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1 | INTRODUCTION

Approximation properties like amenability, weak amenability, the Haagerup property and the
Haagerup-Kraus approximation property have been studied extensively in the setting of locally
compact quantum groups, see [6] for a survey. In comparison to the case of groups, an inter-
esting new feature in the quantum setting is the interplay between discrete quantum groups,
their Drinfeld doubles, and the associated C*-tensor categories. In particular, the central versions
of amenability, the Haagerup property, weak amenability and central property (T) for discrete
quantum groups can be recast at the level of C*-tensor categories [42], thus building a natural
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bridge to the study of subfactors. Central approximation properties, in turn, are key to a range of
fundamental results regarding the analytic structure of discrete quantum groups [18, 21].

In this paper we show that, for all the approximation properties mentioned above, the central
version of the property for a discrete quantum group is equivalent to the corresponding prop-
erty of its Drinfeld double. Special cases of these equivalences were known previously, and our
main point is that they actually hold in complete generality. This yields a succinct conceptual
understanding of central approximation properties, and highlights the key role played by the
Drinfeld double.

We prove in fact a more general result. Namely, for a locally compact quantum group G with a
compact quantum subgroup K C G, we show that averaging elements of L*°(G) with respect to left
and right translations by K maps completely bounded multipliers of G to K-biinvariant completely
bounded multipliers of G. The resulting averaging map is contractive and preserves complete pos-
itivity, the Fourier algebra and other standard properties of multipliers. In the special case that
G = D(I) is the Drinfeld double of a discrete quantum group ['and K = T, the K-biinvariant func-
tion algebras may be identified with the corresponding algebras of central functions on [, and we
show that the same holds for completely bounded multipliers. This yields our result linking the
approximation properties of the Drinfeld double D(I") with the central approximation properties
of I.

We also discuss a number of related questions. For unimodular discrete quantum groups there
is a well-known averaging procedure sending completely bounded multipliers to central com-
pletely bounded multipliers [6, 32]. We show that this procedure, which is different from the
above averaging with respect to compact quantum subgroups, maps the Fourier algebra to itself.
As a byproduct, we obtain that amenability of the Drinfeld double of a discrete quantum group is
equivalent to its strong amenability, which in turn implies that the discrete quantum group must
be unimodular. Some of these facts seem to be known to experts, but we were unable to locate
precise references in the literature, and so we take the opportunity to use our techniques to give
a self-contained account.

In addition, we study the centre of the Fourier algebra for discrete quantum groups. Here the sit-
uation is more subtle than for completely bounded multipliers. We show that there is a canonical
inclusion map from the biinvariant Fourier algebra of the Drinfeld double to the central Fourier
algebra, and prove that this map is an isomorphism for unimodular discrete quantum groups.
However, we also show that the biinvariant Fourier algebra may be strictly smaller than the central
Fourier algebra in general. In fact, this happens already for the dual of SU,(2).

Let us explain how the paper is organised. In Section 2, we collect some background mate-
rial and fix our notation. Section 3 contains a brief review of completely bounded multipliers,
and in Section 4 we record the definitions of (strong) amenability, the Haagerup property, weak
amenability and the approximation property in the setting of locally compact quantum groups
and C*-tensor categories. In Section 5, we construct the averaging map for completely bounded
multipliers of a locally compact quantum group with respect to a closed compact quantum sub-
group. In Section 6, we specialise to the setting of Drinfeld doubles of discrete quantum groups,
and prove our main results concerning approximation properties. Section 7 contains some fur-
ther results on approximation properties for discrete quantum groups and their Drinfeld doubles,
which are related to the underlying discrete quantum group being unimodular. We show that cen-
tral Fourier algebra elements can be approximated by central finitely supported elements in this
case, and that amenability of the Drinfeld double of a discrete quantum group is equivalent to the
discrete quantum group being amenable and unimodular. Finally, in Section 8 we give equiva-
lent characterisations for the biinvariant Fourier algebra of the Drinfeld double to agree with the
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central Fourier algebra of a discrete quantum group. In addition, we show that the centre of the
Fourier algebra of any strongly amenable, non-unimodular, and centrally weakly amenable dis-
crete quantum group is strictly larger than the biinvariant Fourier algebra of its Drinfeld double.
This applies in particular to the dual of SU(2) for g € ]-1,1[ \ {0}.

We conclude with some general remarks on notation. When A is a C*-algebra we write M(A)
for its multiplier algebra. The canonical pairing between a Banach space X and its dual X* will be
denoted via (w, x) = w(x) for w € X*,x € X. If Z is a Hilbert space we write w; , for the vector
functional w, ,,(T) = (€|Tn), and abbreviate wg = wg . We write © for the algebraic tensor prod-
uct, ® for the tensor product of Hilbert spaces or the minimal tensor product of C*-algebras, and
M ® N for the spatial tensor product of von Neumann algebras M, N. We denote by y the flip map
for tensor products of algebras.

We would like to thank A. Skalski for several interesting comments on the first version of
this paper.

2 | PRELIMINARIES

In this section, we review some basic definitions and facts from the theory of locally compact
quantum groups in the sense of Kustermans and Vaes [33-35, 38].

By definition, a locally compact quantum group G is given by a von Neumann algebra L*°(G)
together with a normal unital x-homomorphism Ag : L®(G) — L®(G)® L*®(G) called comulti-
plication, satisfying (Ag ® id)Ag = (id @ Ag)Ag, and left, respectively, right Haar integrals ¢ and
1. These are normal, semifinite, faithful (n.s.f.) weights on L*°(G) satisfying certain invariance
conditions with respect to Ag. Note that in general the von Neumann algebra L*(G) is non-
commutative and will not be an algebra of functions on a measure space. Following this notational
convention, the predual of L*(G) is denoted by L!(G), and the GNS Hilbert space of ¢ by L*(G).
We write A, @ N, — L?(G) for the GNS map, where N, ={x € L¥(G) | p(x*x) < co}.

With any locally compact quantum group G one can associate the dual locally compact quan-
tum group G in such a way that the correspondence between G and G extends Pontryagin duality.
Furthermore, the Hilbert spaces L%(G) and L(G) are identified in a canonical way.

The (left) Kac-Takesaki operator W€ € L®(G)Q L®(G) is the operator on L3(G) ® L*(G)
defined via

(@ @ Id)WIAL(x) = Ay (@ @ id)Ag(x))  (w € L'(G),x € N,).

It is unitary and implements the comultiplication via Ag(x) = W&* (1 ® x)W® for x € L®(G). By
duality we also get the Kac-Takesaki operator for G, which is linked to W€ via WE = x(WE),
Tomita-Takesaki theory yields two groups of modular automorphisms (aip)teR, (a;/’)tGIR and mod-
ular conjugations J,,J, associated with the weights ¢, 1, respectively. We will also use the
right Kac-Takesaki operator defined by V& = (J; ® J, ¢)W@(J¢ ®Jy) € L®(G) ® L®(G), where
J5 is the modular conjugation for the dual left Haar integral. The operator V& implements the
comultiplication via Ag(x) = VE(x ® 1)V®* for x € L®(G).
The antipode Sg is a densely defined, typically unbounded, operator on L*(G) such that

(id ® @)W® € Dom(S) and S;((id ® w)W®) = (id ® w)W®* (w € LY(B)),
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and the unitary antipode R is a bounded, normal, %-preserving, antimultiplicative map on L*(G)
satisfying AgRg = ¥(Rg ® Rg)Ag, and given by Rg(x) = J,x*J,, for x € L*(G). These maps are

linked via Sg = Rg7® | =1°% R, where (17),cp is the group of scaling automorphisms of L(G).

—i/2 " T—if2
The left and right Hae{r integr/als are unique up to a scalar, and we will choose these scalars such
that ¢ = oRg.

We will mainly work with the weak*-dense C*-subalgebra C,(G) C L®(G). It is defined as the
norm-closure of {(id ® w)W® | w € L(G)}. After restriction, the comultiplication becomes a non-
degenerate x-homomorphism C,(G) — M(C,(G) ® C(G)). Similarly one defines CO(G), and then
one obtains W& € M(C,(G) ® CO(@)). Using the comultiplication of L*(G), we define a Banach
algebra structure on L}(G) viaw *x v = (w ® v)A for w,v € LY(G). As L*(G) is the dual of L1(G),
we have a canonical L}(G)-bimodule structure on L®(G), given by w * x = (id ® w)Ag(x) and
X * » = (0 ® id)Ag(x). Treating L!(G) as the predual of the von Neumann algebra L®(G) yields
an L®(G)-bimodule structure on L'(G) defined via xw = w(- x), wx = w(x -) for x € L®(G),w €
LY(G).

There is also a universal version of Cy(G) which we denote by C{(G), see [33, 45]. It
comes together with a comultiplication A¢ : C{(G) - M(C{(G) ® C((G)) and a surjective *-
homomorphism Ag : C{(G) — Cy(G) which respects the comultiplications. The Kac-Takesaki
operator W€ admits a lift to a unitary operator W® € M(C4(G) ® C,(G)) satisfying (A¢ ® id)WE =
WE. Using this operator, we can introduce the half-lifted comultiplication

AL Co(6) 3 x » W (T @ X)W® € M(CH(G) ® Cy(G)).

It satisfies (id ® Ag)AL = AL Ag. Similarly, writing Co(@)=1J <3C0((IA5)] 3» the right Kac-Takesaki
operator V€ € M(CO(@’ ) ® Cy(G)) admits a lift to a unitary operator V° & M(CO(G’ ) ® C((G))
satisfying (id ® Ag)V® = V©. Recall from [35, section 4] the opposite quantum group G°P, and
that WE™ = »(V&*). It follows that one way to define 7€ is as y(WE"*). We define

A Co(6) 3 x - TE(x @ 1V € M(Cy(6) ® CL(G)),

and find that (Ag ® id)AY = AZ"Ag. Indeed, one could also define A" using A, We can iterate
these constructions, which we illustrate by way of an example. Define AL = (A" ® id)AZ", and
observe that

Ag,r,uAG = (Aé’r ® id)Ag”AG = (AEJAG ® id)A}(‘5 =(d®A;® id)(Afé ® id)Ag
= (ild ® Ag @ id)(id ® AY)AY = (id ® AZ)(id ® Ag)AYL = (id ® AL)AL Ag.

As Ag is onto, this shows in particular that also A" = (id @ AZ")AL".

We define A : LY(G) — CO(@) by 1¢(w) = (w ® id)WE, and similarly for G. The Fourier algebra
of GisA(G) = A@(Ll(@)). One checks that A5 is multiplicative, and that A(G) is a dense subalgebra
of Cy(G). As Ag is also injective, we can define an operator space structure on A(G) by imposing
the condition that A5 : LY(G) — A(G) is completely isometric.

We will also use two larger algebras: the reduced Fourier-Stieltjes algebra B,(G) and the Fourier—
Stieltjes algebra B(G) defined via

B,(G) = {(id ® ©)(W®) |w € Co(G)*}, B(G) = {(id ® ' )(W®) | ' € CXG)*}.
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Together with the algebra structure of L*(6) and the norms ||(id ® w)(W*)|I5 () = llw|l on B,(G)
and ||(id ® o’ )(WG*)”B(@) = ||w’|| on B(G), both B,(G) and B(G) become Banach algebras. In fact,
both are dual Banach algebras with preduals given by C,(G) and C, (G), respectively. When speak-
ing about the weak™*-topology on the (reduced) Fourier-Stieltjes algebra we mean the topology
arising this way. Furthermore we note that A(G) C B,(G) C B(G) C M(C((G)), and that the first
two inclusions are isometric. We will sometimes write 1z(w) = (id ® @)W also for w € CO(@)*.

A locally compact quantum group G is called compact if Cy(G) is unital, and in this case we
write C(G) for Cy(G). If G is compact then ¢ = 3 is a normal state, the Haar state, often denoted by
h € LY(G). The representation theory of compact quantum groups shares many features with the
one for classical compact groups. In particular, every irreducible unitary representation of a com-
pact quantum group G is finite-dimensional, and every unitary representation decomposes into a
direct sum of irreducibles. We write Irr(G) for the set of equivalence classes of irreducible unitary
representations of G, and for each a € Irr(G) let U* = [Ulf’fj]ilj.r:(la) € Mgim()(C(G)) be a represen-
tative. There is a unique positive invertible matrix p, with Tr(p,) = Tr(p;l) which intertwines U*
and the double contragradient representation (U%)“. Let us also recall the Schur orthogonality
relations

% -1y % :
h((Ufk> Uil) = 5“’35"1(;:(—$’ h<Uffj (Uf,z> ) = 5a,ﬁ5i,k% (eAY)

fora,B € Irr(G),1 < i, j < dim(a),1 < k,I < dim(B3). We often write dimq(oc) = Tr(p,) the quan-
tum dimension of a. Recall that the collection {Uffj |a € Irr(G),1 < i, j < dim(a)} forms a basis
for a dense Hopf *-subalgebra of C(G), which we denote by Pol(G). We have that S(Uicfj) = (U;?‘,l.)*.
The matrices p,, allow us to define functionals f, : Pol(G) — C by

£UD =2 (ZeO).
Then the scaling and modular automorphism groups are given by

0, =(f, ®1d® [,)A?, 1,=(f,®id®f_,)A®  (z€0).

dim(a)

For a € Irr(G), the contragradient representation has matrix [(Ulf"j)*]l. =1 and is similar to the

unitary representation U<,

We say that ["is discrete when Tis compact, and write cy(I') for C,([) in this case. The represen-
tation theory of [} implies that c,([) is the c,-direct sum of finite-dimensional matrix algebras,
and that £°() = L=(I) is the #*-direct product. We write c,,(I) C cy(I") for the dense sub-
algebra of finitely supported elements with respect to the direct sum structure. We can write
wl e L ([M®¢ (I explicitly as

. dim(a)
wi= Y X Ul ®e) 22)
aelrr(@) =1

where {ef‘j}?ijn:l(l“) are the matrix units of the matrix block M) (C) € co(I).
If there is no risk of confusion we will sometimes omit subscripts and abbreviate, for example, A

for Ag and A for Ag.

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T



6 of 52 | DAWS ET AL.

3 | COMPLETELY BOUNDED MULTIPLIERS

In this section, we recall some background on multipliers of locally compact quantum groups and
C*-tensor categories. We follow the notation and conventions in [17], and refer to [13, 25, 42] for
more information.

A left centraliser of a locally compact quantum group G is linear map T : L}(G) — L'(G) such
that

T(w* o) =T) *x o' (v, €L(B)).

We denote by Cib(L1 (6)) the space of completely bounded left centralisers. Together with the
completely bounded norm and composition, Ci b(L1 (©)) becomes a Banach algebra. We equip this
space with an operator space structure by requiring that the embedding Ci b (LY(®)) & CBLY(G))
is completely isometric. This turns Ci b(Ll (®)) into a completely contractive Banach algebra.

An operator b € L*(G) is said to be a completely bounded (CB) left multiplier if b A(G) C A(G)
and the associated map

e!(b), : LY(G) » L1(G) satisfying bA(w) = A(0'(b),(®))  (w € LY(G))

is completely bounded. As 7 is multiplicative we have ©!(b), € Cé b(Ll(@)) forany b € M!, (A(G)).
We write ©!(b) = (0!(b),)*, and denote the space of CB left multipliers by MlC : (A(G)). Any Fourier
algebra element ;1\(50) € A(G) is a CB left multiplier, with @l(;l\(a)))* € CB(L(G)) being the left
multiplication by w and G)l(;l\(cu)) = (w ® id)A. Let us also note that MlC b(A(G)) C M(Cy(G)).

IfT e Cé b(Ll(@)) is a left centraliser then its Banach space dual T* is a normal CB map on
L®(G) which is a left L' (&)-module homomorphism, that is, T* € Ll (@)CB"(L‘”(@)). Then, by [26,
Corollary 4.4], there exists a unique CB left multiplier b € Mi b(A(G)) satisfying ©!(b) = T*, that
is, ©/(b),. = T. It follows that the map ©/(-),.: M. (A(G)) — C! (L'(G)) is bijective. We define
the operator space structure on Mi b(A(G)) so that these spaces become completely isometric.

Ifb e Mlcb(A(G)) is such that ©!(b) is completely positive, we say that b is a completely positive
(CP) left multiplier. Furthermore, b is normalised if ®!(b) is unital.

Lemma3.1. Leta = A(@) € A(G) for some & € L(G). Then a is a CP multiplier if and only if @ is
positive, and a is normalised if and only if &(1) = 1.

Proof. We know that ©'(a) = (& ® id)A and so ©!(a)(1) = 1ifand only if &(1) = 1. If & is positive
then ©!(a) is CP. Hence, it remains to prove that if ©®!(a) is CP then & is positive. By [13, Theo-
rem 5.2] there is a positive linear functional u € Cg(@)* with a = (id ® u)(VW7*). The Banach space
adjoint A{*g : CO(@)* - Cg(@)* is isometric. Let ¢ be the composition of L! @) > CO(@)* with A:;’
so ¢ is also isometric. We see that

(id ® $(@)(W*) = (id ® D)(id ® Ag)(W*) = (id ® DYW*) = A(®) = a = (id ® w)(I*).

As {(@ @ id)(W*) | w € LY(G)} is norm dense in Cg(@), it follows that ¢(&) = u, and so @ is
positive, as required. O
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As the inclusion Mib(A(G)) S L®(G) is contractive, we can consider the restriction of the
Banach space adjoint of this map, giving a map L'(G) — M., (A(G))*. Let us define Q'(A(G)) C
M’C b(A(G))* as the closure of the image of this map. According to [25, Theorem 3.4], the space
Q'(A(G)) is a predual of Mib(A(G)), that is, we have

QUA®)" = M., (A6))

completely isometrically. Whenever we speak about the weak™*-topology on Mlc ,(A(G)) we will
have in mind this particular choice of predual. In this way, Mlc b(A(G)) becomes a dual Banach
algebra, that is, the multiplication of Mlc »(A(G)) is separately weak*-continuous.

