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Abstract

In the past decade, deep neural networks have presented promising results in various

fields. To advance their success and to mitigate the limitation of opaqueness, this

dissertation explores the explainability of feedforward neural networks from the

activation function perspective.

The theoretical outcome of this work is a framework for analyzing the neural

network that was developed on the basis of existing literatures. This framework

generalizes the definition of activation pattern by indexing neurons with an index

family and releasing the constraint on activation functions. Based on this framework,

this research identifies a novel dying neuron issue that prevents networks from

reaching their optimum by studying the learning dynamic of neural networks. To

further understand the dying neuron issue, two metrics are proposed to explore

expressive ability of models. The pattern similarity records the overall severity

of dying neuron issues of neural network for comparison across models, while the

neuron entropy measures the volatility of single neurons for understanding the unit-

wise model behaviour in a model. Apart from the expressive ability, this work

also investigates the robustness of models by decomposing the computational graph

of neural network using the proposed framework. In particular, it shows that the

unsecured data can be categorized into Lipschitz vulnerability and float vulnerability

according to the source of instability.

Based on the insights of theoretical analysis, this work introduces two down-

stream applications of the proposed framework. The neuron entropy pruning (NEP)

computes the importance score of parameter by integrating the neuron entropy and
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removes the unimportant parameters to reduce the model scale. The smoothed

classifier with reformed float path in dual direction (SCRFP-2) reforms the training

and prediction based on the smoothed classifier such that it increases the robustness

of the model. Both of the models outperform the benchmark, which further supports

the theoretical analysis presented by this work.
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Chapter 1

Introduction

This dissertation aims to provide insights into neural network explainability from the

perspective of activation functions. To better understand how activation functions

affect the performance of neural networks, this work introduces a framework for

analyzing neuron-level behavior and connects it with model performance. Following

the research trajectory of previous works, this study begins by addressing the

observation that the performance of deep neural networks with different activation

functions varies, even under the same structure and initialization. With the proposed

framework, it further presents a theoretical investigation of the expressive ability and

robustness of neural networks. Moreover, it explores downstream applications built

on the insights provided by the proposed investigation.

As an introduction, the rest of this chapter will cover: (1) the importance of

neural network explainability and the motivation for this research, (2) the research

questions and contributions of this work, and (3) the structure of this dissertation.

1.1 Motivation and Research Questions

The research presented in this dissertation focuses on the explainability of deep

neural network. Before delve into details, it is necessary to understand (1) what is

explainability, (2) why explainability is important in this field and (3) what problem
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this dissertation aims to address, which are presented in the following.

1.1.1 Explainability and Interpretability

The research into the explainability and interpretability of machine learning models

has emerged alongside the increasing complexity of these models. However, the

terms explainability and interpretability, and sometimes other synonyms such as

understandability and intelligibility, are often used interchangeably. In general,

all these efforts aim to better understand how machine learning models work and

improve existing models. Therefore, it is challenging to separate these terms with

mathematically rigorous definitions.

One widely accepted definition of interpretability is considered to be the ability

to provide an explanation or to present in understandable terms to a human [5], [6].

In other words, interpretability entails the understanding of internal functions and

characteristics with meaningful, clear, and logical reasoning. Prior to deep learning

models, classic statistical models, such as decision trees, hidden Markov models,

and Gaussian mixture models, are deemed to be interpretable as one can easily

understand how the outputs of those models are computed by following explicit

logical rules designed for those models.

On the contrary, most existing works categorize explainability as post hoc

analysis performed on the features and representations of existing models to gain

insights from the model [7], [8]. Research into explainability focuses on describing

and investigating the processing and representation of data inside the black box. In

recent years, state-of-the-art deep neural networks have millions or even billions of

parameters. It is no longer trivial to justify why a high-resolution picture of a dolphin

is correctly recognized among 1,000 classes by a 19-layer model. During the progress

of deep learning, researchers have provided post hoc analysis of model features, such

as the distribution of intermediate layer outputs and learning speeds, to illustrate

how different aspects of the model affect its performance, thereby refining existing

models.
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Adhering to the terms described above, this work explores the explainability of

neural networks. With the objective of understanding how the activation function

affects feedforward neural networks, this work evaluates the performance of neural

networks using proposed metrics that summarize the features of intermediate results

of the model in a post hoc manner.

1.1.2 The Importance of Explainability

Promoted by the progress of hardware facilities, research in machine learning has

made astonishing progress in various fields, from computer vision to natural language

processing [9]–[11]. On the other hand, as model performance improves, model scale

also grows rapidly. This means that it is even more challenging for researchers

to explain how the individual neurons work together to approximate an objective

function and arrive at the final output. In other words, machine learning models are

now often viewed as black boxes. This opaqueness of machine learning models makes

it difficult to apply them to specific tasks with high misprediction costs, such as

medical diagnosis, economic forecasting, and automated vehicles. Lacking awareness

of what is happening inside the box gradually becomes a barrier to utilizing its

potential.

Besides being desirable on its own account, explainability also often helps

researchers understand the bottleneck and further improve the performance of deep

learning models. One of the most famous examples is the discussion of the vanishing

and exploding gradient issue. In the early days of neural networks, the Sigmoid

function was widely used as a non-linear activation function. However, such a

structure fails to converge as the models become deeper. The gradient vanishing

issue of the Sigmoid activation refers to the phenomenon that when the inputs of

neurons are extremely large or small, the Sigmoid function saturates at regions

where gradients are almost zero. This results in a failure of the back-propagation

of the network. Since it was proposed, it was widely accepted as the cause of the

poor performance of Sigmoid and other activations, such as the tanh function. This

3



Chapter 1. Introduction

discussion has led to the proposal of the rectified linear unit (ReLU) activation,

which is one of the cornerstones of deep learning, and dramatically boosts the

development of machine learning.

Another critical aspect of explainability is that it provides solutions to down-

stream applications and continuously improves machine learning models. For

instance, following the discussion of the vanishing/exploding gradient problem,

it was observed that the accuracy of a convolutional neural network would

decrease rapidly when the depth of the network increases, despite the use of input

regularization techniques. This problem was referred to as the degradation issue

[12], [13]. The investigation of the degradation issue suggests that the training of a

deep network not only depends on its weights but also on its structure. Inspired by

the results, the residual learning framework was introduced to minimize the network

error using residual mapping instead of the original mapping [14] during training.

1.1.3 Motivation

One of the most prominent arguments in the deep learning field is the universal

approximation theorem, which posits that any arbitrary objective function can be

approximated by a neural network with a certain depth or width to any desired

precision [15], [16]. However, empirical studies demonstrate that the choice of

activation can significantly impact the potential performance of a model.

The most notable case of model performance gaps caused by the activation

function can be observed from the comparison between ReLU networks and Sigmoid

networks. [17]. This disparity is widely attributed to the vanishing gradient issue,

stemming from the over-saturation of hidden units. Since the discovery of this issue,

many techniques, such as normalization layers and weight initialization, have been

proposed from various perspectives with the aim of addressing it.

Normalization layers, such as Batch Normalization, standardize inputs of each

layer to have zero mean and unit variance, mitigating issues like vanishing or

exploding gradients by preventing activations from becoming too extreme. This
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continuous adjustment during training helps maintain stable activation distributions

and speeds up convergence by reducing internal covariate shift.

Weight initialization, in contrast, sets the initial conditions for the weights

of neural network to optimize the propagation of gradients during training.

Strategies like He and Xavier initialization consider the activation functions and

the architecture to adjust the variance of initial weights, ensuring that gradients

neither vanish nor explode as they propagate through deeper layers [17], [18]. While

weight initialization provides a conducive starting point for training, normalization

layers dynamically adjust the data flow between layers to ensure ongoing stability

and efficiency in learning. Together, these methods enhance the robustness and

performance of deep learning models.

Despite the use of the above methods, there still exist distinguishable differences

between the performance of Sigmoid networks and ReLU networks. This means that

there are still undiscovered issues caused by the activation function that can affect

model performance. In fact, as most of the components in a feedforward neural

network provide only linear mapping from input to output, the ability of a neural

network to approximate functions with high complexity is mostly granted by the

non-linearity from the activation function. Therefore, it is necessary to investigate

the explainability of neural networks from an activation perspective.

This work is based on the above observation and aims to propose a generalized

framework that describes the neural network from the activation function perspec-

tive.

1.2 Research Questions and Objectives

This section illustrates the connections and progress of research undertaken in this

dissertation. The research can be split into three parts that delve into the neural

network interpretability step by step with activation function as an entry point:

� Chapter 3 serves as an introductory Chapter that verifies that the performance

5



Chapter 1. Introduction

of neural networks with different activation functions are different. It further

investigates the performance gap on several small models to gain insights on

activation functions.

� Chapter 4 lays the groundwork with analytical tools for describing the behavior

of neurons in a network and illustrates the basic properties of these tools.

Armed with these tools, the following two chapters explore the explainability

of neural networks from two aspects.

� Chapter 5 re-examines the introductory question, provides insights into the

model’s ability to approximate complex functions, and introduces a model

pruning algorithm. Chapter 6 investigates the explainability of model

robustness, discusses the reason why neural networks are prone to attacks

by maliciously designed inputs, and proposes a robust training algorithm.

1.2.1 An Introductory Question

The research in this work is motivated by an intuitive and fundamental question

regarding activation functions:

Question 1. Why do neural networks with Sigmoid activation and ReLU activation

exhibit significant performance gaps?

To address this question, Chapter 3 first re-investigates existing literature. One

of the most profound arguments suggests that the performance gap is caused by the

vanishing gradient problem. It posits that when the inputs of the activation function

have large magnitudes, the Sigmoid activation saturates in regions where gradients

are almost zero, resulting in a failure of back-propagation in the network. In contrast,

ReLU activation, as a piece-wise linear function, has constant partial derivative that

preventing the gradient with respect to the loss function from vanishing. Once the

vanishing gradient issue was identified, several attempts were made to address this

problem.
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To validate the effects of those techniques, Chapter 3 compares the performance,

weight distribution, and gradients of saturated activation functions with non-

saturated activation functions. It is found that the weight distribution no

longer clusters at the saturated region, and the gradient remains stable during

backpropagation after introducing batch normalization and weight initialization to

the Sigmoid network. This suggests that the gradient vanishing problem is addressed

by the proposed techniques. However, there is still a distinguishable performance gap

between neural networks with different activation functions, implying the existence

of undiscovered issues.

Chapter 3 then delves into the training dynamics of networks from a theoretical

perspective. It is found that the training of networks with non-piecewise linear

activation can be affected by the current weight, making it less stable. To illustrate

these results, a toy model is constructed to track the change of weights and the

ability to approximate an objective function of each neuron during training, revealing

a novel dying neuron issue for Sigmoid activation. Unlike the gradient vanishing

issue, the gradient of dead neurons is non-zero while the model still fails to update.

Moreover, it differs from the dying ReLU issue in that:

� Dying neurons are not limited to ReLU activation.

� Dying neurons have non-constant outputs, but the outputs are similar for

arbitrary inputs, which barely contribute to the model performance.

Broadly, it can be viewed as a generalized Dying ReLU issue with similar effects on

model performance but in a wider form.

1.2.2 Analytical Tools

The second research question that follows up on the observed dying neuron issue in

Chapter 3 is proposed:

Question 2. How to systematically describe the behavior of activation functions to

investigate the dying neuron issue?

7



Chapter 1. Introduction

To answer this question, this research introduces analytical tools for studying the

explainability of neural networks from an activation perspective in Chapter 4. These

analytical tools are developed from the concept of activation patterns [19], originally

conceived as linear regions to explore the expressive capacity of neural networks with

piece-wise linear activation functions, but with expanded properties. The proposed

definitions and concepts are devised to characterize the state of neurons for arbitrary

activation functions, facilitating a comprehensive examination of neural network

performance across models within a broader scope beyond individual activation

regions. Additionally, to ensure the completeness of this framework, lemmas and

theorems are introduced to describe the properties of activation regions and pattern

within arbitrary subspaces.

Given a network N defined on Rn with a piece-wise linear activation function

π, the input space of N can be partitioned into a number of regions, where the

mapping of N is linear. Each of the regions was then referred to a linear region.

Within each of the linear regionR, given x ∈ R, the activation status of each neuron

remains the same. Conversely, by assigning each neuron a pattern, a unique region

R ⊂ Rn can be defined such that for every x ∈ R, the activation status of each

neuron on x satisfies the pattern. A collection of neuron activation status is referred

to as an activation pattern, and the corresponding region is formally described as

an activation region. The following figure illustrates how the input space is splitted

into different linear regions by a neural network with 2 hidden layers.

The definitions of activation region and activation pattern provide a way to

connect the behavior of the activation function with input space. Intuitively, neural

networks with more linear regions have higher capacity in approximating complex

objective functions. Therefore, the number of linear regions are then adopted as a

proxy of the expressive ability of neural networks [19]. However, there are several

gaps in existing works. Chapter 4 aims to address them in the following ways.

First, activation pattern describes the neuron-level status within a region for

a given activation function, but fails to generalize this concept across different
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Figure 1.1: An illustration of how input space is splitted into linear regions by a 3

layer neural network with ReLU activation function [19].

activation functions. To answer the introductory question of this dissertation,

Chapter 4 extends the definition to arbitrary activation functions and introduces

pattern similarity to enable comparison between different activation functions.

Second, the number of linear regions reveals the potential of expressive ability

of neural networks, while it is not directly linked to the model performance. To

mitigate this issue, Chapter 4 further suggests applying a metric named neuron

entropy to measure the stability of neurons given an activation pattern. It further

illustrates their connection with the model performance as well as other metrics

proposed in previous works.

At last, it is shown that the average volume of each activation region decreases

as the scale of a network increases. This implies that the insights provided by a

single region are less informative for deep networks. To analyze the performance

of large-scale models, Chapter 4 generalizes the analysis from single linear region

to a larger scale by categorizing the neurons into float/fixed neuron according to

stability of their activation pattern within a subspace R ⊂ Rn. To yield a complete
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framework, Chapter 4 also provides additional discussion to illustrate several useful

properties of the proposed concepts.

1.2.3 Explainability of Neural Networks

The dying neuron issue discovered in Chapter 3 is insightful in understanding the

introductory question 1. It is presented in the form of pure theoretical analysis of

back propagation and illustration from simple models. However, it lacks a connection

between the micro-level neural behavior and macro-level model performance. The

main theoretical discussion of this dissertation, which are presented in Chapter 5

and Chapter 6 that fill this gap by systematically analyzing how activation functions

affect the performance of neural network. In particular, it answers the following

questions:

Question 3. How to evaluate and explain the expressive ability and robustness of

neural network with the proposed tools?

Chapter 5 studies the expressive ability of neural networks from an activation

perspective. Expressive ability, in the context of deep learning, is the ability

of a neural network to approximate complex functions. Following the common

research in this area, this dissertation introduces metrics that are related to model

performance to characterize how activation functions affect the expressive ability of

neural networks. Theoretical research in Chapter 5 can be divided into two parts

that focus on different aspects.

First, it verifies and explains the dying neuron issue proposed in Chapter 3

by comparing the pattern similarity of neural networks with different activations.

It is found that Sigmoid networks and Tanh networks have significantly higher

pattern similarity. This means that for any two data points, the majority of neurons

are producing similar post-activation values regardless of the input. Therefore, the

practical expressive ability of the network is far below that of the theoretical.

Second, it further investigates the general expressive ability of neural networks
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by studying the stability of neuron activation patterns on a global scope. It is shown

that that float neurons are able to improve the ability of models to represent complex

functions. In fact, if most of the neurons are fixed, the mapping of the network is

close to a linear mapping, implying a loss of expressive ability. By measuring the

volatility of neurons across layers, it is found that a severe dying neuron issue occurs

at deeper layers (e.g. layers 11-14 for VGG16 net), where the activation pattern of

a majority of neurons remains unchanged regardless of the input.

Chapter 6 explores the robustness of models by illustrating the behaviors of

neurons in a local region B(x, r), where B(x, r) is a sphere centered at input x with

radius r. We show that a robust model should have fewer float neurons locally to

achieve better consistency of the model predictions for an input x and its neighbor

with small perturbation x+ ϵ. It further investigates the vulnerable samples where

the prediction between input x and its neighbor x + ϵ differ. By decomposing the

computational graph of the network, we show that the vulnerability of the sample

results from the high local Lipschitz constant and the variation provided by the float

neuron.

1.2.4 Applications

Previous investigations into activation regions have explored a diverse range of top-

ics, including sensitivity and potential network issues, and have laid the theoretical

groundwork for this work. However, due to the complexity inherent in neural

networks, theoretical insights have remained largely confined to understanding

neural network behavior and have not been readily translated into practical

applications. Consequently, the subsequent research question naturally arises:

Question 4. How can the insights gained from theoretical analysis be effectively

integrated into practical applications?

This dissertation addresses this question by demonstrating that theoretical

findings from Chapters 5 and 6 can be successfully applied to empirical models.
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The first application is a pruning algorithm named Neuron Entropy Pruning

(NEP), developed from the discussion of model expressive ability. Chapter 5 shows

that dead neurons can hardly contribute to the network’s prediction. This means

that those neurons can be removed with little effect on the performance of the neural

network. Based on this idea, NEP records the activation status of neurons during

training and prunes the neurons with the lowest importance score. It is shown that

by leveraging neuron entropy, the proposed method can efficiently reduce the model

size with better accuracy under the same sparsity compared to benchmark models.

The second algorithm introduced in this work is the Smoothed Classifier with

Reformed Float Path in dual direction (SCRFP-2), which builds on randomized

smoothing algorithms and is able to further improve their robustness and accuracy.

Chapter 6 decomposes the local mapping function into fixed paths and float paths

according to the stability of neurons on the path. The fixed paths have a stable

mapping relationship between input and output, while the float paths can result in

a sudden change in the mapping function and alter the result. SCRFP-2 stabilizes

the float neurons by amplifying their loss during training and repressing it during

prediction, therefore achieving better model robustness.

1.3 Structure

There are seven chapters in this dissertation. Chapter 1 is an introduction that

presents the motivation, research questions and the necessity of this research. It

describes the process of research undertaken in this dissertation by reasoning through

the logic and illustrating the connections between all the chapters in this dissertation.

Chapter 2 introduces the background of deep learning along with several research

threads that are related to this work. The major contributions of this dissertation

are presented in Chapter 4 to Chapter 6:

� Chapter 3 raises a question based on empirical experiment results and provides

explanations to the observation from several aspects. The experiments of this
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chapter show that there exists a dying neuron issue for deep neural network.

� Chapter 4 introduces the framework proposed in this dissertation, with a focus

of explaining the motivation and illustrating the properties of the concepts.

� Chapter 5 further explores the dying neuron issue by measuring the expressive

ability of the neural network with two novel metrics. The insights from this

chapter lead to a pruning method that removes the unnecessary parameters

and reduces the scale of the model with minimal costs on performance.

� Chapter 6 presents the investigation of model robustness with the proposed

framework. In particular, it demonstrates how the perturbation affects model

prediction and connects the model robustness with neuron-level response of the

network. Based on the discussion, a randomized smoothing based algorithm

is proposed to further improve the model robustness.

At last, Chapter 7 concludes this dissertation by summarizing the findings,

discussing the future works.
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Chapter 2

Background and Related Work

This dissertation focuses on the explainability of deep learning models. In particular,

it aims to understand the performance gaps caused by the choice of activation

functions and bring insights to downstream applications. This chapter presents

the literature review around the related topics to align with the objective.

Section 2.1 discusses the history of machine learning. It starts from presenting

the classic methods from statistical learning models, and then focuses on the

reasoning the deep learning trends in past decades as well as explaining the

bottleneck that prevents it from wider deployment. This illustrates the importance

of delving into explainability.

After the general introduction of the related research, Section 2.2 discusses

several deep learning topics that are relevant to this dissertation. It reviews the

model structures of deep learning models, the development of activation functions,

and the previous attempts to explain the deep neural network. At last, Section 2.3

investigates downstream applications of neural networks, including robust training,

smoothed classifier, neural network pruning techniques and other techniques that

are briefly discussed in this dissertation.
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2.1 History of Machine Learning

In the past decade, machine learning has been one of the most striking topics

in computer science. Applications based on machine learning models have been

deployed into various fields, such as object recognition [20], [21], action detection

[22], face recognition [23], natural language processing [24], [25] and generative

models [26], [27]. This greatly affects the daily life of the majority population

regardless of their knowledge of the underlying models. Due to the expendability

of neural networks, deep models with millions of parameters has better potential in

approximating objective function with high complex, which grants it ability to solve

complicated problems [15], [28].

The essence of machine learning models is a well-designed algorithm that

abstracts a real-world task by representing the problem with an objective function

[29]. The performance of such a model is measured by a loss function that represents

the difference between model prediction and the observation [30]. Given enough

samples, the algorithm aims to minimize the loss function by updating the model

parameters with backward propagation such that they can better describe the

relationship between input data and the corresponding outout [31]. In particular,

models are proposed to describe the relationship between observations and targets,

while a loss function is introduced to quantify the performance of models. By

minimizing the loss function, the parameters of models are then optimized to provide

the best estimation based on observations.

2.1.1 Statistical Models

Before the age of deep learning, statistical learning models aims to describe the

relationship between observations and targets with statistics and functional analysis

[32], [33]. This section introduces several popular machine learning models, including

naive Bayes classifier, Gaussian mixture model, support vector machine, hidden

Markov model and decision tree. At last, it summarizes the pros and cons of those
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methods.

2.1.1.1 Naive Bayes Classifier

The Naive Bayes (NB) classifier is a cornerstone of probabilistic modeling in

machine learning, well-known for its simplicity and effectiveness, particularly in

text classification tasks. The model is based on Bayes’ theorem and assumes that

all features contribute independently to the probability of a given outcome, which

is known as the ”naive” assumption. Given a set of features X, the Naive Bayes

classifiers use Bayes’ theorem to compute the posterior probability of a class C given

a set of features X:

P (C|X) =
P (X|C)P (C)

P (X)
. (2.1)

Given the independence assumption, the likelihood term P (X|C) can be decomposed

as the product of the conditional probabilities of the individual features:

P (X|C) =
n∏
i=1

P (Xi|C). (2.2)

In addition to Naive Bayes classifier, Gaussian Naive Bayes is commonly used for

continuous data, assuming that the data within each class is normally distributed

[34]. Multinomial Naive Bayes is well-suited for discrete data, such as word counts in

text classification [35]. Bernoulli Naive Bayes is ideal for binary/boolean features,

often used in document classification where the presence or absence of a word is

significant [36].

In terms of applications, Bayes classifiers are widely applied in various domains,

particularly in text classification, such as spam detection [37], sentiment analysis

[38] and document categorization [39]. The model’s ability to handle large feature

spaces efficiently is one of its key strengths, especially in text classification tasks,

where the dimensionality is typically very high.
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Figure 2.1: An illustration of Gaussian Mixture Model with 2 Gaussian components

[40].

2.1.1.2 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are a powerful probabilistic tool used for

modeling the presence of subpopulations within an overall population, where each

subpopulation is represented by a Gaussian distribution:

p(x) =
K∑
k=1

πkN (x|µk,Σk), (2.3)

where K is the number of Gaussian components, πk is the mixing coefficient, µk

and Σk are the mean vector and covariance matrix of the k-th Gaussian component

[29]. The expectation maximization (EM) algorithm is typically used to estimate

the parameters of a GMM model by maximizing the likelihood of the observed data

[41].

GMMs have found applications across various fields due to their flexibility in

modeling data. In clustering, GMMs provide a soft clustering approach, where

each data point is assigned a probability of belonging to each cluster, in contrast

to hard clustering methods like K-means [42]. This probabilistic approach is
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particularly useful in applications like image segmentation, where GMMs can model

the distribution of pixel intensities to segment an image into distinct regions [43].

In speech recognition, GMMs are used to model the distribution of acoustic

features. Each phoneme or word can be represented as a mixture of Gaussians,

capturing the variability in speech signals [44]. GMMs are also employed in anomaly

detection by modeling the normal data distribution and identifying data points that

do not fit this distribution as anomalies [45].

2.1.1.3 Support Vector Machine

Figure 2.2: An illustration of support vector machine that separate two classes by

maximizing the margin with hyperplane [40].

The support vector machine (SVM) is a classification algorithm that designed to
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find the optimal hyperplane that separates data points into different classes [46]–[49].

The idea behind SVM is to identify a hyperplane that maximizes the margin between

different classes, which is the distance between the hyperplane and the nearest data

point from each class. For a binary classification problem, given a set of training

examples {(xi, yi)} where xi ∈ Rn and yi ∈ {−1, 1}, the SVM aims to solve the

following optimization problem:

min
w,b

1

2
∥w∥2, s.t.yi(w · xi + b) ≥ 1,∀i, (2.4)

where w is the weight vector and b is the bias term. Based on this idea,

many modifications are then proposed to generalize it from binary classification

to multiclass problem [50].

For cases where the data is not linearly separable, SVMs can be extended using

kernel functions, which map the input features into a higher-dimensional space

where a linear hyperplane can effectively separate the classes. Commonly used

kernels include the polynomial kernel, the radial basis function (RBF) kernel, and

the sigmoid kernel [46], [51].

The basic algorithms derived from SVM for multiclass classification include (1)

one-versus-all [52] (2) one versus one [53] (3) directed acyclic graph SVM [54] (4)

error-correcting output codes [55].

SVMs have been successfully applied to a wide range of applications due to

their robustness and effectiveness in high-dimensional spaces. They are particularly

popular in image classification [56], text categorization, bioinformatics [57], and

handwriting recognition [36], [58]

2.1.1.4 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models that describe systems where

the observed data O = {o1, o2, . . . , oM} are generated by a sequence of hidden

(unobserved) states S = {s1, s2, . . . , sN}. Further, it assumes transition matrix
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Figure 2.3: An illustration of the transitions between a hidden Markov model with

3 states [40].

A = [aij] and emission probability B = [bj(k)]:

aij = P (sj|si),

bj(k) = P (ok|sj),
(2.5)

where aij is the probability of hidden state s transits from i to j, while bj(k) is

the probability of observing k given hidden state k. By iteratively maximizing the

likelihood, it optimizes the parameters of both the underlying distributions and

transition matrix of the Markov system [59], [60].

As the state transitions describes the change of states, the HMM models are

widely used in processing time series signals, such as speech recognition [61], [62]
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and gesture recognition [63], [64]. To further capture the pattern of data, many

variations of HMM models are discussed in the 1990s to 2000s. The high order

hidden Markov model is built on the assumption that the current state is dependent

on previous states, which grants the model a better ability to analyze time series

data [63], [65]. Factorial hidden Markov model extends the basic model structure

by integrating several random processes together such that enables the analysis of

multiple random variables [61], [66].

2.1.1.5 Decision Tree

Figure 2.4: An illustration of decision tree [40].

The decision tree adopts a tree-wise structure where each of the node conduct

an evaluation on a feature [67]. Based on the evaluation, the example is then

categorized into a homogenous subset and further fed into the subsequent node.

The training of decision tree is usually based on the information gain, variance

reduction or Gini impurity that based on the idea that selecting the feature and

criterion by minimizing the entropy or loss of classification results [67]. One of the
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famous extension of decision tree is the classification and regression tree (CART)

that adopts both discrete and continuous measurement for the nodes [68]. To scale

the size of model structure, attempts of integrating multiple decision trees is made

to provide a robustness estimation of the observed data, such as random forests [69]

and rain forests [70].

2.1.1.6 Pros and Cons

The advantage of statistical models lies in their strong explainability; each model is

designed based on certain assumptions and predicts results following specific logic.

Due to their high explainability, statistical models are widely adopted in industry

for their interpretability, especially in highly sensitive fields such as finance [71],

[72], medical diagnosis [73], [74], and automated vehicles [75]. Each of these models

presents a detailed analysis of how predictions are made and explains the behavior

of the models. This makes it easier to derive insights from the results by tracing

back to the factors contributing to the predictions. However, statistical models are

also limited by the complexity involved in their construction.

First, task-specific preprocessing is required by statistical models for certain

real-world problems. For example, behavior analysis of laboratory animals is an

essential part of medical and biological research in verifying the performance and

effects of clinical trials [3]. This process requires professional knowledge and is

time-intensive. To automate this process, early attempts were made to solve this

task with statistical learning methods. For example, the Janelia Automatic Animal

Behavior Annotator (JAABA) was introduced to annotate laboratory animals like

mice, fruit flies, and larvae [76]. A fly-vs-fly dataset, along with a computer vision-

based annotation system, was introduced for analyzing social behavior [77]. The idea

of action detection is to encode features of the graph, such as location, orientation,

and angles, and classify behavior according to these features using statistical models

[78], [79]. However, vision analysis is required to extract features for model fitting

and prediction, which reduces the scalability of such models [3].
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Second, the complexity of proposed tasks and challenges has dramatically

increased in recent years, often surpassing the capabilities of statistical methods.

The MNIST handwriting dataset is one of the most popular datasets in the early

study of machine learning models [80]. Early works investigated support vector

machines (SVM) to perform classification on the MNIST dataset, achieving a best

error rate of 3.2% [80]. A later publication introduced a heterogeneous FPGA

architecture that uses SVM and boosting accuracy to 98.96% [81]. However, similar

results can be easily achieved by a 9-layer fully connected neural network [2]. A

relatively more complex dataset is the CIFAR10 dataset, which consists of 60,000

images with 32 × 32 pixels from 10 categories [82]. Deep learning models have

been shown to achieve more than 93% accuracy using deep convolutional networks.

Notably, state-of-the-art vision transformer models (ViT) [83], which integrate the

idea of transformers [84], achieve over 97% accuracy. On the other hand, there are

very few publications based purely on statistical models that achieve comparable

results. Instead, some existing works use neural networks as feature extractors and

perform classification with K-Nearest Neighbors [85] and support vector machines

[86], slightly outperforming the benchmark models. For large-scale image datasets

such as ImageNet [87], the most advanced discussions and models are predominantly

based on deep learning rather than statistical models.

2.1.2 Neural Networks and Deep Learning

Due to the limitations mentioned above, statistical models have not achieved the

widespread usage that deep learning models have in recent years. In contrast, neural

networks have shown greater potential in addressing these problems. Inspired by the

human brain, artificial neural networks (ANNs) are composed of layers of neurons.

Each neuron mimics the behavior of a biological neuron, receiving signals from

predecessors, processing the information, and firing another signal to all the neurons

in the next layer [88]. The input to the model is received and processed by an

input layer, allowing the deep layers to remain unchanged regardless of the shape
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of the inputs. Additionally, by adding extra layers and increasing the width of each

layer, ANNs have been proven to possess unlimited ability in approximating complex

functions [89].

After it was proposed, the concept of artificial neural networks attracted great

attention and was popular in the 1980s. However, the performance of neural

networks highly depends on their ability to approximate functions with high

complexity, which essentially depends on the number of parameters. Moreover,

training large-scale models also requires sufficient data to avoid underfitting. Due

to limitations in computational resources as well as a lack of data, the popularity of

neural networks declined in the 2000s.

In 2010, Nvidia developed the Fermi microarchitecture, which introduced the

streaming multiprocessor and GigaThread global scheduler. The streaming multi-

processor consists of 32 CUDA cores optimized for 64-bit and extended precision

operations. The GigaThread global scheduler uses a two-level distributed thread

scheduler, where the first level schedules thread blocks to all the multiprocessors, and

execution is further distributed to all the threads at the streaming multiprocessor

level. This innovation improved the computational ability of GPUs and is still in use

today. Simultaneously, the development of the Internet industry and advancements

in hardware made collecting, labeling, and storing vision or text data easier,

providing a solid foundation for training large-scale models. In particular, challenges

such as COCO [90] and the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [87] were proposed in the 2010s and greatly encouraged research in deep

learning.

Driven by advances in computational power and the availability of data resources,

research in machine learning has made astonishing progress in the past decade. In

fact, large-scale models have already become one of the general solutions in various

fields, such as computer vision, natural language processing, and generative models.

Research in computer vision started with the recognition of single objects. The most

prominent models, such as VGG networks [91], ResNets [14], and GoogLeNet [92],
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have since been adopted as backbone feature extractors in the research of object

detection in large-scale images. Similar research has also extended to videos, where

the data becomes 3D with the inclusion of the time dimension [93], [94].

Another important research thread is natural language processing (NLP), which

aims to construct models that perform tasks on language that can be completed

by humans, such as language translation [95], [96], quiz answering [97], [98], and

sentiment analysis [99], [100]. Other topics include generative models that aim to

create images or texts based on given descriptions, and descriptive models that build

connections between language and models [101]–[103].

2.1.3 Large Scale Models and Its Risks

Under such background, new models are consistently being introduced with better

performance and generalization. One of the most inspiring recent innovations is the

launch of ChatGPT. As its name suggests, ChatGPT is a chatbot developed by

OpenAI. Unlike its predecessors, ChatGPT can accurately answer questions based

on prompts across various fields and continue the same conversation with memory

of previous information. Additionally, it integrates generative models, enabling it

to generate images based on descriptions. Powered by ChatGPT, AI assistants

have been introduced by fine-tuning the model for particular tasks, such as creating

PowerPoint presentations, writing code based on annotations, and more. The

potential of ChatGPT is still being explored [104]. Simultaneously, discussions about

ChatGPT have emerged in academia [105], with several recent works investigating

its use across finance [106], public health [107], and even its impact on academia

itself.

One significant concern in these discussions is the risks associated with Chat-

GPT. In some cases, ChatGPT has been reported to generate fabricated information,

such as fake literature, coherent but biased and incorrect content, and even malicious

or harmful responses when prompted with elaborately engineered inputs [108].

The regulation of large language models is proactively being discussed by OpenAI
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and governments [109]. However, the astonishing performance of ChatGPT is

backed by 100 billion parameters, making it difficult to explain why and how

it responds to certain prompts, and even harder to control the associated risks.

In this context, research on the interpretability of large-scale models has become

increasingly important [110].

2.2 Feedforward Neural Networks and Explain-

ability

The objective of this dissertation is to shed lights on the explainability of feedforward

neural network (FNNs) from activation function perspective. Therefore, it is

necessary to:

� describe the feedforward neural networks and their differences with recurrent

neural networks,

� list the main playing fields of such type of FNNs,

� review the existing investigation of explainability of FNNs,

� discuss the development in activation function of neural network.

This section provides literature reviews of above topics.

2.2.1 Feedforward Neural Networks and Recurrent Neural

Networks

Feedforward Neural Networks (FNNs) represent one of the earliest and most

fundamental types of artificial neural networks. FNNs are structured such that

data flows in a single direction, from the input layer through any hidden layers to

the output layer, with no cycles or loops. This makes them well-suited for tasks that

inputs are independent of each other, such as image classification and regression.
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Figure 2.5: (left) An illustration of 3 layers feedforward neural network; right: An

illustration of recurrent neural network [40].

The concept of FNNs was introduced with the development of the perceptron

which demonstrates the ability of a simple model to perform binary classification

tasks [111]. However, the initial enthusiasm was tempered by the realization that

single-layer perceptrons could not solve non-linear problems[112]. The introduction

of Multi-Layer Perceptrons (MLPs) addressed these limitations by incorporating one

or more hidden layers, allowing FNNs to model complex, non-linear relationships.

The proposal of back-propagation algorithm is a significant breakthrough that

enables efficient training of these deeper networks by computing gradients for

each layer [113]. This advancement propelled the adoption of FNNs in various

applications, particularly in image and speech recognition.

Due to the limitation of datasets and computation power, its fashion fell out in

the 2000s. Recent years, with the emergence of large annotated datasets and the

development of high performance computing techniques, deep models were proven to

be effective by many proposed models. In particular, the sophisticated architectures

of feedforward neural networks are achieving significant importance in accuracy and

demonstrating the practical utility of neural networks in various fields, including

object detection, action recognition and medical diagnosis [114].

Deep feedforward neural networks do not have memory while they treat each

input independently and cannot retain information from previous inputs, therefore

not suitable for processing sequential data. This is instead addressed by introducing

loops within the network [115]. The introduction of Long Short-Term Memory

(LSTM) networks in 1997 addressed the vanishing gradient problem that plagued
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traditional RNNs, enabling the training of deeper and more powerful networks [116].

LSTM networks include mechanisms such as forget gates and memory cells, which

allow the network to retain important information over long sequences. Gated

Recurrent Units (GRUs) further simplified the LSTM architecture while maintaining

similar performance [117].

RNNs have found famous applications in various domains. In natural lan-

guage processing (NLP), they have been used for tasks like machine translation,

as demonstrated by the success of sequence-to-sequence models with attention

mechanisms, which significantly improved the performance of translation systems

[118]. In speech recognition, RNNs and their variants have been integral to

advancements in automatic speech recognition systems, enabling more accurate

transcription of spoken language [119]. Additionally, RNNs have been applied in

time series prediction tasks, such as financial forecasting and climate modeling,

where understanding the temporal dynamics of data is crucial.

2.2.2 FNN Applications

As discussed above, feed forward neural networks are widely applied in tasks where

inputs are independent, such as image related tasks. In this section, we briefly

discuss several such topics where feed forward neural networks are achieving state-

of-art results.

2.2.2.1 Image recognition

One of the main playing field of feed forward neural network is image recognition.

The objective of image recognition is to identify the category of the object in an

image. As the cornerstone topic in the field of computer vision, there are many

widely recognized large scale datasets, including ILSVR [120], PASCAL VOC [121],

COCO [90], CalTech-101 [122]. Among them, the ImageNet is the large scale object

recognition challenge that inspired a great amount of backbone networks for learning

the representations and extracting features.
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The first popular network is the AlexNet that competed ImageNet challenge on

2012 with a 15.3% top-5 error rate [123], which outperforms the second-best entry

by 10%. AlexNet uses convolutional layers, max-pooling layers and fully connected

layers with more than 60 million parameters, which opens the gate of deep learning

models. Following AlexNet, VGG nets further increases the depth of model with 11

to 19 layers on different structures [91]. Although it is shown that deeper networks

have better performance compared with the shallow networks, the boost is not

significant and the training is much more difficult. The residual network (ResNet)

aims to address ImageNet problem by introducing short-cut layers, which grants the

network the ability to converge for deep structure [14]. ResNext leverage the idea

of residual block and aggregates a set of convolutional layers from different paths

with same topology and improves the performance of ResNet [124]. The DenseNet

introduces a dense connection between layers but also preserver the feed-forward of

neural network, which alleviate the gradient vanishing issue and encourages use of

the feature [125]. The InceptionNet is one of the most advanced backbone structure

that combines the advantages of previous works by adopting kernels at different sizes

[92], [126]. To improve the portability, MobileNet balance the trade-off between

model performance and scale by introducing mobile models with reduced size [127]–

[129].

2.2.2.2 Object detection

Object detection is more advanced task on top of image recognition, which requires

identifying both the categories and locations of all objects in an image. For the

large scale image object detection task, R-CNN [130] introduced an inspiring two-

stage architecture by combining a proposal detector and region-wise classifier. SPP-

Net [131] and Fast R-CNN [132] are then introduced with the idea of region-wise

feature extraction which significantly speeds up the overall detector. Faster-RCNN

[133] proposed a Regional Proposal Network, which is almost cost free by sharing

convolutional features with detection network, for object bounds prediction. A
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multistage detector Cascade R-CNN [134] is then proposed which improves the

accuracy of detection by setting increasing IoU thresholds for a sequence of detectors.

