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Abstract 34 

Objective: In evidence synthesis, inconsistency is typically assessed visually and with the I2 and the Q 35 

statistics. However, these measures have important limitations (i) if there are few primary studies of 36 

small sample sizes, or (ii) if there are multiple studies with precise estimates. In addition, with the 37 

increasing use of decision thresholds (DT), for example in GRADE Evidence to Decision frameworks, 38 

inconsistency judgments can be anchored around DTs. In this article, we developed quantitative 39 

measures to assess inconsistency based on DTs. 40 

Study Design and Setting: We developed two measures to quantify inconsistency based on DTs – the 41 

Decision Inconsistency (DI) and the Across-Studies Inconsistency (ASI) indices. The DI and the ASI 42 

are based on the distribution of the posterior samples studies’ effect sizes across interpretation 43 

categories defined by DTs. We developed these indices for the Bayesian context, followed by a 44 

frequentist extension. 45 

Results: The DI informs on the overall inconsistency of effect sizes across interpretation categories, 46 

while the ASI quantifies how different studies are compared to each other (in relation to interpretation 47 

categories) based on absolute effects. A DI≥50% and an ASI≥25% are suggestive of important 48 

unexplained inconsistency. We provide an R package (metainc) and a web tool 49 

(https://metainc.med.up.pt/) to support the computation of the DI and ASI, including in the context of 50 

sensitivity analyses assessing the impact of potential uncertainty in inconsistency. 51 

Conclusion: The DI and the ASI can contribute to quantitatively assess inconsistency, particularly as 52 

DTs are gaining recognition in evidence synthesis and health decision-making.  53 

 54 

Key words: GRADE; Heterogeneity; Inconsistency; Meta-analysis; Systematic review 55 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



What is new 56 

Key findings 57 

 This study proposes two new quantitative measures to assess inconsistency in the evidence 58 

synthesis context – the Decision Inconsistency (DI) and the Across-Studies Inconsistency (ASI) 59 

indices. These indices differ from previously existing measures by considering effect size in the 60 

context of decision thresholds (DTs).  61 

 We have developed a R package (metainc) and a web tool (https://metainc.med.up.pt/) to easily 62 

support the computation of the DI and the ASI.  63 

What this adds to what was known 64 

 The GRADE working group posits that inconsistency judgments can be made considering DTs. 65 

Our methods allow such judgments to be supported by quantitative indices' results. 66 

What is the implication, what should change now? 67 

 Quantitative assessment of inconsistency based on DTs is now possible. Therefore, judging 68 

inconsistency when assessing the certainty of evidence may now consider the quantification of 69 

the DT-related DI and ASI, alongside other approaches for appraising inconsistency. 70 

Highlights 71 

 GRADE assessments of inconsistency are facilitated by decision thresholds (DT)  72 

 Two inconsistency indices have been developed to measure inconsistency based on DTs 73 

 The new indices allow to assess the impact of uncertainty in the evidence on inconsistency 74 
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1. Introduction 75 

In the context of evidence synthesis and appraisal, there are several methods to assess inconsistency 76 

[1]. One possibility is the visual inspection of the forest plot, which provides a simple but subjective 77 

approach. The Cochran’s Q test allows for the calculation of a p-value, based on which it is possible to 78 

reject (or not) the null hypothesis of no heterogeneity. However, it has low power in meta-analyses if 79 

there are few primary studies and/or studies with small sample sizes, while exhibiting over-inflated 80 

power to detect small amounts of heterogeneity in meta-analyses with a large number of primary 81 

studies[2]. The I2 value is frequently used to assess the relative extent of inconsistency. Nevertheless, it 82 

also has important limitations, as it is influenced by the sample size of the included primary studies 83 

(e.g., it may overestimate inconsistency across studies with precise estimates) and may yield biased 84 

results when used in the context of small-sample meta-analyses [1, 3, 4]. In addition, both the Q-85 

