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ABSTRACT
We introduce DAMAS (Dynamic Adaptation through Multi-Agent
Systems), a novel framework for decision-making in non-stationary
environments characterized by varying reward distributions and dy-
namic constraints. Our framework integrates a multi-agent system
with Multi-armed Bandits (MAB) algorithms and Bayesian updates.
Each agent in DAMAS specializes in a particular environmental
state. The system employs Bayesian estimation to continuously
update the probabilities of being in each environmental state, en-
abling rapid adaptation to changing conditions. Our evaluation of
DAMAS included both synthetic environments and real-world web
server workloads.
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1 INTRODUCTION
In today’s technology-driven world, adaptive decision-making sys-
tems face the critical challenge of maintaining optimal performance
in non-stationary environments. From industrial automation to fi-
nancial trading and web services [8, 11], these systems must process
data and respond quickly while adapting to changing conditions.
For instance, web servers experience dynamic and unpredictable
real-time workloads, where static configurations often fail to main-
tain optimal performance under varying demand patterns [1].

The exploration-exploitation trade-off remains fundamental in
managing such systems, particularly in sequential decision-making
and reinforcement learning [6, 12]. Recent advances in this field
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have produced various approaches to address non-stationary en-
vironments. Cavenaghi et al. [3] proposed a concept drift-aware
algorithm for non-stationary multi-armed bandits, demonstrating
improved performance in detecting and adapting to changes. Stud-
ies have demonstrated adaptive decision-making using techniques
such as chaotic semiconductor lasers for dynamically changing
reward environments [9] and distributed consensus algorithms for
multi-agent multi-armed bandits in dynamic settings [5].

While existing solutions show promise, they often face limita-
tions in managing the combination of dynamic constraints and
fluctuating reward distributions. For example, many relevant algo-
rithms for non-stationary environments, such as Sliding-Window
UCB [7] and Sliding-Window TS [13], assume uniform rewards be-
tween 0 and 1, or -1 and 1. These approaches struggle when rewards
fall outside these ranges or when the range itself changes over time.
Bayesian optimization has emerged as a powerful method of adap-
tive learning [4], particularly in scenarios where uncertainty plays
an important role, but its integration with multi-agent systems for
dynamic environments remains underexplored.

To address these challenges, we propose DAMAS, a novel frame-
work that integrates multi-armed bandits (MAB) algorithms with
Bayesian updates through a multi-agent system. Our approach
seamlessly combines the MAB algorithm’s ability to balance explo-
ration and exploitation with Bayesian updates for environmental
state estimation. The key contributions of this paper are: (i) A frame-
work for dynamic environments that integrates MAB algorithms
with Bayesian updates to estimate the current environment and
update the Q-values based on the current uncertainty. (ii) An ef-
fective mechanism for handling varying reward ranges through
multiple Q-values and specialized agents. (iii) A Bayesian Optimiza-
tion approach for hyper-parameter adjustment that accounts for
uncertainty in agent performance across different environments.

2 METHODOLOGY
DAMAS addresses decision-making in dynamic environmentswhere
conditions change over time, represented by a set of environments
E = {𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑛}. Each environment 𝑒𝑖 is characterized by
means 𝜇𝑖 (𝑎) and standard deviations 𝜎𝑖 (𝑎) for rewards associated
with different actions 𝑎 ∈ A, where A is the set of possible actions.



Framework Overview: The core of DAMAS consists of a multi-
agent system Φ = {𝜙1, 𝜙2, ..., 𝜙𝑛}, where each agent 𝜙𝑖 corresponds
to environment 𝑒𝑖 . Each agent maintains its Q-values 𝑄 (𝜙, 𝑎) and
employs a modified UCB1 algorithm for action selection: 𝑎∗ =

argmax
𝑎

(
𝑄 (𝜙, 𝑎) + 𝑐

√︂
2 log(𝑡 )
𝑁 (𝜙,𝑎)

)
, where𝑎∗ is the selected action,𝑄 (𝜙, 𝑎)

is the estimated Q-value for action𝑎 by agent𝜙 , 𝑡 is the total number
of trials, 𝑁 (𝜙, 𝑎) is the number of times action 𝑎 has been selected
by agent 𝜙 , and 𝑐 controls exploration. The final action is sampled
based on the probability 𝑃 (𝑒𝑖 ).

