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Abstract: Climate change induces an increased frequency of adverse weather, particularly thunderstorms, 9 

posing significant safety and efficiency challenges in en-route airspace, especially in oceanic regions where 10 

air traffic control services are limited. These conditions require multi-aircraft cooperative trajectory 11 

planning to avoid both dynamic thunderstorms and other aircraft. Existing literature has typically relied on 12 

centralized approaches and single-agent principles, which lack coordination and robustness when 13 

surrounding aircraft or thunderstorms change paths, leading to scalability issues due to heavy trajectory 14 

regeneration needs. To address these gaps, this paper introduces a multi-agent cooperative framework for 15 

autonomous trajectory planning. The problem is modeled as a Decentralized Markov Decision Process 16 

(DEC-MDP) and solved using an Independent Deep Deterministic Policy Gradient (IDDPG) learning 17 

framework. A shared actor-critic network is trained using combined experiences from all aircraft to 18 

optimize joint behavior. During execution, each aircraft acts independently based on its own observations, 19 

with coordination ensured through the shared policy. The model is validated through extensive simulations, 20 

including uncertainty analysis, baseline comparisons, and ablation studies. With known thunderstorm paths, 21 

the model achieved a 2% loss of separation rate, which increased to 4% under random storm paths. An ETA 22 

uncertainty analysis demonstrated the model’s robustness, while baseline comparisons with the state-of-23 

the-art Fast Marching Tree and centralized DDPG highlighted its scalability and efficiency. These findings 24 

contribute to autonomous aircraft operations, especially in oceanic airspace with limited ATC support. 25 
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1. Introduction 1 

1.1 Research motivations 2 

Climate change is impacting air transport through adverse weather, particularly thunderstorms, with a 3 

rise in frequency and severity [1]. These weather phenomena are highly disruptive, causing aircraft to lose 4 

separation and leading to severe turbulence, sometimes resulting in severe injuries [2]. The adverse weather 5 

has also, for the first time, become the leading reason for en-route air traffic flow management (ATFM) 6 

delays in Europe [1], as shown in Fig. 1. These dynamic thunderstorm cells can develop rapidly, obstructing 7 

nominal flight paths and requiring immediate and effective trajectory planning [3]. The challenge is further 8 

compounded when multiple aircraft are involved, each needing to make real-time adjustments to avoid both 9 

other aircraft and the evolving thunderstorm cells [4]. This is especially critical in oceanic airspace, where 10 

air traffic control coordination is limited or unavailable. In such conditions, the absence of proper 11 

coordination among multiple aircraft can lead to numerous loss-of-separation incidents [5]. Addressing this 12 

issue is crucial, given the increasing unpredictability and intensity of weather phenomena [6], highlighting 13 

the need for automated tools that provide cooperative and scalable solutions to ensure safety and efficiency 14 

in increasingly congested airspace. 15 

 16 

Fig.1. Reasons for en-route ATFM delay in 2023 by Eurocontrol [1]. 17 

Current strategies in the Air Traffic Control (ATC) system to address these challenges are 18 

implemented in two phases: strategic and tactical. In the strategic phase, Air Navigation Service Providers 19 

(ANSPs), such as network managers, commonly employ air traffic flow control strategies [7,8]. These 20 

strategies involve regulating the number of flights entering weather-affected airspace hours in advance, 21 

thereby reducing traffic flow complexity and the workload for pilots and Air Traffic Control Officers 22 

(ATCOs) [9]. However, the effectiveness of these strategies heavily depends on the accurate and timely 23 

prediction of thunderstorm weather, which is inherently difficult to achieve with precision. Inaccurate 24 
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predictions can lead to the formation of airspace hotspots during the tactical flight phase that require 1 

immediate resolution [10]. Additionally, minimizing the use of flow control strategies has become a major 2 

objective in the ATFM system to reduce flight delays and cancellations [1].  The combination of increased 3 

traffic density and adverse weather conditions is likely to exacerbate traffic complexity during the tactical 4 

phase. 5 

In the tactical phase, coordination among multiple aircraft is critical. ATCOs are responsible for this 6 

coordination, ensuring that aircraft maintain safe separation from each other and hazardous thunderstorm 7 

cells. However, this task is particularly challenging for ATCOs due to their limited cognitive capabilities 8 