One stage object detection, as an alternative architecture, is also popular due to

their computational efficiency. YOLO [135] implemented with an efficient backbone

network and enables real time object detection. Single shot multi-box detector (SSD)

[136] uses multiple feature maps at multiple resolution to cover objects with different

scales and detects objects similarly to Region Proposal Network (RPN) [132]. The

cost of high computation speed of one-stage detector is that their accuracies are

below the most two-stage architectures. However, RetinaNet [137] achieved a better

result than most two-stage objects detectors by addressing foreground-background

imbalance in dense object detection.

2.2.2.3 Medical Diagnosis

One practical application derived from the image related tasks is the medical diagno-

sis. By leveraging the ability of extracting and understanding features of feedforward

neural networks, several landmark studies demonstrating the effectiveness of these

models in various medical tasks. [114] developed a deep learning algorithm for

detecting diabetic retinopathy in retinal fundus photographs, achieving performance

comparable to that of ophthalmologists. Similarly, [138] introduces CheXNet, a

deep learning model that detects pneumonia from chest X-rays with radiologist-

level accuracy, setting a new standard for medical image analysis. [139] applies

deep convolutional neural networks to classify skin lesions, achieving dermatologist-

level classification performance, highlighting the potential for AI to assist in

dermatological diagnostics. These studies underscore the transformative potential

of deep learning in improving diagnostic accuracy and efficiency in healthcare.

2.2.3 Explainability of Neural Network

Since the beginning of the deep learning era, large-scale models have been criticized

for their non-transparency and lack of explainability [140]. They are often viewed
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as black boxes that take inputs and produce outputs without providing information

about the decision-making process. Explaining and reasoning about these black

boxes is a long-standing topic in deep learning research. The goal of investigating

the explainability of deep learning models is to enhance their success, mitigate the

limitations of opacity, and control the risks of potential malicious outputs.

There are different threads of literature regarding the explainability of deep

learning models. In general, most related research aims to understand certain

observations, provide explanations for those observations, and potentially introduce

solutions to improve model performance from different aspects.

The first topic is understanding the potential of deep neural networks. Due

to the scalability of neural networks, deep models with millions of parameters

have better potential in approximating highly complex objective functions, which

grants them the ability to solve complicated problems. One of the most prominent

arguments in this thread is the universal approximation theorem, which states that

given an arbitrary objective function, it can be approximated by a neural network

with a certain depth or width to arbitrary precision [15], [28]. Starting with the

arbitrary width case, subsequent works have verified this theorem in various forms,

including the arbitrary depth and bounded width case [141], bounded depth and

bounded width case [142], limited depth case [143], CNN architecture [144], and

graph networks [145].

One of the most commonly asked questions in this field is why deep learning

models outperform traditional statistical models and what the potential of deep

learning models is. Early attempts at explaining performance started from a

statistical perspective. The generalized additive models (GAM) use smooth

functions to analyze the behavior of neural networks [146]. TREPAN is a decision-

tree-based method that aims to produce a comprehensible concept description while

maintaining the same classification results as the network [147]. Another approach

is to study the conditional expectation of features from the neural network and

explain the results using partial dependence plots, which present the marginal effects
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of features [148], [149].

With the development of deep learning, it has become difficult for statistical mod-

els to explain the features of highly complex neural networks. One straightforward

way to understand deep convolutional networks is to visualize the features extracted

by the network from inputs. This was achieved by the proposal of DeConvNet,

which uses deconvolutional layers and up-pooling to reverse the computation of

the neural network [150]. The results of DeConvNet show how each filter in the

convolutional layer extracts features from the input layer. However, the accuracy of

input reconstruction is limited by the max-pooling layer. To address this issue, later

works introduced neural networks with fully convolutional layers, replacing max-

pooling with larger strides in the convolutional layers [151]. To further understand

how predictions are made by the network and how they are affected by perturbations,

subsequent works studied the features of texture [152], color [153], attention area

[154], and partial images [155] by visualizing the intermediate layers.

As it provides a theoretical guarantee of the output-to-input change ratio, the

study of Lipschitz continuity has a long history in neural network literature [156].

However, calculating the Lipschitz constant is an NP-hard problem even for a two-

layer multilayer perceptron [157]. To estimate the Lipschitz constant of a neural

network, various methods have been proposed, including the use of regularization

in kernel methods [158], PAC-Bayes theory [159], and others [160]–[163]. On the

other hand, some theoretical works focus on describing the generalization ability

and robustness of neural networks with the help of Lipschitz continuity [159], [164],

[165]. Several works also contribute to this area by investigating the norms of

network components [166], [167].

One strand of research related to this work stems from the intuitive observation

that neural networks with piecewise linear activation functions also provide linear

mappings from a domain to a range [168]. Each of these piecewise linear domains

is referred to as a linear region [169]. By identifying the activation status of each

neuron, it is possible to explore the expressive ability [19], limitations [170], and
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explain the model performance [2]. On the application side, several recent works

utilize the linear properties of ReLU networks to bound the network’s lp norm [171]

and search for adversarial examples [172].

2.2.4 Activation Function and Its Development

The investigation of activation functions is a long-standing topic in deep learning

research [173]. Earlier studies of neural network limitations have documented

issues such as vanishing and exploding gradients [17], [174]–[176], the instability of

network predictions [177]–[179], and the limitations of deep model expressive ability

[180], [181]. Other approaches aim to explain neural networks by exploring the

approximation function of the network, including sensitivity [177]–[179], complexity

[182]–[184], and the theoretical guarantees of model expressive ability [15], [141],

[185]–[187].

On a broader scope, instead of focusing solely on explaining existing architec-

tures, there are approaches that deal with explainable-by-design machine learning

methods. To better align input features, some works [188], [189] suggest replacing

the linear mapping of networks with non-linear operators. Inspired by the human

recognition system, several works aim to quantify and prototype visual input

according to basic semantic units to integrate interpretability into the model

structure [190], [191]. Other works seek to improve the performance of deep models

by simulating the recognition process [190], [191]. In a more general sense, these

works are referred to as prototype-based classifiers, which rely on the similarity of

data to a given prototype rather than pure evaluation metrics [192].

2.3 Related Downstream Applications

This section reviews two downstream applications of feed forward neural networks

that related to this dissertation. Based on the investigaiton of model expressive abil-

ity and model robustness, Chapter 5 and Chapter 6 introduce a pruning algorithm
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named Neuron Entropy Pruning (NEP) and a randomized smoothing algorithms

named Smoothed Classifier with Reformed Float Path in dual direction (SCRFP-

2), respectively. This section discusses the neural network pruning algorithms and

robustness training algorithms that related to the proposed algorithm.

2.3.1 Network Pruning

Network pruning aims to remove unnecessary parameters to reduce the scale of

a neural network with minimal compromise to model performance [193]. Since

the proposition of this idea in the 1990s [194], [195], research has explored three

mainstream approaches: neural architecture search (NAS), weight optimization, and

magnitude-based pruning.

Neural architecture search, as suggested by its name, aims to find an optimal

structure from a well-trained model given a certain resource budget [196]. It involves

training a mega-network, sampling subnetworks from the weights, and fine-tuning

the sampled networks [197]. Different designs of NAS algorithms essentially repre-

sent trade-offs between the time spent on various steps, including training super-

networks [198], [199], optimizing network structure with reinforcement learning

[200], [201], and using gradient-based methods [202], [203]. Weight optimization,

on the other hand, focuses on compressing the weights of each layer using various

dimension reduction methods so that the outputs of layers are minimally affected

[204], [205].

Compared with the above approaches, magnitude-based pruning methods are

faster and more intuitive while still delivering competitive performance with complex

models. Based on the idea of removing parameters with little contribution

to prediction, weight-based pruning eliminates the smallest weights in models

[206]–[208]. Subsequent works have introduced gradient-based [209] and feature-

tracking methods [210] to assign importance scores to parameters.
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2.3.2 Model Robustness

While deep learning methods are achieving state-of-art performance in various fields,

recent work shows that most of the well-trained models are vulnerable to maliciously

designed inputs, which referred to as adversarial examples[177], [211], [212]. To

explain the existence of adversarial example, previous works presented several

hypotheses, including linearity hypothesis and its variants [178] and Evolutionary

stalling [179].

After that, the Fast gradient sign method (FGSM) set the fundamental of white-

box adversarial attack methods by adding a bounded noise whose direction is the

same as the gradient of the cost function with respect to the input and provide a

simple solution to generate stable adversarial example with linear perturbation [213].

RFGSM [214] then enhanced it by applying a small random step before calculating

the image gradient, therefore allowing a non-linear perturbation. FFGSM then

suggest increasing the non-linearity of the perturbation by replacing the fixed-length

step with a random initialization with the boundary [215]. In particular, when

FFGSM adversarial examples are adopted in training, the model is able to achieve

comparable robustness with models trained with multistep adversarial.

As the objective of adversarial is finding a constraint perturbation that maxi-

mizes the loss of the model given input and current parameters of the model, it can

be viewed as an optimization problem. Based on the thought, the basic iterative

method (BIM) perform the search of local maximum by taking multiple, smaller

steps, and therefore achieve a better success rate in attacking [216]. The method

is then improved by introducing multiple random restarts, and known as projected

gradient descent (PGD) adversarial. Since the multiple restarts and multiple steps

in each restart ensure a stable performance of PGD attack in the local optimization

problem, PGD adversarial is widely accepted and regarded as the strongest attack.

Many following works are then proposed based on it. The momentum iterative fast

gradient sign method integrating (MIFGSM) the momentum term into the iterative

process for the attack to boost the adversarial attack [217]. Auto-PGD (APGD)
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introduce an automatic scheme for step size selection, and PGD on Difference

Logits Ratio (PGDDLR) method using a proposed DLR loss to avoid potential

failure of PGD attack [218]. The author also introduces an auto-attack method

that is parameter-free and able to achieve a comparable attack success rate with

other state-of-art methods. Another notable attack is the CW attack which crafts

adversarial examples by tailoring to three distance metrics and optimizing the loss

with gradient descent. Because of its outstanding performance, it is always used to

test the robustness of neural networks.

Many solutions are proposed apart from adversarial training in response to the

threat models. Detection methods introduce a small subnetwork to detect the

perturbation[219], [220]. Defensive distillation uses a distillation network to learn

the output function of the previous network and predicts the class probabilities

from the first network[221]. Denoiser scheme adopts a high-level representation

guided denoiser as a defense to remove the perturbation added by the adversarial

models[222]. Most of the forehead mentioned methods are efficient against previous

attacks but proved to be vulnerable against the latest threat models[223][224][221].

The ongoing battle between attack methods and defense methods suggest that it is

hard to evaluate the robustness of defense models as well as the threat models.

On the other hand, adversarial training, as the first proposed solution against

adversarial examples, remains popular due to its explainability. In particular, the

PGD adversarial training is still argued to be the strongest defense[225], [226].

However, since the back propagation and forward pass are calculate multiple times

for a single batch, PGD adversarial training is computationally expensive. Many

works are proposed to address the issue[225], [227]–[229]. Intuitively, to reduce the

computational cost, the algorithm should perform fewer backwards and forward pass.

FreeAT eliminates the additional cost of generating PGD adversarial by recycling

the gradient information to update the model weight, so the model is updated

same steps with fewer epochs, achieving a comparable result to PGD training[227].

You Only Propagate Once (YOPO) suggest that adversary update is only coupled
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with the parameters of the first layer of the network, freezing the forward and

back propagation within the first layer can greatly reduce the training time[228].

Moreover, fast adversarial training shows that the model can be trained with FGSM

with a random initialization using a DAWNBench training schedule and achieve

comparable results with less time.

Another finding in the research of FFGSM attack is the catastrophic overfitting.

The catastrophic overfitting refers to the phenomenon that, during the single-step

adversarial training, the model accuracy against PGD attack suddenly decrease to

0% in a few epochs, while the accuracy against natural images as well as FGSM

adversarial increase dramatically. Later, it is found that it also happens to other

single-step training methods[230]. Although some methods are proposed to address

the issue[230], [231], those methods are computationally inefficient and fail to achieve

the same robustness level as the non-overfitted FFGSM training.

Early works on improving the robustness of neuron networks focused on

adversarial training methods [214], [217], [225], [232], [233], while recent investigation

shows adversarial training methods can always be broken by more advanced attacks

[234]. Certifiable training is an emerging solution to the above issue, which aims to

provide a certified region, within which the input data are free from an attack. By

viewing the training as a convex optimization problem, dual relaxation approaches

apply duality to provide a sound bound for training as well as verifying the network

[235], [236]. An alternative is to estimate the Lipschitz boundary of the network

and introduce constraints on either objective loss [160] or forward propagation

[237]–[240]. However, verifiable training comes with a compromise on accuracy and

scalability.

On the other hand, randomized smoothing is a randomized algorithm that

applied to the base model, therefore is able to provide robustness without affecting

performance of base classifier. [241], [242] first propose to ensemble the information

around input data to smooth the prediction, but fail to provide a theoretical

guarantee on the result. Randomized smoothing and related works provides a
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theoretical analysis of the certifiable with Monte Carlo methods [241], [243], [244].

Following works further applies consistency regularized [245], convex combination

of samples [246] and adversarial attacks [247] to further increase the robustness

accuracy.

38



Chapter 3

Activation Function and Model

Performance

As discussed in the introduction, there is a noticeable performance gap between

neural networks with different activation functions under the same structure. This

chapter aims to verify the observation by comparing the performance of neural

networks with different activation functions on several benchmark models. Further,

it investigates the weights and gradients of those neural networks with different

activation functions with an objective of understanding the effects of proposed

techniques. It is found that the neural networks with saturated actiavtion functions

are able to coverage during training but their performance worse than ReLU

networks. At last, this chapter provides a theoretical analysis to understand how

current weights affect the training for neural networks with different activation

functions and shows that the weights of symmetry activation functions are more

likely to stuck at local minimum despite having valid gradient. This suggests the

additional investigaiton is necessary to understand the role of activaion functions

and how they can affect the model performance.

The structure of this chapter is listed as following. Section 3.1 aims to

validate previous literatures and examine whether there still exists the performance

diffferences between neural networks with Sigmoid and ReLU activation function.
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As an introductory experiment, the objective in this section is to verify that

whether the Signomid and Tanh neural networks are trainable after introducing

batch normalization and weight initialization. Further, we compare the performance

between neural networks with different activation functions to understand the

Section 3.2 analyze the weight and gradient distributions during training to check

whether vanishing gradient problem is addressed by the proposed techniques. One

of the most famous cause of the bad performance of neural networks with saturated

functions is the vanishing gradient proble, which suggests that the derivative of

such activation functions is relatively small when the inputs are located within

the saturated region. This analysis reveals that, during the training, neural

networks with saturated activation functions have valid gradient after introducing

normalization of weights and gradients.

Section 3.3 explains the problem from a theoretical perspective by formulating

the relationship between model weights and gradients. It is found that during

backpropagation, the gradient not only depends on the current weight but also

heavily relies on a transformation factor determined by the form of the activation

function. This factor affects the learning efficiency and accuracy of Sigmoid and

ReLU networks differently.

To further illustrate the findings, Section 3.4 describes the learning dynamics of

neural networks with different activation functions using a toy model. It is found

that for networks with saturated activation functions, some neurons fire similar

outputs regardless of the inputs and fail to update their weights during training.

This phenomenon is referred to as the dying neuron issue.

3.1 Model Performance and Activation Functions

This work is motivated by the interest in understanding the performance gap caused

by different activation functions. In particular, the introductory question concerns

whether the above techniques have fully addressed the vanishing gradient problem.
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The research undertaken in this section comprises several steps:

� First, a descriptive discussion of illustrative datasets and dthe activation

functions and their properties is presented to justify the choice of activation

functions studied in this section.

� Second, to demonstrate the existence of a performance gap, a comparison of

the performance of models with different activation functions is presented.

Batch normalization and weight initialization are separately introduced to the

model with the objective of investigating their effects on regulating weight

distribution and improving model performance.

� Finally, it presents the weights, gradients, and weight-to-gradient ratios of

different models across layers, with the objective of verifying whether the

gradient indeed vanishes during backpropagation.

3.1.1 Datasets

As an introductory investigation, this Chapter leverages the MNIST dataset and

CIFAR10 dataset to verify the performance difference between neural networks

with different activation functions. The MNIST and CIFAR-10 datasets are two

of the most widely used benchmarks in the field of machine learning, particularly

for evaluating the performance of image recognition algorithms. Each serves as a

fundamental resource for developing and testing new machine learning models, but

they target different aspects of visual recognition.

The MNIST (Modified National Institute of Standards and Technology) dataset

is a collection of 70,000 grayscale images of handwritten digits (0-9). Each image

is 28x28 pixels in size. It is divided into 60,000 training images and 10,000 testing

images. MNIST is primarily used as an entry-level dataset for machine learning

and computer vision, serving to benchmark and test classification algorithms. The

simplicity of the images makes MNIST manageable for testing basic and complex
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neural networks. Its widespread use has established it as a baseline for comparing

model performance in digit recognition tasks.

In contrast, the CIFAR-10 dataset comprises 60,000 colored images (32x32

pixels) spread across 10 different classes such as airplanes, birds and ships (6000

images per class). Similar to MNIST, CIFAR-10 is also divided into 50,000 training

images and 10,000 test images. The primary challenge of CIFAR-10 lies in its

complexity relative to MNIST due to color information and the diversity in object

classes. This dataset is used to advance the development of more sophisticated

algorithms that can handle complex visual data and perform accurate classification

across a range of conditions and object types.

3.1.2 Activation Functions and Their Properties

The first stage of this empirical discussion is to validate that models with different

activation functions exhibit varied performance. Although this argument is widely

recognized, a purposeful comparison of the effects of activation functions is helpful

in identifying potential issues and explaining the performance gap.

As the objective of the introductory questions is to explain the effect of activation

functions on model performance, a discussion of the activation functions and their

properties would be beneficial for understanding the topic.

Sigmoid tanH ReLU GeLU SeLU

saturated ✓ ✓ ✗ ✗ ✗

symmetric ✓ ✓ ✗ ✗ ✗

linear ✗ ✗ ✓ ✗ ✗

monotonic ✓ ✓ ✓ ✗ ✓

Table 3.1: Properties of activation functions.

Table 3.1 shows common activation functions as well as their properties that

might affect the behavior of the neural network, including whether they are
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(a) Graph of Activation Functions

(b) Gradients of Activation Functions

Figure 3.1: Example of MNIST and CIFAR-10 dataset.

saturated, symmetric, linear, or monotonic. The definitions of these properties are:

� Saturated : A function π is right saturated if the limit of its derivative π′(x)

approaches zero as x→∞. The function is left saturated if π′(x) approaches
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zero as x→ −∞.

� Symmetric: A function π is said to be symmetric at 0 if π(x) = π(−x) for any

x ∈ R.

� Piecewise Linear : A function π is piecewise linear if its domain can be

separated into several regions R1, . . . , Rn such that f(x+y) = f(x)+f(y) and

f(x) = x
y
f(y) if x, y ∈ Ri.

� Continuous : A function is said to be continuous if limx→c π(x) = π(c) for any

c ∈ R.

� Monotonic: A function is said to be monotonically increasing if for all x, y ∈ R

such that x ≤ y, π(x) ≤ π(y).

Figure 3.2 presents the graphs of the above activation functions as well as their

derivatives. The choice of activation functions to be compared is critical to the

research results. To cover a wider range of function properties, the functions selected

in this section are: Sigmoid, Tanh, ReLU, GeLU, and SeLU:

� Sigmoid and Tanh have similar properties, both being saturated at extreme

values and symmetric around 0. However, Tanh has a wider range compared

to the Sigmoid function.

� ReLU is a piecewise linear activation. Since piecewise linear activation func-

tions share similar properties, PReLU, ReLU6, and other similar activations

are not included in the comparison.

� GeLU is the only non-monotonic activation function in this selection. GeLU

is left saturated at 0, but its minimum is reached at around -0.8, meaning

that GeLU decreases in the interval (−∞,−0.8) and then increases like other

activation functions.
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(a) Graph of Activation Functions

(b) Gradients of Activation Functions

Figure 3.2: Graphs of Activation Functions and Their Derivative.

3.1.3 Model Performance

The next step of this investigation is to verify the effects of activation functions

on model performance and answer the question of whether the vanishing gradient

issue is resolved by the proposed methods. The set of experiments in this section

compares the performance of deep fully connected networks (DNN), VGG16, and

ResNet34 to cover different network structures: linear layers, convolutional layers,

and bottleneck blocks.

The VGG16 and ResNet34 models are trained on the CIFAR10 dataset for 160
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epochs using the SGD optimizer with a batch size of 256. The learning rate is

initially set to 0.1 and decays by a factor of 10 after 80 and 120 epochs, following a

milestone learning rate schedule. To mitigate the effects of initialization and early

training examples, the networks undergo a warm-up phase with a learning rate of

0.001 for 500 iterations.

To demonstrate how batch normalization and weight initialization affect model

performance, each model is trained both with and without these methods, resulting

in four sets of experiments for each model.

3.1.3.1 Benchmark Models

(a) VGG16 Model

(b) ResNet34 Model

Figure 3.3: Trainning and Validation Accuracy of VGG16 network and ResNet34

Network without batch normalization or weight initialization.

Figure 3.3 presents the benchmark training and validation accuracy of the
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VGG16 and ResNet34 models. During training, both the training accuracy

and validation accuracy oscillate around 10%. The results show that for deep

learning models without batch normalization or weight initialization, training fails

to converge regardless of the activation function.

3.1.3.2 Benchmark + Weight Initialization

(a) VGG16 Model

(b) ResNet34 Model

Figure 3.4: Trainning and Validation Accuracy of VGG16 network and ResNet34

Network with weight initialization but without batch normalization.

The second set of experiments aims to illustrate the effect of weight initialization

on the performance of deep learning models. After the discovery of the vanishing

gradient issue, researchers sought to understand why standard gradient descent was

performing poorly and to find a way to enable backpropagation in deep networks

without losing the gradient.

Weight initialization was then proposed with the objective of preventing the pre-

activation values of neurons from clustering in the saturated region, as it was found
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that it is difficult for saturated functions, such as Sigmoid and Tanh, to move out

of saturation. To achieve this, the weights of a layer are initialized according to the

structure of the layers, ensuring that the gradients of the neural network are normally

distributed around 0 to avoid vanishing or exploding during backpropagation.

For example, normalized Xavier weight initialization generates the weights for a

fully connected layer with a distribution [17]:

W ∼ U

[
−
√
6√

n+m
,

√
6√

n+m
,

]
(3.1)

where U is a uniform distribution, and n and m are the sizes of the inputs and

outputs for this layer, respectively. Similarly, He weight initialization for ReLU

activation functions aims to produce a weight distribution that avoids the pre-

activation values of ReLU clustering in the negative domain [18]:

W ∼ N(0,
√

2/n), (3.2)

where N(·, ·) is a normal distribution, and n is the number of inputs for the layer.

Figure 3.4 compares the training and validation accuracy of models with different

activation functions after introducing weight initialization techniques. The ReLU

network shows the best performance, as both models converge on the training

dataset without a noticeable performance gap with the validation dataset. The

Tanh network, on the other hand, also converges on the training datasets but only

achieves around 60% validation accuracy. The Sigmoid networks perform the worst,

as both models again fail to converge, even with weight initialization.

An interesting result is observed with the GeLU networks. The GeLU activation

function is known as a potential improvement over ReLU, as it has both non-linear

and non-monotonic regions but shares similar properties with ReLU. However, the

VGG16 model with GeLU fails to converge. This suggests that despite GeLU’s

ability to outperform ReLU in certain cases, it may not be as robust as the widely

adopted ReLU activation.
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3.1.3.3 Benchmark + Batch normalization

Another effective correction for the vanishing gradient problem is the batch

normalization layer. The objective of batch normalization is to re-center and re-scale

the output of the linear affine transformation ϕ so that the intermediate features

have a zero mean and unit variance before being passed to the activation function.

Given an input x(i) at layer i, the linear affine transformation maps the input to

W (i)x(i). A standard batch normalization layer records the mean µ(i) and variance

γ(i) of the historical data to estimate the distribution. After rescaling and resizing

the data to a distribution with zero mean and unit variance, a linear transformation

is then applied to the data using learnable parameters γ(i) and β(i):

z(i)(x) =
W (i)x(i)(x)T − µ(i)

σ(i) + ϵ
γ(i) + β(i), (3.3)

where z(i) is the pre-activation value of layer i.

Based on this idea, other normalization techniques have been proposed, such

as layer normalization [248], group normalization [249], and weight normalization

[250]. To better accommodate different model structures, re-centering and re-

scaling can be applied to different dimensions, including layer normalization,

instance normalization, and group normalization. The experiments in this section

use standard batch normalization and compare the resulting boost in model

performance.

Figure 3.5 shows the training and validation accuracy of the VGG16 and

ResNet34 networks with batch normalization layers. The results show that with

batch normalization, both models with all activation functions are able to converge

on both the training and validation datasets. However, there is a noticeable

performance gap between the models.

Unlike the results in the previous section, the GeLU networks slightly outperform

the ReLU networks, suggesting that GeLU has a better ability to approximate the

objective function but is less robust compared to ReLU. Among the four models,

the Sigmoid networks are shown to be unstable on the validation dataset during
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(a) VGG16 Model

(b) ResNet34 Model

Figure 3.5: Trainning and Validation Accuracy of VGG16 network and ResNet34

Network with batch normalization but without weight initialization.

training. Specifically, while the training accuracy improves, the validation accuracy

can sometimes drop rapidly. This implies that models with the Sigmoid activation

function have worse generalization ability compared to others. This finding is further

explored in Chapter 5.2 with the help of pattern similarity, introduced in Chapter

5.1.

3.1.3.4 Benchmark + Init + BN

The last set of experiments applies both weight initialization and batch normal-

ization to explore whether the performance gap between models with different

activation functions still exists. Figure 3.6 presents the training and validation

accuracy of the models.

Similar to Figure 3.5, all the models are able to converge by the end of training.

The GeLU networks again show better validation accuracy than the ReLU networks,
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(a) VGG16 Model

(b) ResNet34 Model

Figure 3.6: Trainning and Validation Accuracy of VGG16 network and ResNet34

Network with batch normalization and weight initialization.

as seen in Figure 3.5. Moreover, after introducing weight initialization, the validation

accuracies of the Sigmoid networks, although still suffering from overfitting, perform

better than in the previous section. This indicates that the Sigmoid networks are

more heavily dependent on weight initialization.

The setup of this set of experiments, with batch normalization and weight

initialization, is widely recognized as a default structure in recent literature. As

expected, there is a noticeable performance gap between models with different

activation functions, as indicated by the training and validation accuracy illustrated

above.
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3.1.4 Performance Summary

This section summarizes the experiments presented above concerning the effects of

weight and gradient modification techniques. Based on the graphs of training and

validation accuracy, the following statements can be concluded:

� For all activation functions, deep neural networks without any weight modifi-

cation techniques fail to converge.

� ReLU networks are the most robust models with respect to the distribution of

weights, as they are able to provide comparable accuracy on validation datasets

with either weight initialization or batch normalization in both structures.

� GeLU networks can outperform ReLU networks, as discussed in [251], when

the forward pre-activation and backward gradients are properly distributed.

However, GeLU is less robust than ReLU when weights are poorly initialized.

� Tanh networks are also able to converge with only weight initialization, which

implies that issues caused by saturation can be mitigated to some extent.

Therefore, saturation is not the sole determinant of the poorer performance of

these activations.

� Sigmoid networks have the worst performance in the above experiments. While

the networks are able to converge with the modifications introduced, they

exhibit a noticeable accuracy gap compared to other models. Additionally, the

validation accuracy of Sigmoid networks oscillates rapidly as training accuracy

increases, indicating that Sigmoid networks lack generalization regardless of

the network architecture and experiment settings.

Table 3.2 and Table 3.3 present the validation accuracy for VGG16 and ResNet34

across all the experiment sets. The results for ResNet34 are slightly lower than those

for VGG16, which is likely due to the down-sampling layers of ResNet34 in the early

stages. Given the small size of the CIFAR10 dataset (32 × 32), a rapid decrease in
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Sigmoid Tanh ReLU GeLU

Benchmark 10.00 10.00 10.00 10.00

Benchmark + Init 10.00 87.15 89.40 10.00

Benchmark + BN 82.87 85.81 86.76 86.83

Benchmark + BN + Init 89.62 90.16 93.22 93.39

Table 3.2: Validation Accuracy of VGG16.

Sigmoid Tanh ReLU GeLU

Benchmark 10.00 10.48 10.00 10.00

Benchmark + Init 10.00 67.41 87.42 86.42

Benchmark + BN 84.52 84.21 85.05 85.28

Benchmark + BN + Init 87.79 89.70 92.15 92.34

Table 3.3: Validation Accuracy of ResNet34.

sample size can make it challenging for the network to extract features. However,

this does not affect the analysis in this section, which focuses on how deep network

structures affect the performance of different activation functions.

For Sigmoid networks, the accuracy of VGG16 is 89.62% but drops by 1.83% on

ResNet34. In contrast, the accuracy decline for Tanh, ReLU, and GeLU is 0.46%,

1.07%, and 1.05%, respectively. This indicates that Sigmoid networks still struggle

to provide accurate estimations as the network depth increases. However, the drop

in accuracy for Tanh networks is lower than that for ReLU and GeLU.

In this section, we verify the existing literatures by comparing the performance

of several benchmark models with different activation functions. It is found that

there exists the ReLU and GeLU function outperforms Sigmoid and Tanh function

with and without the use of batch normalization and weights initialization.
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3.2 Re-Investigate Over-Saturation

In the previous section, it was confirmed that a distinguishable performance gap

exists between neural networks with different activation functions, as expected.

Notably, this gap also varies depending on the model structure. The first step

in exploring this observation is to determine whether the vanishing gradient issue

still persists in the modified models.

The vanishing gradient issue with Sigmoid activation refers to the phenomenon

where, when the inputs of neurons are extremely large or small, the Sigmoid function

saturates in regions where gradients are nearly zero. This leads to a failure in

the backpropagation process, causing the network to fail to converge. Since its

identification, this issue has been widely accepted as the cause of poor performance

in Sigmoid and other activation functions, such as Tanh. However, this issue was

observed in the early days, before the introduction of other deep neural network

techniques, such as batch normalization [252] and weight initialization techniques

[17], [18]. The empirical results from Table 3.2 and Table 3.3 suggest that with

these modifications, neural networks with saturated activations can converge, but

still exhibit a performance gap compared to other activation functions. Therefore,

it is necessary to investigate whether the problem still exists.

With this objective, this section re-examines the behavior of over-saturated

activation functions in different model structures. In particular, it monitors and

compares the weights and gradients of models with different structures during

training. As discussed in previous works, the problem persists if the gradients of the

network tend to be small for saturated functions, but it can be disregarded if the

models exhibit similar behavior in terms of weights and gradients.

This study begins with simple fully connected models trained on the MNIST

dataset using Sigmoid and ReLU activation functions. It is shown that the post-

activation values, weights, and gradients are distributed around the activated regions

for both ReLU and Sigmoid networks. This suggests that the vanishing gradient

issue for this simple network is properly addressed. However, it is observed that the
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weight updates in the Sigmoid network are less stable than in the ReLU network

during training.

To extend the results to deeper networks, this section then explores the pre-

activation values, weights, gradients, and the weight-to-gradient ratio for VGG16

and ResNet34 models. Similar to the DNN network, it is found that the vanishing

gradient issue is properly addressed, but the stability of training the network is more

challenging for neural networks with deeper structures.

3.2.1 Fully Connected Network

3.2.1.1 Experiment Settings.

A stacked fully connected neural network (FCNN) is used to examine the over-

saturation issue, in line with the experiments that initially discovered the problem.

Both the Sigmoid and ReLU networks consist of 9 hidden layers, each with 256

neurons, and a softmax logistic regression for the output layer. The cost function

is cross-entropy loss, which is widely adopted in classification tasks. Both networks

are trained on the MNIST dataset for 24,000 iterations with a batch size of 128,

using the SGD optimizer and a linear rate scheduler decaying from 0.1 to 0.0001.

3.2.2 Post Activation

Figure 3.7 compares the post-activation values of the Sigmoid and ReLU networks

trained on the MNIST dataset. The solid lines and shaded areas represent the

mean and variance of the post-activation values for 128 fixed test samples and 64

fixed neurons for each layer. It can be observed that the vanishing gradient issue

no longer exists with the recently proposed techniques. For the Sigmoid network,

the post-activation values across all layers have a mean around 0.5 and a variance

around 0.05, with layers 8 and 0 showing the highest variance, while the others

exhibit relatively lower variance. For the ReLU network, the mean post-activation

values are around 0.1, and the variance decreases as the model converges. Notably,
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(a) Post Activatoin of Sigmoid net

(b) Post Activatoin of ReLU net

Figure 3.7: The mean and variance of post-activation values of a network with 9

layers, with 256 neurons within each layer.

these results are consistent across different neuron sets and test sample sets.

These observations indicate that when batch normalization is introduced to the

model, the post-activation values and gradients of the Sigmoid network are no longer

saturated. This suggests that the vanishing gradient issue in the Sigmoid network

can be mitigated by re-centering and re-scaling the values in each layer. However,

despite this improvement, the performance of the Sigmoid network remains far
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behind that of state-of-the-art activation functions. This suggests that there are

other issues preventing Sigmoid activation from achieving optimal performance.

3.2.2.1 Weights and Gradients.

Figure 3.8: Unit wise average gradient of fully connected network where the solid

lines are Sigmoid network and dashed lines are ReLU network

Your text is clear and well-structured. Here’s a slightly refined version for clarity

and flow:

Figure 3.8 and Figure 3.9 present the absolute values of unit-wise gradients and

weights. The experiment settings are the same as described in Section 3.2.1.1. Every

200 steps, the weights and gradients of each layer are recorded and averaged. The

solid lines and dashed lines show the ratios for the Sigmoid and ReLU networks,

with different layers represented by lines in various colors.

Generally, during the early and middle stages of training, the gradients and

weights of both networks exhibit similar behavior. Figure 3.8 presents the weights

of the ReLU and Sigmoid networks. The averaged weights in the Sigmoid network

remain consistent across different layers during training, while in the ReLU network,

the weights are slightly higher in layer 2. Figure 3.9 shows the unit-wise average
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Figure 3.9: Unit wise average gradient of fully connected network where the solid

lines are Sigmoid network and dashed lines are ReLU network.

gradients of the networks. The only notable difference is that the gradients in the

ReLU network are slightly lower than those in the Sigmoid network in the deeper

layers during training. As the networks converge, the gradients across different

layers do not show any distinguishable differences. This suggests that with batch

normalization and weight initialization, the gradients can be properly propagated

back to the shallow layers.

Combining the results from Figure 3.7, Figure 3.8, and Figure 3.9, it can be

concluded that the neurons in both networks are activated, implying that the

vanishing gradient issue is no longer the primary cause of the performance gap

between the networks.

One notable finding from Figure 3.9 is that the averaged absolute value of the

gradients in the Sigmoid network is larger than in the ReLU network during the late

stage of training. However, by this stage, both the training and validation accuracy

show little improvement. This raises the question: Are these weight updates truly

effective in training Sigmoid networks?
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3.2.2.2 Gradients to Weights Ratio

Figure 3.10: Gradient to weight ratio (∂L/∂W
W

) of fully connected network where the

solid lines are Sigmoid network and dashed lines are ReLU network..

To study the stability of network training, the gradient-to-weight ratio is further

analyzed for the fully connected neural network.

Figure 3.10 compares the |∂L/∂W
W
| ratio. At each step, after backpropagation, we

compute |∂L/∂W
W
| for each neuron and average the value every 200 steps. Similar

to previous sections, the lines represent the mean, and the shaded areas represent

the variance of the ratio of neurons at each layer. The solid lines and dashed lines

show the ratio for the Sigmoid and ReLU networks. Due to the high variance in the

ratio for the Sigmoid network, we scale the variance to 0.25 for both networks for

aesthetic reasons.

The variance of the gradient-to-weight ratio can be viewed as an indicator of

training stability. For the ReLU network, the lower variance of the ratio suggests

that the gradients are proportional to their current weights at the neuron level,

making the current weight values a scale factor for the learning rate. Notably,

the variance gradually decreases as training progresses. However, in the Sigmoid

network, the gradient-to-weight ratio of neurons diverges significantly throughout
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training. This observation suggests that during training, the gradients in the

Sigmoid network are less correlated with their weights and are less stable compared

to the ReLU network.

Since the weights and gradients for both models perform similarly during

training, the differences in the unit-wise variance of the gradient-to-weight ratio

between the two networks are not caused by the vanishing gradient issue but by the

nature of the activation function.

To further understand this, Theorem 1 in Section 3.3 provides a theoretical

explanation, showing that the training stability of the Sigmoid network is inherently

less stable. As the model depth increases, the weight update ∆Wi is more likely to

be influenced by its current weight Wi rather than the training samples, leading to

reduced stability during training.

3.2.3 Deep Networks

Before delving into the theoretical analysis, it is essential to verify whether similar

observations can be made for neural networks with deeper structures. This section

investigates the same metrics as those in Section 3.2.1, but applied to VGG16 and

ResNet34 models with additional activation functions. Each model is trained on the

MNIST dataset in the same manner as in Section 3.1, with batch normalization and

weight initialization introduced. The objectives of this section are:

� Examining the vanishing gradient issue in neural networks with deeper

structures to generalize the conclusions.

� Comparing the metrics for neural networks with different activation functions

to provide insights into how activation functions affect training stability.

3.2.3.1 Experiment Settings

The experiments in this section monitor the learning dynamics of VGG16 and

ResNet34 on the CIFAR10 dataset. Each model is trained for 160 epochs using

60



3.2. Re-Investigate Over-Saturation

the SGD optimizer.

3.2.3.2 Pre-Activation

(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.11: Pre Activation Value of VGG16

Figure 3.11 shows the pre-activation values for the VGG16 network at different

layers. The solid lines and shaded areas represent the mean and variance of the

pre-activation values of the network. From light to dark, different colors represent

the values for layer 3, layer 7, layer 11, and layer 15.

The most notable observation is that, with the help of batch normalization, the

averaged pre-activation values for all the networks are centered around 0 across all

layers. For all models, the mean for layer 7 is slightly below 0 but hovers around

-0.2. These results are similar to those observed in the fully connected network.

On the other hand, the variance of pre-activation values for saturated activation

functions (Sigmoid and Tanh) is larger than that of non-saturated activation

functions (ReLU and GeLU), especially in the shallow layers (layer 3 and layer

7). However, the variance for the Sigmoid and Tanh networks is still less than one,
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which means that the majority of neurons are not saturated, despite having a larger

variance than their non-saturated counterparts. Additionally, it is found that for

the deeper layers, the variance gradually converges in most of the networks.

(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.12: Pre Activation Value of ResNet34

Figure 3.12 shows the pre-activation values for ResNet34 at several layers. Most

of the observations from the VGG16 model can also be seen in ResNet34. However,

the variance in ResNet34 is larger than in VGG16.