Cochran test and the I2 value are based on frequentist methods [5], potentially limiting their application 86 

to the Bayesian context [6]. 87 

These classical inconsistency measures exclusively rely on statistical criteria. However, there may be 88 

scenarios where concerns for apparently large statistical heterogeneity might be mitigated. In fact, the 89 

GRADE approach uses four items to judge inconsistency, namely the I2, Cochran’s Q test p-value, 90 

overlap in confidence intervals of primary studies by visual inspection, and the degree of difference in 91 

the point estimates of relative effects. To bring value to considered judgment, GRADE states that 92 

guideline and systematic review developers may abstain from rating down the certainty of evidence 93 

(CoE) if point estimates of primary studies are on the same side of a prespecified threshold (i.e., fall 94 

within the same target of the certainty range), despite the evidence of statistical heterogeneity [1, 7]. 95 

This assessment depends on providing context to outcomes’ interpretation, by defining health outcome-96 

level decision thresholds (DTs) – effect size measures suggesting whether an intervention translates to 97 

trivial or no, small, moderate or large effects [8, 9]. In a Bayesian context, it is possible to directly assess 98 

the proportion of effect sizes, sampled from the posterior distribution of the different primary studies, 99 

falling into the different ranges (interpretations) defined by DTs. Based on that, and on the concept of 100 

incorporating outcome-level DTs in inconsistency assessment, we developed two measures to support 101 

the assessment of inconsistency in meta-analysis. While the concept for this approach has been 102 

developed considering a Bayesian framework, it is also fully applicable to the frequentist context.  103 

Given the limitations in existing approaches and their interpretation, our objective was to develop 104 

measures to support assessments of inconsistency. In this article we describe the development and 105 

application of two new measures : (i) one assessing overall outcome-level-related inconsistency (the 106 

Decision Inconsistency index), and (ii) one assessing across-studies inconsistency (the Across-Studies 107 

Inconsistency index). These measures are not intended to replace but rather to complement existing 108 

approaches to appraise inconsistency. We will start by reviewing the concept of the Dissimilarity Index 109 
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as the foundation from which our approach is derived. We will provide the concepts and formulae for 110 

the Decision Inconsistency Index and for the Across-Studies Inconsistency Index. Subsequently, we 111 

will apply our proposed approach using two practical examples. We will then present a web app and the 112 

metainc R package to implement the Decision Inconsistency Index and the Across-Studies 113 

Inconsistency Index. Finally, we will discuss potential limitations of our approach and how it may 114 

contribute to interpreting inconsistency in the GRADE CoE framework [10]. 115 

2. The Decision Inconsistency Index 116 

2.1. The Dissimilarity Index 117 

The Dissimilarity Index is one of the most commonly used demographics measures of segregation [11], 118 

reflecting the relative distributions of two groups over a set of geographic units [12]. It ranges between 119 

0 and 1, with 0 indicating perfect integration (i.e., each geographic unit has the same percentage of 120 

members of each group as the total population) and 1 indicating maximum segregation (i.e., each 121 

geographic unit exclusively includes members of one of the two groups [11]) (Supplementary Figure 122 

1). The formula for the computation of the Dissimilarity Index is the following [12, 13]: 123 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑 = ଵ
ଶ

∑ ቚேభ೔
ேభ

− ேమ೔
ேమ

ቚ௡
௜   124 

with n corresponding to the number of geographic units, 𝑁ଵ௜ corresponding to the population of group 125 

1 in the geographical unit 𝑖, 𝑁ଵ corresponding to the total population of group 1 in all considered 126 

geographical units, 𝑁ଶ௜  corresponding to the population of group 2 in the geographical unit 𝑖, and 𝑁ଶ 127 

corresponding to the total population of group 2 in all considered geographical units being. 128 

2.2. The Decision Inconsistency Index 129 

Consider a meta-analysis including 𝑘 primary studies comparing an intervention 𝐼 versus a comparator 130 