[11,12], especially under rapidly evolving weather conditions that demand constant resolution and traffic 9 

flow reorganization. The continuous adaptation required by changing weather conditions significantly 10 

increases the complexity and workload for ATCOs. In areas where radar coverage and ATC services are 11 

not available (e.g., oceanic airspace), the situation is even more challenging, as the coordination among 12 

multiple rerouting aircraft is missing [13]. The lack of coordination among multiple rerouting trajectories 13 

in such environments poses significant risks, making it urgently needed to develop automated methods for 14 

ensuring safe separation between aircraft and dynamic thunderstorm cells.  15 

To assist pilots and ATCOs in managing complex tasks in these scenarios, several automation tools 16 

have been developed for conflict resolution and flight rerouting [14–17]. However, existing research has 17 

several limitations in terms of coordination and scalability. For example, one model plans each flight’s 18 

trajectory by treating the paths of preceding flights as obstacles [15]. This approach requires recalculations 19 

if any surrounding aircraft or thunderstorm cells change course, reducing robustness and increasing 20 

computational burden, making it challenging for these models to perform effectively in dynamic and 21 

unpredictable environments. Additionally, a cooperative decision-making framework is absent. Most 22 

current methods rely on the First-Come-First-Served principle [18], generating conflict-free trajectories for 23 

individual aircraft without enabling coordination between them. This single-agent approach limits the 24 

ability to manage multiple aircraft collaboratively, thereby restricting overall safety, efficiency, and fairness. 25 

Furthermore, the fast-changing nature of thunderstorm conditions and the unique combinations of traffic 26 

flow and weather patterns require a scalable and computationally efficient framework, which current 27 

models lack. 28 

1.2. Contributions 29 

The above-mentioned challenges motivate us to explore a cooperative, robust, and scalable multi-30 

agent framework for multi-aircraft trajectory planning under dynamic traffic and weather conditions. This 31 

framework is expected to: (a) effectively handle multi-aircraft trajectory planning in dynamic and complex 32 

airspace environments; (b) maintain robustness against trajectory dependency, accommodating emerging 33 
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disruptions without recalculating all existing trajectories; (c) generalize effectively to unseen scenarios 1 

where traffic and weather patterns combine in diverse ways. The key contributions of this research are 2 

summarized as follows. 3 

(1) We propose a novel multi-agent cooperative framework for autonomous multi-aircraft trajectory 4 

planning under rapidly evolving thunderstorm cells. Our framework addresses research gaps related 5 

to trajectory dependency and robustness in dynamic thunderstorm conditions. A key aspect of our 6 

contribution is the development of a custom-built simulator that models dynamic thunderstorm 7 

cells during the training phase, enabling our model to adapt to real-world weather patterns and 8 

traffic complexities. 9 

(2) We develop a Decentralized Markov Decision Process (DEC-MDP) model for cooperative multi-10 

aircraft trajectory planning. To solve the problem, we proposed an Independent Deep Deterministic 11 

Policy Gradient (IDDPG) algorithm with the introduction of shared neural networks for consistent 12 

training and target networks for enhanced stability. 13 

(3) We validate the robustness, generalization, and scalability of the proposed framework by solving 14 

complex multi-aircraft trajectory planning tasks under diverse combinations of traffic density and 15 

weather conditions in both real-world and simulated airspace. 16 

(4) We conduct baseline comparisons of the proposed decentralized multi-agent IDDPG with the state-17 

of-the-art Fast Marching Tree and centralized DDPG models. The results demonstrate the strong 18 

robustness and scalability of the IDDPG model, particularly in high-density airspace scenarios with 19 

dynamic thunderstorms.  20 

The rest of the paper is structured as follows: Section 2 reviews existing studies on flight trajectory 21 

planning under convective weather and the applications of reinforcement learning in air traffic management. 22 

Section 3 presents the problem formulation in its mathematical form. Section 4 details the formulation of 23 

the decentralized Markov Decision Process and the framework of the IDDPG algorithm. Section 5 discusses 24 

simulation environment, model training, and performance testing results. Finally, Section 6 concludes this 25 

work and suggests future research directions. 26 

2. Related Works 27 

This section reviews the existing literature on flight trajectory planning under thunderstorm conditions, 28 

highlighting the strengths and limitations of various methods and algorithms. We also explore recent 29 

advancements in reinforcement learning techniques applied to ATM fields. Finally, we identify the research 30 

gaps in addressing the challenges of dynamic multi-aircraft rerouting under rapidly evolving thunderstorm 31 

cells. 32 
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2.1. Aircraft trajectory planning under thunderstorms 1 

