Ξ(𝑎) = 𝜋∗(ℎ) ⋆ 𝑎 ⋆ 𝜋∗(ℎ) for 𝑎 ∈ M(C0(𝔾)).
It is straightforward to check thatA(𝔾) andC0(𝔾) are contractive left and rightC𝑢0(𝔾)

∗-modules,
compare [17, Proposition 4.5], a result we now extend to the Fourier—Stieltjes algebras as defined
in Section 2. As preparation, notice that the Banach space dual map Λ∗

𝔾
∶ C0(𝔾)

∗ → C𝑢
0
(𝔾)∗ is an
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 13 of 52

isometric algebra homomorphism because Λ𝔾 is a quotient map which intertwines the coprod-
ucts. Also recall that the canonical map L1(𝔾) → C0(𝔾)

∗ is an isometric algebra homomorphism
which identifies L1(𝔾) as an ideal in C0(𝔾)

∗, see the discussion after [34, Proposition 8.3]. The
composition of these maps gives a canonical isometric homomorphism L1(𝔾) → C𝑢

0
(𝔾)∗, whose

image is again an ideal, see, for example, [12, Proposition 8.3].

Lemma 5.5. The following hold.

(1) Let 𝑎 ∈ A(𝔾) and 𝜔 ∈ C𝑢
0
(𝔾)∗. Then 𝑎 ⋆ 𝜔 ∈ A(𝔾) and ‖𝑎 ⋆ 𝜔‖A(𝔾) ⩽ ‖𝑎‖A(𝔾)‖𝜔‖. Similarly,

𝜔 ⋆ 𝑎 ∈ A(𝔾) and ‖𝜔 ⋆ 𝑎‖A(𝔾) ⩽ ‖𝑎‖A(𝔾)‖𝜔‖.
(2) Let 𝑏 ∈ B𝑟(𝔾) and 𝜔 ∈ C𝑢

0
(𝔾)∗. Then 𝑏 ⋆ 𝜔 ∈ B𝑟(𝔾) and ‖𝑏 ⋆ 𝜔‖B𝑟(𝔾) ⩽ ‖𝑏‖B𝑟(𝔾)‖𝜔‖. Simi-

larly, 𝜔 ⋆ 𝑏 ∈ B𝑟(𝔾) and ‖𝜔 ⋆ 𝑏‖B𝑟(𝔾) ⩽ ‖𝑏‖B𝑟(𝔾)‖𝜔‖.
(3) Let 𝑏 ∈ B(𝔾) and 𝜔 ∈ C𝑢

0
(𝔾)∗. Then 𝑏 ⋆ 𝜔 ∈ B(𝔾) and ‖𝑏 ⋆ 𝜔‖B(𝔾) ⩽ ‖𝑏‖B(𝔾)‖𝜔‖. Similarly,

𝜔 ⋆ 𝑏 ∈ B(𝔾) and ‖𝜔 ⋆ 𝑏‖B(𝔾) ⩽ ‖𝑏‖B(𝔾)‖𝜔‖.
(4) Let 𝑐 ∈ C0(𝔾) and𝜔 ∈ C𝑢

0
(𝔾)∗. Then 𝑐 ⋆ 𝜔 ∈ C0(𝔾) and ‖𝑐 ⋆ 𝜔‖ ⩽ ‖𝑐‖‖𝜔‖. Similarly,𝜔 ⋆ 𝑐 ∈

C0(𝔾) and ‖𝜔 ⋆ 𝑐‖ ⩽ ‖𝑐‖‖𝜔‖.
Proof. (2)Write 𝑏 = 𝜆(𝜔) ∈ B𝑟(𝔾) for 𝜔 ∈ C0(�̂�)

∗. Then

(5.3)

as required. We also immediately get the bound on the B𝑟(𝔾)-norm of 𝑏 ⋆ 𝜔:

Similarly, we get

(5.4)

and ‖𝜔 ⋆ 𝑏‖B𝑟(𝔾) ⩽ ‖𝜔‖‖𝑏‖B𝑟(𝔾). This proves the second point.
(1) If 𝑎 = 𝜆(𝜔) for 𝜔 ∈ L1(�̂�) ⊆ C0(�̂�)

∗, then as and are
normal functionals, the above reasoning proves also the first point.

(3) This is completely analogous: if with 𝜔 ∈ C𝑢
0
(�̂�)∗, then

(5.5)

and ‖𝑏 ⋆ 𝜔‖B(𝔾) ⩽ ‖𝑏‖B(𝔾)‖𝜔‖. The argument for 𝜔 ⋆ 𝑏 is similar.
(4) As A(𝔾) ⊆ C0(𝔾) is norm dense, we can approximate 𝑐 by a sequence (𝑎𝑛)𝑛∈ℕ of elements

from the Fourier algebra A(𝔾). As the map C0(𝔾) ∋ 𝑐′ ↦ 𝑐′ ⋆ 𝜔 ∈ M(C0(𝔾)) is continuous,
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14 of 52 DAWS et al.

we obtain

𝑐 ⋆ 𝜔 = ( lim
𝑛→∞

𝑎𝑛) ⋆ 𝜔 = lim
𝑛→∞

𝑎𝑛 ⋆ 𝜔 ∈ A(𝔾) = C0(𝔾).

The norm estimate follows as ‖𝑐 ⋆ 𝜔‖ = ‖(id⊗𝜔)Δ𝑟,𝑢(𝑐)‖ ⩽ ‖𝜔‖‖Δ𝑟,𝑢(𝑐)‖ ⩽ ‖𝜔‖‖𝑐‖. Again,
the argument for 𝜔 ⋆ 𝑐 is entirely analogous. □

Corollary 5.6. The averaging map Ξ restricts to contractive linear maps A(𝔾) → A(𝔾),
B𝑟(𝔾) → B𝑟(𝔾) and B(𝔾) → B(𝔾). Furthermore, the maps B𝑟(𝔾) → B𝑟(𝔾) and B(𝔾) → B(𝔾) are
weak∗-weak∗-continuous.

Proof. As Ξ(𝑎) = 𝜋∗(ℎ) ⋆ 𝑎 ⋆ 𝜋∗(ℎ), and ‖𝜋∗(ℎ)‖ = ‖ℎ‖ = 1, this follows immediately from
Lemma 5.5 together with Equations (5.3), (5.4) and (5.5) whose form shows weak∗-weak∗-
continuity of Ξ. □

We write A(𝕂∖𝔾∕𝕂) ⊆ A(𝔾) (resp., B𝑟(𝕂∖𝔾∕𝕂) ⊆ B𝑟(𝔾) and B(𝕂∖𝔾∕𝕂) ⊆ B(𝔾)) for the image
of A(𝔾) (resp., B𝑟(𝔾), B(𝔾)) under Ξ.
AsA(𝔾) ≅ L1(�̂�), the averagingmap induces amapΞ1 ∶ L1(�̂�) → L1(�̂�), and taking theBanach

space adjoint, a normal map Ξ∞∶ L∞(�̂�) → L∞(�̂�). We now explore what these maps are. Let
𝑝𝑒 ∈ 𝓁∞(̂𝕂) denote the central projection onto the matrix factor corresponding to the trivial
representation 𝑒 ∈ Irr(𝕂).

Lemma 5.7. The maps Ξ1 ∶ L1(�̂�) → L1(�̂�) and Ξ∞∶ L∞(�̂�) → L∞(�̂�) are given by

Ξ1(𝜔) = 𝜔(𝜋(𝑝𝑒) ⋅ 𝜋(𝑝𝑒)) (𝜔 ∈ L1(�̂�)), Ξ∞(𝑥) = 𝜋(𝑝𝑒)𝑥𝜋(𝑝𝑒) (𝑥 ∈ L∞(�̂�)),

respectively.

Proof. As in the proof of Corollary 5.6, we know that for 𝑎 ∈ A(𝔾) we have that Ξ(𝑎) = 𝜋∗(ℎ) ⋆

𝑎 ⋆ 𝜋∗(ℎ). Then, given 𝑎 = 𝜆(𝜔) for some 𝜔 ∈ L1(�̂�), by the proof of Lemma 5.5 we know that

As (𝜋 ⊗ id)(𝕎𝔾) = (id⊗𝜋)(W𝕂), equivalently, , it follows that
. Hence,

Ξ(𝜆(𝜔)) = Ξ(𝑎) = 𝜆(𝜔(𝜋(𝑝𝑒) ⋅ 𝜋(𝑝𝑒))),

and the stated formula for Ξ1 follows. The formula for Ξ∞ follows by direct calculation. □

Let us next discuss the compatibility of Ξ with CB multipliers. As usual, given 𝜔 ∈ C𝑢
0
(𝔾)∗ we

denote by 𝜔 the functional defined by 𝜔(𝑥) = 𝜔(𝑥∗) for 𝑥 ∈ C𝑢
0
(𝔾). Recall from [33, section 7.9]

that the scaling automorphism group and the (unitary) antipode admit lifts to the universal level
C𝑢
0
(𝔾), which we denote by (𝜏𝑢𝑡 )𝑡∈ℝ, 𝑅𝑢, and 𝑆𝑢, respectively. In the same way as at the reduced

level, they are connected via the formula 𝑆𝑢 = 𝑅𝑢𝜏
𝑢
−𝑖∕2

.
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 15 of 52

Whenever𝜔 ∈ C𝑢
0
(𝔾)∗ is such that themap𝐷(𝑆𝑢) ∋ 𝑎 ↦ ⟨𝜔, 𝑆𝑢(𝑎)∗⟩ ∈ ℂ extends to a bounded

functional onC𝑢
0
(𝔾), we denote this extension by𝜔♯. This is in agreementwith the usual definition

of L1
♯
(𝔾) ⊆ L1(𝔾), see [35, Definition 2.3].

Lemma 5.8. We have 𝜋∗(ℎ) = 𝜋∗(ℎ) = 𝜋∗(ℎ)♯.

Proof. The first equality is immediate because 𝜋 is a ⋆-homomorphism and ℎ is a state. For the
second, recall that 𝜋 commutes with the antipode, see [37, Proposition 3.10], and ℎ𝑆𝕂 = ℎ on
𝐷(𝑆𝕂). □

We wish to study convolution of multipliers by elements of C𝑢
0
(𝔾)∗. To avoid developing some

theory around applying completely bounded maps to multiplier algebras, we shall use von Neu-
mann algebra techniques. By [40, Proposition 3.12.3], for example, for a C∗-algebra  contained
in a vonNeumann algebraMwe can identifyM()with {𝑥 ∈ M |𝑥𝑎, 𝑎𝑥 ∈  (𝑎 ∈ )}. In partic-
ular, we will view the C∗-algebra C𝑢

0
(𝔾) ⊗ C0(�̂�) as being contained in the von Neumann algebra

C𝑢
0
(𝔾)∗∗⊗̄ L∞(�̂�), and so consider𝕎𝔾 as an element of C𝑢

0
(𝔾)∗∗⊗̄ L∞(�̂�).

Lemma 5.9. Let 𝑎 ∈ M𝑙
𝑐𝑏
(A(𝔾)) and 𝜔 ∈ C𝑢

0
(𝔾)∗.

(1) We have 𝑎 ⋆ 𝜔 ∈ M𝑙
𝑐𝑏
(A(𝔾)) and ‖𝑎 ⋆ 𝜔‖𝑐𝑏 ⩽ ‖𝑎‖𝑐𝑏‖𝜔‖. Furthermore Θ𝑙(𝑎 ⋆ 𝜔) is the map

L∞(�̂�) ∋ 𝑥 ↦ (𝜔 ⊗ id)
(
(id⊗Θ𝑙(𝑎))((𝟙 ⊗ 𝑥)𝕎𝔾∗)𝕎𝔾

)
∈ L∞(�̂�). (5.6)

(2) Take 𝜔 ∈ C𝑢
0
(𝔾)∗ and assume that 𝜔♯ exists. Then 𝜔

♯
⋆ 𝑎 ∈ M𝑙

𝑐𝑏
(A(𝔾)) and ‖𝜔♯ ⋆ 𝑎‖𝑐𝑏 ⩽‖𝜔‖‖𝑎‖𝑐𝑏. Furthermore, 𝜔♯ ⋆ 𝑎 = 𝑆−1(𝑆−1(𝑎)∗ ⋆ 𝜔)∗ and Θ𝑙(𝜔

♯
⋆ 𝑎) is the map

L∞(�̂�) ∋ 𝑥 ↦ (𝜔 ⊗ id)
(
𝕎𝔾∗(id⊗Θ𝑙(𝑎))(𝕎𝔾(𝟙 ⊗ 𝑥))

)
∈ L∞(�̂�). (5.7)

Proof.

(1) This claim is analogous to [17, Proposition 4.5]. The functional 𝜔may be regarded as a normal
functional on C𝑢

0
(𝔾)∗∗. Therefore, given the discussion above, it makes sense to define

𝑇∶ L∞(�̂�) ∋ 𝑥 ↦ (𝜔 ⊗ id)
(
(id⊗Θ𝑙(𝑎))((𝟙 ⊗ 𝑥)𝕎𝔾∗)𝕎𝔾

)
∈ L∞(�̂�).

Observe that ‖𝑇‖𝑐𝑏 ⩽ ‖𝑎‖𝑐𝑏‖𝜔‖. Now one can proceed exactly as in [17, Proposition 4.5]
to show that 𝑇 is a module map on L∞(�̂�) and that the associated multiplier is 𝑎 ⋆ 𝜔 ∈

M𝑙
𝑐𝑏
(A(𝔾)) with Θ𝑙(𝑎 ⋆ 𝜔) = 𝑇.

(2) It follows from [17, Lemma 4.8, Proposition 4.9] that 𝑎 ∈ 𝐷(𝑆−1) and that 𝑏 = 𝑆−1(𝑎)∗ is con-
tained inM𝑙

𝑐𝑏
(A(𝔾))with ‖𝑏‖𝑐𝑏 = ‖𝑎‖𝑐𝑏. The previous point gives 𝑏 ⋆ 𝜔 ∈ M𝑙

𝑐𝑏
(A(𝔾)), hence

also 𝑏 ⋆ 𝜔 ∈ 𝐷(𝑆−1). We claim that

𝑆−1(𝑏 ⋆ 𝜔) = 𝜔
♯
⋆ 𝑆−1(𝑏),
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16 of 52 DAWS et al.

compare [14, Lemma 4.11]. Indeed, using [33, Propositions 7.2, 9.2] one easily checks that
𝜒(𝑅𝑢 ⊗ 𝑅)Δ𝑢,𝑟 = Δ𝑢,𝑟𝑅 and (𝜏𝑢𝑡 ⊗ 𝜏𝑡)Δ

𝑢,𝑟 = Δ𝑢,𝑟𝜏𝑡 (𝑡 ∈ ℝ). Then

𝑆−1(𝑏 ⋆ 𝜔) = 𝑅𝜏𝑖∕2
(
(𝜔 ⊗ id)Δ𝑢,𝑟(𝑏)

)
= 𝑅

(
(𝜔𝜏𝑢

−𝑖∕2
⊗ id)Δ𝑢,𝑟(𝜏𝑖∕2(𝑏))

)
= (id⊗𝜔𝜏𝑢

−𝑖∕2
𝑅𝑢)Δ𝑟,𝑢(𝑅𝜏𝑖∕2(𝑏)) = (id⊗𝜔

♯
)Δ𝑟,𝑢(𝑆−1(𝑏)) = 𝜔

♯
⋆ 𝑆−1(𝑏).

In the above calculation, we used the fact that 𝜔𝑆𝑢 = 𝜔
♯ on 𝐷(𝑆𝑢), in particular 𝜔𝜏𝑢

−𝑖∕2
is

bounded. Using again the previous point and [17, Lemma 4.8, Proposition 4.9] we conclude
that

𝜔
♯
⋆ 𝑎 = 𝜔

♯
⋆ 𝑆−1(𝑏)∗ =

(
𝜔
♯
⋆ 𝑆−1(𝑏)

)∗
= 𝑆−1(𝑏 ⋆ 𝜔)∗ ∈ M𝑙

𝑐𝑏
(A(𝔾)).

Furthermore, we now see that

‖‖𝜔♯ ⋆ 𝑎‖‖𝑐𝑏 = ‖‖𝑆−1(𝑏 ⋆ 𝜔)∗‖‖𝑐𝑏 = ‖‖𝑏 ⋆ 𝜔‖‖𝑐𝑏 ⩽ ‖𝑏‖𝑐𝑏‖𝜔‖ = ‖𝑎‖𝑐𝑏‖𝜔‖,
as claimed. Finally, by [17, Proposition 4.9] we know that Θ𝑙(𝑏) = Θ𝑙(𝑆(𝑎∗)) = Θ𝑙(𝑎)†. Thus,
for 𝑥 ∈ L∞(�̂�),

Θ𝑙(𝜔
♯
⋆ 𝑎)(𝑥) = Θ𝑙

(
𝑆−1(𝑏 ⋆ 𝜔)∗

)
(𝑥) = Θ𝑙(𝑏 ⋆ 𝜔)(𝑥∗)∗

= (𝜔 ⊗ id)
(
(id⊗Θ𝑙(𝑏))((𝟙 ⊗ 𝑥∗)𝕎𝔾∗)𝕎𝔾

)∗
,

using (5.6). This is then equal to

(𝜔 ⊗ id)
(
𝕎𝔾∗(id⊗Θ𝑙(𝑏)†)(𝕎𝔾(𝟙 ⊗ 𝑥))

)
= (𝜔 ⊗ id)

(
𝕎𝔾∗(id⊗Θ𝑙(𝑎))(𝕎𝔾(𝟙 ⊗ 𝑥))

)
as claimed. □

We are now in a position to show that the averaging procedure with respect to a compact
quantum subgroup is compatible with multipliers.

Proposition 5.10. Let 𝔾 be a locally compact quantum group with a compact quantum subgroup
𝕂 ⊆ 𝔾. Then the averagingmapΞ∶ M(C0(𝔾)) → M(C0(𝔾)) restricts to a contractiveweak∗-weak∗-
continuous mapM𝑙

𝑐𝑏
(A(𝔾)) → M𝑙

𝑐𝑏
(A(𝔾)).

Proof. Recall that Ξ(𝑎) = 𝜋∗(ℎ) ⋆ 𝑎 ⋆ 𝜋∗(ℎ) for 𝑎 ∈ M(C0(𝔾)). As 𝜋∗(ℎ) = 𝜋∗(ℎ) = 𝜋∗(ℎ)♯,
Lemma 5.9 tells us that Ξ restricts to a contractive linear map Ξ|M𝑙

𝑐𝑏
(A(𝔾)) ∶ M𝑙

𝑐𝑏
(A(𝔾)) →

M𝑙
𝑐𝑏
(A(𝔾)). To verify weak∗-weak∗-continuity it is enough to show that (Ξ|M𝑙

𝑐𝑏
(A(𝔾)))

∗ preserves

L1(𝔾) ⊆ 𝑄𝑙(A(𝔾)). Recall the isometric homomorphism 𝜙∶ L1(𝔾) → C𝑢
0
(𝔾)∗ which identifies

L1(𝔾) as a closed ideal in C𝑢
0
(𝔾)∗. As the duality between 𝑄𝑙(A(𝔾)) and M𝑙

𝑐𝑏
(A(𝔾)) is naturally

compatible with the duality between L1(𝔾) and L∞(𝔾), it suffices to show thatΞ∗(L1(𝔾)) ⊆ L1(𝔾).
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 17 of 52

Observe that for 𝑏 ∈ C𝑢
0
(𝔾), 𝜔 ∈ L1(𝔾) we have

Λ∗
𝔾(Ξ

∗(𝜔))(𝑏) = Ξ∗(𝜔)(Λ𝔾(𝑏)) = 𝜔(𝜋∗(ℎ) ⋆ Λ𝔾(𝑏) ⋆ 𝜋∗(ℎ))

= (𝜋∗(ℎ) ⊗ 𝜔 ⊗ 𝜋∗(ℎ))Δ𝑢,𝑟,𝑢Λ𝔾(𝑏) = (𝜋∗(ℎ) ⋆ 𝜙(𝜔) ⋆ 𝜋∗(ℎ))(𝑏).

Consequently,Λ∗
𝔾
(Ξ∗(𝜔)) = 𝜙(𝜔′) for some𝜔′ ∈ L1(𝔾), and asΛ𝔾 is surjective this showsΞ∗(𝜔) =

𝜔′ as required. □

Remark 5.11. Exactly the same arguments show that the one-sided averaging maps Ξ𝑙, Ξ𝑟 restrict
to maps on A(𝔾), B𝑟(𝔾) and B(𝔾), and also toM𝑙

𝑐𝑏
(A(𝔾)).

We shall writeM𝑙
𝑐𝑏
(A(𝕂∖𝔾∕𝕂)) for the image of Ξ∶ M𝑙

𝑐𝑏
(A(𝔾)) → M𝑙

𝑐𝑏
(A(𝔾)), and refer to the

elements of this space as 𝕂-biinvariant CB multipliers of 𝔾. Proposition 5.10, combined with the
fact that Ξ is a projection, shows thatM𝑙

𝑐𝑏
(A(𝕂∖𝔾∕𝕂)) ⊆ M𝑙

𝑐𝑏
(A(𝔾)) is a weak∗-closed subspace.

We now study further properties of the map Ξ on the level of multipliers.

Proposition 5.12. The averaging map Ξ∶ M𝑙
𝑐𝑏
(A(𝔾)) → M𝑙

𝑐𝑏
(A(𝔾)) maps CP multipliers to CP

multipliers. Furthermore, for 𝑎 ∈ M𝑙
𝑐𝑏
(A(𝔾)) and 𝑥 ∈ L∞(�̂�), we have

Θ𝑙(Ξ(𝑎))(𝑥) = (𝜋∗(ℎ) ⊗ 𝜋∗(ℎ) ⊗ id)
(
𝕎𝔾∗

13 (id⊗ id⊗Θ𝑙(𝑎))(𝕎𝔾
13(𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

23 )𝕎
𝔾
23

)
∈ L∞(�̂�).

Proof. Let 𝑎 ∈ M𝑙
𝑐𝑏
(A(𝔾)) be arbitrary. To ease notation, write ℎ0 = 𝜋∗(ℎ) and 𝑏 = 𝑎 ⋆ ℎ0. As

Ξ(𝑎) = ℎ0 ⋆ (𝑎 ⋆ ℎ0) = ℎ0 ⋆ 𝑏 and ℎ0 = ℎ0 = ℎ♯
0
, formula (5.7) from Lemma 5.9 shows that

Θ𝑙(Ξ(𝑎))(𝑥) = (ℎ0 ⊗ id)
(
𝕎𝔾∗(id⊗Θ𝑙(𝑏))(𝕎𝔾(𝟙 ⊗ 𝑥))

)
(𝑥 ∈ L∞(�̂�)).