𝐶 on a certain outcome whose reduction would correspond to a benefit and whose increase would 131 

correspond to a harm. For that outcome, an outcome-level DT has been established so that: 132 

 If the effect size (ES) > 𝐷𝑇, 𝐼 would be associated with at least small harms. 133 

 If ES < −𝐷𝑇, 𝐼 would be associated with at least small benefits; 134 

 If −𝐷𝑇 ≤ ES ≤ 𝐷𝑇, 𝐼 would be associated with a trivial or no effect (henceforth referred to as 135 

“trivial effect”); 136 

Therefore, in this scenario, we consider three interpretation categories (at least small benefits, trivial or 137 

no effects, and at least small harms) for ES, with two DT (−𝐷𝑇 and 𝐷𝑇). We consider ES to be presented 138 

as absolute effects, as recommended by the GRADE working group for contextualizing ES in relation 139 

to DTs. 140 
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In a Bayesian meta-analytical context with no overall decision-related inconsistency, all samples from 141 

the posterior distributions of the ES of included primary studies will have their values associated with 142 

the same interpretation (either at least small benefits, at least small harms, or trivial effect). On the other 143 

extreme, if there is complete inconsistency, there will be a perfectly even distribution of the posterior 144 

ES samples across the three interpretation categories. That is, one third of the samples will indicate at 145 

least small benefits, another third will indicate at least small harms and the final third will indicate a 146 

trivial effect. Therefore, a situation of no clinical inconsistency would be analogous to one with full 147 

segregation in the geographical context (Dissimilarity Index=1), while a situation with maximum 148 

inconsistency would be analogous to one with full integration (Dissimilarity Index=0). However, in 149 

contrast with the Dissimilarity Index, we do not compare two groups but rather one distribution of 150 

posterior samples for the ES (across interpretation categories) with the expected distribution that would 151 

have been observed if there was maximum inconsistency. This concept forms the basis of a novel 152 

measure of inconsistency we propose – the Decision Inconsistency Index (𝐷𝐼). The 𝐷𝐼 quantifies overall 153 

inconsistency from a decision point of view, and may be calculated by: 154 

𝐷𝐼 = 1 − ൭
భ
మ ∑ ฬ

ೀ
ಿ ିభ

಻ฬ಻
ೕ
಻షభ

಻
൱  155 

with 𝑁௝ corresponding to the number of ES posterior samples per interpretation category, 𝑁 156 

corresponding to the total number of ES samples (i.e., the sum, for all primary studies, of all study-level 157 

posterior samples), and 𝐽 corresponding to the number of interpretation categories. 158 

Dividing by ቀ௃ିଵ
௃ ቁ ensures that the 𝐷𝐼 lies between 0 and 1, while subtracting the ratio from 1 ensures 159 

that higher values are associated with higher inconsistency (as with the 𝐼ଶ value). That is, the 𝐷𝐼 ranges 160 

between 0 and 1 (or 0-100%, if multiplied by 100), with 0 indicating no DT-related inconsistency and 161 

1 indicating maximum DT-related inconsistency. 162 

The 𝐷𝐼 can be calculated for as many interpretation categories as desired. If only two DTs are being 163 

considered (i.e., DT distinguishing trivial effects from at least small benefits and DT distinguishing 164 

trivial effects from at least small harms), three interpretation categories are possible (at least small 165 

benefits, at least small harms, and trivial effect), the formula of the 𝐷𝐼 can be stated as:   166 