When combining the variance with model performance, it can be observed that

the variance in the Sigmoid and Tanh networks is larger than in the VGG16 network,

but the gap in validation accuracy between these networks and the ReLU and GeLU

networks is relatively the same. Moreover, the variance in the GeLU network is

larger than in the ReLU network for both VGG16 and ResNet34, yet GeLU slightly

outperforms ReLU. This suggests that the variance of pre-activation values is not a

determining factor in model performance.
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3.2.3.3 Weights and Gradients

Similar to the approach in Section 3.2.1, the next metrics to monitor are the weights

and gradients of the network during training.

(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.13: Weights of VGG16

Figures 3.13 and 3.14 compare the mean and variance of weights in VGG16 and

ResNet34 models. For all activation functions, both VGG16 and ResNet34 exhibit

relatively low-magnitude weights with low variance in the deeper layers (layer 11 and

layer 15). Additionally, as the network converges, the variance of weights in deep

layers becomes even smaller, suggesting that the predictions made by the neural

network are precise and can be easily affected by perturbations.

Conversely, for both network structures, the weights in shallow layers show

significantly larger variance regardless of the activation function. This occurs

because shallow layers serve as feature extractors that process the input to the

model. Compared to the input for deep layers, the input values range from (0,

1) and have a larger magnitude than the pre-activation values in deep layers, as

shown in Figures 3.11 and 3.12. Therefore, the high variance of weights in shallow
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(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.14: Weights of ResNet34

layers is common across all models and cannot be considered a factor contributing

to performance differences.

In general, the model weights of neural networks during training do not show

a clear pattern that can be linked to model performance, making it difficult to

draw insights into the impact of neural network activations. However, the graphs of

gradients are more noteworthy than those in Section 3.2.1.

Figure 3.15 presents the gradients of VGG16 models with different activation

functions during training. For the deep layers, models with different activation

functions exhibit low gradients throughout the training. The gradients in the shallow

layers oscillate rapidly during the early stages of training, indicating that the models

are actively searching for optimal parameters. The magnitude of gradients in the

ReLU and GeLU networks gradually decreases as the models converge. However,

in models with saturated activation functions, the gradients remain highly volatile

even in the later stages of training. Compared to the Tanh network, the gradients

of the Sigmoid network are even more unstable during late-stage training.

64



3.2. Re-Investigate Over-Saturation

(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.15: Gradients of VGG16

(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.16: Gradients of VGG16
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A similar pattern can be observed in ResNet34, as shown in Figure 3.16. The

gradients in the deep layers remain low for all models during training, while the

gradients in the shallow layers behave differently. As the models converge, the

ReLU and GeLU networks gradually stabilize with low average gradients, while the

Tanh network maintains high gradients throughout the entire training process. The

gradients in the Sigmoid network are the most unstable and even increase during

training, as observed in the VGG16 network.

The dynamic behavior of weights and gradients during training differs between

saturated activation functions and others. Intuitively, as the model converges, the

gradient changes should be minimal if the model is approaching optimal parameters.

However, in both the Sigmoid and ReLU networks, the gradients oscillate rapidly

throughout training and even become higher in the later stages. This suggests that

training saturated models is unstable and fails to find optimal parameters.

3.2.3.4 Ratios

This set of experiments compares the ratio between weights and gradients to explore

whether the gradients are affected by the weights. The gradients and weights are

recorded every 200 steps during training. The gradient-to-weight ratio is computed

for each parameter. The solid lines represent the mean gradient-to-weight ratio,

while the shaded areas represent the variance for the model.

Figure 3.17 presents the gradient-to-weight ratio of VGG16 with different

activation functions. It can be observed that for both ReLU and GeLU, the variance

of the ratio is close to 0, with minor outliers in the late stages of training. This

implies that the gradient is largely independent of the model weights. For the Tanh

network, the gradient-to-weight ratio has a variance of around 1.5 to 2 in the early

stages of training, gradually decreasing to 0.5. The Sigmoid network shows the most

instability, with the variance of the ratio increasing to around 3.

A similar pattern can be observed for ResNet34, as shown in Figure 3.18.

Compared to VGG16, both the ReLU and GeLU networks exhibit lower variance
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(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.17: Gradients to Weights Ratio of VGG16

(a) Sigmoid (b) Tanh

(c) ReLU (d) GeLU

Figure 3.18: Gradients to Weights Ratio of ResNet34
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during the early stages of training on ResNet34. The Tanh network shows higher

variance in the middle layers (Layer 7), while the Sigmoid network has slightly lower

variance. In general, the variance for saturated activation functions remains high in

ResNet34.

The plots in this section suggest that the training of models with saturated

activation functions is less stable than that of models with other activation functions.

This instability indicates that the models may struggle to find optimal parameters

during training. To further understand these observations, the next section presents

a theoretical analysis of the learning dynamics of feedforward neural networks.

3.3 Learning Dynamic of Neuron Networks

Theoretically, a deep neural network with non-linear activation functions is capable

of approximating any function. However, the comparison of model performance in

the previous section shows that the Sigmoid and Tanh networks fail to converge

in deeper structures. To verify whether this issue is still caused by the vanishing

gradient problem, the distribution of pre-activation values, weights, and gradients of

all networks during training is further illustrated.

It is found that the pre-activation values of the Sigmoid and Tanh networks are

located within the active region. Moreover, the gradients of saturated activation

functions no longer vanish in shallow layers, indicating that batch normalization

and weight initialization can effectively solve the vanishing gradient issue. However,

it is also observed that the gradients in the Sigmoid and Tanh networks are less

stable than in the ReLU and GeLU networks. In particular, the gradient-to-weight

ratio in these networks exhibits larger variance throughout training, even after the

learning rate decreases. This implies that the weights in these networks oscillate

during training.

To understand the cause of this observation and its impact on model convergence,

this section investigates the training dynamics of neural networks with respect to
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activation functions through a theoretical analysis.

The main result of this section is presented in Theorem 1, which describes the

relationship between gradients and weights in neural networks during training. The

result is derived through several steps:

� First, it begins with the forward propagation of the neural network, focusing

on introducing the notations used in the theoretical analysis in this section.

� Second, it illustrates the dependencies of gradients on the parameters by

computing the partial derivative of ∆W (i)

W (i) . Specifically, the gradient of the

parameterW (i) is expressed in terms of the parameterW (i) itself. By grouping

the variables, it shows how the training process is affected by the current

parameters.

� Finally, it establishes a connection between the variables discussed in the

previous section and the choice of activation function. This explains the

oscillation of gradients and the gradient-to-weight ratio in the Sigmoid and

Tanh networks observed in Section 3.1.

3.3.1 The Forward Propagation

Let N be a feedforward neural network with activation function π defined on

the input space Rn. The mapping function can be expressed as a composition

of functions: f = hd ◦ hd−1 ◦ · · · ◦ h1, where hi is a layer consisting of a linear

transformation ϕi and a non-linear activation function πi.

Given a linear transformation ϕi, such as a fully connected layer, convolutional

layer, or batch normalization layer, it can be viewed as applying a matrix

multiplication followed by a shift. Therefore, ϕi can be represented by a weight

matrix W (i) and a bias b(i).

The training of the neural network aims to minimize the prediction loss on the

training dataset. A training sample is denoted as (x, y), where x ∈ Rn is the

observation and y ∈ RC is the label of the sample. The neural network computes an
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output ŷ = f(x) ∈ Rc, where Rc is the output space with a dimension of c. Since

N is a stacked feedforward neural network, f(x) is a composition of the functions

at each block. Denote x(i), y(i), and z(i) as the input, output, and pre-activation of

block i. Therefore, it can be expressed as:

z(i)(x) = ϕi(y
(i)(x)) = W (i)x(i)(x)T + b(i)(x),

y(i)(x) = π(z(i)(x)),

x(i+1)(x) = y(i)(x).

The equations above illustrate the relationship between the inputs, outputs, and

pre-activation of layer i:

� The linear transformation maps the input vector x(i) to the pre-activation

vector z(i).

� The non-linear activation function π is then applied to the pre-activation z(i)

to obtain the output vector y(i).

� The output of layer i serves as the input for layer i+ 1.

Similarly, the input to the first layer of network N is the input to the network,

and the output of the last layer of network N is the output of the network:

x(1) = x,

y(d) = f(x),

where f(x) is the prediction of the neural network, the label of x is assigned as

ŷ = argmaxi∈y fy(x). For a loss function L, the backward propagation process

computes the gradients of the parameters with respect to the prediction loss L(ŷ, y)

and updates the parameters to minimize the loss accordingly.

To study the stability of the neural network during training, the following section

considers the relationship between the gradient and the weight for a training sample

(x, y). In particular, the next step discusses how the form of activation functions

affects the update of parameters.
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3.3.2 Stability of Backward Propagation

Given a loss function L, at each training step, the network first computes the loss

L(ŷ, y), where (x, y) is the training sample. The backward propagation process then

aims to minimize the loss function by computing the optimal direction for adjusting

the parameters to reduce the loss.

Considering the weights of layer i, the gradient of the weights in layer i is the

partial derivative of L(ŷ, y) with respect to the weights:

∂L(ŷ, y)

∂W (i)
=
∂L(ŷ, y)

∂y(i)
∂y(i)

∂z(i)
∂z(i)

∂W (i)
.

The change of weight ∆W (i−1) regarding learning rate η is:

∆W (i) =
∂L(ŷ, y)

∂y(i)
∂y(i)

∂z(i)
∂z(i)

∂W (i)
η =

∂L(ŷ, y)

∂y(i)
∂y(i)

∂z(i)
y(i−1)η.

Consider the derivative of ∆W (i). Since N is a feedforward network, the output

of layer i− 1 is independent of the weights of layer i. This implies that ∆W (i) is a

function of ∂L(ŷ,y)

∂y(i)
and ∂y(i)

∂z(i)
. The derivative of ∆W (i) with respect to W (i) is:

∂∆W (i)

∂W (i)
= C1

[
∂2L

∂y(i)∂W (i)

∂y(i)

∂z(i)
+
∂L

∂yi
∂2y(i)

∂z(i)∂W (i)

]
, (3.4)

where C1 = y(i−1)η. Since,

∂L

∂y(i)
=

∂L

∂y(d)

n−1∏
j=i

∂y(j)

∂z(j)
∂z(j)

∂x(j)

=
∂L

∂y(d)

d−1∏
j=i

∂y(j)

∂z(j)
W (j).

(3.5)

At each training step, assume that the weights of model is fixed parameter. Given

training sample (x, y), Equation 3.5 can be written as:

∂L

∂y(i)
= C2

∂L

∂yn

where C2 is defined as the value of C2(x, y, θ) =
∏d−1

j=i
∂y(j)

∂z(j)
W (j), which is a function

of training sample x, y and parameters W (j), j = i + 1, . . . , d. As ∂y(j)

∂z(j)
and W (j) is
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irrelevant with W (i), the former part of Equation 3.4 can be arranged as:

∂2L

∂y(i)∂W (i)

∂y(i)

∂z(i)
=
∂ ∂L
∂y(i)

∂W (i)
=

∂2L

∂y(d)W (i)

n−1∏
j=i

∂y(j)

∂z(j)
W (j).

The latter part of Equation 3.4 can be written as:

∂L

∂yi
∂2y(i)

∂z(i)∂W (i)
=

∂L

∂y(d)
∂2y(i)

∂z(i)∂W (i)

d−1∏
j=i

∂y(j)

∂z(j)
W (j)

Then Equation 3.4 then can be formatted as:

∂∆W (i−1)

∂W (i−1)
= C1C2

[
∂2L

∂yn∂W i

∂yi

∂x(i)
+
∂L

∂yn
∂2yi

∂x(i)∂W (i−1)

]
(3.6)

Now we consider the loss function L. For the activations function with linear

derivatives, such as widely adopted mean square error (MSE) and softmax cross-

entropy loss, their derivatives can be written as

∂L

∂y(d)
= a× y(d) + b, (3.7)

where ŷ and y are predicted vector and ground truth vector, a and b are coefficients

of the derivative of the loss function.

3.3.2.1 Activation and Stability

As the last part of the discussion, this section aims to explain the stability of the

training of neural network and connects it with the activation function.

First, consider the former part of Equation 3.6 given a piece wise linear activation.

Since F is a stacked model, W i is multiple once during the forward propagation, so

yn ∝ W (i−1). By combining Equation 3.7 we know that the first multiplier of the

former part is irrelevant with W (i−1). On the other hand, since ∂yi

∂x(i)
is a constant,

the latter part of Equation 3.6 is zero. Recall that the variable C1 and C2 are also

irrelevant with W (i−1). For a network with piece-wise linear activation, Equation

3.6 can be written as:

∂∆W (i−1)

∂W (i−1)
= C0(x, y, θ\{W (i−1)})
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where

C0 = C1C2
∂2L

∂yn∂W i

∂yi

∂x(i)

is a function of x, y and θ\{W (i−1)}. Based on above analysis, we now can yield our

theorem for comparing the learning dynamic of two activations.

Theorem 1. Given a deep neural network with piece-wise linear activation, if the

derivative of loss function L(ŷ, y) is linear, then for a given training sample (x, y),

∆W i ∝ W i, i = 1, 2, ....n, where W i is the weight of ith layer.

Proof. Given a d layer deep neural network N with ReLU activation and training

sample (x, y), denote x(k), y(k) and θk = {W k, bk} as input, output, and parameters

of layer k, k = 1, . . . , N . Note that y0 = x and yN = ŷ. For the forward pass we

have:

xk = W (k−1)y(k−1) + bk−1,

y(k) = fk(xk),

where weight W (i−1) ∈ Rni×ni−1 and the bias bi−1 ∈ Rnl. Given a loss function

L(ŷ, y) and a training instance (x1, y1), the change of weight ∆W (i−1) regarding

learning rate η is:

∆W (i−1) =
∂L

∂W (i−1)
η =

∂L

∂yi
∂yi

∂x(i−1)

∂x(i−1)

∂W (i−1)
η

=
∂L

∂yi
∂yi

∂x(i−1)
y(i−1)η.

where ∆W (i−1) is a function of xi, yi, θ. Now we consider the derivative of ∆W (i−1):

∂∆W (i−1)

∂W (i−1)
= C1

[
∂2L

∂yi∂W (i−1)

∂yi
∂x(i−1)

+
∂L

∂yi
∂2yi

∂x(i−1)∂W (i−1)

]
where C1 = y(i−1)η. Since

∂L

∂y(i)
=

∂L

∂y(i+1)

∂y(i+1)

∂x(i)
∂x(i)

∂y(i)
=

∂L

∂y(i+1)

∂y(i+1)

∂x(i)
W (i)

we have
∂L

∂y(i)
=

∂L

∂yn

n−1∏
j=i

∂y(j+1)

∂x(j)
W (j) (3.8)
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then for a fixed model Fθ and a training sample (x, y),

∂L

∂y(i)
= C2

∂L

∂yn

where C2 is a constant defined, as the value of C(x) =
∏n−1

j=i
∂y(j+1)

∂x(j)
W (j) with an

input x. Therefore, equation 3.4 can be replaced as:

∂∆W (i−1)

∂W (i−1)
= C1C2

[
∂2L

∂yn∂W i

∂yi

∂x(i−1)
+
∂L

∂yi
∂2yi

∂x(i−1)∂W (i−1)

]
As the ReLU activation function is designed as:

relu(x) =

x, x > 0

0, elsewise

the derivative of ∆W (i−1) can be written as:

∂∆W (i−1)

∂W (i−1)
=


C0

∂2L

∂yn∂W i
, x(i−1) > 0

0, elsewise

(3.9)

Consider the back propagation with soft max activation and cross entropy loss.

For the last layer, it can be shown that:

ŷj = ς(xN)j =
ex

N
j∑C

c=1 e
xNc

where C is the number of neurons within last layer, also known as the number of

classes for classification problem. Denote
∑C

c=1 e
xNc as S. The derivative of above

equation can be written as:

∂ŷj
∂xNi

=
∂ e

xNi

S

∂xNi
=


ex

N
i S − exNi exNi

S2
= ŷj(1− ŷj) i = j

0− exNi exNi
S2

= −ŷj ŷj i ̸= j

(3.10)

The cross entropy loss function L(y, ŷ) then is:

L(y, ŷ) = −
C∑
c=1

δc · log(ŷc)
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where δc is 1 if and only if sample belongs to class c. Therefore, for the last layer,

we have
∂L(y, ŷ)

∂xNi
= −

C∑
c=1

δc∂ log(ŷc)

∂xNi
= −

C∑
c=1

tj
1

ŷc

∂ŷc
∂xNi

By introducing equation 3.5 to above equation, we have:

∂L(y, ŷ)

∂xNi
= −yi + ŷi

then equation 3.12 becomes:

∂∆W
(i−1)
l,m

∂W
(i−1)
l,m

=


C0

C∑
c

∂(−yc + ŷc)

∂wil,m
, x(i−1)

m > 0

0, elsewise

(3.11)

As each layer’s weight is only multiplied once during the forward pass, Equation

3.10 is either 0 or a constant, which implies that ∆W i ∝ W i.

Theorem 1 suggests that if a model’s loss function has a linear derivative and

is built with a piece-wise linear activation function, the gradient of each neuron is

linear with respect to its current weight value. This implies that the weight W i

can be viewed as a scale for the learning rate. Specifically, with other layers frozen,

given a training sample (x, y), the weight update can be written as:

∆W i = C(x, y,W i) · η (3.12)

where C is a function of the training sample and the current weight. By the nature

of deep neural networks, the complexity of the function C increases as the model

becomes deeper. For a network with piece-wise linear activations, according to

Theorem 1, ∆W i can be reformatted as C ′(x, y) ·W i ·η. In other words, the training

of such networks depends primarily on the provided sample, making it more stable.

3.4 Illustrations

Following the theoretical analysis provided in the previous section, this section

aims to empirically demonstrate how the weights of a neural network affect the
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training dynamics. Specifically, a unit-wise analysis of a toy model is presented to

understand the ability of networks with different activation functions to approximate

an objective function.

3.4.1 Settings of Toy Model

This section uses a toy model to approximate a simple function, with the objective of

understanding the behavior of each neuron during model convergence given different

weight statuses. The model is a neural network with a 1D input, 1 hidden layer

with 10 neurons, and a 1D output. The focus of this section is on ReLU networks

and Sigmoid networks to better understand their performance differences. The

parameters of the models are initialized from different distributions. To differentiate

the model settings, the models are denoted as:

� ReLU(w, b): A network with a ReLU activation function, where the weights

and biases are initialized from a random uniform distribution [−w,w] and

[−b, b], respectively.

� Sigmoid(w, b): A network with a Sigmoid activation function, where the

weights and biases are initialized from a random uniform distribution [−w,w]

and [−b, b], respectively.

The objective function to be approximated by the toy model is

y = 2 cos(πx) + x(x− 1) + 1. (3.13)

During the training, an epoch of samples is set as the data pair xi, f(xi), where xi

is an arithmetic sequence in [−1, 1]. All the models are trained with a learning rate

of 0.001 until they reach convergence. There are two benefits to presenting this toy

model:

� First, with a limited number of neurons, the objective function cannot be

perfectly approximated. This limitation is more likely to expose potential

issues in neural networks with different activation functions.
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� Second, by illustrating the post-activation values, weight gradients, and bias

gradients of each neuron, the training dynamics of neural networks with

different activation functions can be compared.

For each model, the upper figure presents the following results:

� The ground truth value of the objective function y(x), shown in red.

� The predicted value of the model ŷ(x), shown in blue.

� The post-activation values y
(1)
i of each neuron, depicted in different colors.

This means that

ŷ(x) =
10∑
i=1

y
(1)
i . (3.14)

Similarly, the lower figure reports the neuron-wise gradient ∂L(ŷ(x), y(x))/∂W
(1)
i in

different colors given the input x.

3.4.2 ReLU net vs Sigmoid net

The experiment is designed to explore the performance of the ReLU net and Sigmoid

net with varying weight initializations. Due to the different natures of the ReLU

and Sigmoid activation functions, distinct parameter sets are used for each network.

The selected parameter sets for the models are as follows:

� ReLU net: ReLU(15, 1), ReLU(5, 1), ReLU(1, 1), ReLU(1, 0),

� Sigmoid net: Sigmoid(50, 50), Sigmoid(15, 15), Sigmoid(15, 0), Sigmoid(1, 1)

These configurations are chosen to understand how different activation functions

and initializations impact the training dynamics and performance of neural networks.
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(a) ReLU(15, 1)

(b) Sigmoid(15, 15)

Figure 3.19: The performance and gradients of the dense networks with 1-d input,

1 hidden layer with 10 neurons, and 1-d output.
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3.4.2.1 Best Performance Case

The investigation starts with comparing the models with the best performances.

Figure 3.19 shows the performance of the model for ReLU(15, 1) and Sigmoid(15,

15). The upper parts illustrate the fitted curve after 500 and 2000 epochs, as well as

the post-activation value of each neuron. The lower parts describe the gradients of

W and b with respect to a single instance (x, y). Notice that because of the different

forms between ReLU and Sigmoid functions, the breakpoints of ReLU(15, 1) and

the center of Sigmoid(15, 15) are uniformly distributed around 0.

Figure 3.19(a) shows the result of ReLU(15, 1). After 2000 epochs of training,

the estimated function has a relatively small mean square error. However, there

are several fitting gaps where the fitted curve is linear while the desired function

is curvilinear, such as the region from [0.2, 0.5] and [0.6, 1]. This is caused by the

nature of the piece-wise linear activation function. As the toy model has only 10

neurons, it can only approximate the objective function with a piece-wise linear

function with limited pieces.

Figure 3.19(b) presents the fitted curve of Sigmoid(15, 15), which shows better

performance than its ReLU counterpart. However, one concerning finding is that the

post-activation value of most neurons remains unchanged regardless of the input. In

fact, only 3 neurons (orange, pink, and brown) are proactively contributing to the

prediction, while the others can be viewed as constant.

The illustration in this section shows the neuron-level behavior in the simple

model. It is noted that there are potential issues with both the ReLU net and the

Sigmoid net. Intuitively, as model complexity increases, the ReLU net can create

more piece-wise linear regions, allowing for a more precise approximation. However,

for the Sigmoid net, since most neurons do not contribute to the prediction, this

issue cannot be resolved merely by scaling the size of the network. This problem is

referred to as the dying neuron problem. The next part of this section demonstrates

that while the dying neuron issue is exacerbated when the Sigmoid net has poor

initialization, it rarely affects the performance of the ReLU net.
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3.4.2.2 Dying Neuron Issue

(a) ReLU(1, 1) (b) ReLU(15, 1) (c) ReLU(15, 0)

Figure 3.20: The performance and gradients of the model with ReLU activation. The

upper graphs show the objective function, predicted results and the post-activation

of each neuron of 1000 epoch training. In each of the figures, the red and blue

lines represent the objective function and the predicted result, while each other line

represents the post-activation (upper) and gradient (lower) value of a neuron.

Figure 3.20 and Figure 3.21 present results similar to those in Figure 3.19, but

with different parameter sets. The upper graphs show the contribution of each

neuron, the predicted value of the network, and the ground-truth value of the

function. The predicted value and ground-truth value are shown in blue and red,

respectively, while other curves represent the contribution of each neuron to the

output. The lower graphs show the gradient of each neuron with respect to the

input x.

Figures 3.20(a) to 3.20(c) display the results for ReLU(1, 1), ReLU(15, 1), and
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(a) Sigmoid(1, 1) (b) Sigmoid(15, 0) (c) Sigmoid(50, 50)

Figure 3.21: The performance and gradients of the model with the Sigmoid

activation. The upper graphs show the objective function, predicted results and

the post-activation of each neuron of 1000 epoch training. In each of the figures, the

red and blue lines represent the objective function and the predicted result, while

each other line represents the post-activation (upper) and gradient (lower) value of

a neuron.

ReLU(15, 0). These figures reveal that the three models have similar performance

regardless of initialization. This can be explained by the weight gradient graphs.

Since ReLU is known for its asymmetry, it only responds to inputs x in half of

its domain. Consequently, the gradients of ReLU are not neutralized by evenly

distributed inputs within a defined domain. This means that the training of ReLU

nets is less sensitive to weight initialization and more stable due to the asymmetry.

Among the three Sigmoid models, Sigmoid(1, 1), shown in Figure 3.21(a), has

the worst performance, with almost all neurons yielding a constant regardless of

the input. However, the gradient of the model with respect to an epoch of inputs
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is non-zero. Due to the symmetry and limited range of the sigmoid activation

function, the gradients of different samples cancel each other out. Therefore, instead

of finding the global optimum, the training merely adjusts each neuron to a constant

c such that
∫
(f ′
i(x) − c)dx ≈ 0, where f ′

i is the gradient of neuron i. The only

neuron that can provide useful information is colored purple due to its relatively

high gradients around 1. Moreover, because the weight initialization is centered

with less diversity, the backpropagation process fails to find the steepest direction for

each input. Figures 3.21(b) and 3.21(c) show the performance of Sigmoid(15, 0) and

Sigmoid(50, 50). Compared with Sigmoid(1, 1), Sigmoid(15, 0) and Sigmoid(50, 50)

demonstrate better performances. However, the dying neuron issue still persists. For

Sigmoid(15, 0), the small initialized bias causes most of the post-activation functions

to be centered around zero, resulting in underfitting of the non-zero regions.

3.4.3 Search of Optimum Parameters

(a) Loss Mean of Sigmoid (b) Loss Mean of ReLU

Figure 3.22: Average Loss of model with different initialization value.

To better compare the effect of initialization on the model performance of ReLU

and Sigmoid activations, the average performance of the models with different

initializations is shown in Figure 3.22. For each set of initialization values (w, b),

weights and biases are initialized from U(−w,w) and U(−b, b) respectively, where

U denotes a random uniform distribution. The model is trained 50 separate times
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for each set of parameters.

The average loss for the Sigmoid activation function forms a U-shaped surface

centered around the line w = b. This indicates that the performance of the

Sigmoid model is influenced by both weight and bias initialization. In contrast,

the average loss for the ReLU activation function is an inclined plane where the loss

is predominantly determined by bias initialization. In other words, to achieve the

potential best performance of a Sigmoid net, more precise requirements for both

weight and bias initialization need to be met.

3.5 Chapter Summary

This chapter serves as an introduction to the research undertaken in this dissertation,

with the motivation of investigating the widely recognized performance gap among

neural networks with different activation functions. The results reveal that a dying

neuron issue is observed when the model becomes trapped in a local optimum.

Similar to the gradient vanishing issue, the dying neuron issue also prevents the

model from updating its weights. However, while the gradient vanishing issue arises

due to overly saturated gradients, the dying neuron issue occurs because gradients

from different samples can cancel each other out, making it difficult for the model to

update. Moreover, once a neuron is trapped in a local optimum, it produces similar

results regardless of the input. Due to the symmetry of the Sigmoid activation

function, this issue is more pronounced in Sigmoid networks, contributing to the

performance gap between ReLU and Sigmoid networks.

At the beginning of this chapter, Section 3.1 confirms the widely acknowledged

statement that there are performance differences between neural networks with

different activation functions. To understand the performance gap between neural

networks with different activation functions, Section 3.2 re-investigates the vanishing

gradient issue by monitoring pre-activation values, weights, and gradients of

networks at different layers. The results indicate that the vanishing gradient
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issue has been addressed by more recent techniques. Additionally, an instability

in gradients and the gradient-to-weight ratio is observed in networks with poorer

performance.

Section 3.3 provides an explanation of these observations by presenting a

theoretical analysis of the training dynamics of neural networks. By examining

the learning dynamics of deep networks, it is shown that for networks with Sigmoid

and Tanh activations, the training is heavily influenced by the current status of the

weights. The parameters of these networks tend to oscillate, preventing the network

from reaching its optimum.

Section 3.4 bridges the theoretical investigation with empirical results by

illustrating the weights and gradients of a toy model. This experiment aims to

show how weights affect model performance by studying the behavior of individual

neurons in networks with different weight initializations. It is found that, due to the

symmetry of the Sigmoid and Tanh activation functions, once a neuron is trapped

in a local optimum region, weight updates tend to cancel each other out, making it

difficult for the neuron to escape this region.

With several introductory experiments in this Chapter, it is shown that there

still exists performance difference between neural networks with different activation

functions after the use of batch normalization and weight initialization. This

suggests that it is worth to further investigate the performance of neural network

from activation function perspective.
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Chapter 4

Activation Pattern, Path and the

Framework

This chapter introduces the analytic framework of this dissertation. The theoretical

basis of this work is developed from the analysis of the activation region that was

initially proposed for explaining the performance of neural network with a piece-

wise linear activation function. The input domain of such a neural network N is

separated into many regions, within each of the region the mapping ofN is piece-wise

linear. Previous research of this field includes the expressive ability, sensitivity, and

potential issues of the network [170], [182]. However, there are several research gaps

in the existing literatures, which are discussed and addressed by this dissertation as

followed.

� First, the definition of activation regions is based on neural networks with

piecewise linear activation functions but fails to consider other activation

functions. This chapter generalizes the definition to accommodate other

activation functions, allowing for a more appropriate investigation of neural

network performance with different activation functions.

� Second, due to the complexity of neural networks, previous works began by

studying the properties of single activation regions. To better understand
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neural networks, it is necessary to describe the mapping relationships of the

network across different activation regions. This chapter introduces float

neurons and fixed neurons to describe the stability of neurons and to build

connections between the mapping functions in different activation regions.

There are 5 sections in this chapter. Section 4.1 introduces the notations for

neural network in this work. Section 4.2 introduces the concepts used in this

dissertation, including the generalized activation pattern. As the cornerstone of

the theoretical framework in this work, a special focus is placed on explaining the

motivation and discussing the benefits of these concepts. In particular, the definition

introduced in this section divides the domain of activation functions into regions and

uses an indexed family to record the signs of neurons. This addresses the research

gap where activation patterns could only be applied to piecewise linear functions

and could not be extended to larger regions.

Section 4.3 generalizes the idea of describing neural network performance based

on the status of neurons from a single activation region to a larger subspace. It

begins by studying two activation regions that are separated by a bent hyperplane,

referred to as adjacent activation regions, and then discusses the generalized cases.

After defining the main concepts and basic properties, Section 4.4 presents illus-

trations of the proposed concepts with the objective of aiding in the understanding

of the definitions. Section 4.5 summarizes the framework.

4.1 Neural Network and Mapping Functions

The main objective of this dissertation is to investigate the interpretability of

feedforward neural networks. Therefore, unless otherwise specified, neural networks

in this work refer to feedforward neural networks designed to solve classification

tasks.

Assume that the classification task has c different classes under the distribution

D = Dx × Dy, where Dx and Dy are the distributions of observations x and labels
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y for the samples. Denote the support of Dx and Dy are Rn × {1, 2, ..., c}, which

means that:

x ∈ Rn, y ∈ {1, 2, ..., c}, (4.1)

For every (x, y) ∼ D. In other words, given (x, y) sampled from the joint

distribution, the observed data x is a variable from the Rn space, while y is the

label of the data. Under the trivial assumption that the data distribution Dx has

no atoms, this means that for any x0 ∈ Rn, the probability P(x = x0) is zero:

P(x = x0) = 0, ∀x0 ∈ Rn. (4.2)

The classification task aims to build a model to predict the label based on the

observation x. To address this task, the datasets Dtrain, Dval, and Dtest are drawn

from the data distribution for training, validating, and testing the model.

In this work, the model is a feedforward neural network N . Denote π as the

activation function of the network, and let θ be the parameter set of the model.

The parameter set is assumed to have measure zero with respect to the Lebesgue

measure. Let f : Rn → Rc be the mapping function of N . Therefore, for an

observation from the data distribution x ∼ Dx, the neural network N computes an

output f(x) ∈ Rc, where Rc is the output space with a dimension of c. The label of

x is predicted as ŷ = argmaxi∈1,2,...,c fi(x).

Assume that the network has d blocks: f = hd◦hd−1◦· · ·◦h1. For i ∈ {1, 2, . . . , d−

1}, each block is defined as hi = πi ◦ ψi ◦ ϕi, where πi, ψi and ϕi are the activation

function, batch-normalization layer and linear affine of layer i, respectively. The last

layer hd = ψd ◦ ϕd omits the activation function. The intermediate outputs depend

on both the input and model parameters, therefore can be viewed as functions.

Given input x, the input, output and pre-activation of block hi are then represented

as x(i)(x;θ), y(i)(x;θ) and z(i)(x;θ). This implies that the input and output of the

model then can be denoted as x = x(1)(x;θ) and f(x) = y(d)(x;θ). Denote the
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Data Distribution and Spaces

(x, y) Data, label pair draw joint distribution Dx × Dy.

Dx Data distribution of input x.

Dy Data distribution of output y.

Rn Input space with n dimensions.

Rc Output space with c dimensions.

R An subspace in input space Rn

Network Input, Output and Pre-activation

N Neural network.

f Mapping function of network.

θ Parameter set of network N .

hi The i-th block in neural network N : hi = πi ◦ ψi ◦ ϕi.

ϕi The linear affine of layer i.

ψi Batch-normalization of layer i.

πi Activation function of layer i.

W (i) The equivalent matrix of ψi ◦ ϕi.

β(i) The equivalent shift parameter of ψi.

x
(i)
j (x; θ) The j-th input of i-th block given x and parameter θ.

y
(i)
j (x; θ) The j-th output of i-th block given x and parameter θ.

z
(i)
j (x; θ) The j-th pre-activation value of i-th block given x and parameter θ.

Table 4.1: Notations of Data Distribution and Neural Network

dimension of output of each layer as ni, which implies:

y(i)(x;θ) ∈ Rni

z(i)(x;θ) ∈ Rni

x(i)(x;θ) ∈ Rni−1

.

(4.3)

Figure 4.1 illustrates the input, pre-actiavtion and output for a blcok. For
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Figure 4.1: An illustration feedforward neural network block. (1): Input of layer

i x
(i)
j (x; θ); (2) linear affine ϕi (3) batch normalization layer ψi (4) pre-activation

z
(i)
j (x; θ) (5) activation function πi (6) block output y

(i)
j (x; θ)

reading continence, when the parameter set is fixed, x(i)(x;θ), y(i)(x;θ) and z(i)(x;θ)

are abbreviated as x(i)(x), y(i)(x) and z(i)(x).

Since the only nonlinearity in a feedforward neural network is provided by the

activation function, the transformation of block i’s input, x(i), to the pre-activation

of block i can be written as a linear affine transformation. In other words, the

composition of ψi ◦ ϕi can be represented by an equivalent matrix W (i) ∈ Rni−1×ni

and an equivalent shift vector β(i) ∈ Rni
:

z(i)(x) = ψi ◦ ϕi(x(i)(x)) = W (i)x(i)(x) + β(i). (4.4)

Table 4.1 summarizes the notations introduced in this section. Throughout this

dissertation, the notations for the neural network and the data distribution will

remain unchanged unless otherwise specified.

4.2 Activation Pattern / Region

This section defines the basic concepts of this dissertation. The research undertaken

in this dissertation revolves around the activation functions of neural networks. In

particular, the framework proposed in this work is developed from the activation

pattern of the piecewise linear activation function.

As the starting point of the theoretical analysis in this research, this section

first introduces a generalized definition of the activation pattern, focusing on the
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improvements proposed in this work as well as the motivation behind them. Next,

an explanation of the activation pattern and activation region is presented to provide

a better understanding of the relationship between them. Finally, several properties

of the mapping function within an activation region, including convexity, continuity,

and Lipschitz properties, are discussed.

4.2.1 Definition

Given a neural network N with a piecewise linear activation, the input domain

is partitioned into numerous regions. Within each region R ⊂ Rn, the mapping

function f : R → Rc is linear, meaning that:

f(x)− f(x′) = k(x− x′),∀x, x′ ∈ R. (4.5)

Within each of these linear regions, the linearity of each neuron remains unchanged if

the region is convex. Based on this observation, the input space can be decomposed

into numerous linear regions. Each region can be described by assigning each neuron

a sign that indicates its activation status. The region and the corresponding set of

signs are then referred to as the activation region and activation pattern, as defined

in previous works [19], [170]. In this work, this definition is generalized and restated

as follows.

� The definition proposed in this work removes the piecewise linear constraint

for the activation functions. Instead of separating the activation function

according to piecewise linearity, it uses a set of breakpoints to partition the

domain of the activation function, which enables the investigation of neural

networks with continuous activation functions.

� In addition to assigning each neuron a sign, the generalized definition

introduces an indexed family to label each neuron. This allows tracking the

status of neurons across a dataset. In particular, as the neurons are indexed,

the activation patterns of different data points x,x′ ∈ Rn are comparable,
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which helps to understand how the mapping function changes for different

data.

Definition 1 formally states above observation and extends it to a general

activation.

Definition 1 (Generalized Activation Pattern / Region). Let N be a feed for-

ward neural network defined as in Section 4.1. A set of breakpoints Γ =

{γ1, γ2, . . . , γq} separates the domain of activation function π into q + 1 intervals

U = {U0, U1, . . . , Uq}, where

Ui =


(−∞, γ1), i = 0,

(γi, γi+1), i = 1, . . . , q − 1,

(γq,+∞), i = q.

An activation pattern of N is an indexed family

A := {a(i)j |a
(i)
j ∈ {0, 1, . . . , q}, (i, j) ∈ I}. (4.6)

Given a pattern A, the corresponding activation region is defined as:

R(A; θ, π,Γ) := {x ∈ Rn|z(i)j (x;θ) ∈ U
a
(i)
j
, a

(i)
j ∈ A} (4.7)

where z
(i)
j (x;θ) is the pre-activation value of j-th element in layer i. Conversely,

for any x ∈ Rn, the pattern of x is denoted as:

Â(x;θ, π,Γ) = {â(i)j (x)|(i, j) ∈ I} (4.8)

where:

â
(i)
j (x;θ, π,Γ) =

k, z
(i)
j (x;θ) ∈ Uk,

abstained, z
(i)
j (x;θ) ∈ {γ1, γ2, . . . , γq}

(4.9)

Moreover, if π is continuous within every interval Ui, the Γ is a continuous

separation of the network N .
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4.2.2 Understanding Activation Region / Pattern

To understand the concept of an activation pattern, the start point of this section

is Equation 4.7, which is restated below:

R(A; θ, π,Γ) := {x ∈ Rn|z(i)j (x;θ) ∈ U
a
(i)
j
, a

(i)
j ∈ A}

Given a network N and an input space Rn, the generalized activation pattern

A describes the activation status of each unit in the intermediate layers. Figure 4.2

demonstrates how the Sigmoid and ReLU activation are separated by breakpoints

{−3, 3} and {0}. Given x ∈ Rn, the pre-activation of the j-th neuron in layer

i is denoted as z
(i)
j (x;θ). Consider N has Signmoid activation function, if the

z
(i)
j (x;θ) < −3, then the pattern of neuron (i, j) for input x is 0:

â
(i)
j (x;θ, π,Γ) = 0. (4.10)

Similarly, the pattern of (i, j) is then 1 or 2 if z
(i)
j (x;θ) is in (−3, 3) or (3,∞),

respectively. For every x ∈ R(A; θ, π,Γ) in the corresponding activation region, the

pre-activation value of each neuron z(i)j(x; θ) lies within the a(i)j-th interval of the

activation π domain. This means that the activation region can be viewed as an

operator R(·) that maps an indexed family A to a subspace R ⊂ Rn. It identifies

the region R(A; θ, π,Γ) such that

z
(i)
j (x) ∈ U

a
(i)
j
,∀x ∈ R(A; θ, π,Γ),

where z(i)j(x) is the pre-activation value of neuron (i, j), Ua(i)j is the a(i)j-th interval

from the separation Γ, and a
(i)
j ∈ 0, 1, . . . , q is the pattern of neuron (i, j).