Trajectory planning under thunderstorm weather has attracted significant attention from researchers, 2 

exploring various problem settings across different phases of flight operations. These studies have 3 

considered both static and dynamic thunderstorm cells and employed methodologies such as geometrical 4 

methods, optimization models, and heuristic algorithms. 5 

Erzberger et al. [14] pioneered the development of automated conflict resolution algorithms aimed at 6 

enhancing safety and airspace capacity for future air traffic control systems. Building on this, Erzberger et 7 

al. [16] presented a collective separation assurance tool named Autoresolver, which includes an Arrival 8 

Manager algorithm for flight sequencing, a Resolution Generator for solving conflict, and a Weather 9 

Avoidance algorithm, as illustrated in Fig. 2. The key feature was the generation of conflict-free trajectories 10 

through a multi-step iterative process, which provides foundations for subsequent research in trajectory 11 

planning. This research also highlighted the need for decentralized and real-time separation assurance 12 

approaches to allow input from individual pilots. 13 

 14 

Fig. 2. Functional diagram of Autoresolver by Erzberger et al. [16].  15 

Follow-up works explored the uncertainties in trajectory planning problems. Ng et al. [19] studied the 16 

flight rerouting problem under weather uncertainties at the pre-departure phase and developed a dynamic 17 

programming model to calculate the probabilities of potential route deviations, aiming to reduce fuel and 18 

route deviation costs. Kamgarpour et al. [20] addressed the gap in trajectory planning under dynamic 19 

weather uncertainties by proposing a receding horizon control framework. This framework generates 20 

rerouting trajectories using a constrained optimization model, solved via an optimization solver. Results 21 

confirmed the benefits of considering dynamic weather conditions over static ones. However, the study 22 

faced computational efficiency and scalability challenges, indicating the need for a more efficient method. 23 

In another work, Zhang et al. [21] proposed a simulation-based approach to quantify the impact of various 24 

uncertainties on aircraft rerouting, but these time-consuming methods are primarily useful for rerouting in 25 

the pre-tactical phase rather than real-time separation assurance. Hentzen [18] introduced a model for the 26 
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stochastic development of thunderstorm cells, applying stochastic optimal control to generate safety-1 

optimal trajectories for a single flight. However, this model struggles with real-time computation, reducing 2 

its applicability when new weather updates are available. In a follow-up study, Taylor et al. [22] focused 3 

on generating diverse reroutes for tactical constraint avoidance using multi-objective optimization with 4 

Dijkstra and Genetic Algorithms. While effective at the strategic phase, this approach falls short in real-5 

time computation and coordination among multiple aircraft, particularly under evolving weather conditions. 6 

Another group of studies focused on tactical decision making under thunderstorm weather conditions. 7 

Pannequin et al. [23] developed a nonlinear model predictive control (NMPC) method for multi-aircraft 8 

motion planning, assuming static weather conditions. Although their simulations produced locally optimal 9 

trajectories to minimize time or fuel costs, the scalability and assumption of static weather are major 10 

limitations. Summers et al. [24] explored reach-avoid navigation problems in stochastic environments with 11 

time-varying obstacles. Results demonstrated effectiveness in aircraft motion planning under uncertain 12 

weather but oversimplified the thunderstorm cells’ movement and shape. To better understand the 13 

evolvement of thunderstorm cells, González-Arribas et al. [25] estimated fast-developing thunderstorms 14 

and used optimal control methods to generate robust flight trajectories against uncertain convective weather, 15 

yet scalability and conflict resolution remain problematic. Seenivasan et al. [26] proposed a feedback 16 

mechanism using optimal control for dynamic planning during the arrival phase under uncertain 17 

thunderstorm cells. Despite showing promise, their study faced challenges in scalability and coordination. 18 

Heuristic and sampling-based methods have been employed to quickly generate rerouting trajectories. 19 

