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Optimal control techniques can oversee the power take-off (PTO) operation of wave energy converters to ensure that the overall power output 

is maximized, but optimization in real time poses difficulties given the wave variability and the underlying constraints of the system. This 

study examines model predictive control approaches that utilize a model of the hydrodynamics of the wave energy converter and the dynamics 

of a hydraulic PTO system. The impact of leveraging linear and nonlinear models of the dynamics in the optimization and the role of 

constraints on the wave energy converter performance are explored for irregular wave conditions. 
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INTRODUCTION 

 

As global energy demands and climate concerns continue to grow, the 

need for a broader range of renewable energy options is becoming 

increasingly clear. Although wave energy converters (WECs) have 

been researched for decades, much work has focused on the design of 

such systems. Many different structures have emerged over the years, 

including point absorbers, attenuators, oscillating water columns, and 

reservoirs (Aderinto and Li, 2018). The maximum energy will be 

captured if the frequency of the WEC system matches the dominant 

frequency of the incoming wave (i.e., resonance), and this is typically 

achieved by a power take-off (PTO) operation system that can 

effectively add or remove damping and thereby affect the device’s 

frequency. A wide range of PTO systems exist, including turbines, 

hydraulic systems, and linear actuators (Têtu, 2017). 

 

Controlling the PTO system remains challenging because of the 

growing complexity of WEC systems and the variable nature of the 

incoming waves. Early strategies often manipulated the PTO system by 

leveraging linear models and velocity tracking, complex conjugate 

approaches, or impedance matching control. Studies such as those of 

Hals et al. (2011a) and García-Violini et al. (2020) have compared a 

variety of these techniques. Although these methods have merits, they 

often encounter challenges with operation over a wide frequency range 

and at times suffer from a high computational burden. Those with 

feedforward components also need a wave excitation estimation and, as 

such, are more prone to performance problems due to wave prediction 

errors (García-Violini et al., 2020). 

 

In recent years, optimization approaches have been more heavily used. 

Because the aim is to maximize energy production, a wide variety of 

optimal control strategies have been explored, including model 

predictive control (MPC) (Hals et al., 2011b; Li and Belmont, 2014), 

spectral and pseudospectral methods (Genest and Ringwood, 2016; 

Garcia-Violini and Ringwood, 2021), flatness-based strategies (Li, 

2017), and moment-based approaches (Faedo et al., 2018). A more 

complete view of the evolution of WEC control approaches is available 

in Ringwood (2020). MPC is a natural choice for WECs but has three 

primary challenges: (1) the need for an accurate WEC model, (2) the 

need for an estimate of future wave forces, and (3) a requirement to 

solve for solutions with at times conflicting constraints. This study 

focuses on the first and third challenges. 

 

A WEC is a complex hydrodynamic system with nonlinear dynamics. 

As such, creating a control-oriented model for a WEC system is not 

trivial. Whereas most of the existing control efforts have leveraged 

linear models, linearity is typically a poor assumption for a controlled 

WEC system, because large motions can be induced that take the system 

far from the equilibrium point about which it was linearized (Penalba 

and Ringwood, 2019; Windt et al., 2021). Using a nonlinear model 

enables better results, but nonlinear optimization can be 

computationally intensive. Given the challenges with capturing WEC 

dynamics in a control-oriented model, some efforts have also explored 

model-free approaches such as extremum-seeking control (Garcia-Rosa 

et al., 2012; Sun et al., 2018; Pasta et al., 2021).  

