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Article 1 

Real option valuation of an emerging renewable technology de- 2 

sign in wave energy conversion  3 

Abstract: The untapped potential of wave energy offers another alternative to diversifying 4 

renewable energy sources.  However, development costs to mature the technology re- 5 

main as significant hurdles to adoption at scale.  Here, we conduct a real option valuation 6 

that includes the uncertain market price of electricity and demonstrate the probability that 7 

the project’s embedded option value can turn a negative net present value wave energy 8 

project to a positive expected value.  This change in investment decision uses decision 9 

tree analysis and models the uncertainty as a risk-neutral stochastic process.   We also 10 

show how our results are analogous to a financial out-of-the-money call option.  Our re- 11 

sults highlight the distribution of outcomes and the benefit of a staged long-term invest- 12 

ment in wave energy systems to better understand and manage project risk.  13 

Keywords: wave energy; real options; valuation; decision tree; stochastic process 14 

 15 

1. Introduction 16 

Wave energy conversion (WEC) technology has yet to be introduced at scale, in part 17 

due to levelized cost of energy (LCoE) estimates remain higher than other energy alterna- 18 

tives and design standards have yet to appear.  However, Loth et al (2022) suggest that 19 

the use of LCoE is questionable for renewables, like wind and solar, since this metric ex- 20 

cludes the time-varying price of electricity.  Further, Aldersey-Williams and Rubert 21 

(2019) illustrate that LCoE also may not include the volatile price of fuel and often pro- 22 

vides a single value, rather than a distribution of outcomes.  Lastly, to gain private fi- 23 

nancing, others have suggested that more traditional valuation measures should be used, 24 

like Net Present Value (NPV).  25 

“If very large wave energy installations are to be privately financed then this will 26 

involve pension funds and other very large investment funds and these investors will 27 

compare wave energy to other investment opportunities outside the power generation 28 

sector. In this case NPV or IRR should be preferred over LCoE.” 29 

 – Pecher and Kofoed (2016), p. 116. 30 

So, this paper will focus on developing an estimate of NPV to better inform non- 31 

governmental investors.  In the sections that follow, we will conduct a static investment 32 

analysis that determines NPV from a series of future cash flows and a discount rate.  The 33 

cash flows will include revenues from WEC production and transmission to the wholesale 34 

electricity market.  The electricity market is known to be volatile, so we model the uncer- 35 

tainty as a stochastic process to determine a distribution of cash flows, and subsequently 36 

a distribution of values.  This financial valuation model also includes salient elements of 37 

a proposed WEC design and the cost impact of maturing it to Technology Readiness Level 38 

(TRL) 9 when the designs may be implemented at scale.  This study then applies the the- 39 

ory of real options, or options on real assets, to model the optimal decisions of future 40 

staged investments to higher Technology Readiness Levels (TRL) and capital expendi- 41 

tures (CapEx) should be undertaken.  42 
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2. Materials and Methods 43 

2.1. Energy Price Forecast with Uncertainty 44 

We obtained data on wholesale market data for energy prices to support cash flow 45 

and volatility inputs needed for real option valuation.  We used data from the Nordpool 46 

group (2024), which has a long history on promoting price transparency.  We obtained 47 

monthly N2EX day ahead auction prices from 108 months from March 2014 to December 48 

2023.  No data was available for the nine months of January-September, 2021, and the 49 

time series started in March 1014.    A service specialist at the NordPool group indicated 50 

that Brexit was the cause for this interruption in data.  However, our key conclusions 51 

were unaffected by this data interruption.  Considering the break in this data in 2021, the 52 

2014-2020 pricing data appears stationary, while the late 2021-2023 data is highly volatile 53 

and appears to be returning to a price of approximately 100 Euros per MWh.  This time 54 

series appears in Fig. 1.  The higher prices and volatility in late 2021 to the end of 2023 55 

could be caused by the combination of post-pandemic effects and other regional economic 56 

shocks disrupting regional energy markets in the region, as suggested by Lu et al (2024).  57 

 58 

Figure 1. Time series of UK wholesale electricity prices. 59 

To begin, we investigate the distribution of monthly returns 𝑟 determined by the log 60 

of relative price, or  61 

𝑟 = ln (𝑝𝑡/𝑝𝑡−1),             (1) 62 

where 𝑝𝑡  is the current month price and 𝑝𝑡−1is the previous month price. The histogram 63 

of these returns appears in Fig. 2.  Since the returns appear normal, we assume that prices 64 

can be modeled with a random walk, or more specifically as geometric Brownian motion 65 