Next we recall the definition of multipliers on rigid C*-tensor categories from the work of Popa-
Vaes [42, section 3]. If T is a C*-category and X,Y € T are objects we write T(X, Y for the space
of morphisms from X to Y. We denote by idy or id the identity morphism in T(X, X). By defini-
tion, a C*-tensor category is a C*-category T together with a bilinear *-functor @ : TXT — T, a
distinguished object 1 € T and unitary natural isomorphisms

I1®Xx2Xx2X®I, X®Y)®RZ=2X®(Y ®2)

satisfying certain compatibility conditions. For simplicity we shall always assume that T is strict,
which means that these unitary natural isomorphisms are identities, and that the tensor unit 1
is simple.

We also assume that T is rigid. Every rigid C*-tensor category T is semisimple, that is, every
object of T is isomorphic to a finite direct sum of simple objects. We write Irr(T) for the set of
isomorphism classes of simple objects in T, and choose representatives X; € T for elements i =
[X;] € Irr(T).

Let T be a rigid C*-tensor category. By definition, a multiplier on T is a family 6 = (6y y) of
linear maps GX,Y T TXQRY,XQY)>TX®Y,XQ®Y)forX,Y € T such that

Ox,.v,(9fh*) = g6x, v, (/A"
Ox,ex,.v,0v,1dx, ® f ®@idy ) = idy, ® bx, y,(f) ®idy,,

for all X,,Y,;€T, feTX,®Y,,X;®Y,) and g¢,heT(X,,X,) @ T(Y,,Y,) CT(X; ®
Y1, X, ® Y,). A multiplier 6 = (65 y) on T is said to be completely positive (or a CP multi-
plier) if all the maps Oy y are completely positive. A multiplier 6 = (6x y) on T is said to be
completely bounded (or a CB multiplier) if all the maps Oy y are completely bounded and
I8llcy = supx yer 16,y llcp < o0.

It is shown in [42, Proposition 3.6] that multipliers on T are in canonical bijection with func-
tions Irr(T) — C, and we will identify a multiplier 6 = (6 y) with its associated function 6 =
(6(k))kerrr(T)- Note that we have [[(6(k))kerr(rllco < 1Elcp-

We write M, (T) for the space of CB multipliers on T. Via composition of maps and the CB
norm this becomes naturally a Banach algebra, such that the product on M_,(T) corresponds to
pointwise multiplication of functions on Irr(T). In fact, M, (T) is a dual Banach algebra, whose
predual Q(T) can be constructed using the tube algebra of T, see [2, Corollary 5.3].

A standard example of a rigid C*-tensor category is the category T = Rep(G) of finite dimen-
sional unitary representations of a compact quantum group G. For a discrete quantum group ' we
shall write Corep(l) = Rep(f). Such C*-tensor categories will be the only ones of interest to us in
this paper.
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4 | APPROXIMATION PROPERTIES

In this section, we review the definition of various approximation properties in the theory of
locally compact quantum groups and rigid C*-tensor categories.
We begin with the case of locally compact quantum groups, compare [5, 6, 15, 17].

Definition 4.1. Let G be a locally compact quantum group. Then we say that G

* is strongly amenable if there exists a bounded approximate identity of A(G) consisting of CP
multipliers of G;

* has the Haagerup property if there exists a bounded approximate identity of C,(G) which
consists of CP multipliers of G;

* is weakly amenable if there exists a left approximate identity (e;);c; of A(G) satisfying
lim sup;¢; lle;ll.p, < o0. In this case, the smallest M such that we can choose ||¢;|., < M for all
i € I is the Cowling-Haagerup constant of G, denoted A_,(G);

* has the approximation property if there exists a net (e;);c; in A(G) which converges to 1 in the
weak™ topology of MlC o (A(G)).

While the definitions of the Haagerup property, weak amenability and the approximation prop-
erty for G in Definition 4.1 are standard, this is not quite the case for strong amenability. Our
terminology here follows [19, 48]. Usually, strong amenability of G is phrased in terms of the dual,
by equivalently saying that G is coamenable.

A number of equivalent characterisations of coamenability can be found in [5]. In particular,
conditions (6)-(8) in [5, Theorem 3.1] say that G is coamenable if and only if L'(G) = A(G) has a
bounded (left, right, or two-sided) approximate identity. An examination of the proof (in particu-
lar, that condition (5) implies conditions (6)—(8)) shows that when G is coamenable, the Banach
algebra L'(G) has a bounded (two-sided) approximate identity consisting of states; compare also
[24, Theorem 2]. That is, A(G) has a bounded approximate identity consisting of CP multipliers. It
follows that our definition of strong amenability is compatible with [5, Definition 3.1]. As we can
in fact choose the approximate identity to consist of states the associated multipliers will be nor-
malised. Therefore, we could equivalently strengthen the CP condition in the definition of strong
amenability to UCP.

Let us add that amenadbility of G is defined in terms of the existence of an invariant mean on
L*®(G), see Definition 7.6. This is an a priori weaker notion than strong amenability, and the two
concepts are known to be equivalent only in special cases, compare [6, 48].

For equivalent characterisations of the Haagerup property see [15, Theorem 6.5]; however
be aware that some equivalent conditions in this reference may require a second countabil-
ity assumption.

In the setting of discrete quantum groups, one also considers central approximation properties.
We recall that a multiplier a € MlC b (A(G)) C L*®(G) is called central if it is contained in the centre

of Mlcb (A(G)), or equivalently, in the centre of L*(G).

Definition 4.2. Let [ be a discrete quantum group. Then we say that [

* is centrally strongly amenable if there is a net (e;);; consisting of finitely supported central CP
multipliers of [T converging to 1 pointwise;

* has the central Haagerup property if there exists a bounded approximate identity of c,(I") which
consists of central CP multipliers of T;
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* is centrally weakly amenable if there exists a net (e;);c; of finitely supported central multipliers
converging to 1 pointwise and satisfying lim sup;¢; ||¢;|l., < oo. In this case, the smallest M
such that we can choose ||¢;||., < M foralli € I is the central Cowling-Haagerup constant of I,
denoted ZA,(I;

* has the central approximation property if there exists a net (e;);c; of finitely supported central
multipliers which converges to 1 in the weak™ topology of Mlc ,(A(G)).

Note that cy,(I) € A(I) is a dense subspace for the Fourier algebra norm. It follows that a
bounded approximate identity of A([) is the same thing as a bounded net (e;);c; in A(I) con-
verging to 1 pointwise. If [ is strongly amenable then there is such a net which consists of finitely
supported CP multipliers, as can be seen by suitably approximating the associated states in L! ©).
Thus, central strong amenability is a natural central version of our definition of strong amenabil-
ity. However, we do not know whether the a priori weaker requirement of existence of a net (¢;);;
of CP multipliers in the centre of A([) converging to 1 pointwise is equivalent to central strong
amenability; though this is true when [ is unimodular, see Proposition 7.4.

Finally, let us review the corresponding notions for rigid C*-tensor categories [17, 42].

Definition 4.3. Let T be a rigid C*-tensor category. Then T

* is amenable if there exists a net (¢;);¢; of finitely supported CP multipliers of T converging to 1
pointwise;

* has the Haagerup property if there exists a net of CP multipliers (¢;);c; of T converging to 1
pointwise such that ¢; € c,(Irr(T)) for all i € I;

* isweakly amenable if there exists a net of finitely supported CB multipliers (¢;);c; of T converg-
ing to 1 pointwise such that lim sup;¢; [l¢;|l.p < oo. In this case, the smallest constant M such
that we can choose ||¢;|l., < M for all i € I is the Cowling-Haagerup constant of T, denoted
Agp(T);

* has the approximation property if there exists a net of finitely supported CB multipliers of T
converging to 1 in the weak*-topology of M, (T).

If I is a discrete quantum group then central multipliers for [I" and categorical multipliers for
Corep(I") can both be viewed as functions on Irr(M) = Irr(Corep(N)). It turns out that, in this
way, the space of central CB-multipliers of [ identifies isometrically with the space of CB mul-
tipliers of Corep(l). Moreover, the weak*-topologies agree, and this identification restricts to a
bijection between the corresponding CP-multipliers [42, Proposition 6.1; 17, Lemma 8.6]. By defi-
nition, finite support, being c, and pointwise convergence of multipliers have the same meaning
in either case.

As a consequence, the categorical approximation properties for the C*-tensor category Corep(l)
in Definition 4.3 are equivalent to the corresponding central approximation properties for [ in
Definition 4.2.

5 | THE AVERAGING CONSTRUCTION

In this section, we discuss the averaging construction for multipliers on a locally compact quan-
tum group with respect to a compact quantum subgroup. Let us note that averaging with respect
to compact quantum subgroups has been widely used previously in different contexts, most
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notably in the study of quantum homogeneous spaces and compact quantum hypergroups, see,
for instance, [8, 11].

Let G be a locally compact quantum group and let K C G be a compact quantum subgroup [16,
section 6.1]. This means that there is a non-degenerate x-homomorphism 7 : CS(G) - CY(K) ﬁﬁ
C(K), compatible with comultiplications, such that the dual non-degenerate x-homomorphism
COGK) - M(Cg(@)) drops to a normal injective unital x-homomorphism 7 : ¢ ©(K) - LO(G).

The morphisms 7 and 7 can also be encoded at the level of the Kac-Takesaki operators, see,
for instance, [37]. If W® € M(C{(G) ® CO(@)) is the half-universal lift of W® then we obtain a
bicharacter (7 ® id)(W®) € M(C(K) ® CO(@)) and a left action 1, : Cy(G) » M(C(K) ® C,(G))
given by

Az(@) = (r @ iI)(W)" (1 ® a)(7 ® id)(W°).

This is the restriction, to K, of the left translation action of G on itself, and extends to an action
L®(G) » L®(K)® L*°(G) on the level of von Neumann algebras. In a similar way, using the
right Kac-Takesaki operator, one obtains a right action p,, : Cy(G) - M(Cy(G6) ® C(K)) and the
corresponding normal extension L®(G) — L®(G)® L (K).

Combining A4, and p,. with the Haar state h of L*(IK) we define the averagingmap & : L*®(G) —
L*®(G) by

E=(h®id®h)id® p )1, = (h®@id @ h)(4, ® id)p;. (5.1
Clearly, E is a normal unital contractive CP map.
This construction behaves well on the level of C*-algebras. For the following, recall from
Section 2 the maps A%, A%" and their iterated counterparts.
Lemma 5.1. The averaging map E restricts to a contractive CP map Cy(G) — C(G) such that

E(a) = (hmr ® id ® hm)A*"*(a) (a € Cy(G)). (5.2)

It also restricts to a strictly continuous unital CP map M(Cy(G)) - M(C(G)), given by the
same formula.

Proof. For a € Cy(G) we have

z(a) = (r ® id)(W®)*(1 ® a)(7 ® id)(W®)
= (7 ® id)(WF (1 ® a)W®) = (7 ® id)A*" (a).

Similarly, p.(a) = (id ® 7)A"*(a). Thus, for a € Cy(G),
Z(a)=(h®id ® h)((7r ® id)A*" @ id)(id ® m)A"*(a) = (hr ® id ® hm)A* *(a),

as claimed.
From [33, Proposition 6.1], we know that (A" ® id)(W®) = WP, W5,. Thus
(A" ® id)(W®) = (A" Ag ® id)(W) = (id ® Ag ® id)(A" ® id)(W®)

= (id ® A¢ @ id)(W,W5,) = WS WY,
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Hence, given a = (id ® w)(W®*) € A(G) C Cy(G) for some w € LY(G), we see that
(hr @ id)A" (a) = (hr @ id @ @)(W5; W) = (id ® @)(WE*(1 @ (hrr @ id)(WE))).

This equals (id ® bw)(W®*) € A(G) C Cy(G) for b = (hrr ® id)W®* € M(C,(5)). By density, we
conclude that (h7r ® id)A™" maps CO(@) to itself.
Analogously, (A™* ® id)(W®) = W%W%, and so

(A @ hm)A™ (a) =({d @ hr ® w)(Wfs*W%*) = (id ® wb)(W®*) € A(G),

soalso (id ® hr)A™" maps CO(@) toitself. By composition, E(a) € A(G) and E maps CO(@) toitself.

By [33, Proposition 6.1], we know that A* is a non-degenerate *-homomorphism, and hence the
same is true of A*"*. As 7 is non-degenerate, it follows that (7 ® id @ 7)A*"* is non-degenerate,
hence strictly continuous. The strict extension to M(C,(G)) hence agrees with (id ® p, )4, when
restricted from L*°(G) to M(C,(G)). As h is strictly continuous, and slice maps are strictly contin-
uous, [36, Proposition 8.3], it follows that E : C,(G) — C(G) is strictly continuous, and again, the
strict extension to M(C,(G)) agrees with the restriction of E: L*(G) — L®(G). O

Remark 5.2. The structure of this proof shows that we could analogously define one-sided aver-
aging maps El: L®(G) » L®(G), El(a) = (h7r ® id)A*"(a) and E" : L®(G) —» L®(G),E"(a) =
(id ® hm)A™*(a). These maps E!, 2" are both contractive, CP and map C(G) to itself.

From now on we will freely view E as an endomorphism of L*(G), M(C,(G)) or C,(G), but
for the sake of clarity we shall sometimes indicate which version we are using. We remark that
the proof of Lemma 5.1 shows that & maps A(G) to itself; see Lemma 5.5 for a different way to
verify this.

Let us write Cy(K\G/K) C Cy(G) for the image of C,(G) under =.

Lemma 5.3. The following hold.
* Co(K\G/K) is a C*-subalgebra of C,(G) and
Co(K\G/K)={a € Cy(G) | ®@id @ m)A*" () =1 R a ® 1}

={a e CyB) | (r®idA"(a) =1®a,(id @ M)A (a) =a @ 1}.

* Themap E: Cy(G) — Cy(G) is a conditional expectation onto Cy(K\G/K).

Proof. Let a € Cy(G) so that E(a) € Cy(K\G/K). Then

(r ® id)A*"(E(a)) = (7 @ id)A™ ((hnr ® id ® hm)A™ *(a))

=(hr @ 7 ® id @ hm)A"*" " (a) = (h7r  m)A* ® id ® hr)A*"*(a)
= (h®i1d)Ax7 ® id ® hm)A*"H(a)
=1Q® (h7r ® id ® hn)A*"*(a) = 1 ® E(a).
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An entirely analogous calculation shows that (id ® 7)A™*(E(a)) = E(a) ® 1. Conversely, let a €
Cy(G) be such that (x ® id)A*"(a) = 1 ® a and (id ® 7)A"*(a) = a @ 1. Then

(7 @ id ® 1)A¥"*(a) = (7 @ iID)A*" @ id)((id ® 7)A"*(a)) = (7 @ iID)A*" @ id)(a ® 1)
=1Qa®1.

Now suppose that a € Cy(G) with (7 ® id @ m)A*"*(a) =1 ® a ® 1. Then
a = (hr ® id ® hm)A**(a) = E(a).

We have shown the stated forms for elements of C(K\G/K). It follows easily that C,(K\G/K) is
a C*-subalgebra.

It is clear from construction that E is a contraction. For a € Cy(K\G/K) we obtain, using the
above obtained description,

E(a)=(hr ®id ® hm)A"""(a) = (hQidRh(1R®a®1)=a.

Hence, E is a contractive projection. From Tomiyama’s theorem, [7, Theorem 1.5.10], it follows
that E is a conditional expectation. O

Remark 5.4. We could analogously define Cy(K\G) to be the image of (h7r ® id)A*", and then the
same argument shows that

Co(K\G) = {a € Cy(G) | (x ® id)A"" (a) = 1 ® a}.
Similarly, denote by C,(G/K) the image of (id ® hz)A™*, and then

Co(G/K)={a € Cy(G) | (id ® m)A"*(a) = a ® 1}.
Hence, we have shown that C,(K\G/K) = Cy(K\G) N Cy(G/K).

We now discuss some properties of slicing with functionals defined at the universal level. Given
w € CH(G)" and a € M(Cy(G)) we write

w*a=(1d®wA™(@), a*w=(w®idA"" ().

A priori both @ % a and a x @ belong to the multiplier algebra M(C,(G)), but as shown in
Lemma 5.5, we have in fact w % a,a x w € Cy(G) for any a € C,(G). These operations turn Cy(G)
and M(C((6)) into a bimodule over Cj(G)*.

By taking the Banach space dual of the map 7 : C{j/(G) — C(K), we obtain a contractive alge-
bra homomorphism 77* : C(K)* — C{(G)*, with respect to the convolution product. In particular,
7*(h) is an idempotent state in C{(G)*. Notice that the averaging map E can be written as
E(a) = m*(h) % a % *(h) for a € M(Cy(G)).

Itis straightforward to check that A(G) and C(G) are contractive left and right Cg(G)*—modules,
compare [17, Proposition 4.5, a result we now extend to the Fourier—Stieltjes algebras as defined
in Section 2. As preparation, notice that the Banach space dual map A : Cy(G)* — C((G)* is an
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isometric algebra homomorphism because Ag is a quotient map which intertwines the coprod-
ucts. Also recall that the canonical map L1(G) — C,(G)* is an isometric algebra homomorphism
which identifies L}(G) as an ideal in C((G)*, see the discussion after [34, Proposition 8.3]. The
composition of these maps gives a canonical isometric homomorphism L!(G) — CB‘(G)*, whose
image is again an ideal, see, for example, [12, Proposition 8.3].

Lemma 5.5. The following hold.

(1) Leta € A(G) andw € C((G)". Then a *x w € A(G) and ||a * w||z) < llallallwll- Similarly,
w*x a € A(G) and ||w * a”A(G) lalla)llll-

(2) Let b € B.(G) and w € C{(G)". Then b x w € B,(G) and ||b * w||g ) < Ibllg g)llwll. Simi-
larly, w x b € B,(G) and IICU * bllg ) < IIbllg (g llll-

(3) Let b € B(G) and w € C(G)*. Then b x w € B(G) and ||b * wllgg) < [Ibllgsllell- Similarly,
w * b € B(G) and ||w x b”B(G) 1615 llll-

(4) Letc € Cy(G)andw € C((G)*. Thenc * w € Cy(G) and |lc x w|| < [Ic[||w]|. Similarly, w x ¢ €
Co(G) and |lw * c|| < llclllle]l-

Proof. (2) Write b = Ad) € B,(G) for & € Cy(G)*. Then

bx = (0®id)A" (@ ®idWE) = (& ® o ® id) (WS, W)

= (@ ®id)(WE((d ® )W @ 1)) = (& (- (id ® @)W®)) € B.(G) G
as required. We also immediately get the bound on the B,(G)-norm of b % w:
Ib % wlls, ) = [|&(- (id ® )W) || < I@llllell = blls, @l
Similarly, we get
w*x b = (id ® @)A™((@ ® id)WE) = (c? Qi i Qw (W13W 2 5
= (@®id)(((i[d ® ) WE ® 1HW®) = 2(&((i[d ® @)W ) € B,(G),

and ||w * bl ) < ol Ibllg .(©)- This proves the second point.