 

For real-life applications, the MPC will need to work in real time with 

predictions and also ensure that the control actions do not violate any 

constraints. If constraints are ignored, control becomes more 

straightforward and leads to approaches such as the complex-conjugate 

control or impedance-matching control strategies. Although these 

approaches can have high theoretical power outputs, they often require 

large motions, forces, and power changes that cannot practically be 



achieved (Faedo et al., 2017). In reality, PTO systems will have 

constraints on their motion and the maximum force they can generate 

for both reactive and damping actions. Constraints are typically placed 

on the position or velocity of the WEC mass (Hals et al., 2011b; Fusco 

and Ringwood, 2013), but studies have also added constraints on 

variables related to the control input and rate of change of the control 

input for a generic PTO (Li and Belmont, 2014; Richter et al., 2014; 

Cavaglieri et al., 2015; Zhan et al., 2020; Previsic et al., 2021; Zhang 

and Li, 2022), direct drive PTO (Brekken, 2011; Amann et al., 2014; 

Haider et al., 2021), rotary PTO (Bracco et al.,  2020; Sergiienko et al., 

2021), linear permanent magnet generator PTO (Jama et al., 2014; 

O’Sullivan and Lightbody, 2017), and hydraulic PTO (Hendrikx et al., 

2017). In many such studies, the dynamics of the PTO are not included, 

which simplifies the solution but may result in solutions that require 

control responses that are not achievable as a result of the PTO’s time 

delay. 

 

Limits on maximum PTO power have also been introduced but are less 

common in part because they make the solution more difficult (Faedo 

et al., 2017). Even including both force and displacement constraints 

can be challenging because at high excitation levels, it may be 

impossible to abide by all constraints (Bacelli and Ringwood, 2013; 

Ringwood, 2020).  Iterations that have included PTO power constraints 

have also included constraints on the electric motor (Kovaltchouk et al., 

2015; Sergiienko et al., 2022), as well as power flow and force 

constraints for a hydraulic PTO (Karthikeyan et al., 2019). Efforts that 

have introduced constraints with PTO dynamics typically attempt to 

capture the dynamics via a simple loss term (Bacelli et al., 2015; 

Karthikeyan et al., 2019; Mérigaud and Tona, 2020). This is a step 

toward a more realistic solution but may still oversimplify the situation.  

 

As devices aim to capture more energy, they are becoming increasingly 

complex, which brings potentially more constraints into the system. 

One such device is the TALOS WEC, which is studied in this paper and 

shown in Fig. 1. TALOS is a multi-degree-of-freedom (DOF) point-

absorber style WEC with an outer hall that contains a mass linked to the 

hull via hydraulic cylinders (Aggidis and Taylor, 2017). Several multi-

DOF WECs have been developed over the years, including Pelamis 

(Parker et al., 2007) and TALOS, and these have the potential to harness 

a greater amount of wave energy. With the inertial mass PTO of 

TALOS, the motion of the main mass drives hydraulic fluid through the 

circuit. Although initial studies have demonstrated that this design may 

be a promising method of capturing energy from multiple directions, its 

enclosure in an exterior hull places strict constraints on the limits of the 

motion of the mass, and as such, the constraints considered in this paper 

will be critical for application to TALOS. 

 

 
Fig. 1 TALOS WEC 

 

Past studies have examined a variety of WEC configurations and 

control structures, but the influence of underlying control structure and 

constraints for a WEC design that has strict physical motion limitations 

similar to those encountered on the TALOS WEC have not been fully 

explored. The constraints that the design of TALOS places on the PTO 

may limit its effectiveness, but a predictive control may help overcome 

these limitations. Predictive control may present more of a benefit on 

TALOS than simpler WEC designs as a result of the need to abide by 

more constraints, and this study seeks to quantify that impact and 

identify control structures that are most suitable for constrained, 

enclosed WEC systems such as TALOS. This paper examines several 

different MPC structures with PTO position and power constraints in 

conjunction with a nonlinear hydrodynamic model and a nonlinear PTO 

model. The impact of using linear versus nonlinear models with by the 

MPC and the impact of constraints will be assessed, and the 

computational burden and accuracy of several approaches will be 

contrasted.  

 

MODEL AND CONTROL STRUCTURE 
 

Over the years, many different WEC designs have been investigated. 