Liu et al. [15] studied multiple aircraft conflict resolution using a probabilistic conflict risk map, employing 20 

the A* algorithm to search for conflict-free trajectories. However, the method’s scalability and robustness 21 

are limited as all other aircraft are treated as intruders during path search. Andres et al. [27] proposed a 22 

scenario-based RRT* for near real-time trajectory planning under ensemble thunderstorm forecasts, 23 

focusing on single-flight safety and efficiency. Their follow-up work [3] employed an Augmented Random 24 

Search algorithm to handle thunderstorm evolution uncertainties but faced issues in scalability and 25 

coordination among multiple flights. To fill these gaps, Guitart et al. [28] proposed a sample-based path 26 

planning algorithm for on-board conflict-free flight trajectory generation. Although effective, trajectory 27 

dependency and scalability issues remain unsolved. 28 

In summary, current methods for trajectory planning are predominantly centralized, posing challenges 29 

in coordination, robustness, and scalability, especially in future high-density traffic environments. 30 

Incorporating dynamic weather updates remains difficult as many models assume static weather, leading to 31 

unsafe and inefficient trajectories. Furthermore, these methods are often computationally inefficient and 32 

lack the robustness needed for effective decision-making in dynamic and complex traffic and weather 33 

conditions. 34 
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2.2. Reinforcement learning applications in Air Traffic Management 1 

One of the main applications of RL in ATM is for flight conflict detection and resolution (CD&R). 2 

Pioneer work has contributed to applying RL in ATM and Urban Air Mobility (UAM) fields, with a 3 

particular focus on aircraft separation assurance [29,30]. For example, Brittain and Wei [31] addressed 4 

tactical multi-agent CD&R in the en-route phase using a deep multi-agent RL (MARL) model with 5 

Proximal Policy Optimization (PPO) to control discrete speed, demonstrating scalability and efficiency in 6 

simulation environments. Pham et al. [32] proposed a two-layer Deep Deterministic Policy Gradient 7 

(DDPG) algorithm for CD&R to optimize the vectoring angles and timing for aircraft course changes. They 8 

provide a solution framework (as shown in Fig. 3) for aircraft CD&R under uncertainties by using deep 9 

learning techniques, which showed promise in handling high-density traffic under uncertainties. Zhao and 10 

Liu [33] integrated physics-based knowledge into RL for conflict resolution, creating human-explainable 11 

results with a solution space diagram but encountered challenges in practical ATC applications due to 12 

limited consideration of real-world constraints. Chen et al.  [34] explored generalization in RL models for 13 

CD&R by using adaptive maneuver strategies for action selection. Their findings revealed that as traffic 14 

density increases, the flight distance in CD&R tasks also increases, highlighting a trade-off between 15 

maintaining safe separation and optimizing flight efficiency. Papadopoulos et al. [35] validated a deep 16 

multi-agent reinforcement learning model in simulated real-world environments, proving effective but 17 

requiring alignment with standard ATCO procedures. To fill this gap, a follow-up study, by Guleria et al. 18 

[36] developed a machine learning model to predict ATCOs’ preference for conflict resolution, addressing 19 

acceptance issues of AI decisions by human controllers, and demonstrating effectiveness in predicting 20 

resolution preferences based on ATCOs’ behavior. 21 

 22 

Fig. 3. The concept diagram for the interaction between the learning environment and the agent by Pham et al. [32]. 23 
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RL methods have also been applied to ATFM challenges, focusing on optimizing traffic flow and 1 

managing disruptions. Kravari et al. [37] proposed a multi-agent RL approach for solving airspace 2 

congestion during the pre-tactical phase, showing superiority over conventional centralized methods by 3 

balancing ground delay decisions across flight agents. However, the focus on ground delay strategies before 4 

operations limits its effectiveness for tactical rerouting under convective weather. Pham et al. [38] 5 

introduced a novel DRL model for real-time departure slotting in mixed-mode runway operations, 6 

enhancing computational efficiency and handling stochastic runway capacity issues. Ali et al. [39] 7 

addressed the departure metering problem, proposing a model-free DRL method to manage pushback 8 

timings and reduce fuel consumption and emissions. Lee et al. [40] focused on airline disruption recovery, 9 

modeling the problem as an MDP and solving it with a Double Q-learning method to minimize total delays. 10 