By (5.6) we know that Θ𝑙(𝑏) is the map 𝑦 ↦ (ℎ0 ⊗ id)
(
(id⊗Θ𝑙(𝑎))((𝟙 ⊗ 𝑦)𝕎𝔾∗)𝕎𝔾

)
. Thus,

(id⊗Θ𝑙(𝑏))(𝕎𝔾(𝟙 ⊗ 𝑥)) = (id⊗ ℎ0 ⊗ id)
(
(id⊗ id⊗Θ𝑙(𝑎))(𝕎𝔾

13(𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗
23 )𝕎

𝔾
23

)
,

and hence

Θ𝑙(Ξ(𝑎))(𝑥) = (ℎ0 ⊗ id)
(
𝕎𝔾∗(id⊗ ℎ0 ⊗ id)

(
(id⊗ id⊗Θ𝑙(𝑎))(𝕎𝔾

13(𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗
23 )𝕎

𝔾
23

))
= (ℎ0 ⊗ ℎ0 ⊗ id)

(
𝕎𝔾∗

13 (id⊗ id⊗Θ𝑙(𝑎))(𝕎𝔾
13(𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

23 )𝕎
𝔾
23

)
.

This proves the second claim.
Assume now that 𝑎 is a CP multiplier, that is, Θ𝑙(𝑎) ∈ CB𝜎(L∞(�̂�)) is CP. By Stinespring’s

theorem and the classification of normal ∗-homomorphisms (see, e.g., [20, Theorem I.4.4.3]),
we can find a Hilbert space ℋ and 𝑟 ∈ B(L2(𝔾),ℋ ⊗ L2(𝔾)) such that Θ𝑙(𝑎)(𝑥) = 𝑟∗(𝟙 ⊗ 𝑥)𝑟.
Consequently, we can further write

Θ𝑙(Ξ(𝑎))(𝑥)

= (ℎ0 ⊗ ℎ0 ⊗ id)
(
𝕎𝔾∗

13 (id⊗ id⊗Θ𝑙(𝑎))(𝕎𝔾
13(𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

23 )𝕎
𝔾
23

)
= (ℎ0 ⊗ ℎ0 ⊗ id)

(
𝕎𝔾∗

13 (𝟙 ⊗ 𝟙 ⊗ 𝑟∗)𝕎𝔾
14(𝟙 ⊗ 𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

24 (𝟙 ⊗ 𝟙 ⊗ 𝑟)𝕎𝔾
23

)
.
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18 of 52 DAWS et al.

Here we are regarding 𝕎𝔾 as a member of C𝑢
0
(𝔾)∗∗⊗̄ L∞(�̂�). Pick some Hilbert space 𝒦 and a

universal representation C𝑢
0
(𝔾) ⊆ B(𝒦) so that C𝑢

0
(𝔾)∗∗ = C𝑢

0
(𝔾)′′ ⊆ B(𝒦). By choosing C𝑢

0
(𝔾) ⊆

B(𝒦) in a suitable way, we may suppose that there is a unit vector 𝜉 ∈ 𝒦 such that 𝜔𝜉 restricted
to C𝑢

0
(𝔾)′′ agrees with the normal extension of ℎ0. Then 𝕎𝔾 can be regarded as a member of

B(𝒦 ⊗ L2(𝔾)), and so, for example,𝕎𝔾∗
24
(𝟙 ⊗ 𝟙 ⊗ 𝑟)𝕎𝔾

23
is a member of B(𝒦 ⊗𝒦 ⊗ L2(𝔾),𝒦 ⊗

𝒦 ⊗ℋ ⊗ L2(𝔾)). Thus, for 𝜂1, 𝜂2 ∈ L2(𝔾),(
𝜂1||Θ𝑙(Ξ(𝑎))(𝑥)(𝜂2)

)
=
(
𝜉 ⊗ 𝜉 ⊗ 𝜂1||𝕎𝔾∗

13 (𝟙 ⊗ 𝟙 ⊗ 𝑟∗)𝕎𝔾
14(𝟙 ⊗ 𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

24 (𝟙 ⊗ 𝟙 ⊗ 𝑟)𝕎𝔾
23(𝜉 ⊗ 𝜉 ⊗ 𝜂2)

)
=
(
𝕎𝔾∗

14 (𝟙 ⊗ 𝟙 ⊗ 𝑟)𝕎𝔾
13(𝜉 ⊗ 𝜉 ⊗ 𝜂1)||𝜉 ⊗ (𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

13 (𝟙 ⊗ 𝑟)𝕎𝔾(𝜉 ⊗ 𝜂2)
)

=
(
Σ12

(
𝜉 ⊗𝕎𝔾∗

13 (𝟙 ⊗ 𝑟)𝕎𝔾(𝜉 ⊗ 𝜂1)
)||𝜉 ⊗ (𝟙 ⊗ 𝟙 ⊗ 𝑥)𝕎𝔾∗

13 (𝟙 ⊗ 𝑟)𝕎𝔾(𝜉 ⊗ 𝜂2)
)
,

where Σ ∈ B(𝒦 ⊗𝒦) is the tensor swap map.
Let 𝑡 ∈ B(L2(𝔾),𝒦 ⊗ℋ ⊗ L2(𝔾)) be the operator 𝑡(𝛽) = 𝕎𝔾∗

13
(𝟙 ⊗ 𝑟)𝕎𝔾(𝜉 ⊗ 𝛽), for 𝛽 ∈

L2(𝔾), and let 𝑟 ∈ B(L2(𝔾),ℋ ⊗ L2(𝔾)) be the operator which satisfies (𝛼|𝑟(𝛽)) = (𝜉 ⊗ 𝛼|𝑡(𝛽)),
for 𝛼 ∈ ℋ ⊗ L2(𝔾). Then(

𝜂1||Θ𝑙(Ξ(𝑎))(𝑥)(𝜂2)
)
=
(
Σ12(𝜉 ⊗ 𝑡(𝜂1))||𝜉 ⊗ (𝟙 ⊗ 𝟙 ⊗ 𝑥)𝑡(𝜂2)

)
=
(
𝜉 ⊗ 𝑟(𝜂1)||(𝟙 ⊗ 𝟙 ⊗ 𝑥)𝑡(𝜂2)

)
=
(
𝜉 ⊗ (𝟙 ⊗ 𝑥∗)𝑟(𝜂1)||𝑡(𝜂2))

=
(
(𝟙 ⊗ 𝑥∗)𝑟(𝜂1)||𝑟(𝜂2)) = (

𝜂1||𝑟∗(𝟙 ⊗ 𝑥)𝑟(𝜂2)
)
.

Hence, Θ𝑙(Ξ(𝑎))(𝑥) = 𝑟∗(𝟙 ⊗ 𝑥)𝑟 is CP, as claimed. □

Remark 5.13. In general, the one-sided averaging maps Ξ𝑙, Ξ𝑟 do not map CP multipliers to CP
multipliers, as we now show.
As in Remark 5.11, the map Ξ𝑙 restricts to A(𝔾), and so induces a map Ξ𝑙

1
∶ L1(�̂�) → L1(�̂�).

Moreover, given 𝑎 = 𝜆(𝜔) ∈ A(𝔾) for𝜔 ∈ L1(�̂�), we have Ξ𝑙(𝑎) = (ℎ𝜋 ⊗ id)Δ𝑢,𝑟(𝑎) = 𝑎 ⋆ (ℎ𝜋) =

𝜆(𝜔(⋅𝜋(𝑝𝑒))), as in the proof of Lemma 5.7. Thus, Ξ𝑙
1
(𝜔) = 𝜔(⋅𝜋(𝑝𝑒)), and similarly Ξ𝑟

1
(𝜔) =

𝜔(𝜋(𝑝𝑒)⋅), for 𝜔 ∈ L1(�̂�).
Suppose 𝜔(𝑥𝜋(𝑝𝑒)) ⩾ 0 for all positive 𝜔 ∈ L1(�̂�) and all positive 𝑥 ∈ L∞(𝔾). Then 𝑥𝜋(𝑝𝑒)

is positive, hence self-adjoint, so 𝑥𝜋(𝑝𝑒) = 𝜋(𝑝𝑒)𝑥 for all positive 𝑥 ∈ L∞(𝔾). It follows that
𝜋(𝑝𝑒) is central. Hence, if 𝜋(𝑝𝑒) ∈ L∞(�̂�) is not central there exists a positive 𝜔 ∈ L1(�̂�) such
that 𝜔(⋅𝜋(𝑝𝑒)) not positive. Then Lemma 3.1 shows that 𝑎 = 𝜆(𝜔) ∈ A(𝔾) is a CP multiplier but
Ξ𝑙(𝑎) = 𝜆(Ξ𝑙

1
(𝜔)) is not CP.

Note that 𝜋(𝑝𝑒) is central if and only if Ξ𝑙 agrees with the two-sided averaging map Ξ, compare
Lemma 5.7. Combining the above argument with Proposition 5.12, we therefore conclude that Ξ𝑙
maps CP multipliers to CP multipliers if and only if 𝜋(𝑝𝑒) is central. The same statement, with a
similar proof, holds for Ξ𝑟.
Centrality of 𝜋(𝑝𝑒) already fails for classical locally compact groups if the compact subgroup

is not normal. The case of Drinfeld doubles, explored in the next section, gives further examples
where 𝜋(𝑝𝑒) is not central.
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 19 of 52

6 DRINFELD DOUBLES OF DISCRETE QUANTUMGROUPS

In this section, ℾ is a discrete quantum group. We shall use the following simplified notation: Δ, Δ̂
are the coproducts on𝓁∞(ℾ), L∞(ℾ̂), respectively, ℎ ∈ L1(ℾ̂) is theHaar integral,W = Wℾ, Ŵ = Wℾ̂

and ad(W)(𝑥) = W𝑥W∗.
The Drinfeld double 𝐷(ℾ) of ℾ is given by L∞(𝐷(ℾ)) = 𝓁∞(ℾ)⊗̄ L∞(ℾ̂) with the coproduct

Δ𝐷(ℾ) = (id⊗𝜒 ⊗ id)(id⊗ ad(W) ⊗ id)(Δ ⊗ Δ̂),

compare [3, section 8]. As discrete quantum groups and their compact duals are regular, it follows
from [3, Proposition 9.5] that

C0(𝐷(ℾ)) = c0(ℾ) ⊗ C(ℾ̂). (6.1)

The left and right Haar integral on 𝐷(ℾ) is given by 𝜑 ⊗ ℎ, see [3, Theorem 5.3, Proposition 8.1].
The Kac–Takesaki operator of 𝐷(ℾ) is

W𝐷(ℾ) = W13𝑍
∗
34Ŵ24𝑍34,

where 𝑍 = W(𝐽 ⊗ 𝐽)W(𝐽 ⊗ 𝐽) and 𝐽, 𝐽 are the modular conjugations on 𝓁∞(ℾ), L∞(ℾ̂), respec-
tively, see [3, Proposition 8.1]. The Drinfeld double 𝐷(ℾ) contains ℾ̂ naturally as a compact (open)
quantum subgroup, with themorphism𝜋∶ L∞(𝐷(ℾ)) = 𝓁∞(ℾ)⊗̄ L∞(ℾ̂) → L∞(ℾ̂) given by 𝜀 ⊗ id,
where 𝜀 ∈ 𝓁1(ℾ) is the counit. Note that as ℾ̂ is open, the morphism 𝜋 exists at the reduced level,
which simplifies the situation compared to the previous section.
We shall consider 𝔾 = 𝐷(ℾ) and 𝕂 = ℾ̂. As 𝜋∗(ℎ) = 𝜀 ⊗ ℎ is a normal functional on L∞(𝐷(ℾ)),

one easily sees that in this setting the averaging map Ξ defined in Equation (5.1) is given by

Ξ∶ L∞(𝐷(ℾ)) ∋ 𝑎 ↦ (𝜋∗(ℎ) ⊗ id⊗𝜋∗(ℎ))Δ(2)
𝐷(ℾ)(𝑎) ∈ L∞(𝐷(ℾ)), (6.2)

where Δ(2)
𝐷(ℾ) ∶ L∞(𝐷(ℾ)) → L∞(𝐷(ℾ))⊗̄3 is the two-fold coproduct.

Proposition 6.1. The image Ξ(L∞(𝐷(ℾ))) of the averaging map Ξ∶ L∞(𝐷(ℾ)) → L∞(𝐷(ℾ)) equals
𝓁∞(ℾ) ⊗ 𝟙. More precisely, for 𝑥 ∈ L∞(𝐷(ℾ)) we have

Ξ(𝑥) = 𝑦 ⊗ 𝟙 where 𝑦 = (id⊗ ℎ)(W((id⊗ ℎ)(𝑥) ⊗ 𝟙)W∗). (6.3)

Similarly, Ξ(c00(ℾ) ⊙ Pol(ℾ̂)) = c00(ℾ) ⊗ 𝟙 and Ξ(C0(𝐷(ℾ))) = c0(ℾ) ⊗ 𝟙.

Proof. We use the description of Ξ in (6.2). First, for 𝑥 ∈ L∞(𝐷(ℾ)),

(id𝐷(ℾ) ⊗ 𝜀 ⊗ id)Δ𝐷(ℾ)(𝑥) = (id𝐷(ℾ) ⊗ 𝜀 ⊗ id)𝜒23
(
W23(Δ ⊗ Δ̂)(𝑥)W∗

23

)
= (id⊗ Δ̂)(𝑥),

using that 𝜀 is a ∗-homomorphism with (id⊗ 𝜀)Δ = id and (𝜀 ⊗ id)(W) = 𝟙. It follows that

(id𝐷(ℾ) ⊗ 𝜋∗(ℎ))Δ𝐷(ℾ)(𝑥) = (id𝐷(ℾ) ⊗ ℎ)(id⊗ Δ̂)(𝑥) = (id⊗ ℎ)(𝑥) ⊗ 𝟙.
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20 of 52 DAWS et al.

Let 𝑧 = (id⊗ ℎ)(𝑥) ∈ 𝓁∞(ℾ), and notice that

Δ𝐷(ℾ)(𝑧 ⊗ 𝟙) = (id⊗𝜒 ⊗ id)(W23Δ(𝑧)12W
∗
23). (6.4)

Thus, using that (𝜀 ⊗ id)Δ = id, we get

Ξ(𝑥) = (𝜀 ⊗ ℎ ⊗ id𝐷(ℾ))Δ𝐷(ℾ)(𝑧 ⊗ 𝟙) = (𝜀 ⊗ id⊗ ℎ ⊗ id)(W23Δ(𝑧)12W
∗
23)

= (id⊗ ℎ ⊗ id)(W12(𝑧 ⊗ 𝟙 ⊗ 𝟙)W∗
12) = (id⊗ ℎ)(W(𝑧 ⊗ 𝟙)W∗) ⊗ 𝟙,

which shows (6.3).
As W ∈ 𝓁∞(ℾ)⊗̄ L∞(ℾ̂) and right slices of W generate 𝓁∞(ℾ), it follows that an element 𝑐 ∈

𝓁∞(ℾ) is central if and only if W(𝑐 ⊗ 𝟙) = (𝑐 ⊗ 𝟙)W, which holds if and only if W(𝑐 ⊗ 𝟙)W∗ =

𝑐 ⊗ 𝟙. Moreover, if 𝑐 = (id⊗ ℎ)(W(𝑑 ⊗ 𝟙)W∗) for some 𝑑 ∈ 𝓁∞(ℾ) then

W(𝑐 ⊗ 𝟙)W∗ = (id⊗ ℎ ⊗ id)(W13W12(𝑑 ⊗ 𝟙 ⊗ 𝟙)W∗
12W

∗
13)

= (id⊗ ℎ ⊗ id)((id⊗ Δ̂)(W)(𝑑 ⊗ 𝟙 ⊗ 𝟙)(id⊗ Δ̂)(W∗))

= (id⊗ ℎ)(W(𝑑 ⊗ 𝟙)W∗) ⊗ 𝟙 = 𝑐 ⊗ 𝟙,

so that 𝑐 is central. Combining this with the above formula for Ξ(𝑥) implies Ξ(L∞(𝐷(ℾ))) =
𝓁∞(ℾ) ⊗ 𝟙 as claimed.
Let 𝑥 ∈ 𝓁∞(ℾ) and set 𝑦 = (id⊗ ℎ)(W(𝑥 ⊗ 𝟙)W∗) as in (6.3). We use the explicit formula for

Ŵ = 𝜒(W∗) from (2.2) together with (2.1) to see that

𝑦 =
∑

𝛼,𝛽∈Irr(ℾ̂)

dim(𝛼)∑
𝑖,𝑗=1

dim(𝛽)∑
𝑘,𝑙=1

𝑒𝛼𝑗,𝑖𝑥𝑒
𝛽

𝑘,𝑙
ℎ
(
(𝑈𝛼

𝑖,𝑗)
∗𝑈

𝛽

𝑘,𝑙

)

=
∑

𝛼∈Irr(ℾ̂)

dim(𝛼)∑
𝑖,𝑗,𝑘=1

𝑒𝛼𝑗,𝑖𝑥𝑒
𝛼
𝑘,𝑗

(ρ−1𝛼 )𝑘,𝑖

Tr(ρ𝛼)
=

∑
𝛼∈Irr(ℾ̂)

(
dim(𝛼)∑
𝑖,𝑘=1

𝑥𝛼
𝑖,𝑘

(ρ−1𝛼 )𝑘,𝑖

Tr(ρ𝛼)

)
𝑝𝛼. (6.5)

Here we use the direct-sum matrix decomposition 𝑥 = (𝑥𝛼)𝛼∈Irr(ℾ̂) ∈ 𝓁∞(ℾ), and 𝑝𝛼 denotes the
minimal projection onto the 𝛼 block.
From this explicit formula it is clear that Ξmaps c00(ℾ) ⊙ Pol(ℾ̂) ontoc00(ℾ) ⊗ 𝟙. As C0(𝐷(ℾ))

is the norm-closure of c00(ℾ) ⊙ Pol(ℾ̂) and Ξ is a conditional expectation by Lemma 5.3, it is also
immediate that Ξmaps C0(𝐷(ℾ)) onto c0(ℾ) ⊗ 𝟙. □

Remark 6.2. The proof shows that the one-sided averaging map Ξ𝑟 = (id⊗𝜋∗(ℎ))Δ𝐷(ℾ) is given
simply byΞ𝑟(𝑥) = (id⊗ ℎ)(𝑥) ⊗ 𝟙. Thismaps c00(ℾ) ⊙ Pol(ℾ̂) onto c00(ℾ) ⊗ 𝟙, andhenceC0(𝐷(ℾ))
onto c0(ℾ) ⊗ 𝟙.
The other one-sided averaging map Ξ𝑙 looks more complicated, but if we start with an element

of the form 𝑥 ⊗ 𝟙 ∈ 𝓁∞(ℾ) ⊗ 𝟙, then (𝜋∗(ℎ) ⊗ id)Δ𝐷(ℾ)(𝑥 ⊗ 𝟙) = 𝐴(𝑥) ⊗ 𝟙 where

𝐴(𝑥) = (id⊗ ℎ)(W(𝑥 ⊗ 𝟙)W∗) = (ℎ ⊗ id)(Ŵ∗(𝟙 ⊗ 𝑥)Ŵ) (𝑥 ∈ 𝓁∞(ℾ)).
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 21 of 52

We shall study this map 𝐴 further in Section 7.

Recall from [17, Lemmas 8.4 and 8.5] that we have an isometric weak∗-weak∗-continuous
embedding 𝑁∶ M𝑐𝑏(𝖢𝗈𝗋𝖾𝗉(ℾ)) → M𝑙

𝑐𝑏
(A(𝐷(ℾ))) given by 𝑁(𝑎) = 𝑎 ⊗ 𝟙.

Proposition 6.3. Under the embedding𝑁∶ M𝑐𝑏(𝖢𝗈𝗋𝖾𝗉(ℾ)) → M𝑙
𝑐𝑏
(A(𝐷(ℾ)))we have an isometric

identification

M𝑙
𝑐𝑏
(A(ℾ)) = M𝑐𝑏(𝖢𝗈𝗋𝖾𝗉(ℾ)) ≅ M𝑙

𝑐𝑏
(A(ℾ̂∖𝐷(ℾ)∕ℾ̂)),

compatible with the weak∗-topologies. Furthermore, these identifications preserve the property of
being completely positive.

Proof. The isometric identification M𝑙
𝑐𝑏
(A(ℾ)) = M𝑐𝑏(𝖢𝗈𝗋𝖾𝗉(ℾ)), compatible with the weak∗-

topologies, is established in [17, Lemma 8.6].
Let 𝑎 ∈ M𝑙

𝑐𝑏
(A(ℾ̂∖𝐷(ℾ)∕ℾ̂)). According to Propositions 6.1 and 5.10, there is 𝑏 ∈ 𝓁∞(ℾ) with

𝑎 = Ξ(𝑎) = 𝑏 ⊗ 𝟙 ∈ M𝑙
𝑐𝑏
(A(𝐷(ℾ))). In fact, 𝑏 ∈ M𝑙

𝑐𝑏
(A(ℾ)), which can be proved following the

argument for [17, Lemma 8.6]. More precisely, it suffices to show that 𝑏 is a cb-multiplier, and to
show this, one observes that Θ𝑙(𝑏 ⊗ 𝟙) leaves the image of L∞(ℾ̂) ⊆ L∞(𝐷(ℾ)) invariant and so
induces a centraliser whose associated multiplier must be 𝑏.
Conversely, if 𝑏 ∈ M𝑙

𝑐𝑏
(A(ℾ)) = M𝑐𝑏(𝖢𝗈𝗋𝖾𝗉(ℾ)), then [17, Lemma 8.4] shows that 𝑎 = 𝑏 ⊗ 𝟙 ∈

M𝑙
𝑐𝑏
(A(𝐷(ℾ))) and Proposition 6.1 gives Ξ(𝑎) = 𝑎. Thus, 𝑎 ∈ M𝑙

𝑐𝑏
(A(ℾ̂∖𝐷(ℾ)∕ℾ̂)).

The map M𝑙
𝑐𝑏
(A(ℾ̂∖𝐷(ℾ)∕ℾ̂)) ∋ 𝑎 ↦ 𝑏 ∈ 𝓁∞(ℾ) is weak∗-weak∗-continuous because 𝑏 =

(id⊗ ℎ)(𝑎). It follows that themap is aweak∗-weak∗-homeomorphism, compare [17, Lemma 3.7].
It remains to verify the claim regarding CP multipliers. From [42, Proposition 6.1] we know

that 𝜃 ∈ M𝑙
𝑐𝑏
(A(ℾ)) is CP (i.e. Θ𝑙(𝜃) ∈ CB𝜎(L∞(ℾ̂)) is CP) if and only if 𝜃 ∈ M𝑐𝑏(𝖢𝗈𝗋𝖾𝗉(ℾ)) is

CP. In addition, for 𝜃 ∈ M𝑙
𝑐𝑏
(A(ℾ)) we have Θ𝑙(𝜃)(𝟙) = 𝜃(𝑒)𝟙, where 𝑒 ∈ Irr(ℾ̂) stands for the

trivial representation. As Θ𝑙(𝜃 ⊗ 𝟙) is normal, we deduce from [17, Lemma 8.4] that similarly
Θ𝑙(𝜃 ⊗ 𝟙)(𝟙) = 𝜃(𝑒)𝟙. Now recall from [41, Theorem 1.35] that if  is a unital C∗-algebra, ℋ is
a Hilbert space and 𝑢∶  → B(ℋ) a completely bounded linear map, then 𝑢 is CP if and only if‖𝑢‖𝑐𝑏 = 𝑢(𝟙). As ‖𝜃‖𝑐𝑏 = ‖𝜃 ⊗ 𝟙‖𝑐𝑏 we conclude that 𝜃 ∈ M𝑙

𝑐𝑏
(A(ℾ)) is CP if and only if 𝜃 ⊗ 𝟙 ∈

M𝑙
𝑐𝑏
(A(𝐷(ℾ))) is CP. □

We are now ready to state our main result. This improves in particular [17, Proposition 8.9] by
removing the unimodularity condition.