This study focuses on a point absorber WEC that utilizes a hydraulic 

PTO. Because the primary focus is on understanding the impact of 

model selection and constraints on the control, a simple one-

dimensional (1D) case is considered. A hydraulic PTO system is used 

because they are cost effective and rely on established technology. The 

results will be used to guide development of a three-dimensional PTO 

control system in future work.  

 

WEC Model  

The model and constraints are based on the TALOS WEC shown in Fig. 

1. In the TALOS device, the relative motion between the hull and 

central mass drive fluid through the hydraulic circuit. Because the aim 

of this paper is to investigate control structures that are suitable for the 

device, control methods are tested with a simplified model at this stage. 

This model focuses on the motion of the central mass in the heave 

direction because this has been found to be one of the degrees of 

freedom containing the most energy for capture. Future work will 

examine motion in the pitch and surge directions, as these also have 

high amounts of energy. The motion of the central mass in TALOS is 

constrained by the hull and PTO elements, and these constraints will be 

accounted for in the control approach. The basic structure of the 

simplified system is shown in Fig. 2, in which there is a main mass (M) 

and the WEC aims to harness motion in the heave direction. The axis 

system used assumes an incident wave in the surge direction (x) with 

the wave motion in the heave direction (z) being harnessed by the WEC.  

 
Fig. 2 Point absorber WEC system with hydraulic PTO 

 

As the mass moves up and down with the wave, it will pump hydraulic 

fluid through a circuit driving a generator. To maximize the energy 

capture, the PTO system settings can be adjusted to apply a varying 

force on the hydraulic piston. The aim of the control system is to decide 

on the PTO force that will maximize the generator power output. 

Although the figure only shows one hydraulic piston as illustrated in 

Fig. 1, a piston could be located above and below the main mass, and 



as such, forces could act in both positive and negative directions. The 

hydrodynamic model predicts the velocity of the main mass that is 

translated to the piston, and the PTO model captures the damping force 

supplied based on the velocity and underlying PTO dynamics as in 

Bacelli et al. (2008). 
 

The hydrodynamics of the point absorber are modeled using potential 

flow theory to compute the hydrodynamic forces. Applying Newton's 

second law to the absorber, the forces acting on the body include the 

forces as a result of radiation (𝑓rad), restoring force (𝑓res), drag (𝑓drag) 

, and the wave excitation force (𝑓ext), together with the force generated 

by the PTO (𝑓PTO). Additional forces may be present such as a mooring 

force or tidal force, but these are excluded here. Nonlinear forces 

including the nonlinear free surface effect and low frequency wave drift 

force are not considered. As such, the dynamics of the point absorber 

under the above forces are given as follows for the absorber mass M and 

position z: 
 

(𝑀 + 𝑚∞)�̈�(𝑡) = −𝑓rad − 𝑓res − 𝑓drag + 𝑓ext + 𝑓PTO.       (1) 
 

where z is the heave motion of the point absorber, M the absorber mass, 

and 𝑚∞ the added mass at infinite frequency. The PTO force acting on 

the point absorber was computed via the PTO submodel and MPC 

control action. Here, an irregular wave with a significant wave height 

of 5 m and peak period of 10 s for a Bretschneider spectrum was created 

with a 0.05 s resolution; see the wave elevation time series in Fig. 3.  
 

 
Fig. 3 Wave height profile 

 

The added mass at infinite frequency, 𝑚∞, is assessed via WAMIT F2T 

(frequency to time domain transform) for the TALOS device with the 

shape illustrated in Fig. 1. The radiation force in time domain (i.e., the 

memory effect) can be approximated using either the Prony 

approximation (see details in Sheng et al., 2022) or a set of first-order 

differential equations (Duarte et al., 2013), expressed in a state space as  
 

𝑓rad = 𝑪𝒓𝒒      (2)  
  

where 

 

�̇� = 𝑨𝒓𝒒 + 𝑩𝒓�̇�             (3) 

 

in which q is the radiation auxiliary state vector, and Ar, Br, and Cr are 

the radiation state matrices. For the TALOS device, the appropriate Ar, 

Br, and Cr matrices were computed using the WAMIT results for 

TALOS along with the SS_Fitting preprocessing module developed by 

NREL along with MATLAB’s Frequency Domain Identification (FDI) 

toolbox.   