Wang et al. [41] integrated RL with prescriptive analytics, which achieves significant improvements in 11 

computation time while maintaining optimality. Spatharis et al. [42] introduced a hierarchical MDP for the 12 

demand capacity balancing (DCB) problem at the pre-tactical level, enhancing coordination performance 13 

by utilizing multiple levels of abstraction in action and state spaces. In a follow-up work, Chen et al. [43] 14 

proposed a general MARL framework with an LSTM network to improve generalization in solving DCB 15 

problems, with a heuristic-based delay priority strategy to enhance learning efficiency. Ding et al. [44] 16 

employed DRL to improve the efficiency and scalability of a heuristic Variable Neighborhood Search 17 

algorithm for instant airline disruption recovery. 18 

Despite the progress, existing RL applications in air traffic management often address single tasks 19 

such as conflict resolution or flow management in isolation. However, the complex and dynamic nature of 20 

multi-aircraft trajectory planning under rapidly evolving thunderstorms requires integrated solutions that 21 

can simultaneously handle multiple tasks, such as separation assurance, thunderstorm cell avoidance, and 22 

adherence to exit waypoints. 23 

3. Problem Formulation 24 

In this study, we address the research problem of multi-aircraft co-operative trajectory planning under 25 

rapidly evolving thunderstorm cells. The objective is to ensure separation assurance among multiple aircraft 26 

and thunderstorm cells while minimizing overall flight distance. To clarify the scope of the problem, we 27 

made several notes and assumptions as follows. 28 

(a) The study assumes fully autonomous operations, with no intervention from human agents such as 29 

pilots or Air Traffic Control Officers (ATCOs). This allows for the exploration of DRL-based 30 

solutions without the variability introduced by human decision-making. 31 
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(b) The focus is on en route airspace, particularly in procedure airspace with limited or unavailable 1 

ATC services, such as oceanic regions, where autonomous and distributed decision-making is 2 

essential. 3 

(c) Thunderstorm cells are considered cumulonimbus clouds, which are significant hazards that aircraft 4 

must avoid. The primary strategy for avoiding these cells is heading changes, as adjustments in 5 

altitude or speed are less effective and less commonly employed in practice. 6 

(d) Thunderstorm cell information is assumed to be available through meteorological forecasting tools 7 

and aircraft onboard weather radar, which provides real-time data on the location, size, and 8 

movement trajectories of thunderstorm cells. For simulation purposes, we employ reasonable 9 

parameters to model the dynamic behavior of evolving thunderstorm cells to reflect realistic and 10 

challenging operational conditions. 11 

(e) It is assumed that flight information among multiple aircraft within a certain range is shared via 12 

onboard ADS-B systems, including data on position, heading, speed, and pre-planned waypoints. 13 

3.1. Problem statement  14 

Thunderstorms or rapidly developing storms pose significant challenges in busy airspace due to their 15 

unpredictability and swift onset. As depicted in Fig. 4, emerging thunderstorm cells can obstruct key air 16 

routes such as L101, L102, L103, and L104, forcing multiple aircraft to deviate from their planned paths 17 

and quickly decide on new trajectories. Managing these rerouted trajectories in real-time, within such a 18 

complex and dynamic environment, becomes especially challenging when dealing with high-density air 19 

traffic interactions [45] and unstable thunderstorm conditions [4]. 20 

 21 

Fig. 4. Illustration of multi-aircraft trajectory planning under dynamic thunderstorm cells. 22 
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A primary concern in this scenario is maintaining safe separation between aircraft as they navigate 1 

these new trajectories, while also minimizing the additional distance flown. For example, aircraft rerouted 2 

from air route L102 may face conflicts with those deviating from L104, potentially creating collision risk 3 

hotspots. Similarly, flights avoiding thunderstorm cells on L103 may intersect others on alternate routes, 4 

further complicating traffic management and increasing the likelihood of mid-air collisions. 5 

Additionally, aircraft rerouted from L101 and L102 must carefully avoid not only each other but also 6 

the evolving thunderstorm cells that are impacting these routes. The risk of both aircraft-to-aircraft and 7 

aircraft-to-storm cell collisions adds further complexity to the rerouting process. Despite these deviations 8 

during rerouting, flights must ultimately rejoin their nominal air routes at designated exit waypoints 9 