(GBM), as suggested by Fama (1965) and used by Black and Scholes (1973). 66 
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 67 

Figure 2. Histogram of monthly returns of UK wholesale electricity prices, 2014 – 2023. 68 

To calibrate our GBM stochastic process to model price, we need to estimate growth 69 

and volatility terms for our stochastic differential equation in Eq. (2).  70 

𝑑𝑃 = 𝜇𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑧,  𝑑𝑧 = 𝜖√𝑑𝑡,   𝜖~𝑁(0,1)                       (2) 71 

Here,  𝑑𝑃 is the change in price 𝑃, 𝜇 and 𝜎 are the growth rate and volatility, and 72 

𝑑𝑧 represent the standard Wiener process.  The last term in Eq. (2) is the random variable 73 

from the standard normal distribution.  This formulation is similar those found in Dal- 74 

bem, et al (2014) and Dixit and Pindyck (1994). 75 

We estimate the growth rate from a nonlinear curve fit of the equation 76 

𝑃𝑡 = 𝑎0e𝑟𝑡 .                           (3) 77 

Taking the natural log of both sides and simplifying yields the linear equation  78 

ln (𝑃𝑡) = ln (𝑎0) + 𝑟𝑡.                         (4) 79 

So, the slope of the natural log of price will yield the estimated growth rate 𝑟.  Then, 80 

the volatility 𝑠 is estimated as the standard deviation of monthly returns.  The growth 81 

rate is annualized by multiplying it by 12, and the volatility is annualized by multiplying 82 

it by √12 , as supported in Benninga (2014).  Consequently, using all the pricing data 83 

available yields annualized growth and volatility of 13.0% and 64.3%, respectively.  84 

At this point, we didn’t believe that the future energy markets would support these 85 

values for a GBM forecast, given the economic shock that the wholesale electricity markets 86 

withstood in 2021-2023.   We can see this by examining a monthly rolling volatility over 87 

12-month periods.  As shown in Fig. 3, we see that prior to 2021, values were between 88 

20% and 60%, and that current volatility appears to be returning to this range.   So, for 89 

our forecasting of price and the real options analysis to follow, we assume a volatility of 90 

40% as a baseline value.  91 
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 92 

Figure 3. 12-month rolling annualized volatility, 2014-2023. 93 

Also, assuming wholesale electricity growth rates will likely return to lower values, 94 

we set our value for annualized price growth to 6%.  Such a value is subjective, and could 95 

vary based on economic conditions like inflation, energy policies, technological advance- 96 

ments and global energy markets.  Nevertheless, it does capture wholesale nominal price 97 

increases likely necessary to include these effects, similar to the assumptions made by 98 

Schwartz and Smith (2000) for processes with short-term and long-term components, or 99 

jump processes described by Winston (2008).  Using these values, our expected forecast 100 

with upper and confidence intervals at a 10% and 90% level appears in Fig. 4.  In the pro 101 

forma cash flow model in the next section, we will use the mean price forecast to deter- 102 

mine our expected cash flows from operating a WEC system, similar to the approach used 103 

by Hahn et al (2018). 104 
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 105 

Figure 4. GBM process forecast for wholesale electricity prices. 106 

2.2. Site Selection and Annual Energy Production  107 

Under the Market Asset Disclaimer suggested by Copeland and Antikarov (2003), 108 

we next developed a baseline model as our WEC system project without optionality.  Do- 109 

ing so provides us with a complete market to support our real options analysis in the 110 

following section.  We begin with modifying the Annual Energy Production (AEP) equa- 111 

tion from Section 1.4.2 of Pecher and Kofoed (2016) to a Monthly Energy Production 112 