The restoring force is given by 

𝑓res = 𝜌𝑔𝐴𝑤𝑧         (4) 

in which 𝜌 is the density of water, 𝑔 is the gravitational acceleration, 

and 𝐴𝑤 is the sectional area of the water plane (in the 𝑧 direction).  

 

The drag relationship is expressed in Eq. 5 as a quadratic function of 

the difference between the velocity of the central mass and the velocity 

of the water surface (𝑣𝑓) and is dependent on the submerged surface of 

the WEC (𝐴𝑤) and the viscous drag coefficient (𝐶𝑑). The drag 

coefficient was taken as 3.5 based on the drag coefficients found in 

studies by Brown (2017) and Quartier et al. (2021) for similarly shaped 

devices. The overall model performance was compared with a more 

detailed TALOS model to validate. 
 

𝑓drag =
1

2
𝜌𝐴𝑤𝐶𝑑|�̇� − 𝑣𝑓|(�̇� − 𝑣𝑓)               (5) 

 

 

Hydraulic PTO Model  

The hydraulic PTO model is based on a previously developed state-

space model (Bacelli et al., 2008) that has been leveraged extensively 

for WEC PTO control studies, although typically decoupled from the 

hydrodynamics. As illustrated in Fig. 2, this model includes four check 

valves that rectify the alternating flow of the hydraulic fluid from the 

piston-cylinder assembly. A gas accumulator is included to smooth the 

flow, and the final fluid flow drives a hydraulic motor producing power 

output. The model includes losses associated with the pressure drops in 

the pipes, motor leakage, and friction. The PTO model establishes the 

links between the torque output of the generator and the damping force 

the PTO produces and applies to the cylinder. These dynamics are often 

neglected in control evaluation, and a direct link between the PTO force 

and power output is assumed. However, in a hydraulic PTO system, this 

may be a poor assumption given the anticipated delay in the dynamics.   

 

The full PTO model derivation is detailed in Bacelli et al. (2008) and 

results in two nonlinear differential equations that summarize the PTO 

dynamics. The first equation captures the dynamics of the accumulator 

volume (V) by 
 

�̇� = −𝑘𝑙 ∙ 𝑃𝑎(𝑉) −
𝐷

𝐽
∙ 𝐿 + 𝑆 ∙ �̇�      (7) 

 

in which 𝑘𝑙 is a motor leakage coefficient, 𝑃𝑎(𝑉) is the accumulator 

pressure posed as a function of V, D is the motor constant, J is the inertia 

momentum of the hydraulic motor shaft, L is the hydraulic motor shaft 

angular momentum, S the piston cross-sectional area, and �̇� is the piston 

velocity. An isentropic model of the accumulator pressure (𝑃𝑎) is used 

with the form 
 

𝑃𝑎(𝑉)  =
𝑃pr

(1−
𝑉

𝑉𝑎
)

𝜅        (8) 

 

where 𝑃pr is the pre-charge pressure, 𝑉𝑎 is the accumulator volume, and 

𝜅 is the specific heat ratio. 

 

The dynamics of the motor shaft angular momentum (L) are expressed 

in a second differential equation for the PTO as 
 

�̇� = 𝐷 ∙ 𝜂𝑚 ∙ 𝑃𝑎(𝑉) −
𝐵

𝐽
∙ 𝐿 − 𝑇    (9) 

 

in which 𝜂𝑚 is the motor efficiency, B is the motor friction, and 𝑇 is the 

generator torque. With this dynamic model, the PTO force can be 

related to these dynamics via 
 

𝑓PTO = 𝑆 ∙ 𝑃𝑎(𝑉) + 𝑆 ∙ 𝑘(𝑆 ∙ �̇�)    (10) 
 

where 𝑘(𝑆 ∙ �̇�) captures the pressure loss in a pipe due to friction under 

laminar conditions via the Haaland approximation of the Darcy 

equation, given in the equation below. 