(1) If a = A(@) for & € LY(B) € Co(6)*, then as (- (id ® ©)WE) and &((id ® w)(W®)-) are
normal functionals, the above reasoning proves also the first point.
(3) This is completely analogous: if b = (id @ @)(W®*) € B(G) with & € Cg(@)*, then

bx = (0®idA" (B ®i)WS) = (& ® » ®id) (W) 5
A . . 5.5
= (0 ®id)(WE((id ® w)W° @ 1)) = (id ® &(- (id ® )W) ) (W) & B(G)

and ||b x w||g) < Ibllg(s)llewll- The argument for w * b is similar.
(4) As A(G) € Cy(G) is norm dense, we can approximate c by a sequence (a,,),cn of elements
from the Fourier algebra A(G). As the map Cy(G) 3 ¢’ — ¢’ x w € M(C((G)) is continuous,
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we obtain
cxw=_(lim a,) *w = lim a, x w € A(G) = Cy(G).
n—oo n—oo

The norm estimate follows as ||c x w|| = ||(id @ w)A™*(c)|| < |lw|[||A"*(c)|| < |l@]lllc||- Again,
the argument for w * c is entirely analogous. O

Corollary 5.6. The averaging map E restricts to contractive linear maps A(G) —» A(G),
B,(G) — B,.(G) and B(G) — B(G). Furthermore, the maps B.(G) — B,.(G) and B(G) — B(G) are
weak™*-weak™-continuous.

Proof. As E(a) = w*(h) x a x 7*(h), and ||z*(h)|| = ||k|| = 1, this follows immediately from
Lemma 5.5 together with Equations (5.3), (5.4) and (5.5) whose form shows weak*-weak"-
continuity of E. O

We write A(K\G/K) C A(G) (resp., B,(K\G/K) C B.(G) and B(K\G/K) C B(G)) for the image
of A(G) (resp., B,.(G), B(G)) under E.

AsA(G) = L'(G), the averaging map inducesamap &, : L'(@) — L!(G), and taking the Banach
space adjoint, a normal map E_ : L®(G) - L®(G). We now explore what these maps are. Let
D. € #%°(K) denote the central projection onto the matrix factor corresponding to the trivial
representation e € Irr(K).

Lemma 5.7. The maps &, : L'(G) - LY(G)and E_ : L®(G) — L®(G) are given by
E,(®) = a(#(p,) - 7(p,) (& € L(G)), Eo(®) = #(p )7 (p,) (X € LX(G)),
respectively.

Proof. As in the proof of Corollary 5.6, we know that for a € A(G) we have that E(a) = 7*(h) %
a % 7*(h). Then, given a = (&) for some & € L'(G), by the proof of Lemma 5.5 we know that

7*(h) * a x 7*(h) = 1(&((id ® 7* (W)W - (id @ 7*(h) W ®)).

As (7 @ id)(W®) = (id ® 7)(WX), equivalently, (id ® 7)(W®) = (7 ® id)(WK), it follows that
(id ® 7*(h) W& = 7((id ® h)WK) = 7(p,). Hence,

EA@) = E(a) = @@ (p.) - Z(P))).
and the stated formula for E, follows. The formula for E_, follows by direct calculation. O

Let us next discuss the compatibility of & with CB multipliers. As usual, given w € C(G)* we

denote by w the functional defined by w(x) = w(x*) for x € C;(G). Recall from [33, section 7.9]
that the scaling automorphism group and the (unitary) antipode admit lifts to the universal level
CB‘(G), which we denote by (T?)IER’ R,, and S, respectively. In the same way as at the reduced

level, they are connected via the formula S, = R, 7", P
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Wheneverw € Cg(G)* is such that the map D(S,)) 3 a = (w, S,(a)*) € C extends to a bounded

functional on CB‘(G), we denote this extension by w?. Thisisin agreement with the usual definition
of Lé (G) C LY(G), see [35, Definition 2.3].

Lemma 5.8. We have 7*(h) = 7*(h) = 7*(h)".

Proof. The first equality is immediate because 7 is a x-homomorphism and 4 is a state. For the
second, recall that 7 commutes with the antipode, see [37, Proposition 3.10], and hS, = h on

D(S) g

We wish to study convolution of multipliers by elements of C((G)*. To avoid developing some
theory around applying completely bounded maps to multiplier algebras, we shall use von Neu-
mann algebra techniques. By [40, Proposition 3.12.3], for example, for a C*-algebra .A contained
in a von Neumann algebra M we can identify M(.A) with {x € M | xa, ax € A (a € A)}. In partic-
ular, we will view the C*-algebra C{(G) ® CO(@) as being contained in the von Neumann algebra
CB‘(G)**@ L®(G), and so consider WE as an element of Cg(G)**@) L®(G).

Lemma 5.9. Leta € Mib(A(G)) and w € C{(G)".

(1) Wehavea xw € Mib(A(G)) and ||a * ||, < llall.pllw]l. Furthermore ©'(a x w) is the map
L°G)o2x - (0® id)((id ® 6 a)((1® f)WG*)WG) € L®(G). (5.6)

f f

(2) Take w € C((G)* and assume that w" exists. Then " % a € Mib(A(G)) and ||5Ii * all., <

i

llwllllall,p. Furthermore, " x a = S™1(S7'(a)* * w)* and @l(aﬁ * a) is the map

L2(6) 3 £ - (@ ® id)(WE*(id ® 0(a))(WE(I ® R))) € LX(B). (5.7)

Proof.

(1) This claim is analogous to [17, Proposition 4.5]. The functional w may be regarded as a normal
functional on Cg(G)**. Therefore, given the discussion above, it makes sense to define

T: L®(G) 3 %~ (0 ®id)((id ® 6/(a)(1 @ W W®) € L°(6).

Observe that ||T||., < |lall.pllw|l. Now one can proceed exactly as in [17, Proposition 4.5]
to show that T is a module map on L®(G) and that the associated multiplier is a x w €
M., (A(G)) with ©/(a x @) = T.

(2) It follows from [17, Lemma 4.8, Proposition 4.9] that a € D(S~!) and that b = S~!(a)* is con-
tained in MlC b(A(G)) with ||b||.;, = llall.p- The previous point gives b % w € MlC b(A(G)), hence
also b x w € D(S™1). We claim that

STUb*w) =@ * SL(b),
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compare [14, Lemma 4.11]. Indeed, using [33, Propositions 7.2, 9.2] one easily checks that
xR, ® R)AY = A*'R and (t* ® 7,)A™" = A"'1, (t € R). Then

STIbxw) = Rt ((0 @ id)A™" (b)) = R((cu‘rfl./2 ® id)A™' (7 ,(b)))
= (id ® wt* Ru)Ar u(RTl/z(b)) =(dQ® cuﬁ)Ar (STHb)) = * S~L(b).

—4

In the above calculation, we used the fact that wS,, = w" on D(S,), in particular wt*

/2
bounded. Using again the previous point and [17, Lemma 4.8, Proposition 4.9] we conclude

that
@ xa=a xSTb) = (@ *S7'(B))" = S b x w)* € M, (A®G)).
Furthermore, we now see that

@ * all,y = IS0 % @)* || = [|b % @]lep < Iblleplleoll = llatllep I,

as claimed. Finally, by [17, Proposition 4.9] we know that ©!(b) = 0!(S(a*)) = ©!(a)’. Thus,
for X € L®(G),

@l(ﬁ * a)(®) = 0/ (S7H(b x w)*)(®) = O'(b *x w)(X*)*
= (0 ® id)((id ® O'(B))((1 ® LHW W),
using (5.6). This is then equal to
(@ ®id)(W**(id ® ©'(H)N(WE(1 ® %)) = (@ ® id)(W**(id ® ©'(a))(WE(1 ® X)))
as claimed. O

We are now in a position to show that the averaging procedure with respect to a compact
quantum subgroup is compatible with multipliers.

Proposition 5.10. Let G be a locally compact quantum group with a compact quantum subgroup
K C G. Then the averaging map & : M(Cy(G)) = M(C(G)) restricts to a contractive weak”-weak”-
continuous map M., (A(G)) - M., (A(G)).

Proof. Recall that E(a) = 7*(h) *x a x w*(h) for a € M(Cy(G)). As w*(h) =n*(h) = ﬂ*(l’l)ﬂ,
- . . . - -l
Lemma 5.9 tells us that E restricts to a contractive linear map :|Mib( AG)) - Mcb(A(G)) -
MlC ,(A(G)). To verify weak”-weak”*-continuity it is enough to show that (E], ( A(G)))* preserves
cb
L(G) C Q'(A(G)). Recall the isometric homomorphism ¢ : LY{(G) — C,(G6)* which identifies
LY(G) as a closed ideal in C,(G)". As the duality between Q'(A(G)) and Mib(A(G)) is naturally
compatible with the duality between L' (G) and L®(G), it suffices to show that Z*(L}(G)) C L'(G).
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Observe that for b € Ci(G),» € L'(G) we have

AgE*(@)(b) = E*(w)(Ag(b)) = w(m*(h) x Ag(b) * 7*(h))
= (7" (h) @ @ @ 7" (M)A Ag(b) = (7" (h) * $(w) x 7" (R))(D).

Consequently, AL(E* (W) = ¢(w') for some o’ € L1(G), and as Ag is surjective this shows E*(w) =
w’ as required. O

Remark 5.11. Exactly the same arguments show that the one-sided averaging maps E, 2" restrict
to maps on A(G), B,(G) and B(G), and also to M., (A(G)).

We shall write Mlc ,(A(K\G/K)) for the image of Z : Mlc ,(AG)) - Mlc ,(A(G)), and refer to the
elements of this space as K-biinvariant CB multipliers of G. Proposition 5.10, combined with the
fact that E is a projection, shows that Mlc b(A(K\G /K)) C Mi b(A(G)) is a weak*-closed subspace.
We now study further properties of the map E on the level of multipliers.

Proposition 5.12. The averaging map = : Mlc b(A(G)) - MlC b(A(G)) maps CP multipliers to CP
multipliers. Furthermore, for a € Mlcb(A(G)) and X € L®(G), we have

O'(E(@)(R) = (7*(h) ® 7*(h) @ id)(W; (id ® id ® 0'(a)W(,(1 ® 1 @ D)W IWS;) € L°(6).

Proof. Leta e MlC b(A(G)) be arbitrary. To ease notation, write hy = 7*(h) and b = a * h;. As
E(a) = hy % (a * hy) = hyxband h, = h, = hg, formula (5.7) from Lemma 5.9 shows that

O'E@)X) = (hy ® id)(WE(id ® O/ (b)YWE(1 ® %)) (R € LV(B)).
By (5.6) we know that ©/(b) is the map § ~ (h, ® id)((id ® 0 (a))((1 ® HW)WE). Thus,
(id ® ©'(B)WE(1 ® %)) = (id ® hy ® id)((id ® id ® ©'(a)(WE(1 ® 1 ® DWSHWS,),
and hence
0'(E(@)(R) = (hy ® id)(W*(id ® hy ® id)((id ® id ® O'(@))W(1 ® 1 ® DHWSIWS,))
= (hy ® hy ® id) (W} (id ® id ® ©'(@))(WF(1 ® 1 ® HWT)HWS,).

This proves the second claim.

Assume now that a is a CP multiplier, that is, ®!(a) € CB°(L®(&)) is CP. By Stinespring’s
theorem and the classification of normal %-homomorphisms (see, e.g., [20, Theorem 1.4.4.3]),
we can find a Hilbert space % and r € B(L*(G), #Z ® L*(G)) such that ©!(a)(X) = r*(1 ® X)r.
Consequently, we can further write

0'(E(a@)(®)
= (hy ® hy ® id)(W}(id ® id ® ©'(a)(WE,(1 ® T ® DWSHWS,)
=(hy®@hy @ID(WH(I @ T r IMM,(1QT1RTRDWS (1 ® 1 ® rWS,).
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Here we are regarding W® as a member of Cg‘(G)**@) L*®(G). Pick some Hilbert space # and a
universal representation Cj(G) C B(%) so that C{/(G)™ = CB‘(G)’ " C B(X). By choosing C,(G) C
B(%) in a suitable way, we may suppose that there is a unit vector £ € % such that w ¢ restricted
to C;;(G)” agrees with the normal extension of h,. Then WE can be regarded as a member of
B(% ® L*(G)), and so, for example, W T(1®1Q r)W isamember of B(¥ ® ¥ @ L*(G), ¥ ®
H @ # ® L*(G)). Thus, forn,,n, € L (G)

(m]0'E(@)®)(,))

=((QE@NWHEIQT®r MW ,(1QTRTRDWS(1QTR®NWSL(ERERN,))
=WHO®1®NWELERE®N)|ER(I®TRIWT (1@ NWE(E ®1,))

= (ZR(E@WHEI@NWEE®n))|E®@ (1 QTRIW (T @ NWE(E ®1,)),

where X € B(# ® %) is the tensor swap map.

Let t € B(L(G), % ® # @ L*(G)) be the operator t(8) =W (1 ® W(¢ ® g), for e
L(G), and let ¥ € B(L*(G), #Z ® L*(G)) be the operator which satlsfles (@|7(B)) = (£ ® alt(B)),
for « € # ® L*(G). Then

(1 |0'E@)®)7,) = (Z¢ @ t)|E @ (1 ® 1® )t(n,))
= (EQ@F|(1 @ 1@ Dt(n,)) = (£ @ (1 Q@ X)F(n)|t(n,))
= ((1 @ X)F()|F(ny)) = (m|[F*(1 @ R)F(ny)).

Hence, ©!'(E(a))(X) = 7(1 ® X)F is CP, as claimed. O

Remark 5.13. In general, the one-sided averaging maps E!, 2" do not map CP multipliers to CP
multipliers, as we now show.

As in Remark 5.1, the map ' restricts to A(G), and so induces a map E! : L'(G) — L'(G).
Moreover, given a = /1(co) € A(G) for & € L1(G), we have E(a) = (h7 ® id)A*"(a) = a x (h7) =
/1(co( -7(p,))), as in the proof of Lemma 5.7. Thus, Jl(co) = &(-7(p,)), and similarly Hi(co) =
a(#(p,)-), for & € L'(G).

Suppose &(X7(p,)) > 0 for all positive & € L1(@) and all positive £ € L®(G). Then X7(p,)
is positive, hence self-adjoint, so X7(p,) = 7Z(p,)X for all positive X € L*(G). It follows that
7(p,) is central. Hence, if 7(p,) € L®(G) is not central there exists a positive @ € L'(G) such
that &(-7(p,)) not positive. Then Lemma 3.1 shows that a = A®) € A(G) is a CP multiplier but
E(a) = A(E! (@)) is not CP.

Note that 7(p,) is central if and only if 2! agrees with the two-sided averaging map =, compare
Lemma 5.7. Combining the above argument with Proposition 5.12, we therefore conclude that Z!
maps CP multipliers to CP multipliers if and only if 7(p,) is central. The same statement, with a
similar proof, holds for E".

Centrality of 7(p,) already fails for classical locally compact groups if the compact subgroup
is not normal. The case of Drinfeld doubles, explored in the next section, gives further examples
where 7(p,) is not central.
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6 | DRINFELD DOUBLES OF DISCRETE QUANTUM GROUPS

In this section, ["is a discrete quantum group. We shall use the following simplified notation: A, A
are the coproducts on £ (I), L*® (f), respectively, h € L%f) is the Haar integral, W = W', W=wl
and ad(W)(x) = WxW*,

The Drinfeld double D(I) of T is given by L®(D(IN) = #*°(N® L (T) with the coproduct

Ap = (id ® ¥ ® id)(id ® ad(W) ® id)(A ® A),

compare [3, section 8]. As discrete quantum groups and their compact duals are regular, it follows
from [3, Proposition 9.5] that

Co(D(D) = ¢o(IN ® ). (6.1)

The left and right Haar integral on D(I') is given by ¢ ® h, see [3, Theorem 5.3, Proposition 8.1].
The Kac-Takesaki operator of D(I) is

WP = W13Z§4W24Z34,
where Z = W(J @ DW(J ® 7) and J,T are the modular conjugations on (I, L°°([IA), respec-
tively, see [3, Proposition 8.1]. The Drinfeld double D(I') contains fnaturally as a compact (open)
quantum subgroup, with the morphism 7z : L®(D(I) = #*°(N® L*® (ﬁ - L”@) givenbye ® id,
where ¢ € £1() is the counit. Note that as Tis open, the morphism 7 exists at the reduced level,
which simplifies the situation compared to the previous section.

We shall consider G = D(I) and K = T. As 7*(h) = £ ® h is a normal functional on L®(D(),
one easily sees that in this setting the averaging map = defined in Equation (5.1) is given by

E: L°D(M)da (W) @id® ﬂ*(h))Ag()D(a) e L(D(D), (6.2)

where Ag()ff) . Lo(D(D) — L2(D()®3 is the two-fold coproduct.

Proposition 6.1. The image E(L*(D(IN))) of the averaging map E : L®(D(I")) —» L®(D(I")) equals
Z¢* (I ® 1. More precisely, for x € L*(D(I)) we have

Ex)=y®1 where y=_>GdQ® h)(W((id ® h)(x) ® )W*). (6.3)
Similarly, E(coo(I) @ Pol(1) = Zcgo(N ® 1 and E(Co(D(N)) = Z¢y(N @ 1.
Proof. We use the description of E in (6.2). First, for x € L*(D(I)),
(idp ® & ® id)Ap(x) = (idpp ® € ® id) x23 (Wy3(A @ A)()W3, ) = (id ® A)(x),
using that ¢ is a *-homomorphism with (id ® £)A = id and (¢ ® id)(W) = 1. It follows that

(idp ® T*(W)Ap(x) = (idp ® W)(id ® A)(x) = (id @ h)(x) ® 1.
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Let z = (id ® h)(x) € £*°([), and notice that
Ap(z®1) = (id ® x ® id)(W,3A(2);,W5,). (6.4)
Thus, using that (¢ ® id)A = id, we get

=([d®h®IDW,(z®1® NHW,) =>1{d@N(WEz® NW)® 1,

which shows (6.3).