To better elaborate the activation pattern of a neuron, Figure 4.2 demonstrates

how the Sigmoid and ReLU activation are separated by breakpoints {−3, 3} and

{0}. Given input x and a neuron (i, j),

Based on previous works [170][253], Equation 4.8 further introduces an inverse

operator Â(x; θ, π,Γ) that computes the activation pattern of an input x ∈ Rn

in Definition 1. This allows for the study of the robustness of the network by
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Figure 4.2: An illustration of how a set of breakpoints separate the domain of an

activation function into different regions.

investigating the stability of the activation pattern in the sphere Bp(x, r). When

dependencies are fixed, Equations 4.7 and 4.8 are abbreviated as R(A) and Â(x).

With a set of breakpoints, the activation function can be split into several parts

according to its mapping relationship. For example, the set 0 separates ReLU into

activated and deactivated regions, while the set −1, 1 separates tanh into two semi-

constant regions at the sides and a semi-linear region around 0. When dependencies

are fixed, Equations 4.7 and 4.8 are abbreviated as R(A) and Â(x). At the same

time, the breakpoints and the network N define a set of hyperplanes:

Hijk := {x|z(i)j (x;θ) = γk}, i ∈ [d], j ∈ [ni], k ∈ [q], (4.11)

where [n] = 1, 2, . . . , n and ni is the output size of block i. The input space is then

divided into numerous connected components by Hijk. For a given region R, the

post-activations of each neuron for any x and x′ ∈ R are within the same interval,

which means that:

(z
(i)
j (x)− γk)(z(i)j (x′)− γk) > 0,∀x,x′ ∈ R, ∀i, j, k

This suggests that the non-linearity of each neuron within a region R is similar.

Moreover, the activation pattern identifies the status of each neuron and provides a

way to describe the mapping function in each region.
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4.2.3 Regions and bent hyperplanes

Given a neural network N , the input space is partitioned into numerous connected

components R by a set of hyperplanes defined in Equation 4.11:

Hijk := {x|z(i)j (x;θ) = γk}, i ∈ [d], j ∈ [ni], k ∈ [q],

where each of the hyperplanes is defined by neuron (i, j) and the k-th breakpoint.

The activation pattern of data in each of the connected components R is the same.

This means that the non-linearity of the neural network N is constrained by the

activation pattern of neurons within the region R. In particular, if the activation

function of network N is piecewise linear, then the neural network N behaves as a

linear function in region R.

In Definition 1, each neuron is assigned a pattern based on its pre-activation

value. Given a set of breakpoints Γ and a data point x ∈ Rn, the post-activation

value of each neuron is either within an interval z(i)j(x;θ) ∈ Uk defined by its

activation pattern or equals one of the breakpoints z(i)j(x;θ) ∈ Γ:

â
(i)
j (x;θ, π,Γ) =

k, z
(i)
j (x;θ) ∈ Uk,

abstained, z
(i)
j (x;θ) ∈ {γ1, γ2, . . . , γq}

(4.12)

The first case indicates that the post-activation value of neuron (i, j) for input

x is in the interval Uk, k ∈ 0, 1, . . . , k. In this case, a sign k will be assigned to this

neuron for data x. The latter case, on the other hand, suggests that z(i)j(x,θ) = k.

This means that neuron (i, j) satisfies Equation 4.11 at breakpoint k for input x,

and therefore x is located on the bent hyperplane Hijk.

To conclude the above two cases, given any data x ∈ Rn, x is either located

within an activation region or on a bent hyperplane. In other words, the input

space can be decomposed into a set of activation regions and bent hyperplanes.

This is described by the following lemma.

Lemma 1 (Decompose Input Space). Let N be a feedforward neural network as

defined in Section 4.1 with a monotonic activation function π. Given Γ as a
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continuous separation of network N , the input space can be expressed as:

Rn =

[⋂
∀A

R(A;θ, π,Γ)

]⋃[ ⋂
∀i,j,k

Hijk(θ)

]
(4.13)

where R(A;θ, π,Γ) is the activation region of pattern A, Hijk is the bent-hyperplane

defined as Equation 4.11.

Proof (Lemma 1). Lemma 1 can be proved directly according to the definition. For

any x ∈ Rn, the pre-activation value for each neuron (i, j) is either:

� locates within an interval Uk

� equals to one of the breakpoints qk.

For the first case, without loss of generality, assume that z
(i)
j (x;θ) ∈ U

a
(i)
j
, then the

pattern of neuron (i, j) is a
(i)
j . If every neuron satisfies the first case on data x, then

every neuron can be assigned a pattern accordingly. The activation pattern of x is

then defined as:

A := {a(i)j |(i, j) ∈ I},

therefore x is in the activation region R(A;θ, π,Γ).

Otherwise, if there exists m neurons {(i1, j1), (i2, j2), . . . , (im, jm)} satisfies the

second case, then assume that :

z
(il)
jl

(x;θ) = γkl , l = 1, 2, . . . ,m.

This means that x is on the intersection of a set of bent-hyperplanes {Hiljlkl}.

Summarizing above, for every input x ∈ Rn, x is either in an activation region

or on a bent-hyperplane:

x ∈

[⋂
∀A

R(A;θ, π,Γ)

]⋃[ ⋂
∀i,j,k

Hijk(θ)

]
,∀x ∈ Rn.

Moreover, by definition, the activation region and bent-hyperplane are defined in the

Rn. This means that:

x ∈ Rn,∀x ∈

[⋂
∀A

R(A;θ, π,Γ)

]⋃[ ⋂
∀i,j,k

Hijk(θ)

]
.

This leads to the conclusion of Lemma 1.
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Under the trivial assumptions in Section 4.1, the data distribution has no atoms,

and the parameter set of the neural network N has zero measure with respect to

the Lebesgue measure. In other words, given x ∼ Dx, Equation 4.11 holds with

probability 0 for any i, j, k, as described by Lemma 2.

Lemma 2 (Within Activation Region). Let N be a feed forward neural network

defined as in Section 4.1 with piece-wise linear function π. Assume that the data

distribution D has no atom:

P (x = x0, y = y0) = 0,∀(x0, y0) ∈ Rn × Rc,

then given x ∈ Rn, almost surely, there exists an activation pattern A such that

x ∈ R(A). In other words, the probability of x locates on a bent-hyperplane is 0:

P (z
(i)
j (x) = γk) = 0, ∀i, j, k. (4.14)

Proof (Lemma 2). The first step in proving Lemma 2 is to measure the volume

of the hyperplane Hijk in the Rn space. Let I be the index set of the network N ,

as defined in Equation A.1. Denote IC := I\(i, j) ⊂ I as the set of neurons that

excludes neuron (i, j). Given such a dataset, consider AIC to be an incomplete

activation pattern, which defines an incomplete activation region R(AIC ).

The bent hyperplane Hijk can be written as the union of all the segments:

Hijk =

 ⋃
∀R(AIC )

(R(AIC ) ∩Hijk)

⋃( ⋃
∀i′ ̸=i,j′ ̸=j,k′ ̸=k

(Hi′j′k′ ∩Hijk)

)
(4.15)

Using the fact that the Lebesgue measure is countably additive, Lemma 2 can be

proved by showing that each of the intersections is of measure zero.

First, consider the former part of the above equation. Given an incomplete

activation region, the mapping in region R(AIC ) is a linear function since the

activation function π is piecewise linear. Therefore, the pre-activation function

z
(l)
m (x) is also a linear function:

z(l)m (x) =< x− b, a >,
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where a and b are the scale and shift factor of the linear mapping. Let R(l)
m be the

subspace that satisfies the constraint for neuron (l,m):

R(l)
m := {x ∈ Rn|z(l)m (x) ∈ U

a
(l)
m
},

where z
(l)
m (x) is the pre-activation of neuron (l,m), a

(l)
m is the pattern of neuron

(l,m). The intersection between R(l)
m with Hijk is then:

R(l)
m ∩Hijk := {x ∈ Rn|z(l)m (x) ∈ U

a
(l)
m
, z

(i)
j = γk},

where γk is the k-th breakpoint in Γ. Since z
(l)
m (x;θ) is linear in R(l)

m , it is also

linear in the intersection R(l)
m ∩Hijk. Therefore, showing that R(l)

m ∩Hijk is measure

zero is equivalent to show that a hyperplane in a subspace of Rn is measure zero.

Consider the case of {xn = 0} ⊂ R(l)
m , which can be generalized by applying linear

affine to the hyperplane. The hyperplane can be covered by a countable set of boxes

at Bz =
⋃
z ∈ Z [z, z + 1]× [z, z + 1] · · · × [z, z + 1]︸ ︷︷ ︸

n−1 dimension box

×[−h, h]n for arbitrary small

h > 0. Let h→ 0, then the Bz is a measure zero set with respect to Lebesgue measure.

Since the union of measure zero set is also measure zero set, then R(l)
m ∩ Hijk has

measure zero with respect to Lebesgue measure.

Equation 4.7 suggests that the activation region is the intersection of all the

subspaces R(l)
m :

R(AIC ) =
⋃

(l,m)/∈IC

{x ∈ Rn|z(l)m (x) ∈ U
a
(l)
m
},

which means that each component of the former part in Equation 4.15 can be written

as:

(R(AIC )
⋂

Hijk) =
⋃

(l,m)∈IC

(R(l)
m )
⋃
∩Hijk =

⋃
(l,m)

(
R(l)
m ∩Hijk

)
.

The intersection of measure zero set is also measure zero, therefore (R(AIC )
⋂
Hijk)

is a measure zero set.

Each component of the latter part of Equation 4.15 is the intersection of two bent-

hyperplanes. Given bent-hyperplane Hijk and Hi′j′k′, a similar incomplete activation

region can be constructed in the similar way as above by with the index set IC =
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I\{(i, j), (i′, j′)}. For arbitrary incomplete activation pattern AIC , the intersection

AIC ∩Hijk ∩Hi′j′k′ is a hyperplane on n− 2 dimension, therefore has measure 0 at

n dimension. The union of all such intersection is also measure zero.

The cumulative probability of x on a bent-hyperplane can be calculated with

Lebesgue integral:

P (x ∈ H) =

∫
H

P (x)dµ,

where H :=
⋂

∀i,j,kHijk. Since the data distribution D has no atom and H is the

union of countable measure zero set, above equation equals to 0. Therefore, almost

surely, x ∼ Dx locates within an activation region instead of bent-hyperplane.

The above proof uses the incomplete activation pattern, which is introduced in

Definition 3 and discussed in Section 4.3. Since the probability of a data point x

being located on a bent hyperplane is zero, Lemma 2 implies that, almost surely,

every input x ∈ Rn is in an activation region. This ensures that in studying the

interpretability of neural networks, presuming that the activation pattern of x exists

is trivial and will not affect the results.

4.2.4 Convexity

Previous works suggest that for a network with piecewise linear activation and a

parameter set θ of measure zero with respect to the Lebesgue measure, the linear

activation regions are convex [170]. In this section, it is claimed that the convexity

of activation regions holds for any monotonic activation function.

Lemma 3 (Convexity). Let N be a feed forward neural network defined as in Section

4.1. If the activation function π is monotonic, then for any activation pattern A,

the corresponding activation region R(A) is convex.

Proof (Lemma 3). This proof starts with the transformation within each block.

Given the i-th block hj of the neural network, denote the input space and output

space of the network as Rni−1 and Rni, where ni−1 and ni are the sizes of the outputs
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for block i−1 and block i. Each data point x(i) ∈ Rni−1 from the input space of the i-th

layer is mapped to the pre-activation z(i) ∈ Rni with a linear affine transformation:

z(i) = W (i)x(i) + β(i),

where W (i) and β(i) are the equivalent weights and bias of layer i. The output of

this block y(i) is computed by applying an element-wise non-linearity π to the pre-

activation value z(i):

y(i) =
(
π(z

(i)
1 ), π(z

(i)
2 ), . . . , π(z(i)ni

)
)T

Given an activation pattern A, let Si−1
j ⊂ Rni−1 be the subspace in Rni−1 such that

every x(i) ∈ Si−1
j satisfies the condition of neuron (i, j):

Si−1
j := {x(i) ∈ Rni−1 |

[
W (i)x(i)

]
j
+ β

(i)
j ∈ Uâ(i)j

, j = 1, 2, . . . , ni},

where â
(i)
j is the activation pattern of neuron (i, j), U

â
(i)
j

is the â
(i)
j -th interval as per

defined in Definition 1 and ni is the output size of layer i.

Given that the mapping from x(i) to z(i) is a linear affine transformation and

the interval of the activation function U
â
(i)
j

is convex, the region Si−1
j is also convex.

The intersection of all the Si−1j defines a subspace Si−1 ⊂ Rni−1:

Si−1 =

ni⋃
j=0

Si−1
j

such that every x ∈ Si−1, the constraint of neuron (i, j) is satisfied:

[
W (i)x(i)

]
j
+ β

(i)
j ∈ Uâ(i)j

,∀x(i) ∈ Si−1,∀j ∈ [ni].

As the intersection of convex space is also convex, Si−1 is convex.

The input of block i is the output of block i− 1. Let P i−1 be a subspace in Rni−1

such that for every pre-activation of i − 1-th block z(i−1) ∈ Rni−1, the block output

y(i) is in Si−1:

P i−1 =

{
z(i−1) ∈ Rni−1|

(
π(z

(i−1)
1 ), π(z

(i−1)
2 ), . . . , π(z(i−1)

ni
)
)T
∈ Si−1,∀j ∈ [ni−1]

}
.
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Given z(i−1), z′(i−1) ∈ P i−1 and λ ∈ (0, 1), the following proves that z′′(i−1) = λz(i−1)+

(1 − λ)z′(i−1) ∈ P i−1. For any j ∈ [ni−1], without loss of generality, assume that

z
(i−1)
j ≤ z

′(i−1)
j , then z

(i−1)
j ≤ z

′′(i−1)
j ≤ z

′(i−1)
j . Since π is monotonic, it can be shown

that

π(z
(i−1)
j ) ≤ π(z

′′(i−1)
j ) ≤ π(z

′(i−1)
j ). (4.16)

Let

x(i) =
(
π(z

(i−1)
1 ), π(z

(i−1)
2 ), . . . , π(z(i−1)

ni
)
)

x′(i) =
(
π(z

′(i−1)
1 ), π(z

′(i−1)
2 ), . . . , π(z′(i−1)

ni
)
)

x′′(i) =
(
π(z

′′(i−1)
1 ), π(z

′′(i−1)
2 ), . . . , π(z′′(i−1)

ni
)
)

Given that x(i),x′(i) ∈ Si−1
j and Equation 4.16, x

′′(i)
j ∈ U

â
(i)
j
, therefore x′′(∈)Si−1

j . By

generalizing the result to every j ∈ [nj], it can be shown that:(
π(z

′′(i−1)
1 ), π(z

′′(i−1)
2 ), . . . , π(z′′(i−1)

ni
)
)
∈ Si−1

j ,∀j ∈ [ni−1],

which means that λz(i−1)+(1−λ)z′(i−1) ∈ P i−1. Then P i−1 is convex. By iteratively

applying the above two steps backward, it can be shown that there exists S0 ⊂ Rn that

satisfies the conditions for neurons in layer i. The intersection of all those layers is

also convex, which means that the activation region for the pattern A is convex.

Lemma 3 suggests that, given a monotonic activation function π and an

activation pattern A, a convex region R is uniquely determined by A. In other

words, the mapping from activation region R to A is injective. As most activation

functions have distinguishable activated and deactivated regions, the separation on

π provides insights into the neuron-level reaction to the input.

4.2.5 Continuity

With convexity, given an activation region R, for any x,x′ ∈ R, the segment

connecting x and x′ is completely included in the region. Furthermore, if all the

activation regions are convex, the straight line connecting any two points in Rn

can only cross each activation region once. This property is useful in building the
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connection between model performance and the similarity of activation patterns,

which will be discussed in the next section.

Another useful property of the mapping function is the continuity of the local

mapping function. In fact, as long as the breakpoints of the activation function

are included in the separation Γ, the mapping within each activation region is

continuous.

Lemma 4 (Continuity). Let N be a feedforward neural network as defined in Section

4.1 with a monotonic activation function π. Given a continuous separation Γ of π,

the mapping from R(A; θ, σ,Γ)→ f(R(A; θ, π,Γ)) is continuous.

Proof (Lemma 4). The proof of Lemma 4 is intuitive. Since Γ is a continuous

operation on the network N with activation π, hi is a continuous function. For i = 1,

R(A; θ, π,Γ) is compact, therefore hi(R(A; θ, π,Γ)) is also compact. For any i ∈

2, . . . , n, hd ◦hd−1 ◦ · · · ◦hi is a composition of continuous functions, and is therefore

continuous. Thus, the local mapping function of the network N : R(A; θ, π,Γ) →

f(R(A; θ, π,Γ)) is continuous.

4.2.6 Lipschitz Bound

The continuity of the activation region enables the analysis of the Lipschitz property

of an activation region. Notice that given a neuron (i, j), its pattern a
(i)
j , and the

activation function π, the post-activation of its output with respect to the input

vector is bounded. Formally:

Lemma 5 (Layer Lipschitz Bound). Denote R(A; θ, π,Γ) as an activation region

defined on network N . Given x,x′ ∈ R(A; θ, π,Γ), the input and output the i-th

layer is denoted as x(i)(x)there is a Lipschitz constant ρi for layer i that:

δ(x(i)(x), x(i)(x′)) ≤ D(x,x′), (4.17)

where δ(x,x′) = ∥f(x)− f(x′)∥2 and D(x,x′) = ∥x− x′∥2. The Lipschitz constant
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ρi is:

ρi = max
j

sup
x∈U

â
(i)
j

∂π(x)

∂x
· Norm(W (i)), (4.18)

where â
(i)
j is the activation pattern of neuron (i, j) and U

â
(i)
j

is corresponding interval

(γ
â
(i)
j −1

, γ
â
(i)
j
), and Norm(W (i)) is the spectral norm of weights in layer i.

Proof (Lemma 5). Lemma 5 can directly be obtained from the nature of activation

function. A neural network layer can be viewed as composition of functions:

y
(i)
j (x) = π(z

(i)
j (x)) (4.19)

where y
(i)
j (x), z

(i)
j are the j-th element of output and pre-activation at layer i. Given

an activation pattern for all the neurons at layer i, the non-linearity provided by the

layer is then the maximum slope of the corresponding domain:

D(y(i)(x), y(i)(x)) ≤ ρπD(z(i)(x), z(i)(x′)), (4.20)

where ρπ is defined as:

ρπ = max
j

sup
x∈U

â
(i)
j

∂σ(x)

∂x
. (4.21)

At the same time, the mapping from input x(i) to pre-activation z(i) is linear

transformation as per defined by Equation 4.4, of which the Lipschitz constant is the

norm of equivalent matrix Norm(W (i)).

D(z(i)(x), z(i)(x′)) ≤ ρψ◦ϕD(x(i)(x), x(i)(x′)), (4.22)

where

ρψ◦ϕ = Norm(W (i)) (4.23)

With the composition of functions, the norm of layer i can be written as:

ρi = ρπ × ρψ◦ϕ

= max
j

sup
x∈U

â
(i)
j

∂π(x)

∂x
· Norm(W (i)).

(4.24)
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By generalizing the above Lemma to the network, we then yield the Lipschitz

continuity of the network N within an activation region.

Lemma 6. Given an activation region R(A; θ, π,Γ) where Γ is a continuous

separation of net N with depth n, then for any x1, x2 ∈ R, there exist an upper

Lipschitz constant ρ that in region R(A):

δ(x,x′) ≤ ρD(x,x′), (4.25)

where D(x,x′) is the distance between x and x′, δ(x,x′) is the distance between

prediction f(x) and f(x′). The Lipschitz constant can be represented as:

ρ =
n∏
i

ρi, (4.26)

where ρi is the Lipschitz constant of layer i defined in Equation 4.18.

Proof (Lemma 6). Lemma 6 can directly obtain by using the Lipschitz property of

composition of functions. Given a function:

f = fn ◦ fn−1 ◦ · · · ◦ f2 ◦ σ ◦ T1,

The Lipschitz constant of f is :

ρf =
n∏
i

ρi, (4.27)

where ρi is the Lipschitz constant of its components.

Empirically, the ρ can also be estimated by [254]:

ρ = sup
ϵ,x∈R,

∥
`
f(x)ϵ∥2
∥ϵ∥2

= sup
x∈R
∥Jf (x)∥2, (4.28)

∥Jf (x)∥2 is the Jacobian matrix of function f at x.

4.3 From Single Region to Its Neighbor

Now that a general picture of activation regions in the input domain is presented,

the investigation can be extended to a larger scope with a focus on describing
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the connections between activation regions. Non-linearity is one of the biggest

obstacles in understanding deep neural networks. With the activation pattern, it

is possible to gain insight into the behavior of the network N locally. However, as

the complexity of N grows, the average volume of an activation region decreases

[170]. This means that studying the properties of a single activation region can only

provide limited insights into the behavior of a neural network. To address this gap,

this work introduces definitions to describe subspaces R within the input space by

covering it with a union of multiple activation regions. This broadens the scope of

the investigation and allows for the study of regional properties of complex neural

networks.

In this section, the relationship between an activation region and its neighbors is

first described and investigated. It is shown that close regions are distinguished by

certain neurons and can be merged into a larger region by relaxing the constraints

on those neurons. Finally, the properties of the neural network on a larger scale are

discussed, with the objective of investigating the expressive ability and robustness

of the neural network on a broader scope.

4.3.1 Adjacent Activation Regions

This section discusses the distance between the predictions of data in different

activation regions. Given a neural network N with activation π, the continuous

separation Γ splits the input space into many connected components. Formally, if θ

and Γ are measure-zero sets with respect to the Lebesgue measure, the separation

is given by hyperplane arrangements in Rin as defined by Equation 4.11.

Intuitively, given i, j, and k, there exist pairs of activation regions (R1,R2)

that are partitioned by the bent hyperplane Hijk. In other words, R1 and R2

are adjacent activation regions. Since they are separated by Hijk, the activation

patterns for R1 and R2 are identical except for the pattern of neuron (i, j), on

which the hyperplane is defined. The following definition is introduced to describe

the adjacency of activation regions:
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Definition 2 (Adjacent Activation Regions). Denote N is a deep network with

activation σ and parameters θ. Γ is a continuous separation of N . R1 and R2 are

two activation regions, Hijk(θ) is a hyperplane defined by neuron (i, j) and breakpoint

γk. For any x1 ∈ R1 and x2 ∈ R2, if:

hpqr(x1,x2)

<0, p = i, q = j, r = k;

>0, otherwise,
(4.29)

where hpqr(x1,x2) = (z
(p)
q (x1;θ)−γr)×(z(p)q (x2;θ)−γr), then R1 and R2 are adjacent

activation regions separated by hyperplane Hijk(θ).

The hpqr(x1,x2) above is introduced to indicate whether two data points x1 and

x2 are on the same side of a bent-hyperplane. Given neuron index (p, q) and data

points x1 and x2, if z
(p)q(x1;θ)− γr and z(p)q(x2;θ)− γr have different signs, then

they are on different sides of a bent-hyperplane of Hpqr(θ), and vice versa. If x1

and x2 are on the same side of all hyperplanes except for Hpqr(θ), then x1 and x2

are in two adjacent activation regions that are separated by Hpqr. Geometrically,

two adjacent activation regions can be merged into one by removing the hyperplane

that separates them. Therefore, every x1 ∈ R1 and x2 ∈ R2 are on the same side

of all other hyperplanes except for the one that separates them.

Consider two data points, x and x′, in two adjacent activation regions divided

by the hyperplane Hijk. The following lemma shows that two adjacent regions can

be uniquely differentiated by a neuron:

Lemma 7. Assume that x and x′ locate within adjacent activation regions. There

exists a unique neuron(i, j) such that the activation pattern of (i, j) for x and x′ are

different:

∃!(i, j), â(i)j (x) ̸= â
(i)
j (x′). (4.30)

Proof (Lemma 7). Given x ∈ R,x′ ∈ R′, where R and R′ are adjacent activation

regions that separated by Hijk. Then

hpqr(x1) · hpqr(x2) > 0, ∀p ̸= i, q ̸= j. (4.31)
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Given p ̸= i, q ̸= j, without loss of generality, assume that the pattern of neuron

(p, q) is γpq for x. Then

z(p)q (x;θ)− γr > 0, r = 0, 1, . . . , rpq

Integrating above equation with equation 4.31, x′ satisfies:

z(p)q (x′;θ)− γr > 0, r = 0, 1, . . . , rpq.

This means that the pattern of neuron (p, q) is also rpq for x′. Similarly, it can be

derived that the pattern of neuron (i, j) for x and x′ are k and k − 1. This means

that (i, j) is the unique neuron that has different pattern for x ∈ R and x′ ∈ R′.

The above lemma shows that, given adjacent activation regions R and R′, all the

other neurons have the same activation status in both regions R and R′ except for

neuron (i, j), on which the hyperplane separating R and R′ is defined. By removing

the bent hyperplane, activation regions R and R′ can be merged into one region.

Moreover, the difference between the mappings in R and R′ originates from neuron

(i, j). This means that regions R and R′ share common properties that can be

described by a set of neurons.

4.3.2 Incomplete Activation Region

This section generalizes the above discussion about adjacent activation regions.

Similar to the case of two regions, a set of activation regions can be merged into one

by removing a set of bent hyperplanes. The merged region can also be described

by a subset of neurons, which is referred to as an incomplete activation pattern as

defined below.

Definition 3 (Incomplete Pattern / Region). Let N be a neural network defined

as in Section 4.1. Denote Γ as a continuous separation of the network. Given an

activation pattern A and a subset of the index set Ic ∈ I, denote AIc ⊂ A is an

incomplete activation pattern of A:

AIc := {a(i)j |a
(i)
j ∈ A, (i, j) ∈ IC}.
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The activation region of AIc is denoted as:

R(Ac) =
⋂

(i,j)∈Ic

{x ∈ Rn|z(i)j (x) ∈ U
a
(i)
j
}.

To understand the above definition, it is necessary to explain the essence of

the definition of an activation pattern. Equation 4.9 shows that the activation

pattern Â(x) introduces a constraint on the pre-activation value of each neuron.

Given neuron (i, j) and its pattern k, a subspace R ⊂ Rn is defined based on this

constraint. By integrating the constraints on each neuron, an activation region is

defined for a pattern. This means that the activation region R(A) of an activation

patternA is found by identifying all x that satisfy a certain constraint determined by

the activation pattern. Therefore, the activation region can essentially be expressed

as the intersection of a set of subspaces defined by each of the neurons:

R(A) =
⋂
∀i,j

{x ∈ Rn|z(i)j (x) ∈ U
â
(i)
j
} (4.32)

This reveals that the essence of the operator R(·) is to find all x satisfying a

certain constraint determined by the activation pattern. An incomplete activation

pattern is a subset of an activation pattern. Given a subset of indexes Ic ⊂ I,

the definition of an incomplete activation region involves releasing the constraints

on the neuron set I\Ic, which means removing the intersection in Equation 4.32.

In Section 4.2, it is shown that for each neuron, the breakpoints define a set of

bent hyperplanes that separate the larger region into smaller ones. In other words,

removing the constraint on a neuron (i, j) is equivalent to merging several of the

small activation regions into a larger one.

4.3.3 Float and Fixed Neurons

One limitation of the incomplete activation region is that the merged region is

defined by the activation status of neurons. It is challenging to identify such a

region due to the high complexity of neural networks. Moreover, such a merged

region is more likely to be irregular, as it is surrounded by a set of bent hyperplanes.
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In studying the interpretability of neural networks, a regularly shaped subspace is

more commonly used and preferred, such as a sphere Bp(x) defined by the p-norm,

centered at x with radius r. To address this issue, the following definition introduces

float and fixed neurons within a region.

Definition 4 (Float and Fixed Neuron). Let N be a neural network defined as in

Section 4.1. Given any subset R ⊂ Rn, a neuron (i, j) is said to be a fixed neuron

of R if it has the same pattern for any x ∈ R; otherwise, it is a float neuron. The

collections of fixed neurons and float neurons are denoted as IX(R) and IT (R),

respectively:

IX(R) ={(i, j) | ∃x1,x2 ∈ R, â(i)j (x1) ̸= â
(i)
j (x2)}

IT (R) ={(i, j) | ∀x1,x2 ∈ R, â(i)j (x1) = â
(i)
j (x2)}

where â
(i)
j (x1) is defined in Definition 1.

The objective of introducing float neurons and fixed neurons is to provide

an additional way to describe the neural network within the activation pattern

framework. In fact, the idea of activation patterns and activation regions is to build

a connection between the status of neurons and the corresponding region R in the

input domain. Definitions 3 and 4 serve the same purpose but from a regional

perspective instead of focusing on a single region. The difference between the two

definitions lies in the starting point of the description of the relationship between

region and pattern. In particular,

� The incomplete activation pattern defines a region with a subset Ic of

activation patterns. The subspace R ⊂ Rn is obtained by removing the

constraints on the complementary set of neurons I/Ic and merging the

corresponding activation regions into a larger subspace.

� The fixed neuron/float neuron concept describes the stability of neurons within

an arbitrary subspace R ⊂ Rn.

For the completeness of the definitions, it is necessary to show the relationship

between the above definitions. The following lemma demonstrates that a subspace
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R can be covered by the incomplete activation region defined by the fixed neurons

within it.

This provides a more straightforward way to understand the incomplete activa-

tion pattern (region). Given a subset of indices Ic ⊂ I, releasing the constraints

on the post-activations indexed by I\Ic is equivalent to removing the related

hyperplanes and merging the regions together. This means that for any x ∈ R(AIc),

â(i)j(x) is not fixed, and therefore (i, j) is a float neuron. On the other hand, the

activation status for all the neurons (i, j) ∈ Ic remains the same for any x ∈ R(AIc).

Lemma 8. Let N be a neural network defined as in Section 4.1. Given R ⊂ Rn0,

denote IX and IT as the sets of fixed neurons and float neurons in R, respectively.

Then:

1. IX(R)
⋃
IT (R) = I

2. R ⊂ R(AIX )

Proof (Lemma 8). Given a neuron (i, j) and a region R ⊂ Rn, denote the activation

pattern of neuron (i, j) as âij(x) for any x ∈ R. Since z(i)j(x) ∈ (−∞,∞), the

pattern of x is either an index k of the region when z(i)j(x) ∈ Uk, for k = 1, 2, . . . , q,

or −1 when z(i)j(x) is located on the bent hyperplane z
(i)
j (x) = k, for k = 0, 1, . . . , q.

This means every neuron has a pattern for x ∈ R. If for every x ∈ R, the

pattern of neuron (i, j) remains the same, then (i, j) is a fixed neuron. Otherwise,

it is a float neuron. In other words, a neuron is either fixed or float in R. This

implies that IX(R) ∪ IT (R) = I.

Now consider statement 2. For any x1,x2 ∈ R, and a neuron (i, j), if âij(x1) =

âij(x2), then (i, j) is a fixed neuron in R: (i, j) ∈ IX(R). Denote the pattern as

aij. Then for all x ∈ R, zij;x,θ = zij;x′,θ. Therefore, x1 ∈ R(AX).

The first statement in Lemma 8 is trivial. According to Definition 4, a neuron

is either fixed or float in a given subspace R ∈ Rn. The second statement in

Lemma 8 establishes a connection between the incomplete activation pattern and
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fixed neurons. It shows that for a given region R with float neuron set IT , the

corresponding incomplete activation pattern of I\IT covers the region R. Thus,

every neuron (i, j) ∈ I\IT has the same activation status in region R.

Based on previous works, this section introduces incomplete activation patterns

and fixed/float neurons to describe the stability of neurons in a subspace R ∈ Rn.

The incomplete activation region defines a subspace by removing the constraints on a

set of neurons and merging a set of activation regions together, while the fixed/float

neurons describe the stability of neurons in a subspace.

The proposed definitions generalize the study of neural network interpretability

to a larger scope beyond being limited to a single region. Now that the definitions

and concepts for describing the neural network are presented, the following section

will focus on connecting the mapping function of the neural network with its

activation pattern.

4.3.4 Upper Bound of Prediction Difference

This section discusses the upper bound of prediction differences between x and x′

under the framework of activation patterns. Similar to the previous section, it starts

by investigating the case of adjacent activation regions and then generalizes the case

to a larger scope. It is shown that given x and x′ ∈ Rn, the upper bound of the

difference between f(x) and f(x′), denoted as δ(x,x′), is larger if x and x′ are within

different activation regions.

Intuitively, if two adjacent activation regions R1 and R2 are separated by a bent

hyperplane, there exist x ∈ R1 and x′ ∈ R2 that are close enough.

Lemma 9. If R1 and R2 are adjacent activation regions separated by Hijk, then for

an arbitrary small ϵ > 0, there exist x1 ∈ R1 and x2 ∈ R2 s.t.

D(x1,x2) < ϵ (4.33)

where D(·, ·) is a distance metric defined on input space.
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Proof (Lemma 9). Denote Hijk as the hyperplane that separates R1 and R2 and

(i, j) is the neuron on which the hyperplane is defined. Given an arbitrary small ϵ,

for any xm on Hijk,

x1 = xm + c ·
∂z

(i)
j

∂xm
(x)/2

x2 = xm − c ·
∂z

(i)
j

∂xm
(x)/2,

(4.34)

where c is any coefficient that satisfies:

c < ϵ/∥
∂z

(i)
j

∂x
(xm)∥. (4.35)

It can be derived that: (
W (i)z(i)(x1)

T + β(i)
)
j
> 0(

W (i)z(i)(x2)
T + β(i)

)
j
> 0

(4.36)

By definition of adjacent activation regions, for any x1 ∈ R1 and x2 ∈ R2:

h(x1, z, γ) · h(x2, z, γ)

<0, z = zs, γ = γs,

>0, otherwise
(4.37)

This means that x1 ∈ R1 and x2 ∈ R2 with D(x1,x2) < ϵ.

This observation is useful for the analysis of model performance on multi-class

classification tasks. The next objective of this section is to build a connection

between the activation region and model prediction. In particular, it focuses on

describing the bounds of prediction differences between data in the same region and

data in different regions.

LetN be a network with activation π and parameters θ that computes a function

f : Rn → Rc. Γ is a continuous separation of N . Given data x1 ∈ R1, the following

part of this section considers the data inside R1 and outside R1 at the same distance

from x1. That is, x3 ∈ R1 and x2 /∈ R1 with D(x1,x2) = D(x1,x3). Denote x1x2

and x1x3 as the lines connecting x1 to x2 and x1 to x3, respectively.

To simplify the analysis here, assume that x2 is located in an adjacent region

of R1, denoted as R2. R1 and R2 are separated by the hyperplane Hijk(θ), and
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x1x2 does not cross any other activation regions. Notice that this assumption can

be removed in the formal statement of the theorem. Denote the piecewise function

on each region as fi : Ri → Rc. From Lemma 6, there is a Lipschitz constant ρi for

each of the fi. From Lemma 9, given an arbitrarily small ϵ > 0, there exist m1 ∈ R1

and m2 ∈ R2 on x1x2 such that:

D(m1, H12(γ,θ)) < ϵ,

D(m2, H12(γ,θ)) < ϵ.
(4.38)

where D(mi, Hijk(γ,θ)) is distance between mi to the hyperplane Hijk(γ,θ).

According to Lemma 6 and triangle inequality of norms, when ϵ→ 0 we have:

δ(x1,x2) ≤ ρ1D(x1,m1) + ρ2D(x2,m2)

δ(x1,x3) ≤ ρ1D(x1,x3)
(4.39)

For a network with high complexity, almost surely there exists an adjacent

activation region of R1, denoted as Rh, that satisfies ρh > ρ1, where ρh is the

Lipschitz constant of activation region Rh. Therefore, the upper bound of δ(x1,x3)

is lower than that of δ(x1,x2). By nature, the mapping of network N is equivalent

to the combination of all the piecewise functions. The above equation can be

generalized to the network:

Theorem 2. Let N be a neural network with mapping function f : Rn → Rc,

parameters θ, and activation π. Γ is a continuous separation of N . For any x ∈ Rn,

denote the activation region in which x is located as R. Given r > 0, almost surely:

sup
x′∈R,

D(x,x′)=r

δ(x,x′) ≤ sup
x′ /∈R,

D(x,x′)=r

δ(x,x′). (4.40)

Proof. Given data x1 ∈ R1, assume that x3 ∈ R1 and x2 /∈ R1 with D(x1,x2) =

D(x1,x3). Denote the activation regions cross by line x1x2 are R2,R3, · · · ,Rn with

Lipschitz constant ρ2, ρ3, · · · , ρn. Denote ci(i = 1, . . . , n − 1) as the intersections

between x1x2 and hyperplane that separates Ri, Ri+1. From Lemma 9, for any ϵ > 0,

a sequence of points si ∈ Ri and ei ∈ Ri can be found on x1x2 such that:

D(ci, si−1) < ϵ

D(ei, ci) < ϵ.
(4.41)
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In other words, si and ei can be viewed as start point and end point on segment in

region Ri.

According to Lemma 6 and triangle inequality of norms, when ϵ→ 0 we have:

δ(x1,x2) ≤ ρ1D(x1, e1),+
n−1∑
i=2

ρiD(si, ei) + ρnD(sn,x2)

δ(x1,x3) ≤ ρ1D(x1,x3)

(4.42)

Consider the simple case where n = 2. For any activation region R, with probability

1 there exist adjacent activation region R′ that ρ < ρ′, for any x2 ∈ R′,

ρ1D(x1, e1) + ρ2D(s2,x2) ≥ ρ1D(x1,x3).

Then,

sup
x′∈R,

D(x,x′)=r

δ(x, )∥F (x)− F (x′)∥2 ≤ sup
x′∈R′,

D(x,x′)=r

∥F (x)− F (x′)∥2. (4.43)

For n > 2, since the volume of each region are bounded, with the constraint that

D(x1,x2) = D(x1,x3), the average number of n is limited. We can iteratively find

a sequence of regions Ri with ρi > ρ0. Therefore,

sup
x′∈R,

D(x,x′)=r

δ(x,x′) ≤ sup
x′ /∈R,

D(x,x′)=r

δ(x,x′). (4.44)

In other words, for network N , the bounds of the spread between the predictions

of data in the same activation region are lower than those for data in different

activation regions. Similar results can also be obtained for the lower bound. When

the number of activation regions is large enough, the volume of each region is

bounded [19], and the above theorem can be generalized globally.

Intuitively, for data x and x′, if there exists a continuous separation and

activation pattern A such that both x,x′ ∈ R(A;θ, π,Γ), then the differences

between the predicted results of x and x′ have a tighter bound. On the other

hand, for any two data points x and x′, if they are located in activation regions

that are far apart, then the bound of the difference between their predictions is

much looser. Therefore, the similarity between activation patterns can be used as a

measure of the topological distance between data on the network.
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Figure 4.3: An illustration of generalized activation region for ReLU net with 3

layers, with 64 neurons within each layer. The continuous separation is set as

Γ = {0}.