 

𝑘(𝑆 ∙ �̇�) =
𝐾𝑠∙(𝐿𝑔+𝐿eq)∙𝜌ℎ𝑓∙𝑆∙�̇�

2𝑅𝑒∙𝐷ℎ∙𝐴2
|𝑆 ∙ �̇�|      (11) 

 

𝐾𝑠, 𝐿𝑔, 𝐿eq, and 𝐷ℎ are the pipe cross-section shape factor, geometric 

pipe length, equivalent length of local resistance, and hydraulic 

diameter of the pipe, respectively. The term 𝜌ℎ𝑓 represents the density 

of the hydraulic fluid, and A is the pipe cross-sectional area.  

 

Combining all the aforementioned together, the system can be described 

by six first-order equations in a representation known as a state space 

model. Such a model captures the relationship between inputs, outputs, 

and variables known as states. In this model, the eight states are  
[𝑧 �̇� 𝑞1 𝑞2  𝑉 𝐿], and the state space model that captures Eqs. 1–11 is 

given by the following. 
 

�̇�1 = 𝑥2 

�̇�2 =
1

(𝑀 + 𝑚∞)
(−𝐶𝑟1𝑥3 − 𝐶𝑟2𝑥4 − 𝜌𝑔𝐴𝑤(ℎ + 𝑥1)

−
1

2
𝜌𝐴𝑤𝐶𝑑|𝑥2 − 𝑣𝑓|(𝑥2 − 𝑣𝑓)+𝑓ext + 𝑓PTO) 

�̇�3 = 𝐴𝑟1𝑥3 + 𝐴𝑟2𝑥4 + 𝐴𝑟3𝑥5 + 𝐴𝑟4𝑥6 + 𝑥2 

�̇�4 = 𝑥3 

�̇�5 = −𝑘𝑙 ∙ 𝑃𝑎(𝑥7) −
𝐷

𝐽
∙ 𝑥8 + 𝑆 ∙ 𝑥2 

�̇�6 = 𝐷 ∙ 𝜂𝑚 ∙ 𝑃𝑎(𝑥7) −
𝐵

𝐽
∙ 𝑥8 − 𝑇    (12) 

 

For control, both a linear and nonlinear version of the model will be 

leveraged. The nonlinear model presented in Eq. 12 will serve as the 

plant model and also be utilized in the nonlinear MPC strategy. A 

linearized version of the plant will be used for the linear MPC. For the 

linear model, the drag force is ignored. The nonlinear terms in Eqs. 8 

and 11 are also linearized to provide a simple state space model with 

the following form for the dynamics of states 2, 5, and 6. Although some 

forces are small, the linear model will carry with it errors depending on 

the conditions. 

�̇�2 =
1

(𝑀 + 𝑚∞)
(−𝐶𝑟1𝑥3 − 𝐶𝑟2𝑥4 − 𝐶𝑟3𝑥5 − 𝐶𝑟4𝑥6

− 𝜌𝑔𝐴𝑤(ℎ + 𝑥1)+𝑓ext + 𝑓PTO) 

�̇�7 = −𝑘𝑙 ∙ 𝐶7 −
𝐷

𝐽
∙ 𝑥8 + 𝑆 ∙ 𝑥2 

�̇�8 = 𝐷 ∙ 𝜂𝑚 ∙ 𝐶8 −
𝐵

𝐽
∙ 𝑥8 − 𝑇    (13) 

 

Control Framework 

Four control frameworks were explored in this work to examine the 

impact of the control structure and system constraints in each of these 

paradigms. The first option was considered as the baseline case and 

leveraged a control that computed the desired PTO force as proportional 

to the WEC velocity, as illustrated in Fig. 4.  
 