Theorem 6.4. Let ℾ be a discrete quantum group and let 𝐷(ℾ) be its Drinfeld double. Then the
following conditions are equivalent.

(1) ℾ is centrally strongly amenable (respectively, is centrally weakly amenable, has the central
Haagerup property, has central AP).

(2) 𝐷(ℾ) is strongly amenable (respectively, is weakly amenable, has theHaagerup property, has AP).

Furthermore, in the weakly amenable case we have Λ𝑐𝑏(𝐷(ℾ)) = Λ𝑐𝑏(ℾ).

Proof. 1) ⇒ 2) For AP this claim is [17, Propositions 8.7 and 8.9]; let us sketch the argument. Let
(𝑎𝑖)𝑖∈𝐼 be a net in c00(ℾ) verifying Definition 4.2 for central AP. From Proposition 6.3 (which is
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22 of 52 DAWS et al.

based on [42, Proposition 6.1]) we know that (𝑎𝑖 ⊗ 𝟙)𝑖∈𝐼 is a net inM𝑙
𝑐𝑏
(𝐷(ℾ)) converging weak∗

to 𝟙. As each 𝑎𝑖 ⊗ 𝟙 is in c00(ℾ) ⊙ Pol(ℾ̂) ⊆ A(𝐷(ℾ)) it follows that 𝐷(ℾ) has AP.
If ℾ is centrally weakly amenable, the net (𝑎𝑖)𝑖∈𝑖 can be chosen to additionally satisfy ‖𝑎𝑖‖𝑐𝑏 ⩽Λ𝑐𝑏(ℾ) for each 𝑖. By Proposition 6.3, we have ‖𝑎𝑖 ⊗ 𝟙‖𝑐𝑏 = ‖𝑎𝑖‖𝑐𝑏, and so (𝑎𝑖 ⊗ 𝟙)𝑖∈𝐼 is a net

bounded by Λ𝑐𝑏(ℾ). Invoking [17, Proposition 5.7] shows that 𝐷(ℾ) is weakly amenable with
Λ𝑐𝑏(𝐷(ℾ)) ⩽ Λ𝑐𝑏(ℾ).
If ℾ is centrally strongly amenable, each 𝑎𝑖 can be chosen to be a UCP multiplier, and then

𝑎𝑖 ⊗ 𝟙will be aUCPmultiplier inA(𝐷(ℾ)) according to Proposition 6.3. By Lemma 3.1, each 𝑎𝑖 ⊗ 𝟙

arises from a state, and in particular, the net (𝑎𝑖 ⊗ 𝟙)𝑖∈𝐼 is bounded in A(𝐷(ℾ)). We now invoke
[17, Proposition 5.6] to conclude that 𝐷(ℾ) is strongly amenable.
When ℾ has the central Haagerup property, the net (𝑎𝑖)𝑖∈𝐼 can be chosen to consist of central CP

multipliers forming a bounded approximate identity for c0(ℾ). By Proposition 6.3 each 𝑎𝑖 ⊗ 𝟙 is a
CP multiplier of 𝐷(ℾ), and (𝑎𝑖 ⊗ 𝟙)𝑖∈𝐼 is clearly a bounded approximate identity for C0(𝐷(ℾ)) =
c0(ℾ) ⊗ C(ℾ̂).
(2) ⇒ (1) Assume first that 𝐷(ℾ) has AP exhibited by a net (𝑎𝑖)𝑖∈𝐼 = (𝜆

𝐷(ℾ)(𝜔𝑖))𝑖∈𝐼 ∈ A(𝐷(ℾ)).
As L∞(𝐷(ℾ)) is in standard position on L2(𝐷(ℾ)), each 𝜔𝑖 is a vector functional. By a straight-
forward approximation argument we may assume that each 𝜔𝑖 is of the form 𝜔𝜉𝑖,𝜂𝑖 where
𝜉𝑖, 𝜂𝑖 ∈ Λ𝜑(c00(ℾ)) ⊙ Λℎ(Pol(ℾ̂)), here recalling that 𝜑 ⊗ ℎ is the left Haar integral on 𝐷(ℾ). Then
note that𝐷(ℾ) arises from an algebraic quantum group, compare [49; 52, section 3.2], and observe
that

(id⊗𝜔Λ𝜑⊗ℎ(𝑥),Λ𝜑⊗ℎ(𝑦)
)W𝐷(ℾ)∗ = (id⊗ (𝜑 ⊗ ℎ))

(
(𝟙 ⊗ 𝑥∗)Δ𝐷(ℾ)(𝑦)

)
∈ c00(ℾ) ⊙ Pol(ℾ̂) (6.6)

for𝑥, 𝑦 ∈ c00(ℾ) ⊙ Pol(ℾ̂), see, for example, [50, p. 12]. Thus, each𝑎𝑖 is amember of c00(ℾ) ⊙ Pol(ℾ̂).
By Proposition 6.1, we have Ξ(𝑎𝑖) = 𝑏𝑖 ⊗ 𝟙 for some 𝑏𝑖 ∈ c00(ℾ), and Propositions 5.10 and 6.3
show that 𝑏𝑖 ���→

𝑖∈𝐼
𝟙 weak∗ inM𝑙

𝑐𝑏
(A(ℾ)). Hence, ℾ has central AP.

If 𝐷(ℾ) is weakly amenable we can choose a net (𝑎𝑖)𝑖∈𝐼 which is a left approximate unit in
A(𝐷(ℾ)) in such away that ‖𝑎𝑖‖𝑐𝑏 ⩽ Λ𝑐𝑏(𝐷(ℾ)). Againwemay approximate each 𝑎𝑖 by amember of
c00(ℾ) ⊙ Pol(ℾ̂). As this approximation is made in the A(𝐷(ℾ)) norm, we may assume that we still
have ‖𝑎𝑖‖𝑐𝑏 ⩽ Λ𝑐𝑏(𝐷(ℾ)). Again let Ξ(𝑎𝑖) = 𝑏𝑖 ⊗ 𝟙, and observe that Propositions 5.10 and 6.3 now
show ‖𝑏𝑖‖𝑐𝑏 ⩽ Λ𝑐𝑏(𝐷(ℾ)). Given 𝛼 ∈ Irr(ℾ̂) denote by 𝑝𝛼 ∈ c00(ℾ) ⊆ c0(ℾ) the central projection
onto the 𝛼 component. Then 𝑝𝛼 ⊗ 𝟙 ∈ c00(ℾ) ⊙ Pol(ℾ̂) ⊆ A(𝐷(ℾ)) and so, as Ξ is a conditional
expectation,

𝑏𝑖𝑝𝛼 ⊗ 𝟙 = Ξ(𝑎𝑖)(𝑝𝛼 ⊗ 𝟙) = Ξ(𝑎𝑖(𝑝𝛼 ⊗ 𝟙)) ���→
𝑖∈𝐼

Ξ(𝑝𝛼 ⊗ 𝟙) = 𝑝𝛼 ⊗ 𝟙, (6.7)

with the convergence in A(𝐷(ℾ)) by Corollary 5.6. Thus, 𝑏𝑖 ���→
𝑖∈𝐼

𝟙 pointwise in 𝓁∞(ℾ), and we
conclude that ℾ is centrally weakly amenable with Λ𝑐𝑏(ℾ) ⩽ Λ𝑐𝑏(𝐷(ℾ)).
If 𝐷(ℾ) is strongly amenable it follows from the discussion after Definition 4.1 that A(𝐷(ℾ)) has

a bounded approximate identity (𝑎𝑖)𝑖∈𝐼 where 𝑎𝑖 = 𝜆
𝐷(ℾ)(𝜔𝑖) for some state 𝜔𝑖 . By approximation,

we may suppose again that 𝜔𝑖 = 𝜔𝜉𝑖 for 𝜉𝑖 ∈ Λ𝜑(c00(ℾ)) ⊙ Λℎ(Pol(ℾ̂)) for all 𝑖. Let Ξ(𝑎𝑖) = 𝑏𝑖 ⊗

𝟙, so that by Propositions 5.12 and 6.3 each 𝑏𝑖 is a CP multiplier in c00(ℾ). As before, 𝑏𝑖 ���→
𝑖∈𝐼

𝟙

pointwise in 𝓁∞(ℾ), which shows that ℾ is centrally strongly amenable.
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 23 of 52

Finally, consider the situation where 𝐷(ℾ) has the Haagerup property. Let (𝑎𝑖)𝑖∈𝐼 be a bounded
approximate identity in C0(𝐷(ℾ)) which consists of CP multipliers. By Proposition 6.1, we obtain
𝑏𝑖 ∈ c0(ℾ) with Ξ(𝑎𝑖) = 𝑏𝑖 ⊗ 𝟙 for each 𝑖 ∈ 𝐼. By Propositions 5.12 and 6.3, each 𝑏𝑖 ∈ M𝑙

𝑐𝑏
(A(ℾ))

is a CP multiplier, and we have sup𝑖∈𝐼 ‖𝑏𝑖‖ ⩽ sup𝑖∈𝐼 ‖𝑎𝑖‖ < +∞. Furthermore, as 𝑝𝛼 ⊗ 𝟙 ∈

C0(𝐷(ℾ)) for 𝛼 ∈ Irr(ℾ̂), and the averaging map Ξ is L∞(𝐷(ℾ))-norm continuous, we deduce as
in (6.7) that 𝑏𝑖 ���→

𝑖∈𝐼
𝟙 pointwise. As the net (𝑏𝑖)𝑖∈𝐼 is bounded in norm it forms an approximate

identity for c0(ℾ), thus showing that ℾ has the central Haagerup property. □

7 FURTHER RESULTS FOR DISCRETE QUANTUMGROUPS AND
THEIR DRINFELD DOUBLES

In this section, we complement the discussion in Section 6 with some further analysis related
to unimodularity.

7.1 Approximation in the unimodular case

Let us first review the averaging procedure for discrete quantum groups ℾ with respect to the
coadjoint action, which allows one to compare central approximation properties with their non-
central counterparts in the unimodular case, see [32, section 5; 6, section 6.3.2], and which was
already mentioned in Remark 6.2.
Let ℾ be a discrete quantum group. By definition, the coadjoint action of ℾ̂ on 𝓁∞(ℾ) is the map

𝛾∶ 𝓁∞(ℾ) → L∞(ℾ̂)⊗̄𝓁∞(ℾ) defined by 𝛾(𝑥) = Ŵ∗(𝟙 ⊗ 𝑥)Ŵ. Combining 𝛾 with the Haar state ℎ
of L∞(ℾ̂) we obtain the averaging map 𝐴∶ 𝓁∞(ℾ) → 𝓁∞(ℾ) by setting

𝐴 = (ℎ ⊗ id)𝛾; 𝑥 ↦ (ℎ ⊗ id)
(
Ŵ∗(𝟙 ⊗ 𝑥)Ŵ

)
.

Clearly, this is a normal unital CP map. It is straightforward to check, as in the proof of Propo-
sition 6.1, that the algebra of invariant elements {𝑥 ∈ 𝓁∞(ℾ) ∣ 𝛾(𝑥) = 𝟙 ⊗ 𝑥} ⊆ 𝓁∞(ℾ) is equal to
the centre𝓁∞(ℾ) of 𝓁∞(ℾ). We calculated above in (6.5) the form of𝐴, and from this calculation
it is clear that 𝐴 is a conditional expectation onto 𝓁∞(ℾ), and that 𝐴 restricts to a conditional
expectation c0(ℾ) → c0(ℾ). In the case when ℾ is unimodular, things simplify, and we obtain

𝐴(𝑒𝛼𝑚,𝑛) = 𝛿𝑚,𝑛
1

dim(𝛼)
𝑝𝛼. (7.1)

In particular, the above definition of 𝐴 coincides with the construction in [17, section 6].
Recall that the character of 𝛼 ∈ Irr(ℾ̂) is 𝜒𝛼 =

∑dim(𝛼)
𝑖=1

𝑈𝛼
𝑖,𝑖
∈ Pol(ℾ̂) ⊆ L∞(ℾ̂). Motivated by the

case of classical compact groups we shall call

𝒞ℾ = {𝜒𝛼 |𝛼 ∈ Irr(ℾ̂)}′′ ⊆ L∞(ℾ̂),

the von Neumann algebra of class functions of ℾ̂, compare [31, Lemma 1.2]. If ℾ is unimodular, the
Haar stateℎ onL∞(ℾ̂) is a trace and there is a unique normal conditional expectation𝐹∶ L∞(ℾ̂) →
𝒞ℾ which preserves ℎ, see [46, Theorem 4.2, chapter IX].

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70104 by L

ancaster U
niversity, W

iley O
nline L

ibrary on [11/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 of 52 DAWS et al.

The next proposition summarises key properties of 𝐴. Most of these are well-known, but we
make the new observation that 𝐴maps the Fourier algebra into itself.

Proposition 7.1. Let ℾ be an unimodular discrete quantum group. The averaging map 𝐴∶ 𝓁∞(ℾ)
→ 𝓁∞(ℾ) restricts to a weak∗-weak∗-continuous contractionM𝑙

𝑐𝑏
(A(ℾ)) → M𝑙

𝑐𝑏
(A(ℾ)). It maps

CP multipliers to CP multipliers and preserves finite support. Moreover, it restricts to a completely
contractive map A(ℾ) → A(ℾ). Under the identification A(ℾ) ≅ L1(ℾ̂), it agrees with the predual
𝐹∗ of the unique ℎ-preserving conditional expectation 𝐹∶ L∞(ℾ̂) → 𝒞ℾ.

Proof. The first assertions are already contained in the discussion around [17, Proposition 6.8],
see also [6, section 6.3.2]; we recall some of the details. Let 𝐸∶ L∞(ℾ̂)⊗̄ L∞(ℾ̂) → Δ̂(L∞(ℾ̂)) be the
unique conditional expectation which preserves the state ℎ ⊗ ℎ. It is normal and satisfies

𝐸(𝑈𝛼
𝑖,𝑗 ⊗ 𝑈

𝛽

𝑘,𝑙
) = 𝛿𝛼,𝛽𝛿𝑗,𝑘

1

dim(𝛼)
Δ̂(𝑈𝛼

𝑖,𝑙
). (7.2)

We set Δ̂♯ = Δ̂−1𝐸∶ L∞(ℾ̂)⊗̄ L∞(ℾ̂) → L∞(ℾ̂), and for 𝑇 ∈ CB𝜎(L∞(ℾ̂)) we define

Ψ(𝑇) = Δ̂♯(id⊗ 𝑇)Δ̂ ∈ CB𝜎(L∞(ℾ̂)).

The proof of [17, Proposition 6.8] shows thatΨ(Θ𝑙(𝑎)) = Θ𝑙(𝐴(𝑎)) for 𝑎 ∈ M𝑙
𝑐𝑏
(A(ℾ)). In particular,

Ψmaps duals of CB centralisers to duals of CB centralisers, and hence 𝐴maps CB multipliers to
central CB multipliers. It follows also that CP multipliers are mapped to central CP multipliers,
and it is evident from (7.1) that 𝐴 preserves finite support.
It remains to prove the claim about the Fourier algebra. Using the 𝒞ℾ-bimodule property of 𝐹

we obtain

ℎ(𝐹(𝑈𝛼
𝑖,𝑗)𝜒

∗
𝛽
) = ℎ(𝐹(𝑈𝛼

𝑖,𝑗𝜒
∗
𝛽
)) = ℎ(𝑈𝛼

𝑖,𝑗𝜒
∗
𝛽
) =

dim(𝛽)∑
𝑘=1

ℎ(𝑈𝛼
𝑖,𝑗(𝑈

𝛽

𝑘,𝑘
)∗) = 𝛿𝛼,𝛽𝛿𝑖,𝑗

1

dim(𝛼)

for all 𝛼, 𝛽 ∈ Irr(ℾ̂), 1 ⩽ 𝑖, 𝑗 ⩽ dim(𝛼), and as ℎ(𝜒𝛼𝜒∗𝛽) = 𝛿𝛼,𝛽 and ℎ is faithful it follows that

𝐹(𝑈𝛼
𝑖,𝑗) =

1

dim(𝛼)
𝛿𝑖,𝑗𝜒𝛼. (7.3)

As 𝐹∶ L∞(ℾ̂) → 𝒞ℾ ⊆ L∞(ℾ̂) is normal, it has a Banach space pre-adjoint 𝐹∗ ∶ L1(ℾ̂) → L1(ℾ̂)
which is completely contractive. Let 𝜔 ∈ L1(ℾ̂) and set 𝑎 = 𝜆(𝜔) ∈ A(ℾ) ⊆ M𝑙

𝑐𝑏
(A(ℾ)). AsΘ𝑙(𝑎) =

(𝜔 ⊗ id)Δ̂, we obtain by the definition of Ψ, and using (7.2),

Ψ(Θ𝑙(𝑎)); 𝑈𝛼
𝑖,𝑗 ↦Δ̂♯

(
dim(𝛼)∑
𝑘=1

𝑈𝛼
𝑖,𝑘
⊗ Θ𝑙(𝑎)(𝑈𝛼

𝑘,𝑗
)

)
= Δ̂♯

(
dim(𝛼)∑
𝑘,𝑙=1

𝑈𝛼
𝑖,𝑘
⊗ 𝜔(𝑈𝛼

𝑘,𝑙
)𝑈𝛼

𝑙,𝑗

)

=

dim(𝛼)∑
𝑘=1

𝜔(𝑈𝛼
𝑘,𝑘
)

dim(𝛼)
𝑈𝛼
𝑖,𝑗 =

𝜔(𝜒𝛼)

dim(𝛼)
𝑈𝛼
𝑖,𝑗.

(7.4)
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 25 of 52

Set 𝑏 = 𝜆(𝐹∗(𝜔)) ∈ A(ℾ), so that, using (7.3),

Θ𝑙(𝑏); 𝑈𝛼
𝑖,𝑗 ↦

dim(𝛼)∑
𝑘=1

𝐹∗(𝜔)(𝑈
𝛼
𝑖,𝑘
)𝑈𝛼

𝑘,𝑗
=

dim(𝛼)∑
𝑘=1

𝜔(𝐹(𝑈𝛼
𝑖,𝑘
))𝑈𝛼

𝑘,𝑗
=

1

dim(𝛼)
𝜔(𝜒𝛼)𝑈

𝛼
𝑖,𝑗. (7.5)

As the expressions (7.4), (7.5) agree we conclude Ψ(Θ𝑙(𝑎)) = Θ𝑙(𝑏) and 𝐴(𝑎) = 𝑏 ∈ A(ℾ). This
means in particular that 𝐴maps A(ℾ) to itself.
In fact, we see that 𝐴∶ A(ℾ) → A(ℾ) identifies with 𝐹∗ ∶ L1(ℾ̂) → L1(ℾ̂) via the canonical

isomorphism A(ℾ) ≅ L1(ℾ̂). In particular, it is completely contractive as claimed. □

Remark 7.2. Without the unimodularity assumption, the averagingmap𝐴 can behave quite badly.
More precisely, one can show that there is a non-unimodular discrete quantum group ℾ and 𝑥 ∈

A(ℾ) completely positive, such that 𝐴(𝑥) ∉ M𝑙
𝑐𝑏
(A(ℾ)). As we will not make use of this fact, we

will only sketch the proof.
First, fix 0 < 𝑞 < 1. Let 𝛼, 𝛾 be the standard generators of Pol(SU𝑞(2)) and define 𝜈 = 𝑖(𝑞 +

𝑞−1)(𝑞−1ℎ(𝛼∗⋅) − 𝑞ℎ(𝛼 ⋅)) ∈ L1(SU𝑞(2)). By direct calculation one can check that 𝜈 = 𝜈, but after
averaging we obtain 𝐴(𝜆(𝜈)) = 𝜆(𝜔) for 𝜔 = 𝑖(𝑞 − 𝑞−1)(𝑞−1ℎ(𝛼∗⋅) + 𝑞ℎ(𝛼 ⋅)) with 𝜔 ≠ 𝜔. Next
consider 𝜃 = ℎ + 𝜈

2(𝑞+𝑞−1)
and 𝑦 = 𝜆(𝜃) ∈ c00(ŜU𝑞(2)). Using the direct integral picture from

[29, Section 7.1], one can show that 𝑦 is completely positive, but 𝐴(𝑦) is not. As both Θ𝑙(𝑦)

and Θ𝑙(𝐴(𝑦)) are unital, we have ‖𝐴(𝑦)‖𝑐𝑏 > ‖𝑦‖𝑐𝑏 = 1. To complete the argument, set ℾ̂ =∏∞
𝑚=1 SU𝑞(2) and consider the positive linear functional 𝜌 =

∑∞
𝑚=1

1

(1+𝛿)𝑚
𝜃⊗𝑚 ⊗ ℎ⊗∞ ∈ L1(ℾ̂)

for appropriately chosen small 𝛿 > 0. Then 𝑥 = 𝜆(𝜌) ∈ A(ℾ) is CP, but 𝐴(𝑥) is not a left CB
multiplier.

Next we record a lemma of independent interest, which we will use later; compare also
Theorem 8.23.

Lemma 7.3. Let ℾ be an unimodular discrete quantum group. Then c00(ℾ) is dense in A(ℾ) for
the A(ℾ) norm. Furthermore, CP multipliers in A(ℾ) can be approximated by CP multipliers in
c00(ℾ).
Proof. Take 𝑎 ∈ A(ℾ) and write 𝑎 = 𝜆(𝜔𝜉,𝜂) for some 𝜉, 𝜂 ∈ L2(ℾ̂). For 𝜀 > 0 choose vectors
𝜉𝜀, 𝜂𝜀 ∈ Λℎ(Pol(ℾ̂)) such that ‖𝜉 − 𝜉𝜀‖, ‖𝜂 − 𝜂𝜀‖ ⩽ 𝜀, next define 𝑏𝜀 = 𝜆(𝜔𝜉𝜀,𝜂𝜀 ) ∈ c00(ℾ) and 𝑎𝜀 =
𝐴(𝑏𝜀), where 𝐴 is the averaging map. By Proposition 7.1, we have 𝑎𝜀 ∈ c00(ℾ) and furthermore

‖𝑎 − 𝑎𝜀‖A(ℾ) = ‖𝐴(𝑎) − 𝐴(𝑏𝜀)‖A(ℾ) ⩽ ‖𝑎 − 𝑏𝜀‖A(ℾ) ����→
𝜀→0

0,

which proves the first claim. If 𝑎 is a CP multiplier then 𝜔𝜉,𝜂 ⩾ 0 on L∞(ℾ̂) by Lemma 3.1 and we
can take 𝜉 = 𝜂. Then 𝑎𝜀 = 𝐴(𝜆(𝜔𝜉𝜀,𝜉𝜀 )) is also CP by Proposition 7.1. □

For unimodular discrete quantum groups, we can show using Lemma 7.3 that we can replace
c00(ℾ) by A(ℾ) in the definition of the central approximation properties, Definition 4.2. We
state the following result in a way which draws attention to this viewpoint, but we note that the
overall conclusion can also be deduced from the known result that the central approximation
properties are equivalent to their non-central versions in the unimodular case, see [6, Theorem
7.3] and [17, Proposition 6.8] and their (analogous) proofs.
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26 of 52 DAWS et al.

