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Abstract—Internet of Things (IoT) devices such as smart-
phones have become important to people’s everyday usage,
especially the number of smartphone shipment has surpassed six
billion and is forecast to further grow. The smartphone security is
the top priority as people may store various sensitive information
on these devices. Currently, phone unlock patterns, e.g., Android
unlock patterns, are one of the main protection methods to
protect smartphones from unauthorized access. However, many
research studies have revealed that cyber-attackers can easily
compromise this type of unlock mechanism, i.e., learning the
pattern from the touch residue. In this work, we advocate that an
additional security layer should be added to enhance the security
of Android unlock patterns, and thus develop a touch movement-
based unlock mechanism via blockchain-enabled artificial neural
networks (ANNs), named BANN-TMGuard, which can examine
the biometric features of a user’s touch movement as well as
the input pattern. Further, BANN-TMGuard adopts blockchain
technology to secure the robustness and reliability when building
the ANN models. In the evaluation, we perform a user study
with 100 participants in the aspects of authentication accuracy,
time consumption and user feedback. As compared with similar
schemes, our BANN-TMGuard demonstrates better results and is
preferred by most participants in the user study.

Index Terms—Smartphone Security, Blockchain technology,
Smartphone lock, User authentication, Touch movement.

I. INTRODUCTION

CONSUMER Consumer electronic devices and Internet-
of Things (IoT) devices have become essential to an

individual’s daily lives, including computer, cell phone, game
consoles, and television. The global consumer electronics
market size was 729.11 billion USD in 2019 and was predicted
to reach 989.37 billion USD in 2027, according to Fortune
Business Insights [1]. Among these, smartphone is one of
the most widely used IoT devices. According to a report
from the International Data Corporation (IDC) [2], smartphone
shipment was obviously affected by COVID situation, but still
reached 301.9 million units in the third quarter of 2022. In
2026, the shipment was expected to go up to 1.53 billion units.

Due to the increasing capability and the wide adoption of
smartphones, in addition to financial applications (e.g., bank
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App [27]), more individuals are likely to store personal or
even sensitive information on their smart devices (e.g., pictures
of credit card and personal ID card [23], [25]), which may
become a major target for cyber attackers. If the phone is lost,
an unauthorized person can access the stored information and
use the phone maliciously. In this case, it is very important to
enforce proper user authentication.

Currently, password-based user authentication, such as PIN
(Personal Identity Number) code, is the most widely adopted
method on smartphones, where users have to type the correct
textual information to unlock the phone. However, such kind
of authentication has been pointed out several security and
usability limitations [9]. It is known that users have difficulty
remembering a long and complex string for a long time,
due to the long-term memory (LTM) limitations [33]. For
this sake, many users may choose a simple and easy-to-
remember textual passwords instead, i.e., the most used string
is “123456” [3]. Also, textual passwords could be easily
obtained by attackers via various exploits and attacks, such as
phone charging attacks [31] and recording attacks [20]. The
former can record the phone screen during the phone charging
period (side channel), while the latter can record the phone
screen by installing a malicious application (malware).

To complement the drawbacks of password-based authen-
tication, graphical password-based user authentication has
been proposed, in which users can interact with images for
authentication. This is because human brain was believed to
be better at remembering graphical information than textual
information [34]. Android unlock patterns are one commonly
deployed authentication means on smartphones, which require
users to input a pattern within a 3× 3 touch-enabled grid. To
create an unlock pattern, users can swipe the finger to select
at least 4 dots and at most 9 dots.

Motivations. Face recognition is another popular unlocking
method on phones, but due to the privacy concerns, some users
may not prefer such kind of method. For example, the stored
facial features can be accessed by attackers [12]. As long as
the face information has been leaked, it is hard to change a new
one. Hence many users may choose Android unlock patterns
to unlock their phones.

Though Android unlock patterns can greatly enhance the
memorability and usability during user authentication, it is sus-
ceptible to many security threats. As an example, brute-force
attack is still feasible, as users can only select a maximum of
9 dots in the touch-enabled grid, resulting in a pattern space
of 389,112 [11]. In addition, smudge attack can recover touch
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trails by adjusting lightning and photographic setup, which can
greatly decrease the possible patterns of a user’s credential [8].
Hence, it is very demanding to enhance the security of Android
unlock patterns in practical usage.

Contributions. In order to achieve the security improve-
ment of unlock patterns, implementing an additional security
layer is important and essential. For example, De Luca et
al. [13] proposed to involve biometric features when inputting
a pattern. In this work, we advocate that verifying behaviorial
features can enhance the security of Android unlock patterns,
and thus develop a touch movement-based scheme via artificial
neural networks and blockchain technology. Our contributions
can be summarized as follows.

• We design BANN-TMGuard, a touch movement-based
unlock pattern scheme using blockchain-enabled artificial
neural networks (ANNs), which considers various touch-
related features during the authentication, such as touch
speed, angle, touch pressure, touch size and touch accel-
eration.

• Sharing the training data is crucial for building an accu-
rate and robust ANN model, but it may pose a hole for
attackers to inject malicious samples. For this reason, we
adopt blockchain technology for the data sharing process,
and reach a more robust ANN model under adversarial
scenarios.