( 𝑤𝑤1,𝑤𝑤2, 𝑤𝑤3, 𝑤𝑤4 ) to continue toward their destinations, with the assurance that no aircraft will be 10 

approaching from the opposite direction at the same flight level on these routes. These potential conflicts 11 

highlight the need for a robust system capable of dynamically adapting to rapidly changing weather 12 

conditions and ensuring safe separation. 13 

3.2. Mathematical model  14 

We develop a mathematical formulation with defined parameters, objectives, and constraints, which 15 

provides a clear scope and definition of the research problem.  16 

Notations 17 

- Aircraft: let 𝐴𝐴𝐴𝐴 = {𝑎𝑎𝑎𝑎1, 𝑎𝑎𝑎𝑎2,… , 𝑎𝑎𝑎𝑎𝑛𝑛} be the set of aircraft in the weather-affected airspace.  18 

- Exit waypoints: let 𝑊𝑊 = {𝑤𝑤1, 𝑤𝑤2,… , 𝑤𝑤𝑙𝑙} be the set of positions of exit waypoints. 19 

- Time: let 𝑇𝑇 = {𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡final} denote discrete time steps, where 𝑡𝑡0 is the rerouting start time, and 20 

𝑡𝑡Final is when an aircraft reaches its exit waypoint 𝑤𝑤𝑙𝑙 and leaves the affected airspace.  21 

- Weather thunderstorm cells: let 𝑂𝑂W(𝑡𝑡) = {𝑜𝑜1
W(𝑡𝑡), 𝑜𝑜2

W(𝑡𝑡),… , 𝑜𝑜𝑗𝑗
W(𝑡𝑡)} be the set of thunderstorm cells’ 22 

range at time 𝑡𝑡. Each cell acts as a time-dependent obstacle. 23 

- Centroid of the thunderstorm cell: 𝑝𝑝𝑂𝑂W(𝑡𝑡) is the centroid position of the thunderstorm cell 𝑂𝑂W at 𝑡𝑡. 24 

- Aircraft position: the two-dimensional position of aircraft 𝑎𝑎𝑎𝑎𝑖𝑖 at time 𝑡𝑡 is denoted by 𝑝𝑝𝑖𝑖(𝑡𝑡) ∈ ℝ2. 25 

- Safe separation: let 𝑑𝑑min
flight  be the separation minima between aircraft, and 𝑑𝑑min

W  be the minimum 26 

distance to thunderstorm cells.  27 

Decision variables 28 

- ∆ℎ𝑖𝑖(𝑡𝑡) : represents heading change value for aircraft 𝑖𝑖  at 𝑡𝑡 . The heading change is taken as a 29 

continuous variable for autonomous aircraft operations. 30 

- 𝛼𝛼𝑖𝑖(𝑡𝑡): an artificial variable representing the heading of aircraft 𝑎𝑎𝑎𝑎𝑖𝑖 at 𝑡𝑡. 31 

- 𝑝𝑝𝑖𝑖(𝑡𝑡): an artificial variable representing the position of aircraft 𝑎𝑎𝑎𝑎𝑖𝑖 at 𝑡𝑡. 32 
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Objective functions: 1 

One objective is to minimize the total distance each aircraft travels from its current position 𝑝𝑝𝑖𝑖(𝑡𝑡) at 2 

each time step to its respective exit waypoint 𝑝𝑝𝑖𝑖(𝑡𝑡final) , simply minimizing the distance between 3 

consecutive positions. This approach encourages direct paths for aircraft, which may lead to deviations 4 

from their original routes if those routes are not the most efficient. Consequently, this model is particularly 5 

suited for airspace operations where avoidance of dynamic thunderstorm cells is required, but it may need 6 

modifications for non-weather airspace operations where more structured route adherence is necessary.  7 

min � �‖𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑝𝑝𝑖𝑖(𝑡𝑡final)‖
𝑡𝑡final

𝑡𝑡=𝑡𝑡0

𝑛𝑛

𝑖𝑖=1
                                                                               (1) 8 

Another objective is to minimize heading change maneuvers, as they increase aircraft interactions and 9 

airspace complexity, potentially leading to passenger injuries. We define ∆ℎ as a constant threshold for 10 

each heading change, making �∆ℎ𝑖𝑖(𝑡𝑡)
∆ℎ

� in the range of [0, 1].  11 

min � � �∆ℎ𝑖𝑖(𝑡𝑡)
∆ℎ

�
𝑡𝑡final

𝑡𝑡=𝑡𝑡0

𝑛𝑛

𝑖𝑖=1
                                                                                           (2) 12 