 
Fig. 4 Base proportional WEC PTO control 

 

Second, a linear MPC was used that leveraged the linear state space 

model in the MPC but only included the first six states related to the 

WEC hydrodynamics. As such, the MPC is simpler and should be more 

computationally efficient, but it has no knowledge of the underlying 

PTO dynamics. This reduced-state linear MPC aims only to optimize 

the WEC motion so as to maximize the force entering into the PTO 

system. The MPC cost function is structured to maximize the WEC 

velocity within position constraints. The MPC provides a desired PTO 

force, and the full-state space model is used to compute the actual PTO 

force achievable and translate this into a final generator torque and 

speed, as shown in Fig. 5. The nonlinear model is used in the PTO and 

hydrodynamics model blocks. 
 

 
Fig. 5 Reduced-state MPC WEC PTO control 

 

Third, an MPC was integrated, which has full knowledge of the entire 

system dynamics, including the PTO, but still leverages a linear model. 

As seen in Fig. 6, the MPC uses the full eight-state model in Eq. 12 but 

with the simplified linear expressions for states 2, 7, and 8, as shown in 

Eq. 13. The full-state MPC predicts the torque that the PTO should 

output. This desired torque command is passed on the underlying PTO 

system. The PTO model and hydrodynamics model are nonlinear. The 

MPC cost function is still structured to maximize the WEC velocity but, 

in this case, has both position and torque constraints integrated. The cost 

function weighting has been optimized to maximize power output 

without producing constraint violation. 
 

 
Fig. 6 Full-state MPC WEC PTO control 

 

Finally, a nonlinear MPC was used with the full eight-state model. For 

this scenario, the same structure is used as in Fig. 6, but the model 

leveraged for the MPC is the full nonlinear model in Eq. 12.  

 

RESULTS 
 

With the base control strategy, a PTO force is dictated that is 

proportional to the speed of the WEC. This can easily lead to positions 

and forces that exceed the systems constraints. The WEC PTO system 

considered here has a position range of 3.2 m and is modeled after the 

constraints of the TALOS WEC in which there would be strict limits on 

the motion of the main mass. In the initial case, only two physical 

limitations are placed on the system: (1) the accumulator volume must 

be between zero and the maximum volume, and (2) the generator speed 

must be positive.  As illustrated in Fig. 7a, if no constraints are imposed 

(shown by the case denoted by “Base”), the WEC position has a range 

of over 20 m, meaning that in a constrained device, damage would 

likely occur.  

 

Without constraints, the power production is theoretically high as a 

result of the high motion, but the inner mass would collide with the 

outer hull before any useful power could be produced. With constraints 

(as shown by the case denoted by “Base w/C”), the system operates with 

larger PTO forces (Fig. 7b) and is able to produce an average power 

output of 1.9 MW. The position constraint properly restrains motion to 

an area that avoids collisions. Spectral analysis of the signals illustrates 

that PTO forces are composed more significantly of low-frequency 



(below 1 Hz) and high-frequency (from 19 to 20 Hz) signals. This is in 

line with the spectrum of the wave excitation force. The accumulator 

volume and power have frequency components from 0 to 20 Hz, with a 

more even distribution but slight increases at low and high frequencies.  

 

 
Fig. 7 (a) Wave position, (b) PTO force, (c) accumulator volume, and 

(d) power for the base control method 

 

The reduced-state linear MPC (RS LMPC) optimizes the power 

production by seeking to maximize the WEC velocity. Because the six-

state version of MPC has no knowledge of the underlying PTO 

dynamics, it cannot directly maximize the WEC power output. Instead, 

like the base case, it must choose the PTO force that produces the largest 

WEC motions and pass this PTO force command off to the PTO system. 

The PTO control uses a simple feedforward method to calculate the 

required generator torque needed to produce the desired PTO force 

based on the dynamics in Eqs. 7 and 9. 

 

Unlike the base case, the MPC can build its decisions on a forecast of 

the upcoming wave that should, in theory, improve its outcome. In 

reality, the MPC is unable to properly optimize without at least position 

constraints. In the case with no constraints, the RS LMPC quickly drives 

the WEC velocity to infinity, which would lead to damage and failure. 