4.4 Geometric Illustration

This section aims to further explain the concepts of activation regions, activation

patterns, and activation paths. The first part of this section presents the activation

regions of a simple neural network with different activation functions. The second

part provides a geometric illustration of the proposed concepts by showing how a

set of hyperplanes partitions the input domain into activation regions. Moreover, a

subspace R is demonstrated in the figure to show how the fixed/float neurons and

fixed/float paths are defined.
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Figure 4.4: An illustration of generalized activation region for Sigmoid net with

3 layers, with 64 neurons within each layer. The continuous separation is set as

Γ = {−1, 1}.

4.4.1 Regions

The generalized activation pattern is an extension of linear activation regions.

For instance, given ReLU activation and breakpoints Γ = 0, it is equivalent to

the definition from previous works. On the other hand, for continuous activation

functions, it provides a way to separate the input domain into different subspaces

where each subspace has a different reaction to the input. The generalized activation

pattern can be viewed as a toolbox to further investigate model performance with

different activations.

To demonstrate the activation region with different activation functions, a simple

neural network was constructed and trained on the MNIST dataset to convergence.

The MNIST dataset is a collection of 70,000 grayscale images of handwritten digits

115



Chapter 4. Activation Pattern, Path and the Framework

from 0 to 9, divided into 60,000 training and 10,000 test samples. Each image is

28x28 pixels, and the dataset is widely used as a benchmark for evaluating machine

learning algorithms on image recognition tasks.

After reshaping the 28x28 grayscale image, the input of a data become 784.

Therefore, we use a network with an input size of 784, 3 layers with 64 neurons

each, and an output size of 10 that corresponding to the 10 digits classes. After

training the network on training data, we took 3 test samples and project those 3

data to 2 dimensional space where the data points locate at (0, 0), (1, 0) and (0, 1).

Using the same projection function, we project data close to the 3 test samples to the

same 2D space and categorize those data into different activation region according

to the pre-activation value of neurons. This gives us Figure 4.3 and Figure 4.4,

which demonstrate the activation regions of the network with ReLU activation and

Sigmoid activation, respectively. It can be observed that, in the 2D projection, the

regions in both figures are convex.

Moreover, within the triangle formed by coordinates (0, 0), (1, 0), and (0, 1), the

average volume of each region is relatively smaller compared with that outside of it.

As the data are projected onto these vertices, the observation implies that on the

support of the data distribution Dx, the neural network exhibits higher expressive

ability. Compared with the ReLU network, the boundary of the Sigmoid network is

curved. Although the change in input is linear, it is bent by the Sigmoid function

after the first layer, resulting in a non-linear bent hyperplane.

It is interesting to visually present the activation regions for a neural network.

However, the activation regions themselves provide limited information since they

are merely a separation of the input space according to the model. To make this

concept useful for our analysis, it is necessary to investigate the properties of neural

networks using the concepts proposed in this dissertation.
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Figure 4.5: An illustration of the fixed (float) path and neuron of a neural network

with 2D input, 4D output, and 1 hidden layer. (1) The 2D input space; (2) A bent-

hyperplane defined by H = {x|z(1)4 (x) = 0}; (3) A sphere centered at x; (4) A float

neuron with index (1,4) in the network.

4.4.2 Illustration of the Concepts

To help with understanding the proposed concepts, Figure 4.5 presents an illustra-

tion of the key concepts in this work. Consider N as a neural network with a 2D

input, 4D output, and 1 hidden layer with 4 neurons. Assume that N has a ReLU

activation function. The input space is partitioned into several regions by a set of

hyperplanes. Each region is referred to as an activation region, marked in a unique

color, within which the mapping function is linear.

For example, the pink and green regions are divided by the bent hyperplane

H = x | z(1)4 (x) = 0, where z
(1)
4 (x) is the pre-activation value of the 4th neuron in

the 1st layer. Let B(x, r) be a sphere centered at x with radius r. B(x, r) is covered

by the union of the pink and green regions. Since the two regions can be merged into

one by removing the hyperplane, the incomplete activation pattern of the merged

region is I\(1, 4). Therefore, (1, 4) is the only float neuron in B(x, r). This means
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that for every x ∈ B(x, r), all the neurons have the same activation pattern except

for neuron (1, 4).

The illustration also presents the computational paths for x ∈ B(x, r). Given a

path ζ, if neuron (1, 4) is not on this path, then ζ is a fixed path, represented by

the black lines in the figure. This means that for every x ∈ B(x, r), the values of

those fixed paths are linear functions with respect to x. On the other hand, all the

non-linearity of the function f(x) for x ∈ B(x, r) is contributed by the float paths

(orange lines).

4.5 Summary of the Chapter

This chapter introduces the analytic framework of the research presented in this

dissertation, focusing on its connections with previous works and the motivation

behind the innovations. As a preliminary to the in-depth analysis in the following

chapters, this chapter also briefly discusses the properties of the proposed concepts

and how they contribute to understanding neural networks.

Following the common process of research in interpretability, this dissertation

begins with a theoretical analysis and then extends the results into several

applications. To avoid conflicts and provide a guideline for this work, Section ??

first introduces the notations used in this work, with their meanings summarized.

In particular, several tables are presented separately for different parts of this work.

Section 4.2 and Section 4.3 introduce the generalized activation pattern and

extend the framework into larger subspaces beyond a single activation region. In

particular, it is demonstrated that there exists a larger upper bound for x and x′

from different activation regions. Based on the discussion in this section, Chapter 5

introduces a pattern similarity metric for comparing neural networks with different

activations and a neuron entropy metric for evaluating the expressive ability of

neural networks and identifying the dying neuron issue.

To provide a quantified analysis of how inputs affect the output of a neural
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network, Section 6.1 introduces the definitions of fixed path and float path in a

subspace R. It is further shown in Chapter 6, where the robustness of models is

studied, that float paths contribute significantly to the instability of neural networks

by decomposing the computational graph of neural networks with piecewise linear

activation functions into fixed and float parts.
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Model Expressivity and Dying

Neuron

Chapter 3 demonstrates that the gradient vanishing issue can be effectively ad-

dressed through the use of batch normalization and weight initialization techniques.

By investigating the training dynamics of neural networks, it is shown that for

symmetric activation functions, weight updates are highly dependent on the current

weights, which can result in convergence failures. This leads to a dying neuron issue,

where most neurons fire similar signals regardless of the inputs.

To further understand these observations, this chapter investigates the expressive

ability of neural networks, focusing on evaluating the consistency of neuron

activation patterns. Specifically, this chapter is divided into two main parts:

� The first part presents a comparison of performance across models with

different activation functions. It aims to address the introductory question and

explain the performance gap among neural networks with different activation

functions. Section 5.1 introduces a pattern similarity metric and illustrates its

basic properties, connecting it with previously proposed metrics for evaluating

model expressive ability. Section 5.2 presents experimental results on pattern

similarity and explains the poorer performance of neural networks with

saturated activation functions by showing a more severe dying neuron issue.
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� The second part focuses on gaining insights using the framework proposed in

this dissertation to evaluate the expressive ability of individual models. Section

5.3 introduces a metric named neuron entropy that indicates the uncertainty of

neuron activation patterns. It then demonstrates the connection between this

metric and model performance, as well as metrics proposed by previous works.

It is found that, in deep-intermediate layers, a large proportion of neurons fire

the same signals regardless of the input, leading to a loss of expressive ability.

This indicates that some neurons fail to contribute to model performance.

Based on this result, Section 5.4 introduces a pruning algorithm to remove

redundant neurons.

5.1 Pattern Similarity and Model Performance

This section continues the analysis of neural network properties given continuous

separation and aims to utilize the activation pattern to evaluate model expressive

ability. In Section 4.3, it is shown that for any two points x and x′, if there exists a

separation provided by Γ and an activation patternR(π,A, θ,Γ) such that x,x′ ∈ R,

an upper bound of δ(x,x′) = |f(x) − f(x′)|2 can be constructed. Moreover, given

x,x′ ∈ Rn, the upper bound of δ(x,x′) is lower if the data are located within closer

activation regions.

Since activation regions are defined by activation patterns, two closer activation

regions have similar activation patterns. The intuition here implies that the upper

bound δ(x,x′) is connected to the difference between the activation patterns of x

and x′. Based on this, a pattern similarity metric is introduced to evaluate neural

networks based on the neuron-level response to the data.

5.1.1 Pattern Similarity

The objective of this section is to introduce the pattern similarity and establish

the connection between the proposed metric and model performance. Despite the
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intuitive insights discussed in the previous section, neural networks are complex,

and even similar data with the same label can be located within activation regions

that are far apart.

To illustrate this connection, the analysis in this section adopts transition density

as a bridge, a metric proposed in previous works for evaluating the model expressive

ability of neural networks. Using transition density as a bridge, this section shows

that for a dataset with a sufficiently large capacity, a high transition density of

trajectories connecting pairs of data implies high prediction differences. In fact, a

high pattern similarity between x and x′ means that the two samples are in close

activation regions; therefore, xx′ has lower transition density. This means that the

upper bound of δ(x,x′) is lower.

Transition density of trajectories was proposed in earlier work [182] to measure

how many activation regions a segment crosses. Given two close points x1 and x2 in

the input domain, if the activation patterns are different for x1 and x2, a transition

is said to have occurred between x1 and x2. For a one-dimensional trajectory

connecting x0 and xk in the input space, if we sample k − 1 equidistant points

on the trajectory, the transition density is defined as the number of transitions for

the set x0,x1,x2, . . . ,xk:

TD(x1x2) = lim
k→inf

k−1∑
i=0

Tra(xi, xi+1), (5.1)

where

Tra(xi, xi+1) =

1 A(xi) ̸= A(xi+1)

0 elsewise
(5.2)

It was introduced to evaluate the sensitivity of a network by measuring the

transition density of a trajectory around real data. However, this metric is not

suitable for evaluating model performance on a dataset due to the following reasons:

� First, the average volume of each activation region is relatively small for a

network with high complexity, which means empirically the transition density

of a trajectory can be imprecise.
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� Second, computing the transition density of numerous trajectories connecting

data pairs is a computationally intensive task.

To mitigate this gap, the pattern similarity metric is introduced as below.

Definition 5 (Pattern Similiarity). Denote N as a feedforward network with non-

linearity σ and parameters θ. Γ is a continuous separation of net N . θ and Γ are

measure zero set with respect to Lebesgue measure. Denote the activation pattern

for any x ∈ Rin as:

A(x;σ, θ,Γ) = {(z, az)|zis a neuron inN},

shortened as AP (x) if other settings are fixed. The pattern similarity between two

data x1, x2 ∈ Rin is then defined as:

PS(x1, x2; π, θ,Γ) =
#(AP (x1)

⋂
AP (x2))

#number of neurons inN
. (5.3)

Additionally, given a dataset distribution X, the pattern similarity of dataset X

:

PSE(X) = E
xi,xj∼X

JPS(xi, xj;σ, θ,Γ)K (5.4)

The pattern similarity distribution of X for a given λ > 0 is:

PSD(X,λ) = P(PS(xi, xj;σ, θ,Γ) > λ|xi, xj ∼ X) (5.5)

Pattern similarity illustrates how the model responds to a single data point as

well as to a dataset.

� Equation 5.3 defines the pattern similarity between two data points. It

measures the proportion of neurons in a neural network that have the same

activation pattern for x and x′.

� Equation 5.4 extends the definition from a single pair of data to a dataset.

Specifically, it measures the expected pattern similarity for two arbitrary data

points x and x′ sampled from a data distribution D.
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� Equation 5.5 provides the cumulative distribution of pattern similarity given a

data distribution D. It shows how the pattern similarity is distributed across

the selected samples.

The provided information is useful in analyzing model performance. With

pattern similarity, the expressive ability of different neural networks can be expressed

in terms of the average distance of data with different labels. This is detailed in

Section 5.2, where the dataset is divided into subsets based on labels, and the pattern

similarity across datasets is measured for different models.

5.1.2 Pattern Similarity and Prediction Difference

Before conducting experiments with the proposed metric, it is important to

describe the relationship between pattern similarity and prediction difference.

This connection is built using the transition density of trajectories as a bridge.

Specifically, it is shown that:

� Pattern similarity is negatively correlated with trajectory density.

� Trajectory density is positively correlated with the upper bound of prediction

difference δ(x,x′).

Therefore, pattern similarity is negatively related to the upper bound of prediction

difference δ(x,x′). By interpreting these results for different sub-datasets, it can be

inferred that pattern similarity should be higher for subsets with a single label and

lower for datasets with mixed labels.

Intuitively, pattern similarity measures the neuron-level response to the input.

Given a model, high pattern similarity between data with different labels implies

that most neurons in the model fail to distinguish between inputs. In other words,

the network suffers from a severe dying neuron issue.
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5.1.2.1 Pattern Similarity and Trajectory Density

Now that the general idea behind pattern similarity is presented, the following

discussion aims to connect pattern similarity with trajectory density. This discussion

begins with the properties of activation regions as described in Chapter 4.3.

Lemma 3 suggests that activation regions of a network with a monotonous

activation function are convex. Here, we show that, given convexity, the transition

density of a straight line can only cross each activation region once.

Lemma 10. Let N be a network with a monotonous activation σ. Given a

continuous separation Γ of network N , denote: Hz(θ, γz) := x ∈ Rin | Wzx+ bz = γz

as the hyperplanes defined by neuron z. Then, for any two points x, y ∈ Rin, the

line l that connects x and y intersects each Hz(σ, θ, γz) at most once.

In the following, we denote the set of regions crossed by line l as S(l). As two

adjacent activation regions are separated by a hyperplane defined by the state of a

neuron, their activation patterns have limited differences. Lemma 10 suggests that,

given a continuous separation under certain conditions, a straight line crosses each

region only once, which implies that a lower transition density always comes with a

higher pattern similarity. However, for any two points located in regions far apart,

it is hard to determine the qualitative relationship between their pattern similarity

and the transition density of the line connecting them. In particular, for a network

with a complex structure, there exist closed patterns whose regions are a measure

zero set in the input space. Therefore,

TD(x1x2) + #(AP (x1)
⋂

AP (x2)) = #neurons in N (5.6)

does not always hold.

To describe the relationship between transition density and pattern similarity

formally, we need to add additional constraints.

Theorem 3. Let N be a net with monotonous non-linearity σ, measure zero

parameter set θ and Γ is continuous separation of net N . Given dataset distribution
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X1 and X2, almost surely following statements are equivalent:

E
xi,xj∼X1

JTD(xixj)K ≤ E
xi,xj∼X2

JTD(xixj)K,

PSE(X1) ≥ PSE(X2).

(5.7)

Proof. Recall that the activation regions are split by a set of hyperplanes Hz(θ, γ).

Two adjacent activation regions R1, R2 can be merged into one by removing the

hyperplane that separates them, which is equivalent to removing the constraints on

the neurons where the hyperplane is defined. Therefore, for x1 ∈ R1 and x2 ∈ R2,

TD(x1x2) = 1.

Now we consider the difference between the activation patterns of x1 and x2.

Naturally, there exists at least one pair of (z, γ) that defines the hyperplane:

Hz(θ, γ) := {x ∈ Rin|Wzzin + bz = γz}. Denote the segment of the hyperplane

that separates R1 and R2 as H12. Consider another hyperplane H ′ defined by z′, γ′,

if it satisfies:

Wz′z
′
in(x) + bz′ = γ′z, (5.8)

for any x ∈ H12, where z
′
in(x) is the input value of neuron z′ given input data x,

the activation patterns of x1 and x2 are different at neurons z and z′. Therefore, x1

and x2 have different patterns at z and z′.

In other words, if there exist n hyperplanes that overlap and separate regions

R1 and R2, then the pattern difference between x1 and x2 is n. However, since the

parameter set is a measure zero set, with probability 1, Equation 5.8 does not hold.

Therefore, almost surely:

#(AP (x1)
⋂

AP (x2)) = #neurons in N−TD(x1x2)

Therefore, for any x1, x2, x3, x4 ∈ Rin, almost surely following statements are

equivalent:

TD(x1x2) ≤ TD(x3x4)

PS(x1,x2;σ, θ,Γ) ≥ PS(x3,x4;σ, θ,Γ).
(5.9)

Similar result can be generalized to the dataset.
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In particular, for a network with a complex structure, there exist closed patterns

whose regions are measure zero sets in the input space. Denote the set of those

neurons as Z(R1, R2). For a merged region, all the points in that region have the

same activation pattern. Therefore, for any x1 ∈ R1, x2 ∈ R2, we have

#(AP (x1)
⋂

AP (x2)) = #neurons in N−#Z(R1,R2)

From Lemma 4, we know that when σ is monotonous, li only crosses every region

in Ri once. Therefore, Ri is a sequence of adjacent regions and can be merged into

one as stated above. Denote:

Rm =
⋃
i

Ri for Ri ∈ {R1}

as the union of all activation regions in {R1}. Since S(x1x2) ⊂ S(lx3,x4), we perform

the same operation for {R}2 to construct a set {R}′2:

{R}′2 = Rm

⋃
{Rj|forRj /∈ {R}1}

Since line l1 are within the region Rm while line l2 crosses every region in {R}′2, we

have PS(x1, y1) ≤ PS(x2, y2).

Theorem 3 builds a connection between the pattern similarity metric and

trajectory transition density. For any two data in the input space, the lower

transition density of the segment connecting them implies higher pattern similarity

between the data. The result also holds for dataset distributions. Notice that for

the data distribution case, the assumption is satisfied with probability 1 therefore

can be removed.

5.1.3 Pattern Similarity and Model Performance

This section aims to build a connection between pattern similarity and model

expressive ability as well as generalization.

Given a data point x ∈ Rin, consider two data points x1,x2 ∈ Rin with

D(x,x1) = D(x,x2). Let xx1 and xx2 be the lines connecting x,x1 and x,x2,
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respectively. The two lines can be viewed as subspaces in Rn. Denote the fixed

neurons of xx1 and xx2 as IX1 and IX2 . Assume that IX1 ⊆ IX2 . This means that

there are more float neurons in line xx2 than in line xx1. In other words, the line

xx2 crosses more activation regions than that of xx1.

Lemma 10 suggests that xx1 and xx2 cross each activation region only once.

According to the definition of an adjacent activation region, a set of adjacent

activation regions can be merged into one region by removing the hyperplanes that

separate them. Moreover, Lemma 8 shows how incomplete activation regions are

defined by a set of fixed neurons.

Denote R0 as the incomplete activation pattern defined by the fixed neuron of

xx1:

R0 = RAIX ⊇
⋃
Ri

Ri, (5.10)

where Ri are the single activation regions that crossed by xx1:

∃x ∈ Ris.t.x ∈ xx1. (5.11)

Then xx1 is within the region R0. Denote the Lipschitz constant of R0 as ρ0,

which equals to:

ρ0 = max
i
ρi (5.12)

where ρi is the Lipschitz constant of Ri ∈ S(l1).

Next step is to perform the same analysis for line xx2. Since S(l1) ⊂ S(l2), there

are other regions crossed by xx2, which are denoted as R1, . . . , Rn with x2 ∈ Rn.

Now the comparison between D(x,x1) and D(x,x2) can be conducted by Theorem

2:

sup
x1

D(F (x), F (x1)) ≤ sup
x2

D(F (x), F (x2)) (5.13)

By loosening the constraints of input we have:

sup
x1

R(x, x1) ≤ sup
x1

R(x, x2) (5.14)

where R(x, y) = D(F (x), F (y))/D(x, y) is the distance of prediction to distance

between data ratio. Formally, we have the following theorem:
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Theorem 4. Let N be a net with monotonous non-linearity σ, measure zero

parameter set θ and a continuous separation Γ. Given x, for any x1, x2 ∈ Rin,

if S(x1x2) ⊂ S(lx3,x4), then following statements are equivalent:

TD(xx1) ≤ TD(xx2)

sup
x1

R(x, x1) ≤ sup
x2

R(x, x2)
(5.15)

In particular, given dataset distribution X1 and X2, if:

E
xi,xj∼X1

JTD(lxi,xj)K ≤ E
xi,xj∼X2

JTD(lxi,xj)K, (5.16)

then

E
xi,xj∼X1

Jsup
x1

R(xi, xj)K ≤ E
xi,xj∼X2

Jsup
x1

R(xi, xj)K (5.17)

Combining Theorem 3 and Theorem 4, the connection between activation

pattern, transition density, and the bound of prediction difference can be obtained.

To be specific, given data x and x′, lower transition density of line l connecting x

and x′ indicates a tighter upper bound and lower bound of the distance between

F (x) and F (x′), as well as a high pattern similarity between x and x′. In practice,

when evaluating dataset capacity, if it is large enough, the statement still holds

empirically, as shown in Figure 5.2. Experiment details will be discussed in Section

5.2.

For any continuous separation, a well-behaved model should satisfy that the

difference between predictions is small for data with the same label but large for

data with different labels. To illustrate the statement, imagine a worst case of a

deep model. Suppose that there are n classes of data and N different connected

components provided by hyperplanes, where N ≫ n. Given a model with fixed

parameters θ, if there exists a continuous separation Γ that satisfies for any sample

(x, y), where y is the label of x:

x

∈R1, y ̸= 1

/∈R1, elsewise
(5.18)
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Then for any data x1, x2 from class {2, 3, . . . , N}, we have:

∥F1(x1)− F1(x2)∥2 ≤ ρ1∥x1 − x2∥2, (5.19)

where ρ1 is the Lipschitz constant of R1.

For a set of data with different labels drawn from region Ri, the above equation

constrains the distance of their prediction. In other words, the model fails to

distinguish the differences between samples with different labels. Conversely, data

with label 1 are distributed within N − 1 different regions, therefore having lower

pattern similarity and a looser bound on the prediction distance. By such means,

we are able to use pattern similarity as a metric to evaluate the model expressivity

and generalization towards different datasets.

One of the difficulties encountered during understanding deep learning models is

that we hardly know how the neurons act in the black box. The pattern similarity

fills the gap and can be used for evaluating the model expressivity and generalization.

Moreover, it provides a glimpse of the inference mechanism of the model.

5.1.4 Illustration of Pattern Similarity and Transition Den-

sity

To illustrate the concept of pattern similarity and transition density, Figure 5.1

presents the input space splitted into several activation regions of by a 2 layers

neural network, each layer with 4 neurons.

For inputs x and x′, it can be noticed that there is only 1 neuron has different

activation status among 8 neurons. The differences between the mapping function

for x and x′ is causeed by the 4-th neuron locates at layer 1, while all the other

neurons are the same for those x and x′. Therefore,the pattern similarity between

x and x′ is:

PS(x,x′; π, θ,Γ) = 0.875.

The transition density, which is defined as number of different activation regions

a segment would cross by connecting two data points, for x and x′ is 1 as presented
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Figure 5.1: To illustrate the concept of pattern similarity and transitino density,

this figure presents the input space splitted into several activation regions of by a 2

layers neural network, each layer with 4 neurons.

by the figure.

Both of those two metrics are proposed to evaluate the distance of mapping

functions for x and x′ given the same neural network to simplify the analysis of deep

neural networks. In the next section, we use experiments to illustrate the usage of

our metrics.

5.2 Experiments and Discussion

This section presents experiments regarding the evaluation of model expressive

ability using pattern similarity metrics. The first set of experiments in Section

5.2.1 illustrates properties of the pattern similarity metric concerning Theorem 4.

The second part of the experiment aims to answer the introductory question by

evaluating models with different activations using our metric. It is found that

the dying neuron issue widely exists, which is why networks have practically less

expressive ability than theoretically expected. Moreover, the severity of the dying
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neuron issue can explain the differences in model performance.

5.2.1 Evaluating Pattern Similarity

(a) Sigmoid Net (b) TanH net

(c) ReLU net (d) GeLU net

Figure 5.2: Distance of predictions, transition density and pattern similarity of 1225

pairs of data.

In Chapter 5.1, a purely theoretical analysis is presented to discuss the connection

between pattern similarity and the prediction difference δ(x,x′) between data points.

To provide empirical support for the result, this section illustrates the metrics and
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δ(x,x′) in a 3-D plot. Figure 5.2 shows the relationships between pattern similarity,

transition density, and prediction distance for models with Sigmoid, Tanh, ReLU,

and GeLU activations.

5.2.1.1 Experiment Settings

This set of experiments applies a similar training setup as in Chapter ??. The

neural network used in this section is a stacked fully connected neural network with

784-dimensional inputs, 9 hidden layers with 256 neurons in each layer, and 10-

dimensional outputs. The network is trained on the MNIST dataset for 24,000

iterations with a batch size of 128 using the SGD optimizer and a linear rate

scheduler decaying from 0.1 to 0.0001. The cost function used in this section is

the cross-entropy loss, which is widely adopted in classification tasks.

To analyze the relationship between activation pattern, prediction distance, and

transition density, the first 50 data points of the test dataset are selected and

combined pairwise, yielding 1225 pairwise data combinations.

On the z-axis, the transition density between two data points is presented. Given

x,x′ from the test dataset, 512 points are sampled from the segment xx′:

xi =
i

513
(x′ − x) + x, i = 1, 2, . . . , 512. (5.20)

With x and x′, the transition is calculated sequentially for the 514 data points as

defined by Equation 5.2. The transition density is the sum of all the transitions.

The prediction distance and pattern similarity of the paired data are presented on

the x-axis and y-axis, respectively. The Euclidean distance is applied to evaluate the

prediction difference. Note that during the discussion in Chapter 5.1, the distance

metric was not specified, therefore it does not affect the results. The computation

of pattern similarity follows the definition proposed in Chapter 4.2. Given a set of

breakpoints, each neuron is assigned a sign according to the pre-activation value as

described by Equation 4.8 for the data x and x′. The similarity PS(x1, x2; π, θ,Γ)

of the patterns Â(x) and Â(x′) is then defined as the proportion of neurons that

have the same sign for both x and x′ as per Equation 5.3.
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The 3D plot illustrates the relationship between pattern similarity, transition

density, and prediction difference. In particular, since there are 10 classes in the

MNIST dataset, data pairs with the same and different labels are contained in the

1,225 pairs. This also provides insights into how networks with different activation

functions separate data.

5.2.1.2 Choice of Breakpoints

The activation pattern is proposed to describe the regional mapping relationship of

a network. For continuous activation functions, a good separation Γ should split

the domain into regions such that the properties of the activation vary within that

region.

For the Sigmoid-net and Tanh-net, the breakpoints are Γ1 = −0.5, 0, 0.5, which

partition the activation functions into two deactivated regions and one semi-linear

region. For the ReLU-net and GeLU-net, the separation is set to be Γ2 = 0, which

partitions the activation function into one deactivated region and one activated

region.

5.2.1.3 Pairwise Pattern Similarity, Transition Density, and Prediction

Difference

Generally, the samples are clustered into two strips facing the upper left. The points

in the upper space mostly consist of paired data with different labels, which have

higher transition density, higher prediction distance, and lower pattern similarity,

while the points in the lower space show the opposite. According to the axis tickers,

it can be concluded that:

� The transition density is positively related to the prediction difference between

data.

� The pattern similarity is negatively related to the transition density.

� The pattern similarity is negatively related to the prediction difference.
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The results are in accordance with the theoretical analysis of Theorem 3 and

Theorem 4, which can be viewed as empirical support for the results.

The next insight provided by the plot is how Sigmoid-net and Tanh-net differ

from ReLU-net and GeLU-net. The two clustered strips are clearly separated for

ReLU-net and GeLU-net, suggesting that data with different labels and data with

the same labels have distinguishably different metric features. However, for the

Sigmoid-net and Tanh-net, the data points are interspersed, meaning that those

networks fail to provide a clear separation for different data.

Additionally, it is found that the pattern similarity of Sigmoid-net and Tanh-net

has a limited range and is relatively higher, suggesting there are fewer activation

regions for those networks. As the number of activation regions relates to the

expressive power of the network, Sigmoid-net and Tanh-net have a worse ability

to approximate complex functions.

5.2.2 Pattern Similarity on Sub-datasets

The next step is to understand how the pattern similarity of the model varies

across different data distributions. Specifically, this section examines how pattern

similarity changes after training.

5.2.2.1 Experiment Settings

As discussed above, given a well-performing model N and two data points x and

x′, the pattern similarity should be lower if x and x′ have the same label, ensuring

a tighter bound on δ(x,x′), and conversely higher for x and x′ with different labels.

To evaluate the model’s performance, two datasets are constructed from the test

data of the MNIST dataset. The single dataset is constructed by selecting 1,000

samples with the same label, while the combined dataset consists of 1,000 samples

randomly selected from the test dataset. We compare the pattern similarity of the

two datasets on trained and untrained models.

The model structure and training schedule are the same as those in Section
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(a) Pattern Similarity of Sigmoid net

(b) Pattern Similarity of ReLU net

Figure 5.3: Pattern Similarity of ReLU Net and Sigmoid Net on Different Datasets.

5.2.1. The separation of activation functions is set to be Γs1 = −0.25, 0.25 and

Γs2 = −0.5, 0.5 for the Sigmoid-net, and Γr = 0 for the ReLU-net.
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5.2.2.2 Indicators of Expressive Ability.

Figure 5.3 presents the experiment results for the Sigmoid-net and ReLU-net. The

gap between the pattern similarity of the single dataset and the combined dataset

can be viewed as an indicator of the practical model’s expressive ability.

As discussed in Section 5.2.1, lower pattern similarity between data implies

higher prediction differences. By generalizing this observation to a dataset, it can

be inferred that the pattern similarity within a dataset should be low if the majority

of the data have different labels. In other words, since pattern similarity measures

the neuron-level response towards a dataset, a model with high expressive ability

should be able to distinguish the differences between data with different labels,

thereby showing low pattern similarity for the combined dataset and the opposite

for the single dataset.

The dashed lines show the pattern similarity of the untrained models on different

datasets. For both models, the dashed lines start to decline at around λ = 0.90,

suggesting that the activation patterns of the dataset are around 90

The blue solid line in Figure 5.3(a) shows that after the model is trained, the

pattern similarity for the combined dataset decreases dramatically compared to the

blue dashed line. This means that the model is able to capture the essential features

of data with different labels. Meanwhile, for the red solid line, the pattern similarity

remains at a high level until λ reaches 0.7, indicating that for data with the same

label, around 70

In contrast, Figure 5.3(a) shows that the expressive ability of the Sigmoid-net

is relatively worse. For both separations, the gap between the combined and single

datasets is less than 10%. Specifically, the solid lines remain at 1 until λ reaches

around 0.8, which means that for any input data, 80% of neurons yield similar post-

activation values. In other words, neurons fail to learn the distinctive features of

data with different labels. This results in a novel dying neuron issue where, even

though most neurons are activated, their post-activation values remain in the same

region for data with different labels, thereby failing to provide useful information.
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5.2.3 Expressive Ability during Training

This section investigates the dying neuron issue during the training of neuron

networks to compare the expressive ability of network with different activations.

(a) Full training of Sigmoid net (b) Full training of Tanh net

(c) Full training of ReLU net (d) Full training of GeLU net

Figure 5.4: Pattern similarity, prediction distance of fully connected network with

different activations during the training. The network consists of 9 layers fully

connected network with 256 neurons within each layer.

5.2.3.1 Experiment Settings.

This section considers both stacked fully connected neural networks (FCNN) and

convolutional neural networks (CNN). The structure and training schedule for the

FCNN is the same as introduced in Chapter ??. The CNN used in this work is

the VGG16 network [91], trained on the CIFAR10 dataset for 120 epochs with a

batch size of 128 and an SGD optimizer with a linear decay learning rate from 0.1 to

0.0001. The pattern similarity and prediction distance are computed using a fixed

set of 1,000 pairs of test data with different labels.
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General Performance. We first illustrate the general performance of the models.

The metrics are recorded every 100 iterations for the FCNN and every epoch for the

VGG16 network.

Figure 5.4 shows the change in pattern similarity and prediction distance for the

FCNN. For the Sigmoid-net and Tanh-net, the pattern similarity first decreases and

then gradually increases to around 0.95. This indicates that during training, most of

the neurons in neural networks with saturated activations are gradually pushed to a

region where they exhibit the same response regardless of the input. Moreover, the

neurons are unable to escape from such a region. This result aligns with previous

discussions [17].

In contrast, for networks with ReLU or similar activations, the pattern similarity

reduces to around 0.5 at the very beginning of training and remains unchanged

thereafter. This suggests that for data with different labels, around 50% of the

neurons react differently to the input. In other words, these neurons are able to

distinguish the differences between data from different classes.

Apart from that, the variance of the prediction difference for neural networks

with different activations is also a good indicator of model stability. In fact, it can

be observed that the variance of δ(x,x′) exhibits similar behavior to the gradients of

models during training, as presented in Figures ??, ??, and ??. ReLU has the most

stable gradients during training as well as the lowest variance of δ(x,x′), followed

by GeLU, Tanh, and Sigmoid. This explains why the model performance of the

Sigmoid-net is the least stable.

5.2.3.2 VGG16

Figure 5.5 shows the change in pattern similarity of the VGG16 network with

different activations. During the training, the pattern similarity of the GeLU and

ReLU networks is relatively more stable. By the end of the training, the GeLU net

has the lowest pattern similarity for data with different labels, implying that the

GeLU net has better expressive ability.
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Figure 5.5: Pattern Similarity of VGG16 network with different activations.

5.2.3.3 Early Stage of Training.

Another helpful measurement is the convergence speed of networks with different

activation functions. Figure 5.6 presents the behavior of pattern similarity during

the early stage of training. For both the FCNN and VGG16 networks, the pattern

similarity is recorded every 5 iterations.

Figure 5.6(a) shows the results for the FCNN network. For all the models, the

pattern similarity gradually decreases to around 0.5. The ReLU net has the fastest

convergence speed, followed by the GeLU net and Tanh net. This result aligns

with the previous discussion about the training dynamics of models in Chapter 3.

However, the Sigmoid net is shown to converge much slower.

This phenomenon is even more pronounced in a larger network. Figure 5.6(b)

presents the change in pattern similarity during the early stage of training for the

VGG network. The pattern similarity of the Sigmoid net remains at 100% at the very

beginning of training, indicating that the network fails to learn valid information at

the start of the training process.
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(a) FCNN

(b) VGG16

Figure 5.6: Pattern Similiarity of fully connected network with different activations

at early stage of training. The network consists of 9 layers fully connected network

with 256 neurons within each layer.
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MNIST CIFAR10

Model FCNN VGG16

Sigmoid 98.28 82.45

Tanh 98.25 84.30

ReLU 98.45 92.27

GeLU 99.17 92.73

Table 5.1: Test accuracy of network different activations.

5.2.3.4 Performance

The expressive ability provided by our metrics is directly related to model

performance. Table 5.1 shows the test accuracy of different networks. The GeLU

activation has the highest test accuracy for both networks, with 99.17% on MNIST

and 92.73% on CIFAR10, followed closely by the ReLU net with slightly lower

accuracy. On the other hand, the Sigmoid-net and Tanh-net have lower test

accuracy. Notably, when combined with the results from Figure 5.5, it can be

observed that the accuracy ranking mirrors the pattern similarity ranking. Since

pattern similarity is an indicator of the severity of the dying neuron issue, the

performance gap between models can be explained by this issue.

5.3 Expressive Ability and Neuron Entropy

The discussion in the previous section addresses the introductory question of why

the Sigmoid net has lower generalization ability and accuracy. This section, rather

than analyzing performance across different models, aims to bring insights into the

activation pattern within a single model.

Given a data distribution D with c classes, this section investigates the

relationship between model performance and neuron behavior on the support of the

distribution D. It introduces a neuron entropy metric and describes its connection
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with model performance. The proposed metric measures the instability of a neural

network on a dataset in a manner similar to that of pattern similarity, but it provides

neuron-level information about the network. This leads to an in-depth discussion of

how expressive ability is affected by the neural network, as well as a neuron entropy

pruning (NEP) method that removes insensitive neurons to reduce the scale of the

network.

5.3.1 Neuron Entropy

The discussion in the previous section shows that, given a neural network N and a

data distribution Dx with different labels, the expressive ability of N is negatively

related to its pattern similarity on the dataset. Specifically, low pattern similarity

means that neurons are proactively responding to data with different activation

statuses, and therefore have more potential in approximating complex objective

functions. This suggests that neurons should have more diverse activation patterns

on a dataset to represent complex functions.

To better understand this, consider the following extreme case. Assume N is a

neural network with piecewise linear activation, and all the neurons of the neural

network N on the support of distribution D are fixed: IT (supp(D)) = ∅. In this

case, the function of N is a linear function. This suggests that a network with

an insufficient number of float neurons has a diminished ability to approximate

functions with high complexity. As the number of float neurons increases, the

expressive ability of the network N also increases.

Motivated by this intuition, we investigate the float neurons of the neural network

defined on the input space. The input space is the union of numerous activation

regions, where the activation patterns in each region differ. Specifically, Section

5.3.3.2 shows that for most neurons in N , there exist points x and x′ such that

the activation patterns on x and x′ are different. This implies the difficulty of

connecting model expressive ability with neuron stability. Therefore, an explicit

measure of neuron stability under a global scope is necessary to continue our study.
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We introduce neuron entropy as follows.

5.3.1.1 Neuron Entropy

Definition 6 (Neuron Entropy). Let N be a network as defined in Chapter 4.1. The

entropy of a neuron (i, j) in N for a data distribution D is defined as the entropy

of the distribution of the activation status for (i, j) given input (x, y) ∈ D.

E (i)j (N ,D) = −
q∑

k=0

p(â
(i)
j (x) = k) log(p(â

(i)
j (x))). (5.21)

The neuron entropy describes the uncertainty of the neuron activation pattern.

For instance, let N be a neural network with ReLU activation. If E (i)j (N ,D) = 0,

this suggests that the activation pattern of neuron (i, j) is identical for any data

(x, y) ∼ D, implying that neuron (i, j) fails to provide non-linearity. On the other

hand, if E (i)j (N ,D) is close to 0.69, it indicates that the probability of neuron (i, j)

being either activated or deactivated is around 50% for data distribution D.

Figure 5.7 shows the neuron entropy of neuron â
(i)
j , where the x-axis represents

the probability that the pattern of â
(i)
j is 0: P (â

(i)
j = 0). For activations with two

patterns (such as ReLU, PReLU), neuron entropy reaches its maximum of around

0.69 when P (â
(i)
j (x) = 0) = 0.5. For activations with three patterns (such as

Sigmoid, ReLU-6), the maximum entropy is 1.09 when P (â
(i)
j (x) = 0) = 1/3.

Now we build the connection between neuron entropy and model expressive

ability. Let (x, y), (x′, y′) ∼ D with y ̸= y′. To perform correct classification,

network N should be able to describe the difference between x and x′. Theorem 8

decomposes f(x) − f(x′) into a linear part derived from the Jacobian matrix and

a non-linear part. The linear part is determined by the local Jacobian matrix at

x. The non-linear part, on the other hand, is determined by the number of float

neurons in the set x,x′. As the number of float neurons increases, the number of

float paths in x,x′ and the complexity of f(x) − f(x′) also increase. This implies

that the network is able to provide better non-linearity and has greater potential in

approximating the difference between x and x′.
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Figure 5.7: The float entropy of activation functions with k different patterns given

the probability of pattern is 0 (x-axis). Each line shows the maximum value of

entropy, while the shadowed region is the range of entropy from k = n to k = n− 1.