(MEP) estimate.  AEP can be found based on the equation: 113 

𝐴𝐸𝑃 =  ∑ 𝑀𝐸𝑃12
𝑖=1 𝑖

,                            (5) 114 

where 𝑀𝐸𝑃𝑖  is the Monthly Energy Production for month i, where I = 1 for January, 115 

i=2 for February, etc.  So, we state that  116 

𝑀𝐸𝑃 = 𝑃𝑤𝑎𝑣𝑒  × 𝑤𝑖𝑑𝑡ℎ𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟 × 𝜂𝑤2𝑤 × 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑜𝑛𝑡ℎ𝑙𝑦 × ℎ𝑜𝑢𝑟𝑠𝑚𝑜𝑛𝑡ℎ𝑙𝑦 × 𝑛𝑊𝐸𝐶    . (6) 117 

Here, 𝑃𝑤𝑎𝑣𝑒   is wave power in kW/m and is location dependent. The next term 118 

𝑤𝑖𝑑𝑡ℎ𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟  is the width of the WEC absorber in meters, and can vary based on the cho- 119 

sen WEC design.  The third term 𝜂𝑤2𝑤 is the wave-to-wire efficiency as a percentage and 120 

is a weighted average over all wave conditions.  The next terms 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑜𝑛𝑡ℎ𝑙𝑦    and 121 

ℎ𝑜𝑢𝑟𝑠𝑚𝑜𝑛𝑡ℎ𝑙𝑦  are the percent of time the WEC is producing each month and the total num- 122 

ber of hours per month, respectively.  Lastly, the term 𝑛𝑊𝐸𝐶  represents the number of 123 

WEC devices operating throughout the project’s lifecycle.  This estimate is considered 124 

reasonably accurate at ±50% by Pecher and Kofoed (2016), which will be explored in the 125 

sensitivity analysis in the following section.   126 

By using the variable ℎ𝑜𝑢𝑟𝑠𝑚𝑜𝑛𝑡ℎ𝑙𝑦    we include the effect of seasonality shown in 127 

O’Connell and Furlong (2021) and Rizaev et al. (2023).  So, we can increase availability 128 

during peak months by deferring periodic maintenance until times of the year with lower 129 

wave power.  We show below that the strongest wave power occurs in the winter months 130 

of December, January and February and the weakest wave power occurs in the summer 131 
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months of June, July and August, so will assume higher availability in the winter months 132 

and lower availability during the summer months. 133 

We next employ the long-term average of wave power from 42 years of Copernicus 134 

data1.  The wave power 𝑃𝑤𝑎𝑣𝑒 describes energy transmission by waves and encompasses 135 

both the significant wave height 𝐻𝑠 and the energy period 𝑇𝑒. Assuming irregular waves 136 

and deep water per unit crest length, 𝑃𝑤𝑎𝑣𝑒  is given by: 137 

𝑃𝑤𝑎𝑣𝑒 =
𝜌𝑔2

64𝜋
𝐻𝑠

2𝑇𝑒 ≈ 0.49𝐻𝑠
2𝑇𝑒  (𝑘𝑊/𝑚)                       (7) 138 

where ρ is the sea water density (~1025 kg/m3), and g is the gravitational acceleration. 139 

However, the sites we chose represent intermediate and deep waters, so an advanced 140 

calculation method was used. This method is formulated as a general wave energy assess- 141 

ment equation (GWEAE) and is defined by Liang et al (2017). 142 

𝑃𝑤𝑎𝑣𝑒 =
𝜋𝜌𝑔𝐷𝐻𝑠

2

16𝑇𝑒
[

1

𝜇
+

2

sinh 2𝜇
]                         (8) 143 

Here, an explicit approximation of the linear dispersion relation µ is equal to Beji 144 

(2013). The details can be also found in Rizaev et al (2023).  The variable D is the water 145 

depth, which is estimated based on the numerical bathymetry model in Saulter (2021).   146 

Table 1 shows the values for 𝑃𝑤𝑎𝑣𝑒 at three locations around the United Kingdom 147 

and represent annual seasonal wave power from the 42 years of monthly Copernicus data.  148 

We assume these seasonal long-term averages will remain time invariant for purposes of 149 

our pro forma cash flow model.   150 

Table 1. Average Seasonal Wave Power for three sites considered in Fig. 5, representing low, mod- 151 

erate and high potential for a commercial wave energy system. 152 

 Site 
Winter 

(Dec., Jan., Feb.) 

Spring  

(March, April, May) 

Summer  

(June, July, August) 

Autumn  

(Sep., Oct., Nov.)  