• In the evaluation, we perform an approved user study with
a total of 100 participants, and examine the robustness
of ANN model under adversarial scenarios. The study
results demonstrate that our proposed BANN-TMGuard
can provide better performance and usability, and ensure
the robustness of ANN model against malicious input.

It is worth noting that this work extends the main idea
from our previous study - TMGuard [29], but there are many
differences. First, TMGuard uses a statistical method with
dot-dot pattern computation and proportional matching, while
BANN-TMGuard adopts ANNs, a machine learning-based ap-
proach for authentication. Second, BANN-TMGuard considers
more touch-related features than TMGuard, such as touch
acceleration. Third, we compare the performance of BANN-
TMGuard with two similar schemes in our user study. Further,
our BANN-TMGuard adopts blockchain technology, which
can provide a more robust and reliable ANN model against
malicious input, and ensure the integrity of data sharing.

Roadmap. The rest of this article is structured as follows.
Section II presents the background on Android unlock patterns
and introduces related work on biometrics-enhanced unlock
patterns. Section III introduces our proposed BANN-TMGuard
with different components. Section IV presents our user study
and analyzes results by considering similar schemes in the
comparison. Section V discusses open challenges and future
directions. Finally, we conclude this work in Section VI.

II. BACKGROUND AND RELATED WORK

This section briefly introduces the background on Android
unlock patterns and analyzes the related work on biometrics-
based unlock mechanisms.

A. Background on Android Unlock Patterns

Followed the main idea of Pass-Go [35], Android unlock
patterns have been designed, which can allow phone users to
unlock their smartphones by swiping their finger to create an
unlock pattern on the touchscreen. More specifically, a pattern
can be generated by means of 4 dots at least and 9 dots at
most, within a 3× 3 grid on the touchscreen. Figure 1 shows
two examples of Android unlock patterns created by Berkeley
Churchill - a pattern generator [4]: Figure 1(a) shows a 4-dot
pattern and Figure 1(b) presents a 9-dot pattern.

(a) (b)

Fig. 1. Pattern Examples generated by Berkeley Churchill: (a) a 4-dot pattern,
and (b) a 9-dot pattern. It is a JavaScript gesture generator for the unlock
pattern on Android phones. Users can choose whether to avoid the “Hard-to-
enter” patterns or not.

The input unlock pattern will be converted to byte array and
then get encrypted via a hash function. The password file is
stored as gesture.key on the phone. A similar Android unlock
mechanism can be used in a jailbroken iPhone as well, such
as LockDroid [5] - an Android-inspired pattern lock for iOS.

There are some concrete rules for creating a valid Android
unlock pattern. (i) A valid pattern cannot select a dot more than
once, as the selected dot is considered to be virtually removed.
(ii) At least 4 dots must be selected for a valid pattern and
only straight touch-lines can be used. (iii) It is not possible
to not select the middle dot, when creating a touch-line with
three dots, unless the latter has been previously visited.

By enumerating all possible patterns based on the above
rules, Aviv et al. [8] figured out that there should be 389,112
(219) possible patterns. Ideally, the pattern space is sufficient if
users can create the patterns uniformly, but the actual pattern
space is much less in practical usage, i.e., the security is even
worse than a 3-digit PIN [37].

Adversarial scenarios. The Android unlock pattern needs
a user to start a pattern by touching one dot, which may be
vulnerable to ‘hot-dot’. Andriotis et al. [7] learned from a
study that users may have bias on selecting the start point
and end point, i.e., more than 52% users may start a pattern
from the top-left dot, which would greatly reduce the search
space of possible patterns. Also, smudge attacks [8] could be
used to recover the unlock patterns as users will leave the
oily residues on the touchscreen when drawing the patterns
with finger. In this case, attackers can even just take a photo
for the touchscreen and figure out the pattern by adjusting
brightness. Botelho [11] studied how to brute-force a 4-dot
unlock pattern, and found that less than 4 minutes are required
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TABLE I
FEATURE COMPARISON AMONG EXISTING BIOMETRIC-BASED UNLOCKING SOLUTIONS.

Scheme Biometric Type Continuous Verification Credential Replaceable Data Integrity Insurance
Pass-O [36] Patterns No Yes No
Double Patterns [14] Patterns No Yes No
De Luca et al. [13] Patterns / Touch Yes Yes No
Zhao et al. [41] Patterns / Touch Yes Yes No
OpenSesame [15] Patterns / Touch Yes Yes No
Zheng et al. [42] Passcode / Tap No Yes No
Izuta et al. [18] Taking Behavior No Yes No
WearLock [40] Acoustic Yes Yes No
Wang et al. [38] Heartbeat Yes Yes No
SwipeVlock [21], [22] Image / Touch No Yes No
Double-X [25] Patterns / Touch Yes Yes No
Gleerup et al. [16] Zoom action Yes Yes No
Our Method Patterns / Touch Yes Yes Yes

to compromise a 4-dot pattern. Meng et al. [30], [31] presented
an effective and efficient phone charging attack, which can
steal users’ input and screen information. Hence, attackers can
easily unlock the phone with the hacked credentials.