Constraints: 13 

Aircraft separation constraint. The distance between any two aircraft 𝑎𝑎𝑖𝑖 and 𝑎𝑎𝑗𝑗 at any given time 𝑡𝑡 14 

must be greater than or equal to the minimum separation distance 𝑑𝑑min
flight. 15 

�𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑝𝑝𝑗𝑗(𝑡𝑡)� ≥ 𝑑𝑑min
flight, ∀𝑖𝑖, 𝑗𝑗 ∈ {1,… , 𝑛𝑛}, 𝑖𝑖 ≠ 𝑗𝑗, ∀𝑡𝑡 ∈ 𝑇𝑇                                                 (3) 16 

Thunderstorm cell separation constraint. The distance of an aircraft (position 𝑝𝑝𝑖𝑖(𝑡𝑡)) from the centroid 17 

of the thunderstorm cells (𝑝𝑝𝑂𝑂W(𝑡𝑡)) at any given time 𝑡𝑡 is greater than the minimum separation distance 𝑑𝑑min
W  18 

plus the radius of the major axis of the thunderstorm cell ellipse Rmajor_axis
W .  19 

‖𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑝𝑝𝑂𝑂W(𝑡𝑡)‖ ≥ 𝑑𝑑min
W + Rmajor_axis

W , ∀𝑖𝑖 ∈ {1, … , 𝑛𝑛}, ∀𝑡𝑡 ∈ 𝑇𝑇                                         (4) 20 

Exit waypoint reachability constraint. To ensure rerouted flights resume their nominal air routes, each 21 

aircraft must reach its assigned exit waypoint by the final time step.  22 

𝑝𝑝𝑖𝑖(𝑡𝑡final) = 𝑤𝑤𝑎𝑎𝑖𝑖
, ∀𝑖𝑖 ∈ {1,… , 𝑛𝑛}                                                                              (5) 23 

Aircraft Dynamics. The position of each aircraft at each time step is updated based on its current 24 

position, velocity, and heading change. Let 𝑝𝑝𝑖𝑖(𝑡𝑡) = (𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑦𝑦𝑖𝑖(𝑡𝑡)) represent the position of aircraft 𝑖𝑖 at 𝑡𝑡, 25 

𝑣𝑣𝑖𝑖(𝑡𝑡) be the velocity, and ∆ℎ𝑖𝑖(𝑡𝑡) the heading change value. The position update model is as follows: 26 

𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) = �𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑦𝑦𝑖𝑖(𝑡𝑡)

� + 𝑣𝑣𝑖𝑖(𝑡𝑡)∆𝑡𝑡 �
cos�𝛼𝛼𝑖𝑖(𝑡𝑡 + 1)�
sin�𝛼𝛼𝑖𝑖(𝑡𝑡 + 1)�

�                                                        (6)  27 
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𝛼𝛼𝑖𝑖(𝑡𝑡 + 1) = 𝛼𝛼𝑖𝑖(𝑡𝑡) + ∆ℎ𝑖𝑖(𝑡𝑡)                                                                                    (7) 1 

where 𝛼𝛼𝑖𝑖(𝑡𝑡 + 1) is the new heading angle after applying the heading change, 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) is the new position, 2 

and ∆𝑡𝑡 is the time step duration.  3 

The problem formulation is a multi-objective nonlinear and non-convex programming problem, which 4 

poses severe computational challenges. Therefore, it is impractical for time-sensitive applications like those 5 

encountered in dynamic air traffic management that require a solution almost in real-time. Additionally, 6 

certain adaptive and experience-based decision-making features, such as learning from past trajectory 7 

adjustments in similar weather conditions, cannot be effectively captured through mathematical 8 

formulations alone. These features rely on an agent’s ability to accumulate experience over time, improving 9 

its decision-making through reinforcement learning in dynamic and uncertain environments. These need 10 

for handling multiple objectives, ensuring fast computation, and modeling implicit features render 11 

conventional model-based optimization and meta-heuristic algorithms insufficient, motivating us to explore 12 

learning-based methods to solve this problem.  13 

4. DEC-MDP Model and IDDPG Solution 14 

4.1. Decentralized Markov Decision Process (DEC-MDP) 15 

We reformulate the optimization problem as a Markov Decision Process, as it involves a sequence of 16 

decisions in a dynamic and uncertain environment, which aligns well with the capabilities of MDPs. The 17 

complexity of this problem arises from the need for each aircraft to continuously adapt to evolving 18 

conditions, such as weather changes and the movements of other aircraft. In this setting, each aircraft 19 

functions as an independent agent with its own observations and state transitions, while all agents 20 

collectively aim to maximize the expected joint reward for the entire system. Therefore, we model the 21 

problem as a decentralized Markov Decision Process (DEC-MDP) defined for multiple agents. 22 