As W € 2°(NDR®L(T) and right slices of W generate #*°(I), it follows that an element c €
£°(I) is central if and only if W(c ® 1) = (c ® 1)W, which holds if and only if W(c ® 1)W* =
¢ ® 1. Moreover, if c = (id ® h)(W(d ® 1)W*) for some d € £°°(I') then

W(e® DW* = (i[d ® h @ id)(W3W1,(d ® 1 ® DW;,W7,)
=(d ® h ® id)((id ® A)(W)(d ® 1 ® 1)(id ® A)(W*))
=([dNWUARINWHIRXT1=c®1,

so that c is central. Combining this with the above formula for E(x) implies E(L*(D(I))) =
Z¢*°(N) ® 1 as claimed.

Let x € £°(I) and set y = (id ® h)(W(x ® 1)W*) as in (6.3). We use the explicit formula for
W = y(W*) from (2.2) together with (2.1) to see that

dim(er) dim(B)

_ o -
y= ¥ X X uah(wprv)
apelrr() Lj=1 kl=1

dim(e) (I dirn(er) ()
— a a a b a a B
- Z Z ej,ixek,j Tr(pa) - Z ( Z xi,k Tl‘(pa) >p05‘ (6.5)

aelrr(f) ij,k=1 ael(@ \ k=1

Here we use the direct-sum matrix decomposition x = (x%) wetn® € (N, and p, denotes the
minimal projection onto the o block.

From this explicit formula it is clear that E maps cy,(I) ® Pol(ﬁ onto Zcyy(lN ® 1. As Co(D(IN)
is the norm-closure of cy,(IN ® Pol(f) and E is a conditional expectation by Lemma 5.3, it is also
immediate that E maps Cy(D(I)) onto Zcy(IN & 1. O

Remark 6.2. The proof shows that the one-sided averaging map E" = (id ® 7*(h))Ap ) is given
simply by E"(x) = (id ® h)(x) ® 1. This maps c,,(I) © Pol(l) onto coo(lN ® 1, and hence Cy(D(I))
onto cy(IN ® 1.

The other one-sided averaging map =! looks more complicated, but if we start with an element
of the form x ® 1 € #°(I) ® 1, then (7*(h) ® id)ApH(x ® 1) = A(x) ® 1 where

A(x) = (id @ Y(W(x @ DW*) = (h @ I)(W*(1 @ X)W)  (x € £%(I)).
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We shall study this map A further in Section 7.

Recall from [17, Lemmas 8.4 and 8.5] that we have an isometric weak*-weak*-continuous
embedding N : M_,(Corep(l)) — Mlcb(A(D([F))) givenby N(a) = a ® 1.

Proposition 6.3. Under the embedding N : M_,(Corep(I)) — Mlc b (A(D(I))) we have an isometric
identification

ZML, (A(D) = M, (Corep(I) = M, (AM\D(D)/),

compatible with the weak*-topologies. Furthermore, these identifications preserve the property of
being completely positive.

Proof. The isometric identification Z Mi b(A([F)) = M_,,(Corep(I)), compatible with the weak™-
topologies, is established in [17, Lemma 8.6].

Leta € MlC b(A@\D([F) /f)). According to Propositions 6.1 and 5.10, there is b € ZZ*°([I') with
a=E(a)=b®1eM, (ADM))). In fact, b € ZM!, (A(I), which can be proved following the
argument for [17, Lemma 8.6]. More precisely, it suffices to show that b is a cb-multiplier, and to
show this, one observes that ©/(b ® 1) leaves the image of L*(I) C L*(D(D) invariant and so
induces a centraliser whose associated multiplier must be b.

Conversely, ifb € Z Mlcb(A([D) = M,,(Corep([)), then [17, Lemma 8.4] showsthata =b ® 1 €
M., (A(D(I)) and Proposition 6.1 gives E(a) = a. Thus, a € M/ b(A(f\D(I]') /D).

The map Mib(A(f\D(D /D)3 aw-be Z¢>() is weak*-weak*-continuous because b =
(id ® h)(a). It follows that the map is a weak*-weak*-homeomorphism, compare [17, Lemma 3.7].

It remains to verify the claim regarding CP multipliers. From [42, Proposition 6.1] we know
that 6 € ZMle(A([F)) is CP (i.e. ©(8) € CB?(L*(D)) is CP) if and only if 8 € M, (Corep(l)) is
CP. In addition, for 6 € Z M’c b(A(I]')) we have ©/(0)(1) = 6(e)1, where e € Irr(ﬁ stands for the
trivial representation. As /(8 ® 1) is normal, we deduce from [17, Lemma 8.4] that similarly
06 ® 1)(1) = 8(e)1. Now recall from [41, Theorem 1.35] that if A is a unital C*-algebra, # is
a Hilbert space and u : A — B(#’) a completely bounded linear map, then u is CP if and only if
llullp = u(1). As O]l = |16 & 1]|.;, We conclude thatf e ZMle(A([I')) isCPifandonlyif 6 ® 1 €

M. (A(D(D))) is CP. O

We are now ready to state our main result. This improves in particular [17, Proposition 8.9] by
removing the unimodularity condition.

Theorem 6.4. Let [ be a discrete quantum group and let D(I') be its Drinfeld double. Then the
following conditions are equivalent.

(1) [ is centrally strongly amenable (respectively, is centrally weakly amenable, has the central
Haagerup property, has central AP).
(2) D(IN)is strongly amenable (respectively, is weakly amenable, has the Haagerup property, has AP).

Furthermore, in the weakly amenable case we have A, (D(I)) = ZA, (D).

Proof. 1) = 2) For AP this claim is [17, Propositions 8.7 and 8.9]; let us sketch the argument. Let
(a;);er be anet in Zcyy(IN) verifying Definition 4.2 for central AP. From Proposition 6.3 (which is
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based on [42, Proposition 6.1]) we know that (a; ® 1), is a net in Mib(D([F)) converging weak”
to1.Aseach a; ® Tisin cy, (N O Pol(D) € A(D(D) it follows that D(I) has AP.

If ["is centrally weakly amenable, the net (g;),c; can be chosen to additionally satisty ||a;||., <
ZA,(I) for each i. By Proposition 6.3, we have ||a; ® 1|, = lla;|lp, and so (a; @ 1);¢; is a net
bounded by ZA_, (). Invoking [17, Proposition 5.7] shows that D(I') is weakly amenable with
Acb(D(I]_)) < ZAcb(ﬂ_)-

If [ is centrally strongly amenable, each a; can be chosen to be a UCP multiplier, and then
a; @ 1 will be a UCP multiplier in A(D(I")) according to Proposition 6.3. By Lemma 3.1,each a; ® 1
arises from a state, and in particular, the net (a; ® 1),; is bounded in A(D([')). We now invoke
[17, Proposition 5.6] to conclude that D(I') is strongly amenable.

When [ has the central Haagerup property, the net (a;);c; can be chosen to consist of central CP
multipliers forming a bounded approximate identity for c,(I). By Proposition 6.3 each a; ® 1is a
CP multiplier of D(I), and (a; ® 1),¢; is clearly a bounded approximate identity for C,(D(I)) =
co(N ® C(D).

(2) = (1) Assume first that D(I') has AP exhibited by a net (a;);c; = (Aﬁ(ﬁ(wi))iel € A(D()).

As Lm(ﬁ(ﬁ) is in standard position on L*(D(I), each w; is a vector functional. By a straight-
forward approximation argument we may assume that each w; is of the form wg, ,, Where
&Lm € A¢(c00([r)) ©) Ah(Pol®), here recalling that ¢ ® h is the left Haar integral on D(I'). Then

note that D([) arises from an algebraic quantum group, compare [49; 52, section 3.2], and observe
that

(d ® @, (0.0,550) W = (A ® (¢ ® M) ((1® x)Ap(1) € coo(M @ Pol()  (6.6)

forx,y € cyo(N © Pol(D), see, for example, [50, p. 12]. Thus, each g; isa member of ¢, (I © Pol(D).
By Proposition 6.1, we have E(a;) = b; ® 1 for some b; € Zc,(I), and Propositions 5.10 and 6.3
show that b; - 1 weak™ in Mib(A([F)). Hence, I has central AP.

e

If D(I') is weakly amenable we can choose a net (q;);c; which is a left approximate unit in
A(D([N)in such away that ||a; ||, < Ay (D(I)). Again we may approximate each a; by a member of
Coo(MH O Pol(D). As this approximation is made in the A(D(I")) norm, we may assume that we still
have ||a; ||, < Aqp(D(D)). Again let E(a;) = b; ® 1, and observe that Propositions 5.10 and 6.3 now
show [|b;ll.p < Agpy(D(D)). Given a € Irr(T) denote by p, € cuo(l) C cy(I) the central projection
onto the o component. Then p, ® 1 € cy,(IN O Pol(l) € A(D(D) and so, as E is a conditional
expectation,

bip ® 1= E@)pe ® 1) = E(@,(p, ®1) — E(p, ® N =P, ® 1, (6.7)

with the convergence in A(D(I)) by Corollary 5.6. Thus, b; - 1 pointwise in £°°([), and we
e

conclude that [is centrally weakly amenable with ZA_,(I) < A, (D(I)).
If D(I) is strongly amenable it follows from the discussion after Definition 4.1 that A(D(I)) has

a bounded approximate identity (q;);c; Where a; = lﬁ(ﬁ(wi) for some state w;. By approximation,

we may suppose again that w; = w;, for § € Agp(cyp(M) © Ah(Polﬁf)) for all i. Let E(a;) = b; ®
1, so that by Propositions 5.12 and 6.3 each b; is a CP multiplier in Zcyy(I). As before, b; = 1
1

pointwise in £°°(I), which shows that [ is centrally strongly amenable.
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Finally, consider the situation where D(I') has the Haagerup property. Let (a;);c; be a bounded
approximate identity in C,(D([")) which consists of CP multipliers. By Proposition 6.1, we obtain
b; € Zcy (I with E(a;) = b; ® 1 for each i € I. By Propositions 5.12 and 6.3, each b; € Mlcb(A([F))
is a CP multiplier, and we have sup;; ||b;|| < sup;c; lla;|| < +oo0. Furthermore, as p, ® 1 €
ZCy(D(I)) for a € Irr(T), and the averaging map E is L*(D(['))-norm continuous, we deduce as
in (6.7) that b, = 1 pointwise. As the net (b;);c; is bounded in norm it forms an approximate

identity for cy ('), thus showing that [ has the central Haagerup property. O

7 | FURTHER RESULTS FOR DISCRETE QUANTUM GROUPS AND
THEIR DRINFELD DOUBLES

In this section, we complement the discussion in Section 6 with some further analysis related
to unimodularity.

7.1 | Approximation in the unimodular case

Let us first review the averaging procedure for discrete quantum groups [” with respect to the
coadjoint action, which allows one to compare central approximation properties with their non-
central counterparts in the unimodular case, see [32, section 5; 6, section 6.3.2], and which was
already mentioned in Remark 6.2.

Let ["be a discrete quantum group. By definition, the coadjoint action of Ton #(IN is the map
y: o) —» Le(M®£> (I defined by y(x) = W*(1 ® x)W. Combining y with the Haar state h
of L(T") we obtain the averaging map A : £°(I) — £°°(I) by setting

A=heidy; xe (h®id)(W(1 ®x)W).

Clearly, this is a normal unital CP map. It is straightforward to check, as in the proof of Propo-
sition 6.1, that the algebra of invariant elements {x € Z°(I) | y(x) = 1 ® x} C £*°([) is equal to
the centre Z£ (I of #°°(I'). We calculated above in (6.5) the form of A, and from this calculation
it is clear that A is a conditional expectation onto Z#*(I), and that A restricts to a conditional
expectation cy(I) — Zcy([N). In the case when [ is unimodular, things simplify, and we obtain

1

A(e;xn,n) = 5m,ndim—@ Py

(7.1)

In particular, the above definition of A coincides With the construction in [17, section 6].
Recall that the character of a € Irr() is y, = Z?:?(“) Ul e Pol(T) ¢ L(T). Motivated by the
case of classical compact groups we shall call

G = lro la € Ir®Y < LD,

the von Neumann algebra of class functions of T, compare [31, Lemma 1.2]. If ['is unimodular, the
Haar state h on L™ (ﬁ) is a trace and there is a unique normal conditional expectation F : L*® (MAF) -
@ which preserves h, see [46, Theorem 4.2, chapter IX].
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The next proposition summarises key properties of A. Most of these are well-known, but we
make the new observation that A maps the Fourier algebra into itself.

Proposition 7.1. Let I be an unimodular discrete quantum group. The averaging map A . £°(I)
— Z£°(T) restricts to a weak™-weak™-continuous contraction Mlc b(A([F)) - Z Mlc b(A([F)). It maps
CP multipliers to CP multipliers and preserves finite support. Moreover, it restricts to a completely
contractive map A(T) = Z A(I). Under the identification A(I") = L! D, it agrees with the predual
F, of the unique h-preserving conditional expectation F : L) - G-

Proof. The first assertions are already contained in the discussion around [17, Proposition 6.8],
see also [6, section 6.3.2]; we recall some of the details. Let E ;: L*® MR LM - AL®()) be the
unique conditional expectation which preserves the state h @ h. It is normal and satisfies

1 ~
E(U“ ® Uﬁl) = 5a’55j’kdim—@A(Uio’{l)‘ (72)

We set A = A—1E: LoD LX) — L=(1), and for T € CBY(L®(I)) we define
¥(T) = A*(id ® T)A e CB°(L*(D)).

The proof of [17, Proposition 6.8] shows that W(©!(a)) = ©'(A(a)) fora € M., (A()). In particular,
¥ maps duals of CB centralisers to duals of CB centralisers, and hence A maps CB multipliers to
central CB multipliers. It follows also that CP multipliers are mapped to central CP multipliers,
and it is evident from (7.1) that A preserves finite support.

It remains to prove the claim about the Fourier algebra. Using the €-bimodule property of F
we obtain

dim(gB)

REWE D) = WEUT ) = WUTa) = 3, A (U ) = :

Oarp0ij dim(a)

foralla,f € Irr@, 1<, j < dim(a), and as h(y, )(;) = 5%5 and h is faithful it follows that

1
FU*)= ——6: . x... 7.3
(U7 = Gz Soi e (73)
As F: L”(ﬁl\) - 6 C L”(f) is normal, it has a Banach space pre-adjoint F, : Ll(T) - L1®
which is completely contractive. Let & € L) and seta = A(co) e A( cM! b(A([F)) AsOl(a) =
(@r 1d)A, we obtain by the definition of ¥, and using (7.2),

dim(ar) dim(a)
w(0'(a)); U, H3ﬁ< 2 Uf, ® 0'(a)(Ug,, )— <Z Uy ®6(U;‘,,)Uffj>
k=1
(7.4)

dim(a) &)\(U;Z,k) . C,U\(Xa)
dim(e) ™ dim(a)

k=1
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Set b = A(F,(®)) € A(I, so that, using (7.3),

dim(a) dim(a)

©'(b); U, ~ 2 F(@)(US) 2 QEUIUE ;= OIU- (7.5)

_1
dim(e)

As the expressions (7.4), (7.5) agree we conclude ¥(O!(a)) = ©!(b) and A(a) = b € A(D. This
means in particular that A maps A([) to itself.

In fact, we see that A: A(I) — A(T) identifies with F, : L}(T) — LY(I) via the canonical
isomorphism A(I') =~ L (M. In particular, it is completely contractive as claimed. O

Remark 7.2. Without the unimodularity assumption, the averaging map A can behave quite badly.
More precisely, one can show that there is a non-unimodular discrete quantum group [I'and x €
A(IN) completely positive, such that A(x) ¢ M’c b(A([T)). As we will not make use of this fact, we
will only sketch the proof.

First, fix 0 < g < 1. Let «, y be the standard generators of Pol(SUq(Z)) and define v = i(q +
g (g h(a*) —gh(a-)) € Ll(SUq(Z)). By direct calculation one can check that v = v, but after
averaging we obtain A(/T(v)) = () for w = i(q — g~ )(g " h(a*-) + gh(a -)) with @ # w. Next

consider 6 = h + m and y = /?(6) € COO(S@)). Using the direct integral picture from

[29, Section 7.1], one can show that y is completely positive, but A(y) is not. As both @!(y)
and @!(A(y)) are unital, we have |A()|l.p > IVl = 1. To complete the argument, set T=
H ) (2) and consider the positive linear functional p = Zm e 5)m 6®"m @ h®> ¢ Ll([F)

for appropriately chosen small § > 0. Then x = /1(/3) € A(lN is CP, but A(x) is not a left CB
multiplier.

Next we record a lemma of independent interest, which we will use later; compare also
Theorem 8.23.

Lemma 7.3. Let [ be an unimodular discrete quantum group. Then Zcy () is dense in Z A(T) for
the A(T") norm. Furthermore, CP multipliers in Z A(T') can be approximated by CP multipliers in
Zego(D).

Proof. Take a € Z A(I') and write a = /T(cogm) for some £,7 € L2(T). For ¢ > 0 choose vectors

&.,n € Ah(Pol(T)) such that [|§ = &||, |7 — 7]l < ¢, next define b, = /T(cogp,k) € cyo(l) and a, =
A(b,), where A is the averaging map. By Proposition 7.1, we have a, € Zc, () and furthermore

lla = acllam = 14(@) =A@l A < lla = bellagy 5 0

which proves the first claim. If a is a CP multiplier then w; , > 0 on L®(T) by Lemma 3.1 and we
can take £ = 7. Then a, = A(;l\(cogg’gg)) is also CP by Proposition 7.1. O

For unimodular discrete quantum groups, we can show using Lemma 7.3 that we can replace
Zcyo(l) by Z A(TN) in the definition of the central approximation properties, Definition 4.2. We
state the following result in a way which draws attention to this viewpoint, but we note that the
overall conclusion can also be deduced from the known result that the central approximation
properties are equivalent to their non-central versions in the unimodular case, see [6, Theorem
7.3] and [17, Proposition 6.8] and their (analogous) proofs.
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Proposition 7.4. Let [ be an unimodular discrete quantum group. Then [

(1) is centrally strongly amenable if and only if there is a net (e;);c; of CP multipliers in Z A(T)
converging to 1 pointwise,
(2) is centrally weakly amenable if and only if there is a net (e;);c; in Z A(I') with sup;¢; |le;llcp
< 400, converging to 1 pointwise,
(3) has the central approximation property if and only if there is a net (e;);c; in Z A([') converging
to 1 in the weak™ topology of Mlcb(A([F)).