B. Biometric-based Unlock Mechanism

To enhance the security of Android unlock mechanism, one
direct method is to increase the pattern complexity or input
steps. For example, Tupsamudre et al. [36] changed the dot-
layout to circular layout and proposed an unlock scheme called
Pass-O, with a theoretical search space of 9,85,824 possible
patterns. Forman and Aviv [14] then introduced Double Pat-
terns, where users have to create and input two unlock patterns
for authentication. These methods can basically increase the
search space of possible patterns; however, they may also
increase the burden on the user side, i.e., users have to
remember new rules or create more patterns.

Another important solution is to integrate behavioral bio-
metrics, with the features extracted from human actions [10].
The main idea is to authenticate users in terms of which pattern
has been input and how the pattern was input. De Luca et
al. [13] argued the need of an additional security layer for
Android unlock patterns, and introduced an implicit approach
by combining unlock mechanism with biometric features, such
as touch pressure and size. They also proved the feasibility
using a dynamic time warping (DTW) method. Zhao et al. [41]
analyzed the Graphic Touch Gesture Feature (GTGF) for touch
behavioral authentication and tried several touch actions such
as flick up/down, flick right/left, and zoom in/out.

Guo et al. [15] designed OpenSesame, a smartphone unlock
mechanism that verifies users based on their shaking actions,
based on users’ habits and the shaking action. With a support
vector machine (SVM) classifier, OpenSesame could reach a
false negative rate of 11% and a false positive rate of 15%
under 200 participants. Zheng et al. [42] explored an approach
of user verification by checking users’ tapping actions when
inputting a Passcode. In the evaluation, their approach could
reach an averaged equal error rate of around 3.65%. Izuta
et al. [18] presented a phone unlock solution, by examining
how the user takes the phone out of the pocket, especially
the touch pressure distribution. Their scheme achieved a false

acceptance rate of 43% with only 18 training instances. Meng
et al. [29] introduced TMGuard, a touch movement-based
unlock scheme to enhance the security of Android unlock
patterns, by verifying how a user can input the unlock pattern.
Their scheme developed two matching methods called dot-dot
pattern computation and proportional matching. In the study,
the top user could achieve an accuracy rate of 96%.

A phone unlock scheme of WearLock was proposed by Yi et
al. [40], which could unlock the device based on acoustic tones
via smartwatch. They made an assumption that the wireless
link would be secure in-between, which can be utilized as a
control channel. In the evaluation, their scheme could reach
a low average bit error rate of 8%. Wang et al. [38] then
introduced an unlock scheme based on heartbeat signals on
smartphones with more resources. Users can unlock the device
by pressing the phone on the chest, then the device would
collect a few heartbeat signals and complete the authentication.
In the study, they included 35 users and the results provided
an Equal Error Rate (EER) of 3.51% with only 5 heartbeat
signals. Then Li et al. [21], [22] developed a phone unlock
solution called SwipeVlock. Users can unlock the device by
selecting a position on the selected image and performing a
swiping. Their scheme could reach an authentication accuracy
rate of 98% in the best scenario.

Li et al. [24] introduced a type of unlock scheme based on
simple shapes, such as rectangle, square, circle, triangle and
diamond. Users can draw two or three of them, and the scheme
would check their behavioral features during authentication.
In the evaluation, they identified that two-shape scheme was
preferred by most participants. Then Double-X [25], a double-
cross-based phone unlock solution was developed, which
aimed to verify how users input two cross shapes over two
dots on Android unlock patterns. With a study of 85 users, they
found that the scheme could reach an accuracy rate of 95%.
Alawami et al. [6] presented a hybrid unlock scheme by means
of Wi-Fi signals and the light intensity of phone’s fingerprints.
That is, it utilizes the location information to judge whether
the device can be unlocked. Gleerup et al. [16] introduced a
phone unlock scheme by examining users’ zoom actions such
as zoom-in or zoom-out. It is a two-step scheme that requires
a user to select two dots and perform two zoom actions. Some
more relevant studies can refer to [17], [19], [26], [39].
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Discussion. User authentication via behavioral biometrics
is a transparent and important security solution for phone
users against unauthorized access [28]. Currently, Android
unlock patterns are one of the most popular unlock schemes
on Android phones, but may suffer many security issues, such
as a) Smudge Attacks [8] where attackers can extract touch
trails from fingerprint smudges, b) brute-force attacks as the
potential pattern space is till small, and c) side channel attacks
like phone recording attacks [30], [31].

Table I summarizes a feature comparison among existing
biometric-based phone unlocking methods in the literature. It
is found that most current research studies did not consider an
adversary environment, so the data integrity cannot be secured.
In this work, motivated by this line of research, we focus on
enhancing Android unlock patterns with behavioral features. In
particular, we developed BANN-TMGuard, a touch movement-
based unlock scheme using ANNs. Our work aims to stimulate
more research towards investigating the design of more secure
and robust unlock schemes on IoT devices.

III. OUR PROPOSED APPROACH

This section introduces the architecture of BANN-TMGuard
(including data recording, pattern extraction, feature extrac-
tion, pattern comparison, ANN-based classification, and deci-
sion component), touch features (related to touch movement,
touch pressure, touch size, touch duration and acceleration)
and our ANN-based approach with the implementation details.