Proposition 7.4. Let ℾ be an unimodular discrete quantum group. Then ℾ

(1) is centrally strongly amenable if and only if there is a net (𝑒𝑖)𝑖∈𝐼 of CP multipliers in A(ℾ)
converging to 𝟙 pointwise,

(2) is centrally weakly amenable if and only if there is a net (𝑒𝑖)𝑖∈𝐼 inA(ℾ) with sup𝑖∈𝐼 ‖𝑒𝑖‖𝑐𝑏
< +∞, converging to 𝟙 pointwise,

(3) has the central approximation property if and only if there is a net (𝑒𝑖)𝑖∈𝐼 in A(ℾ) converging
to 𝟙 in the weak∗ topology ofM𝑙

𝑐𝑏
(A(ℾ)).

Proof.

(1) Let (𝑒𝑖)𝑖∈𝐼 be a net of central CP multipliers in A(ℾ) converging to 𝟙 pointwise. Using
Lemma 7.3 we choose elements 𝑒𝑖,𝑛 ∈ c00(ℾ) for 𝑛 ∈ ℕ which are CP and satisfy ‖𝑒𝑖 −
𝑒𝑖,𝑛‖A(ℾ) ⩽ 1

𝑛
. Then the net (𝑒𝑖,𝑛)(𝑖,𝑛)∈𝐼×ℕ also converges to 𝟙 pointwise, hence ℾ is centrally

strongly amenable. The reverse implication is obvious.
(2) This is analogous: given a net (𝑒𝑖)𝑖∈𝐼 in A(ℾ) we use Lemma 7.3 to choose elements 𝑒𝑖,𝑛 ∈

c00(ℾ) with ‖𝑒𝑖 − 𝑒𝑖,𝑛‖A(ℾ) ⩽ 1

𝑛
. The new net (𝑒𝑖,𝑛)(𝑖,𝑛)∈𝐼×ℕ still converges to 𝟙 pointwise, and

as the CB norm is dominated by the Fourier algebra norm we have sup(𝑖,𝑛)∈𝐼×ℕ ‖𝑒𝑖,𝑛‖𝑐𝑏 ⩽
sup(𝑖,𝑛)∈𝐼×ℕ(‖𝑒𝑖‖𝑐𝑏 + ‖𝑒𝑖 − 𝑒𝑖,𝑛‖𝑐𝑏) < +∞.

(3) Weuse again Lemma 7.3, noting that norm convergence inA(ℾ) impliesweak∗ convergence in
M𝑙

𝑐𝑏
(A(ℾ)). More precisely, given (𝑒𝑖)𝑖∈𝐼 as in the claim and choosing (𝑒𝑖,𝑛)(𝑖,𝑛)∈𝐼×ℕ in c00(ℾ)

as before we have we obtain 𝑒𝑖,𝑛 = 𝑒𝑖 + (𝑒𝑖,𝑛 − 𝑒𝑖) ���������→
(𝑖,𝑛)∈𝐼×ℕ

𝟙 weak∗ inM𝑙
𝑐𝑏
(A(ℾ)). □

Remark 7.5. We do not know whether the conclusions of Proposition 7.4 hold for general ℾ.

7.2 Amenability of Drinfeld doubles

Let us now complement Theorem 6.4 with a discussion of amenability for Drinfeld doubles of
discrete quantum groups. While some of these results are known to experts, we have been unable
to find references.

Definition 7.6. A locally compact quantum group 𝔾 is amenable if there exists a left invariant
mean𝑚 on L∞(𝔾), that is, there is a state𝑚 on L∞(𝔾) with

⟨𝑚, 𝑥 ⋆ 𝜔⟩ = ⟨𝑚, 𝑥⟩⟨𝟙, 𝜔⟩ (𝜔 ∈ L1(𝔾), 𝑥 ∈ L∞(𝔾)).

Composing a left invariant mean on L∞(𝔾) with the unitary antipode one can equivalently
require the existence of a right invariant mean, that is, a state𝑚 on L∞(𝔾) such that ⟨𝑚,𝜔 ⋆ 𝑥⟩ =⟨𝑚, 𝑥⟩⟨𝟙, 𝜔⟩ for all 𝜔 ∈ L1(𝔾), 𝑥 ∈ L∞(𝔾).

Lemma 7.7. Let ℾ be a discrete quantum group such that 𝐷(ℾ) is amenable. Then ℾ is unimodular.

Proof. Let𝑚 be a right invariantmean onL∞(𝐷(ℾ)). Define a state𝑛 ∈ L∞(ℾ̂)∗ by𝑛(𝑥) = 𝑚(𝟙 ⊗ 𝑥)

for 𝑥 ∈ L∞(ℾ̂). For 𝜔 ∈ 𝓁1(ℾ), 𝜔 ∈ L1(ℾ̂) and 𝑥 ∈ L∞(ℾ̂) we get

⟨𝟙 ⊗ 𝟙, 𝜔 ⊗ 𝜔⟩𝑛(𝑥) = ⟨𝑚, (id⊗ id⊗𝜔⊗ 𝜔)Δ𝐷(ℾ)(𝟙 ⊗ 𝑥)⟩
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= ⟨𝑚, (id⊗𝜔⊗ id⊗𝜔)(𝟙 ⊗W⊗ 𝟙)(𝟙 ⊗ 𝟙 ⊗ Δ̂(𝑥))(𝟙 ⊗W∗ ⊗ 𝟙)⟩
= ⟨𝑛, (𝜔 ⊗ id⊗𝜔)(W12Δ̂(𝑥)23W

∗
12)⟩, (7.6)

as 𝑚 is right invariant. Now let 𝜔 = 𝜀 ∈ 𝓁1(ℾ) be the counit. As 𝜀 is multiplicative and (𝜀 ⊗

id)(W) = 𝟙, formula (7.6) gives

⟨𝟙, 𝜔⟩𝑛(𝑥) = 𝑛
(
(id⊗𝜔)Δ̂(𝑥)

)
(𝑥 ∈ L∞(ℾ̂)).

With 𝜔 = ℎ ∈ L1(ℾ̂) the Haar state, it follows that 𝑛(𝑥) = 𝑛(𝟙)ℎ(𝑥) = ℎ(𝑥) for all 𝑥 ∈ L∞(ℾ̂), and
so 𝑛 = ℎ. Then (7.6) becomes equivalent to

ℎ(𝑥)𝟙 ⊗ 𝟙 = (id⊗ ℎ ⊗ id)(W12Δ̂(𝑥)23W
∗
12) (𝑥 ∈ L∞(ℾ̂)).

As (id⊗ Δ̂)(W) = W13W12, this gives

ℎ(𝑥)𝟙 ⊗ 𝟙 = (id⊗ ℎ ⊗ id)
(
W∗

13(id⊗ Δ̂)(W(𝟙 ⊗ 𝑥)W∗)W13

)
.

Conjugating byW, and using that (ℎ ⊗ id)Δ̂ = 𝟙 ℎ(⋅), we obtain

ℎ(𝑥)𝟙 = (id⊗ ℎ)(W(𝟙 ⊗ 𝑥)W∗). (7.7)

Recall that the unitary antipode 𝑅 on 𝓁∞(ℾ) is implemented by 𝐽 as 𝑅(𝑥) = 𝐽𝑥∗𝐽, and similarly
for 𝑅. We also know that (𝑅 ⊗ 𝑅)(W) = W. As ℎ◦𝑅 = ℎ, it hence follows from (7.7) that

ℎ(𝑥)𝟙 = ℎ(𝑅(𝑥))𝑅(𝟙) = (id⊗ ℎ)
(
(𝑅 ⊗ 𝑅)(W(𝟙 ⊗ 𝑅(𝑥))W∗)

)
= (id⊗ ℎ)

(
(𝐽 ⊗ 𝐽)W(𝟙 ⊗ 𝑅(𝑥)∗)W∗(𝐽 ⊗ 𝐽)

)
= (id⊗ ℎ)

(
(𝐽 ⊗ 𝐽)W(𝐽 ⊗ 𝐽)(𝟙 ⊗ 𝑥)(𝐽 ⊗ 𝐽)W∗(𝐽 ⊗ 𝐽)

)
= (id⊗ ℎ)(W∗(𝟙 ⊗ 𝑥)W). (7.8)

Equation (7.8) with 𝑥 ∈ C(ℾ̂)means that ℎ ∈ C(ℾ̂)∗ is an invariant state for the coadjoint action
ℾ↷ C(ℾ̂) given by C(ℾ̂) ∋ 𝑥 ↦ W∗(𝟙 ⊗ 𝑥)W ∈ M(c0(ℾ) ⊗ C(ℾ̂)). It follows from [28, Lemma 5.2]
that the Haar integral ℎ is a trace, consequently ℾ̂ is of Kac type and ℾ is unimodular. □

Let us now show that amenability and strong amenability coincide for the Drinfeld double𝐷(ℾ)
of a discrete quantum group ℾ.

Theorem 7.8. Let ℾ be a discrete quantum group. The following conditions are equivalent.

(1) 𝐷(ℾ) is strongly amenable.
(2) 𝐷(ℾ) is amenable.
(3) ℾ is unimodular and amenable.
(4) ℾ is unimodular and strongly amenable.
(5) ℾ is unimodular and centrally strongly amenable.
(6) ℾ is centrally strongly amenable.
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28 of 52 DAWS et al.

Proof. (1) ⇔ (6) is a part of Theorem 6.4.
(1) ⇒ (2) It is known that strong amenability implies amenability in general, see [5,

Theorem 3.2].
(2) ⇒ (3) Lemma 7.7 shows that ℾ is unimodular. From [3, Theorem 5.3], see also [17,

Lemma 7.12], we know that ℾ is a closed quantum subgroup of 𝐷(ℾ). By [10, Theorem 3.2]
amenability passes from 𝐷(ℾ) to the closed quantum subgroup ℾ.
(3) ⇒ (4) This is a consequence of [43, Theorem 4.5], see also [48].
(4) ⇒ (5) This follows using averaging for unimodular discrete quantum groups, compare [6,

Theorem 7.3]. Indeed, if (𝑒𝑖)𝑖∈𝐼 is a net of CPmultipliers inA(ℾ) converging to 𝟙 pointwise then by
Proposition 7.1, the net (𝐴(𝑒𝑖))𝑖∈𝐼 in A(ℾ) obtained from averaging consists again of CP multi-
pliers and converges to 𝟙 pointwise. According to Proposition 7.4(1), this means that ℾ is centrally
strongly amenable.
(5) ⇒ (6) is trivial. □

Remark 7.9. By [48], we know that amenability and strong amenability are equivalent for discrete
quantum groups. Clearly we cannot drop unimodularity in condition (3) or (4) of Theorem 7.8, as
if ℾ being amenable implied that 𝐷(ℾ)was amenable, then the theorem would show that ℾ was in
particular unimodular, and there are amenable non-unimodular ℾ. Indeed, it is well-known that
the dual of SU𝑞(2) is strongly amenable but not centrally strongly amenable, compare [18, 21]. In
view of Theorem 6.4, this is equivalent to the fact that the quantum Lorentz group 𝐷(SU𝑞(2)) =

SL𝑞(2, ℂ) is not strongly amenable, compare, for instance, the discussion in [53, section 7].

8 BIINVARIANCE AND CENTRALITY FOR THE FOURIER
ALGEBRA

Given a discrete quantum group ℾ, recall that A(ℾ̂∖𝐷(ℾ)∕ℾ̂) is the image of A(𝐷(ℾ)) under the
averaging map Ξ. Similarly, B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) is the image of the reduced Fourier–Stieltjes algebra
B𝑟(𝐷(ℾ)) under Ξ (cf. Corollary 5.6).
In viewof Propositions 6.1 and 6.3, onemightwonderwhetherA(ℾ̂∖𝐷(ℾ)∕ℾ̂) is equal toA(ℾ) ⊗

𝟙, and similarly whether B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) is equal toB𝑟(ℾ) ⊗ 𝟙. Neither of these equalities turn out
to hold in general, a surprising fact that we explore more in this section. We will also study the
question of density of c00(ℾ) in A(ℾ) (and weak∗-density of c00(ℾ) in B𝑟(ℾ)), and prove
that these properties hold for a very large class of discrete quantum groups, namely those which
are unimodular or have the central AP. This is complemented by some observations regarding
one-sided averaging on the level of the Fourier algebra.

8.1 The centre of the Fourier algebra

Let ℾ be a discrete quantum group and let 𝐷(ℾ) be its Drinfeld double, following the notation of
Section 6. From the form ofW𝐷(ℾ) we see that

𝜆𝐷(ℾ) ∶ L1(𝐷(ℾ)) = 𝓁1(ℾ)⊗̂ L1(ℾ̂) → L∞(𝐷(ℾ)); 𝜔 ⊗ 𝜔 ↦ (𝜆(𝜔) ⊗ 𝟙)𝑍∗(𝟙 ⊗ 𝜆(𝜔))𝑍. (8.1)

Hence,

C0(𝐷(ℾ)) = span
{
(𝑥 ⊗ 𝟙)𝑍∗(𝟙 ⊗ 𝑥)𝑍 |𝑥 ∈ c0(ℾ), 𝑥 ∈ C(ℾ̂)

}
,
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and so

L∞(𝐷(ℾ)) = span
weak∗{

(𝑥 ⊗ 𝟙)𝑍∗(𝟙 ⊗ 𝑥)𝑍 |𝑥 ∈ 𝓁∞(ℾ), 𝑥 ∈ L∞(ℾ̂)
}
.

As 𝜋 = 𝜀 ⊗ id∶ L∞(𝐷(ℾ)) → L∞(ℾ̂), and

(id⊗𝜋)(Ŵ) = (𝜋 ⊗ id)(W𝐷(ℾ)) = (𝜀 ⊗ id⊗ id𝐷(ℾ))(W13𝑍
∗
34Ŵ24𝑍34) = 𝑍∗23Ŵ13𝑍23,

it follows that

𝜋∶ 𝓁∞(ℾ) → L∞(𝐷(ℾ)); 𝑥 ↦ 𝑍∗(𝟙 ⊗ 𝑥)𝑍.

This is the natural map identifying ℾ̂ as a closed quantum subgroup of 𝐷(ℾ), see [3, Theorem 5.3]
and [17, Lemma 7.12]. Define

𝑝𝑧 = 𝑍∗(𝟙 ⊗ 𝑝𝑒)𝑍 = 𝜋(𝑝𝑒) = 𝜆𝐷(ℾ)(𝜀 ⊗ ℎ) ∈ L∞(𝐷(ℾ)).

Proposition 8.1. ThemapsΞ1 ∶ L1(𝐷(ℾ)) → L1(𝐷(ℾ)) andΞ∞∶ L∞(𝐷(ℾ)) → L∞(𝐷(ℾ)) are given
by

Ξ1(𝜇) = 𝜇 (𝑝𝑧 ⋅ 𝑝𝑧) (𝜇 ∈ L1(𝐷(ℾ))), Ξ∞(𝑦) = 𝑝𝑧𝑦𝑝𝑧 (𝑦 ∈ L∞(𝐷(ℾ))).

For 𝑥 ∈ 𝓁∞(ℾ) let 𝑥𝑒 ∈ ℂ be the entry of 𝑥 in the one-dimensional matrix block corresponding to
𝑒 ∈ Irr(ℾ̂). For 𝑥 ∈ L∞(ℾ̂), we have

Ξ∞((𝑥 ⊗ 𝟙)𝑍∗(𝟙 ⊗ 𝑥)𝑍) = 𝑥𝑒𝑝𝑧(𝑥 ⊗ 𝟙)𝑝𝑧, (8.2)

and so the image of Ξ∞ is the weak∗-closure of 𝑝𝑧(L∞(ℾ̂) ⊗ 𝟙)𝑝𝑧. Furthermore, Ξ∞ restricts to a
mapΞ0 ∶ C0(𝐷(ℾ)) → C0(𝐷(ℾ)) given by the same formula as (8.2), and the image ofΞ0 is the norm-
closure of 𝑝𝑧(C(ℾ̂) ⊗ 𝟙)𝑝𝑧.

Proof. The forms of Ξ1 and Ξ∞ follow immediately from Lemma 5.7 and the definition of 𝑝𝑧.
Notice then that

𝑍∗(𝟙 ⊗ 𝑥)𝑍𝑝𝑧 = 𝑍∗(𝟙 ⊗ 𝑥)(𝟙 ⊗ 𝑝𝑒)𝑍 = 𝑥𝑒𝑍
∗(𝟙 ⊗ 𝑝𝑒)𝑍 = 𝑥𝑒𝑝𝑧,

and from this (8.2) follows. As 𝑝𝑧 is a projection, the image of Ξ∞, namely 𝑝𝑧 L∞(𝐷(ℾ))𝑝𝑧, is
weak∗-closed. Consequently, (8.2) shows that the image of Ξ∞ is the weak∗-closure of the space
𝑝𝑧(L

∞(ℾ̂) ⊗ 𝟙)𝑝𝑧, because L∞(𝐷(ℾ)) is theweak∗-closed linear span of elements of the form (𝑥 ⊗

𝟙)𝑍∗(𝟙 ⊗ 𝑥)𝑍.
Finally, as 𝑝𝑧 ∈ C0(𝐷(ℾ)), (8.2) also shows that Ξ∞ restricts to a boundedmap onC0(𝐷(ℾ)), and

that the resulting map Ξ0 has image equal to the norm-closure of 𝑝𝑧(C(ℾ̂) ⊗ 𝟙)𝑝𝑧. □

Recall from Corollary 5.6 that the averaging map Ξ restricts to a contractive linear map on the
level of the (reduced) Fourier—Stieltjes algebra.
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30 of 52 DAWS et al.

Lemma 8.2. Consider Ξ∗
0
∶ C0(𝐷(ℾ))∗ → C0(𝐷(ℾ))∗. Under the isomorphism C0(𝐷(ℾ))∗ ≅

B𝑟(𝐷(ℾ)), this map identifies with the averaging map Ξ∶ B𝑟(𝐷(ℾ)) → B𝑟(𝐷(ℾ)).

Proof. We wish to show that for 𝜇 ∈ C0(𝐷(ℾ))∗, we have that

(id⊗Ξ∗0(𝜇))(W
𝐷(ℾ)∗) = Ξ

(
(id⊗ 𝜇)(W𝐷(ℾ)∗)

)
.

There is a bounded net (𝜔𝑖)𝑖∈𝐼 in L1(𝐷(ℾ)) which converges weak∗ to 𝜇. As Ξ0 is the restriction
of Ξ∞ = Ξ∗

1
, it follows that Ξ∗

0
(𝜇) is the weak∗-limit of the net (Ξ1(𝜔𝑖))𝑖∈𝐼 . As left slices ofW𝐷(ℾ)∗

land in C0(𝐷(ℾ)), taking right slices is a weak∗-continuous operation, and hence

(id⊗Ξ∗0(𝜇))(W
𝐷(ℾ)∗) = lim

𝑖∈𝐼
(id⊗Ξ1(𝜔𝑖))(W

𝐷(ℾ)∗) = lim
𝑖∈𝐼

Ξ
(
(id⊗𝜔𝑖)(W

𝐷(ℾ)∗)
)

= Ξ
(
lim
𝑖∈𝐼

(id⊗𝜔𝑖)(W
𝐷(ℾ)∗)

)
= Ξ

(
(id⊗ 𝜇)(W𝐷(ℾ)∗)

)
,

as required. Here we use the defining relation between Ξ1 and Ξ, and that Ξ isweak∗-continuous
on L∞(𝐷(ℾ)). □

Consider A(ℾ̂∖𝐷(ℾ)∕ℾ̂), the image of A(𝐷(ℾ)) under the averaging map Ξ. By the definition of
the maps involved, and Lemma 8.2, we have the commutative diagrams

As L∞(ℾ̂) ⊗ 𝟙 ⊆ L∞(𝐷(ℾ)), the map L1(𝐷(ℾ)) → L1(ℾ̂); 𝜇 ↦ 𝜇(⋅⊗ 𝟙) is well-defined, and hence
the map 𝜄 in the following proposition is well-defined. Similarly, as C(ℾ̂) ⊗ 𝟙 ⊆ M(C0(𝐷(ℾ))) and
bounded functionals on a C∗-algebra  extend uniquely to strictly continuous functionals on
M() with the same norm, the map 𝜄𝑟 in the following is well-defined.

Proposition 8.3. Define 𝜄 ∶ Ξ1(L
1(𝐷(ℾ))) → L1(ℾ̂) by 𝜄(𝜇) = 𝜇(⋅ ⊗ 𝟙). Then 𝜄 maps into L1(ℾ̂)

and

𝜆(𝜄(𝜇)) ⊗ 𝟙 = 𝜆
𝐷(ℾ)(𝜇) (𝜇 ∈ Ξ1(L

1(𝐷(ℾ)))).

As such, A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊆ A(ℾ) ⊗ 𝟙. Similarly, the map 𝜄𝑟 ∶ Ξ∗
0
(C0(𝐷(ℾ))∗) → C(ℾ̂)∗ given by

𝜄𝑟(𝜇) = 𝜇(⋅⊗ 𝟙)maps into(C(ℾ̂)∗) and satisfies
(id⊗ 𝜄𝑟(𝜇))(W∗) ⊗ 𝟙 = (id⊗ 𝜇)(W𝐷(ℾ)∗) (𝜇 ∈ Ξ∗0(C0(𝐷(ℾ)))).

As such, B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊆ B𝑟(ℾ) ⊗ 𝟙.
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Proof. We first claim that

Ξ∞

(
(𝜔 ⊗ 𝜔 ⊗ id𝐷(ℾ))(W𝐷(ℾ)∗)

)
= 𝜔(𝟙)𝑝𝑧((𝜔 ⊗ id)(W∗) ⊗ 𝟙)𝑝𝑧 (𝜔 ∈ 𝓁1(ℾ), 𝜔 ∈ L1(ℾ̂)).

(8.3)
Indeed, by (8.2), if we set 𝑥 = 𝜆(𝜔), then 𝑥𝑒 = 𝜔(𝟙) and so

Ξ∞

(
(𝜔 ⊗ 𝜔 ⊗ id𝐷(ℾ))(W𝐷(ℾ))

)
= Ξ∞(𝜆𝐷(ℾ)(𝜔 ⊗ 𝜔))

= 𝑥𝑒𝑝𝑧(𝜆(𝜔) ⊗ 𝟙)𝑝𝑧 = 𝜔(𝟙)𝑝𝑧((𝜔 ⊗ id)(W) ⊗ 𝟙)𝑝𝑧.