Proof.

(1) Let (e;);c; be a net of central CP multipliers in A(T) converging to 1 pointwise. Using
Lemma 7.3 we choose elements e; ,, € Zcy(I) for n € N which are CP and satisfy |le; —
einllam < % Then the net (e; ,); nyerxn als0 converges to 1 pointwise, hence [ is centrally
strongly amenable. The reverse implication is obvious.

(2) This is analogous: given a net (e;);c; in Z A(I') we use Lemma 7.3 to choose elements ¢; , €
Zegg(D) with le; —e; 1o < % The new net (e; ,,); m)erxn Still converges to 1 pointwise, and
as the CB norm is dominated by the Fourier algebra norm we have sup; ,)erxw 1€ llcy <
Sup(i,n)GIxN(”ei“cb + ”ei - ei,n”cb) < +o00.

(3) We use again Lemma 7.3, noting that norm convergence in A(I') implies weak™ convergence in
MlC ,(A(D)). More precisely, given (e;);c; as in the claim and choosing (e; ,,); nyerxn it Z¢oo(T)

as before we have we obtain e; , = e; + (¢;,, — ¢;) ——— 1 weak™* in M (A()). O
’ ’ (i,n)eIxN cb

Remark 7.5. We do not know whether the conclusions of Proposition 7.4 hold for general [

7.2 | Amenability of Drinfeld doubles
Let us now complement Theorem 6.4 with a discussion of amenability for Drinfeld doubles of
discrete quantum groups. While some of these results are known to experts, we have been unable

to find references.

Definition 7.6. A locally compact quantum group G is amenable if there exists a left invariant
mean m on L*(G), that is, there is a state m on L*°(G) with

(m,x % w) = (m,x)1,w) (o€ LY(G),x € L°(G)).
Composing a left invariant mean on L*(G) with the unitary antipode one can equivalently
require the existence of a right invariant mean, that is, a state m on L*(G) such that (m,w * x) =
(m, x)(1,w) for all w € L1(G), x € L®(G).

Lemma 7.7. Let T be a discrete quantum group such that D(I) is amenable. Then [ is unimodular.

Proof. Let m be arightinvariant mean on L*(D([)). Define astaten € L (D)* byn(X) = m(1 ® X)
for £ € L®(T). For w € 71(I,& € L'(T) and X € L®(T) we get

(1®1T,w®&Hn(x)=(m,({dRIdRw ® c’J)AD(D(H ® X))

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T



AVERAGING MULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS | 27 of 52

=(m(([dRwIAINIRWR NI ®1RAR)(I @ W*® 1))

= (n,(0 ® id ® B)(W,AR),;W5,)), (7.6)

as m is right invariant. Now let w = ¢ € #!(I) be the counit. As ¢ is multiplicative and (¢ ®
id)(W) = 1, formula (7.6) gives

(Layn®) =n((d®DA®R) (& eL*D).

With & = h € L}(T) the Haar state, it follows that n(X) = n(1)h(®) = h(x) for all £ € L®(I), and
so n = h. Then (7.6) becomes equivalent to

A®1®1=(1d®h®id)(W,AR),;W:,)  (XeLD).
As (id ® A)(W) = W, W, this gives
A(R)1Q1=>1dQ®hQid)(W;,({d® D)(W(1 @ RYWHW3).
Conjugating by W, and using that (h ® id)A = 1 h(-), we obtain
h(3)1 = (id ® H(W(1 @ X)W™). (7.7)

Recall that the unitary antipode R on #(I) is implemented by J as R(x) = Jx*J, and similarly
for R. We also know that (R ® R)(W) = W. As hoR = h, it hence follows from (7.7) that

h(R)1 = h(RE)R() = (id @ h)((R @ RY(W(1 ® RR)HW™))
=(@{d® h)(T®HW(1 @ RR)IW T ®J))
=([d @M (TRNWI ®N(1®)JT RNWT®J))
= (id ® h)(W*(1 ® X)W). (7.8)
Equation (7.8) with £ € C(I) means that h € C(D)* is an invariant state for the coadjoint action

I~ C() given by C(1) 3 £ » W*(1 ® )W € M(c,(IN ® C(D)). It follows from [28, Lemma 5.2]
that the Haar integral h is a trace, consequentlyfis of Kac type and [ is unimodular. O

Let us now show that amenability and strong amenability coincide for the Drinfeld double D(I)
of a discrete quantum group [

Theorem 7.8. Let [ be a discrete quantum group. The following conditions are equivalent.

(1) D(T) is strongly amenable.

(2) D(I) is amenable.

(3) Tis unimodular and amenable.

(4) Tisunimodular and strongly amenable.

(5) [is unimodular and centrally strongly amenable.
(6) [ is centrally strongly amenable.
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Proof. (1) < (6) is a part of Theorem 6.4.

(1)= (2) It is known that strong amenability implies amenability in general, see [5,
Theorem 3.2].

(2)=> (3) Lemma 7.7 shows that [ is unimodular. From [3, Theorem 5.3], see also [17,
Lemma 7.12], we know that [ is a closed quantum subgroup of D(I). By [10, Theorem 3.2]
amenability passes from D(I) to the closed quantum subgroup [

(3) = (4) This is a consequence of [43, Theorem 4.5], see also [48].

(4) = (5) This follows using averaging for unimodular discrete quantum groups, compare [6,
Theorem 7.3]. Indeed, if (e;);c; is a net of CP multipliers in A(I') converging to 1 pointwise then by
Proposition 7.1, the net (A(e;));c; in Z A(T) obtained from averaging consists again of CP multi-
pliers and converges to 1 pointwise. According to Proposition 7.4(1), this means that [ is centrally
strongly amenable.

(5) = (6) is trivial. O

Remark 7.9. By [48], we know that amenability and strong amenability are equivalent for discrete
quantum groups. Clearly we cannot drop unimodularity in condition (3) or (4) of Theorem 7.8, as
if [ being amenable implied that D(I') was amenable, then the theorem would show that [T was in
particular unimodular, and there are amenable non-unimodular I. Indeed, it is well-known that
the dual of SU,(2) is strongly amenable but not centrally strongly amenable, compare [18, 21]. In
view of Theorem 6.4, this is equivalent to the fact that the quantum Lorentz group D(SU,4(2)) =
SLq(Z, C) is not strongly amenable, compare, for instance, the discussion in [53, section 7].

8 | BIINVARIANCE AND CENTRALITY FOR THE FOURIER
ALGEBRA

Given a discrete quantum group [, recall that A@f\D([I')//If) is the image of A(D(I) under the
averaging map E. Similarly, B,@\D(I]’) ﬂf) is the image of the reduced Fourier-Stieltjes algebra
B,(D(IN) under E (cf. Corollary 5.6).

In view of Propositions 6.1 and 6.3, one might wonder whether A(T\D(I) /T) is equal to Z A(I) ®
1, and similarly whether B, (I\D(I/T) is equal to Z B,(I) ® 1. Neither of these equalities turn out
to hold in general, a surprising fact that we explore more in this section. We will also study the
question of density of Zcyy(I) in Z A(T) (and weak*-density of Zcy,(I) in Z B.(I)), and prove
that these properties hold for a very large class of discrete quantum groups, namely those which
are unimodular or have the central AP. This is complemented by some observations regarding
one-sided averaging on the level of the Fourier algebra.

8.1 | The centre of the Fourier algebra

Let [ be a discrete quantum group and let D(I) be its Drinfeld double, following the notation of
Section 6. From the form of WP we see that

Ao s LOM) = AMBLID - L°DD); 0@~ (Uw) @ NZ 1 @A@)Z.  (8.1)
Hence,

Co(D(N) = 5pan{ (% ® NZ*(1 ® x)Z | x € ¢,(N), % € C(D)},
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and so

L®(D(D) = span”** {R @ 1Z*(1 ® x)Z | x € £°(N, % € L°(D)}.
Asm=e®id: L®(D()) — LO(T), and
(id ® A)(W) = (r @ id)(WPD) = (¢ ® id ® id ) (W13Z5,WouZsy) = Z5 W 13253,
it follows that
71 () > L°ODM); x - Z(1 Q@ x)Z.

This is the natural map identifying Tasa closed quantum subgroup of D(I), see [3, Theorem 5.3]
and [17, Lemma 7.12]. Define

P, = Z*(1® p,)Z = #(p,) = Apr(e ® h) € L*(D(D).

Proposition 8.1. ThemapsE, : L(D(N) —» L'(D(M) and E,, : L°(D(D)) — L°(D(D)) aregiven
by

E(w) = u(p,-p,) WeldDD)), E.O) =pyp, ¥eLDD)).

For x € £°(I) let x, € C be the entry of x in the one-dimensional matrix block corresponding to
e € Irr(D). For £ € L®(1), we have

Eo(X® 1Z*(1 ® X)Z) = x,p,(X @ )p,, (82)

and so the image of E, is the weak™-closure of pz(Lm(ﬁ ® 1)p,. Furthermore, E, restricts to a
map E, : Co(D(I)) — Cy(D(IN)) given by the same formula as (8.2), and the image of &, is the norm-
closure ofpz(C(ﬁ ® 1p,.

Proof. The forms of &, and E_ follow immediately from Lemma 5.7 and the definition of p,.
Notice then that

Z*(“ ® X)sz = Z*(H ® x)(ﬂ ® pe)Z = er*(ﬂ ® pe)Z = XeDz»

and from this (8.2) follows. As p, is a projection, the image of E_, namely p, L”(D/(ﬁ)pz, is
weak™-closed. Consequently, (8.2) shows that the image of E_, is the weak™-closure of the space
pZ(L°°® ® 1)p,, because Lm(D/(ﬁ) is the weak*-closed linear span of elements of the form (X ®
NZ*(1 @ x)Z.

Finally, as p, € Co(ﬁ(ﬁ), (8.2) also shows that E restricts to a bounded map on CO(D/(B), and
that the resulting map =, has image equal to the norm-closure of pz(CCf) ® 1)p,. O

Recall from Corollary 5.6 that the averaging map E restricts to a contractive linear map on the
level of the (reduced) Fourier—Stieltjes algebra.
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Lemma 8.2. Consider Ej: Co(ﬁ(ﬁ)* - CO(D/(B)*. Under the isomorphism Co(ﬁ(ﬁ)* =

B, (D(I)), this map identifies with the averaging map E : B,.(D(I)) — B,.(D(I).

Proof. We wish to show that for u € CO(IT(B)*, we have that
(id ® E5 ()W) = E((id ® )W),

There is a bounded net (;);c; in Ll(IT(B) which converges weak™ to u. As &, is the restriction
of E, = E7, it follows that E (u) is the weak™-limit of the net (E,(w;));c;- As left slices of WP D=

land in Co(ﬁ(ﬁ), taking right slices is a weak™-continuous operation, and hence
(id ® E;(u)WPD*) = lim(id ® &, ()W) = lim a((id ® col-)(wm*))
iel iel
_ E(lim(id ® col-)(WD([D*)> - E((id ® ,u)(WD(D*)>,
iel

as required. Here we use the defining relation between E, and E, and that E is weak™*-continuous

on L®(D(IN). O

Consider A(T\D(IN/T), the image of A(D(I") under the averaging map E. By the definition of
the maps involved, and Lemma 8.2, we have the commutative diagrams

AD[D) —— AM\DMD/D B,(D(N) —— B,\D(N)/D
A@Ie ET&@ T; ET
L'OM) —— &, (L'(D[)). oD ——s 2 (Co(D(D)).

AsL®(M ® 1 € L(D(D), the map LL(D(D)) — L1(T); u — u(- ® 1) is well-defined, and hence
the map ¢ in the following proposition is well-defined. Similarly, as C(T) ®1C M(CO(D/(ﬁ)) and
bounded functionals on a C*-algebra A extend uniquely to strictly continuous functionals on
M(A) with the same norm, the map (" in the following is well-defined.

Proposition 8.3. Define 1 : El(Ll(IT(ﬁ)) — LY(D) by () = u(- @ 1). Then « maps into Z LY
and

W) ®1 =550 (4 € Ey(L'DD))).

As such, A(ﬁf\D([F)//[f) C ZA(M) ® 1. Similarly, the map (" : ES(CO(]T(B)*) - c(* given by
"(u) = pu(- ® 1) maps into Z(C(f)*) and satisfies

(d ® C(W)WH) ® 1= (id ® (WPD*) (€ EX(Co(DMD))).

As such, B,M\D(M)/T) € ZB,(NR 1.
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Proof. We first claim that

B (@ ® D@ idp WP D)) = (Dp.(@ ®IDW)H ® Np, (€ £'(D,0 e L'(P)).
(8.3)
Indeed, by (8.2), if we set x = A(®), then X, = @(1) and so

g, ((co RO® idD([D)(WD(D)> = B (@ ® D)
= X, p, (A ) ® 1)p, = &(1)p,(w ® id)(W) ® 1)p,.

Taking adjoints, and using that E  is a *-map, yields (8.3).
Let u € E(L'(D())). As u = &,(u) = uoE,,, using (8.3),

(0 ® & ® id )W), uy = B(1)(p, (@ ® id)(W*) ® 1)p,, )
= a(1){(w ® id)(W*) ® 1, u(p - P,))
= (1){(w @ IDHW") ® 1, ),

where in the final step we again use that E;(u) = u. By the definition of ¢ this equals

(0 ® & ® idp ) (WD), u) = (@ ® Id)(W*), 1())é(1)
= ((id ® ()W), 0)d(1) = (A(W) ® 1,0 ® &).

As this holds for all w, @, we have shown that

A W) = (dpr ® W D) = Aw) ® 1,

as claimed.
As /15@051 = Eoﬂ.ﬁ(ﬁ, we have shown that A(ﬁI:\D([F) /ID = E(A(D(IN)) is equal to

Q) @ 1w € LIDD), 1= E, (1)} C AN Q1.

However, by Proposition 6.1, A(f\D(D/@ C E(Cy(D(M))) = Zcy(IN ® 1. Hence, ;1\(1(/1)) e A(MHn
Zcy(l) = ZA(D) for each u = E,(u), and so t(u) € Z Ll(ﬁ for such pu.
Exactly the same argument works for u € E;(CO(D(I]'))*) yielding the claims about (" and

B,(M\DM)/D). O
‘We can now give a simple criterion for when A@F\D([F) /ﬁ) =ZAMH 1.

Theorem 8.4. For any discrete quantum group [ the following are equivalent.

Q) ¢: E,LXDMD)) » ZLY(D) is an isomorphism.
@ AM\DMOH/H =ZAD 1.

Furthermore, the following are equivalent.
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(3) " ES(CO(D/(B)*) — Z(C(ﬁ*) is an isomorphism.

) B,(\D(M)/M) =ZB(MN®1.

Proof. (1) & (2) Asin Proposition 8.3, we identify A(ﬁ\D([F) /f) with the image of Z;, and identify
ZAM ® 1 with ZLY(D), so that ¢ gives the inclusion A@F\D([F)m C ZA(M) ® 1. Thus, ¢ is an

isomorphism if and only if A(ﬁI:\D([F) /TD =ZAH®T.
(3) © (4) The proof is entirely analogous. O

We wish to identify the dual space of the image of &E,, for which the next (well-known and
standard) lemma is helpful.

Lemma 8.5. Let E be a Banach space, let P € B(E) be a contractive idempotent and set F = P(E).
Then F is a closed subspace of E and F* =~ P*(E*) isometrically, for the natural pairing between
P*(E*)CE*andF CE.

Proof. By the Hahn-Banach theorem, we identify F* with E*/F where F+ = {u € E* | u(x) =
0 (x € F)}. Notice that for u € E*, we have that u(x) = 0 for all x € F if and only if P*(u) =
uoP = 0,and so F1 = ker P*. As we have the algebraic direct sum E* = P*(E*) @ ker P*, we iden-

tify E* /F+ with P*(E*) in a way which respects the dual pairing. It remains to show that this
identification is isometric. For u € E*, we have

IP*(w)|l = sup{|P*(m)(x)| | x € E, [|x|| < 1} = sup{|u(P(x))| | x € E, ||x]| < 1}
=sup{lu()| |y €F, |yl <1},

as {P(x)|x €E,|x|]| <1}={y € F||lyll <1} because P is contractive. Hence, |P*(u)| =
lulpll = Nl + FHlg« pe as claimed. .

In the following, for a Banach space E and closed subspaces F C E and G C E* we define
Fr={u€E |pu(x)=0(x€F)}, 'G={x€E|ux)=0()eEG}

By the Hahn-Banach theorem, we have the natural isomorphism F* = E*/F*, and that (*G)* is
the weak*-closure of G. Furthermore, there is a canonical isometric identification (E/F)* = F*.

Proposition 8.6. The Banach space adjoint t* : (Z L))" - B (ﬁ(ﬁ)) is the map
EU®@) =L@/ L) 22+ @@L )" » p,EQ )p,,

which has weak*-dense image.
Furthermore, (" is weak™-weak™-continuous, and the Banach space pre-adjoint map is

L eM/HEE) = Ef(CoDM)); %+ HZECED) - p,(RQ Dp,,

which has norm-dense image.
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Proof. By definition, t* : L“(f) — El(Ll(D/(ﬁ))*, and so the identification of El(Ll(D/(ﬁ))* with
EW(L""(ﬁ(ﬁ)) given by Lemma 8.5 shows that (* has the stated codomain. The given formula
for * now follows easily from the definition of . From Proposition 8.1, the image of E is the
weak™-closure of pz(L“(ﬁ ® 1)p,, and thus t* has weak*-dense image.