User Interaction
Touch Movement

Behavioral Recording

Feature Extraction

Pattern Recording

ANN-based 
ModelPattern Comparison

Decision

Pattern Extraction

Data 
Recording

Blockchain
Layer

Data 
Sharing

Fig. 2. The high-level architecture of BANN-TMGuard.

A. BANN-TMGuard

Based on the observations in the previous work [29], users
would perform a touch movement differently when drawing
an unlock pattern, while the touch action would become more
stable after several trials. Hence, it is a promising scenario
of combining Android unlock patterns with touch behavioral
authentication. In this work, we develop BANN-TMGuard, a
touch movement-based unlock mechanism via ANN.

Figure 2 illustrates the high-level architecture of our BANN-
TMGuard, including data recording, pattern extraction, feature

extraction, pattern comparison, ANN-based classification, and
decision component.

• Data Recording. This component consists of pattern
recording and behavioral recording, which is responsible
for recording the input unlock pattern and the raw data
from touch movement actions, such as touch coordinates,
system time, pressure, size, etc.

• Pattern Extraction. This component aims to extract the
input unlock pattern. This is a conventional process of
Android unlock mechanism.

• Feature Extraction. This component aims to calculate the
touch behaviorial features, such as the speed and angle
of touch movement based on the collected raw data.

• Pattern Comparison. This component can compare the
currently input unlock pattern (after hashing) with the
hashed pattern stored in the database, and then report
whether there is a match to the decision component.

• ANN-based Model. This component aims to examine the
features of a user’s touch movement action. It should first
build a normal profile of users via artificial neural net-
works and then use the ANN model to authenticate users.
The result will be reported to the decision component.

• Blockchain Layer. This layer is responsible for examining
the integrity of shared data, e.g., training data or items,
which can be used to initialize the accuracy of ANN
models. This is especially useful when the training data
is lacking and when optimizing the hyperparameters of
an ANN model.

• Decision Component. The main task of this component
is to gather the decision from both pattern comparison
and ANN-based classification, and then make the final
decision regarding the legitimacy of current user. A suc-
cessful login requires both correct pattern and acceptable
touch behavior.

B. Touch Feature

The previous study of TMGuard [29] employed a statistical
method so that only the touch speed and angle were consid-
ered. By given a threshold, TMGuard can judge whether the
current touch behavior is normal.

In this work, we adopt a neural network classifier to help
model a user’s touch movement action. Thus, we can use more
touch features. First, we adopt the same features to describe
a touch movement: the speed of touch movement (STM) and
the angle of touch movement (ATM). Figure 3 defines the
directions of a touch movement on a 2D grid. Suppose two
dots D1 and D2 with coordinates (x1, y1) and (x2, y2) are
selected in an unlock pattern, and the corresponding system
time is S1 and S2, respectively. We can compute STM and
ATM as below.

STM =

√
(x2− x1)2 + (y2− y1)2

S2− S1
(1)

ATM (d) = arctan
y2− y1

x2− x1
, d ∈ [0, 360

◦
] (2)

where d is the current touch angle. In this work, we can
model the touch movement between any connecting dots in
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Fig. 3. Directions of a touch movement.

a pattern. It is similar to the dot-dot pattern computation in
TMGuard. The main purpose is to build up a more accurate
behavioral model. Hence, we can have:

Profile = {
j⋃
(STM, ATM)i} (4 ≤ j ≤ 9; i = 1, ..., j−1)

(3)
where j is the number of selected dots in a pattern, and i

is the number of pairs of touch speed and angle. Below are
more touch features including touch pressure, size, duration,
and acceleration.

Touch pressure. This is the amount of pressure being sensed
from a touch event. Many research studies have indicated that
existing phones with built-in sensors can record the values of
touch pressure, which can help distinguish touch actions, i.e.,
some users may press more heavily on the screen than others.

Touch size. This feature measures the average size of a
human finger pad on the touchscreen, which can be used to
distinguish touch actions. For example, some users may have
a bigger touch size than others.

Touch duration. This feature measures the time difference
between a touch press-down event and a subsequent touch
press-up event. It is a kind of typical touch feature, which can
be used to distinguish users. For instance, some users may
touch the screen in smaller time than others.

Touch acceleration. Our scheme considers three vectors of
touch acceleration: (a) the magnitude of acceleration when the
touch is pressed down; (b) the magnitude of acceleration when
the touch is released; and (c) the average value of magnitude
of acceleration during touch-press to touch-release.

C. ANN-based Approach

Artificial neural networks (ANNs), inspired by the biologi-
cal connected units, are an important tool in various domains
including user authentication. In this work, we thus devise an
ANN-based approach in our BANN-TMGuard, which involves
a hyperparameter tuning process and several variations of
ANNs, such as deep neural network, recurrent neural network,
and convolutional neural network.

1) Deep Neural Network (DNN): DNN can be treated as a
stacked neural network, which is composed of several layers.
Generally, it can be much more computationally demanding
than a simple neural network. This is not given only by higher
number of neurons but also the fact that these neurons may
influence the computation by triggering different actions.