𝑃𝑤𝑎𝑣𝑒 

(kW/m) 

A 109.634 48.3112 17.7887 55.9195 

B 84.3359 38.7219 12.5485 46.5122 

C 18.8204 10.389 4.5571 13.5729 

Sites A, B and C, along with the annual mean wave power appears in Fig. 5.  The 153 

wave power estimation is based on an analysis forecast numerical wave model2 from the 154 

Copernicus Marine Environment Monitoring Service (CMEMS). The location considered 155 

for site A is a longitude of 8.5152oW and latitude of 55.9189oN, site B is a longitude of 156 

2.4849oE and latitude of 62oN, and site C is a longitude of 1oW and latitude of 56.8919oN.  157 

From Fig. 5, we see that similar to the seasonality of wave power shown in Table 1, site A 158 

has the highest wave power, followed by site B.  Site C has the lowest wave power.  159 

These sites were chosen to represent best, moderate, and worst-case wave power locations 160 

to operate a WEC system in locations in relatively close proximity to the UK power grid.  161 

 
1https://data.marine.copernicus.eu/product/NWSHELF_ANALYSISFORECAST_WAV_004_014/description 

 

2 Product NORTH-WESTSHELF_ANALYSIS_FORECAST_WAV_004_014 

https://data.marine.copernicus.eu/product/NWSHELF_ANALYSISFORECAST_WAV_004_014/description
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 162 

Figure 5. Climatological annual mean wave power, 1980-2021. 163 

The second, third and fourth variables in our MEP model in Eq. (6) are set according 164 

to Table 2.    165 

2.3. Reference Design of a WEC from a TALOS Design 166 

Table 2. Design parameters based on page 6 of Pecher and Kofoed (2016) and TALOS design from 167 

Sheng and Aggidis (2024). 168 

Design Parameter Value 

𝑤𝑖𝑑𝑡ℎ𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟  30 m 

𝜂𝑤2𝑤 0.2 

𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑜𝑛𝑡ℎ𝑙𝑦  
[Dec, Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov.] =  

[0.99, 0.99, 0.99, 0.95, 0.95. 0.95, 0.9, 0.9, 0.9, 0.95, 0.95, 0.95] 

𝑛𝑊𝐸𝐶  25 

Note that the width of the absorber at 30 m is consistent with the TALOS WEC design 169 

as shown in Sheng and Aggidis (2023) and was used to measure wave conditions at the 170 

EMEC test site, Billia Croo, Scotland.  The specific TALOS design used here is an opti- 171 

mized TALOS, the tailless TALOS, from Sheng and Aggidis (2024), appears below in Fig. 172 

6.  The overall annual wave energy production, with the applications of an energy effi- 173 

ciency of 75% from the captured wave energy to electricity and a rated power of 625kW, 174 

yields a corresponding capture factor of 0.243.  While this production is about half the 175 

value for site B, and was chosen so that the test devices would not be subject to more 176 

severe wave conditions, the value for 𝜂𝑤2𝑤  in Table 2 is a reasonable estimate which we 177 

expect to hold in a commercialized system under more severe wave conditions like those for 178 

site A and B.  179 
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 180 

Figure 6. The tailless TALOS (displacement: 2969m3). 181 

The availability design parameter in Table 2 includes seasonal adjustments for max- 182 

imize winter season energy conversion and defer maintenance to the summer season. It 183 

also includes the need for the WEC system to enter survival mode during extreme weather 184 

events.  185 

Using the values from Table 2, we determine 12 monthly MEP and corresponding 186 

AEP for site A, B and C.  As previously noted, the values in Table 3 are subject to an 187 

estimation error of ±50%, as indicated by Pecher and Kofoed (2016).  188 

Table 3. Annual Energy Production from sites A, B, and C. 189 

Site AEP (MWh/year) AEP per WEC (MWh/year) 

A 73,005 2,920 

B 57,394 2,296 

C 14,869 595 

 190 

2.5. Estimating Project Capacity  191 

We assume the TALOS design is at a Technology Readiness Level (TRL) 6 in the fol- 192 

lowing section to estimate likely costs.  Following the International levelized Cost of En- 193 

ergy for Ocean Energy Technology (2015), AEP is defined as  194 

𝐴𝐸𝑃 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝐹 ∗ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 8760,     (9) 195 

where 8760 is the number of hours per year, found by 24 hrs/day * 365 days/year.   196 