Dynamic Adaptation Process: The system operates through three
key mechanisms: (i) Action Selection and Q-value Updates: where
actions are sampled based on environmental probabilities 𝑃 (𝑒𝑖 ),
and Q-values are updated for all agents using:

𝑆 (𝜙, 𝑎𝑡 ) ← 𝑆 (𝜙, 𝑎𝑡 ) + 𝑃 (𝑒𝜙 ) · 𝑟𝑡
𝑁 (𝜙, 𝑎𝑡 ) ← 𝑁 (𝜙, 𝑎𝑡 ) + 𝑃 (𝑒𝜙 )
𝑄 (𝜙, 𝑎𝑡 ) ← 𝑆 (𝜙, 𝑎𝑡 )/𝑁 (𝜙, 𝑎𝑡 )

(1)

where 𝑆 (𝜙𝑖 , 𝑎𝑡 )maintains theweighted sumof rewards, and𝑁 (𝜙𝑖 , 𝑎𝑡 )
tracks the effective number of times action 𝑎𝑡 has been selected by
agent 𝜙𝑖 . The weighting by 𝑃 (𝑒𝑖 ) ensures that updates are propor-
tional to the system’s confidence in each environment. (ii) Environ-
mental Probability Updates: The environmental probability update
mechanism employs a Bayesian approach. For each environment 𝑒𝑖 ,
the likelihood of observing reward 𝑟𝑡 is computed using a Gaussian
probability density function: 𝑃 (𝑟𝑡 |𝑒𝑖 ) = N(𝑟𝑡 ; �̃�𝑖 (𝑎𝑡 ), �̃�𝑖 (𝑎𝑡 )2), and
then using the Bayes’ theorem to obtain the posterior probabilities
of being in each environment at iteration 𝑡 , given the observed
reward 𝑟𝑡 : 𝑃 (𝑒𝑖 |𝑟𝑡 ) ∝ 𝑃 (𝑟𝑡 |𝑒𝑖 ) ·𝑃 (𝑒𝑖 ). (iii) Bayesian Optimization for
Parameter Tuning: Employs a Gaussian process model for reward
dynamics, uses the Lower Confidence Bound (LCB) acquisition to
minimize cost, and updates parameters across all agents.

3 EXPERIMENTAL RESULTS
We evaluated DAMAS through both synthetic and real-world exper-
iments, comparing it against state-of-the-art approaches including
UCB1 [2], Sliding-Window UCB (SW-UCB) and Discounted UCB
(D-UCB) [7], and Thompson Sampling variants: Sliding-Window
(SW-TS), and Mean Discounted Sliding-Window (MDSW-TS) [3,
13]. Moreover, we compare multiple DAMAS-enhanced configura-
tions directly against their original MAB algorithms. The DAMAS
variants include: (i) DAMAS-UCB a multi-agent system that uses
UCB1 with fixed hyper-parameters (𝑐), (ii) BO-DAMAS-UCB ex-
tendsDAMAS-UCB by incorporating Bayesian optimisation to adapt
hyper-parameters dynamically, and (iii) DAMAS-SW-UCB, DAMAS-
D-UCB, DAMAS-SW-TS, and DAMAS-MDSW-TS, which applies the
DAMAS framework to different MAB algorithms.

Experimental Setup: Our experiments were tested under different
scenarios such as abrupt and incremental changes, here we present
a sample of our results for abrupt transition scenarios (Figure 1).

Key Results: PerformanceMetrics: (i) Mean Response Time (MRT):
DAMAS achieved around 30% reduction (Figure 1a) compared to
baseline methods; (ii) Probability of Best Action Selection (𝑃𝑏𝑒𝑠𝑡 ):
Up to 50% improvement (Figure 1b) over traditional approaches.
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Figure 1: Comparing best-performing approach for Sudden
Change across multi-agent MAB algorithms, including BO-
DAMAS-UCB.
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Figure 2: Average response time of Multi-Agent Approaches
and baseline agent under three real workloads.
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Figure 3: Average response time of DAMAS-SW-TS vs SW-TS
and DAMAS-MDSW-TS vsMDSW-TS and their accuracy.

Real-world web server experiments: For real-world web server en-
vironments [10] with diverse request types, including large image
files unsuitable for caching or compression, text files amenable to
compression, and cacheable image files, featuring sudden changes
between distinct workload scenarios, each lasting 100 time steps.
DAMAS-UCB and BO-DAMAS-UCB consistently maintain the low-
est average response times in all workload scenarios (Figure 2). In
addition, as shown in Figure 3, there are mixed results for DAMAS
enhancements, for example, DAMAS-SW-TS shows similar perfor-
mance compared to SW-TS, while DAMAS-MDSW-TS outperformed
MDSW-TS for the first 100 steps (first environment), which may be
based on its effectiveness in environmental identification (around
95%).
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