Taking adjoints, and using that Ξ∞ is a ∗-map, yields (8.3).
Let 𝜇 ∈ Ξ1(L

1(𝐷(ℾ))). As 𝜇 = Ξ1(𝜇) = 𝜇◦Ξ∞, using (8.3),

⟨(𝜔 ⊗ 𝜔 ⊗ id𝐷(ℾ))(W𝐷(ℾ)∗), 𝜇⟩ = 𝜔(𝟙)⟨𝑝𝑧((𝜔 ⊗ id)(W∗) ⊗ 𝟙)𝑝𝑧, 𝜇⟩
= 𝜔(𝟙)⟨(𝜔 ⊗ id)(W∗) ⊗ 𝟙, 𝜇(𝑝𝑧 ⋅ 𝑝𝑧)⟩
= 𝜔(𝟙)⟨(𝜔 ⊗ id)(W∗) ⊗ 𝟙, 𝜇⟩,

where in the final step we again use that Ξ1(𝜇) = 𝜇. By the definition of 𝜄 this equals

⟨(𝜔 ⊗ 𝜔 ⊗ id𝐷(ℾ))(W𝐷(ℾ)∗), 𝜇⟩ = ⟨(𝜔 ⊗ id)(W∗), 𝜄(𝜇)⟩𝜔(𝟙)
= ⟨(id⊗ 𝜄(𝜇))(W∗), 𝜔⟩𝜔(𝟙) = ⟨𝜆(𝜄(𝜇)) ⊗ 𝟙, 𝜔 ⊗ 𝜔⟩.

As this holds for all 𝜔,𝜔, we have shown that

𝜆
𝐷(ℾ)(𝜇) = (id𝐷(ℾ) ⊗ 𝜇)(W𝐷(ℾ)∗) = 𝜆(𝜄(𝜇)) ⊗ 𝟙,

as claimed.
As 𝜆

𝐷(ℾ)◦Ξ1 = Ξ◦𝜆
𝐷(ℾ), we have shown that A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = Ξ(A(𝐷(ℾ))) is equal to

{𝜆(𝜄(𝜇)) ⊗ 𝟙 |𝜇 ∈ L1(𝐷(ℾ)), 𝜇 = Ξ1(𝜇)} ⊆ A(ℾ) ⊗ 𝟙.

However, by Proposition 6.1, A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊆ Ξ(C0(𝐷(ℾ))) = c0(ℾ) ⊗ 𝟙. Hence, 𝜆(𝜄(𝜇)) ∈ A(ℾ) ∩
c0(ℾ) = A(ℾ) for each 𝜇 = Ξ1(𝜇), and so 𝜄(𝜇) ∈ L1(ℾ̂) for such 𝜇.
Exactly the same argument works for 𝜇 ∈ Ξ∗

0
(C0(𝐷(ℾ))∗) yielding the claims about 𝜄𝑟 and

B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂). □

We can now give a simple criterion for when A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙.

Theorem 8.4. For any discrete quantum group ℾ the following are equivalent.

(1) 𝜄 ∶ Ξ1(L
1(𝐷(ℾ))) → L1(ℾ̂) is an isomorphism.

(2) A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙.

Furthermore, the following are equivalent.
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32 of 52 DAWS et al.

(3) 𝜄𝑟 ∶ Ξ∗
0
(C0(𝐷(ℾ))∗) → (C(ℾ̂)∗) is an isomorphism.

(4) B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) = B𝑟(ℾ) ⊗ 𝟙.

Proof. (1) ⇔ (2)As in Proposition 8.3, we identifyA(ℾ̂∖𝐷(ℾ)∕ℾ̂)with the image of Ξ1, and identifyA(ℾ̂) ⊗ 𝟙 with L1(ℾ̂), so that 𝜄 gives the inclusion A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊆ A(ℾ) ⊗ 𝟙. Thus, 𝜄 is an
isomorphism if and only if A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙.
(3) ⇔ (4) The proof is entirely analogous. □

We wish to identify the dual space of the image of Ξ1, for which the next (well-known and
standard) lemma is helpful.

Lemma 8.5. Let 𝐸 be a Banach space, let 𝑃 ∈ B(𝐸) be a contractive idempotent and set 𝐹 = 𝑃(𝐸).
Then 𝐹 is a closed subspace of 𝐸 and 𝐹∗ ≅ 𝑃∗(𝐸∗) isometrically, for the natural pairing between
𝑃∗(𝐸∗) ⊆ 𝐸∗ and 𝐹 ⊆ 𝐸.

Proof. By the Hahn–Banach theorem, we identify 𝐹∗ with 𝐸∗∕𝐹⟂ where 𝐹⟂ = {𝜇 ∈ 𝐸∗ |𝜇(𝑥) =
0 (𝑥 ∈ 𝐹)}. Notice that for 𝜇 ∈ 𝐸∗, we have that 𝜇(𝑥) = 0 for all 𝑥 ∈ 𝐹 if and only if 𝑃∗(𝜇) =
𝜇◦𝑃 = 0, and so𝐹⟂ = ker 𝑃∗. As we have the algebraic direct sum𝐸∗ = 𝑃∗(𝐸∗) ⊕ ker 𝑃∗, we iden-
tify 𝐸∗∕𝐹⟂ with 𝑃∗(𝐸∗) in a way which respects the dual pairing. It remains to show that this
identification is isometric. For 𝜇 ∈ 𝐸∗, we have

‖𝑃∗(𝜇)‖ = sup{|𝑃∗(𝜇)(𝑥)| |𝑥 ∈ 𝐸, ‖𝑥‖ ⩽ 1} = sup{|𝜇(𝑃(𝑥))| |𝑥 ∈ 𝐸, ‖𝑥‖ ⩽ 1}

= sup{|𝜇(𝑦)| | 𝑦 ∈ 𝐹, ‖𝑦‖ ⩽ 1},

as {𝑃(𝑥) |𝑥 ∈ 𝐸, ‖𝑥‖ ⩽ 1} = {𝑦 ∈ 𝐹 | ‖𝑦‖ ⩽ 1} because 𝑃 is contractive. Hence, ‖𝑃∗(𝜇)‖ =‖𝜇|𝐹‖ = ‖𝜇 + 𝐹⟂‖𝐸∗∕𝐹⟂ as claimed. □

In the following, for a Banach space 𝐸 and closed subspaces 𝐹 ⊆ 𝐸 and 𝐺 ⊆ 𝐸∗ we define

𝐹⟂ = {𝜇 ∈ 𝐸∗ |𝜇(𝑥) = 0 (𝑥 ∈ 𝐹)}, ⟂𝐺 = {𝑥 ∈ 𝐸 |𝜇(𝑥) = 0 (𝜇 ∈ 𝐺)}.

By the Hahn–Banach theorem, we have the natural isomorphism 𝐹∗ = 𝐸∗∕𝐹⟂, and that (⟂𝐺)⟂ is
the weak∗-closure of 𝐺. Furthermore, there is a canonical isometric identification (𝐸∕𝐹)∗ = 𝐹⟂.

Proposition 8.6. The Banach space adjoint 𝜄∗ ∶ (L1(ℾ̂))∗ → Ξ∞(L
∞(𝐷(ℾ))) is the map

(L1(ℾ̂))∗ = L∞(ℾ̂)∕(L1(ℾ̂))⟂ ∋ 𝑥 + (L1(ℾ̂))⟂ ↦ 𝑝𝑧(𝑥 ⊗ 𝟙)𝑝𝑧,

which hasweak∗-dense image.
Furthermore, 𝜄𝑟 is weak∗-weak∗-continuous, and the Banach space pre-adjoint map is

𝜄𝑟∗ ∶ C(ℾ̂)∕⟂((C(ℾ̂)∗)) → Ξ0(C0(𝐷(ℾ))); 𝑥 + ⟂((C(ℾ̂)∗)) ↦ 𝑝𝑧(𝑥 ⊗ 𝟙)𝑝𝑧,

which has norm-dense image.
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Proof. By definition, 𝜄∗ ∶ L∞(ℾ̂) → Ξ1(L
1(𝐷(ℾ)))∗, and so the identification of Ξ1(L1(𝐷(ℾ)))∗ with

Ξ∞(L
∞(𝐷(ℾ))) given by Lemma 8.5 shows that 𝜄∗ has the stated codomain. The given formula

for 𝜄∗ now follows easily from the definition of 𝜄. From Proposition 8.1, the image of Ξ∞ is the
weak∗-closure of 𝑝𝑧(L∞(ℾ̂) ⊗ 𝟙)𝑝𝑧, and thus 𝜄∗ has weak∗-dense image.
We observe that 𝜄𝑟 is weak∗-weak∗-continuous by definition, and that C(ℾ̂)∕⟂((C(ℾ̂)∗)) is the

canonical Banach space pre-dual of (C(ℾ̂)∗). One now gives the analogous argument for 𝜄𝑟. □

Motivated by Proposition 8.6, we wish to study the map 𝑥 ↦ 𝑝𝑧(𝑥 ⊗ 𝟙)𝑝𝑧 more closely. By [6,
section 7.1] there exists a normal UCP map Δ̂♯ ∶ L∞(ℾ̂)⊗̄ L∞(ℾ̂) → L∞(ℾ̂) which satisfies

Δ̂♯
(
𝑈𝛼
𝑖,𝑗 ⊗ 𝑈

𝛽

𝑘,𝑙

)
= 𝛿𝛼,𝛽𝛿𝑗,𝑘

1

dim𝑞(𝛼)
𝑈𝛼
𝑖,𝑙
.

Define𝔔∶ L∞(ℾ̂) → L∞(ℾ̂) by𝔔 = Δ̂♯◦Δ̂op. Thus,𝔔 is normal UCP with

𝔔(𝑈𝛼
𝑖,𝑗) = 𝛿𝑖,𝑗

1

dim𝑞(𝛼)

dim(𝛼)∑
𝑘=1

𝑈𝛼
𝑘,𝑘

= 𝛿𝑖,𝑗
1

dim𝑞(𝛼)
𝜒𝛼. (8.4)

From this formula, it is clear that𝔔 restricts to a UCP map𝔔0∶ C(ℾ̂) → C(ℾ̂).

Proposition 8.7. For any 𝑥 ∈ L∞(ℾ̂) we have that

𝑝𝑧(𝑥 ⊗ 𝟙)𝑝𝑧 = 𝑍∗(𝔔(𝑥) ⊗ 𝑝𝑒)𝑍.

Proof. Pre- and post-multiplying by 𝑍 and 𝑍∗, respectively, shows that the claim is equivalent to

(𝟙 ⊗ 𝑝𝑒)𝑍(𝑥 ⊗ 𝟙)𝑍∗(𝟙 ⊗ 𝑝𝑒) = 𝔔(𝑥) ⊗ 𝑝𝑒 (𝑥 ∈ L∞(ℾ̂)).

We have 𝑝𝑒𝜉 = (Λℎ(𝟙)|𝜉)Λℎ(𝟙) (𝜉 ∈ L2(ℾ̂)), and so for any 𝑇 ∈ B(L2(ℾ̂)) we have 𝑝𝑒𝑇𝑝𝑒 =

(Λℎ(𝟙)|𝑇Λℎ(𝟙))𝑝𝑒. Thus, the claim is equivalent to

(id⊗𝜔Λℎ(𝟙))(𝑍(𝑥 ⊗ 𝟙)𝑍∗) = 𝔔(𝑥) (𝑥 ∈ L∞(ℾ̂)).

Byweak∗-continuity, it suffices to check this claim for 𝑥 ∈ Pol(ℾ̂), and then by linearity, it suffices
to consider 𝑥 = 𝑈𝛼

𝑖,𝑗
for 𝛼 ∈ Irr(ℾ̂), 1 ⩽ 𝑖, 𝑗 ⩽ dim(𝛼).

Using

W(𝑥 ⊗ 𝟙)W∗ = ΣŴ∗(𝟙 ⊗ 𝑥)ŴΣ = Δ̂op(𝑥) (𝑥 ∈ L∞(ℾ̂)) (8.5)

we compute

𝑍(𝑈𝛼
𝑖,𝑗 ⊗ 𝟙)𝑍∗ = (𝐽 ⊗ 𝐽)W(𝐽 ⊗ 𝐽)W(𝑈𝛼

𝑖,𝑗 ⊗ 𝟙)W∗(𝐽 ⊗ 𝐽)W∗(𝐽 ⊗ 𝐽)

= (𝐽 ⊗ 𝐽)W

(
dim(𝛼)∑
𝑘=1

𝐽𝑈𝛼
𝑘,𝑗
𝐽 ⊗ 𝐽𝑈𝛼

𝑖,𝑘
𝐽

)
W∗(𝐽 ⊗ 𝐽).
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34 of 52 DAWS et al.

We next use that

𝐽𝑈𝛼
𝑘,𝑗
𝐽 = 𝑅(𝑈𝛼

𝑘,𝑗
)∗ = �̂�−𝑖∕2(𝑆(𝑈

𝛼
𝑘,𝑗
)∗) = �̂�−𝑖∕2(𝑈

𝛼
𝑗,𝑘
) =

dim(𝛼)∑
𝑙,𝑚=1

(ρ
1∕2
𝛼 )𝑗,𝑙(ρ

−1∕2
𝛼 )𝑚,𝑘𝑈

𝛼
𝑙,𝑚
, (8.6)

and also observe that 𝐽𝑈𝛼
𝑖,𝑘
𝐽 ∈ L∞(ℾ̂)′ so 𝟙 ⊗ 𝐽𝑈𝛼

𝑖,𝑘
𝐽 commutes with W∗. Using (8.5) again, we

thus obtain,

𝑍(𝑈𝛼
𝑖,𝑗 ⊗ 𝟙)𝑍∗ =

dim(𝛼)∑
𝑘,𝑙,𝑚=1

(ρ
1∕2
𝛼 )𝑗,𝑙(ρ

−1∕2
𝛼 )𝑚,𝑘(𝐽 ⊗ 𝐽)W(𝑈𝛼

𝑙,𝑚
⊗ 𝟙)W∗(𝟙 ⊗ 𝐽𝑈𝛼

𝑖,𝑘
𝐽)(𝐽 ⊗ 𝐽)

=

dim(𝛼)∑
𝑘,𝑙,𝑚,𝑛=1

(ρ
1∕2
𝛼 )𝑙,𝑗(ρ

−1∕2
𝛼 )𝑘,𝑚(𝐽 ⊗ 𝐽)(𝑈𝛼

𝑛,𝑚 ⊗ 𝑈𝛼
𝑙,𝑛
)(𝐽 ⊗ 𝐽)(𝟙 ⊗ 𝑈𝛼

𝑖,𝑘
)

=

dim(𝛼)∑
𝑘,𝑙,𝑚,𝑛=1

(ρ
1∕2
𝛼 )𝑙,𝑗(ρ

−1∕2
𝛼 )𝑘,𝑚𝐽𝑈

𝛼
𝑛,𝑚𝐽 ⊗ 𝐽𝑈𝛼

𝑙,𝑛
𝐽𝑈𝛼

𝑖,𝑘

=

dim(𝛼)∑
𝑘,𝑙,𝑚,𝑛,𝑟,𝑠=1

(ρ
1∕2
𝛼 )𝑙,𝑗(ρ

−1∕2
𝛼 )𝑘,𝑚(ρ

1∕2
𝛼 )𝑚,𝑟(ρ

−1∕2
𝛼 )𝑠,𝑛𝑈

𝛼
𝑟,𝑠 ⊗ 𝐽𝑈𝛼

𝑙,𝑛
𝐽𝑈𝛼

𝑖,𝑘
. (8.7)

Here we used that ρ𝛼 is a self-adjoint matrix and Equation (8.6). Next observe that 𝐽Λℎ(𝑎) =

Λℎ(𝜎𝑖∕2(𝑎)
∗) for 𝑎 ∈ Pol(ℾ̂), and thus

(
Λℎ(𝟙)||𝐽𝑈𝛼

𝑙,𝑛
𝐽𝑈𝛼

𝑖,𝑘
Λℎ(𝟙)

)
=
(
Λℎ(𝟙)||𝑈𝛼

𝑖,𝑘
𝐽𝑈𝛼

𝑙,𝑛
𝐽Λℎ(𝟙)

)
=
(
Λℎ((𝑈

𝛼
𝑖,𝑘
)∗)||Λℎ(𝜎𝑖∕2(𝑈

𝛼
𝑙,𝑛
)∗)

)
= ℎ

(
𝑈𝛼
𝑖,𝑘
𝜎𝑖∕2(𝑈

𝛼
𝑙,𝑛
)∗
)
=

dim(𝛼)∑
𝑡,𝑢=1

(ρ
−1∕2
𝛼 )𝑙,𝑡(ρ

−1∕2
𝛼 )𝑢,𝑛ℎ

(
𝑈𝛼
𝑖,𝑘
(𝑈𝛼

𝑡,𝑢)
∗
)

=

dim(𝛼)∑
𝑡,𝑢=1

(ρ
−1∕2
𝛼 )𝑡,𝑙(ρ

−1∕2
𝛼 )𝑛,𝑢𝛿𝑖,𝑡

(ρ𝛼)𝑢,𝑘

dim𝑞(𝛼)
= (ρ

−1∕2
𝛼 )𝑖,𝑙

(ρ
1∕2
𝛼 )𝑛,𝑘

dim𝑞(𝛼)
.

Hence, applying id⊗𝜔Λℎ(𝟙) to (8.7) gives

(id⊗𝜔Λℎ(𝟙))
(
𝑍(𝑈𝛼

𝑖,𝑗 ⊗ 𝟙)𝑍∗
)

=

dim(𝛼)∑
𝑘,𝑙,𝑚,𝑛,𝑟,𝑠=1

(ρ
1∕2
𝛼 )𝑙,𝑗(ρ

−1∕2
𝛼 )𝑘,𝑚(ρ

1∕2
𝛼 )𝑚,𝑟(ρ

−1∕2
𝛼 )𝑠,𝑛𝑈

𝛼
𝑟,𝑠(ρ

−1∕2
𝛼 )𝑖,𝑙

(ρ
1∕2
𝛼 )𝑛,𝑘

dim𝑞(𝛼)

=
1

dim𝑞(𝛼)
𝛿𝑖,𝑗

dim(𝛼)∑
𝑘=1

𝑈𝛼
𝑘,𝑘

= 𝔔(𝑈𝛼
𝑖,𝑗),

as required. □
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Corollary 8.8. The maps 𝜄∗ and 𝜄𝑟∗ are given by

𝜄∗ ∶ (L1(ℾ̂))∗ = L∞(ℾ̂)∕(L1(ℾ̂))⟂ → Ξ∞(L
∞(𝐷(ℾ))); 𝑥 + (L1(ℾ̂))⟂ ↦ 𝑍∗(𝔔(𝑥) ⊗ 𝑝𝑒)𝑍,

𝜄𝑟∗ ∶ C(ℾ̂)∕⟂((C(ℾ̂)∗)) → Ξ0(C0(𝐷(ℾ))); 𝑥 + ⟂((C(ℾ̂)∗)) ↦ 𝑍∗(𝔔0(𝑥) ⊗ 𝟙)𝑍.

In particular, (L1(ℾ̂))⟂ ⊆ ker𝔔 and ⟂((C(ℾ̂)∗)) ⊆ ker𝔔0. Furthermore,

∙ 𝜄∗ is injective if and only if (L1(ℾ̂))⟂ = ker𝔔,
∙ 𝜄∗𝑟 is injective if and only if

⟂((C(ℾ̂)∗)) = ker𝔔0,

and

∙ 𝜄∗ is surjective if and only if𝔔 has weak∗-closed image,
∙ 𝜄∗𝑟 is surjective if and only if𝔔0 has norm-closed image.

Proof. The formulae for 𝜄∗ and 𝜄𝑟∗ follow immediately from Propositions 8.7 and 8.6. In partic-
ular, as 𝜄∗ is well-defined, it follows that (L1(ℾ̂))⟂ ⊆ ker𝔔, and injectivity of 𝜄∗ is equivalent
to (L1(ℾ̂))⟂ = ker𝔔. As 𝜄∗ has weak∗-dense image, and tensoring with 𝑝𝑒 and conjugating
by 𝑍 does not change being weak∗-closed, it follows that 𝜄∗ is surjective if and only if 𝔔 has
weak∗-closed image. The claims for𝔔0 are analogous. □

8.2 One-sided averaging

We continue Remark 6.2, wherewe showed thatC0(𝐷(ℾ)∕ℾ̂) = {(id⊗ ℎ)(𝑥) ⊗ 𝟙 |𝑥 ∈ C0(𝐷(ℾ))} =
c0(ℾ) ⊗ 𝟙, and noticed that the averaging map from C0(𝐷(ℾ)∕ℾ̂) to C0(ℾ̂∖𝐷(ℾ)∕ℾ̂) is given by 𝑥 ⊗
𝟙 ↦ 𝐴(𝑥) ⊗ 𝟙, where 𝐴 is the map discussed at the start of Section 7.
The one-sided averaging map Ξ𝑟 ∶ C0(𝐷(ℾ)) → C0(𝐷(ℾ)∕ℾ̂) is associated to the map Ξ𝑟

1
∶

L1(𝐷(ℾ)) → L1(𝐷(ℾ)) given by 𝜇 ↦ 𝜇(𝑝𝑧⋅) = 𝜇𝑝𝑧; compare with Remark 5.13 and Proposition 8.1.
The adjoint map is Ξ𝑟∞∶ L∞(𝐷(ℾ)) → L∞(𝐷(ℾ)); 𝑥 ↦ 𝑝𝑧𝑥 which maps 𝑍∗(𝟙 ⊗ 𝑥)𝑍(𝑥 ⊗ 𝟙) to
𝑥𝑒𝑝𝑧(𝑥 ⊗ 𝟙), and hence the image of Ξ𝑟∞ is the weak∗-closure of {𝑝𝑧(𝑥 ⊗ 𝟙) |𝑥 ∈ L∞(ℾ̂)}.
It seems difficult to express elements of the form 𝑝𝑧(𝑥 ⊗ 𝟙) in a simple way, so there seems

to be no version of Proposition 8.7 in this setting. However, we do have the following version of
Proposition 8.3.

Proposition 8.9. Define 𝛼∶ {𝜇𝑝𝑧 |𝜇 ∈ L1(𝐷(ℾ))} → L1(ℾ̂) by 𝛼(𝜇) = 𝜇(⋅⊗ 𝟙). Then

𝜆(𝛼(𝜇)) ⊗ 𝟙 = 𝜆
𝐷(ℾ)(𝜇) (𝜇 = 𝜇𝑝𝑧 ∈ Ξ𝑟1(L

1(𝐷(ℾ)))).

As such,

A(𝐷(ℾ)∕ℾ̂) ⊆ A(ℾ) ⊗ 𝟙, (8.8)

with equality if and only if 𝛼 is surjective.
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36 of 52 DAWS et al.