𝐷𝐼[ଶ ୈ୘ୱ] =  1 − ൭
భ
మ ∑ ฬ

ೀ
ಿ ିభ

యฬయ
ೕ

మ
య

൱  167 

However, when using the GRADE Evidence to Decision (EtD) framework, decision-makers are usally 168 

interested in knowing not only whether an intervention is associated with non-trivial effects but also 169 

their magnitude (i.e., whether the interventions’ desirable and undesirable health effects are trivial or 170 

none, small, moderate, or large) [14, 15]. The 𝐷𝐼 can be applied to these situations with three DTs on 171 
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each side of the no-effect (i.e., three DTs for benefits and three for harms) and, therefore, seven 172 

interpretation categories as recommended by GRADE [14, 15]. In this case, the formula of the 𝐷𝐼 can 173 

be stated as:  174 

𝐷𝐼[଺ ୈ୘ୱ] = 1 − ൭
భ
మ ∑ ฬ

ೀ
ಿ ିభ

ళฬళ
ೕ

ల
ళ

൱  175 

3. The Across-Studies Inconsistency index 176 

Although the 𝐷𝐼 provides a measure of the overall inconsistency of ES across interpretation categories, 177 

it does not quantify how inconsistent the ES of primary studies are when compared with each other. Let 178 

us consider the examples depicted in Figure 1. Figure 1A provides an example in which all ES samples 179 

of primary studies point to a trivial effect. The 𝐷𝐼 would be of 0%. Figure 1B and Figure 1C are two 180 

examples for which one third of ES samples suggest important benefits, one third points to important 181 

harms, and one third to a trivial effect. Therefore, in both examples, the 𝐷𝐼 would be expected to be 182 

large. However, while in Figure 1B all primary studies display a similar proportion of ES samples in 183 

each decision category, in Figure 1C the different primary studies display a different proportion of ES 184 

samples in each decision category (e.g., the first primary study would be expected to have most samples 185 

suggesting at least small harms while the third would be expected to have most samples suggesting at 186 

least small benefits). Therefore, the examples depicted in Figure 1B and 1C would differ on across-187 

studies inconsistency, which would be larger in the latter.   188 

Therefore, as a complement to the 𝐷𝐼, we suggest that across-studies inconsistency should also be 189 

measured. For this purpose, Dissimilarity Index-based measures would not be suitable, as (i) the 190 

Dissimilarity Index has been devised to consider two groups, and (ii) it displays important limitations 191 

when dealing with small unit sizes (the Dissimilarity Index is extremely sensitive to small differences 192 

in cases when a small number of observations falls within a certain category)[16]. The adjustments 193 

proposed to address this limitation cannot be applied to measures generalizing the Dissimilarity Index 194 

to more than two groups[16, 17].     195 

Therefore, to assess across-studies inconsistency, we propose a measure comparing (i) the observed 196 

number of samples per interpretation category for each study with (ii) the expected number of samples 197 

(per interpretation category for each study) if the proportion of samples per interpretation category had 198 

been the same for all studies and equal to the overall proportion. Potentially adequate candidates for 199 

such measures would be, for example, those based on the chi-squared statistic (𝜒ଶ), particularly relative 200 

to the maximum value (in order to allow for obtaining a measure ranging between 0 and 1). Given that, 201 

in this context, 𝜒ଶ would be given by: 202 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



𝜒ଶ = ෍
൫𝑁௜௝ − 𝐸௜௝൯ଶ

𝐸௜௝
 203 

(with 𝑁௜௝  corresponding to the number of ES samples per interpretation category and primary study, 𝐸௜௝  204 

corresponding to the expected number of ES samples per interpretation category and primary study), 205 

and that the maximum of the chi-square statistic (maxఞమ) would be given by: 206 

maxఞమ = 𝑁(min (𝐽, 𝑘) − 1), 207 

(with 𝐽 corresponding to the number of interpretation categories and 𝑘 to the number of primary studies), 208 

then the Across-Studies Inconsistency Index (𝐴𝑆𝐼) would be given by: 209 

𝐴𝑆𝐼 =
ඩ ∑ ൫𝑁௜௝ − 𝐸௜௝൯ଶ

𝐸௜௝
𝑁(min (𝐽, 𝑘) − 1) 210 

The 𝐴𝑆𝐼 measures across-study inconsistency considering decision interpretation categories. Its values 211 