Here, capacity is the project capacity, F is the capacity factor, or alternatively called the 197 

load factor by UK report from 2020 from the department of Department for Business, En- 198 

ergy & Industrial Strategy.  From this UK report, 𝐹 ∗ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 30%.  We can solve 199 

for the system capacity as  200 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝐴𝐸𝑃/(𝐹 ∗ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 8760)      (10) 201 

Then, the capacity of the projects operating at sites A, B and C from Table 3 are ap- 202 

proximated as 27.8 MW, 21.8 MW and 5.7MW, respectively.  203 

https://www.ocean-energy-systems.org/oes-projects/levelised-cost-of-energy-assessment-for-wave-tidal-and-otec-at-an-international-level/
https://www.ocean-energy-systems.org/oes-projects/levelised-cost-of-energy-assessment-for-wave-tidal-and-otec-at-an-international-level/
https://www.gov.uk/government/publications/beis-electricity-generation-costs-2020
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3. Cash Flow and Real Options Model 204 

3.1. Underlying Model  205 

We next infer the following cost parameters to complete our static financial model 206 

without optionality.  We started with CapEx per AEP using Table 9 from Guo et al (2023), 207 

which listed values between 0.041 and 0.455.  We chose the largest of these values to 208 

avoid the use of investment steps these authors used to reduce this expense, which is al- 209 

ready inherit in the real option models to follow.  The value for CapEx per AEP is also 210 

critical because we assume annual OpEx is a fixed proportion shown in the second row of 211 

Table 4, which is supported in the literature by de Andrés et al (2017), Tan et al (2021), 212 

Biyela and Cronje (2016), Stansby et al (2017), Gaunche (2014), de Andrés et al (2016), and 213 

Lavidas and Blok (2021).   214 

Table 4. Baseline cost parameters and their sources. 215 

Cost Parameter Values Source 

CapEx per AEP (Euro/KWh) € 0.455 / KWh Guo et al (2023), p. 24 

OpEx/MWh, Year 1 5 to 15% of CapEx Guo et al (2023), p. 15 

TRL 6 to 7 € 10 to 15M  Pecher and Koefoed (2016), p. 88 

TRL 7 to 8 € 10 to 15M Pecher and Koefoed (2016), p. 88 

TRL 8 to 9 € 20 to 100M Pecher and Koefoed (2016), p. 88 

Discount Rate  8 to 10% Guo et al (2023), p. 18. 

Operating Years 20 to 50 Guo et al (2023), p 18.   

For our other baseline cost estimates, we assume midpoint values from Table 4.  So, 216 

we set OpEx/MWh for Year 1 to 10%, TRL increases occur at the midpoint of their cost 217 

range, discount rate is 9%, and the system operates for 35 years with no salvage value or 218 

decommissioning cost.  We also ignore the implication of taxes, tariffs and depreciation.  219 

3.2. Research  Development  CapEx and OpEx Timelines  220 

The timeline for the financial model includes sequential investments to improve TRL, 221 

followed immediately by CapEx, then by OpEx. The research and development phase for 222 

each TRL improvement lasts one year.  So, we begin assuming the TALOS design is at a 223 

TRL 6.  We invest today, year 0, to move the technology from TRL 6 to 7.  In year 1, we 224 

invest again to move the technology from TRL 7 to 8.  Lastly, in year 2, we invest to move 225 

the technology from TRL 8 to 9.  Then, in year 3, we invest for CapEx, to produce the 226 

WEC units and deploy them, at a present value of 𝑃𝑉𝐶𝑎𝑝𝐸𝑥.  Lastly, in year 4, we begin 227 

operation of the WEC system and selling electricity into the wholesale market, producing 228 

a present value in today’s dollars of 𝑃𝑉𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 .    229 

So, the project’s NPV is expressed as 230 

𝑁𝑃𝑉 = −𝑃𝑉𝑇𝑅𝐿 −
𝑃𝑉𝐶𝑎𝑝𝐸𝑥

(1+𝑟𝑑)3 +
𝑃𝑉𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔

(1+𝑟𝑑)4 ,                      (11) 231 

where 𝑟𝑑 is the project’s discount rate, and  232 

𝑃𝑉𝑇𝑅𝐿 = 𝑃𝑉6−7 +
𝑃𝑉7−8

(1+𝑟𝑑)
+

𝑃𝑉8−9

(1+𝑟𝑑)2  .                      (12) 233 

Using the mid-point values for TRL increases and the discount rate shown in Table 234 