Proof. Let 𝜇 ∈ L1(𝐷(ℾ)) with 𝜇 = 𝜇𝑝𝑧. Then we obtain

𝜆
𝐷(ℾ)(𝜇) = (id⊗ 𝜇)(W𝐷(ℾ)∗) = (id⊗ 𝜇)((𝑝𝑧)34𝑍

∗
34Ŵ

∗
24𝑍34W

∗
13)

= (id⊗ 𝜇)(𝑍∗34(𝟙
⊗3 ⊗ 𝑝𝑒)Ŵ

∗
24𝑍34W

∗
13) = (id⊗ 𝜇)(𝑍∗34(𝟙

⊗3 ⊗ 𝑝𝑒)𝑍34W
∗
13)

= (id⊗ 𝜇)((𝑝𝑧)34W
∗
13) = (id⊗ 𝜇)(W∗

13) = (id⊗ 𝛼(𝜇))(W∗) ⊗ 𝟙 = 𝜆(𝛼(𝜇)) ⊗ 𝟙

as claimed, where we use that (𝟙 ⊗ 𝑝𝑒)Ŵ
∗ = 𝟙 ⊗ 𝑝𝑒.

By construction, we have Ξ𝑟◦𝜆
𝐷(ℾ) = 𝜆

𝐷(ℾ)◦Ξ
𝑟
1
, and so

A(𝐷(ℾ)∕ℾ̂) = {𝜆
𝐷(ℾ)(𝜇) |𝜇 = 𝜇𝑝𝑧} = {𝜆(𝛼(𝜇)) ⊗ 𝟙 |𝜇 = 𝜇𝑝𝑧} ⊆ A(ℾ) ⊗ 𝟙.

Moreover, the last inclusion is an equality exactly when 𝛼 is onto. □

As before, we shall study the Banach space adjoint𝛼∗. As noted in Remark 6.2, we have c00(ℾ) ⊗
𝟙 = Ξ𝑟(c00(ℾ) ⊙ Pol(ℾ̂)) ⊆ Ξ𝑟(A(𝐷(ℾ))), and so 𝛼 has dense range, or equivalently, 𝛼∗ is injective.
Furthermore, we have

𝛼∗ ∶ L∞(ℾ̂) → {𝑝𝑧𝑥 |𝑥 ∈ L∞(𝐷(ℾ))} = {𝑝𝑧(𝑥 ⊗ 𝟙) |𝑥 ∈ L∞(ℾ̂)}−weak
∗
; 𝑥 ↦ 𝑝𝑧(𝑥 ⊗ 𝟙),

here again using Lemma 8.5 to identify the dual of L1(𝐷(ℾ))𝑝𝑧 with 𝑝𝑧 L
∞(𝐷(ℾ)). This implies

immediately that 𝛼∗ has weak∗-dense range, or equivalently, 𝛼 is injective. So, 𝛼 is surjective if
and only if 𝛼 is an isomorphism, by the Open Mapping theorem, and this in turn is equivalent to
𝛼∗ being an isomorphism, equivalently, 𝛼∗ being bounded below. With this in mind, notice that
for 𝑥 ∈ L∞(ℾ̂) we have

‖𝛼∗(𝑥)‖2 = ‖𝑝𝑧(𝑥 ⊗ 𝟙)‖2 = ‖𝑝𝑧(𝑥𝑥∗ ⊗ 𝟙)𝑝𝑧‖ = ‖𝔔(𝑥𝑥∗)‖, (8.9)

the last equality following readily from Proposition 8.7.
Recall from Subsection 7.1 that if ℾ is unimodular then 𝔔 = 𝐹 is the Haar-trace-preserving

conditional expectation of L∞(ℾ̂) onto𝒞ℾ.

Lemma 8.10. Let ℾ be unimodular. For 𝛿 > 0, the following are equivalent.

(1) ‖𝛼∗(𝑥)‖ ⩾ 𝛿‖𝑥‖ for each 𝑥 ∈ L∞(ℾ̂).
(2) ‖𝔔(𝑥)‖ ⩾ 𝛿2‖𝑥‖ for each 𝑥 ∈ L∞(ℾ̂) with 𝑥 ⩾ 0.
(3) 𝔔(𝑥) ⩾ 𝛿2𝑥 for each 𝑥 ∈ L∞(ℾ̂) with 𝑥 ⩾ 0.
(4) ‖𝛼∗(𝑥)‖ ⩾ 𝛿‖𝑥‖ for each 𝑥 ∈ C(ℾ̂).
(5) ‖𝔔0(𝑥)‖ ⩾ 𝛿2‖𝑥‖ for each 𝑥 ∈ C(ℾ̂) with 𝑥 ⩾ 0.
(6) 𝔔0(𝑥) ⩾ 𝛿2𝑥 for each 𝑥 ∈ C(ℾ̂) with 𝑥 ⩾ 0.

Proof. (1)⇔ (2) and (4)⇔ (5) follow from (8.9).
(2)⇒ (5) follows from the fact that𝔔 restricts to a map𝔔0∶ C(ℾ̂) → C(ℾ̂).
(2)⇒ (3) Given 𝑥 ∈ L∞(ℾ̂) and 𝜖 > 0, notice that

(𝜖𝟙 + 𝔔(𝑥∗𝑥))−1∕2𝔔(𝑥∗𝑥)(𝜖𝟙 + 𝔔(𝑥∗𝑥))−1∕2 ⩽ 𝟙.
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As𝔔 is a conditional expectation, it is a bimodule map. Set 𝑦 = 𝑥(𝜖𝟙 +𝔔(𝑥∗𝑥))−1∕2, so the previ-
ous equation shows that𝔔(𝑦∗𝑦) ⩽ 𝟙. Thus, 1 ⩾ ‖𝔔(𝑦∗𝑦)‖ ⩾ 𝛿2‖𝑦∗𝑦‖, so 𝑦∗𝑦 ⩽ 𝛿−2𝟙. Multiplying
by (𝜖𝟙 + 𝔔(𝑥∗𝑥))1∕2 on both sides yields

𝑥∗𝑥 ⩽ 𝛿−2(𝜖𝟙 + 𝔔(𝑥∗𝑥)) for all 𝜖 > 0,

and hence𝔔(𝑥∗𝑥) ⩾ 𝛿2𝑥∗𝑥 as claimed.
(5)⇒ (6) is analogous, and the reverse implications (3)⇒ (2) and (6)⇒ (5) are clear.
(6)⇒ (3) follows from Kaplansky density. Indeed, given 𝑥 ∈ L∞(ℾ̂) with 𝑥 ⩾ 0, there is a

bounded net of positive elements (𝑎𝑖)𝑖∈𝐼 in C(ℾ̂) with 𝑎𝑖 ���→
𝑖∈𝐼

𝑥 strongly, see [27, Corollary 5.3.6],

for example. Then (𝔔(𝑎𝑖) − 𝛿2𝑎𝑖)𝑖∈𝐼 is a net of positive elements, by 6), which converges weak∗

to𝔔(𝑥) − 𝛿2𝑥, showing that𝔔(𝑥) − 𝛿2𝑥 ⩾ 0, as required. □

Now let 𝐺 be a compact group (always assumed to be Hausdorff) and set ℾ = 𝐺. Then𝔔 is the
conditional expectation of L∞(𝐺) onto the class function algebra

𝒞𝐺 = {𝑓 ∈ L∞(𝐺) |𝑓(𝑡 ⋅ 𝑡−1) = 𝑓(⋅) (𝑡 ∈ 𝐺)},

and similarly at the 𝐶∗-algebra level, leading to𝒞0
𝐺
⊆ C(𝐺). It is now readily seen that𝔔 takes the

form

𝔔(𝑓) = ∫𝐺 𝑓(𝑡 ⋅ 𝑡
−1) d𝑡 (𝑓 ∈ L∞(𝐺)),

see [31, Lemma 1.2], for example. For 𝑟 ∈ 𝐺 we denote by Cl(𝑟) = {𝑡𝑟𝑡−1 | 𝑡 ∈ 𝐺} the conjugacy
class of 𝑟, and we write 𝐶𝐺(𝑟) = {𝑡 ∈ 𝐺 | 𝑡𝑟 = 𝑟𝑡} for the centraliser of 𝑟 in𝐺. As conjugation yields
a continuous action of𝐺 on itself,Cl(𝑟) is a closed subset of𝐺, and the stabiliser𝐶𝐺(𝑟) of 𝑟 ∈ 𝐺 is a
closed subgroup of 𝐺. The Orbit–Stabiliser theorem gives a bijection 𝐺∕𝐶𝐺(𝑟) → Cl(𝑟); 𝑡𝐶𝐺(𝑟) ↦

𝑡𝑟𝑡−1.

Proposition 8.11. Let 𝐺 be a compact group. For 𝛿 > 0, the following are equivalent.

(1) ‖𝔔(𝑓)‖ ⩾ 𝛿‖𝑓‖ for 𝑓 ∈ C(𝐺)+.
(2) Each conjugacy class satisfies |Cl(𝑟)| ⩽ 𝛿−1.
(3) Each centraliser 𝐶𝐺(𝑟) has finite index in 𝐺, with [𝐺 ∶ 𝐶𝐺(𝑟)] ⩽ 𝛿−1.

Proof. By the equivalence of (5) and (6) in Lemma 8.10, we see that condition (1) is equivalent to

∫𝐺 𝑓(𝑡𝑟𝑡
−1) d𝑡 ⩾ 𝛿𝑓(𝑟) (𝑓 ∈ C(𝐺)+, 𝑟 ∈ 𝐺). (8.10)

Denote by 𝜈 = d𝑡 the Haar measure on 𝐺, which is regular (we follow Rudin’s conventions
[44, Definition 2.15]). Fix 𝑟 ∈ 𝐺, and define 𝜃∶ 𝐺 → 𝐺 by 𝜃(𝑡) = 𝑡𝑟𝑡−1, a continuous map. Let
𝜇 ∈ 𝑀(𝐺) be the pushforward of the Haar measure, 𝜇 = 𝜈◦𝜃−1.
Then 𝜇 is regular, a fact surely known, but for completeness we give a quick proof. As 𝜈 is finite

and 𝐺 compact, we only need to check that 𝜇 is inner regular (note 𝜇(𝐸) = 1 − 𝜇(𝐺 ⧵ 𝐸) for every
Borel set 𝐸 ⊆ 𝐺). Let 𝐸 ⊆ 𝐺 be Borel and 𝜖 > 0, so as 𝜈 is regular, there is a compact 𝐿 ⊆ 𝜃−1(𝐸)
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38 of 52 DAWS et al.

with 𝜈(𝜃−1(𝐸) ⧵ 𝐿) < 𝜖. Then 𝐾 = 𝜃(𝐿) is compact, as 𝜃 is continuous, and 𝐿 ⊆ 𝜃−1(𝐸) ⇒ 𝐾 ⊆ 𝐸.
Also 𝐿 ⊆ 𝜃−1(𝐾), and so 𝜇(𝐸 ⧵ 𝐾) = 𝜈(𝜃−1(𝐸) ⧵ 𝜃−1(𝐾)) ⩽ 𝜈(𝜃−1(𝐸) ⧵ 𝐿) < 𝜖. We conclude that 𝜇
is regular as claimed.
It follows from Riesz’s theorem [44, Theorem 6.19] that 𝜇 is the unique regular measure on 𝐺

with

∫𝐺 𝑓(𝑠) d𝜇(𝑠) = ∫𝐺 𝑓(𝜃(𝑡)) d𝑡 = ∫𝐺 𝑓(𝑡𝑟𝑡
−1) d𝑡 (𝑓 ∈ C(𝐺)).

By regularity of 𝜇 we find for each 𝜖 > 0 an open set 𝑈 with 𝑟 ∈ 𝑈 and 𝜇(𝑈 ⧵ {𝑟}) < 𝜖. As 𝑈
is open and contains 𝑟, there is 𝑓∶ 𝐺 → [0, 1] continuous with 𝑓(𝑟) = 1 and 𝑓 supported in 𝑈.
Then

𝜈(𝐶𝐺(𝑟)) ⩽ ∫𝐺 𝑓(𝑡𝑟𝑡
−1) d𝑡 ⩽ 𝜈

(
{𝑡 ∈ 𝐺 | 𝑡𝑟𝑡−1 ∈ 𝑈}

)
= 𝜈(𝜃−1(𝑈)) = 𝜇(𝑈)

< 𝜇({𝑟}) + 𝜖 = 𝜈(𝜃−1({𝑟})) + 𝜖 = 𝜈(𝐶𝐺(𝑟)) + 𝜖.

Together with (8.10), this gives

𝛿 = 𝛿𝑓(𝑟) ⩽ ∫𝐺 𝑓(𝑡𝑟𝑡
−1) d𝑡 < 𝜈(𝐶𝐺(𝑟)) + 𝜖,

and as 𝜖 > 0 was arbitrary we conclude 𝛿 ⩽ 𝜈(𝐶𝐺(𝑟)).
Let 𝑥1 = 𝑒, 𝑥2, … , 𝑥𝑛 ∈ 𝐺 be such that the cosets (𝑥𝑗𝐶𝐺(𝑟))𝑛𝑗=1 are disjoint. By invariance of the

Haar measure,

1 = 𝜈(𝐺) ⩾

𝑛∑
𝑗=1

𝜈
(
𝑥𝑗𝐶𝐺(𝑟)

)
= 𝑛 𝜈(𝐶𝐺(𝑟)) ⩾ 𝑛𝛿,

so 𝑛 ⩽ 𝛿−1. Thus, [𝐺 ∶ 𝐶𝐺(𝑟)] ⩽ 𝛿−1, and by the Orbit–Stabiliser theorem we get |Cl(𝑟)| ⩽ 𝛿−1.
This argument shows that (1)⇒ (2)⇔ (3).
Conversely, assume that (2) holds. For 𝑟 ∈ 𝐺, let (𝑥𝑖𝐶𝐺(𝑟))𝑛𝑖=1 be a complete set of cosets of

𝐶𝐺(𝑟), equivalently, {𝑥𝑖𝑟𝑥−1𝑖 | 1 ⩽ 𝑖 ⩽ 𝑛} = Cl(𝑟). Then for 𝑓 ∈ C(𝐺)+,

∫𝐺 𝑓(𝑡𝑟𝑡
−1) d𝑡 =

𝑛∑
𝑖=1

∫𝐶𝐺(𝑟) 𝑓(𝑥𝑖𝑡𝑟𝑡
−1𝑥−1𝑖 ) d𝑡 =

𝑛∑
𝑖=1

𝜈(𝐶𝐺(𝑟))𝑓(𝑥𝑖𝑟𝑥
−1
𝑖 )

= 𝜈(𝐶𝐺(𝑟))
∑

𝑠∈Cl(𝑟)

𝑓(𝑠) ⩾ 𝜈(𝐶𝐺(𝑟))𝑓(𝑟).

As 1 = 𝜈(𝐺) = 𝑛 𝜈(𝐶𝐺(𝑟)) we see that 𝜈(𝐶𝐺(𝑟)) = 𝑛−1 ⩾ 𝛿 and so the inequality in (8.10) holds,
thus condition (1) holds. □

Recall that the derived subgroup of an abstract group 𝐻 is the subgroup generated by all com-
mutators [g , ℎ] = g−1ℎ−1gℎ for g , ℎ ∈ 𝐻, denoted by 𝐻′ or [𝐻,𝐻]. As 𝑡[g , ℎ]𝑡−1 = [𝑡g𝑡−1, 𝑡ℎ𝑡−1]

for g , ℎ, 𝑡 ∈ 𝐻 the subgroup𝐻′ is normal. As [g , ℎ] ∈ 𝐻′ by definition, we see that gℎ𝐻′ = ℎg𝐻′

and so 𝐻∕𝐻′ is abelian. Notice that 𝑡−1𝑟𝑡 = [𝑡, 𝑟−1]𝑟 ∈ 𝐻′𝑟, and so if 𝐻′ is finite, then |Cl(𝑟)| ⩽|𝐻′𝑟| = |𝐻′|, for any 𝑟. A remarkable theorem of Neumann shows the converse.

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70104 by L

ancaster U
niversity, W

iley O
nline L

ibrary on [11/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 39 of 52

Theorem8.12 [39, Theorem 3.1]. Let𝐻 be a group such that there is a constant 𝑛 ∈ ℕwith |Cl(𝑟)| ⩽
𝑛 for each 𝑟 ∈ 𝐻. Then𝐻′ is finite.

Combining this result with Proposition 8.11, Lemma 8.10 and Proposition 8.9 we obtain a
characterisation of the compact groups with A(𝐷(𝐺)∕𝐺) = A(𝐺) ⊗ 𝟙.

Corollary 8.13. Let 𝐺 be a compact group. Then A(𝐷(𝐺)∕𝐺) = A(𝐺) ⊗ 𝟙 if and only if 𝐺′ is finite.

It follows that there are many compact groups 𝐺 for which A(𝐷(𝐺)∕𝐺) is a strict subset of
A(𝐺) ⊗ 𝟙, for example 𝐺 = SU(𝑛) for 𝑛 ⩾ 2. Note that when ℾ = Γ is a discrete group we have
C(ℾ̂) = C∗𝑟 (Γ), hence 𝒞Γ̂ = L∞(ℾ̂) and 𝔔 = id. So, in this case one trivially gets A(𝐷(Γ)∕Γ̂) =
A(Γ) ⊗ 𝟙.
Next we consider duals of free orthogonal quantum groups.

Proposition 8.14. Let 𝑁 ⩾ 2, 𝐹 ∈ GL(𝑁, ℂ) with 𝐹𝐹 ∈ ℝ𝟙 and ℾ̂ = 𝑂+
𝐹
be the associated free

orthogonal quantum group. If ℾ is not unimodular, then A(𝐷(ℾ)∕ℾ̂) ⊊ A(ℾ) ⊗ 𝟙. This conclusion in
particular holds for ℾ̂ = SU𝑞(2) (𝑞 ∈ ]−1, 1[ ⧵ {0}).

Proof. The compact quantum group𝑂+
𝐹
was introduced in [51]; let us recall some of its properties,

see, for instance, [4, 47]. One can identify Irr(𝑂+
𝐹
) with ℤ+ in such a way that the fundamental

representation corresponds to 1, and the fusion rules are

(8.11)

Furthermore, every finite dimensional representation of 𝑂+
𝐹
is equivalent to its contragradient.

From (8.11) it follows that the classical and quantum dimension functions are given by dim(𝑛) =
[𝑛 + 1]𝑞𝑐 and dim𝑞(𝑛) = [𝑛 + 1]𝑞𝑞 for 𝑛 ∈ ℤ+ and some 0 < 𝑞𝑞 ⩽ 𝑞𝑐 ⩽ 1, where [𝑛]𝑞𝑥 are the 𝑞-

numbers given by [𝑛]𝑞𝑥 =
𝑞−𝑛𝑥 −𝑞𝑛𝑥
𝑞−1𝑥 −𝑞𝑥

if 0 < 𝑞𝑥 < 1 and [𝑛]1 = 𝑛. As we assume that 𝑂+
𝐹
is not of Kac

type, we have 𝑞𝑞 < 𝑞𝑐.
FromProposition 8.9,we know thatA(𝐷(ℾ)∕ℾ̂) ⊆ A(ℾ) ⊗ 𝟙, and that equality of these two vector

spaces is equivalent to

𝛼∗ ∶ L∞(ℾ̂) → {𝑝𝑧𝑥 |𝑥 ∈ L∞(𝐷(ℾ))}; 𝑥 ↦ 𝑝𝑧(𝑥 ⊗ 𝟙)

being an isomorphism. We will show that there is no 𝛿 > 0 for which the inequalities

‖𝔔(𝜒𝑛𝜒
∗
𝑛)‖ ⩾ 𝛿‖𝜒𝑛𝜒∗𝑛‖ (𝑛 ∈ ℕ) (8.12)

hold, which by (8.9) shows that 𝛼∗ is not bounded from below and proves the claim.
Fix 𝑛 ∈ ℕ and note that

(8.13)

To calculate the norm of this element in 𝒞𝑂+
𝐹
we note that the spectrum of 𝜒1 in 𝒞𝑂+

𝐹
is

equal to [−2, 2] and the restricted Haar integral is the semicircle law, see [47, Corollary 6.4.12].
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40 of 52 DAWS et al.

Functional calculus then establishes an isomorphism𝒞𝑂+
𝐹
≃ L∞([−2, 2]); in the unimodular case

this observation was recorded, for example, in [22].
Choose any 0 < 𝑞 < 1. The quantum group SU𝑞(2) can be constructed as an orthogonal quan-

tum group for an appropriate matrix [47, Proposition 6.4.8], so by the above we obtain a uniquely
determined isomorphism 𝒞𝑂+

𝐹
≃ 𝒞SU𝑞(2)

which maps the character 𝜒1 to the character 𝜒
SU𝑞(2)

1
∈

L∞(SU𝑞(2)). Using this isomorphismand (8.13)we can calculate the normof𝔔(𝜒𝑛𝜒
∗
𝑛) as follows:

‖‖‖𝔔 (
𝜒𝑛𝜒

∗
𝑛

)‖‖‖ =
‖‖‖‖‖‖

𝑛∑
𝑘=0

[2𝑘 + 1]𝑞𝑐
[2𝑘 + 1]𝑞𝑞

𝜒2𝑘

‖‖‖‖‖‖𝒞
𝑂+
𝐹

=

‖‖‖‖‖‖
𝑛∑

𝑘=0

[2𝑘 + 1]𝑞𝑐
[2𝑘 + 1]𝑞𝑞

𝜒
SU𝑞(2)

2𝑘

‖‖‖‖‖‖𝒞SU𝑞(2)

=

𝑛∑
𝑘=0

[2𝑘 + 1]𝑞𝑐
[2𝑘 + 1]𝑞𝑞

(2𝑘 + 1),

(8.14)

where in the last equality we use that C(SU𝑞(2)) has a continuous counit. Before we bound (8.14),
let us calculate the norm of 𝜒𝑛𝜒∗𝑛 in a similar way:

‖𝜒𝑛𝜒∗𝑛‖𝒞𝑂+
𝐹

= ‖𝜒𝑛‖2𝒞
𝑂+
𝐹

=
‖‖‖‖𝜒SU𝑞(2)

𝑛

‖‖‖‖
2

𝒞SU𝑞(2)

= (𝑛 + 1)2. (8.15)

It is an elementary exercise that ℕ ∋ 𝑛 ↦
[2𝑛+1]𝑞𝑐
[2𝑛+1]𝑞𝑞

∈ ℝ is decreasing for large enough 𝑛, say for

𝑛 ⩾ 𝑛0. Assume 𝑛 ⩾ 𝑛2
0
. We have by (8.14)

‖𝔔(𝜒𝑛𝜒
∗
𝑛)‖ ⩽

⌊√𝑛⌋∑
𝑘=0

(2𝑘 + 1) +
[2⌊√𝑛⌋ + 1]𝑞𝑐

[2⌊√𝑛⌋ + 1]𝑞𝑞

𝑛∑
𝑘=⌊√𝑛⌋+1(2𝑘 + 1). (8.16)

If 𝑞𝑐 = 1, we can continue as follows:

‖𝔔(𝜒𝑛𝜒
∗
𝑛)‖ ⩽ 2(⌊√𝑛⌋ + 1)

⌊√𝑛⌋
2

+ ⌊√𝑛⌋ + 1

+ (2⌊√𝑛⌋ + 1)
𝑞−1𝑞 −𝑞𝑞

𝑞
−2⌊√𝑛⌋−1
𝑞 −𝑞

2⌊√𝑛⌋+1
𝑞

(
2(𝑛 − ⌊√𝑛⌋) 𝑛+⌊√𝑛⌋+1

2
+ 𝑛 − ⌊√𝑛⌋),

consequently ‖𝔔(𝜒𝑛𝜒
∗
𝑛)‖ = (𝑛) as 𝑛 → ∞. If 𝑞𝑐 < 1 we similarly obtain from (8.16)

‖𝔔(𝜒𝑛𝜒
∗
𝑛)‖ ⩽ 2(⌊√𝑛⌋ + 1)

⌊√𝑛⌋
2

+ ⌊√𝑛⌋ + 1

+
𝑞
−2⌊√𝑛⌋−1
𝑐 −𝑞

2⌊√𝑛⌋+1
𝑐

𝑞−1𝑐 −𝑞𝑐

𝑞−1𝑞 −𝑞𝑞

𝑞
−2⌊√𝑛⌋−1
𝑞 −𝑞

2⌊√𝑛⌋+1
𝑞

(
2(𝑛 − ⌊√𝑛⌋) 𝑛+⌊√𝑛⌋+1

2
+ 𝑛 − ⌊√𝑛⌋),

and, as the second summand is bounded by (
𝑞𝑐
𝑞𝑞
)−2⌊√𝑛⌋−1 times a polynomial in 𝑛, we get‖𝔔(𝜒𝑛𝜒

∗
𝑛)‖ = (𝑛) as 𝑛 → ∞ in this case too. Together with (8.15), this shows that (8.12) cannot

hold for any 𝛿 > 0. □

Another class of examples is provided by certain infinite direct sums. For notational conve-
niencewe consider only countably infinite direct sums, but the proof below can be easily extended
to the general case.
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AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 41 of 52

Proposition 8.15. Let (ℾ𝑛)𝑛∈ℕ be a sequence of non-classical discrete quantum groups and let ℾ =⨁∞
𝑛=1 ℾ𝑛 be its infinite direct sum. Then A(𝐷(ℾ)∕ℾ̂) ⊊ A(ℾ) ⊗ 𝟙.