can range between 0 and 1 (or 0-100%, if multiplied by 100), with 0 indicating no across-studies 212 

inconsistency and 1 indicating complete across-studies inconsistency. 213 

4. Extension to the frequentist context 214 

The 𝐷𝐼 and the 𝐴𝑆𝐼 have been developed as measures using Bayesian meta-analysis. Indeed, the fact 215 

that Bayesian models yield a posterior distribution for the ES measures of primary studies renders that 216 

context particularly suited for the computation of the 𝐷𝐼 and 𝐴𝑆𝐼. However, the 𝐷𝐼 and 𝐴𝑆𝐼 can also be 217 

calculated in the frequentist context. To accomplish that, one first needs to obtain the best linear 218 

unbiased predictions of the ES of each primary study, which can be calculated for frequentist random 219 

effects models empirically utilizing the obtained estimate for the between-study variability [τ2] (which 220 

is analogous to the posterior ES estimates obtained in the Bayesian context). Subsequently, using these 221 

values and the corresponding standard-errors, it is possible to fit a probability distribution for each 222 

primary study, based on which samples can be drawn. The 𝐷𝐼 and 𝐴𝑆𝐼 can then be calculated – in a 223 

similar way as in the Bayesian context – based on the sampled values for the best linear unbiased 224 

predictions of the ES of each primary study. Given that this is not straightforward, we developed an 225 

application for meta-analysts (see below). 226 

5. Practical examples and application in sensitivity analyses 227 

The Supplement displays two examples in which the 𝐷𝐼 and 𝐴𝑆𝐼 are calculated. Supplementary 228 

Example 1 involves the computation of these indices in what was Cochrane’s first living systematic 229 

review and meta-analysis of 18 primary studies comparing heparin with placebo on mortality at 12 230 

months in a population of ambulatory patients with cancer [18] (Supplementary Tables 1-2). In brief, 231 
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this meta-analysis indicated that heparin was associated with decreased odds of mortality (5 fewer 232 

deaths per 1000 individuals; 95% credible interval: between 49 fewer deaths and 28 more deaths per 233 

1000 individuals), with a I2 value suggesting moderate inconsistency (I2=35.2%). Computing the DT-234 

based inconsistency indices, we would obtain a 𝐷𝐼 of 80.1% and a 𝐴𝑆𝐼 of 19.3%, pointing to the 235 

possibility of relevant inconsistency (see below). The 𝐷𝐼 reflects the wide spread of posterior samples 236 

of ES across interpretation categories defined by information sizes, pointing to the potential difficulty 237 

in judging the size of the effect associated with the use of heparin. 238 

We explored approaches for conducting sensitivity analyses, including (i) leave-one-out sensitivity 239 

analysis (removing each primary study at once and recalculating the 𝐷𝐼 and the 𝐴𝑆𝐼), (ii) sensitivity 240 

analysis based on risk of bias, (iii) sensitivity analysis based on uncertainty in baseline risk, and (iv) 241 

sensitivity analysis based on DTs. Overall, leave-one-out meta-analysis did not allow us to identify any 242 

individual primary study largely responsible for the observed inconsistency (Supplementary Table 3). 243 

The sensitivity analysis based on the risk of bias suggested that, in this example, inconsistency may be 244 

higher for studies displaying a lower risk of bias (𝐷𝐼=83.8%; 𝐴𝑆𝐼=23.2%) than for those with a high 245 

risk of bias (𝐷𝐼=77.9%; 𝐴𝑆𝐼=18.4%), but the difference was small. Finally, an increase in the baseline 246 

risk was associated with a decreasing trend for the 𝐷𝐼 (Supplementary Figure 2); the results of the 247 

sensitivity analysis based on DTs are displayed in Supplementary Figure 3. 248 

Supplementary Example 2 computes the 𝐷𝐼 and 𝐴𝑆𝐼 in a sample of 100 published meta-analyses of 249 