4, we find that 𝑃𝑉𝑇𝑅𝐿 = € 74.5M.  We then determine the CapEx and the annual OpEx 235 

for sites A, B and C, with results appearing in Table 5. To include increasing future oper- 236 

ational costs, we set the OpEx annual growth rate of 4%. To determine the net cash flow 237 

for each year, we assume first year operations generate revenue at a rate of €100/MWh, 238 

that grows at a rate of 6% per year.  Subtracting the Annual OpEx from these revenues, 239 

and discounting the cash flows at 9% yields a 𝑃𝑉𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔 as shown in the third last col- 240 

umn of Table 5. Combining Eq. (11) and (12) then produces the NPV in the last column of 241 

Table 5.  242 
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Table 5. Costs, operational value, and NPV estimates for sites A, B, and C. All values in Euros (€). 243 

Site 𝑷𝑽𝑻𝑹𝑳 𝑷𝑽𝑪𝒂𝒑𝑬𝒙 𝑷𝑽𝒖𝒏𝒅𝒆𝒓𝒍𝒚𝒊𝒏𝒈 NPV 

A 74.5M 33.2M 105.1M -25.7M 

B 74.5M 26.1M 82.6M -36.1M 

C 74.5M 6.77M 21.4M -64.5M 

As the results in Table 5 show, negative NPVs occur for all the sites.  So, we can 244 

characterize these all as out-of-the-money call options.  But, prior to investigating the op- 245 

tion value in this project, we perform a sensitivity analysis in the next section to see which 246 

factors in this deterministic model have the greatest impact on NPV.   247 

To validate our cost assumption, we note that the combination of TRL and CapEx 248 

costs in Table 5 sum to approximately €100 M for sites A and B.  For a system capacity of 249 

approximately 25 MW, estimated in the previous section, and using the total CapEx Factor 250 

of €4 M / MW from Table 7 of Ocean Energy in the European Union (2022) for systems 251 

with capacity greater than 20 MW, we confirm that this €100 M total investment is an 252 

appropriate cost estimate at this stage in the TALOS design.  Nevertheless, given the un- 253 

certainty of these cost estimates, the following section conducts a detailed sensitivity anal- 254 

ysis.  255 

3.3. Sensitivity Analysis 256 

To conduct a sensitivity analysis, we evaluated site A and varied each of the follow- 257 

ing variables individually.  The baseline values used previously, along with high and low 258 

values, appear below in Table 6. 259 

Table 6. Low, baseline and high values for sensitivity analysis. All values in Euros (€). 260 

Variable Low Baseline High 

P_wave factor 0.5 1.0 1.5 

Expected growth rate of wholesale electricity prices 3% 6% 7.5% 

Discount rate 8% 9% 10% 

CapEx per AEP (Euro/KWh) 0.2275 0.455 0.6825 

OpEx/MWh  for Year 1 22.75 45.5 68.25 

OpEx growth rate 2% 4% 6% 

TRL 6 to 7 (M Euro) 10 12.5 15 

TRL 7 to 8 (M Euro) 10 12.5 15 

TRL 8 to 9 (M Euro) 20 60 100 

We then estimated the NPVs for each of these combinations and sorted them from 261 

largest absolute change to smallest.  So, the top row of Table 6 shows which variable has 262 

the largest impact of NPV, and the last rows shows the variable with the smallest impact 263 

on NPV.  264 

Table 7. NPV sensitivity to model variables, sorted largest to smallest absolute change, site A. 265 

Variable 
NPV 
Low 

NPV 

Baseline 

NPV 

High 

TRL 8 to 9 (M Euro) 9 -25.7 -59.3 
Expected growth rate of wholesale electricity prices -63 -25.7 2.8 

CapEx per AEP (Euro/KWh) 6.9 -25.7 -58.2 
P_wave factor -50 -25.7 -1.3 

OpEx/MWh  for Year 1 -5.9 -25.7 -45.4 
Discount rate -12 -25.7 -36.2 

OpEx growth rate -17 -25.7 -38 

https://setis.ec.europa.eu/ocean-energy-european-union_en
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TRL 6 to 7 (M Euro) -23 -25.7 -28.2 
TRL 7 to 8 (M Euro) -23 -25.7 -28 