To generalize the discussion from data points to data distributions, we introduce

neuron entropy, which is built on the distribution of activation patterns and describes

how well neurons can provide non-linearity given a data distribution D. In other

words, it can be viewed as an indicator representing the expected complexity of the

estimation of f(x)−f(x′). Formally, we use the following theorem to connect model

expressive ability and neuron entropy.

Theorem 5. Consider two neural networks N and N ′ with monotonous activation

functions, under the same architecture, and trained on the same data distribution

D. Denote the measure zero parameter set with respect to the Lebesgue measure for

N and N ′ as θ and θ′. Let (x, y), (x′, y′) ∼ D. If:

1. P (x = a) = 0, a ∈ Rn0;

2. θ,θ′ ∼ Θ
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3.
∑

i,j E
(i)
j (θ,D) <

∑
i,j E

(i)
j (θ′,D),

then E(f(x;θ)− f(x′;θ)) ≤ E(f(x;θ′)− f(x′;θ′)).

Proof. For any x, x′ ∈ Rn, consider the distance between f(x; θ) − f(x′; θ).

According to Lemma 8:

f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)− ZT (x′,A;R) (5.22)

The above theorem compares the expressive abilities of neural networks with the

same structure but different parameter sets. Among the assumptions: (1) shows that

there is no atom from the data distribution, which is trivial and compliant with any

continuous probability function; (2) assumes that the parameter sets of networks N

and N ′ are drawn from the same distribution, which is empirically satisfied when

networks are trained under the same algorithm; and (3) suggests that network N

has lower average entropy compared to network N ′.

The conclusion of Theorem 5 compares the expected ability of models to separate

(x, y), (x′, y′) ∼ D. For a data distribution with more than two classes, the

probability of P(y = y′) > P(y ̸= y′) is higher than that of y ̸= y′. Therefore,

better ability in separating f(x) and f(x′) implies a higher expressive ability of the

network. In Section 5.3.3, we present empirical results of our metric in analyzing

neural network performance.

5.3.2 Model Expressive Ability

This section discusses the link between neuron entropy and metrics proposed in

previous works.

The number of linear regions was one of the earliest metrics introduced to

quantify model expressive ability. Let N be a neural network with a piecewise linear

activation function. The input space is divided into numerous linear regions within

which the mapping is a linear function. Therefore, the number of linear regions of a
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network is viewed as a representation of network complexity. The following theorem

shows that higher average neuron entropy implies more linear regions on the support

of distribution D.

Theorem 6. Let N and N ′ be neural networks with the same structure as defined in

Chapter 4.1. Denote the parameter set of N and N ′ as θ and θ′. If
∑

i,j E
(i)
j (θ, D) >∑

i,j E
(i)
j (θ′, D), then

#Linear Regions of N > #Linear Regions of N ′.

The connection between neuron entropy and the number of activation regions is

built upon the probability of two random points x,x′ ∼ D being within the same

region. A higher average neuron entropy of a network implies a lower probability

that x and x′ share the same activation pattern. Conversely, this lower probability

suggests that there are more activation regions.

Subsequent work introduces transition density as a metric for evaluating the

stability of a neural network. Transition density describes the number of activation

regions crossed by a trajectory. A higher transition density implies that the network

is less stable along that trajectory.

In evaluating model expressive ability, [2] introduces a pattern similarity metric

that measures the ratio of neurons with the same activation pattern given a pair of

data from the dataset:

PS(D;θ) = Ex,x′∼D[
IX(x,x′)

#number of neurons in N
] (5.23)

As is discussed in [2], higher pattern similarity is associated with a lower transition

density as well as a loss of model expressive ability. A dying neuron issue is also

observed that most of the neurons are firing similar signals regardless of the input.

The following theorem describes the connection between our metric and pattern

similarity.

Theorem 7. Let N ,N ′ be neural networks with the same structure and piece-

wise linear activation function. Denote the parameter set of N and N ′ are θ and
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θ′. Given data distribution D, if E(E (i)j (θ,D)) > E(E (i)j (θ′,D)), then PS(D;θ) >

PS(D;θ′).

Theorem 6 and Theorem 7 connect the metrics proposed in previous works

with neuron entropy, demonstrating the consistency of the generic results of our

metric. On the other hand, neuron entropy offers significant advantages in evaluating

the performance of a neural network from a unit-wise perspective. For instance,

comparing neuron entropy across different layers can shed light on the role of each

layer, while monitoring changes in unit-wise neuron entropy allows us to identify

dead neurons.

5.3.3 On Explaining Neural Networks

5.3.3.1 Model Expressive Ability

Figure 5.8 compares the neuron entropy of VGG16 networks trained on the CIFAR10

dataset with different batch sizes. Each model is trained for 24,000 steps, and the

neuron entropy is evaluated every 400 steps. The activation function for all networks

is ReLU, with the separation 0. Therefore, each neuron in the network is either

activated or deactivated.

Figures 5.8(a) and 5.8(b) compare the training and validation accuracy of

different models. The results show that models with larger batch sizes tend to

have higher accuracy and less instability in both training and testing datasets. To

explain the performance gap from a neuron stability perspective, Figures 5.9(a) to

5.9(c) compare the average neuron entropy at different layers, while Figures 5.9(d)

to 5.9(f) compare the variance of neuron entropy at different layers.

At the entry layer (layer 1, Figure 5.9(a)), the neuron entropy of different models

is close to 0.62, indicating that most of the neurons have around a 50% probability

of being activated for a given dataset. In the shallow layers (layer 6, Figure 5.9(b)),

the neuron entropy first increases to around 0.6 and then gradually drops. However,

the neurons in the best-performing model (with batch size 512, brown line) are more
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(a) Training Accuracy

(b) Test Accuracy

Figure 5.8: The mean and variance neuron entropy at different layers for a VGG16

network trained on CIFAR10 dataset.

stable in the shallow layers.

The most distinguishable differences between models can be observed in the

deep layers (layer 11, Figure 5.9(c)). It shows that the model with higher neuron

entropy is able to provide better accuracy on both training and testing datasets. In

particular, the neuron entropy of the worst-performing models is around 0.1, which

means that most of the neurons in the deep layers have the same activation status
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(a) Mean of Layer 1 (b) Mean of Layer 6

(c) Mean of Layer 11 (d) Variance of Layer 1

(e) Variance of Layer 6 (f) Variance of Layer 11

regardless of the input. This is known as the dying neuron issue, which causes a

loss of expressive ability [2].

On the other hand, by comparing the variance of neuron entropy, we find that

at different layers, the best-performing model has the lowest entropy variance. This

means that all the neurons have similar uncertainty at each layer.

The comparison of neuron entropy at different layers helps explain neural network

performance from different aspects. First, it shows that neuron entropy for a well-

performing model should be higher in the deep layers while lower in the shallow
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layers. Second, it reveals the role of each layer. At the entry layer, the neurons

are highly unstable due to the diversity of input images. The shallow layers, as

suggested by previous works, are responsible for generating features from the input,

and therefore tend to have stable neurons. Prior to classification, the deep layers

then extract essential information for classification. The high neuron entropy in the

deep layers indicates a better ability to encode features for classification.

5.3.3.2 Overfitting and Dying Neuron

This section discusses the generalization of neural networks. We train VGG16

networks on the CIFAR10 dataset for 120 epochs with a batch size of 256 using the

SGD optimizer. A milestone learning rate scheduler is adopted, where the learning

rate starts at 0.1 and is multiplied by 0.1 after 60 and 90 epochs. The training and

validation accuracy are 99.7

Figure 5.9 illustrates the distribution of neuron entropy on the training and

validation datasets at different layers. On the training set, the neuron entropy

values of the network are evenly distributed in the entry and shallow layers. In the

deep layers, we observe an increase in the proportion of neurons with entropy close

to 0. This distribution aligns with the results from Figure 5.8.

On the validation set, the distribution of neuron entropy in the first few layers

is relatively more diverse than on the training set. However, starting from layer

7, more neurons become globally stable on the dataset. Notably, from layer 10 to

layer 12, a significant proportion of neurons have neuron entropy of 0, meaning these

neurons have the same activation status regardless of the input. In other words, they

fail to provide any non-linearity for any x ∼ D, resulting in a loss of generalization.

The phenomenon where the activation pattern of neurons remains identical for

any input is referred to as the dying neuron issue. Our experiments in this section

suggest that the generalization error of a neural network can also be attributed

to the dying neuron issue. Furthermore, by comparing the distribution of neuron

entropy on the training and validation datasets, we identify that this issue mainly
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(g) Training set

(h) Validation set

Figure 5.9: The average proportion of float neurons for VGG16. The network is

trained on the CIFAR10 dataset for 120 epochs. We test the first 1000 data from

the validation dataset. For each of the test datasets, we generate a noised dataset

with the size of 1000 samples and perturbation size of 4/255 under ℓ2 bound.
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occurs in the deep layers of the neural network, which is also a primary cause of

generalization error.

5.3.3.3 Neuron Entropy Dynamics

Figure 5.10: Dynamic of neuron entropy at different layers during training. Each of

the line records the entropy of a neuron during training every 100 steps.

Figure 5.10 illustrates the dynamics of neuron entropy during training across

different layers. The model used is the same as that in Section 5.3.3.2. For each

layer, we present the entropy of the first 4096 neurons throughout the training

process.

In the entry layers (layer 2), most neurons have an entropy around 0.7, indicating

that they are volatile on the dataset and can identify differences across various data

points. In the first few layers (up to layer 5), the entropy of neurons increases rapidly

during training and stabilizes around 0.7.

However, as the model progresses to deeper layers, more neurons begin to lose

their volatility, as shown in layers 8 and 11. For example, by the end of the training,

the number of neurons with entropy between 0.2 and 0.4 in layer 8 is higher than

that in layer 5. Additionally, in layer 11, most neurons end up with a neuron entropy

of 0.

By analyzing the dynamics of neuron entropy, we gain insights into neuron-level
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behavior on the dataset. This allows us to identify specific dead neurons in different

layers that fail to contribute to model performance.

5.4 Pruning of the Dead Neurons

One of the objectives of theoretical analysis in research is to derive insights from

observations and introduce innovations to existing models. This section introduces

a downstream application inspired by the study of model expressive ability.

We begin by describing the motivation and the connection with the theoretical

foundation of the proposed algorithm in Section 5.4.1. This is followed by a

discussion of how the proposed method relates to mainstream neural network

pruning methods. Finally, we present experimental results demonstrating that

the proposed method can outperform benchmark models under the same sparsity

conditions.

5.4.1 Motivation

The investigation in the previous chapter focuses on explaining the expressive ability

of neural networks and highlights that most networks suffer from the dying neuron

issue. It reveals that a large proportion of neurons have negligible entropy in a

well-trained model, particularly in deeper layers. This analysis aligns with previous

discussions on model expressive ability [2], [19]. It shows that despite the potential

to represent functions with high complexity, the expressive ability of neural networks

is limited due to inactive neurons, referred to as dead neurons.

These dead neurons produce similar outputs regardless of the input, contributing

little to the prediction process of the neural network. However, during inference,

these neurons still consume computational resources. An intuitive approach to

improving the performance of large-scale models is to remove these dead neurons,

thereby reducing the model’s size.

Based on this idea, this section introduces a pruning algorithm called Neuron
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Entropy Pruning (NEP). NEP aims to identify the parameters in the neural network

that are least important to model performance. It combines neuron entropy with

other metrics that evaluate the importance of each parameter. These less important

parameters are then removed to reduce the model’s size while maintaining its

expressive ability. In other words, the objective of NEP is to eliminate the dead

neurons without compromising the expressive ability of the neural network.

5.4.2 Blending Entropy into Weights

The essence of pruning techniques is to remove unnecessary parameters. In previous

works, the importance of parameters is often measured by the absolute value of

weights, with the assumption that larger values have a higher impact on prediction

results. The objective of NEP is to introduce neuron entropy, which measures the

generalization ability of neurons in a global context, into the importance score of a

parameter, denoted as IS(W i) for the parameters W i in layer i.

In this context, the weights and neuron entropy can be viewed as prior and

posterior measures of the importance of parameters. In the following discussion,

they are denoted as:

ISprior(W
i) = W i

ISpost(W
i) = Importance score derived from neuron entropy.

(5.24)

Given input x(i), outputs y(i), and weights W (i) of layer i, the roles of weights

and neuron entropy can be described as follows:

� During forward propagation, A parameter W (i)jk with a relatively low

absolute value implies that the j-th input of x(i) is less important to the k-th

output y(k) of layer i. Therefore, W (i)jk can be removed with minimal effect

on the model’s performance.

� After forward propagation for a dataset, If a set of neurons E (i)j in layer i has

low entropy, then those neurons contribute less to the model’s prediction. By
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averaging the entropy of all neurons affected by a certain parameter W (i)jk,

the importance score of W (i)jk can be inferred.

Based on this intuition, NEP fuses neuron entropy with model weight to obtain

a comprehensive measure of parameter importance. However, for most linear affine

transformations, the shapes of neurons and parameters differ. Neuron entropy

measures the uncertainty of output and has the same shape as the layer output,

while the parameters transform the layer input x(i) to the pre-activation z(i) and

can be viewed as a matrix.

To address this gap, NEP leverages the neuron entropy of all neurons in layer i

to compute an importance score for each parameter. Specifically, given a parameter

W
(i)
j , it averages the entropy of all neurons affected by this parameter as the overall

entropy for this parameter. Thus, an importance score for the weight can be

computed, having the same shape as the weights. Section 5.4.2.1 and Section 5.4.2.2

describe how this process is applied to linear and convolutional layers.

Essentially, the computation of the posterior importance score aims to extract

insights into the neural network’s expressive ability from neuron-level performance

after forward propagation. To properly remove unnecessary neurons, the model

weights, referred to as the prior importance score ISprior, also need to be considered.

Section 5.4.2.3 introduces several methods to fuse these metrics to enhance model

expressive ability.

5.4.2.1 Linear Layer

Let the i-th block of neural network N be a linear block. It takes x(i) as input

and computes an output z(i), where x(i) and z(i) are vectors of size ni and ni+1,

respectively. The weight matrix W (i) of block i has a shape of ni×ni+1. This linear

transformation can be described as:

z
(i)
j =

ni∑
k=1

W
(i)
jk x

(i)
k . (5.25)

As z(i) is the pre-activation of layer i, neuron entropy can be computed for each
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neuron z
(i)
k . The neuron z(i)k is influenced by the inputs x(i) and the k-th row of

the weight matrix W (i), as described above. This implies that the entropy of neuron

(i, k) reflects the importance of the weights W (i)k, :.

Based on this discussion, given a linear transformation, NEP computes the

entropy for each output dimension as an overall entropy for the i-th row of the

weight matrix W ([)i, :]. Intuitively, if the entropy of neuron (i, k) is low, then this

neuron is firing the same signals regardless of the input, thereby losing expressive

ability. The posterior importance score for the weight matrix is denoted as:

ISpost(W
(i))k,: =

1

ni

ni∑
k=1

E (i)k , (5.26)

whereW
(i)
k,: is the k-th row of the weight matrix and E (i)k is the entropy of k-th neuron

in layer i.

5.4.2.2 Convolutional Layer

Similar to that of a linear layer, the computation of the posterior importance score

of a convolutional block also averages the entropy of all the neurons affected by

the parameter. Denote W (i) as the weight of a convolutional layer. Assume that

the shape of W (i) is nin × nout × nk1 × nk2, where nin, nout, nk1, and nk2 are the

number of input channels, the number of output channels, and the two kernel sizes,

respectively. The input xi and output zi are the input and output of layer i, with

shapes niin×ni−1l×ni−1w and niout×nil×niw, where ni−1l, ni−1w, nil, and niw are

the lengths and widths of the layer’s input and output. The discrete convolutional

layer computes:

zij =

Cin∑
k=0

W i
k,j,:,: ⋆ x

i
k, (5.27)

where xik is the k-th input channel, zij is the j-th output channel, W i
k,j,:,: is the 2-D

slice of the weight from the k-th input to the j-th output channel, and ⋆ is the 2D

cross-correlation operator.

As the neuron entropy of layer i is observed and computed from the output zij,

the importance score for the weights should take the output zij into account. It can
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be noticed that the j-th filter of the output is computed from the j-th slice cut from

the output dimension of the weight, which means that each parameter in W ik, j, :, :

contributes to the prediction of the j-th channel of the output. Following the same

idea of computing the importance score of a parameter using the entropy of the

neurons affected by it, the posterior importance score of filter W ij, :, :, : is computed

by averaging the entropy of the output. This can be represented as:

ISpost(W )[j, , :, :] =
1

nil

1

niw

ni
l∑

a=0

ni
w∑

b=0

E (i)j,a,b, (5.28)

where E (i)j,a,b is the neuron entropy of (a, b)-th output in channel j of layer i.

5.4.2.3 Blending Methods

After preparing the weights and neuron entropy, the next step is to blend the prior

and posterior measures of parameter importance. As suggested by their names, the

prior importance score measures the usefulness of a parameter before feeding any

data, based on the observation that parameters with lower absolute values have less

effect on prediction. On the other hand, the posterior importance score is computed

from neuron entropy and measures expressive ability based on the reaction of neurons

to a dataset.

The computation of the posterior importance score provides insights into

the neural network’s expressive ability from neuron-level performance after for-

ward propagation. To properly remove unnecessary neurons, the weights of the

model—referred to as the prior importance score—must also be considered. This

blending of metrics involves balancing the prior and posterior measures of expressive

ability. In the following experiments, this section considers the following approaches:

� Weight:

IS(W i) = IS(W i)

� Entropy weighted:

IS(W i) = ISpost(W
i)ISprior(W

i).
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� Harmonic mean of weight and layer entropy:

IS(W i) =
1

1
ISpost(W i)

+ 1
ISprior(W i)

.

� Normalized weight × Normalized entropy:

IS(W i) =
ISpre(W

i)− µpre
σpre

× ISpost(W
i)− µpost

σpost
,

where µpre and µpost are the mean of ISpre and ISpost, σpre and σpost are the

variance of ISpre and ISpost.

� Standardized weight × Standardized entropy:

IS(W i) =
ISpre(W

i)−min(ISpre(W
i))

max(ISpre(W i))−min(ISpre(W i))
×

ISpost(W
i)−min(ISpost(W

i))

max(ISpost(W i))−min(ISpost(W i))
.

(5.29)

The first method uses only weights as the importance score, serving as a

benchmark for the pruning experiments to illustrate that introducing neuron

entropy is helpful in identifying unimportant parameters. The entropy-weighted

and harmonic mean methods combine the prior and posterior importance scores in

different ways. The normalized weighted and normalized summed methods apply

normalization to the values to remove the magnitude difference between the two

measures.

5.4.3 Neuron Entropy Pruning

Now that the methods of computing the parameter importance score have been

introduced, the remaining question is how the algorithm is applied to a neural

network.

Algorithm 1 presents the detailed training and pruning steps of NEP. At the

beginning of the training, a maskM is initialized with the same shape as the network

parameters to denote the remaining neurons. During the training, both forward and

backward propagation are performed on the masked parameters, as suggested in
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Algorithm 1: NEP training algorithm

Input: Training data Dtrain, validation data Dval, number of epochs T ,

pruning milestones P , breakpoints Γ, pruning threshold eb

1 Function Train(f,θ) :

2 Initialize Mask M with 1.

3 for Epoch t = 1 . . . T do

4 while (x, y) ∈ Dtrain do

5 ŷ = f(x|M · θ)

6 θ ←M · θ −M · ∂loss(ŷ,y)
∂θ

7 end

8 if t ∈ P then

9 M ← Prune(θ, t)

10 end

11 end

12 return θ

13 Function Prune(θ, t) :

14 Initialize activation pattern counter pc.

15 while (x, y) ∈ Dtrain do

16 for Block i = 1 . . . d do

17 z← ψi ◦ ϕi(x)

18 â
(i)
j (x)← ComputePattern(z,Γ)

19 pc
(i)
j [â

(i)
j (x)]← pc

(i)
j [â

(i)
j (x)]

20 x← σi(z)

21 end

22 end

23 pc
(i)
j ← pc

(i)
j /#Dtrain

24 Eij ← Entropy(pc
(i)
j )

25 M
(i)
j ←M

(i)
j ∧ PruneCriteria(E (i)j )

26 return M
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steps 5 and 6. Step 9 prunes the network if the current epoch is within the pruning

milestone P .

The prune function computes the entropy of each neuron and applies a mask to

the neurons with the lowest entropy. A counter pc is first initialized, where pc(i)j[k]

is the number of occurrences of pattern k for neuron (i, j). For each block hi, the

pre-activation zi is first computed at step 17, followed by the activation pattern

for each neuron â(i)j at step 18. The pattern counter of the current pattern â(i)j

for neuron (i, j) is updated by 1. After passing through the entire dataset, the

frequency of each pattern can be viewed as an estimation of the pattern distribution

for neuron (i, j). We then compute the entropy of neuron (i, j) as E (i)j using pc(i)j.

After processing the entire dataset, all neurons that meet the pruning criteria are

pruned by setting the mask M (i)j = 0.

The network starts with a standard training process. After a certain number of

epochs, the neuron entropy of the network on the validation set is computed, and

a mask is applied to the neurons with the lowest entropy. We separate the training

and pruning steps in Algorithm 1 for clarity. Empirically, the computation of neuron

entropy can be merged into the training steps, and the update of the pattern counter

can be performed batch-wise.

5.4.4 Pruning

This section presents the experiment results of NEP. The algorithm first evaluates

the expressive ability of the neural network using neuron entropy metrics. Based on

the volatility of neurons, it is shown that a certain number of dying neurons fail to

contribute to the network’s prediction. The neuron entropy pruning method aims to

leverage this information by combining the weights and neuron entropy to eliminate

unnecessary parameters from the network.

We begin by investigating the performance of networks pruned using different

methods. Each network is initialized with He Normal Distribution [18] and trained

using the SGD optimizer on the CIFAR10 dataset with a batch size of 128 for 120
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(a) VGG16

(b) AlexNet

Figure 5.11: Comparison between Pruning Methods with different sparsity

epochs. The initial learning rate of 0.1 decays by a factor of 10 after 48 and 84

epochs. To prevent the update of pruned parameters, we set the weight decay and

momentum of the optimizer to 0.

5.4.4.1 Pruning Details

In this set of experiments, we prune the network every 10 epochs to allow the network

to ”recover” and optimize the remaining parameters. This training procedure is

justified in Section 5.4.4.3. Near the end of training, we stop pruning and fine-tune
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(a) Train Accuracy

(b) Validation Accuracy

Figure 5.12: Comparison between Pruning Methods with different sparsity

the network for 20 epochs. At each pruning epoch, the entropy of each neuron

is recorded during training, and an importance score is computed at the end of

training by blending the layer entropy with the model weight. Parameters from

different layers are removed in equal proportion according to the importance score.

5.4.4.2 Comparison between Pruning Methods

Figure 5.11 compares the accuracy of networks pruned using different blends.

Compared with the benchmark model (Weight), most of the models pruned by an
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Figure 5.13: Comparison of Prune Frequency with different sparsity

importance score blended with weights and entropy achieve higher accuracy. Among

them, the model using entropy-weighted parameters achieves the best performance,

boosting the accuracy of the benchmark model by 3% to 8% at various sparsity

levels from 0.7 to 0.95, followed by harmonic mean and normalized weighting. This

suggests that more useful parameters survive when neuron entropy is considered

during the pruning process. In other words, neuron entropy can be viewed as a

metric for evaluating the expressive power of the network.

5.4.4.3 Pruning Frequency

To understand the effect of pruning on models during training, Figure 5.12 reports

the training and validation accuracy of the pruning method with 80% sparsity. The

model accuracy drops after each pruning and gradually recovers during the non-

pruning epochs. As model sparsity increases, the performance impairment is greater,

and the model finds it harder to recover. This suggests that the pruning frequency

and fine-tuning steps can affect the final performance of the network.

Figure 5.13 compares model accuracy given different pruning frequencies under

different target sparsity. Given sparsity S, models are pruned every 2, 5, 10, or 15
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epochs with 20 fine-tuning epochs, resulting in 49, 19, 9, and 6 pruning iterations,

respectively, where the same proportion of parameters is removed each time. Low

pruning frequency implies a larger amount of pruning each time and a longer fine-

tuning period.

For the models pruned by weights, increasing the pruning frequency results

in slightly lower validation accuracy. The model with a pruning frequency of

10 outperforms the others by around 7%. On the other hand, when neuron

entropy is introduced to the importance score, NEP (entropy-weighted) models

with higher pruning frequency achieve better results. Increasing the pruning

frequency from 15 to 2 boosts model performance by around 6%. In general,

considering pruning frequency, the proposed NEP (entropy-weighted) outperforms

the benchmark models by around 12%.

5.5 Chapter Summary

This chapter investigates the expressive ability of neural networks with respect to

the dying neuron issue. The dying neuron issue refers to the phenomenon where

most neurons produce similar outputs for any data, resulting in a loss of practical

expressive ability. Unlike the gradient vanishing issue, the gradient of a dying neuron

is non-zero. However, because most of these neurons fire similar outputs regardless

of the input, they fail to provide useful information, leading to a reduced expressive

ability.

The theoretical results of this chapter are presented in Sections 5.1 and 5.3. In

particular, two metrics—pattern similarity and neuron entropy—are introduced to

measure the expressive ability of neural networks, focusing on:

� Exploring the expressive ability across models with different activation

functions. This analysis provides an explanation for the introductory question

and shows that Sigmoid nets and Tanh nets suffer more severely from the

dying neuron issue than other models.
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� Investigating the dying neuron issue within a single model, offering insights

into the roles of different layers in function approximation.

Pattern similarity evaluates the model’s expressive ability across different models.

The experiments in Chapter 5.2 establish a link between pattern similarity and

model performance. They explain that the poor performance of Sigmoid nets can

be attributed to the dying neuron issue, where most neurons fire similar signals

toward data with different labels, thus failing to distinguish their differences.

On the other hand, neuron entropy evaluates neuron-wise volatility and aims to

understand why models lose generalization ability on out-of-sample datasets. It was

found that in deep layers, neurons tend to lose their volatility and suffer from the

dying neuron issue, meaning they do not contribute to the prediction. Inspired by

this, Chapter 5.4 introduces a model pruning method that computes the importance

score of neurons using both weights and neuron entropy. The experiments in 5.4

show that, compared to benchmark models, the proposed method can reduce the

model’s scale while maintaining better accuracy on validation datasets.
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Chapter 6

Float Path and Model Robustness

As another mainstream research topic, a significant amount of research has explained

how perturbations affect the prediction results of neural networks from different

perspectives. This chapter discusses the robustness of neural networks within the

proposed framework.

In Chapter 6.1, the concepts of float paths and fixed paths were introduced to

describe the stability of neurons within a region. Building on this framework, the

investigation in this chapter is based on the idea of connecting the instability of

neural networks to neuron behavior. Although similar bounds and insights can be

derived for non-piecewise linear functions, this chapter focuses on neural networks

with piecewise linear activation functions for a clearer understanding.

According to Definition 8, given a subspace R ⊆ Rn, the activation pattern

of every neuron along a path ζ remains unchanged if ζ is a fixed path in R.

This implies that the mapping from the input space to the output space of ζ(x)

remains consistent. Conversely, the mapping along float paths changes within the

region. Since the computational graph of a feedforward neural network is a directed

acyclic graph, variations in prediction can be attributed to changes in paths if the

computational graph can be decomposed into such paths.

Based on this idea, Chapter 6.2 describes a method for decomposing the neural

network. It is shown that the network can be decomposed into a fixed path ZI

167



Chapter 6. Float Path and Model Robustness

and a float path ZT within the region R. The unsecured data within R is further

categorized into float vulnerable and Lipschitz vulnerable according to which part of

the decomposition affects it. Chapter 6.3 then investigates the effects of robustness

training methods. It is found that adversarial training methods can compress the

Lipschitz constant of the network, addressing the Lipschitz vulnerability, but they

do not effectively address the float vulnerability. On the other hand, the smoothed

classifier can provide robust predictions for unsecured data by averaging the float

paths ZT .

To improve model robustness, Chapter 6.4 introduces a method named Smoothed

Classifier with Refactored Float Paths in Dual Directions (SCRFP-2). By

manipulating the behavior of float neurons during training and prediction, this

method further improves the performance of the smoothed classifier. To provide

a theoretical bound for the method, it is shown that the certifiable radius of the

proposed method holds as long as the randomness generated by the smoothed

classifier is directionally irrelevant. The experimental results and comparisons with

previous works are then presented in Chapter 6.5.

6.1 Activation Paths

In the previous section, a framework was presented to describe the neural network

within an arbitrary subspace R ⊂ Rn, along with a general discussion of the upper

bound of the network. Although the result is insightful for understanding the

performance of a neural network, a more precise discussion of network prediction is

also preferred.

The next step in building the theoretical framework is to make use of the above

definitions by connecting the mapping relationship of the network with the status

of neurons. The idea of this section is to decompose the computational graph of the

neural network, enabling an in-depth analysis of how prediction variation is caused

by changes in activation status. Due to the high complexity of neural networks, this
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decomposition is performed on networks with piecewise linear activation functions.

This section introduces definitions related to the computational graph of the

neural network. A feedforward neural network can be represented as a directed

acyclic graph. This means that the computational graph of such a network can be

decomposed into a sum of paths, where each path starts from the inputs, connects

through a unique neuron at each layer, and terminates at the network output. To

investigate the expressive ability and robustness of a neural network, the framework

proposed in this research decomposes the computational graph of the network into

paths. A path of a feedforward neural network N is defined as:

Definition 7 (Activation Path). Let N be a neural network as defined in Section

4.1. A path of N is a set of neurons that:

ζ := {ζi|i = 0, 1, . . . , n} ∈ ZR0 × ZR1 · · · × ZRn (6.1)

where ZRi
= {1, 2, . . . , ni} is neuron indices for layer i. A sub-path of a path consists

of several consecutive elements of γ:

ζ(i,j) = {ζj, ζj+1 . . . , ζi} ⊆ ζ (6.2)

A trivial insight is that the value of each path is determined by the input x ∈ Rn

as well as the status of the neurons along this path. This means that given a subspace

R ∈ Rn, if all the neurons in a path ζ have the same activation status, ζ provides

a stable contribution to the network’s prediction; otherwise, ζ is unstable. We use

the terms float and fixed neuron/path to describe this:

Definition 8 (Float Path and Fixed Path). Let N be a neural network defined as

in Section 4.1. Given a subspace R ⊂ Rn, a path ζ of N is a float path in R if there

exists at least one neuron ζi ∈ ζ that is a float neuron in R; otherwise, the path ζ

is a fixed path.

float path in R := {ζ|∃ζi ∈ ζ, (i, ζi) /∈ II(R)}

fixed path in R := {ζ|∀ζi ∈ ζ, (i, ζi) ∈ II(R)}.
(6.3)
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The value of float paths and float paths in R are denoted as:

ZT (x,A;R) =
∑

float path in R

ζ(x,A),

ZI(x,A;R) =
∑

fixed path in R

ζ(x,A),

where ζ(x,A) is the value of path ζ given input x and an activation pattern A.

Similar to the float/fixed neurons, the float/fixed paths are also defined on a

subspace R ∈ Rn. For any x,x′ ∈ R, fixed neurons have the same activation status.

If all the neurons on a path are fixed neurons, then ζ is a fixed path, which means the

value of ζ is stable in the region R. In particular, if the activation π of the network

is a piecewise linear function, then the value of ζ is linear in the region R. On the

contrary, a float path in the region R introduces more non-linearity to the network’s

prediction. Therefore, the above definition decomposes the prediction f(x) of a

network according to the stability of the computational paths, where ZI(x,A;R)

and ZT (x,A;R) are the values of fixed paths and float paths, respectively.

In the following, the decomposition of the computational graph of deep neural

networks is further discussed to investigate the robustness of neural networks. As

defined in Definition 4, the unstable neurons for a given region R can be identified

by the framework proposed in this research, making the decomposition helpful in

understanding the robustness of neural networks. The discussion in this dissertation

is limited to models with piecewise linear activation functions due to the high

complexity of networks with deeper structures. For non-piecewise linear activation

functions, a similar bound can also be obtained by following the ideas in Lemma 11

and Theorem 8, which will be discussed in future works.

6.2 Decomposing the Computational Graph

This section discusses the robustness of a neural network within the proposed

framework. The research of model robustness focuses on enhancing the reliability
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and stability of models under a variety of conditions. In deep learning, given a well

trained model N , it is found that some data x can be deliberately modified, which

is denoted as x′, in a way that is often imperceptible to humans but causes the

model N deep learning model to make mistake. Then x′ is known as an adversarial

example, while the original input x is an unsecured data.

The objective of this section is to provide insights on understanding the

unsecured data from actiavtion paths perspective. It begins by describing how

float and fixed paths contribute to the prediction difference between f(x) and f(x′)

given x ∈ B(x, r). Based on this discussion, unsecured data is then categorized

into Lipschitz vulnerable and float neuron vulnerable types, and the two types of

vulnerability are investigated. Given a trained model N and an adversarial attack,

if there exists an adversarial example x′, then x is an unsecured data. This section

then investigates the behaviour of float paths and fixed paths of those unsecured

data from themodel N .

To understand the motivation, consider the simple case where there is only one

neuron (i, j) that is a float neuron in the region R ⊂ Rn0 . The only non-linearity in

R is provided by neuron (i, j). The computational graph of N can be decomposed

into float paths and fixed paths based on whether (i, j) is on the path. This is

formally described in the first statement of Theorem 8. Furthermore, given x,x′ ∈

R, the difference between f(x) and f(x′) can be viewed as a combination of a

linear function and an unstable function with high non-linearity, as suggested by

the second statement in Theorem 8. The remaining challenge is how to decompose

the computational graph of network N , which is discussed in the following section.

6.2.1 Decomposing the Computational Graph

The framework for describing the status of neurons is presented in Chapter 4.3. The

following lemma establishes a connection between the mapping function f and the

activation pattern given a piecewise linear activation function π.
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Lemma 11 (Decomposition of Neural Network). Let N be a neural network defined

as in Chapter 4.1 with a piecewise linear activation function π. Given activation

pattern A, for any x ∈ R(A; θ, σ,Γ), the k-th component of the output of layer i can

be represented as:

y
(i)
k (x) =

∑
∀ζi=k

x
(j)
ζj

i∏
m=j+1

dAm,ζm
W

(m)
(ζm,ζm−1)

+
i−1∑
o=j

∑
∀ζi=k

β
(o)
ζo

i∏
m=o+1

dAm,ζm
W

(m)
(ζm,ζm−1)

(6.4)

where x
(j)
ζj

is the ζj-th element of input in layer j, W ′(i) and β(i) are the equivalent

matrix and bias of linear transformation ψi ◦ ϕi, Am,ζm is the activation pattern of

ζm-th component of layer m and dAm,ζm
is the slope of pattern Am,ζm:

dAm,ζm
:= σ′(t), t ∈ UAm,ζm

.

Proof (Lemma 11). We first show that the pre-activation transformation can be

represented by a matrix. As ϕi is a linear affine, we denote ϕi(x) = Wixi. Combing

with batch normalization layer, the mapping from input xi to pre-activation is:

zi = γi
ϕi(x)− µ̂

σ̂
+ βi =

γ

σ̂
ϕi(x)−

γµ̂

σ̂
+ βi = Diagi(

γ

σ̂
)Wix−

γµ̂

σ̂
+ βi (6.5)

where Diagi(·) is the diagonal operator, µ̂ and σ̂ are the mean and variance

parameter of the ψi. Denote W ′(i) = Diagi(
γ
σ̂
)Wi, β

′
i = (βi − γµ̂

σ̂
)/ni. This is

proved by deduction. For i = 1:

zi =

n0∑
j=0

W
(1)
ij dA1,i

x0j + n1 × β′(1)
i ,

where A1,i is the activation pattern of z1i. Since all the path in layer i ends at i are

{(1, i), (2, i), . . . , (n0, i)}. Equation 6.4 holds.
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Assume Equation 6.4 holds for i = p.

zpi =

ni∑
j=0

W ′(i)xij + ni × β′(i)
j

=

ni∑
j=0

W ′(i)zi−1,j + ni × β′(i)
j

=

ni∑
j=0

W ′(i)dAi,j
zi−1,j + ni × β′(i)

j

=

ni∑
j=0

W ′(i)dAi,j(
∑
∀ζi=j

xj,ζj

i∏
m=p

dAm,ζm
W

′(m)
(ζm,ζm−1)

+
i−1∑

o=p−1

∑
∀ζi=k

β
(o)
ζo

i∏
m=o+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

) + β
′(i)
j

=
∑
∀ζp=k

xj,ζj

p∏
m=j+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

+

p−1∑
o=j

∑
∀ζp=k

β
(o)
ζo

i∏
m=o+1

dAm,ζm
W

′(m)
(ζm,ζm−1)

(6.6)

Lemma 11 decomposes f in terms of input and activation pattern. Equation 6.4

shows that y(i)j(x) can be decomposed into a summation of paths, where the value

of each path depends on either the input x (former part) or the bias β at each layer

(latter part), as well as the pattern of neurons on the path. Given v as the input of

a path, denote the value of the path as ζ(i, j)(v,A):

ζ(i,j)(v,A) := v
i∏

m=j+1

dAm,ζm
W

(m)
(ζm,ζm−1)

. (6.7)

In a single activation region R, ∀x,x′ ∈ R have the same activation pattern A.

The paths from bias ζ(i,j)(β
(j)
ζj
,A) are constant, while those from input ζ(i,j)(x

(j)ζj,A)

are linear with respect to xj, ζj. On the other hand, for x,x′ with different activation

patterns A,A′, each path can be categorized as either fixed or float. Since neurons

on fixed paths have the same pattern at x and x′, the above linearity remains

unchanged, which means ζ(i,j)(v,A) = ζ(i,j)(v,A′) if ζ is a fixed path. In other

words, given region R ⊂ Rn0 , the float paths represent the linear part of f in R,

while the fixed paths are the aggregation of all the non-linearity from the float

neurons, as described below:
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Theorem 8. Let N be a neural network defined as in Section 4. Given R ⊂ X, for

any x, x′ ∈ R with activation patterns A and A′, we have:

1. f(x) = ZI(x,A;R) + ZT (x,A;R)

2. f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)−ZT (x′,A′;R)

where, ZI(x,A;R) =
∑

ζ∈ZI(R) ζ(x,A),ZT (x,A;R) =
∑

ζ∈ZT (R) ζ(x,A) are the

sum of fixed path and float path given the region R, J(x) is the Jacobian matrix of

f at x.

Based on Lemma 11, Theorem 8 decomposes the computational graph of the

neural network N into fixed parts ZI and float parts ZT . It further shows how each

of these parts contributes to the difference δ(x,x′) between f(x) and f(x′). Before

presenting the proof of Theorem 8, the following lemma is introduced to show that

every fixed path in a region is linear regardless of the activation pattern.

Lemma 12. Let N be a network defined as Chapter 4.1. Let ζ be a fixed path in

R ⊂ Rn0. Then for any x, x′ ∈ R with activation pattern A,A′, ζ(x′,A) = ζ(x′,A′).

Moreover, ZI(x′,A;R) = ZI(x′,A′;R).