Proof. As in the proof of Proposition 8.14, we will show that 𝛼∗ is not bounded from below using
(8.11). Fix 𝑛 ∈ ℕ. As ℾ𝑛 is not classical, there is 𝛽 ∈ Irr(ℾ̂𝑛) with dim(𝛽) ⩾ 2. Assume first that the
real part of the off-diagonal matrix coefficient 𝑈𝛽

1,dim(𝛽)
, taken with respect to any orthonormal

basis 𝑒1, … , 𝑒dim(𝛽), is non-zero. Define self-adjoint 𝑦𝑛 ∈ Pol(ℾ̂𝑛) via 𝑦𝑛 = 𝑡(𝑈
𝛽

1,dim(𝛽)
+ 𝑈

𝛽∗

1,dim(𝛽)
),

where 𝑡 ∈ ℝ is chosen such that ‖𝑦𝑛‖ = 1 ∈ Sp(𝑦𝑛). Observe that 𝔔(𝑦𝑛) = 0 as 1 ≠ dim(𝛽) and
furthermore 2 ∈ Sp(𝟙 + 𝑦𝑛) ⊆ [0, 2]. It follows that ‖𝟙 + 𝑦𝑛‖ = 2. If the real part of 𝑈𝛽

1,dim(𝛽)
is

zero, then we construct an element 𝑦𝑛 with the same properties by using the imaginary part of
𝑈
𝛽

1,dim(𝛽)
instead.

For the definition and properties of ℾ =
⨁∞

𝑛=1 ℾ𝑛 we refer to [54] (see also [30, section 3]). Let
us only recall that the irreducible representations of ℾ̂ are given by

{𝑒⊠∞, 𝛽1 ⊠⋯⊠ 𝛽𝐾 ⊠ 𝑒⊠∞ |𝐾 ∈ ℕ, 𝛽1 ∈ Irr(ℾ̂1), … , 𝛽𝐾 ∈ Irr(ℾ̂𝐾)},

where 𝑒⊠∞ is the trivial representation on ℂ, while 𝛽1 ⊠⋯⊠ 𝛽𝐾 ⊠ 𝑒⊠∞ is the representation on
𝖧𝛽1 ⊗⋯⊗𝖧𝛽𝐾 with

𝑈
𝛽1⊠⋯⊠𝛽𝐾⊠𝑒⊠∞

(𝑖1,… ,𝑖𝐾),(𝑗1,… ,𝑗𝐾)
= 𝑈

𝛽1
𝑖1,𝑗1

⊗⋯⊗𝑈
𝛽𝐾
𝑖𝐾,𝑗𝐾

⊗ 𝟙⊗∞. (8.17)

Now, choose 𝑁 ∈ ℕ and consider (𝟙 + 𝑦1) ⊗⋯⊗ (𝟙 + 𝑦𝑁) ⊗ 𝟙⊗∞ in Pol(ℾ̂). As each 𝟙 + 𝑦𝑛 is
positive, we can write this element as 𝑥𝑥∗ for some 𝑥 ∈ C(ℾ̂). Then we have

‖𝑥‖2 = ‖𝑥𝑥∗‖ = ‖(𝟙 + 𝑦1) ⊗⋯⊗ (𝟙 + 𝑦𝑁) ⊗ 𝟙⊗∞‖ = ‖𝟙 + 𝑦1‖⋯ ‖𝟙 + 𝑦𝑁‖ = 2𝑁.

Next observe that

𝔔(𝑧1 ⊗⋯⊗ 𝑧𝐾 ⊗ 𝟙⊗∞) = 𝔔(𝑧1) ⊗⋯⊗𝔔(𝑧𝐾) ⊗ 𝟙⊗∞ (𝐾 ∈ ℕ, 𝑧1 ∈ Pol(ℾ̂1), … , 𝑧𝐾 ∈ Pol(ℾ̂𝐾)),

which easily follows from (8.17). Using this description and𝔔(𝑦𝑛) = 0 we have

𝔔(𝑥𝑥∗) = 𝔔
(
(𝟙 + 𝑦1) ⊗⋯⊗ (𝟙 + 𝑦𝑁) ⊗ 𝟙⊗∞

)
=

∑
𝑧1∈{𝟙,𝑦1}

⋯
∑

𝑧𝑁∈{𝟙,𝑦𝑁}

𝔔(𝑧1) ⊗⋯⊗𝔔(𝑧𝑁) ⊗ 𝟙⊗∞ = 𝟙⊗∞.

We thus obtain ‖𝑥‖ = 2𝑁−1 on the one hand, and ‖𝛼∗(𝑥)‖ = ‖𝔔(𝑥𝑥∗)‖1∕2 = 1 by using (8.9) on
the other. Hence, 𝛼∗ is not bounded from below. □

As a final remark, we consider briefly the second averaging map c0(ℾ) ⊗ 𝟙 = C0(𝐷(ℾ)∕ℾ̂) →
C0(ℾ̂∖𝐷(ℾ)∕ℾ̂) given by 𝑥 ⊗ 𝟙 ↦ 𝐴(𝑥) ⊗ 𝟙. As explained in Remark 7.2, there exist non-
unimodular ℾ for which there are elements 𝑥 ∈ A(ℾ) with 𝐴(𝑥) ∉ A(ℾ). In this situation, we
cannot have A(𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙, as 𝐴(𝑥) ⊗ 𝟙 ∉ A(ℾ) ⊗ 𝟙 while A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊆ A(ℾ) ⊗ 𝟙

by Proposition 8.3.
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42 of 52 DAWS et al.

8.3 Density of central algebras

Recall that the quantum characters are defined by

𝜒
𝑞
𝛼 =

dim(𝛼)∑
𝑖,𝑗=1

(ρ𝛼)𝑗,𝑖𝑈
𝛼
𝑖,𝑗 = 𝜎−𝑖∕2(𝜒𝛼) (𝛼 ∈ Irr(ℾ̂)).

Then for any 𝛽 ∈ Irr(ℾ̂), 1 ⩽ 𝑖, 𝑗 ⩽ dim(𝛽) we see that

ℎ(𝜒
𝑞∗
𝛼 𝑈

𝛽
𝑖,𝑗
) =

dim(𝛼)∑
𝑘,𝑙=1

(ρ𝛼)𝑘,𝑙ℎ
(
(𝑈𝛼

𝑘,𝑙
)∗𝑈

𝛽
𝑖,𝑗

)
=

𝛿𝛼,𝛽

dim𝑞(𝛼)

dim(𝛼)∑
𝑘=1

(ρ𝛼)𝑘,𝑗(ρ
−1
𝛼 )𝑖,𝑘 = 𝛿𝛼,𝛽

𝛿𝑖,𝑗

dim𝑞(𝛼)
. (8.18)

Thus, 𝜆(ℎ(𝜒𝑞∗𝛼 ⋅)) = dim𝑞(𝛼)
−1𝑝𝛼, and so

c00(ℾ) = 𝜆
(
span{ℎ(𝜒

𝑞∗
𝛼 ⋅) |𝛼 ∈ Irr(ℾ̂)}

)
.

We say that span{ℎ(𝜒𝑞∗𝛼 ⋅) |𝛼 ∈ Irr(ℾ̂)} ⊆ L1(ℾ̂) is the space of finitely supported elements in
L1(ℾ̂).

Lemma 8.16. As𝔔 is normal, it has a pre-adjoint map𝔔∗∶ L1(ℾ̂) → L1(ℾ̂), which satisfies

𝔔∗

(
ℎ(𝑈𝛼∗

𝑖,𝑗 ⋅)
)
=

(ρ−1𝛼 )𝑗,𝑖

dim𝑞(𝛼)
ℎ(𝜒

𝑞∗
𝛼 ⋅) (𝛼 ∈ Irr(ℾ̂), 1 ⩽ 𝑖, 𝑗 ⩽ dim(𝛼)) (8.19)

so that the space of finitely supported elements ofL1(ℾ̂) is contained in the image of𝔔∗ and also

𝔔∗

(
ℎ(𝜒

𝑞∗
𝛼 ⋅)

)
=

dim(𝛼)

dim𝑞(𝛼)
ℎ(𝜒

𝑞∗
𝛼 ⋅) (𝛼 ∈ Irr(ℾ̂)). (8.20)

Let 𝜔 ∈ L1(ℾ̂) be finitely supported, and let 𝑥 ∈ ker𝔔. Then 𝜔(𝑥) = 0.

Proof. For 𝛽 ∈ Irr(ℾ̂), 1 ⩽ 𝑠, 𝑡 ⩽ dim(𝛽) we compute that

𝔔∗

(
ℎ(𝑈𝛼∗

𝑖,𝑗 ⋅)
)
(𝑈

𝛽
𝑠,𝑡) = ℎ

(
𝑈𝛼∗
𝑖,𝑗 𝔔(𝑈

𝛽
𝑠,𝑡)

)
=

𝛿𝑠,𝑡

dim𝑞(𝛽)

dim(𝛽)∑
𝑟=1

ℎ
(
𝑈𝛼∗
𝑖,𝑗 𝑈

𝛽
𝑟,𝑟

)
= 𝛿𝛼,𝛽

𝛿𝑠,𝑡

dim𝑞(𝛼)
2
(ρ−1𝛼 )𝑗,𝑖 ,

while

(ρ−1𝛼 )𝑗,𝑖

dim𝑞(𝛼)
ℎ(𝜒

𝑞∗
𝛼 𝑈

𝛽
𝑠,𝑡) = 𝛿𝛼,𝛽

𝛿𝑠,𝑡

dim𝑞(𝛼)
2
(ρ−1𝛼 )𝑗,𝑖 .

by (8.18). As elements 𝑈𝛽
𝑠,𝑡 form a basis of Pol(ℾ̂), and Pol(ℾ̂) is weak∗-dense in L∞(ℾ̂), this

establishes (8.19). It follows that

𝔔∗

(
ℎ(𝜒

𝑞∗
𝛼 ⋅)

)
=

dim(𝛼)∑
𝑖,𝑗=1

(ρ𝛼)𝑖,𝑗𝔔∗

(
ℎ(𝑈𝛼∗

𝑖,𝑗 ⋅)
)
=

dim(𝛼)∑
𝑖,𝑗=1

(ρ𝛼)𝑖,𝑗
(ρ−1𝛼 )𝑗,𝑖

dim𝑞(𝛼)
ℎ(𝜒

𝑞∗
𝛼 ⋅) =

dim(𝛼)

dim𝑞(𝛼)
ℎ(𝜒

𝑞∗
𝛼 ⋅),

which is (8.20).

 14697750, 2025, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.70104 by L

ancaster U
niversity, W

iley O
nline L

ibrary on [11/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AVERAGINGMULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 43 of 52

To show that any finitely supported element 𝜔 ∈ L1(ℾ̂) annihilates ker𝔔, it suffices to show
that ℎ(𝜒𝑞∗𝛼 𝑥) = 0 for each 𝛼 ∈ Irr(ℾ̂) and 𝑥 ∈ ker𝔔. However, with 𝜔 = ℎ(𝜒

𝑞∗
𝛼 ⋅), we have

ℎ(𝜒
𝑞∗
𝛼 𝑥) = 𝜔(𝑥) =

dim𝑞(𝛼)

dim(𝛼)
𝔔∗(𝜔)(𝑥) =

dim𝑞(𝛼)

dim(𝛼)
𝜔(𝔔(𝑥)) = 0,

as required. □

The following is interesting in view of Lemma 7.3.

Proposition 8.17. The following are equivalent.

(1) c00(ℾ) is dense inA(ℾ) for the A(ℾ) norm.
(2) (L1(ℾ̂))⟂ = ker𝔔.

Furthermore, the following are equivalent.

(3) c00(ℾ) is weak∗-dense inB𝑟(ℾ).
(4) ⟂((C(ℾ̂)∗)) = ker𝔔0.

Proof. (1) ⇒ (2) By assumption, the finitely supported elements of L1(ℾ̂) are dense in L1(ℾ̂).
Take𝜔 ∈ L1(ℾ̂), and let (𝜔𝑛)𝑛∈ℕ be a sequence of finitely supported central elements converging
in norm to 𝜔. For 𝑥 ∈ ker𝔔, Lemma 8.16 then implies 0 = lim𝑛→∞ 𝜔𝑛(𝑥) = 𝜔(𝑥). We conclude
ker𝔔 ⊆ (L1(ℾ̂))⟂. Corollary 8.8 gives the reverse inclusion (L1(ℾ̂))⟂ ⊆ ker𝔔.
(2) ⇒ (1)Towards a contradiction, suppose that (1)does not hold. Then, byHahn-Banach, there

is 𝑥 ∈ L∞(ℾ̂) which annihilates the finitely supported elements in L1(ℾ̂), such that there is 𝜔 ∈

L1(ℾ̂) with 𝜔(𝑥) = 1. Thus, ℎ(𝜒𝑞∗𝛼 𝑥) = 0 for each 𝛼. From (8.19), it follows that

ℎ(𝑈𝛼∗
𝑖,𝑗 ⋅)(𝔔(𝑥)) = 𝔔∗

(
ℎ(𝑈𝛼∗

𝑖,𝑗 ⋅)
)
(𝑥) =

(ρ−1𝛼 )𝑗,𝑖

dim𝑞(𝛼)
ℎ(𝜒

𝑞∗
𝛼 𝑥) = 0,

for each 𝛼, 𝑖, 𝑗. As {ℎ(𝑎∗⋅) |𝑎 ∈ Pol(ℾ̂)} is dense in L1(ℾ̂) it follows that 𝔔(𝑥) = 0 and hence 𝑥 ∈

ker𝔔. By assumption 𝑥 ∈ (L1(ℾ̂))⟂, which is a contradiction.
3) ⇒ 4)By assumption, the finitely supported elements inL1(ℾ̂) areweak∗-dense in(C(ℾ̂)∗).

Then given𝜇 ∈ (C(ℾ̂)∗)wepick anet (𝜔𝑖)𝑖∈𝐼 of finitely supported elements inL1(ℾ̂) converging
weak∗ to 𝜇. For 𝑥 ∈ ker𝔔0 ⊆ ker𝔔we again have 0 = lim𝑖∈𝐼 𝜔𝑖(𝑥) = 𝜇(𝑥). Thus, ⟂((C(ℾ̂)∗)) ⊇
ker𝔔0, and together with Corollary 8.8 this shows 4).
4) ⇒ 3) Assume that (4) holds but (3) does not. This means that the space of finitely supported

elements of L1(ℾ̂) is not weak∗ dense in (C(ℾ̂)∗). The weak∗ topology of (C(ℾ̂)∗) is given by
the canonical predual C(ℾ̂)∕⟂((C(ℾ̂)∗)), hence there is 𝜇 ∈ (C(ℾ̂)∗) and 𝑥 ∈ C(ℾ̂) which anni-
hilates the finitely supported elements of L1(ℾ̂) and satisfies 𝜇(𝑥) = 1. By (4), it follows that
𝑥 ∉ ker𝔔0 so 𝔔(𝑥) ≠ 0, but the same argument as before shows that ⟨𝑥,𝔔∗(𝜔)⟩ = 0 for each
𝜔 ∈ L1(ℾ̂). This implies𝔔(𝑥) = 0, which is a contradiction. □

Corollary 8.18. If A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙 then c00(ℾ) is dense in A(ℾ). Furthermore, if
B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) = B𝑟(ℾ) ⊗ 𝟙 thenc00(ℾ) is weak∗-dense inB𝑟(ℾ).
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Proof. Assume that A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙. By Theorem 8.4, 𝜄 and hence also 𝜄∗ are isomor-
phisms. Using Corollary 8.8 we see that (L1(ℾ̂))⟂ = ker𝔔, and therefore Proposition 8.17 gives
the result. The case of the reduced Fourier–Stieltjes algebra is analogous. □

If ℾ is unimodular, the Haar state ℎ on L∞(ℾ̂) is a trace we have the normal conditional expec-
tation 𝐹∶ L∞(ℾ̂) → 𝒞ℾ, considered already in Subsection 7.1. Comparing the definition of 𝔔 in
(8.4) with formula (7.3) shows that𝔔 = 𝐹 in this case.

Theorem 8.19. Let ℾ be unimodular. Then𝔔 has weak∗-closed image, and 𝜄∗ is an isomorphism.
As such, A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙.

Proof. The map 𝔔 = 𝐹 is a weak∗-continuous idempotent and so has weak∗-closed image.
According to Corollary 8.8 this means that 𝜄∗ is surjective. Moreover, Proposition 7.1 shows that
𝔔∗ = 𝐹∗ is a projection onto L1(ℾ̂), and hence ker𝔔 = ker 𝐹 = (L1(ℾ̂))⟂; for this we could
also use Lemma 7.3 together with Proposition 8.17. Due to Corollary 8.8 we conclude that 𝜄∗ is
injective. The claim now follows from Theorem 8.4. □

Our next goal is to prove that density of c00(ℾ) in A(ℾ) holds under the assumption that ℾ
has central AP, and a similar claim for the Fourier–Stieltjes algebra. As a preparation we need to
establish a couple of results concerning the weak∗ topology ofM𝑙

𝑐𝑏
(A(ℾ)) and central AP.

Let us first recall some facts from [17, section 4]. If 𝔾 is a locally compact quantum group and
𝖧 a Hilbert space, then for 𝑥 ∈ C0(�̂�) ⊗ K(𝖧) and 𝜔 ∈ L1(�̂�)⊗̂ B(𝖧)∗ the bounded functional

Ω𝑥,𝜔 ∶ M𝑙
𝑐𝑏
(A(𝔾)) → ℂ; 𝑎 ↦ ⟨(Θ𝑙(𝑎) ⊗ id)𝑥, 𝜔⟩

lies in the predual𝑄𝑙(A(𝔾)). Moreover, every element of𝑄𝑙(A(𝔾)) arises in this way, see [17, Propo-
sition 3.8]. We shall extend this result as follows, improving [23, Proposition 1.3] in the classical
setting.

Lemma 8.20. Let 𝔾 be a locally compact quantum group and let 𝖧 be a Hilbert space. For any
𝑥 ∈ C0(�̂�) ⊗ K(𝖧) and 𝜇 ∈ (C0(�̂�) ⊗ K(𝖧))∗, the bounded linear functional

Ω𝑥,𝜇 ∶ M𝑙
𝑐𝑏
(A(𝔾)) → ℂ; 𝑎 ↦ ⟨𝜇, (Θ𝑙(𝑎) ⊗ id)𝑥⟩

is contained in 𝑄𝑙(A(𝔾)).

Proof. By continuity and linearity, it suffices to prove the result for 𝑥 = 𝑦 ⊗ 𝜃 with 𝑦 ∈ C0(�̂�), 𝜃 ∈

K(𝖧). Let 𝜇′ ∈ C0(�̂�)
∗ be given by ⟨𝜇′, 𝑏⟩ = ⟨𝜇, 𝑏 ⊗ 𝜃⟩ for 𝑏 ∈ C0(�̂�), so that

Ω𝑥,𝜇(𝑎) = ⟨𝜇,Θ𝑙(𝑎)(𝑦) ⊗ 𝜃⟩ = ⟨𝜇′, Θ𝑙(𝑎)(𝑦)⟩.
By a further continuity argument, wemay suppose that 𝑦 = (𝜔 ⊗ id)(W∗) for some 𝜔 ∈ L1(𝔾). As
(𝑎 ⊗ 𝟙)W∗ = (id⊗Θ𝑙(𝑎))(W∗), it follows thatΘ𝑙(𝑎)(𝑦) = (𝜔 ⊗ id)((𝑎 ⊗ 𝟙)W∗) = (𝜔𝑎 ⊗ id)(W∗)

for all 𝑎 ∈ M𝑙
𝑐𝑏
(A(𝔾)). Consider 𝑧 = (id⊗ 𝜇′)(W∗) ∈ L∞(𝔾), that is, ⟨𝑧, 𝜔′⟩ = ⟨𝜇′, (𝜔′ ⊗ id)(W∗)⟩

for any 𝜔′ ∈ L1(𝔾). Then we have

Ω𝑥,𝜇(𝑎) = ⟨𝜇′, (𝜔𝑎 ⊗ id)(W∗)⟩ = ⟨𝑧, 𝜔𝑎⟩ = ⟨𝑎, 𝑧𝜔⟩.
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Thus,Ω𝑥,𝜇 agrees with the action of 𝑧𝜔 ∈ L1(𝔾), considered as an element of 𝑄𝑙(A(𝔾)). It follows
that Ω𝑥,𝜇 ∈ 𝑄𝑙(A(𝔾)), as required. □

The next result should be compared with [17, Theorem 4.4] and [23, Theorem 1.9(c)].

Lemma 8.21. Let𝔾 be a locally compact quantum group and let𝑋 ⊆ M𝑙
𝑐𝑏
(A(𝔾)) be a convex subset.

If there is a net (𝑎𝑖)𝑖∈𝐼 in 𝑋 with 𝑎𝑖 ���→
𝑖∈𝐼

𝟙 weak∗, then there is a net (𝑏𝑗)𝑗∈𝐽 in 𝑋 with (Θ𝑙(𝑏𝑗) ⊗

id)(𝑥) ���→
𝑗∈𝐽

𝑥 in norm, for each 𝑥 ∈ C0(�̂�) ⊗ K(𝖧) and any Hilbert space 𝖧.