Table 7 shows that a WEC project’s valuation is most sensitive to TRL 8 to 9, growth 266 

rate of wholesale electricity prices, and CapEx.  However, the project’s NPV is least sen- 267 

sitive to TRL increases from 6 to 7 and 7 to 8.   This latter result supports our findings in 268 

the next section indicating that the relatively low cost of this research and development 269 

phase having little effect on the overall project’s profitability.  We expect to see a similar 270 

trend for sites B and C, so do not include them here.  Instead, we focus the next sections 271 

on the option value that may be part of a project like this one.  We also note that, in nearly 272 

all cases, the high NPV values usually remain negative.  So, in the next section, we ex- 273 

plore if (or when) there is enough option value to change the baseline NPV from negative 274 

to positive, by modeling the problem like an out-of-the-money call option.  275 

3.5. Risk Neutral Valuation of the Option to Increase TRL and Operate the WEC System 276 

We next implement a decision tree approach with a binomial lattice to model the 277 

underlying uncertain cash flows using a risk-neutral valuation methodology.  This com- 278 

pound option is similar to the compound option found in Copeland and Tufano (2004) 279 

and DiLellio (2022), where prior investments were required before production and asso- 280 

ciated cash flows could occur to yield 𝑃𝑉𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔.  The figure below shows the structure 281 

of the decision tree associated with this compound option using the commercial decision 282 

analysis package DPL® from Syncopation software.  283 

 284 

Figure 7. Decision Tree for Compound Option. 285 

In Fig. 7, the project starts today with an investment of X0 to reach a TRL 7.  If this 286 

investment is not made, then the project is over and the NPV is 0.  However, if the TRL 7 287 

investment is made, then TRL 7 is achieved in one year.  The next decision is whether to 288 

invest X1 Euros to reach TRL 8.  If this next investment is made, another year passes.  289 

Otherwise, the project ends with an NPV of -X0.  The final investment to reach TRL 9 290 

must be decided upon at a cost of X2 Euros.  If TRL 9 is not pursued, then the project’s 291 

NPV is -X0 – X1/(1+r), where r is the risk-free rate.  292 

If the TRL 9 investment is made, another year passes, and now we have the option to 293 

invest CapEx to build the system, which produces uncertain cash flows V3 based on the 294 

value of the underlying shown in Table 5.  Fig. 8 shows how a non-recombining binomial 295 

lattice, based on Cox et al (1979) models the uncertainty in 𝑃𝑉𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔, assuming a risk- 296 
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free rate 𝑟 equal to 5%.  The underlying lattice values were found based on up and down 297 

factors (u and d), and associated risk-neutral probabilities (p),  are shown by Cox et al 298 

(1979) with Δ𝑡=1 year and 𝜎 = 40%. 299 

𝑢 = 𝑒𝜎 , 𝑑 =
1

𝑢
, 𝑝 =  

1+𝑟+𝑑

𝑢−𝑑
                        (13) 300 

While Fig. 8 is for site A, similar models for the underlying project’s uncertain values 301 

were produced for sites B and C, but not included for sake of space.  Also, note that Cox 302 

et al (1979) generate a recombining lattice, where n periods produce n+1 unique terminal 303 

values.   In this example, the three-period model has four unique terminal nodes.  How- 304 

ever, using a decision tree provides greater flexibility and doesn’t assume terminal nodes 305 

re-combine at the small additional cost of computational time.  So, for this 3-period 306 

model, there are eight terminal nodes. Nevertheless, the computational results are unaf- 307 

fected.  Lastly, the up and down values shown here correspond to a risk-neutral valua- 308 

tion approach, so that future values may be discounted at the risk-free rate.  Also, risk- 309 

neutral valuation does not require additional future uncertainty states after the decision 310 

to make the WEC operational since there were no later downstream decisions in the deci- 311 

sion tree in Figure 7.  312 

 313 

Figure 8. Non-recombining lattice to model the uncertain value of the underlying projects cash flows 314 

for site A. 315 

As Fig. 8 shows, the uncertainty of the future wholesale electricity prices at a 40% 316 

volatility could yield a present value of the underlying as high as 323 M Euros, or as low 317 

as 29.3 M Euros once operations begin.  Then terminal nodes also show the conditional 318 

probabilities to reach outcome, which provides a discrete approximation of a log-normal 319 

distribution.  320 

4. Results and Discussion 321 

Baseline Model Valuation with Option to Deploy 322 

Applying this underlying uncertainty to our decision tree in Fig. 7 produces a posi- 323 

tive NPV for site A and B, but not for C.  These values are summarized in Table 8.   324 