We observe that (" is weak™-weak™-continuous by definition, and that C(ﬁ / l(Z{(C(I]AT")) is the
canonical Banach space pre-dual of Z (c(M*). One now gives the analogous argument for (. []

Motivated by Proposition 8.6, we wish to study the map X — p,(X ® 1)p, more closely. By [6,
section 7.1] there exists a normal UCP map At L”@)@ L°°(/[|>) - L”@ which satisfies

a

B(uyeUy)) = 5a,55j,kmui,l.
Define Q: L) — L=(D) by Q = AfoA°P. Thus, Q is normal UCP with
dim(a) 1
QUf) =6,  Eim@ gi Uy, = 5wm Xa- (8.4)
From this formula, it is clear that Q restricts to a UCP map Q : c® - c.
Proposition 8.7. Forany X € L®(T) we have that
p:(X® Dp, = Z*(Q(X) ® p.)Z.

Proof. Pre- and post-multiplying by Z and Z*, respectively, shows that the claim is equivalent to

(1®PIZE®DZ (1®p) =D ®p, (X eLD).

We have p,& = (A,(1)|EA,(1) (€ € LAT)), and so for any T € B(LA(T)) we have p,Tp, =
N, (DITAL(1))p,. Thus, the claim is equivalent to

(d @y, NZE®NZH)=QE®) R eLD).
By weak*-continuity, it suffices to check this claim for X € Pol@, and then by linearity, it suffices
to consider X = Ulf"j fora € Irr(D), 1 < i, j < dim(a).
Using
WE® DW* = TW (1 @ R)WE = A%(®) (X € L®(D)) (8.5)
we compute
ZU; ® NZ* = I ®DHWU @ DWUF; ® NW* (U @ HW* (U @ T)

dim(a)
=( ®®W< LY ®fU§fkf>w*(J ® D).
k=1

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T



34 of 52 | DAWS ET AL.

We next use that

dim(ar)
A % A o PN 1/2 —-1/2
JUL J =RUE )" =2 0(SUE ) =2, p(US)) = lz 007 Dms UL . (86)
,m=1

and also observe that J Uf‘kf € L°°(I]A)’ s01Q®J Ul.“kf commutes with W*. Using (8.5) again, we
thus obtain, ’ '

dim(a)

ZWE®NZ = Y 0/ D0x DT @ DWUE, @ NW*(1 @ TUE DU @ T)
k,l,m=1

dim(a)
= Y @0 e @DWE, ® UF )T @ D1 @ UZ)

k,l,m,n=1

dim(c)
1/2 —-1/2 2 T
= Y @ I UL, @ TUE TUE,

k,l,m,n=1

dim(ar)
1/2 —-1/2 1/2 —-1/2 ~ A~
= Y @m0 U @ TUE TUE . (87)

k,L,m,n,r,s=1

Here we used that p, is a self-adjoint matrix and Equation (8.6). Next observe that fAh(a) =
Ah(c?i/z(a)*) for a € Pol(l), and thus

(AU TUE AR ) = (AD[UETUE TALD) ) = (A(UEDINAG2UF ) )

dim(a)

G * -1/2 -1/2 .
= h<Uf,(kUi/2(U7fn) ) = Z (o2 / ) (pa / )u,nh(Uffk(Uffu) )
t,u=1
| 1/2
=d1§a)(p—1/z) ©V?) & Pk _ o2 M
tu=1 a t,I\Ma nu l’tdimq(oc) a il dimq(oc)'

Hence, applying id @ w,, () to (8.7) gives

(id® coAh(n))(Z(Ui""j Q@ 1)Z*)

RSy 1/2 -1/2 1/2 ~1/2 « ,—1/2 (pé/z)n’k
=k,l,m;,r,s=1(pa P emPol ImrPer " Vs nUr (P )i’lm
-1 Adii("a) Us, = QUY)
dimg(a) " & kK i.j7
as required. .
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Corollary 8.8. The maps t* and (], are given by

¢ (ZLM) = L2/ L M) - E,0DM); £+ E L) - ZHQE) ® p.)Z,
L eD/HEE®) = Ey(CoDM)): X +HZED) - Z(RQR) ® 1)Z.

In particular, (Z L))+ C ker Q and L(Z(C(D)*)) C ker Q. Furthermore,

« * isinjective if and only if (Z LY(D)* = ker Q,
* 7 isinjective if and only lfJ‘(Z(C(ﬂ_)*)) = ker Q,

and

* (* is surjective if and only if Q has weak*-closed image,
* o is surjective if and only if Q, has norm-closed image.

Proof. The formulae for * and ¢, follow immediately from Propositions 8.7 and 8.6. In partic-
ular, as * is well-defined, it follows that (Z Ll(f))l C ker R, and injectivity of (* is equivalent
to (ZLY()* = ker Q. As (* has weak*-dense image, and tensormg with p, and conjugating
by Z does not change being weak*-closed, it follows that ¢* is surjective if and only if Q has
weak*-closed image. The claims for Q, are analogous. O

8.2 | One-sided averaging

We continue Remark 6.2, where we showed that C,(D(I") /f) ={{d@h)(x)®1|x € Co(D(N)} =

co(N ® 1, and noticed that the averaging map from Co(D(IN/T) to Co(M\D(IN/T) is given by x ®
1~ A(x) ® 1, where A is the map discussed at the start of Section 7.

The one-sided averaging map E" : Cy(D(IN) — Cy(D(I) ﬁ) is associated to the map Ef:
LI(D(M)) — LL(D(D)) given by p = p(p,-) = pup,; compare with Remark 5.13 and Proposition 8.1.
The adjoint map is E_: L°°(D([F)) - L°°(D([F)) X — p,x which maps Z*(1 ® x)Z(x ® 1) to

X,p,(X ® 1), and hence the image of 2/ _ is the weak™*-closure of {p, (X ® 1) | X € Lo (D}

It seems difficult to express elements of the form p,(X ® 1) in a simple way, so there seems

to be no version of Proposition 8.7 in this setting. However, we do have the following version of

Proposition 8.3.
Proposition 8.9. Define a : {up, | u € L'(D(N)} — L'([) by a(u) = u(- ® 1). Then
Aa@w) ®1 =155 (= up, € ZLDD)).
As such,
ADM/MHcAD 1, (8.8)

with equality if and only if « is surjective.
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Proof. Letu € Ll(ﬁ(ﬁ) with 4 = up,. Then we obtain

A~

A0 = (d @ (WP = (id @ w)(P2)34Z3, W5, Z3aW15)
= (id ® u)(Z5,(1%° ® pIW3,Z3,W7y) = (id ® w)(Z5,(1%° ® p,)Z3 W)

= (id ® W)(p,)3W7,) = (id ® W)(W},) = (ld @ a(u)(WH) ® 1 = Aa(w) ® 1

as claimed, where we use that (1 ® p,)W* = 1 ® p,.

—

; ol — — 1 o"l
By construction, we have E o/lD([D = ’1D([r)°“1’ and so

ADM/D) = 55 | 1= ups} = Aa@) @ 1 u = up} SAD @ 1.
Moreover, the last inclusion is an equality exactly when « is onto. O

As before, we shall study the Banach space adjoint a*. As noted in Remark 6.2, we have cy,(I) ®
1=E"(ceo(NO Pol() C E"(A(D(I)), and so « has dense range, or equivalently, a* is injective.
Furthermore, we have

a*: LM = {p,x|x € LD} = {p,E® | e LMV, T p(X®1),

here again using Lemma 8.5 to identify the dual of Ll(ﬁfﬁ) p, with p, L“(ﬁ(ﬁ). This implies
immediately that a* has weak*-dense range, or equivalently, « is injective. So, « is surjective if
and only if « is an isomorphism, by the Open Mapping theorem, and this in turn is equivalent to
a* being an isomorphism, equivalently, a* being bounded below. With this in mind, notice that
for £ € L*(T) we have

e ®DI? = I1p.(X ® DII* = p,(F2* ® Dp. |l = IQETII, (8.9)

the last equality following readily from Proposition 8.7.
Recall from Subsection 7.1 that if " is unimodular then Q = F is the Haar-trace-preserving
conditional expectation of L™ (f) onto ;.

Lemma 8.10. Let [ be unimodular. For § > 0, the following are equivalent.

@ Nl @Il > SIIR|| for each £ € L=(D).

Q) 1Q®)| = 82|IX]| for each £ € L) with X > 0.
(3) QR) > 62X foreach X € L® () with X > 0.

@) Nl @)l > 8|IR|| for each £ € C(D).

(5) 1QuE)Il = 82Xl for each * € C(T) with X > 0.
(6) Qy(X) = 8%X foreach X € c(withx > 0.

Proof. (1) © (2) and (4) < (5) follow from (8.9).
(2) = (5) follows from the fact that Q restricts to a map Qy : c( - c.
(2)= (3) Given € L®(I) and ¢ > 0, notice that

(€1 + QE*R)V2Q(E* %) (el + QE*R) /2 < 1.
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As RQ is a conditional expectation, it is a bimodule map. Set § = £(e1 + Q(X*%))~1/2, so the previ-

ous equation shows that Q(7*9) < 1. Thus, 1 > |QG*P|| = 82(19*Yl, so ¥*P < §-21. Multiplying
by (e1 + Q(X*X))'/2 on both sides yields

IR L8 (el + Q(X*X)) foralle > 0,

and hence Q(X*X) > §2%*% as claimed.

(5)= (6) is analogous, and the reverse implications (3) = (2) and (6) = (5) are clear.

(6)=> (3) follows from Kaplansky density. Indeed, given X € L°°(ﬁf) with X > 0, there is a
bounded net of positive elements (q;);c; in c(D) with g = X strongly, see [27, Corollary 5.3.6],

for example. Then (Q(a;) — §2q;);¢; is a net of positive elements, by 6), which converges weak™
to Q(X) — 62X, showing that Q(X) — §2% > 0, as required. O

Now let G be a compact group (always assumed to be Hausdorff) and set [ = G. Then Q is the
conditional expectation of L*(G) onto the class function algebra

G ={f LG ft-t™)=f()( €GB

and similarly at the C*-algebra level, leading to €% C C(G). It is now readily seen that Q takes the
form

Q) = /G fe-thd (f eLX©)),

see [31, Lemma 1.2], for example. For r € G we denote by Cl(r) = {trt~! | t € G} the conjugacy
class of r, and we write C;(r) = {t € G | tr = rt}for the centraliser of r in G. As conjugation yields
acontinuous action of G on itself, C1(r) is a closed subset of G, and the stabiliser C;(r) ofr € Gisa
closed subgroup of G. The Orbit-Stabiliser theorem gives a bijection G/C;(r) — Cl(r); tC(r) —
tre=1.

Proposition 8.11. Let G be a compact group. For § > 0, the following are equivalent.

@ I1KRWNOI = SlIf Il for f € CG)*.
(2) Each conjugacy class satisfies |C1(r)| < 671
(3) Each centraliser C;(r) has finite index in G, with [G : C;(r)] < 7L

Proof. By the equivalence of (5) and (6) in Lemma 8.10, we see that condition (1) is equivalent to
/f(trt_l) dt > 8f(r) (f e C(G)*,r €eG). (8.10)
G

Denote by v = dt the Haar measure on G, which is regular (we follow Rudin’s conventions
[44, Definition 2.15]). Fix r € G, and define 8 : G — G by 0(t) = trt~!, a continuous map. Let
u € M(G) be the pushforward of the Haar measure, y = vo0~1,

Then u is regular, a fact surely known, but for completeness we give a quick proof. As v is finite
and G compact, we only need to check that y is inner regular (note u(E) = 1 — u(G \ E) for every
Borel set E C G). Let E C G be Borel and € > 0, so as v is regular, there is a compact L C 6~1(E)
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with »(6~1(E) \ L) < €. Then K = 6(L) is compact, as 6 is continuous, and L C 6~(E) = K C E.
Also L € 671(K), and so u(E \ K) = v(6~1(E) \ 6~ 1(K)) < v(6~'(E) \ L) < €. We conclude that u
is regular as claimed.

It follows from Riesz’s theorem [44, Theorem 6.19] that u is the unique regular measure on G
with

/ £(5) du(s) = / FO®)dt = / fertde  (f € C©)).
G G G

By regularity of u we find for each € > 0 an open set U with r € U and u(U \ {r}) <e. As U
is open and contains r, there is f : G — [0,1] continuous with f(r) =1 and f supported in U.
Then

Cq(r)) < /Gf(trtl)dt <v({teG|rt e U}) =v(67'(U)) = u(U)

<ulr)+e=vOt{r})) +e = V(Cq(r)) + €.

Together with (8.10), this gives
§=05f(r)< /f(trt‘l)dt <w(Cs(r) +e,
G

and as € > 0 was arbitrary we conclude § < v(Cg(r)).
Let x; = e, X5, ..., X,, € G be such that the cosets (x J»CG(r));.’:1 are disjoint. By invariance of the
Haar measure,

n

1=vG) > Z X; CG(r) =nv(Cqs(r)) >

son <6 L. Thus, [G : C;(r)] < 671, and by the Orbit-Stabiliser theorem we get |C1(r)| < 67!
This argument shows that (1) = (2) < (3).

Conversely, assume that (2) holds. For r € G, let (xiCG(r))?=1 be a complete set of cosets of
Cs(r), equivalently, {xl-rxl._1 |1 <i<n}=CIl(r). Then for f € C(G)",

/ f@rt™Hde = Z f(xitrt_lxi_l)dt=ZV(CG(V))f(xirxi_l)
G

Cg(r) i=1

=v(Cs) Y, f(s) 2 v(Cor)f ).

seCI(r)

As 1 =9(G) = nv(Cg(r)) we see that »(C;(r)) = n=! > § and so the inequality in (8.10) holds,
thus condition (1) holds. O

Recall that the derived subgroup of an abstract group H is the subgroup generated by all com-
mutators [g, h] = g~*h~'gh for g, h € H, denoted by H' or [H,H]. As t[g, h]t™" = [tgt™!, tht™]
for g, h,t € H the subgroup H’ is normal. As [g, h] € H' by definition, we see that ghH' = hgH'’
and so H/H' is abelian. Notice that t~'rt = [t,r~']r € H'r, and so if H' is finite, then |CI(r)| <
|H'r| = |H'|, for any r. A remarkable theorem of Neumann shows the converse.
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Theorem 8.12 [39, Theorem 3.1]. Let H be a group such that there is a constant n € N with |Cl(r)| <
n foreach r € H. Then H' is finite.

Combining this result with Proposition 8.11, Lemma 8.10 and Proposition 8.9 we obtain a
characterisation of the compact groups with AD(G) /G) = AG) Q1.

Corollary 8.13. Let G be a compact group. Then A(D(@)/G) =AG)R1 ifand only if G’ is finite.

It follows that there are many compact groups G for which A(D(G) /G) is a strict subset of
A(G) ® 1, for example G = SU(n) for n > 2. Note that when ['=T is a discrete group we have
C([F) = C/(T'), hence &; = L°°([F) and Q =id. So, in this case one trivially gets A(D(T")/ D) =
AD)® 1.

Next we consider duals of free orthogonal quantum groups.

~

Proposition 8.14. Let N > 2,F € GL(N,C) with FF € R1 and T = O; be the associated free

orthogonal quantum group. If I is not unimodular, then A(D([F)/MAF) ¢ A(IN) ® 1. This conclusion in
particular holds for T = SU4(2) (g € -1, 1[ \ {0}).

Proof. The compact quantum group O; was introduced in [51]; let us recall some of its properties,
see, for instance, [4, 47]. One can identify Irr(O;E) with Z in such a way that the fundamental
representation corresponds to 1, and the fusion rules are

nom=ln-ml@(n-—m|l+2)®--dn+m) (nh,meZzZ,). (8.11)

Furthermore, every finite dimensional representation of O;; is equivalent to its contragradient.
From (8.11) it follows that the classical and quantum dimension functions are given by dim(n) =
[n+ 1]qc and dimq(n) =[n+ 1]qq for n € Z, and some 0 < g, < g, < 1, where [n]qx are the g-

numbers given by [n]qx = z{l—:zx if 0 < g, < 1 and [n]; = n. As we assume that O; is not of Kac

type, we have g, < g..
From Proposition 8.9, we know that A(D(I) m C A(IN) ® 1, and that equality of these two vector
spaces is equivalent to

o L0 = {px |x € LM} 2= p, (RO 1)
being an isomorphism. We will show that there is no § > 0 for which the inequalities

1RGN 2 8llxnx,ll (nEN) (8.12)

hold, which by (8.9) shows that a* is not bounded from below and proves the claim.
Fix n € N and note that

dim(2k) o [2k + 1],

m, 2" T &k + 1, e, (8.13)

QU = QWnen) = Y, Qo) = 2
k=0 k=

To calculate the norm of this element in %”O; we note that the spectrum of y; in %o,t is
equal to [—2,2] and the restricted Haar integral is the semicircle law, see [47, Corollary 6.4.12].
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Functional calculus then establishes an isomorphism %O; ~ L*®([-2, 2]); in the unimodular case
this observation was recorded, for example, in [22].

Choose any 0 < g < 1. The quantum group SU,(2) can be constructed as an orthogonal quan-
tum group for an appropriate matrix [47, Proposition 6.4.8], so by the above we obtain a uniquely
determined isomorphism %O+ ~ Gsy ¥e) which maps the character y, to the character y, 504 €
L*(SU, (2)). Using this 1somorphlsm and (8.13) we can calculate the norm of Q(,, x};) as follows:

2k+1

HZ 2k +1], XZ"

[2k + l]q SU (2)

“D XnXy)

Bsuq@
(8.14)

where in the last equality we use that C(SUq(z)) has a continuous counit. Before we bound (8.14),
let us calculate the norm of y,, x in a similar way:

2
SU,(2)
n

=n+1)>% (8.15)

* _ 2 _
Intille,, = ol = ¢

Bsu,4(2)

[2n+1JqC

Zni ] € R is decreasing for large enough n, say for

It is an elementary exercise that N 3 n —

qq
n > n,. Assume n > n . We have by (8.14)

Lyl 20Vn] +1],
1RO < Z k+1)+ g Z 2k +1). (8.16)
k=0 [2L\/HJ + 1]qq k:[\/;J+1

If g, = 1, we can continue as follows:

1RGN < 20v/r) + DY 4 (o) +1
+@LVn) + 1)%(2@ — VADSE ),

consequently [|[Q(x, x;)Il = O(n) as n — oo. If g, < 1 we similarly obtain from (8.16)

1RGN < 200v/a) + DY 4 (i) +1

*ZI\ﬂ IRV RS 1
—q. qq qq _ n+[\/;J+l B
+5 -4 2V 2l (2(n L\/EJ)—Z +n—[vn]),
q q

;!

and, as the second summand is bounded by (qc) “2lvr)-1 times a polynomial in n, we get

1R )N = O(n) as n — oo in this case too. Together with (8.15), this shows that (8.12) cannot
hold for any 8 > 0. O

Another class of examples is provided by certain infinite direct sums. For notational conve-
nience we consider only countably infinite direct sums, but the proof below can be easily extended
to the general case.
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Proposition 8.15. Let (I,,),.en be a sequence of non-classical discrete quantum groups and let [ =
@n 1 I, be its infinite direct sum. Then A(D([F)/f) CAMH®1.