Mathematically such neural network can be defined as

O : Rm ×Rn

with m means the size of the input vector x = x1, x2, ..., xm

and n is the size of the output vector y = y1, y2, ..., yn. We
can define the computation of all the hidden layers hi as:

hi(x) = f(wT
i x+ bi)

where :
hi : R

di−1 → Rdi

f : R→ R

wi ∈ Rd×di−1

b ∈ Rdi ,

where di denotes the size of the input, f is the nonlinear
activation function that is either sigmoid or softmax. A multi-
layer neural network can be defined as follows:

H(x) = Hi(Hi−1(Hi−2(...(H1(x))))) (4)

2) Convolutional Neural Network (CNN): CNN is another
type of ANNs by extending the traditional feed-forward neural
networks. They are typically used as a model to process data
with a grid pattern such as an image.

A conventional CNN requires a three-dimensional input (x
rows, y columns, z depths). For example an image that has
x width , y height and z channels. In this work, we mainly
study the one-dimensional input data as a three-dimensional
picture, which has one channel with the height value of one.
The architecture of a CNN is comprised of several building
blocks, such as the convolution layer, pooling layers and fully
connected layers.

The convolution output is transferred through a nonlinear
activation function. The most common one being used in the
current scientific research is the rectified linear unit or ReLU.
Next, a pooling layer is used for the down-sampling operation.
The advantage of using this operation is that it reduces the
dimensionality of the feature map without losing important
information. In practice, max-pooling has shown to be the
most commonly used technique.

The final layer is the fully connected layer, which is in
charge of classification. The other layers’ output is flattened
into a one-dimensional array of numbers connected to one or
multiple fully connected layers, also called dense layers. Each
fully connected layer has a nonlinear function such as ReLU,
and the output layer has a Softmax activation function used
for multiclass classification.



IEEE INTERNET OF THINGS JOURNAL, VOL. ?, NO. ?, JANUARY ?? 6

[44, 1]
ReLU

2X2 MaxPooling1D

Fig. 4. DNN with three hidden layers.

3) Recurrent Neural Network (RNN): RNN is a type of
neural network that looks at the current input and considers
the past state information to determine its output. Considering
x of elements x1, x2, ..., xt as an input that maps them to
hidden and output elements h of elements h1, h2, ..., ht. For
each time step, an input x0 goes into the network and produces
an output h0. In the next step, the input x1 is taken into block
A and additional input from the previous block. Hence the
neural network considers the context of the previous input to
determine the next results.

Taking a closer look at an RNN unit, we find that Equations
(5) and (6) can govern its computation at any time t, with the
activation function g(), X input, H output, b the bias, and W
the weight matrix.

At = g · (Wax ·Xt +Waa ·At−1 + ba) (5)

Ht = g · (Wya ·At + by) (6)

D. ANN Implementation

Keras library1 is used to represent the actual neural network
model through the use of Sequential API. The fundamental
concept of Sequential API is to arrange the Keras layers one
after another. Thus, the data flows from one layer to the next
before it hits the output layer.

DNN. The implementation of DNN with three hidden layers
is presented in Figure 4. The Dense class is used to describe
fully connected layers. The layer’s number of neurons can be
specified as the first argument, the activation function can be
specified as the second argument, and the last argument refers
to the number of input features. Regularization is also applied
between each layer through the use of Dropout, which aims
to avoid overfitting and accelerates the training of the DNN
model by removing neurons and their connections randomly.
The last layer represents the output layer and uses softmax
activation function for multi-class classification.

CNN. As shown in Figure 5, this work explores one
Convolutional Layer, which anticipates a three-dimensional
input. The first dimension is regarded as the number of samples
in the input; in this example, there is just one sample. The
second dimension is the length of each sample representing
the number of features, which is 44 in this case. The third
dimension represents the number of channels present in each
sample; there is only one channel in this case. Therefore the
model will expect an input sample to have the shape [44, 1]
together with a filter or kernel size of 3 and an additional

1https://keras.io/

[44, 1]
ReLU

2X2 MaxPooling1D

Fig. 5. CNN with three hidden layers.

SimpleRNN

SimpleRNN
SimpleRNN

ReLU
Dropout SimpleRNN

LeakyReLU ReLU

softmax

Fig. 6. RNN with two hidden layers.

ReLU activation function. Spatial pooling, also known as
subsampling or downsampling, decreases the dimension of
each function map while retaining the most critical detail. In
our case, a 2X2 window of MaxPooling1D was used.

RNN. Figure 6 presents the architecture of an RNN with
two SimpleRNN layers. Based on the Keras library, some
of the parameters used in the SimpleRNN are the number
of units representing the dimensionality of the output space,
the activation function together with the input shape, and the
return sequence. In our case, the activation function is ReLU
with 32 units, and the return sequence is set to true. Dropout
is used after each SimpleRNN layer for regularization pur-
poses, followed by flattening the output and adding additional
dense layers with LeakyReLU as the activation function–a
version of ReLU–that allows a smaller gradient when the unit
is not active.

Hyperparameter tuning process. It can be observed that the
tuner search loop runs each time with a different hyperparam-
eter choice. The training is done with some set-parameters
on each iteration, after which some evaluation metrics are
computed. Finally, after all, possible combinations have been
computed, the models with the best results can be chosen.
This process is detailed in Figure 7, and it is qualified as a
grid search. In the beginning, data items can be obtained from
other peers or cloud services provided by the vendor in order
to optimize the hyperparameters.
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Fig. 7. Grid search tuning method.