Table 8. Expected NPV for WEC system with optionality. 325 

Site Expected NPV  

A € 12.6 M 
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B € 1.17M 

C € 0.0 M 

Details of the decision tree for sites A appears in Fig. 9 and site B in Fig. 10.  We 326 

exclude the policy tree for site C, as it has no value.  That means, there is no option value 327 

for site C and there are no conditions where site C should be pursued for investment.  Put 328 

another way, if site C were the only site available for investment, neither investing to 329 

achieve higher TRLs nor CapEx investments should be made.  330 

However, sites A and B do have significant option value.  They also offer insights 331 

into how these optimal decisions were obtained.  In both cases, it was always optimal to 332 

invest in reaching TRL 7.  However, if wholesale electricity prices and their correspond- 333 

ing expectations on future cash flows are low, then it is never optimal to pursue TRL 8.  334 

After the TRL 8 investment decision, optimal decisions change for site A and site B.  335 

For site A, it is always optimal to invest in TRL 9, then build and operate the WEC 336 

system at site A for the next 35 years.  There is a 46% chance of making the investment to 337 

reach TRL 8, as shown in the “Up” branch after the decision to invest in TRL 7 is made. 338 

Ultimately, the WEC system has positive NPVs in three out of the four uncertain project 339 

values.  As shown in the upper right portion of Fig. 9, there is a 10% chance of an NPV of 340 

193.9 M Euros, and a 22% chance of an NPV of 27.9 M Euros.  And, there is a 13% chance 341 

of a -46.7 M Euro NPV.  While this last outcome is not preferred, it is statistically better 342 

than simply avoiding the CapEx and OpEx, and not deploying a WEC system to produce 343 

electricity for the wholesale markets.  344 

However, at site B, conditions are less favorable.  If the value of the underlying goes 345 

down in the 2nd year after going up in the first year, then the project is no longer worth 346 

pursuing, so investments in TRL 9, CapEx and OpEx will not be made. However, if con- 347 

ditions are favorable at site B after both the 1st and 2nd year, then the investments in TRL 348 

9, CapEx and OpEx should be made, thereby producing a series of cash flows for the next 349 

35 years.  350 

 351 

Figure 9. Policy Tree for site A with an expected NPV of 12.6 M Euros. 352 
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 353 

Figure 10. Policy tree for site B with an expected NPV of 1.17 M Euros. 354 

5. Conclusions 355 

This analysis demonstrates that an investment in increasing the TRL of a WEC sys- 356 

tem, fielding and operating it is similar to a financial out-of-the-money compound call 357 

option whose value depends on future electricity prices.  Based on a site survey of wave 358 

energy expectations, we show that all three sites produce negative NPVs without option- 359 

ality, indicating they are not worthy of investment.  Our sensitivity analysis largely sup- 360 

ports this conclusion.   However, when the investment problem is considered as a com- 361 

pound option, we see that two of the three sites can produce a positive expected NPV 362 

when future wholesale electricity prices are higher than expected.  This simple but 363 

demonstrative analysis shows how often such payoffs may occur as a proxy for investor 364 

risk.  This work also shows that investors should consider probabilistic estimates of value 365 

from an optimal decision framework enabled by real options analysis when considering 366 

investments that are not yet at TRL 9.  Future work in this area could long-term secular 367 

trends of wave energy, as recently examined by Chen (2024) and Liu et al (2024), as these 368 

types of energy systems will likely operate for many decades. Similarly, as the TRL in- 369 

creases, wave power estimation error can be decreased by using a power matrix suggested 370 

by Babarit et al (2012) and Guillou et al (2020).  Lastly, one can determine Levelized 371 

Avoided Cost of Energy (LACE) and Levelized Cost of Energy (LCOE) by applying a 372 

framework proposed by Beiter et al (2017) to align with metrics utilized by government 373 

agencies interested in public-private partnerships with private capital investors. 374 
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