Proof (Lemma 12). Given x ∈ R with activation pattern A,

ζ(x,A) := v
d∏

m=1

dAm,ζm
W

′(m)
(ζm,ζm−1)

.

Since ζ is a fixed path in R, then every neuron alone ζ is fixed neuron, the activation

pattern of (m, ζm) is same regardless of input x. Therefore, dAm,ζm
is constant for

any x ∈ R. Then ζ(x,A) is a linear function of x : ζ(x,A) = ζ(x). In other words,

the change of activation pattern does not affect the neurons on ζ, therefore the slope

of this path does not change. ζ(x) is dependent on x in region R. This means that

ζ(x′,A) = ζ(x′,A′) for any x, x′ ∈ R with activation pattern A,A′

ZI(x′,A;R) is the aggregation of all the fixed path above. Since the summation

of linear function is still linear, we have:

ZI(x′,A;R) = ZI(x′,A′;R)
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Lemma 12 shows that, given two activation patterns A and A′, if the

corresponding activation regions R(A) and R(A′) are within the same region

R(A),R(A′) ⊂ R, then the value of the fixed paths ζ(x′,A) = ζ(x′,A′). Since

every neuron on the fixed path has the same pattern for any x ∈ R and the value of

ζ(x′,A) is only affected by the fixed neurons, the choice of activation pattern does

not change the value of the path. With this, the proof of Theorem 8 is presented as

follows.

Proof (Theorem 8). From Lemma 8, every neuron is either a fixed neuron or a

float neuron. For the neurons in path ζ, if there exists a float neuron, then the path

is a float path. Otherwise, it is a fixed path. The float paths and fixed paths form

complementary sets within the set of all paths.

Lemma 11 decomposes f(x) into a summation of paths. Since each path is either

float or fixed, the prediction of f(x) can be written as:

f(x) = ZI(x,A;R) + ZT (x,A;R),

as described by the first statement. For the second statement, it can be shown that:

f(x)− f(x′) =
(
ZI(x,A;R) + ZT (x,A;R)

)
−
(
ZI(x′,A′;R) + ZT (x′,A′;R)

)
=
(
ZI(x,A;R) + ZT (x,A;R)−ZI(x′,A;R)−ZT (x′,A;R)

)
+

ZT (x′,A;R)−ZT (x′,A;R)
(6.8)

Notice that, ZI(x′,A;R) is the collection of all fixed path, therefore is unrelated with

the change of A. We have ZI(x′,A;R) = ZI(x′,A′;R). The former part of above

equation is equals to J(x)(x− x′).

With Lemma 11, Theorem 8 decomposes the computational graph of network N

into a linear part and a non-linear part. Given x and x′, by subtracting the difference

between their prediction results f(x) and f(x′) and rearranging the equation, the

difference δ(x,x′) can also be described in a similar form.

The second statement of Theorem 8 suggests that the difference between f(x)

and f(x′) in network N can be decomposed into: (1) a linear part that depends
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on the distance between x and x′ as well as the slope at x, and (2) a non-linear

part that results from the instability of float neurons. According to the primary

contributor to prediction differences, unsecured data can be categorized as either

Lipschitz vulnerable or float neuron vulnerable. In the next section, the robustness

of a neural network with respect to input perturbation is discussed.

6.3 Two Types of Vulnerabilities

Prior to delving into our analysis, we first provide an intuitive discussion of how float

neurons affect model robustness. Given x and x′ ∈ B(x, r), the second statement in

Theorem 8 suggests that the difference between f(x) and f(x′) can be decomposed

into fixed paths and float paths. The fixed paths are locally linear, while the float

paths can result in sudden changes between the predictions. Therefore, a stable

network should have a lower Lipschitz constant as well as fewer float neurons.

6.3.1 Experiment Settings

To investigate the role of fixed and float paths in model robustness, this section

compares metrics of a VGG16 model trained on the CIFAR10 dataset with different

defenses:

� Standard data without any defenses, denoted as STD.

� Noised samples with perturbation sizes of 0.125 and 0.25, denoted as Noise-125

and Noise-250.

� FGSM-perturbed samples with epsilon values of 4/255 and 8/255, denoted as

FGSM-04 and FGSM-08.

� PGD-perturbed samples with epsilon values of 4/255 and 8/255, denoted as

PGD-04 and PGD-08.
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Each model is trained with the SGD optimizer for 120 epochs and a batch size

of 256. A milestone learning rate scheduler is adopted, where the initial learning

rate is 0.1 and is reduced by a factor of 0.1 after 60 and 90 epochs.

6.3.2 Scales and Directions

The first set of experiments compares the direction and scale of fixed and float paths

in relation to adversarial examples. Given test data (x, y), the adversarial example

is computed under an FGSM attack with epsilon 8/255 for each data point.

The values of the fixed paths ZI(x) and ZI(x′) are computed by deactivating the

float neurons after identifying the fixed and float neurons between x and x′. The

differences between the fixed paths and float paths are calculated as:

δI(x,x′) = ZI(x)−ZI(x′),

δT (x,x′) = [f(x)− f(x′)]− δI(x,x′),
(6.9)

where ZI(x) and ZI(x′) are the sums of all fixed paths between x,x′ at inputs x

and x′.

Figure 6.1 presents the direction and scale of the fixed difference δI(x,x′) and

float path δT (x,x′). The objective of this experiment is to investigate how models

respond to adversarial examples. Figure 6.1(a) shows the distribution of cosine

similarity of fixed and float paths to the ground truth label:

CSI = Cosine Similarity(δI(x,x′), y)

CST = Cosine Similarity(δT (x,x′), y)
(6.10)

As cosine similarity can be viewed as a representation of the angle between vectors,

lower similarity suggests that the vectors diverge significantly in direction. By

decomposing f(x) − f(x′) and comparing the cosine similarity, the effects of fixed

paths and float paths on altering the prediction from a directional perspective can

be described. Generally, as the robustness of the model increases, both CSI and

CST increase, indicating that the directional effects from both fixed and float paths

on f(x′)− f(x) are mitigated by robust training.
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(a) Cosine Similarity of Fixed and Float Path to Label

(b) Distance of Fixed Path and Float Path

Figure 6.1: Direction and Scale of the fixed paths and float paths.

Comparing the cosine similarity between the fixed path and y, it can be observed

that the cosine similarity between δI(x,x′) and y clusters around −1 for the under-

defended models (STD, Noise-125, and FGSM: 4/255), meaning that the fixed path

moves directly in the opposite direction of the ground truth label. As the robustness
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of the models increases, the distribution of CSI shifts upward with less skewness.

A similar observation can be made for CST . The under-defended model has lower

cosine similarity between δT (x) and y, while that of robust models is more evenly

distributed around -0.4.

Figure 6.1(b) presents the l2 norm of δI and δT . It is noteworthy that there

are significant differences between the scales of the float path and the fixed path.

For all models, the norm of δI is distributed within (0, 1), while that of δT varies

from 0 to 16 for under-defended models and is still greater than |δI | for robust

models. In the following sections, it is shown that for models with minor defenses,

the proportion of float neurons as well as the local Lipschitz constant decreases

dramatically. However, the scale of float paths δT remains high for most models.

This implies that the robust accuracy provided by defenses results from reducing

the fixed paths’ distance, while the float paths still severely affect model robustness.

As supporting evidence, Table 6.1 shows the accuracy of raw input as well as the

sum of fixed paths under our decomposition. The fixed path is computed the same

way as above for both clean data and adversarial data. For all models, the accuracy

on clean data is higher than the accuracy on the fixed path (ZI(x)). However, the

accuracy of the fixed path in adversarial examples is much higher than the accuracy

with both float and fixed paths. In particular, the robust accuracy of the STD

model is 0.0%, while it increases to 85.08% by removing the float path. In other

words, a significant boost in accuracy is achieved by removing the float paths from

adversarial examples. This implies that the float paths are primarily responsible for

the model’s vulnerability. We therefore categorize adversarial examples into float

neuron vulnerable and Lipschitz vulnerable as follows:

Definition 9. Let N be a neural network defined as in Definition 3. Given x ∼ Dx,

denote x′ ∈ B(x, r) as an adversarial example of x such that:

argmax
m∈Y

fm(x) ̸= argmax
m∈Y

fm(x
′). (6.11)
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Table 6.1: Accuracy on clean and adversarial data, baseline prediction and fixed

path.

Standard
Noise FGSM PGD

ϵ 0.125 0.25 4/255 8/255 4/255 8/255

Clean
f(x) 93.05 86.25 73.59 88.40 82.77 80.94 80.47

ZI(x) 86.95 72.19 59.84 81.56 76.88 75.08 73.55

Adversarial
f(x′) 00.00 12.54 19.53 36.25 47.15 49.26 48.59

ZI(x′) 85.08 65.90 50.98 75.86 70.23 67.58 66.84

Accuracy Gap 85.08 53.36 31.45 39.61 23.09 18.32 18.24

Float Vulnerable 9962 9825 9686 9069 8091 8669 8798

The difference between f(x) and f(x′) can be written as:

f(x)− f(x′) = δI(x,x′) + δT (x,x′), (6.12)

where δI(x,x′) = ZI(x,A;R) − ZI(x′,A′;R) and δT (x,x′) = ZT (x′,A;R) −

ZT (x′,A′;R) are the differences between the fixed path and float path defined on

R = x,x′. Denote x as Lipschitz vulnerable if |δI(x,x′)| > |δT (x,x′)|; otherwise, it

is float vulnerable.

The last row in Table 6.1 shows the number of float vulnerable data points from

the test dataset across different models. For the Standard model, most of the test

instances are float vulnerable. On the other hand, training with noised samples can

improve the robustness of the model but fails to address the fact that most of the

test samples remain float vulnerable. In fact, Figures 6.3 and 6.4 suggest that the

increased robustness of models trained with noised data results from the reduction

of the Lipschitz constant. Lastly, a noteworthy decrease in float vulnerable data

can be observed in models trained with adversarial examples (FGSM/PGD-04/08),

although still over 80% of test samples respond negatively to the float path.
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6.3.3 Two Types of Vulnerabilities

This section further investigates the two types of vulnerabilities by comparing the

differences between models.

6.3.3.1 Float Vulnerability

Figure 6.2: The average proportion of float neuron VGG16. All the networks are

trained on the CIFAR10 dataset for 120 epochs. We test the first 1000 data from

the validation dataset. For each of the test data, we generate a noised dataset with

the size of 1000 samples and perturbation size of 4/255 under l2 bound.

Figure 6.2 presents the proportion of float neurons at different layers for the

VGG16 network trained with various defenses. The models are trained as described

in Section 6.3.1.

We estimate the proportion of float neurons for the first 1000 samples from the

validation set. For each data point, 1000 noised data points with a perturbation

size of 8/255 under the l∞ norm are generated. This allows us to assess the local

stability of different neural networks.

It is noteworthy that the network without any defenses has the highest number

of float neurons. In particular, 70% of neurons in layer 1 are float neurons, indicating

that the network with standard training is locally unstable. As the network goes
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deeper, the number of float neurons decreases, which aligns with our previous

discussion.

In comparison with standard training, networks trained with noised data have

relatively fewer float neurons. The noised data are perturbed by Gaussian noise

N(0, σI) with a variance of σ. The average ratio of float neurons across different

layers is around 15% for σ = 0.12 and 10% for σ = 0.25. This indicates that even

minor defenses can dramatically reduce the number of float neurons locally.

At the same time, adversarial training can also stabilize local neurons. Unlike

noised training, FGSM reduces the number of float neurons in deep layers while

increasing the number in shallow layers. In layers 0 to 4, the proportion of float

neurons in FGSM/PGD-04 and FGSM/PGD-08 models is higher than in Noised

(σ = 0.12) and Noised (σ = 0.25) models. However, in deeper layers, there are

fewer float neurons in models trained with adversarial examples. Specifically, in

layers deeper than 12, the ratio of float neurons in PGD models drops to less than 5

Overall, Figure 6.2 suggests that models with stronger defenses tend to have

fewer float neurons, especially in deep layers. Moreover, the differences between

the undefended model and defended models, even those with weaker defenses, are

distinguishable.

Lipschitz Vulnerability This section investigates how the Lipschitz constant

affects the prediction difference between x and x + ϵ ∈ B(x, r). The models are

trained as described in Section 6.3.1. For each model, 500 noise points x + ϵ are

sampled around x with an l∞ bound of |ϵ|∞ ≤ 8/255. For each of the noised

samples, the Lipschitz constant at x+ ϵ as well as the adversarial example of x+ ϵ

are computed under an FGSM-08 attack.

Figure 6.3 presents the relationship between the local Lipschitz constant and

prediction difference. In each plot, the x-axis represents the log mean of the Lipschitz

constant for 500 perturbed samples x′ ∈ B(x, r), while the y-axis shows (a) the log

mean of prediction difference between x and x′, (b) the log variance of prediction

difference, and (c) the variance of the Lipschitz constant. The objective of this
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(a) log(Mean of Prediction Distance)

(b) log(Variance of Prediction Distance)

Figure 6.3: The difference between f(x) and f(x′) are lower and less volatile for

model with higher robustness. In each figure, x-axis is the log mean of Lipschitz

constant on 500 test samples, and y-axis are (a) The log mean of prediction distance,

(b) variance of prediction distance.

section is to briefly illustrate the local stability of neural networks under different

models.

Figure 6.3(a) shows the relationship between the averaged Lipschitz constant

and the prediction difference of FGSM adversarial examples. For the Clean model,
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Figure 6.4: The mean and variance of local Lipschitz constant.

both the Lipschitz constant and prediction difference are higher than those of other

models. Compared with properly defended models (FGSM-08, PGD-04/08), under-

defended models (Noise-0.125/0.25, FGSM-04) exhibit higher prediction differences.

This is due to the following factors: first, a higher Lipschitz constant leads to a

faster change in the fixed path, implying higher Lipschitz vulnerability. Second,

more diverged scatters suggest that the relationship between prediction difference

and the Lipschitz constant is highly non-linear. Given that the distance between

the input and adversarial example is fixed, this implies that float paths significantly

alter the prediction result.

Figure 6.3(b) compares the variance of the Lipschitz constant with the change

in prediction between x + ϵ and its adversarial example. Figure 6.4 compares the

mean and variance of the Lipschitz constant. Similar to prior results, models with

defenses are more stable locally, as they tend to have lower variance in prediction

change and lower variance in the Lipschitz constant. However, the difference

between under-defended models and properly defended models is not significant.

In fact, although Noise-0.125 and Noise-0.25 models have higher averaged Lipschitz

constants, the variance of both the Lipschitz constant and prediction change is in

the same magnitude as the properly defended models.
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By investigating the local relationship between the Lipschitz constant and

prediction change, it is found that robust training can greatly tighten the local

Lipschitz properties and stabilize the local performance of models, regardless of

the method used. Moreover, an additional boost in model robustness provided by

adversarial training comes from reducing the effect of the float path.

6.4 Float Vulnerabilities and Smooth Classifier

6.4.1 Randomized Certifiable Classifier

The research on certifiable training aims to provide a guaranteed region for its input

x, within which a classifier always provides consistent results. Specifically, a classifier

is regarded as robust for an input x against perturbations of size r if:

argmax
m∈Y

fm(x
′) = argmax

m
fm(x),∀x′ ∈ Bp(x, r) (6.13)

where Bp(x, r) := {x′ : ∥x′ − x∥p ≤ r} is the sphere with radius r measured by the

metric induced by p-norm. By taking the standard performance of the classifier into

account, the robust accuracy of f with radius r is then defined as:

R(f) = E(x,y)∼D

[
argmax
m∈Y

fm(x
′) = y,∀x′ ∈ Bp(x, r)

]
. (6.14)

However, robust models often incur increased stability and impaired expressive

ability. As a concession for this, randomized algorithms are proposed to verify the

network with a sound theoretical bound at the cost of slight additional computation,

rather than compromising model performance.

Let g be a randomized algorithm constructed based on classifier f . Given data

(x, y) ∼ D, g employs a certain degree of randomness during the induction of f . For

instance, the smoothed classifier g computes the probability that f(x + ϵ) belongs

to class i, given ϵ ∈ N (0, σ2I) ([241]):

gi(x) = P(argmax
m∈Y

fm(x+ ϵ) = i), ϵ ∼ N (0, σ2I), (6.15)
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With a certain confidence level α, the lower bound pA of the random variable

gy(x) and the upper bound pB of the probability of the second most probable class

maxm∈Y gm(x) can be computed. This induces a certified radius of classifier g(x):

r =
σ

2

(
Φ−1

(
pA)− Φ−1

(
pB)
)
. (6.16)

For every x′ ∈ B2(x, r), if argmaxm∈Y gm(x) = y, then argmaxm∈Y gm(x
′) = y. In

other words, with a confidence level of α, every x′ within the radius can be correctly

classified by the smoothed classifier. The smoothed classifier can also appear in other

forms depending on the randomness and training algorithm ([243], [245], [247]).

6.4.2 Float Path and Network Robustness

Consider (x, y) ∼ D has extreme large Lipschitz constant in B(x, r), then there

exists x′ ∈ B(x, r) such that f(x′) − f(x) ≫ fy(x) − fm ̸=y(x). We refer such an x

as a Lipschitz vulnerable data. For example, the Lipschitz constant of a large scale

network without any defenses up to hundreds, which means small perturbation ϵ can

alter the prediction of f(x+ϵ). By applying the randomized smoothing on Theorem

8, it is shown that the smoothed classifier fails to correct such data.

Theorem 9. Let f be the base classifier. Given (x, y) ∼ D with f(x) = y, denote

M(f(x), y) := miny′ ̸=y|f(x)y−f(x)′y| as the margin operator of prediction vector. If

∥J(x)∥ > M(f(x), y) + E[M(ZT (x,A;R), y)]
r

,

then for any smoothed classifier g defined as above, there exist x′ ∈ B(x, r) such that

g(x′) ̸= y.

Proof (Theorem 9). Statement 2 of Theorem 8 suggests:

f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)−ZT (x′,A′;R) (6.17)

As ∥J(x)∥ > M(f(x),y)+M(E[ZT (x,A;R)],y)
r

, there exist x′ and i such that:

fi(x
′) > fy(x

′) + E[ZT
y (x,A;R)− ZT

i (x,A;R)] (6.18)
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Therefore,

gi(x)− gi(x′) > gy(x)− gy(x′) +M(f(x), y),

gi(x
′) > gy

(6.19)

On the other hand, consider x′ ∈ B(x, r) as an adversarial example that is

misclassified by f but corrected by g. Then, given ϵ ∼ Dnoise, gy(x
′ + ϵ) >

argmaxm∈Y gm(x
′ + ϵ). This means that the adversarial example x′ appears by

chance, while the majority of its neighbors are still voting for the correct label. In

other words, the instability of the float path causes the misclassification. Such data

is referred to as float neuron vulnerable.

The above discussion suggests that the smoothed classifier fails to boost the

performance of Lipschitz-vulnerable examples but is able to correct float neuron

vulnerable data by smoothing the sudden change of the float path in a region.

Based on this, the SCRFP-2 is introduced in Algorithm 1.

Figure 6.5 illustrates the SC-RFP by showing the prediction, fixed path, and

float path. We first present the prediction and the fixed path value in Figure 6.5(a).

The float path value is then computed as ZT (x,A;R) = f(x) − ZI(x,A;R) in

Figure 6.5(b). Finally, by repressing the float value, a locally stable prediction can

be obtained from SCRFP-2.

6.4.3 Reforming the Float Paths

The discussion in above section suggests that the essence of smooth classifier is to

average the float paths ZT such that removes the float vulnerabilities of unsecured

data. Based on this idea, this section introduces a downstream application name

SCRFP-2 (Smoothed classifier with Reformed Float Path in Dual Direction) that

is built on the smoothed classifier. As the suggested by the name, SCRFP-2 tunes

the float path during both backward and forward pass to improve the robustness of

neural network. The details and the objectives of the proposed method are discussed

as follows.
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6.4.3.1 Training with Amplified Float Paths

Algorithm 2: Train with SCRFP-2

Input: Network N with parameter θ, train set Dtrain, noise distribution

Dnoise, amplification factor η1

1 Function Train:

2 for Epoch t = 1 . . . T do

3 while (x, y) ∈ Dtrain do

4 ϵ← Dnoise;

5 xc,xn ← x,x+ ϵ;

6 for Block i in 1, 2, . . . , d− 1 do

7 zc, zn ← ψi ◦ ϕi(xc), ψi ◦ ϕi(xn);

8 xc,xn ← σ(zc), σ(z(xn));

9 ITij ← â(zc) ̸= â(zn);

10 z← ψi ◦ ϕi(x);

11 x← z+ z · ITi × η1;

12 end

13 ŷ ← ψd ◦ ϕd(x) ;

14 θ ← θ − ▽θloss(ŷ, y);

15 end

16 end

17 EndFunction

The illustration in Chapter 6.3 suggests that any robust training can significantly

reduce the Lipschitz constant of a network. The lower Lipschitz constant compresses

the float paths but still fails to correct the float vulnerability. Moreover, comparing

models trained with noisy data to those trained with adversarial examples, it is found

that FGSM/PGD models have less volatile neurons in deeper layers, which results in

fewer float-vulnerable examples in the test dataset. Therefore, the objective during

the training stage is to reduce the effects of float neurons on prediction.
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The Train function in Algorithm 2 describes how the float paths are reformed

during training. Compared with the standard forward process, the pre-activation

value on the float path in the proposed method has a larger norm. In other words,

SCRFP-2 rebalances the computational graph during the forward pass so that the

float path contributes more to its prediction as well as the loss function. Therefore,

during backward propagation, extra penalties are applied to the float path to reduce

the effect of float neurons.

The intuition behind the above algorithm comes from the results in Table 6.1,

which show that removing the float path has limited effects on the accuracy of clean

data x, while it can greatly boost the accuracy of vulnerable examples around x.

In other words, the float paths cause local instability in the prediction result. By

amplifying the value of the float path, additional penalties are added to the float

path to reduce its scale, thereby increasing the robustness of the model.

In Section 6.5, it is shown that amplifying the float path and repressing the fixed

path can achieve similar results in boosting model robustness. However, Figure

6.2 suggests that there are fewer float neurons under robust training methods.

Empirically, SCRFP-2 manipulates the float path value to avoid the explosion or

vanishing of the prediction.

6.4.3.2 Prediction with Repressed Float Paths

On the other hand, the prediction of SCRFP-2 applies a randomized smoothing

algorithm but represses the value of float paths. For vulnerable data, adding

back the float paths causes a decline in accuracy, which suggests that the float

paths negatively contribute to the prediction. Therefore, a repression factor η2 is

introduced to reduce the effect of float paths. Since the float part of a network is

unstable, randomized smoothing can be applied to average the result.

A randomized classifier g is constructed based on classifier f . Given data (x, y) ∼

D, g employs a certain degree of randomness during the induction of f . For instance,

the smoothed classifier g computes the probability that f(x + ϵ) belongs to class i
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Algorithm 3: Predict with SCRFP-2

Input: Network N with parameter θ, noise distribution Dnoise, randomized

algorithm g, repress factor η2, test input x

1 Function Predict(x):

2 Initialize prediction counter pc with size c;

3 while g sample noise ϵ do

4 for Block i in 1, 2, . . . , d− 1 do

5 zs, zn ← ψi ◦ ϕi(xc), ψi ◦ ϕi(xn);

6 ITij ← â(zc) ̸= â(zn);

7 zn ← zn − zn · ITi × η2;

8 xc,xn ← σ(zc), σ(zn);

9 end

10 predn ← argmax(ψd ◦ ϕd(xn));

11 pc[predn]← pc[predn] + 1

12 end

13 ĉA, ĉB ← argmax(pc, topk = 2);

14 n̂A, n̂B ← pc[ĉA], pc[ĉB];

15 if BinomPValue(nA, nA + nB, 0.5) ≤ α then return ĉA ;

16 else return Abstain;

17 EndFunction

given ϵ ∈ N (0, σ2I) [241]:

gi(x) = P(argmax
m∈Y

fm(x+ ϵ) = i), ϵ ∼ N (0, σ2I), (6.20)

With certain confidence level α, the lower bound of pA of random variable gy(x) and

the upper bound pB of the probability of second possible class maxm ∈ Y gy(x) can

be computed. This induces a certified radius of classifier g(x):

r =
σ

2

(
Φ−1

(
pA)− Φ−1

(
pB)
)
. (6.21)

For every x′ ∈ B2(x, r), if argmaxm∈Y gm(x) = y, then argmaxm∈Y gm(x
′) = y. In
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other words, with a confidence level of α, every x′ within the radius can be correctly

classified by the smoothed classifier. The smoothed classifier can also appear in

other forms depending on the randomness and training algorithm [243], [245], [247].

(a) Prediction Surface (b) Float Computation (c) SC-RFP Surface

Figure 6.5: The value of first element of prediction vector from VGG16 model

trained on CIFAR10 given a 2D slice centered at a random data from test set. (a)

The wireframe represents the prediction f(x) while the surface is the sum of fixed

path ZI(x,A;R), respectively. (b) The sum of float path ZT (x,A;R) = f(x) −

ZI(x,A;R). (c) The wireframe and surface are prediction of SC-RFP: ZI(x,A;R)+

ηZT (x,A;R) with η < 1 and sum of fixed path same as (a).

Figure 6.5 illustrates the SC-RFP by showing the prediction, fixed path, and

float path. We first present the prediction and the fixed path value in Figure 6.5(a).

The float path value is then computed as ZT (x,A;R) = f(x)−ZI(x,A;R) in Figure

6.5(b). Finally, by repressing the float value, we achieve a locally stable prediction

from SC-RFP.

Intuitively, manipulating the computational graph can greatly change the

prediction result, but we show that there is only a small proportion of paths affected

by our method. Figure 6.6 presents the proportion of fixed neurons between x and

x+ ϵ in a VGG16 network trained on CIFAR10. It shows that models trained with

noisy samples have a relatively more stable activation pattern, as the ratio of fixed

neurons is lower. In particular, the model trained with clean data has an average
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(a) ϵ ∼ N(0, 0.1)

(b) ϵ ∼ N(0, 0.25)

Figure 6.6: Proportion of fixed neuron between x and x + ϵ for VGG16 models

trained on CIFAR10 with noised data at different scales: clean data, σ = 0.05,

σ = 0.10 and σ = 0.25. Figure 6.6(a) and 6.6(b) show the ratio given ϵ ∼ N(0, 0.1)

and ϵ ∼ N(0, 0.25).
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fixed ratio of around 72%, while after adding a minimum scale of noise σ = 0.05,

this increases to around 90%.

6.4.4 Certifiable Bound

The Predict function in Algorithm 3 shows the prediction step of SCRFP-2 under

the scheme of randomized smoothing. The following theorem provides a certifiable

boundary for the proposed algorithm, as previous works have done.

Theorem 10. Let N be a network defined as Chapter 4.1. Let g be a smoothed

classifier that samples noise from distribution Dnoise and g
′ is SCRFP-2 built on g.

Assume that the direction of ϵ is uniformly distributed:

∀∥ξ1∥ = ∥ξ2∥ = 1, P (
ϵ

∥ϵ∥
= ξ1) = P (

ϵ

∥ϵ∥
= ξ2). (6.22)

If argmaxm∈Y fy(x) = y, then

p′A > pA, pB
′ < pB, (6.23)

where p′A, pA are the lower bound of g′y(x) and gy(x), pB
′, pB are the upper bound of

g′m̸=y(x), g
′
m ̸=y(x). Moreover, argmaxm∈Y g

′(x) = y for all ∥ϵ∥ ≤ R,

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (6.24)

Notice that in the above theorem, the randomized classifier g is not specified.

Instead, a constraint on the randomness of g is introduced to impose a constraint

on the way SCRFP-2 averages the perturbation from float paths. This means that

the theorem holds not only for the naive smoothed classifier but also for its variants.

However, it does not hold for classifiers that sample directed noise.

The proof of Theorem 10 can be divided into three steps. First, given ϵ ∼ Dnoise,

the expectation of fixed paths for any E(ZX(x+ ϵ)) equals ZX(x). This means that

the fixed part of g as well as g′ equals that of f(x). Next, we discuss how the float

paths affect the prediction f(x + ϵ) and prove that repressing the float path can

increase the expectation of g′y(x) and its variance. Using Chebyshev’s Inequality, it

193



Chapter 6. Float Path and Model Robustness

can be concluded that the lower bound p′A is larger than that of pA, and similarly

for p′B. Since both g and g′ are random functions that sample noise from the same

distribution, the certifiable radius holds for both g and g′.

Lemma 13. Denote N as a neural network as Definition 4 with mapping function

f , ζ is a fixed path in B2(x, p). Assume g is a randomized algorithm that applies

noise ϵ from certain distribution Dnoise on the computation path of ζ:

g(ζ(x)) = ζd,i(ζi,0(x) + ϵ), i ∈ {0, 1, . . . , d− 1}, ϵ ∼ Dnoise (6.25)

If the direction of ϵ is uniformly distributed, then the expectation of g(ζ(x)) is equals

to ζ(x), that is:

∀∥η1∥ = ∥η2∥ = 1, P (
ϵ

∥ϵ∥
= η1) = P (

ϵ

∥ϵ∥
= η2)⇒ E[g(ζ(x))] = ζ(x), (6.26)

where ϵ is the noise generated for randomized algorithm g.

Proof. Assume that g samples noise at layer k. Then for any g, ζ(k, 0) = g(ζk,0),

which is denoted as xk. Since the activation function is piece-wise linear, the

mapping of ζd,k(·) is linear. We have:

nk∑
i

∂2yj
∂z2kj

= 0. (6.27)

ζd,k is harmonic. Therefore, given any B(x, r) with radius r > 0:

ζd,k(x) =
1

nωnrn−1

∫
∂B(x,r)

ζdσ, (6.28)

where ωn is the volume of the unit ball in n dimensions, σ is the (n−1) dimensional

surface measure. Consider the expectation of g(x):

E(g(x)) =
∫
p(ϵ)ζd,k(xk + ϵ)dµ

=

∫ ∫
∥ϵ∥=r

p(ϵ)ζd,k(xk + ϵ)dµdr,
(6.29)

where µ is the probability measure of ϵ Dnoise. As the noise sampling is assumed to

be direction irrelevant, the measure of p(ϵ|∥ϵ∥2 = r) is uniformly distributed given
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radius r. Therefore: ∫
∥ϵ∥=r

p(ϵ)ζd,kdµ = P (∥ϵ∥2 = r)ζd,k. (6.30)

Equation 6.29 then equals:

E(g(x)) =
∫
p(ϵ)ζd,k(xk + ϵ)dµ

=

∫
P (∥ϵ∥2 = r)ζd,kdr

= ζd,k(x)

(6.31)

Lemma 14. Let f and g be the mapping function and randomized classifier defined

as above. Given radius r such that, almost surely, ZT (B(x, r)) = ∅,∀(x, y) ∼ D,

then the accuracy of base classifier and the naive smoothed classifier are same, that

is:

E(x,y)∼D

[
argmax
m∈Y

gm(x) = y

]
= E(x,y)∼D

[
argmax
m∈Y

fm(x) = y

]
Lemma ?? is achieved by directly applying Lemma 13 to all the computational

graphs of the network. It shows that if all the neurons have locally stable activation

patterns with respect to the distribution of the dataset, the smoothed classifier

provides identical accuracy to the base classifier. With Lemma ??, the proof of

Theorem 9 is presented as follows.

Proof (Theorem reftheorem.false). Statement 4 of 8 suggests:

f(x)− f(x′) = J(x)(x− x′) + ZT (x′,A;R)−ZT (x′,A′;R) (6.32)

As ∥J(x)∥ > M(f(x),y)+M(E[ZT (x,A;R)],y)
r

, there exist x′ and i such that:

fi(x
′) > fy(x

′) + E[ZT
y (x,A;R)− ZT

i (x,A;R)] (6.33)

Therefore,

gi(x)− gi(x′) > gy(x)− gy(x′) +M(f(x), y),

gi(x
′) > gy

(6.34)
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The next step of the discussion is to consider the case where x is an adversarial

example that misleads f but is correctly classified by g, referred to as a float neuron

vulnerable example. The following theorem suggests that the float path at x is the

cause of the altered prediction. In other words, the network is locally correct around

x, but there is a sudden change in the float path that causes the misclassification.

Theorem 11. Let f and g be the base and smoothed classifiers defined above. Given

(x, y) ∼ D, denote x′ ∈ B(x, r) as an adversarial example that misleads the base

classifier but is corrected by g without abstaining:

argmax
m∈Y

fm(x) = i, argmax
m∈Y

gm(x) = y, i ̸= y (6.35)

then loss of float path is higher than that of g:

CE(ZT (x′,A;R), onehot(y)) > CE(g(ZT (x′,A;R)), onehot(y)) (6.36)

where CE(·, ·) is the cross entropy loss, onehot(y) is the one hot embedding of label

y.

Proof (Theorem 11). Since argmaxm∈Y fm(x) ̸= y, argmaxm∈Y gm(x) = y, there

exist i ∈ {1, . . . , c}:
gy(x) >fy(x)

gi(x) <fi(x)
(6.37)

Then it can be show that:

gy(x)− gi(x) ≥ fy(x)− fi(x) (6.38)

Introducing Statement 4 of Lemma 8 and Lemma 14:

gi(Z
T (x,A;R))− gy(ZT (x,A;R)) < ZT

i (x,A;R)− ZT
y (x,A;R). (6.39)

Moreover, since the prediction is not abstained.

E[gy(x)]− fy(x) > E[gj(x)] > fj(x),∀j ̸= i, y (6.40)

This directly leads us to the result.

196



6.4. Float Vulnerabilities and Smooth Classifier

Theorem 9 and Theorem 11 show that a smoothed classifier is not able to boost

the performance of the fixed path, but it is effective in reducing the sudden changes

in the float path within a region. Specifically, if x′ can be corrected by g, it results

from the sudden change provided by the float path. A higher confidence score of g(x′)

can be achieved by reducing the weight of the float path during the computation.

On the other hand, if x′ is Lipschitz vulnerable, then regardless of the form of the

smoothed classifier, it cannot be corrected. This leads us to the theoretical basis of

the SC-RFP algorithm.

6.4.5 Verifiable Radius

At the end of Section 6.4.2, Theorem 10 is introduced to describe the upper and

lower bounds of SC-RFP as well as the certified radius. We present the proof of

Theorem 10 below.

Theorem 12. Let N be a network defined as Section 4.1. Let g be a smoothed

classifier that samples noise from distribution Dnoise and g
′ is the SC-RFP built on

g. Assume that the direction of ϵ is uniformly distributed.

∀∥η1∥ = ∥η2∥ = 1, P (
ϵ

∥ϵ∥
= η1) = P (

ϵ

∥ϵ∥
= η2), ϵ ∼ D (6.41)

If argmaxm∈Y fy(x) = y, then

p′A > pA, p′B < pB, (6.42)

where p′A, pA are the lower bound of g′y(x) and gy(x), p
′
B, pB are the upper bound of

g′m̸=y(x), g
′
m̸=y(x). Moreover, argmaxm∈Y g

′(x) = y for all ∥ϵ∥ ≤ R,

R =
σ

2
(Φ−1(pA)− Φ−1(pB)) (6.43)

Proof. The proof of Theorem 10 can be divided into three steps. First, we show

that given ϵ ∼ Dnoise, the expectation of fixed paths for any E(ZX(x+ ϵ)) = ZX(x).

Consider ζ as a fixed path in a region R; then, from Lemma 13, we have:

E[g(ζ(x))] = ζ(x). (6.44)
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Notice that, since the SC-RFP does not affect the sample of noise, then above

equation holds for both g and g′:

E[g′(ζ(x))] = ζ(x). (6.45)

By applying randomized smoothing on statement 1 of Lemma 8, we have:

E(g(x)) = E(g(ZI(x,A;R))) + E(g(ZT (x,A;R))),

E(g′(x)) = E(g′(ZI(x,A;R))) + E(g′(ZT (x,A;R))),
(6.46)

where we use g′(ZT (x,A;R)) to denote applying smoothing algorithm g on deter-

ministic function ZI(x,A;R). Since ZI(x,A;R) is the aggregation of all the fixed

path, with Equation 6.44 and 6.45, it can be shown that:

E(g′(ZI(x,A;R))) = E(g(ZI(x,A;R))) = ZI(x,A;R) (6.47)

This means that the difference between E(g(x)) and E(g′(x)) is the same as that

between g(ZT (x,A;R)) and g′(ZT (x,A;R)).

The next step is to investigate how the float path affects the prediction of

g(ZT (x,A;R)) and g′(ZT (x,A;R)). Given ϵ ∼ Dnoise, denote P1 as the event that

fy(x + ϵ) > fy(x). Since the fixed paths have been excluded, P1 holding means that

the float path boosts the probability of fy(x+ ϵ). However, as argmaxm∈Y fy(x) = y,

repressing the float path does not alter the prediction of fy(x
′). On the other hand,

denote P2 as the event that fy(x + ϵ) < fy(x). This means that the float path

ZT (x + ϵ,A;R) < 0 and negatively contributes to the prediction. Repressing the

float path, therefore, can increase the probability of predicting y.

In other words, for any x + ϵ, repressing the float path between x and x′ can

increase the predicted fy(x+ϵ). We assume that P1 and P2 happen with probabilities

p1 and p2, respectively. Then, given a certain number of samplings,

E(g′y(x)) > E(g′y(x)), V ar(g
′
y(x)) < V ar(gy(x))

By applying Chebyshev Inequality, the following results can be obtained:

p′A > pA

p′B < pB

(6.48)
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Therefore, the lower bound p′A is larger than that of pA, and similarly for p′B.

Computing the certified radius of x is then the same as in [241]. Since both

g and g′ are random functions that sample noise from the same distribution, the

Neyman-Pearson theorem holds for both g and g′. Therefore, the certified radius

remains unchanged.

6.5 Experiment

In Section 6.2, the computational graph of a neural network is decomposed into float

paths and fixed paths, where the float paths represent the instability of network

predictions. The Smoothed Classifier with Reformed Float Path in Dual Direction

(SCRFP-2) aims to improve the robustness of deep networks by manipulating the

float path during both forward and backward propagation. The experiments in this

section investigate the performance of SCRFP-2.

6.5.1 Training Stage

This section aims to illustrate the effect of the training stage of SCRFP-2 as

presented in Algorithm 2. Given input x, a noised counterpart x + ϵ is generated,

where ϵ ∼ N (0, σI) is Gaussian noise with variance σ. At each block, the fixed

and float neurons of the set x,x+ ϵ are computed. According to the status of the

neurons, the pre-activation value is modified with a reform factor η ∈ (−1, 1). For

example, refactoring the value of fixed neurons with η < 0 will repress ZI(x), while

refactoring the value of float neurons with η > 0 will amplify ZT (x).

Figures 6.7(a) and 6.7(b) compare the performance and robustness of models

trained with refactored float/fixed paths given different values of η. Each model is

trained on the CIFAR10 dataset for 120 epochs with a batch size of 128 using the

SGD optimizer and a weight decay of 1e − 4. A milestone learning rate scheduler

with an initial learning rate of 0.1 is used during training, where the learning rate is

multiplied by 0.1 after 60 and 90 epochs. The model performance is reported by the

199



Chapter 6. Float Path and Model Robustness

(a) Models Trained with Refactored Fixed Path

(b) Models Trained with Refactored Float Path

Figure 6.7: Performance and Robustness of VGG16 networks trained with refactored

float path under different η1.