Proof. As in the proof of Proposition 8.14, we will show that a* is not bounded from below using
(8.11). Fix n € N. As [, is not classical, there is 8 € Irr(T ) with dim(B) > 2. Assume first that the
taken with respect to any orthonormal

1.dim(B)’
basis ey, ..., e4im(g)» is non-zero. Define self-adjoint 3, € Pol(T,,) via y,, = l,‘(U1 daime) T Uffﬁm(ﬁ)),

where t € R is chosen such that [|y,]| =1 € Sp(¥,,). Observe that Q(¥,) =0as 1 # dim(ﬁ) and
furthermore 2 € Sp(1 + ,,) C [0, 2]. It follows that ||1 + ¥, || = 2. If the real part of U1 dim(@) |
zero, then we construct an element 3, with the same properties by using the imaginary part of

8
Ul dim(B) instead.

For the definition and properties of [ = @°-_, [,, we refer to [54] (see also [30, section 3]). Let

n=1"n
us only recall that the irreducible representations of Tare given by

real part of the off-diagonal matrix coefficient o4

{el>, FiX - KBx X eX® K €N, B, € Irr([rl Bk € Irr([rK)}

where X is the trivial representation on C, while 8; [X] --- [X] B [X] eX* is the representation on
Hﬁl ® e ® HﬁK with

B+ KBx K> 51 Bx ®co
(g i) i)~ Dy © " O Ui ©F (8.17)

Now, choose N € N and consider (1 +5;) ® -+ ® (I + y) ® 19 in Pol(l). As each 1 + 3, is
positive, we can write this element as XX* for some X € C(D). Then we have

%12 = IXZ*) = 1T +9) @ -+ @ (1+In) ® 1E®| = 11+ Fyll -+ |1 + Iy Il = 2",

Next observe that

QZ @+ ®zg ®19°) = Q(z) ® - ® Q(zx) @ 18° (K €N, z; € Pol(l)), ... , zx € Pol(Ty)),

which easily follows from (8.17). Using this description and Q(9,,) = 0 we have

QER) = QM +7) ® - ® (1 +Py) @ 18%)
= ) = ) Q) ®Qazy) @19% =19,

z1€{1.1}  zyellIn}

We thus obtain ||X]| = 2V~! on the one hand, and |Ja*(X)|| = [|QEXX")||}/? = 1 by using (8.9) on
the other. Hence, a™* is not bounded from below. O

As a final remark, we consider briefly the second averaging map c,(I) ® 1 = C,(D(I) /ﬁ -
CO(ﬁD(D /ﬁ given by x ® 1~ A(x) ® 1. As explained in Remark 7.2, there exist non-
unimodular [ for which there are elements x € A() with A(x) ¢ A(I. In this situation, we
cannot have A(D([F)/T) =AMNRT,asAx)® 1 ¢ ZA(IN ® 1 while A(/|]>\D(|]')/UA_) CZAMNHR1
by Proposition 8.3.
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8.3 | Density of central algebras

Recall that the quantum characters are defined by

dim(a)
Z (pa)j,iUicfj = a—i/z()(a) (a € Irr(D)).
ij=1
Then for any 8 € Irr@) 1< < dim(B) we see that
p dim(a) ; 5.t dim(a) 5
g% _ .
vty =Y (pa)k,zh((u,i’,z) vf) = o (a) 2 G670 = bea g 19

k=1

Thus, 2(h(x2")) = dim,(a)™ p, and so
Zcgo(M = i(span{h()(g*-) la e Irr@}).

We say that span{h()(g*-) la € Irr(M} € ZL'(D) is the space of finitely supported elements in
ZL(D).

Lemma 8.16. As X is normal, it has a pre-adjoint map Q,, : LY([T) — LY(D), which satisfies

Py D) i
dim,(a)

so that the space of finitely supported elements of Z LY(D) is contained in the image of Q.. and also

D*<h(Uff;-)> - h(x3*) (@ elrr®,1<i,j < dim(a)) (8.19)

dim(a)

g =~
dimq(oc) h(xg ) (a € Irr(l)). (8.20)

Letw € Z Ll(ﬁ be finitely supported, and let x € ker Q. Then w(x) = 0.
Proof. For § € Irr(M),1 < 5.t < dim(B) we compute that

dim(f)

o
a B a B axprhP St -1y
Q. (hwg))We) = h(UF R )) q(ﬁ) Z n(usus )_5a,ﬁdimq(a)2(pa )jin
while
(pal)jl Q5P 5 1
dlmq( ) ( U t)_ o{ﬁd ( )2(pa )jl

by (8.18). As elements Uﬁ , form a basis of Pol(f), and Pol(ﬁ is weak*-dense in L°°(ﬂ|>), this
establishes (8.19). It follows that

dim(a) ' dim(a) (pal) ; . di .
A(RE) = 3 R (V) = B ot = diz(g)h(xi )
i,j= Lj=

which is (8.20).
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To show that any finitely supported element w € Z L'(T) annihilates ker R, it suffices to show
that h( )(g*x) =0foreacha € Irr(@ and x € ker Q. However, with w = h( )(g*-), we have

q()n()() dim(a)

dim@) dm@ w(RQ(x) =0

h(xg x) = w(x) =
as required. O
The following is interesting in view of Lemma 7.3.

Proposition 8.17. The following are equivalent.

1) Zcyo(l) is dense in Z A(T) for the A(T) norm.
@) (L) =kerQ.

Furthermore, the following are equivalent.

(3) Zcyy(IN) is weak™*-dense in Z B,.(I).
4) L2(C*) = ker Q.

Proof. (1) = (2) By assumption, the finitely supported elements of Z LY(I) are dense in Z L}(D).
Take w € Z L'(T), and let (w,)nen be asequence of finitely supported central elements converging
in norm to w. For x € ker Q, Lemma 8.16 then implies 0 = lim,,_, ., w,(x) = w(x). We conclude
ker Q C (Z LY(I)*. Corollary 8.8 gives the reverse inclusion (Z L'(1))* C ker Q.

(2) = (1) Towards a contradiction, suppose that (1) does not hold. Then, by Hahn-Banach, there
is x € L*(T) which annihilates the finitely supported elements in Z LY(D), such that there isw €
Z L) with w(x) = 1. Thus, h(xZ"x) = 0 for each a. From (8.19), it follows that

( [

h(x¥'x) =0,
dim, (@)

hUE AR = R, (AU )0 = 5

for each a,i, j. As {h(a*-)|a € Pol(1} is dense in L1(T) it follows that Q(x) = 0 and hence x €
ker Q. By assumption x € (Z L(I))*, which is a contradiction.

3) = 4) By assumption, the finitely supported elementsin Z L1® are weak™-dense in Z(C@*).
Thengivenu € Z (cM*)we pick a net (w;);c; of finitely supported elements in Z L' converging
weak” to u. For x € ker Q,, C ker Q we again have 0 = lim;¢; w;(x) = u(x). Thus, Lizic®)) 2
ker Q,, and together with Corollary 8.8 this shows 4).

4) = 3) Assume that (4) holds but (3) does not. This means that the space of finitely supported
elements of Z L}(T) is not weak™ dense in Z(C(I)*). The weak* topology of zcM) is given by
the canonical predual c / L(z(c(@*)), hence there is 4 € Z(C(1)*) and x € C(T) which anni-
hilates the finitely supported elements of Z LY(T) and satisfies u(x) = 1. By (4), it follows that
x & ker Q, so Q(x) # 0, but the same argument as before shows that (x, Q. (w)) = 0 for each
w € LI(D). This implies Q(x) = 0, which is a contradiction. O

Corollary 8.18. If A@F\D([F)m =ZA) ® 1 then Zcyy(I) is dense in Z A(T). Furthermore, if
B,(N\D(D/T) = ZB,(IN ® 1 then Zcy, (I is weak*-dense in Z B, ().
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Proof. Assume that A(f\D([F) /f) = Z A(l) ® 1. By Theorem 8.4, 1 and hence also (* are isomor-
phisms. Using Corollary 8.8 we see that (Z L! (M)! = ker Q, and therefore Proposition 8.17 gives
the result. The case of the reduced Fourier-Stieltjes algebra is analogous. [l

If I is unimodular, the Haar state h on L“(ﬁ) is a trace we have the normal conditional expec-
tation F : L®(T) - @5, considered already in Subsection 7.1. Comparing the definition of Q in
(8.4) with formula (7.3) shows that Q = F in this case.

Theorem 8.19. Let [ be unimodular. Then Q has weak”™-closed image, and t* is an isomorphism.

As such, AM\D(I)/D) = ZAMD ® 1.

Proof. The map Q = F is a weak”-continuous idempotent and so has weak*-closed image.
According to Corollary 8.8 this means that (* is surjective. Moreover, Proposition 7.1 shows that
Q, = F, is a projection onto Z L}(T), and hence ker Q = ker F = (Z L(I))*; for this we could
also use Lemma 7.3 together with Proposition 8.17. Due to Corollary 8.8 we conclude that t* is
injective. The claim now follows from Theorem 8.4. O

Our next goal is to prove that density of Zcy,(I) in Z A(') holds under the assumption that I
has central AP, and a similar claim for the Fourier-Stieltjes algebra. As a preparation we need to
establish a couple of results concerning the weak™ topology of MlC ,(A(I)) and central AP.

Let us first recall some facts from [17, section 4]. If G is a locally compact quantum group and
H a Hilbert space, then for x € CO(@) ® K(H) and w € LY(G)® B(H),. the bounded functional

Q.. M, (AG) - C; a ~ ((0'(a) ® id)x, )

lies in the predual Q'(A(G)). Moreover, every element of Q'(A(G)) arises in this way, see [17, Propo-
sition 3.8]. We shall extend this result as follows, improving [23, Proposition 1.3] in the classical
setting.

Lemma 8.20. Let G be a locally compact quantum group and let H be a Hilbert space. For any
X € CO(@) ® K(H)and u € (CO(@) ® K(H))*, the bounded linear functional

Qut Mlcb(A(G)) - C; ar (u,(0(a) ®id)x)

is contained in Q'(A(G)).

Proof. By continuity and linearity, it suffices to prove the result forx = y ® 6 withy € CO(@), fe
K(H). Let &’ € Co(G)* be given by (1/,b) = (u,b ® 8) for b € C(G), so that

Q, (@) = (1,0 (a)y) ® 6) = (1, 0/ (A)()).
By a further continuity argument, we may suppose that y = (v ® id)(W*) for some w € L!(G). As
(a ® DHW* = (id @ ©!(a))(W*), it follows that ©'(a)(y) = (v ® id)((a ® HW*) = (wa ® id)(W*)

foralla € Mib(A(G)). Consider z = (id ® ¢/ )(W*) € L®(G), thatis, (z,»’') = (¢, (o’ ® id)(W*))
for any o’ € L!(G). Then we have

Q, (@) = (¢, (wa @ id)(W")) = (z,wa) = (a, zw).
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Thus, Q, .. agrees with the action of zw € L(G), considered as an element of Q/(A(G)). It follows
that Q.. € Q'(A(®)), as required. O

The next result should be compared with [17, Theorem 4.4] and [23, Theorem 1.9(c)].

Lemma 8.21. Let G be a locally compact quantum group and let X C M’Cb(A(G)) be a convex subset.
If there is a net (a;);c; in X with q; - 1 weak”, then there is a net (b;);c; in X with (@l(bj) ®
e

id)(x) — X in norm, for each x € CO(@) ® K(H) and any Hilbert space H.
JjE

Proof. By assumption and Lemma 8.20, for any x € CO(@) ® K(H) and 1 € (CO(@) ® K(H))* we
have that

lim(u, (©'(a) @ id)(x)) = lim(a, Q) = (1,0, ) = (. %).

Hence, (@l(ai) ® id)(x) = x weakly for each x. Consequently, for any n € N and x, ..., X, €
e

Co(G) ® K(H), the weak closure of the convex set {((0'(a) ® id)(xk))z=1 |a € X}, in the n-fold
product of CO(@) ® K(H) with itself, contains (x;, ..., Xx,,). By Hahn-Banach, the same is true for
the norm closure. In a standard way, we may now construct a (possibly) new net (b;) ¢, in X so
that (8'(b;) ® id)(x) = * in norm for each x € Cy(G) ® K(H). ]

Proposition 8.22. Let [ be a discrete quantum group with the central approximation property. Given
b € ZB,(I), thereis a net (b;);c; in Zcyo(I) C Z B, () with b; - b weak*.
L
Suppose further that [ is centrally weakly amenable. Then we can choose the net (b;);c; to be
bounded; more precisely, we can choose the net so that ||b;|| < ZA,,(DI|b]| foralli € I.

Proof. Consider the convex set Zc,(I) C Mib(A([F)). By assumption, this set contains a net con-
verging weak” to 1, and so by Lemma 8.21 there is a net (a;);; in Zcy(I) with 0l(a;)(x) X
1S

in norm for each x € C(I"). For everyi € I, thereis @; € LY(T) with a; = i(cﬁi), and so ©!(a;)(x) =
(@; ® id)Ap(x) for x € c(D). 1t follows that &; * u T H weak™ foreach u € c(D*. AsL(D)isan
e

ideal in C(D)*, given b = /f(,u) € Z B, (I, we obtain an approximating net in Zc,,(I) € Z B,(I) by
setting b, = A(&; % ) = a;b, which converges weak™ to b.

We now consider the case when [is centrally weakly amenable. From the previous paragraph,
it follows that

@ % p=po0a) = Ibllae) = labliae = 18; * ull < llullla;llep-

Hence, we can work with the convex set {a € Zcy, () | ||all.;, < ZA.(D)}, and hence suppose that
lla;llep < ZA.(D) for each i. Setting b; = a;b as before then yields a net (b;);c; with the desired
properties. Ll

Theorem 8.23. Let [ be a discrete quantum group with the central approximation property.
Then (Z LY(1)* = ker Q and Zc,(I) is dense in Z A(T). Furthermore, -(Z(C(1)*)) = ker Q, and
Zcyo(I) is weak™-dense in Z B,.(I).
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Proof. We claim that there is a net (q;);; in Zcyo(I) with @l(ai)(x) - x weak™ for each x €
e

Le(D). This can be shown by adapting the proof of [17, Theorem 4.4], which shows that when
(b))ier is a net converging weak™ to 1 in Mlc b(A(D), and f € £1(), then the net given by a; =
b; x f will satisfy the property we need. As [is discrete, we may take f = ¢ the counit, and then if
b, is central also a; will be central. For each i let w; € Z L'(T) with ﬁ\(wi) = a;, so that in particular
w; has finite support.

Let x € ker Q, and w € Z LY(T). Then w; *  also has finite support, as ;1\(col- * W) = a,-i(w) S
Zcyo(l). For each i, by (8.20), it follows that w; * w = Q,.(v;) for some v; € Z LY(T) with finite
support. Thus

w(x) = im(6'(a)(x), ) = im(x * w;, ©) = lim(x, Q) = lim,(Q(x)) = 0.
iel iel iel iel

Asw € Z L1(T) was arbitrary it follows that x € (Z L}(T))*. We thus have ker Q € (Z L)), and

hence ker Q = (Z L}(T))* by Corollary 8.8. Therefore, Proposition 8.17 yields the first claim.
Now let u € Ze. Taking X = Zcy() in Lemma 8.21, we can find a net (a;);c; in Zcyo(IN)

such that ©'(a;)(x) = x in norm for all x € C(T"). We can write a; = /T(coi) with w; € Z LD

finitely supported. Then w; * u is also finitely supported in ZL(D. Consequently, for x €
ker Q, C ker Q we get u(x) = 0 by an analogous argument as above. We thus have ker Q, C
L(z(c()), and the second claim now follows again from Corollary 8.8 and Proposition 8.17. []

Remark 8.24. 1t is shown in [1, eq. (3.2)] that when [ has the central ACPAP, see [18, Definition
3], then Z L(T) is the closed linear span of functionals of the form h(- )(g). Recall that we can
express the quantum characteras y! = 6_; /2(Xs), soin particular, )(;* =G 2@ = of /a( )(;) =
g; /2(Xe)- Thus, for x € Pol(T) we see that

h(xxg) = h(x6_i /(X)) = h(x8_i(G;;(Xe))) = h(xG_;(x2)) = h(xZ ).

Hence, h(-x2) = h( )(;* ), and so the linear span of the functionals h(- y1) agrees with the finitely

supported functionals in Z L! O, compare the discussion before Lemma 8.16. Thus, Theorem 8.23
improves this result from [1] by showing that it holds whenever [ merely has the central AP.

With reference to Theorem 8.4, it would be interesting to know if there is any relation between
¢ being an isomorphism, and (" being an isomorphism. In general, we do not know of any such
relation, though in special cases we can say something, as follows.

Proposition 8.25. Suppose there exists K > 0 such that, foreach u € Z(C(*), thereis a net (@)ier
inZ L1® converging weak™ to u and with ||w;|| < K||u|| foreach i € I. If L is an isomorphism, then
also (" is an isomorphism.

Note that by Proposition 8.22 the assumption in Proposition 8.25 holds whenever [ is centrally
weakly amenable.