Once constrained, the RS LMPC is able to properly optimize and, as 

illustrated in Fig. 8a, drives the WEC rapidly through its full range of 

motion in a similar fashion as the base control. PTO forces are lower on 

average, and the resulting power is higher than the constrained base 

method but with larger spikes. In this initial case, only a short horizon 

of five time steps or 0.25 s is assumed. Unlike the base controller, the 

RS LMPC uses all of the available accumulator volume. 

 

 
Fig. 8 (a) Wave position, (b) PTO force, (c) accumulator volume, and 

(d) power for the RS LMPC method 

 

 

One critical factor for the model predictive control options is the 

prediction horizon over which it can optimize. A longer prediction 

horizon should allow the controller to better optimize power production 

but will come at a higher computational price. The influence of the 

prediction horizon for the RS LMPC option is shown in Fig. 9. 

Increasing the prediction horizon improves the power output but only 

by 67% in the best-case scenario. Extending the prediction horizon 

beyond 3 s has a detrimental effect, and power production is poor 

beyond this point. The larger prediction horizon (up to 3 s) improves 

performance but has a negligible impact in computational speed. By 

contrast, increasing the control horizon did not have a sizable influence 

on the power output but increased the computational time and was not 

examined further. 

 

In contrast to the base and reduced-state linear MPC options, the full-

state linear MPC is able to base its control commands on the WEC 

hydrodynamics as well as the PTO dynamics. It is able to outperform 

the other methods but requires proper weighting and constraints. 

Similar to the RS LMPC, it will tend to drive the WEC velocity to 

infinity if position constraints are not imposed. It is also sensitive to 

output weighting. If the power output is not sufficiently weighted in the 

optimization, the system can tend to translate the motion of the mass 

into hydraulic fluid motion without producing much power as was 

observed in the base control case without constraints. If the weighting 

is increased, power output will improve significantly, but if the weight 

becomes too high, it can drive the PTO force to very high levels. As 



such, constraints on position and PTO force are essential with this 

control option.  

 
Fig. 9 Impact of prediction horizon on computational time and power 

output for RS LMPC 
 

 

 
Fig. 10 (a) Wave position, (b) PTO force, (c) accumulator volume, and 

(d) power for the FS LMPC method 

 

As illustrated in Fig. 10, the full-state linear MPC (FS LMPC) leads to 

more motion and higher PTO forces. The resulting power output is 

higher than the reduced-state option because negative power needs are 

avoided. However, there are also higher power spikes, as seen in the 

zoomed-in view in Fig. 10d, which could be problematic. Spectral 

analysis confirms that the power spectrum has more significant peaks 

although they are distributed from 0 to 5 Hz and 15 to 20 Hz. Additional 

constraints on the rates of changes in PTO forces or torque commands 

may be essential to providing smoother, more consistent power output 

with this control option. 

 

The FS LMPC had a larger increases computational time compared with 

the RS LMPC case with computational time increasing by 19% when 

moving from a prediction horizon of 0.25 s to 3 s. Increasing the horizon 

with the reduced-state option led to a 67% improvement in power 

output, and with the FS LMPC, a similar increase is seen. With FS 

LMPC, an increase of 45% is seen in power output when moving from 

a 0.25 s to 3 s horizon. In both cases, a longer horizon is better, but in 

the FS LMPC case, the power output improves significantly with a 1.5 

s horizon, and only minor improvements are seen at longer horizons. 

However, these predicted power outputs are higher than realistically 

achievable because they create some of the high fluctuations such as 

those observed in the nonlinear MPC case to follow.  

 

Although the FS LMPC provides an improved power output, it is still 

basing its optimization on the linear model. Improved performance 

should be feasible if the MPC is able to use the full nonlinear model for 

its calculation. Figure 11 compares the performance of the full-state 

nonlinear MPC (FS NLMPC) using the full eight-state nonlinear model 

with the corresponding linear option. Power output is significantly 

increased, but this comes at a cost. There is a ~1,000% increase in 

computational time and much more drastic control actions. The PTO 

force changes frequently and is driven from the maximum achievable 

to the minimum, which in turn drives rapid fluctuations in the 

accumulator from its maximum volume all the way to zero volume. 