IV. EVALUATION

In this section, we describe a user study aiming to explore
the scheme performance and analyze the obtained study results
with users’ feedback. Also, we examine the robustness of our
blockchain-based ANN models under malicious input.

A. User Study

To examine the performance of BANN-TMGuard, we con-
ducted an IRB-approved user study involving 100 regular
smartphone users, including 70% Android phone users and
30% iPhone & Android phone users (those who are using
both smartphones). Table II presents the background of all
participants. More specifically, we have 55 males and 45
females who aged from 21 to 60, including bachelor, master
and doctoral students, restaurant staff, university technical
staff, and university academic members. Each participant can
get a $50 gift voucher after the user study.

TABLE II
PARTICIPANTS’ INFORMATION IN THE USER STUDY.

Information Male Female Occupation Male Female
Age 21-30 38 29 Students 45 36
Age 30-40 13 11 Faculty&Staff 7 6
Age 40-50 4 5 Restaurant Staff 3 3

Data Collection. Similar to TMGuard [29], we employed
the same data collection method to facilitate the comparison:
namely a modified Google/HTC Nexus One Android phone
with a capacitive touchscreen (480× 800 px). The phone was
reflashed with a modified Android Operating System (OS)
based on CyanogenMod2. The changes are mainly made on
the application framework layer to collect and record raw data
from the screen, such as touch type (e.g., touch press down),
touch coordinates of x and y, and event time. It is worth noting
that our scheme is scalable to other phone types as long as
the device can collect the data to calculate the touch features.

2http://www.cyanogenmod.com/.

Figure 8(a) shows the screen logo of our modified Android
OS, Figure 8(b) presents the layout of Android unlock patterns,
and Figure 8(c) provides an example of raw data.

B. Study Procedure

To better evaluate the performance, we compared BANN-
TMGuard with two relevant schemes: DeLucaUnLock [13] and
TMGuard [29]. As aforementioned, DeLucaUnLock scheme
authenticates a user’s touch-related features, e.g., touch pres-
sure and size, when drawing an Android unlock pattern, based
on dynamic time warping (DTW). TMGuard authenticates a
user’s touch movement when drawing the unlock pattern via
a statistical method, called proportional matching.

Before the study, we randomly divided the participants into
two groups (50 participants per group): Group-1 focuses on
DeLucaUnLock and BANN-TMGuard, while Group-2 focuses
on TMGuard and BANN-TMGuard. For each group, the start-
ing scheme was random, in order to avoid a pre-impression
to the participants. In this case, a participant could start from
either BANN-TMGuard, DeLucaUnLock, and TMGuard.

To explain our research goals and what kind of data would
be gathered and recorded, we provided each participant with
a set of guidelines and a consent form to sign. Also, each
participant could have 10 trials to get familiar with each
scheme and ask any questions. All participants then conducted
the study in our lab environment. The detailed study procedure
and steps are summarized as below, including creation phase,
confirmation phase and retention phase.

• Step (1) Creation phase: all participants have to generate
their unlock credentials according to the scheme steps
(e.g., TMGuard, BANN-TMGuard, and DeLucaUnLock).

• Step (2) Confirmation phase: all participants have to re-
enter the credentials for verification (e.g., examining the
pattern and touch behavior) for 10 times. Participants can
modify their credentials if they fail or want to change a
pattern.

• Step (3) Distributed memory task: a list of paper-based
finding tasks is given to distract them for 15 minutes.

• Step (4) Login phase: all participants should re-enter their
unlock credentials for 10 times.

• Step (5) First feedback form: a feedback from with several
questions is given to all participants regarding the scheme
usage.

• Step (6) Retention. After three days, all participants are
invited to unlock the phone again for 10 times in our lab.

• Step (7) Second feedback form: another feedback from is
given to participants regarding the scheme usage.

C. Result Analysis

During the user study, a total of 500 trials could be recorded
for each confirmation, login and retention phase. Similar to
other schemes, we used 60% trials in the training stage and
the rest in the testing stage. We used the Chi-square tests to
decide whether the results are statistically different between
two conditions. Table III and Table IV depict the success rate
for confirmation, login and retention phase under two groups.
We have the following observations in each phase.
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Fig. 8. (a) CyanogenMod Android OS; (b) The layout of Android unlock patterns; (c) An example of raw data.

TABLE III
SUCCESS RATE IN THE CONFIRMATION, LOGIN AND RETENTION PHASE

FOR GROUP-1.

Phase DeLucaUnLock BANN-TMGuard
Confirmation 472/500 (94.4%) 481/500 (96.2%)
Login 469/500 (93.8%) 476/500 (95.2%)
Retention 455/500 (91.0%) 465/500 (93.0%)

TABLE IV
SUCCESS RATE IN THE CONFIRMATION, LOGIN AND RETENTION PHASE

FOR GROUP-2.