Proof. By assumption and Lemma 8.20, for any 𝑥 ∈ C0(�̂�) ⊗ K(𝖧) and 𝜇 ∈ (C0(�̂�) ⊗ K(𝖧))∗ we
have that

lim
𝑖∈𝐼

⟨𝜇, (Θ𝑙(𝑎𝑖) ⊗ id)(𝑥)⟩ = lim
𝑖∈𝐼

⟨𝑎𝑖, Ω𝑥,𝜇⟩ = ⟨𝟙,Ω𝑥,𝜇⟩ = ⟨𝜇, 𝑥⟩.
Hence, (Θ𝑙(𝑎𝑖) ⊗ id)(𝑥) ���→

𝑖∈𝐼
𝑥 weakly for each 𝑥. Consequently, for any 𝑛 ∈ ℕ and 𝑥1, … , 𝑥𝑛 ∈

C0(�̂�) ⊗ K(𝖧), the weak closure of the convex set
{(
(Θ𝑙(𝑎) ⊗ id)(𝑥𝑘)

)𝑛
𝑘=1

|𝑎 ∈ 𝑋
}
, in the 𝑛-fold

product of C0(�̂�) ⊗ K(𝖧) with itself, contains (𝑥1, … , 𝑥𝑛). By Hahn–Banach, the same is true for
the norm closure. In a standard way, we may now construct a (possibly) new net (𝑏𝑗)𝑗∈𝐽 in 𝑋 so
that (Θ𝑙(𝑏𝑗) ⊗ id)(𝑥) ���→

𝑗∈𝐽
𝑥 in norm for each 𝑥 ∈ C0(�̂�) ⊗ K(𝖧). □

Proposition 8.22. Let ℾ be a discrete quantumgroupwith the central approximation property. Given
𝑏 ∈ B𝑟(ℾ), there is a net (𝑏𝑖)𝑖∈𝐼 inc00(ℾ) ⊆ B𝑟(ℾ) with 𝑏𝑖 ���→

𝑖∈𝐼
𝑏 weak∗.

Suppose further that ℾ is centrally weakly amenable. Then we can choose the net (𝑏𝑖)𝑖∈𝐼 to be
bounded; more precisely, we can choose the net so that ‖𝑏𝑖‖ ⩽ Λ𝑐𝑏(ℾ)‖𝑏‖ for all 𝑖 ∈ 𝐼.

Proof. Consider the convex set c00(ℾ) ⊆ M𝑙
𝑐𝑏
(A(ℾ)). By assumption, this set contains a net con-

verging weak∗ to 𝟙, and so by Lemma 8.21 there is a net (𝑎𝑖)𝑖∈𝐼 in c00(ℾ) with Θ𝑙(𝑎𝑖)(𝑥) ���→
𝑖∈𝐼

𝑥

in norm for each 𝑥 ∈ C(ℾ̂). For every 𝑖 ∈ 𝐼, there is 𝜔𝑖 ∈ L1(ℾ̂)with 𝑎𝑖 = 𝜆(𝜔𝑖), and soΘ𝑙(𝑎𝑖)(𝑥) =

(𝜔𝑖 ⊗ id)Δℾ̂(𝑥) for 𝑥 ∈ C(ℾ̂). It follows that 𝜔𝑖 ⋆ 𝜇 ���→
𝑖∈𝐼

𝜇 weak∗ for each 𝜇 ∈ C(ℾ̂)∗. As L1(ℾ̂) is an

ideal in C(ℾ̂)∗, given 𝑏 = 𝜆(𝜇) ∈ B𝑟(ℾ), we obtain an approximating net inc00(ℾ) ⊆ B𝑟(ℾ) by
setting 𝑏𝑖 = 𝜆(𝜔𝑖 ⋆ 𝜇) = 𝑎𝑖𝑏, which converges weak∗ to 𝑏.
We now consider the case when ℾ is centrally weakly amenable. From the previous paragraph,

it follows that

𝜔𝑖 ⋆ 𝜇 = 𝜇◦Θ𝑙(𝑎𝑖) ⇒ ‖𝑏𝑖‖A(𝔾) = ‖𝑎𝑖𝑏‖A(𝔾) = ‖𝜔𝑖 ⋆ 𝜇‖ ⩽ ‖𝜇‖‖𝑎𝑖‖𝑐𝑏.
Hence, we can work with the convex set {𝑎 ∈ c00(ℾ) | ‖𝑎‖𝑐𝑏 ⩽ Λ𝑐𝑏(ℾ)}, and hence suppose that‖𝑎𝑖‖𝑐𝑏 ⩽ Λ𝑐𝑏(ℾ) for each 𝑖. Setting 𝑏𝑖 = 𝑎𝑖𝑏 as before then yields a net (𝑏𝑖)𝑖∈𝐼 with the desired
properties. □

Theorem 8.23. Let ℾ be a discrete quantum group with the central approximation property.
Then (L1(ℾ̂))⟂ = ker𝔔 andc00(ℾ) is dense inA(ℾ). Furthermore, ⟂((C(ℾ̂)∗)) = ker𝔔0 andc00(ℾ) is weak∗-dense inB𝑟(ℾ).
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Proof. We claim that there is a net (𝑎𝑖)𝑖∈𝐼 in c00(ℾ) with Θ𝑙(𝑎𝑖)(𝑥) ���→
𝑖∈𝐼

𝑥 weak∗ for each 𝑥 ∈

L∞(ℾ̂). This can be shown by adapting the proof of [17, Theorem 4.4], which shows that when
(𝑏𝑖)𝑖∈𝐼 is a net converging weak∗ to 𝟙 in M𝑙

𝑐𝑏
(A(ℾ)), and 𝑓 ∈ 𝓁1(ℾ), then the net given by 𝑎𝑖 =

𝑏𝑖 ⋆ 𝑓 will satisfy the property we need. As ℾ is discrete, we may take 𝑓 = 𝜀 the counit, and then if
𝑏𝑖 is central also 𝑎𝑖 will be central. For each 𝑖 let 𝜔𝑖 ∈ L1(ℾ̂)with 𝜆(𝜔𝑖) = 𝑎𝑖 , so that in particular
𝜔𝑖 has finite support.
Let 𝑥 ∈ ker𝔔, and 𝜔 ∈ L1(ℾ̂). Then 𝜔𝑖 ⋆ 𝜔 also has finite support, as 𝜆(𝜔𝑖 ⋆ 𝜔) = 𝑎𝑖𝜆(𝜔) ∈c00(ℾ). For each 𝑖, by (8.20), it follows that 𝜔𝑖 ⋆ 𝜔 = 𝔔∗(𝜈𝑖) for some 𝜈𝑖 ∈ L1(ℾ̂) with finite

support. Thus
𝜔(𝑥) = lim

𝑖∈𝐼
⟨Θ𝑙(𝑎𝑖)(𝑥), 𝜔⟩ = lim

𝑖∈𝐼
⟨𝑥 ⋆ 𝜔𝑖, 𝜔⟩ = lim

𝑖∈𝐼
⟨𝑥,𝔔∗(𝜈𝑖)⟩ = lim

𝑖∈𝐼
𝜈𝑖(𝔔(𝑥)) = 0.

As𝜔 ∈ L1(ℾ̂)was arbitrary it follows that 𝑥 ∈ (L1(ℾ̂))⟂.We thus have ker𝔔 ⊆ (L1(ℾ̂))⟂, and
hence ker𝔔 = (L1(ℾ̂))⟂ by Corollary 8.8. Therefore, Proposition 8.17 yields the first claim.
Now let 𝜇 ∈ (C(ℾ̂)∗). Taking 𝑋 = c00(ℾ) in Lemma 8.21, we can find a net (𝑎𝑖)𝑖∈𝐼 in c00(ℾ)

such that Θ𝑙(𝑎𝑖)(𝑥) ���→
𝑖∈𝐼

𝑥 in norm for all 𝑥 ∈ C(ℾ̂). We can write 𝑎𝑖 = 𝜆(𝜔𝑖) with 𝜔𝑖 ∈ L1(ℾ̂)

finitely supported. Then 𝜔𝑖 ⋆ 𝜇 is also finitely supported in L1(ℾ̂). Consequently, for 𝑥 ∈

ker𝔔0 ⊆ ker𝔔 we get 𝜇(𝑥) = 0 by an analogous argument as above. We thus have ker𝔔0 ⊆
⟂((C(ℾ̂)∗)), and the second claim now follows again fromCorollary 8.8 and Proposition 8.17. □

Remark 8.24. It is shown in [1, eq. (3.2)] that when ℾ has the central ACPAP, see [18, Definition
3], then L1(ℾ̂) is the closed linear span of functionals of the form ℎ(⋅𝜒𝑞𝛼). Recall that we can
express the quantumcharacter as𝜒𝑞𝛼 = 𝜎−𝑖∕2(𝜒𝛼), so in particular,𝜒

𝑞∗

𝛼
= 𝜎−𝑖∕2(𝜒𝛼)

∗ = 𝜎𝑖∕2(𝜒
∗
𝛼
) =

𝜎𝑖∕2(𝜒𝛼). Thus, for 𝑥 ∈ Pol(ℾ̂) we see that

ℎ(𝑥𝜒
𝑞
𝛼) = ℎ(𝑥𝜎−𝑖∕2(𝜒𝛼)) = ℎ(𝑥𝜎−𝑖(𝜎𝑖∕2(𝜒𝛼))) = ℎ(𝑥𝜎−𝑖(𝜒

𝑞∗

𝛼
)) = ℎ(𝜒

𝑞∗

𝛼
𝑥).

Hence, ℎ(⋅𝜒𝑞𝛼) = ℎ(𝜒
𝑞∗

𝛼
⋅), and so the linear span of the functionals ℎ(⋅𝜒𝑞𝛼) agrees with the finitely

supported functionals inL1(ℾ̂), compare the discussion before Lemma 8.16. Thus, Theorem 8.23
improves this result from [1] by showing that it holds whenever ℾ merely has the central AP.

With reference to Theorem 8.4, it would be interesting to know if there is any relation between
𝜄 being an isomorphism, and 𝜄𝑟 being an isomorphism. In general, we do not know of any such
relation, though in special cases we can say something, as follows.

Proposition 8.25. Suppose there exists𝐾 > 0 such that, for each 𝜇 ∈ (C(ℾ̂)∗), there is a net (𝜔𝑖)𝑖∈𝐼
inL1(ℾ̂) convergingweak∗ to 𝜇 and with ‖𝜔𝑖‖ ⩽ 𝐾‖𝜇‖ for each 𝑖 ∈ 𝐼. If 𝜄 is an isomorphism, then
also 𝜄𝑟 is an isomorphism.

Note that by Proposition 8.22 the assumption in Proposition 8.25 holds whenever ℾ is centrally
weakly amenable.

Proof. Recall that we can identify the dual space of C(ℾ̂)∕⟂((C(ℾ̂)∗)) with (C(ℾ̂)∗). Conse-
quently, the hypothesis implies that

sup
{|𝜔(𝑎)| |𝜔 ∈ L1(ℾ̂), ‖𝜔‖ ⩽ 1

}
⩾ 𝐾−1‖‖𝑎 + ⟂((C(ℾ̂)∗))‖‖C(ℾ̂)∕⟂((C(ℾ̂)∗))
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for each 𝑎 ∈ C(ℾ̂). In turn, this shows that the natural map

C(ℾ̂)∕⟂((C(ℾ̂)∗)) → L∞(ℾ̂)∕(L1(ℾ̂))⟂ = (L1(ℾ̂))∗

is bounded below. We have the commutative diagram

As just remarked, the left-hand vertical map is bounded below, while by construction (compare
Proposition 8.1) the right-hand vertical map is isometric. It follows that if 𝜄∗ is bounded below,
then also 𝜄𝑟∗ is bounded below. As 𝜄

𝑟
∗ has norm-dense image by Proposition 8.6, we conclude that

𝜄𝑟 is an isomorphism as claimed. □

8.4 Counter-examples

We now show that there are non-unimodular discrete quantum groups for which A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊊
A(ℾ) ⊗ 𝟙. This is the case in particular for ℾ = ŜU𝑞(2), see Theorem 8.27.
Let us begin by estimating the norms of characters in certain quotient spaces. For more on the

link between strong amenability and spectral properties of characters, in particular the Kesten
amenability criterion, we refer to [6, section 3.4].

Lemma 8.26. Let ℾ be a discrete quantum group and let 𝛼 ∈ Irr(ℾ̂).

(1) The inequalities

‖𝜒𝛼 + (L1(ℾ̂))⟂‖L∞(ℾ̂)∕(L1(ℾ̂))⟂ ⩽ ‖𝜒𝛼 + ⟂((C(ℾ̂)∗))‖C(ℾ̂)∕⟂((C(ℾ̂)∗)) ⩽ ‖𝜒𝛼‖ ⩽ dim(𝛼)

hold.
(2) If ℾ is strongly amenable, then ‖𝜒𝛼 + ⟂((C(ℾ̂)∗))‖C(ℾ̂)∕⟂((C(ℾ̂)∗)) = dim(𝛼).
(3) If ℾ is strongly amenable and centrally weakly amenable, then

dim(𝛼)

Λ𝑐𝑏(ℾ) ⩽ ‖𝜒𝛼 + (L1(ℾ̂))⟂‖L∞(ℾ̂)∕(L1(ℾ̂))⟂ .

Proof.

(1) As L1(ℾ̂) ⊆ (C(ℾ̂)∗), we have ⟂((C(ℾ̂)∗)) ⊆ (L1(ℾ̂))⟂ and the first point easily follows.
(2) Assume that ℾ is strongly amenable. Then the counit defines an element 𝜀 ∈ C(ℾ̂)∗ of norm 1.

Observe that 𝜀 ∈ (C(ℾ̂)∗), thus for 𝑥 ∈ ⟂((C(ℾ̂)∗)) ⊆ C(ℾ̂)we have 𝜀(𝑥) = 0. Consequently,
we can define a functional 𝜀 of norm 1 by

𝜀∶ C(ℾ̂)∕⟂((C(ℾ̂)∗)) ∋ 𝑦 + ⟂((C(ℾ̂)∗)) ↦ 𝜀(𝑦) ∈ ℂ.
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Hence,

‖𝜒𝛼 + ⟂((C(ℾ̂)∗))‖C(ℾ̂)∕⟂((C(ℾ̂)∗)) ⩾ ||𝜀(𝜒𝛼 + ⟂((C(ℾ̂)∗)))|| = dim(𝛼),

and in conjunction with part 1) this completes the proof of 2).
(3) Assume in addition that ℾ is centrally weakly amenable, so that there is a net (𝜔𝜆)𝜆∈Λ in

L1(ℾ̂) such that with 𝑎𝜆 = 𝜆(𝜔𝜆) we have ‖Θ𝑙(𝑎𝜆)‖𝑐𝑏 ⩽ Λ𝑐𝑏(ℾ) for each 𝜆, and 𝑎𝜆 ����→
𝜆∈Λ

𝟙 pointwise. Define 𝜇 ∈ 𝓁1(ℾ) by 𝜇(𝑒𝛽
𝑖,𝑗
) = 𝛿𝛼,𝛽𝛿𝑖,𝑗 . By (2.2), we find (𝜇 ⊗ id)(W∗) = (id⊗

𝜇)(Ŵ) = 𝜒𝛼, and so
𝜔𝜆(𝜒𝛼) = (𝜇 ⊗ 𝜔𝜆)(W

∗) = 𝜇(𝑎𝜆) ����→
𝜆∈Λ

𝜇(𝟙) = dim(𝛼).

As Θ𝑙(𝑎𝜆)(𝑥) = (𝜔𝜆 ⊗ id)Δ̂(𝑥) for 𝑥 ∈ L∞(ℾ̂) we see that 𝜔𝜆 = 𝜔𝜆 ⋆ 𝜀 = 𝜀◦Θ𝑙(𝑎𝜆) as a func-
tional on C(ℾ̂), so in particular ‖𝜔𝜆‖ ⩽ Λ𝑐𝑏(ℾ). In fact, as ℾ is strongly amenable, it follows
from [25, Proposition 3.1] that ‖𝜔𝜆‖ = ‖Θ𝑙(𝑎𝜆)‖𝑐𝑏. As 𝜔𝜆 is central we can view it as a
functional on (L1(ℾ̂))∗ = L∞(ℾ̂)∕(L1(ℾ̂))⟂ with norm ‖𝜔𝜆‖, and so

‖𝜒𝛼 + (L1(ℾ̂))⟂‖L∞(ℾ̂)∕(L1(ℾ̂))⟂ ⩾ lim sup
𝜆∈Λ

⟨𝜒𝛼, 𝜔𝜆‖𝜔𝜆‖ ⟩ ⩾ dim(𝛼)

Λ𝑐𝑏(ℾ) ,

which establishes (3). □

The next theorem shows that the properties described in Theorem 8.4 do not always hold. In
particular, as the dual of SU𝑞(2) is strongly amenable and centrally weakly amenable they do not
hold for ℾ = ŜU𝑞(2) with 𝑞 ∈ ]−1, 1[ ⧵ {0}.

Theorem 8.27. Let ℾ be a discrete quantum group which is strongly amenable and non-
unimodular.

(1) If ℾ has central AP, then B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊊ B𝑟(ℾ) ⊗ 𝟙.
(2) If ℾ is centrally weakly amenable, then A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊊ A(ℾ) ⊗ 𝟙.

Proof. By Corollary 8.8, 𝜄𝑟∗ is a surjection if and only if 𝔔0 has norm-closed image. If this is the
case, then𝔔0 drops to an isomorphismC(ℾ̂)∕ ker𝔔0 → 𝔔0(C(ℾ̂)) by the OpenMapping theorem.
In particular, there exists 𝛿 > 0 with

‖𝔔0(𝑥)‖ ⩾ 𝛿‖𝑥 + ker𝔔0‖C(ℾ̂)∕ ker𝔔0
(𝑥 ∈ C(ℾ̂)).

By (8.4), this shows that

dim(𝛼)

dim𝑞(𝛼)
‖𝜒𝛼‖ ⩾ 𝛿‖𝜒𝛼 + ker𝔔0‖C(ℾ̂)∕ ker𝔔0

(𝛼 ∈ Irr(ℾ̂)).

(1) Suppose ℾ has central AP, so by Theorem 8.23, ker𝔔0 =
⟂((C(ℾ̂)∗)). Using Lemma 8.26 and

our assumption that ℾ is strongly amenable, we hence conclude that

dim(𝛼)2

dim𝑞(𝛼)
=

dim(𝛼)

dim𝑞(𝛼)
‖𝜒𝛼‖ ⩾ 𝛿‖𝜒𝛼 + ker𝔔0‖ = 𝛿 dim(𝛼) ⇒ dim(𝛼) ⩾ 𝛿 dim𝑞(𝛼),
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for each 𝛼 ∈ Irr(ℾ̂), whichmeans that ℾmust be unimodular. Indeed, given any 𝛼 ∈ Irr(ℾ̂) and
𝑛 ⩾ 1, let have decomposition for some finite index set 𝐼 and 𝛽𝑖 ∈ Irr(ℾ̂).
As the usual dimension and quantum dimension are additive and multiplicative and respect
equivalence,

Letting 𝑛 → ∞ shows that dim𝑞(𝛼) = dim(𝛼), whence ℾ is unimodular. This is a contradic-
tion to our assumptions, so 𝜄𝑟∗ cannot be surjective, and hence cannot be an isomorphism.
This means that 𝜄𝑟 cannot be an isomorphism either (see, for instance, [9, chapter VI,
Proposition 1.9]), and hence Theorem 8.4 yields the claim.

(2) Suppose now that ℾ is centrally weakly amenable. We again proceed by contradiction, assum-
ing that 𝜄∗ is a surjection. Corollary 8.8 then implies that𝔔 hasweak∗-closed image, so𝔔 has
also norm-closed image (see, e.g., [9, chapter VI, Theorem 1.10]). Hence, there exists 𝛿 > 0

with

dim(𝛼)

dim𝑞(𝛼)
‖𝜒𝛼‖ ⩾ 𝛿‖𝜒𝛼 + ker𝔔‖L∞(ℾ̂)∕ ker𝔔 (𝛼 ∈ Irr(ℾ̂)).

By Theorem 8.23, we have (L1(ℾ̂))⟂ = ker𝔔, and so by Lemma 8.26 we obtain

dim(𝛼)2

dim𝑞(𝛼)
=

dim(𝛼)

dim𝑞(𝛼)
‖𝜒𝛼‖ ⩾ 𝛿

dim(𝛼)

Λ𝑐𝑏(ℾ)
⇒ dim(𝛼) ⩾

𝛿

Λ𝑐𝑏(ℾ)
dim𝑞(𝛼).

This gives again a contradiction to our assumption that ℾ is not unimodular. In the same
way as above, it follows that 𝜄∗ cannot be surjective, and hence cannot be an isomorphism.
We conclude that 𝜄 cannot be an isomorphism, and then Theorem 8.4 completes again the
proof. □

Remark 8.28. As already indicated above, Theorem 8.27 applies in particular to ℾ = ŜU𝑞(2). One
can obtain the conclusion A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊊ A(ℾ) ⊗ 𝟙 also in another way in this case, which we
now briefly sketch. By [18, Remark 31], there exists a bounded central functional 𝜔 ∈ (C(ℾ̂)∗)
which cannot be written as a linear combination of positive functionals in (C(ℾ̂)∗). Based
on this one can show B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊊ B𝑟(ℾ) ⊗ 𝟙, and as Λ𝑐𝑏(ℾ) = 1 by [18, Theorem 24],
Proposition 8.25 and Theorem 8.4 imply A(ℾ̂∖𝐷(ℾ)∕ℾ̂) ⊊ A(ℾ) ⊗ 𝟙.

8.5 Summary

We conclude with a brief summary of our main results in this section. By Theorem 8.4, we have
A(ℾ̂∖𝐷(ℾ)∕ℾ̂) = A(ℾ) ⊗ 𝟙 if and only if 𝜄 is an isomorphism. This is equivalent to 𝜄∗ being an
isomorphism, a problem which can be split into two subproblems.

∙ Injectivity of 𝜄∗. By Corollary 8.8, this is equivalent to (L1(ℾ̂))⟂ = ker𝔔, which is further
equivalent to c00(ℾ) being dense in A(ℾ), see Proposition 8.17. These conditions hold for
unimodular ℾ, Theorem 8.19, and when ℾ has the central AP, Theorem 8.23.
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∙ Surjectivity of 𝜄∗. This is equivalent to 𝜄∗ having weak∗-closed image and, by Corollary 8.8, also
equivalent to 𝔔 having weak∗-closed image. It follows from Theorem 8.27 that this property
does not always hold.

The situation for B𝑟(ℾ̂∖𝐷(ℾ)∕ℾ̂) and B𝑟(ℾ) ⊗ 𝟙 is entirely analogous. We leave open whether it
is always true that (L1(ℾ̂))⟂ = ker𝔔, and whether 𝜄∗ being surjective could be equivalent to ℾ
being unimodular.
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