200



6.5. Experiment

clean accuracy of the data (upper left), while the top-1 and top-5 accuracy under

FGSM and PGD attacks are chosen as proxies for model robustness (others).

Section 6.3 shows that fixed neurons make up the majority in models with

defenses. To keep the two methods consistent at the level of modifying the network

propagation, the range of η for the fixed path is lower than that for the float path.

Each of the models is trained with the SGD optimizer for 120 epochs on the CIFAR10

dataset. A milestone learning rate scheduler is applied with an initial learning rate

of 0.1, which is multiplied by 0.1 after 60 and 90 epochs.

It is notable that refactoring the computational path boosts the performance

and robustness of the neural network compared to the benchmark. In fact, either

repressing the value on the fixed path or amplifying the value on the float path can

reduce the ratio of fixed values. During backward propagation, the network will

then focus on minimizing the loss resulting from the unstable part of the network,

which increases the robustness of the network and alleviates overfitting.

Given η ∈ (0, 0.1), both the clean accuracy and robustness of the network

increase, as shown in Figure 6.7(b). However, when η > 0.2, the computational

graph of the network is heavily affected, which results in impaired performance. On

the other hand, as the ratio of fixed neurons is higher than that of float neurons,

the network is more sensitive to the manipulation of fixed neurons. Therefore, in

practice, SCRFP-2 reforms values on the paths other than fixed paths during both

forward and backward propagation.

6.5.2 CIFAR10

This section applies SCRFP-2 to the CIFAR10 dataset and compares it with

randomized smoothing to show that both the training and validation steps of the

proposed method can boost the performance of the benchmark model. Figures 6.8

to 6.10 show the certified accuracy of the proposed method at different radii for

models trained with different noise scales on the CIFAR10 dataset. The training of

each model is the same as in the previous section. During certification, the number
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Figure 6.8: Certified accuracy under different radii on CIFAR10 dataset with

different noise sizes of σ = 0.125.

Figure 6.9: Certified accuracy under different radii on CIFAR10 dataset with

different noise sizes of σ = 0.25.

of samples is set to N = 10000, with a failure probability α = 0.001, following

previous works.

Given σ = 0.125, Figure 6.8 shows that SCRFP-2 has comparable performance
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Figure 6.10: Certified accuracy under different radii on CIFAR10 dataset with

different noise sizes of σ = 0.50.

Table 6.2: Certified robust accuracy for Benchmark and SCRFP-2 on CIFAR10.

Clean 0.25 0.5 0.75 1.00 1.25 1.5

Smooth Classifier[241] 87.1 64.5 47.2 31.0 21.8 14.0 7.1

SCRFP-2(0.01, 0.00) 87.4 65.2 46.5 32.3 22.6 14.6 7.7

SCRFP-2(0.02, 0.00) 87.3 67.2 46.2 33.9 23.1 13.9 7.8

SCRFP-2(0.00, 0.10) 87.0 67.9 53.9 39.8 30.7 22.4 12.9

SCRFP-2(0.01, 0.10) 87.1 69.3 53.2 40.7 30.3 22.7 14.5

SCRFP-2(0.02, 0.10) 87.2 70.9 52.5 40.9 31.5 23.2 14.4

with the benchmark when the radius is close to 0, while gradually outperforming it

as the radius increases. Modifying the float path during training boosts the accuracy

of the model at larger radii by around 3% to 5% (red lines versus others). On the

other hand, repressing the float path during prediction improves performance by

around 5% compared to the benchmarks (solid lines versus dashed lines). Figures

6.9 and 6.10 present the certified accuracy for models with noise scales of 0.25 and
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0.50, respectively. The results show that the effect of modifying the float path during

training is less pronounced as the noise scale increases. However, repressing the float

path during prediction still provides a significant boost in certified accuracy given

the same radius.

Table 6.4 reports the certified accuracy at different radii. SCRFP-2 slightly

boosts the benchmark model when the models are trained with refactored float

paths (η1 ̸= 0) but without the prediction step (η2 = 0). The improvement in

accuracy varies from 0.3% to 2.7%. When the prediction step is introduced into

the model (η2 ̸= 0), a significant improvement can be observed for all radii ¿ 0.25.

For example, SCRFP-2(0.02, 0.10) outperforms the benchmark model by 9.9% at a

radius of r = 0.75 and 9.7% at r = 1.00.

6.5.3 ImageNet

Figure 6.11: Certified accuracy under different radii on ImageNet dataset with

different noise sizes of σ = 0.25.

As Theorem 10 suggests, the prediction step of SCRFP-2 can be applied to
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Figure 6.12: Certified accuracy under different radii on ImageNet dataset with

different noise sizes of σ = 0.50.

Figure 6.13: Certified accuracy under different radii on ImageNet dataset with

different noise sizes of σ = 1.00.
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Table 6.3: Comparison of average certified radius(ACR) between benchmarks and

SCRFP-2 on ImageNet dataset.

Smooth Classifier SmoothAdv SmoothMix

σ 0.25 0.5 1.00 0.25 0.5 1.00 0.5 1.00

Benchmark 0.414 0.644 0.810 0.437 0.705 0.888 0.713 0.916

SCRFP-2(0, 0.01) 0.418 0.650 0.826 0.438 0.707 0.895 0.714 0.919

SCRFP-2(0, 0.05) 0.419 0.644 0.824 0.438 0.707 0.893 0.713 0.924

SCRFP-2(0, 0.10) 0.413 0.615 0.778 0.437 0.697 0.861 0.710 0.917

Table 6.4: Comparison of certified test accuracy between benchmark models and

SCRFP-2 at different radii on ImageNet.

0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 Clean

Consistency*[245] \ 50 \ 44 \ 34 \ 24 \ 21 \ 17 55

MACER*[255] \ 57 \ 37 \ 29 \ 25 \ 18 \ 14 68

Smooth Classifer[241] 60.5 51.5 43.4 37.8 31.7 27.5 23.4 20.8 18.7 15.2 12.2 8.8 68.6

+ SCRFP2(0, 0.01) 60.7 51.9 44.1 38.1 32.1 28.2 24.3 21.8 19.1 16.1 13.2 9.9 68.9

+ SCRFP2(0, 0.05) 60.5 52.6 43.5 38.0 32.6 27.7 24.6 22.1 19.8 17.2 14.6 10.8 67.7

+ SCRFP2(0, 0.10) 59.2 51.9 41.3 36.9 31.3 26.2 23.8 21.3 19.7 17.6 14.6 11.4 66.6

SmoothAdv 61.0 56.7 49.2 43.5 39.1 32.3 28.4 25.8 22.8 19.7 16.9 13.5 65.0

+ SCRFP2(0, 0.01) 61.0 56.6 49.5 43.7 39.2 32.9 28.3 26.0 23.0 20.2 17.1 13.5 64.7

+ SCRFP2(0, 0.05) 61.0 56.5 50.1 43.7 40.0 33.9 28.1 26.1 23.5 20.9 18.4 15.2 64.3

+ SCRFP2(0, 0.10) 60.9 56.7 50.1 43.2 40.2 34.2 27.0 25.3 23.7 21.3 18.6 15.0 64.2

SmoothMix[246] 54.4 51.0 47.8 44.5 40.5 36.1 28.6 26.8 25.0 23.2 21.1 17.8 57.2

+ SCRFP2(0, 0.01) 54.4 50.9 47.9 44.4 40.8 36.6 28.7 26.8 25.4 23.2 20.8 18.0 57.5

+ SCRFP2(0, 0.05) 53.8 51.1 47.7 44.5 41.2 36.9 29.0 27.3 25.6 24.0 21.6 18.4 56.9

+ SCRFP2(0, 0.10) 53.8 50.0 47.1 44.6 41.6 37.5 29.5 27.9 26.2 23.8 21.9 18.0 56.4

* Reported experiment results from original paper.
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any arbitrary random algorithm, provided that the sampled noise is directionally

irrelevant. In this section, SCRFP-2 is applied to state-of-the-art smoothing

algorithms on the ImageNet dataset. The training of the benchmark models is

the same as reported in the original works. The certified radius is estimated with a

sample size of N = 10000 and a failure probability of α = 0.001.

6.5.3.1 Accuracy

Figures 6.11 to 6.13 compare benchmark models with SCRFP-2 (red lines versus

others) at different noise scales. To evaluate the effect of the repression factor η2,

the certified radius is estimated for η2 = 0.01, 0.05, and 0.10. The results show

that SCRFP-2 is able to improve robust accuracy under different noise scales at

certain radii. In particular, the boost provided by SCRFP-2 increases as the radius

increases. Table 6.4 presents the certified robust accuracy of benchmark models and

SCRFP-2. Without changing the training methods, SCRFP-2 is able to provide an

extra 1% to 2% robust accuracy based on various state-of-the-art models on the

ImageNet dataset. Moreover, SCRFP-2 is able to offer a trade-off between model

performance and robustness by adjusting the repression factor η2. For each of the

models, SCRFP-2 with η2 = 0.01 slightly boosts the accuracy of the benchmark

model, while SCRFP-2 with η2 = 0.10 provides much stronger robustness as the

radius increases.

6.5.3.2 ACR

To provide a comprehensive comparison between SCRFP-2 and the benchmarks,

Table 6.3 reports the averaged certified accuracy (ACR):

ACR :=
1

Dtest

∑
(x,y)∈Dtest

CR(g, σ,x) · 1ĝ(x)=y, (6.49)

where CR(f, σ,x) is the certified radius of input x under classifier g. By assigning

a value of 0 to incorrect predictions and averaging the certified radii across the

dataset, ACR (Average Certified Radius) is an accurate measure that takes the
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trade-off between accuracy and robustness into account. Improvement of ACR is

relatively difficult to achieve, especially at σ = 0.25 and 0.50. For example, the

latest algorithm, SmoothMix, provides an additional 0.008 at σ = 0.5 compared

to SmoothAdv, which improves the ACR of the benchmark model by 0.23, despite

having higher accuracy at different radii. Without additional training, SCRFP-

2(0, 0.01) and SCRFP-2(0, 0.05) exhibit better performance compared to other

baselines. The most significant difference appears at σ = 1.00, where SCRFP-2(0,

0.05) improves the ACR of the Smooth Classifier from 0.810 to 0.826 and SmoothMix

from 0.916 to 0.924.

6.5.4 Complete Experiment Results

ables 6.5 and 6.6 present the complete experimental results of SCRFP-2. On the

CIFAR10 dataset, models are trained and evaluated with noise levels of σ = 0.125,

0.25, and 0.5. On the ImageNet dataset, the models are trained and evaluated with

noise levels of σ = 0.25, 0.5, and 1.

Following previous works, Tables 6.2 and 6.4 summarize the complete results

and present the highest certifiable accuracy for each algorithm at different radii.

For completeness of the discussion, the experimental results on the CIFAR10 and

ImageNet datasets are presented in this section.

6.6 Chapter Summary

This section discusses the robustness of neural networks using the proposed

framework in Chapter 4. To provide a straightforward analysis, the investigation in

this chapter is based on neural networks with piecewise linear activation functions.

According to Definition 1, the input space is partitioned into numerous subspaces

based on the status of neurons in that space. Moreover, by merging activation

regions into a larger subspace, the stability of neurons can be described using

Definition 4. Inspired by the observation that the fixed neurons in a region R
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Table 6.5: Certified robust accuracy for Benchmark and SCRFP-2 on CIFAR10.

Clean 0.25 0.5 0.75 1.00 1.25 1.5

Smooth Classifier 87.1 64.5

SCRFP-2(0.01, 0) 87.4 65.2

SCRFP-2(0.02, 0) 87.3 67.2

SCRFP-2(0, 0.10) 87.0 67.9

SCRFP-2(0.01, 0.10) 87.1 69.3

SCRFP-2(0.02, 0.10) 87.2 70.9

Smooth Classifier 81.6 66.9 47.2 25.9

SCRFP-2(1, 0) 80.6 65.0 46.5 26.5

SCRFP-2(0.02, 0) 80.8 64.1 46.2 26.9

SCRFP-2(0, 0.10) 82.8 70.4 53.9 35.6

SCRFP-2(0.01, 0.10) 80.7 69.4 53.2 35.9

SCRFP-2(0.02, 0.10) 80.9 68.0 52.5 35.8

Smooth Classifier 67.2 56.1 43.9 31.0 21.8 14.0 7.1

SCRFP-2(0.01, 0) 66.5 54.3 43.7 32.3 22.6 14.6 7.7

SCRFP-2(0.02, 0) 67.4 56.9 43.9 33.9 23.1 13.9 7.8

SCRFP-2(0, 0.10) 69.6 60.7 50.0 39.8 30.7 22.4 12.9

SCRFP-2(0.01, 0.10) 66.9 58.9 50.0 40.7 30.3 22.7 14.5

SCRFP-2(0.02, 0.10) 67.5 60.8 51.0 40.9 31.5 23.2 14.4

remain unchanged for any inputs, Chapter 6.2 decomposes the computational graph

of the neural network. The variation in prediction between an input and its noised

counterpart can also be written as a summation of a linear function and a non-linear

function. Chapter 6.3 investigates the properties of these two parts and shows that

unsecured data can be categorized into Lipschitz vulnerable and float vulnerable.

To demonstrate the application of the study, Chapter 6.4 further discusses the
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Table 6.6: Comparison of certified test accuracy between benchmark models and

SCRFP-2 with different η2 on ImageNet at different noise scales

σ 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 Clean

0.25

Smooth Classifer[241] 60.5 51.5 37.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68.6

+ SCRFP2(0, 0.01) 60.7 51.9 37.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 68.9

+ SCRFP2(0, 0.05) 60.5 52.6 39.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 67.7

+ SCRFP2(0, 0.10) 59.2 51.9 40.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.6

SmoothAdv[247] 61.0 56.7 49.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 65.0

+ SCRFP2(0, 0.01) 61.0 56.6 49.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64.7

+ SCRFP2(0, 0.05) 61.0 56.5 50.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64.3

+ SCRFP2(0, 0.10) 60.9 56.7 50.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 64.2

0.50

Smooth Classifier 55.0 48.9 43.4 37.8 31.7 22.7 0.0 0.0 0.0 0.0 0.0 0.0 60.6

+ SCRFP2(0, 0.01) 54.9 49.3 44.1 38.1 32.1 24.5 0.0 0.0 0.0 0.0 0.0 0.0 60.2

+ SCRFP2(0, 0.05) 53.1 48.7 43.5 38.0 32.6 25.2 0.0 0.0 0.0 0.0 0.0 0.0 57.8

+ SCRFP2(0, 0.10) 50.9 45.8 41.3 36.9 31.3 24.6 0.0 0.0 0.0 0.0 0.0 0.0 54.9

SmoothAdv 54.7 51.3 47.7 43.5 39.1 32.3 0.0 0.0 0.0 0.0 0.0 0.0 59.0

+ SCRFP2(0, 0.01) 54.8 51.4 48.0 43.7 39.2 32.9 0.0 0.0 0.0 0.0 0.0 0.0 58.6

+ SCRFP2(0, 0.05) 54.4 51.2 48.2 43.7 40.0 33.9 0.0 0.0 0.0 0.0 0.0 0.0 58.1

+ SCRFP2(0, 0.10) 53.4 50.0 46.9 43.2 40.2 34.2 0.0 0.0 0.0 0.0 0.0 0.0 56.6

SmoothMix[246] 54.4 51.0 47.8 44.5 40.5 36.1 0.0 0.0 0.0 0.0 0.0 0.0 57.2

+ SCRFP2(0, 0.01) 54.4 50.9 47.9 44.4 40.8 36.6 0.0 0.0 0.0 0.0 0.0 0.0 57.5

+ SCRFP2(0, 0.05) 53.8 51.1 47.7 44.5 41.2 36.9 0.0 0.0 0.0 0.0 0.0 0.0 56.9

+ SCRFP2(0, 0.10) 53.8 50.0 47.1 44.6 41.6 37.5 0.0 0.0 0.0 0.0 0.0 0.0 56.4

1.00

Smooth Classifier 41.8 39.1 36.4 33.1 30.4 27.5 23.4 20.8 18.7 15.2 12.2 8.8 45.1

+ SCRFP2(0, 0.01) 42.1 39.5 36.6 33.7 30.9 28.2 24.3 21.8 19.1 16.1 13.2 9.9 44.9

+ SCRFP2(0, 0.05) 40.8 38.2 35.4 33.1 30.6 27.7 24.6 22.1 19.8 17.2 14.6 10.8 43.7

+ SCRFP2(0, 0.10) 37.4 35.2 33.2 30.2 28.1 26.2 23.8 21.3 19.7 17.6 14.6 11.4 39.8

SmoothAdv 41.8 39.6 37.1 34.3 32.2 30.1 28.4 25.8 22.8 19.7 16.9 13.5 44.0

+ SCRFP2(0, 0.01) 41.9 39.6 37.0 34.8 32.5 30.2 28.3 26.0 23.0 20.2 17.1 13.5 43.8

+ SCRFP2(0, 0.05) 41.1 39.1 36.4 34.4 32.0 29.9 28.1 26.1 23.5 20.9 18.4 15.2 43.3

+ SCRFP2(0, 0.10) 38.8 36.8 34.8 33.1 30.6 28.5 27.0 25.3 23.7 21.3 18.6 15.0 40.8

SmoothMix 40.5 38.6 36.6 34.2 32.9 30.9 28.6 26.8 25.0 23.2 21.1 17.8 42.6

+ SCRFP2(0, 0.01) 40.5 38.6 36.5 34.6 33.1 31.1 28.7 26.8 25.4 23.2 20.8 18.0 42.5

+ SCRFP2(0, 0.05) 40.0 38.4 36.4 34.8 33.1 31.1 29.0 27.3 25.6 24.0 21.6 18.4 41.9

+ SCRFP2(0, 0.10) 39.1 37.3 35.5 34.4 32.5 30.8 29.5 27.9 26.2 23.8 21.9 18.0 40.9

connection between the two types of vulnerability and shows that the essence of a

smoothed classifier is to reduce sudden changes from the float path by averaging

the predictions surrounding the data. To further boost the performance of the
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smoothed classifier, this chapter introduces a smoothed classifier with reformed float

paths in dual directions (SCRFP-2) that manipulates the float paths during both

the training and prediction stages. The experimental results in Chapter 6.5 show

that the proposed method can further increase the robustness of neural networks.
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Chapter 7

Conclusion and Future Work

This PhD dissertation presents a thorough investigation of the interpretability of

feedforward neural network from activation function perspective. As a conclusion,

this chapter first summarizes the research undertaken in 7.1. It is followed by a

discussion of potential future works in Chapter 7.2.

7.1 Summary of Work

The theoretical and empirical results of this work are presented mostly in Chapter

4 to Chapter 6. Inspired by the observation that neural networks with different

activation functions have significant performance gap, this work provide insights on

the interpretability of deep feedforward neural network with a focus on the activation

functions.

7.1.1 Analytic Tools

Chapter 4 introduces a framework that developed on the basis of existing literatures.

The cornerstone of this framework is generalized activation pattern. The innovation

of the proposed definition are:

� It uses a set of pre-defined breakpoints to portion arbitrary activation functions

instead, which extends the research of activation function beyond piece-wise
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linear function.

� It introduces an indexed family to identify the neurons during the investiga-

tion, which enables a unit-level analysis of the model performance.

With the benefits above, the generalized activation pattern extend the research

from a single activation region to a larger subspace in the input domain. With

indices, the neurons are then categorized into float neuron and fixed neuron

according to their stability in a region. Moreover, for completeness of the framework,

this chapter also introduces an incomplete activation pattern and illustrates the

geometric intuition about proposed concepts, which builds a connection between

the framework in this dissertation and existing literatures.

Another contribution of chapter 4 is the discussion of the computational path of a

feedforward neural network. Given a neural network with piece-wise linear activation

function, the neural network is linear within each of the activation regions. As the

feedforward network is a directed acyclic graph, this mapping can be decomposed

into sum of paths. With the proposed framework, this property can be generalized

to large subspaces by identifying the stability of neurons. This leads to the definition

of fixed path and float path that describes the stability of components of the mapping

function.

7.1.2 Identifying the Issue

To answer introductory question that how activation functions affect the perfor-

mance of model, Chapter 3 presents experiments to verify the observation with issues

that discussed by previous works. Several of the topics are covered for comparison

of the models:

� It first presents empirical results that verify there exists performance gap

between neural networks with different activation function.

� It then compares the weights, gradients as well as the gradient to weight
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ration on different model structures. It is found that the saturated activation

functions have unstable learning during the training.

� To understand the training of models, it further provides a theoretical analysis

of the learning dynamic of the models. The results show that the learning of

models with certain activation functions are more likely to be affected by the

weights.

� At last, a toy model is demonstrated to better understand the training of those

models. It is found that many neurons are firing same signal regardless of the

input. In particular, the gradient of those parameters are non-zero and changes

rapidly, while those neurons still fails to provide insights on the prediction.

Chapter 3 studies the performance gap of neural networks step-by-step, and

locates an undocumented issue, which is referred as to dying neuron issue. Different

from the gradient vanishing issue, the parameters unstable gradients during the

training, while the output of neurons are insensitive to the inputs.

7.1.3 Interpretability of Network and Applications

The interpretability of neural network is studied from two aspects. The first part

investigates the expressive ability of neural networks, with a focus of exploring the

dying neuron issue, which is presented on Chapter 5. The second part studies the

robustness of neural network and connects it with the stability of neurons, which is

discussed by Chapter 6.

Based on the results from Chapter 3 and the analytic tool presented by Chapter

4, Chapter 5 explores the expressive ability of neural networks using the generalized

activation pattern discussed in Chapter 4.2 under a larger scope. With a focus of

understanding the dying neuron issue caused by different activation functions, it

introduces two metrics to evaluate the severity the issue. The pattern similarity

compares the similarity of activation pattern of a model on given dataset, which

provides a general picture of the behavior of neurons in the model. The neuron
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entropy metric evaluates the neuron level volatility of model on a dataset. This

is helpful in identifying the dead neurons and understand the inner endogenous

properties of a model at different layers.

Chapter 6 discusses the model robustness by decomposing the computational

graph of neural network. This chapter continues the discussion of computational

graph of neural network from Chapter 6.1. In particular, given neural network with

piece-wise linear activation functions, the mapping within each activation region

is linear and can be written as sum of the paths in a neural network. With the

framework proposed in Chapter 4, this computational graph can be generalized to

larger space by categorizing the paths into fixed paths and float paths. The stability

of two kinds of paths are investigated. Depending on how those two paths affect

the prediction of unsecured data, those data are then categorized into Lipschitz

vulnerable and float vulnerable. It is shown that robustness training can reduce the

Lipschitz vulnerable, while smoothed classifier is addressing the float vulnerable by

averaging the prediction.

This dissertation also shows that the investigation of model stability can not only

provide insights on the explaining neural network, but also helpful in developing

downstream applications. In particular, this work introduces two algorithms. The

neural entropy pruning (NEP) method is proposed based on the discussion of model

expressive ability in Chapter 5. It aims to remove the unimportant parameters of

the models to reduce the scale of neural network. The smoothed classifier with

reformed float path in dual direction (SCRFP-2) aims to improve the robustness of

smoothed classifier. It is inspired by the observation that the instability of neural

network is largely resulted by the float path therefore manipulate the value on float

path during training and prediction to achieve a better performance.
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7.2 Future Works

This work introduces a framework to explore the interpretability of feedforward

neural networks. It is shown that this framework is helpful in studying the expressive

ability and robustness of deep learning models. Beyond the scope and contribution

of this work, there are other unaddressed research topics for the explainable AI. This

section discusses the potential future works from several aspects.

7.2.1 Convolutional Model

This research primarily explores the expressive capability and robustness of feedfor-

ward neural networks, examining the role of activation functions while deliberately

omitting details about the linear operators involved. Feedforward networks, typically

characterized by their sequence of layers and activation functions, do not explicitly

consider the spatial or structural aspects of input data. However, the convolutional

neural network (CNN), a variant designed specifically for processing data with

inherent spatial hierarchies (such as images), incorporates convolutional operators

that significantly impact performance. These convolutional operators rely on

parameters such as kernel size, stride, and padding, each playing a crucial role

in determining how the network interprets and processes input data.

In CNNs, the kernel size affects the receptive field of the convolution operation,

determining the extent of the input region considered for each output pixel. A larger

kernel size increases the receptive field, potentially capturing more global features

but at the cost of computational efficiency and possible over-smoothing of features.

Conversely, a smaller kernel size focuses on local features, which can enhance model

sensitivity but may miss broader contextual information. The stride, or the step

size with which the kernel moves across the input, also influences the output size

and the level of detail captured; larger strides produce smaller output dimensions,

which can reduce spatial resolution and detail.

This research proposes that by systematically varying these parameters and
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observing the resultant effects on model performance and robustness, significant

insights can be gained into the operational dynamics of CNNs. Furthermore, such

an investigation can extend beyond performance metrics to address aspects of neural

network explainability. By understanding how changes in convolutional parameters

affect layer activations and feature maps, researchers can gain clearer insights into

the internal representations and decision-making processes within CNNs. This

approach not only enhances our understanding of neural network architectures and

their functionalities but also contributes to the broader discourse on making machine

learning models more interpretable and trustworthy.

7.2.2 Other Deep Learning Models

Apart from feedforward neural network, there are other deep learning models that

have been applied to various fields. For example, the recurrent neural networks are

widely used in the natural language processing, while the computational graph has

recurrent structure that does not satisfy the prerequisite of this framework. However,

the recurrent neural network still uses activation functions to provide non-linearity

and approximating objective functions. This means that it can also be analyzed

from the activation function perspective. In particular, by further generalizing the

framework proposed in this dissertation and removes the constraint on directed

acyclic graph, the computational graph and stability of RNN can be explored.

Another mainstream topic in the research of deep learning is the generative

AI. The research of deep learning based generative model starts from the study

of generative adversarial networks, which is further outperformed by the diffusion

models. Similar to the models discussed in this work, model of the generative

models are also feedforward neural networks but with different objective functions

and training algorithm. This means that further investigation of the learning

of generative models with the proposed framework can also shed lights on the

interpretability of generative models.
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7.2.3 Bounding the Computational Paths for Continuous

Functions

In Chapter 6, the discussion of model robustness is limited for neural networks with

piece-wise linear activation function. However, as stated in the discussion, it can

also be generalized to continuous activation function by adding a bound for each of

the partition of the activation function.

The decomposition of the piece-wise linear models are developed from the

additive of activation function. This idea can also be adopted to the continuous

activation functions. In particular, by splitting the input domain of continuous

activation function according to the function properties, the output and derivative

of the region is bounded. Therefore, within each of the activation region, the upper

bound and lower bound of the mapping function can be formulated. This means

that the robustness of models with continuous functions can be investigated by

generalizing Lemma 11 and Theorem 8.
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Notations

This chatper summarizes the notations and lists the definitions and concepts

proposed in this dissertation. In particular,

� Section A.1 introduces the analytical tools used in this dissertation, including

activation patterns, activation regions, fixed / float neurons, and paths.

� Section A.2 is presented as a preliminary for the investigation of expressive

ability by listing and explaining the metrics and notations used in Chapter 5.

� Similarly, Section A.3 defines the concepts used in Chapter 6, which discusses

the robustness of neural networks.

A.1 Activation Pattern, Region and Path

This section summarizes the notations for the proposed concepts in this dissertation.

Given a neural network N with activation function π, let Γ be a set of breakpoints

of size q that divide the domain of the activation function into q + 1 intervals.

Each breakpoint and interval is denoted as γi, i = 1, . . . , q, and Ui, i = 0, . . . , q,

respectively.

Section 4.2 introduces the activation pattern and activation region. A neuron

in the neural network N is indexed by a tuple (i, j), where i is the layer and j is
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the neuron number, meaning that neuron (i, j) is the j-th neuron in layer i. The

collection of indices of neuron in network is denoted as I.

I := {(i, j)|i = 1, 2, . . . , d− 1, j ∈ [nd]}, (A.1)

where nd is the dimension of layer d, [nd] = {1, 2, . . . , nd}.

A pattern of a neuron is a label for the neuron (i, j) indicating which interval

the pre-activation value z(i)j(x; θ) falls into, and is denoted as â(i)j(x; θ, π,Γ). The

indexed collection of patterns for all the neurons in the network forms the activation

pattern of the neural network, denoted as A. Given an activation pattern A,

R(A; θ, π,Γ) is the corresponding activation region, as defined in Definition 1.

The activation region R(A; θ, π,Γ) of an activation pattern A can be viewed as

an operator that maps the index family to a subspace in Rn. Similarly, given input

x ∈ Rn, the pattern of each neuron and the overall activation pattern of the data

are denoted as â(i)j(x; θ, π,Γ) and Â(x; θ, π,Γ), respectively. These operators map

data in Rn to an index family. A bent hyperplane is denoted as Hijk(θ) to represent

the case where the pre-activation value of neuron (i, j) equals the k-th breakpoint:

Hijk(θ) = {x|z(i)j (x) = γk}. (A.2)

Section 4.3 generalizes the activation pattern into a larger subspace by defining

incomplete activation patterns and fixed/float neurons. As defined in Definition

3, given a subset of the indices Ic, an incomplete activation pattern is defined as

AIc , where only the neurons in Ic are assigned a sign. The corresponding region in

the input space is referred to as the incomplete activation region R(AIc). Given a

subspace R ⊂ Rn, IX(R) and IF (R) represent the fixed neurons and float neurons,

respectively, as defined in Definition 4, to describe the stability of neuron activation

patterns.

Section 6.1 introduces the concepts of fixed paths and float paths. A path ζ

is defined as a sequenced collection of neurons that starts from the first layer and

extends to the (d−1)-th layer, containing a single neuron from each layer, as defined

in Definition 7. The value of a path is denoted as ζ(x,A). Given a subspace R, a
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Activation Pattern

Γ A set of breakpoints that separates the activation function.

A An activation pattern of N .

AIc An incomplete activation pattern: {a(i)j |a
(i)
j ∈ A, (i, j) ∈ IC}.

R(A; θ, π,Γ) An activation region defined by pattern A.

Â(x; θ, π,Γ) The activation pattern of x.

â
(i)
j (x; θ, π,Γ) The pattern of neuron (i, j) for input x.

Hijk A bent-hyperplane defined by neuron (i, j) and k-th breakpoint.

I Collection of indices of neuron in network N .

IC An incomplete activation pattern IC ⊂ I.

IX(R) Collection of indices of fixed neuron of network N in region R.

IT (R) Collection of indices of float neuron of network N in region R.

ζ A path of network N .

d
(m)
ζm

The slop of activation pattern â
(i)
j .

ZT (x,A;R) Value of fixed path in region R given input x and patternA.

ZT (x,A;R) Value of float path in region R given input x and patternA.

Table A.1: Notations of Activation Pattern, Region and Path.

path ζ is considered a fixed path if every neuron on the path is a fixed neuron in R;

otherwise, it is a float path. The summed values of all fixed paths and float paths are

denoted as ZI(x,A;R) and ZT (x,A;R), respectively, which are introduced in the

discussion of Definition 8. The notations for activation patterns, activation regions,

and activation paths are presented in Table A.1.

A.2 Expressive Ability

Chapter 5 investigates the model’s expressive ability by comparing neural networks

with different activation functions, as well as the dying neuron issue identified in
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Chapter 3. Given a neural network N and inputs x,x′ ∈ R, the distance between

x and x′ is denoted as D(x,x′), while the prediction difference between x and x′ is

denoted as δ(x,x′) with:

δ(x,x′) = D(f(x), f(x′)).

For such a pair of data, xx′ is the segment connecting x and x′, and TD(xx′) is the

transition density introduced in previous work [182]. TD(xx′) measures how many

transitions occur as x moves to x′, where a transition is counted by a transition

indicator Tra(xi,xi+1) to show whether the segment xixi+1 between xi and xi+1

crosses a bent hyperplane or not.

Pattern similarity is a metric introduced in Definition 5 to study the performance

gap between neural networks with different activation functions. Given x and x′,

PS(x,x′; π,θ,Γ) measures the similarity between the activation patterns of x and

x′. Given a data distribution D, PS(D, π,θ,Γ) is the expected pattern similarity

for D, while PS(D, λ) refers to the distribution of pattern similarity introduced to

study how the pattern similarity changes across different thresholds λ.

The second part of Chapter 5 delves into the expressive ability of neural networks,

with a focus on further explaining the dying neuron issue for a single network.

Definition 6 introduces a metric called neuron entropy, which measures the stability

of neurons. The entropy of the j-th neuron in layer i is denoted as E (i)j . The notations

used in this work for studying the expressive ability of neural networks are shown

in Table A.2.

A.3 Robustness

Another research thread in the interpretability of neural networks is model

robustness, which is discussed in Chapter 6 of this dissertation. Given input x ∈ Rn,

a sphere centered at x with radius r, measured under the p-norm, is denoted as

Bp(x, r). Let x′ = x + ϵ be a noised sample of x, where ϵ is a perturbation. This

chapter studies the decomposition of the computational graph on x and x′. Similar
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Expressive Ability

D(x,x′) The distance between x and x: ∥x− x′∥.

δ(x,x′) The prediction difference between x and x′: ∥f(x)− f(x′)∥.

xx′ Segment connecting x and x′.

Tra(xi, xi+1) Transition indicator to show whether xixi+1 crosses a bent-

hyperplane.

TD(xx′) Transition density of xx′.

PS(x,x′; π, θ,Γ) Pattern similarity between x and x′.

PS(D; π,θ,Γ) Pattern similarity on data distribution D.

PS(D, λ; π,θ,Γ) Distribution of pattern similarity on data distribution D.

CSI(x,x′) Cosine similarity between fixed path of x and x′.

CST (x,x′) Cosine similarity between float path of x and x′.

E (i)j (N ,Dx) Entropy of neuron (i, j) given network N on distribution Dx.

Table A.2: Notations for Investigation of Model Expressive Ability.

to the definition of prediction difference, after decomposing the prediction for a

neural network with piecewise linear activation functions, the differences between

x and x′ on the fixed paths and float paths are denoted as δI(x,x′) and δT (x,x′),

respectively. The cosine similarity between the fixed path and float path of x and

x′ is then denoted as CSI and CST .

The investigation into the robustness of neural networks leads to a downstream

application proposed based on the randomized smoothing algorithm. Given a

network N with mapping function f , g is a smoothed classifier built on f . In the

case that randomness is generated by a normal distribution, the standard deviation

of the noise is denoted as σ. Therefore, the noise distribution with zero mean and

independent correlation is N(0, σ2I). For such a randomized classifier, pA and pB

are the lower and upper bounds for g′m̸=y(x), and Φ−1(·) is the inverse of the normal

distribution used to compute the certifiable radius of the smoothed classifier.
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Robustness

Bp(x, r) A sphere that centered at x with radius r that measured under p-norm.

δI(x,x′) Difference between fixed path of x and x′ : ZI(x)−ZI(x′)

δT (x,x′) Difference between float path of x and x′ : [f(x)− f(x′)]− δI(x,x′).

g Smoothed Classifier.

σ Variance of Gaussian Noise for smoothed classifier.

pA The lower bound for gm̸=y(x) given smoothed classifier g.

pB The upper bound for gm ̸=y(x) given smoothed classifier g.

Φ−1(·) Inverse of normal distribution.

ϵ Perturbation added to the input x

ξ Unit Vector with norm 1.

η1 Amplification factor of SCRFP-2 during training.

η2 Repression factor of SCRFP-2 during predicting.

Table A.3: Notations for Investigation of Model Robustness.

224



Bibliography

[1] Z. Jiang, “On explaining neural network robustness with activation path,” in

The Eleventh International Conference on Learning Representations, 2023.

[2] Z. Jiang, Y. Wang, C.-T. Li, P. Angelov, and R. Jiang, “Delve into activations:

Towards understanding dying neuron,” IEEE Transactions on Artificial

Intelligence, 2022.

[3] Z. Jiang, P. L. Chazot, and R. Jiang, “Review on social behavior analysis of

laboratory animals: From methodologies to applications,” in Recent advances

in AI-enabled automated medical diagnosis, CRC Press, 2022, pp. 110–122.

[4] Z. Jiang, P. L. Chazot, M. E. Celebi, D. Crookes, and R. Jiang, “Social

behavioral phenotyping of drosophila with a 2d–3d hybrid cnn framework,”

IEEE Access, vol. 7, pp. 67 972–67 982, 2019.

[5] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable

machine learning,” stat, vol. 1050, p. 2, 2017.

[6] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural network

interpretability,” IEEE Transactions on Emerging Topics in Computational

Intelligence, vol. 5, no. 5, pp. 726–742, 2021.

[7] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-

plaining explanations: An overview of interpretability of machine learning,”

in 2018 IEEE 5th International Conference on data science and advanced

analytics (DSAA), IEEE, 2018, pp. 80–89.

225



Bibliography

[8] C. Rudin, “Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead,” Nature machine intelligence,

vol. 1, no. 5, pp. 206–215, 2019.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Communications of the ACM, vol. 60,

no. 6, pp. 84–90, 2017.

[10] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural

networks, vol. 61, pp. 85–117, 2015.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[12] K. He and J. Sun, “Convolutional neural networks at constrained time

cost,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 5353–5360.

[13] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv

preprint arXiv:1505.00387, 2015.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 770–778.

[15] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366,

1989.

[16] S. Park, C. Yun, J. Lee, and J. Shin, “Minimum width for universal

approximation,” in International Conference on Learning Representations,

2020.

[17] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the thirteenth international

conference on artificial intelligence and statistics, JMLR Workshop and

Conference Proceedings, 2010, pp. 249–256.

226



Bibliography

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the

IEEE international conference on computer vision, 2015, pp. 1026–1034.

[19] B. Hanin and D. Rolnick, “Complexity of linear regions in deep networks,”

in International Conference on Machine Learning, 2019, pp. 2596–2604.

[20] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20 years:

A survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276, 2023. doi:

10.1109/JPROC.2023.3238524.

[21] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee,

“A survey of modern deep learning based object detection models,” Digital

Signal Processing, vol. 126, p. 103 514, 2022.

[22] L. Alzubaidi, J. Zhang, A. J. Humaidi, et al., “Review of deep learning:

Concepts, cnn architectures, challenges, applications, future directions,”

Journal of big Data, vol. 8, pp. 1–74, 2021.

[23] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap

to human-level performance in face verification,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2014, pp. 1701–1708.

[24] M. Treviso, J.-U. Lee, T. Ji, et al., “Efficient methods for natural language

processing: A survey,” Transactions of the Association for Computational

Linguistics, vol. 11, pp. 826–860, 2023.

[25] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of

deep learning for natural language processing,” IEEE transactions on neural

networks and learning systems, vol. 32, no. 2, pp. 604–624, 2020.

[26] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep generative

modelling: A comparative review of vaes, gans, normalizing flows, energy-

based and autoregressive models,” IEEE transactions on pattern analysis

and machine intelligence, 2021.

227

https://doi.org/10.1109/JPROC.2023.3238524


Bibliography

[27] L. Yang, Z. Zhang, Y. Song, et al., “Diffusion models: A comprehensive survey

of methods and applications,” arXiv preprint arXiv:2209.00796, 2022.
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