outcomes with available DTs [19, 20] (Supplementary Table 4). We observed that, in our sample, the 250 

median 𝐷𝐼 and 𝐴𝑆𝐼 values were of 32% and 19%, respectively. On the other hand, the second tertile 251 

values are close to 𝐷𝐼 ≥ 50% and 𝐴𝑆𝐼 ≥ 25% (Table 1). Considering only the DT of going from trivial 252 

or no to a small effect (sometimes consistent with the “minimal important difference”) instead of three 253 

decision thresholds on each side of the null effect (trivial or no to small, small to moderate and moderate 254 

to large effects) did not produce a predictable effect on the 𝐷𝐼 (mean difference of 0.4 percent points) 255 

but was associated with an increase in the 𝐴𝑆𝐼 (mean difference of 7.5 percent points) (Supplementary 256 

Figure 4). 257 

6. Implementation in practice 258 

We have developed an online app allowing for the computation of the 𝐷𝐼 and the 𝐴𝑆𝐼. The app, which  259 

is available at https://metainc.med.up.pt/ , takes as input a dataset containing the ES and the variance 260 

for each primary study. Based on the provided input, it can perform either frequentist meta-analysis 261 

using meta, or Bayesian meta-analysis using brms. Based on the posterior samples of the ES measures 262 

of the primary studies, the app provides information on the 𝐷𝐼 and on the 𝐴𝑆𝐼. Users of this online app 263 

are not required to (i) conduct a Bayesian meta-analysis or have knowledge on how to do it, or (ii) have 264 

knowledge on how to obtain the best linear unbiased predictions of the ES of primary studies in the 265 
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context of frequentist meta-analysis. Therefore, the app allows to overcome potential barriers for the 266 

computation of the 𝐷𝐼 and the 𝐴𝑆𝐼. 267 

We have also developed a R package – metainc – to assess overall decision-related inconsistency and 268 

across-studies inconsistency (computing the 𝐷𝐼 and the 𝐴𝑆𝐼, respectively) after performing Bayesian 269 

or frequentist meta-analysis. It is available on CRAN (https://cran.r-270 

project.org/web/packages/metainc/index.html). Supplementary Boxes 1-2 provide information and 271 

guided examples on how to use the metainc package. 272 

 273 

    274 

7. Discussion 275 

In this paper, we propose a quantitative approach to assess inconsistency in the meta-analytical context 276 

using DTs. This approach involves the computation of the 𝐷𝐼 and the 𝐴𝑆𝐼, which provide 277 

complementary information – the 𝐷𝐼 informs about the overall inconsistency of ES across interpretation 278 

categories, while the 𝐴𝑆𝐼 quantifies across-studies inconsistency. The proposed measures have been 279 

developed in the Bayesian context, but they can also be computed for frequentist meta-analysis. 280 

The GRADE guidance states that the assessment of inconsistency should not solely rely on classical 281 

measures of heterogeneity, as they have statistical limitations [1]. However, the current guidance for 282 

assessing inconsistency beyond those measures is centred on the visual inspection of the forest plot and 283 

plausibility of subgroup analyses. While our proposed methods are not intended to replace other 284 

approaches, they could provide valuable complementary information. In particular, by making use of 285 

DTs, the proposed methods can help interpreting the importance of observed inconsistency, something 286 

which is in line with recent statements to move away from interpreting results solely based on statistical 287 

criteria [21-23]. As an example, the inconsistency indices and their use of DTs can help identify 288 

situations in which (i) across-study inconsistency would impact the importance of findings (i.e., by 289 

providing a formal degree of contextualization), or (ii) statistical measures of heterogeneity may be 290 

overestimating inconsistency (e.g., due to primary studies with high precision estimates). Therefore, 291 

our proposed approach can be applied not only within GRADE, but also in the context of any meta-292 

analysis, in order to help interpreting and framing the observed inconsistency.   293 