Spectral analysis confirms that the power and accumulator volume 

 
Fig. 11 (a) Wave position, (b) PTO force, (c) accumulator volume, and 

(d) power for the eight-state nonlinear MPC method 

 

spectrum has more significant peaks, but frequencies from 0 to 20 Hz 



are more evenly represented in the signal. This control option is also a 

very sensitive to weightings. Although the computational time is likely 

not excessive enough to cause a large limitation for the simple 1D case, 

limitations may be encountered in the multi-degree-of-freedom system. 

In addition, the high sensitivity of this controller and its tendency to 

potentially overactuate the system could limit its utility. This control 

approach, such as the FS LMPC option, would likely need additional 

constraints on the rates of change of the PTO force and torque to avoid 

unrealistic fluctuations.  

 

In all four control cases considered, constraints on position are essential. 

Without position constraints, the base control produces a fairly 

immediate collision between the hull and central mass. In other words, 

the combination of overly simple control without limitations leads an 

unfunctional WEC system. Although this could be anticipated, these 

results illustrate the magnitude that these differences can make in the 

power output. Once constraints are in place, the base control is able to 

produce an average power output of 1.9 MW.  

 

Constraints are even more critical with MPC. Because MPC seeks to 

optimize power output, it can send the velocity to infinity. As such, 

MPC needs position or velocity constraints to function. All the reduced-

state and full-state MPC options considered have this need for 

constraints. Once constraints are imposed, all MPC options work and 

perform better than the base control option. The reduced-state linear 

version is only able to base its optimization on the linear hydrodynamics 

of the WEC and is able to achieve an average power output of 2.5 MW, 

a 31% improvement over that of the base option.  

 

 
 

Fig. 12 Comparison of average power output for the various control 

cases considered 

 

The FS LMPC provides a further improvement as the controller is able 

to better account for the PTO dynamics to some degree in its 

optimization. The FS LMPC produces 4.2 MW with a shorter horizon 

and 6.1 MW with a longer prediction horizon, up to a 148% 

improvement over the six-state option and a 224% improvement from 

the base control. The base control and linear MPC options are all 

outperformed by the nonlinear MPC, which theoretically produces over 

15 MW of power output. However, the nonlinear case creates rapid 

fluctuations that would be problematic in real life. It tends to order 

discrete changes to the system that result in sudden changes in hydraulic 

motor speed and torque and rapid filling and emptying of the 

accumulator. If the rate of changes of these actuations is limited, the 

performance will become closer to that of the linear MPC, but further 

exploration of this will be pursued in future work. Figure 12 compares 

the average power output of each control option.  

 

CONCLUSIONS AND FUTURE WORK 

 

This work explored a simple proportional PTO control and three 

different control structures that leverage MPC. The results demonstrate 

that if the system constraints are ignored, extremely poor performance 

is achieved regardless of control strategy. Providing the MPC with more 

information on which to base its optimization enables improvements in 

the power output. However, constraints are essential to proper power 

production. Without position or velocity constraints, the MPC will not 

be able to provide realistic solutions. Further constraints on the PTO 

force and torque output are also needed to avoid the MPC attempting to 

ask for forces beyond the physical constraints of the system. Leveraging 

a nonlinear model in the MPC can improve power production, but the 

tendency of this control strategy to overreact may provide practical 

limitations on the utility of the approach. Although there is much more 

to be explored in this area, this study provides an idea of the relative 

effectiveness of these control approaches. Future work will examine the 

utility of frequency limits into the MPC to limit sudden actuator changes 

and will explore the extension of these control methods to the three-

dimensional case of the TALOS WEC design. Experimental testing of 

the TALOS control design will also be conducted in the future.  
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