Proof. Recall that we can identify the dual space of C(ﬁ>)/ L(z(c®*)) with Z(c(*). Conse-
quently, the hypothesis implies that

sup {|(@)||@ € ZL' D), lwll <1} > K7H[@ + ZCOD ey, zicdry

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T



AVERAGING MULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 47 of 52

for each @ € C(D). In turn, this shows that the natural map
c®/HEE®) - L>®/E L' @) = @ L)

is bounded below. We have the commutative diagram

C®)/HE(C®) —— Ey(CoDD))

I l

L0/ L) —— =, O0))

As just remarked, the left-hand vertical map is bounded below, while by construction (compare
Proposition 8.1) the right-hand vertical map is isometric. It follows that if :* is bounded below,
then also ¢ is bounded below. As ¢ has norm-dense image by Proposition 8.6, we conclude that
(" is an isomorphism as claimed. O

8.4 | Counter-examples

We now show that there are non-unimodular discrete quantum groups for which A@\D([I’) ﬂf) c
Z A(IN @ 1. This is the case in particular for I’ = sﬁq(\z), see Theorem 8.27.

Let us begin by estimating the norms of characters in certain quotient spaces. For more on the
link between strong amenability and spectral properties of characters, in particular the Kesten
amenability criterion, we refer to [6, section 3.4].

Lemma 8.26. Let [ be a discrete quantum group and let o € Irr(D).

(1) The inequalities

e + L O oy ez 1@y < M+ HEECEODlegy ey < IXall < dim(@)

hold.
(2) IfTisstrongly amenable, then ||y, + L(Z(C(ﬂf)”‘))”C@)/L(Z(C@*)) = dim(a).
(3) IfT is strongly amenable and centrally weakly amenable, then

dim(a) 1L
Zhon < e+ LN oz iy

Proof.

@) As ZLY(D) ¢ Z(C(D)*), we have L(Z(C(D)*)) € (Z L'(1))* and the first point easily follows.

(2) Assume that [is strongly amenable. Then the counit defines an element ¢ € C@* of norm 1.
Observe that ¢ € Z(C(1)*), thus for x € L(Z(C()*)) € C(T) we have £(x) = 0. Consequently,
we can define a functional £ of norm 1 by

g: /M@ 2y +HEZCO) ~ ey ec.
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Hence,

”Xa + l(Z(C(ﬁ*))”C(f)/J_(Z(C(ﬂr\)*)) = |€()(oc + J—(Z(CGD*)))l = dlm(oc),

and in conjunction with part 1) this completes the proof of 2).
(3) Assume in addition that [ is centrally weakly amenable, so that there is a net (w;);c, in
ZLYD) such that with a; = Mw;) we have [|0 ()., < ZA.(I) for each 4, and a; =
€

1 pointwise. Define u € #(I) by ,u(el.ﬁj) = 8,436; ;- By (2.2), we find (1 ® id)(W*) = (id ®
,u)(W) = X4 and so
01 (Xe) = (U @ w)(W) = plaz) — u(1) = dim(a).

As @l(a,l)(x) =(w; ® id)A(x) for x € L°°(ﬂf) we see that w; = w; *x e = £o®l(a/1) as a func-
tional on C(T), so in particular ||, || < ZA., (D). In fact, as ["is strongly amenable, it follows
from [25, Proposition 3.1] that ||w;|| = [|©'(a;)ll.,- As w; is central we can view it as a
functional on (Z LY(1))* = L*(1)/(Z L}(1))* with norm ||e, ||, and so

@i
leoz ]l

dim(a)
ZAp(M’°

”)(oc + (Z Ll(ﬁ)LIILm(ﬁ/(ZLl(ﬁ)L 2 hr}’ll S[FP(XO{! > =
S

which establishes (3). O

The next theorem shows that the properties described in Theorem 8.4 do not always hold. In
particular, as the dual of SU,(2) is strongly amenable and centrally weakly amenable they do not

hold for I' = SU,(2) with g € ]-1,1[ \ {0}.

Theorem 8.27. Let [ be a discrete quantum group which is strongly amenable and non-
unimodular.

(1) IfT has central AP, then B,@\D([F)//If) CZB.(MH®1.
(2) IfTis centrally weakly amenable, then A(T\D([F) m CZAMHT.

Proof. By Corollary 8.8, ! is a surjection if and only if 83, has norm-closed image. If this is the
case, then £, drops to an isomorphism C(T)/ ker Q, — Q,(C(T)) by the Open Mapping theorem.
In particular, there exists § > 0 with

1RGNl > 8llx +ker Qolledyrerg, ¢ € CO.
By (8.4), this shows that

dim(x ~
T el > Ol + et ol prg, (@ € 1D
q

(1) Suppose [has central AP, so by Theorem 8.23, ker Q, = l(Z(C(ﬂli)*)). Using Lemma 8.26 and
our assumption that [ is strongly amenable, we hence conclude that

dim(a)®*  dim(a)

dimq(oc) h dim, ()

el = 8l xq + ker Qo = & dim(a) = dim(a) > & dim(a),
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foreacha € Irr(ﬁ, which means that [ ' must be unimodular. Indeed, given any « € Irr(ﬁAF) and
n > 1, let @ have decomposition o™ = @iel B; for some finite index set I and §3; € Irr(ﬁ).
As the usual dimension and quantum dimension are additive and multiplicative and respect
equivalence,

dimg(a)" = dimy(a®) = ). dimy() < )’ 67 dim(B;) = 6! dim(«™) = 5 dim(a)".

iel iel

Letting n — oo shows that dimq(oc) = dim(a), whence [ is unimodular. This is a contradic-
tion to our assumptions, so ¢, cannot be surjective, and hence cannot be an isomorphism.
This means that (" cannot be an isomorphism either (see, for instance, [9, chapter VI,
Proposition 1.9]), and hence Theorem 8.4 yields the claim.

(2) Suppose now that [is centrally weakly amenable. We again proceed by contradiction, assum-
ing that (* is a surjection. Corollary 8.8 then implies that Q has weak*-closed image, so Q has
also norm-closed image (see, e.g., [9, chapter VI, Theorem 1.10]). Hence, there exists § > 0
with

dim(x)

dim (o ¥all > Ollxe +ker [l e (@€ Ire(T)).
q

By Theorem 8.23, we have (Z LY([M)! = kerQ, and so by Lemma 8.26 we obtain

dim(a)®*  dim(a)

dimq(oc) B dimq(oc)

dim(a)
ZA,(M)

= dim(a) >

Iyl > 8 dim,(a).

_5
ZA(M)

This gives again a contradiction to our assumption that [ is not unimodular. In the same
way as above, it follows that ¢* cannot be surjective, and hence cannot be an isomorphism.
We conclude that ¢ cannot be an isomorphism, and then Theorem 8.4 completes again the

proof. O

Remark 8.28. As already indicated above, Theorem 8.27 applies in particular to [ = S@). One
can obtain the conclusion A(ﬁ\D(D /ﬁ) C ZA(l) ® 1 also in another way in this case, which we
now briefly sketch. By [18, Remark 31], there exists a bounded central functional w € Z(C(ﬁ*)
which cannot be written as a linear combination of positive functionals in Z(C(ﬁ*). Based
on this one can show B,(f\D(D/ﬁ CZB.(H®T1, and as ZA,, () =1 by [18, Theorem 24],
Proposition 8.25 and Theorem 8.4 imply A(ﬁf\\D([F) m CZAN®T.

8.5 | Summary

We conclude with a brief summary of our main results in this section. By Theorem 8.4, we have
AM\D([M)/T) = ZA(M) @ 1 if and only if ¢ is an isomorphism. This is equivalent to (* being an
isomorphism, a problem which can be split into two subproblems.

« Injectivity of i*. By Corollary 8.8, this is equivalent to (Z L'(I))* = ker Q, which is further
equivalent to Zcy,(IN) being dense in Z A(), see Proposition 8.17. These conditions hold for
unimodular [, Theorem 8.19, and when [ has the central AP, Theorem 8.23.
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* Surjectivity of ¢*. This is equivalent to * having weak*-closed image and, by Corollary 8.8, also
equivalent to Q having weak*-closed image. It follows from Theorem 8.27 that this property
does not always hold.

The situation for B,(I\D(I/T) and Z B,(I ® 1 is entirely analogous. We leave open whether it
is always true that (Z LY(1)* = ker Q, and whether ¢* being surjective could be equivalent to I
being unimodular.

ACKNOWLEDGEMENTS
This work was supported by EPSRC Grants EP/T03064X/1 and EP/T030992/1. Additionally, Jacek
Krajczok was partially supported by FWO Grant 1246624N.

JOURNAL INFORMATION

The Journal of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

ORCID
Christian Voigt (© https://orcid.org/0000-0003-3225-5633

REFERENCES

1. M. Alaghmandan and J. Crann, Character density in central subalgebras of compact quantum groups, Canad.
Math. Bull. 60 (2017), no. 3, 449-461.
2. Y. Arano, T. de Laat, and J. Wahl, The Fourier algebra of a rigid C*-tensor category, Publ. Res. Inst. Math. Sci.
54 (2018), no. 2, 393-410.
3. S.Baajand S. Vaes, Double crossed products of locally compact quantum groups, J. Inst. Math. Jussieu 4 (2005),
no. 1, 135-173.
4. T.Banica, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Sér. I Math.
322 (1996), no. 3, 241-244.
5. E.Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math.
14 (2003), no. 8, 865-884.
6. M. Brannan, Approximation properties for locally compact quantum groups, Topological quantum groups,
Banach Center Publ., vol. 111, Polish Acad. Sci. Inst. Math., Warsaw, 2017, pp. 185-232.
7. N. P. Brown and N. Ozawa, C*-Algebras and finite-dimensional approximations, Graduate Studies in
Mathematics, vol. 88, Amer. Math. Soc., Providence, RI, 2008.
8. Y. A. Chapovsky and L. I. Vainerman, Compact quantum hypergroups, J. Operator Theory 41 (1999), no. 2,
261-289.
9. J. B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer, New
York, 1990.
10. J. Crann, On hereditary properties of quantum group amenability, Proc. Amer. Math. Soc. 145 (2017), no. 2,
627-635.
11. B.Das, U. Franz, and X. Wang, Invariant Markov semigroups on quantum homogeneous spaces, J. Noncommut.
Geom. 15 (2021), no. 2, 531-580.
12. M. Daws, Multipliers, self-induced and dual Banach algebras, Dissertationes Math. 470 (2010), 62.
13. M. Daws, Completely positive multipliers of quantum groups, Internat. J. Math. 23 (2012), no. 12, 1250132, 23.
14. M. Daws, Remarks on the quantum Bohr compactification, Illinois J. Math. 57 (2013), no. 4, 1131-1171.
15. M. Daws, P. Fima, A. Skalski, and S. White, The Haagerup property for locally compact quantum groups, J.
Reine Angew. Math. 711 (2016), 189-229.

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T


https://orcid.org/0000-0003-3225-5633
https://orcid.org/0000-0003-3225-5633

AVERAGING MULTIPLIERS ON LOCALLY COMPACT QUANTUM GROUPS 51 of 52

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.
40.

41.

42.

43.

. M. Daws, P. Kasprzak, A. Skalski, and P. M. Sottan, Closed quantum subgroups of locally compact quantum
groups, Adv. Math. 231 (2012), no. 6, 3473-3501.

M. Daws, J. Krajczok, and C. Voigt, The approximation property for locally compact quantum groups, Adv. Math.
438 (2024), 109452, 79.

K. De Commer, A. Freslon, and M. Yamashita, CCAP for universal discrete quantum groups, Comm. Math.
Phys. 331 (2014), no. 2, 677-701. (With an appendix by Stefaan Vaes.)

P. Desmedst, J. Quaegebeur, and S. Vaes, Amenability and the bicrossed product construction, Illinois J. Math.
46 (2002), no. 4, 1259-1277.

J. Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing
Co., Amsterdam-New York, 1981.

A. Freslon, Examples of weakly amenable discrete quantum groups, J. Funct. Anal. 265 (2013), no. 9, 2164-2187.
A. Freslon and R. Vergnioux, The radial MASA in free orthogonal quantum groups, J. Funct. Anal. 271 (2016),
no. 10, 2776-2807.

U. Haagerup and J. Kraus, Approximation properties for group C*-algebras and group von Neumann algebras,
Trans. Amer. Math. Soc. 344 (1994), no. 2, 667-699.

Z. Hu, M. Neufang, and Z.-J. Ruan, Multipliers on a new class of Banach algebras, locally compact quantum
groups, and topological centres, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 429-458.

Z.Hu, M. Neufang, and Z.-J. Ruan, Completely bounded multipliers over locally compact quantum groups, Proc.
Lond. Math. Soc. (3) 103 (2011), no. 1, 1-39.

M. Junge, M. Neufang, and Z.-J. Ruan, A representation theorem for locally compact quantum groups, Internat.
J. Math. 20 (2009), no. 3, 377-400.

R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I: Elementary theory,
Graduate Studies in Mathematics, vol. 15, Amer. Math. Soc., Providence, RI, 1997. Reprint of the 1983 original.
M. Kalantar, P. Kasprzak, A. Skalski, and R. Vergnioux, Noncommutative Furstenberg boundary, Anal. PDE 15
(2022), no. 3, 795-842.

J. Krajczok, Modular properties of type I locally compact quantum groups, J. Operator Theory 87 (2022), no. 2,
319-354.

J. Krajczok and P. M. Soltan, Examples of compact quantum groups with L*(G) a factor, J. Funct. Anal. 286
(2024), no. 6, 57. 1d/No 110297.

J. Krajczok and M. Wasilewski, On the von Neumann algebra of class functions on a compact quantum group,
J. Funct. Anal. 283 (2022), no. 5, Paper No. 109549, 29.

J. Kraus and Z.-J. Ruan, Approximation properties for Kac algebras, Indiana Univ. Math. J. 48 (1999), no. 2,
469-535.

J. Kustermans, Locally compact quantum groups in the universal setting, Internat. J. Math. 12 (2001), no. 3,
289-338.

J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Ecole Norm. Sup. (4) 33 (2000), no. 6,
837-934.

J. Kustermans and S. Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand.
92 (2003), no. 1, 68-92.

E. C. Lance, Hilbert C*-modules: A toolkit for operator algebraists, London Mathematical Society Lecture Note
Series, vol. 210, Cambridge University Press, Cambridge, 1995.

R. Meyer, S. Roy, and S. L. Woronowicz, Homomorphisms of quantum groups, Miinster J. Math. 5 (2012), 1-24.
S. Neshveyev and L. Tuset, Compact quantum groups and their representation categories, Cours Spécialisés
[Specialized Courses], vol. 20, Société Mathématique de France, Paris, 2013.

B. H. Neumann, Groups covered by permutable subsets, J. Lond. Math. Soc. 29 (1954), 236-248.

G. K. Pedersen, C*-algebras and their automorphism groups, London Mathematical Society Monographs, vol.
14, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979.

G. Pisier, Tensor products of C*-algebras and operator spaces—the Connes-Kirchberg problem, London
Mathematical Society Student Texts, vol. 96, Cambridge University Press, Cambridge, 2020.

S. Popa and S. Vaes, Representation theory for subfactors, A-lattices and C*-tensor categories, Comm. Math. Phys.
340 (2015), no. 3, 1239-1280.

Z.-J. Ruan, Amenability of Hopf von Neumann algebras and Kac algebras, J. Funct. Anal. 139 (1996), no. 2,
466-499.

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T



52 of 52 DAWS ET AL.

44,
45,

46.

47.

48.

49.

50.

51.
52.

53.

54.

W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987.

P. M. Sottan and S. L. Woronowicz, From multiplicative unitaries to quantum groups. 1I, J. Funct. Anal. 252
(2007), no. 1, 42-67.

M. Takesaki, Theory of operator algebras. II: Operator algebras and non-commutative geometry, Encyclopaedia
of Mathematical Sciences, vol. 125, Springer, Berlin, 2003.

T. Timmermann, An invitation to quantum groups and duality: from Hopf algebras to multiplicative unitaries
and beyond, EMS Textbooks in Mathematics. European Mathematical Society (EMS), Ziirich, 2008.

R. Tomatsu, Amenable discrete quantum groups, J. Math. Soc. Japan 58 (2006), no. 4, 949-964.

A. Van Daele, An algebraic framework for group duality, Adv. Math. 140 (1998), no. 2, 323-366.

A. Van Daele, Locally compact quantum groups. A von Neumann algebra approach, SIGMA Symmetry
Integrability Geom. Methods Appl. 10 (2014), Paper 082, 41.

A. Van Daele and S. Wang, Universal quantum groups, Internat. J. Math. 7 (1996), no. 2, 255-263.

C. Voigt and R. Yuncken, Complex semisimple quantum groups and representation theory, Lecture Notes in
Mathematics, vol. 2264, Springer, Cham, 2020.

C. Voigt and R. Yuncken, The Plancherel formula for complex semisimple quantum groups, Ann. Sci. Ec. Norm.
Supér. (4) 56 (2023), no. 1, 299-322.

S. Wang, Tensor products and crossed products of compact quantum groups, Proc. Lond. Math. Soc. (3) 71 (1995),
no. 3, 695-720.

85U801 SUOWILIOD SAERID) 3[eotjdde 8y} Aq pauA0b 812 S9ILE O ‘88N JO SaIN. o} ARIqIT 8UIIUO AB]IN UO (SUORIPUOD-PUE-SWISY WO A 1M ARe1d]1pU1IUO//SARL) SUOIIPUOD PUe SWiS | 8U) 89S *[G20Z/E0/TT] Uo ARiqiauljuo Ao|Im ‘AiseAIuN jeseoue AQ #0TOL SWII/ZTTT OT/I0p/W00"A8 |IM AReIq 1 jBul|U0"d0SUIRWPUO|//Sd1y Woly papeojumoq ‘€ ‘G20z ‘052697 T



	Averaging multipliers on locally compact quantum groups
	Abstract
	1 | INTRODUCTION
	2 | PRELIMINARIES
	3 | COMPLETELY BOUNDED MULTIPLIERS
	4 | APPROXIMATION PROPERTIES
	5 | THE AVERAGING CONSTRUCTION
	6 | DRINFELD DOUBLES OF DISCRETE QUANTUM GROUPS
	7 | FURTHER RESULTS FOR DISCRETE QUANTUM GROUPS AND THEIR DRINFELD DOUBLES
	7.1 | Approximation in the unimodular case
	7.2 | Amenability of Drinfeld doubles

	8 | BIINVARIANCE AND CENTRALITY FOR THE FOURIER ALGEBRA
	8.1 | The centre of the Fourier algebra
	8.2 | One-sided averaging
	8.3 | Density of central algebras
	8.4 | Counter-examples
	8.5 | Summary

	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	ORCID
	REFERENCES