Importantly, the proposed methods allow for sensitivity analyses based on the uncertainty in baseline 294 

risk or DTs. This accounts for potential uncertainty in the baseline risk or DTs when assessing 295 

inconsistency, which is not otherwise possible using only classical measures of heterogeneity or the 296 

visual inspection of the forest plot. Accounting for uncertainty may be particularly relevant since 297 

GRADE has proposed an approach to empirically obtain DTs that not only allows for the computation 298 
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of DT point estimates but also of best- and worst-case scenario DTs (Wiercioch et al, accepted pending 299 

revision, [9]). Performing sensitivity analyses based on DTs allows assessing whether inconsistency 300 

results are similar across a set of plausible DTs that can range between the best- and worst-case scenario 301 

DT values. In addition, based on sensitivity analyses, it is also possible to appraise unexplained 302 

inconsistency (i.e., inconsistency not explained by any pre-specified or convincing effect modifier) 303 

using the 𝐷𝐼 and the 𝐴𝑆𝐼. This is particularly relevant, since GRADE recommends that judgments on 304 

inconsistency are based on unexplained inconsistency. 305 

Box 1 provides demonstrative examples (and a suggested reporting language) on how the 𝐷𝐼 and the 306 

𝐴𝑆𝐼 can be used to support inconsistency judgements in the assessment of the CoE in the GRADE 307 

approach. Although both the meta-analyses of the examples A and B display severe inconsistency as 308 

assessed by the I2 value (example A: I2=96%; example B: I2=69%), the DT-related indices suggest that 309 

inconsistency may be at least a serious concern in example A (𝐷𝐼=73%; 𝐴𝑆𝐼=60%), but not in example 310 

B (𝐷𝐼=2%; 𝐴𝑆𝐼=9%; despite quantitative differences, the effect sizes are pointing to large or moderate 311 

benefits for all primary studies). While these examples illustrate a possible use of the 𝐷𝐼 and the 𝐴𝑆𝐼, 312 

this paper does intend to provide guidance on how to judge inconsistency in the GRADE approach. This 313 

is dealt with elsewhere including in the updated GRADE handbook (now called the GRADE Book 314 

https://book.gradepro.org/guideline/inconsistency [10]). It will require a broad agreement on a 315 

framework on how to consider different scenarios based on possible agreements and disagreements 316 

between the different items related to inconsistency (i.e., visual inspection of the forest plot, statistical 317 

measures of heterogeneity, and decision threshold-based inconsistency indices). This will also require 318 

definite guidance when it is adequate to downgrade inconsistency by two or even three levels for 319 

inconsistency. In addition, it will serve to adequately and jointly assess inconsistency and imprecision 320 

in order to avoid double penalisation. The DI and ASI could support answering such questions by 321 

providing information based on DTs in line with GRADE guidance (Wiercioch et al., accepted for 322 

publication pending revision).  323 

The proposed approach has some limitations. Firstly, the assessment of inconsistency based on DTs 324 

should not be based solely on the calculation of the 𝐷𝐼 and the 𝐴𝑆𝐼. These measures should not be 325 

understood as definite indicators of inconsistency but as additional tools to use when assessing this 326 

domain. Another limitation concerns the absence of cut-off points defining low, moderate and severe 327 

inconsistency in the context of the 𝐷𝐼 and the 𝐴𝑆𝐼. We have evaluated the distribution of these indices 328 

in a sample of 100 meta-analyses, and this may provide suggestions to users on how to interpret their 329 

𝐷𝐼 and 𝐴𝑆𝐼 results. That is, users may hint at the magnitude of their inconsistency by comparison with 330 

the percentiles of 𝐷𝐼 and 𝐴𝑆𝐼 for other systematic reviews. Nevertheless, setting of cut-off points for 331 

claiming inconsistency may require a more comprehensive approach and may depend on the number of 332 

considered decision thresholds. However, it should be noted that universally-agreed or even sensible 333 

cut-off points do not exist for the I2 either [2]. Exploration of other approaches to explore inconsistency 334 
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ratings may be useful and we are beginning work in a GRADE project group to provide this guidance. 335 