Phase TMGuard BANN-TMGuard
Confirmation 477/500 (95.4%) 483/500 (96.6%)
Login 474/500 (94.8%) 478/500 (95.6%)
Retention 460/500 (92.0%) 470/500 (94.0%)

• Confirmation phase. The participants in Group-1 could
achieve a higher success rate of 96.2% under BANN-
TMGuard than 94.4% under DeLucaUnLock. For both
schemes, the errors were primarily caused due to the
verification of behavioral input: 1) For DeLucaUnLock
scheme, the touch pressure and touch time are the main
affecting factors; 2) For BANN-TMGuard, touch speed
and acceleration play an important role in authentication
failures. It is worth noting that the pattern errors are few.
For Group-2, participants could achieve a success rate of
95.4% and 96.6% for TMGuard and BANN-TMGuard,
respectively. The errors made under both schemes were
quite similar–caused by touch speed and angle.

• Login phase. For Group-1, participants could reach a
success rate of 93.8% and 95.2% under DeLucaUnLock
and BANN-TMGuard, respectively. Several trials made a
wrong pattern input, but most errors were made because
of an abnormal touch speed. For Group-2, participants
could achieve a success rate of 94.8% and 95.6% for TM-
Guard and BANN-TMGuard. It is observed that BANN-
TMGuard could provide a better authentication accuracy
rate for two groups.

• Retention phase. After three days, we invited all partic-

TABLE V
TIME CONSUMPTION IN THE LOGIN FOR DIFFERENT SCHEMES.

Unlock Scheme DeLucaUnLock TMGuard BANN-TMGuard
Time consumption (s) 4.1 4.3 4.1
Standard Deviation (s) 1.3 1.6 1.4

ipants to join our retention phase, and 92 of them were
successfully returned (45 for Group-1 and 47 for Group-
2). It is found that participants could achieve a success
rate of 91% and 93% under DeLucaUnLock and BANN-
TMGuard for Group-1, and 92% and 94% under TM-
Guard and BANN-TMGuard for Group-2. We found that
the results were very positive as only a small decrease in
success rate was noticed. Furthermore, we found there is a
statistically significant difference, indicating that BANN-
TMGuard could perform better than DeLucaUnLock and
TMGuard.

The authentication results show the usability of all schemes,
while our BANN-TMGuard could reach a better success rate
than the other two schemes. Especially, BANN-TMGuard can
outperform the others with a statistically significant difference
in the retention phase.

Table V describes the time consumption for each scheme.
It is seen that there is no statistically significant difference in
time consumption. More specifically, DeLucaUnLock scheme
requires around 4.1 seconds, TMGuard requires 4.3 seconds
and BANN-TMGuard requires 4.1 seconds. This is because all
these schemes adopts a similar authentication design by com-
bining Android unlock pattern with touch behavioral features.

D. User Feedback

As stated in our study steps, each participant was given two
feedback forms relating to the scheme usage, including both
security and usability. Ten-point Likert scales were used for
each question, where 1-score indicates strong disagreement
and 10-score indicates strong agreement. Table VI describes
the major questions and relevant scores. The main observations
are described as below.
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TABLE VI
FEEDBACK FORM: QUESTIONS AND AVERAGE SCORES FROM THE PARTICIPANTS.

Questions (Group-1) Average Scores
1. I could easily create a pattern under DeLucaUnLock scheme 8.9
2. I could easily create a pattern under BANN-TMGuard 9.1
3. The time consumption for DeLucaUnLock scheme is acceptable 9.3
4. The time consumption for BANN-TMGuard is acceptable 9.3
5. I could easily log in to DeLucaUnLock scheme 8.7
6. I could easily log in to BANN-TMGuard 8.9
7. I could remember DeLucaUnLock credentials easily 8.8
8. I could remember BANN-TMGuard credentials easily 9.1
9. I think DeLucaUnLock scheme is more easily to use than BANN-TMGuard 4.2
10. I think DeLucaUnLock scheme is more secure than BANN-TMGuard 3.6

Questions (Group-2) Average Scores
1. I could easily create a pattern under TMGuard 8.7
2. I could easily create a pattern under BANN-TMGuard 8.8
3. The time consumption for TMGuard scheme is acceptable 9.0
4. The time consumption for BANN-TMGuard is acceptable 9.1
5. I could easily log in to TMGuard 8.7
6. I could easily log in to BANN-TMGuard 8.8
7. I could remember TMGuard credentials easily 9.2
8. I could remember BANN-TMGuard credentials easily 9.3
9. I think TMGuard scheme is more easily to use than BANN-TMGuard 4.6
10. I think TMGuard is more secure than BANN-TMGuard 4.1

• Group-1. For the first two questions regarding the pattern
generation, both schemes received a good score: 8.9 vs.
9.1. Regarding the time consumption, most participants
gave a high score, i.e., both schemes received 9.3. Also,
most participants supported that both schemes were easily
to log in, and it is easy to remember the scheme creden-
tials. For the last two questions, we explore the user’s
attitude towards the usability and security. It is found
that a bit more participants considered BANN-TMGuard
could be more usable and secure than DeLucaUnLock
and TMGuard, i.e., the scores were less than 5.0. How-
ever, the result is not statistically significant, as the design
of these schemes is quite similar.

• Group-2. Similarly, for the pattern creation, both BANN-
TMGuard and TMGuard received a similar score of 8.8
and 8.7. Most participants were satisfied with the time
consumption, i.e., the score is 9.0 and 9.1 for TMGuard
and BANN-TMGuard, respectively. They also found that
the authentication was satisfied in the login phase (i.e.,
TMGuard 8.7 vs. BANN-TMGuard 8.8). The participants
also considered the memorability of these credentials is
not difficult. In the end, most participants felt these two
schemes are very similar, but BANN-TMGuard was better
in the retention phase.

Based on the received feedback, we found that most partic-
ipants in Group-1 believed that DeLucaUnLock and BANN-
TMGuard can have satisfied performance in the aspects of
pattern generation, time consumption, and login. While more
than half participants might vote for BANN-TMGuard to be
more secure and usable. The main reason is that BANN-
TMGuard adopts more touch features than DeLucaUnLock,
while using ANN for modeling a user’s touch behavior, as the
statistical threshold in TMGuard can more easily cause errors.
Also, BANN-TMGuard leverages blockchain technology that
can protect data integrity.

E. Study on Blockchain-enabled ANNs

To examine the robustness and reliability of our blockchain-
enabled ANN models, we set up a network environment with
five nodes based on the DevLeChain [32], which is an open-
source blockchain development platform. More specifically,
the environment was built by Intel Xeon E-2286M @2.4GHz
x8, 128 GB ECC DDR4-2666, 1TB NVMe SSD and Ethereum
1.10.16. There is a need for 2/3 nodes in the network to sign
a block to be appended to the blockchain.

TABLE VII
ERROR RATE OF TRAINED ANN MODEL WITH AND WITHOUT

BLOCKCHAIN.

Error Rate (%) Without blockchain With blockchain
One malicious node 17.6 0
Two malicious nodes 24.8 0

In the study, we simulated adversarial scenarios with one
and two malicious nodes, which would attempt to share false
information. Then we measured the error rate of the trained
ANN models in classification, as described in Table VII. It
is found that without blockchain, the error rate could become
17.6% and 24.8% under one and two malicious nodes. While
our blockchain-enabled method could address this issue by
detecting and discarding malicious input. The results indicate
that our BANN-TMGuard could ensure a more reliable ANN
model under adversarial situations.

V. DISCUSSION

The study results indicate the promising performance of
our BANN-TMGuard, but there are still some challenges and
limitations on this topic.

• Pattern selection. In our current study, we did not consid-
er which pattern the user created, e.g., using 4 dots or 9
dots. Basically, regarding different patterns, the unlocking
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difficulty and deviations may be not the same. This is
an interesting but open issue in the field. Also, it is an
important topic to explore any dot-selection bias during
the pattern creation.

• The diversity of participants. Our study involves a total of
100 participants, including bachelor, master and doctoral
students, restaurant staff, university technical staff, and
university academic members. We believe the background
of participants is diverse; however, the majority is still a
student role. We plan to recruit more diverse participants
in our future work.

• Classifier performance. In this work, we compared the
performance among several machine learning classifiers.
In the literature, there are different types of algorithms
including some updated classifiers. In the future, we plan
to consider more machine learning classifiers, e.g., hybrid
learning, in the comparison.

• Shoulder surfing attacks. In the user study, though most
participants may consider BANN-TMGuard is more se-
cure, we did not perform a particular attack to test the
scheme, e.g., shoulder surfing attack that is a common
threat in public and crowded places. This is an open issue
in the domain, and we plan to investigate the impact in
our future work.

• Blockchain involvement. In our study, it showed that the
integration of blockchain can benefit the ANN models
against malicious input. In practice, blockchain has been
widely used to protect the integrity of shared data. How-
ever, blockchain itself may suffer some main constrains
such as speed and latency, this is an important topic when
involving blockchain in user authentication.

• Face unlocking method. As mentioned earlier, both An-
droid unlock patterns and face recognition are popular
unlocking method on smartphones. Compared with the
use of faces, our BANN-TMGuard allows users to easily
change their unlock patterns (credentials) with additional
protection through checking touch behaviors. It also uses
blockchain to secure data integrity during communication
especially in an untrusted environment. In the literature,
some privacy-preserving face recognition schemes have
been proposed, hence it is promising to combine these
two methods to achieve kind of multimodel user authen-
tication for better security.

VI. CONCLUSION

User authentication is an important protection mechanism
on IoT devices like smartphones. In this work, we developed
BANN-TMGuard, a touch movement-based unlock mecha-
nism based on blockchain-enabled artificial neural networks
(ANNs). The goal is to enhance the existing solution, e.g.,
TMGuard, by considering more touch features such as touch
pressure and touch acceleration. The use of ANNs aimed to
build up a user’s profile in an intelligent way, as TMGuard
used a statistical method via proportional matching, which
might cause errors easily. In the user study, we involved up to
100 participants and made two groups to compare the perfor-
mance with TMGuard and DeLucaUnLock scheme separately.

In terms of authentication accuracy, time consumption and
users’ feedback, it is observed that our BANN-TMGuard could
provide a better success rate than the other schemes, especially
in the retention phase with statistically significant result, and
receive higher scores from users. Further, our test showed that
BANN-TMGuard could provide a more reliable ANN model
against malicious input.
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