Presenting only the proportions point estimates falling into within different certainty ranges may be one 336 

alternative. However, it brings complexity of having to interpret many data points simultaneously, 337 

requiring judgments with unknown reliability (particularly in meta-analyses with a small amount of 338 

primary studies) and not considering the confidence intervals of the studies’ estimates. Finally, not all 339 

functions are currently available for non-R users. However, efforts are being made to increase the 340 

number of functions accessible through different software or platforms. 341 

8. Conclusion 342 

In meta-analysis, the assessment of inconsistency based solely on classical measures of heterogeneity 343 

has important limitations. Considering DTs may allow for that assessment in the respective health 344 

decision context. However, no quantitative approaches had been proposed so far. In this paper, we 345 

describe two measures – the 𝐷𝐼 and the 𝐴𝑆𝐼 – that can be used to quantitatively assess inconsistency 346 

using DTs. While their computation does not replace other methods for assessing inconsistency, used 347 

together they can be particularly helpful for (i) interpreting the health importance of observed 348 

inconsistency, (ii) giving the evaluator additional information about the impact of potential uncertainty 349 

in baseline risk or DTs, and (iii) supporting the rating of inconsistency in the GRADE appraisal of the 350 

CoE. Based on the developed R package and web tool, this approach can be easily implemented both 351 

in the Bayesian and frequentist contexts. 352 
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Tables 

Table 1. Summary of the distributions of the Decision Inconsistency Index (DI) and Across-Studies 

Inconsistency Index (ASI) in a sample of 100 published meta-analysis 

Inconsistency 
measure 

Percentile 50 
(median) 

Percentile 67 Percentile 75 Maximum 

DI (%) 32.2 49.1 58.3 86.2 

ASI (%) 19.2 24.8 28.6 60.5 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figures 

Figure 1. Hypothetical meta-analytical examples illustrating the differences in the concepts of 

Decision Inconsistency (DI) and Across-Studies Inconsistency (ASI). The green zone (left) 

indicates at least small benefits, the grey zone (centre) indicates a trivial or no effect, and the red 

zone (right) indicates at least small harms. 

 

In Figure 1B, even though the point estimates of primary studies would all indicate a trivial effect, the DI would be high as 
there would be a large proportion of posterior samples also indicating at least small benefits and at least small harms (the 
effects of the primary studies are all compatible with at least small benefits, a trivial effect and at least small harms); however, 
all studies would be similar among themselves (hence, the ASI would be low). In Figure 1C, both the DI and the ASI would 
be high as (i) there would be a large proportion of posterior samples indicating at least small benefiis, a trivial effect or at least 
small harms, and (ii) all studies would be very different among themselves. DT=Decision thresholds 
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Boxes 

Box 1. Examples on how the Decision Inconsistency Index (𝑫𝑰) and the Across-Studies 

Inconsistency (𝑨𝑺𝑰) indices can be used to support judgements on inconsistency in GRADE 

 

Example A: We had at least serious concerns about inconsistency of the evidence. High 

inconsistency was suggested both by statistical measures of heterogeneity (I2 = 96%) and by 

threshold-based inconsistency indices (𝐷𝐼 = 73%; 𝐴𝑆𝐼 = 60%). No variable was identified that would 

potentially explain the inconsistency. We therefore rated down the certainty of evidence for 

inconsistency by at least 1 level. 

 

Example B: We had no serious concerns about inconsistency of the evidence. Although high 

inconsistency was suggested by statistical measures of heterogeneity (I2 = 69%), decision threshold-

based inconsistency indices suggested low inconsistency (𝐷𝐼 = 2%; 𝐴𝑆𝐼 = 9%). This shows that 

inconsistency may not be important. We therefore rated down the certainty of evidence for 

inconsistency by 0 levels. 
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