For a system of 𝑛𝑛 agents, the DEC-MDP is defined by the tuple (𝑆𝑆, 𝐴𝐴, 𝑅𝑅, 𝑃𝑃), where: 23 

- 𝑆𝑆 = 𝑆𝑆1 × 𝑆𝑆2 ×, … ,× 𝑆𝑆𝑛𝑛: represents the joint state space of all agents, with 𝑆𝑆𝑖𝑖 the state space of agent 24 

𝑖𝑖. 25 

- 𝐴𝐴 = 𝐴𝐴1 × 𝐴𝐴2 ×,… ,× 𝐴𝐴𝑛𝑛: represents the joint action space of all agents, with 𝐴𝐴𝑖𝑖 the action space of 26 

agent 𝑖𝑖. 27 

- 𝑅𝑅(𝑠𝑠1, 𝑠𝑠2,… , 𝑠𝑠𝑛𝑛, 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛): represents the joint reward function that maps the state-action pair of 28 

all agents to a real-valued reward. 29 

- 𝑃𝑃(𝑃𝑃1, 𝑃𝑃2,… , 𝑃𝑃𝑛𝑛): represents the state transition probabilities for each agent, where each 𝑃𝑃𝑖𝑖  is a 30 

function 𝑆𝑆𝑖𝑖 × 𝑆𝑆𝑖𝑖 × 𝐴𝐴𝑖𝑖 → ℝ. 31 
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The transition probabilities for joint states (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛)  to (𝑠𝑠1
′ , 𝑠𝑠2

′ , … , 𝑠𝑠𝑛𝑛
′ )  given a joint action 1 

(𝑎𝑎1, 𝑎𝑎2,… , 𝑎𝑎𝑛𝑛) are computed as: 2 

𝑃𝑃(𝑠𝑠1
′ , 𝑠𝑠2

′ , … , 𝑠𝑠𝑛𝑛
′ |𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛, 𝑎𝑎1, 𝑎𝑎2,… , 𝑎𝑎𝑛𝑛) = � 𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1
(𝑠𝑠𝑖𝑖

′|𝑠𝑠𝑖𝑖, 𝑎𝑎𝑖𝑖)                                    (8) 3 

This formulation is scalable to an increased number of agents [46], making it well-suited for the multi-4 

aircraft trajectory planning problem, where each aircraft operates independently but with a shared objective. 5 

The DEC-MDP framework effectively models the dynamic interactions between aircraft, the stochastic 6 

nature of weather, and the need for real-time decision-making. We provide details for each element of the 7 

DEC-MDP model with parameters defined in this work. 8 

4.1.1. State space  9 

State space captures all relevant information about the environment at a given time step. For our 10 

problem, the state 𝑠𝑠𝑡𝑡
𝑖𝑖 at time 𝑡𝑡 for aircraft 𝑖𝑖 includes: 11 

- Aircraft positions: 𝑝𝑝𝑖𝑖(𝑡𝑡) = [𝑥𝑥𝑖𝑖(𝑡𝑡), 𝑦𝑦𝑖𝑖(𝑡𝑡) ] represent their coordinates. 12 

- Aircraft velocities: 𝑣𝑣𝑖𝑖(𝑡𝑡) = �𝑣𝑣𝑥𝑥𝑖𝑖
(𝑡𝑡), 𝑣𝑣𝑦𝑦𝑖𝑖

(𝑡𝑡)� represent their speed components along each axis. 13 

- Thunderstorm cells’ information: 𝑂𝑂W(𝑡𝑡) , which includes the centroid positions of the cells, 14 

representing dynamic obstacles. 15 

- Remaining distance to exit waypoint: 𝑑𝑑𝑡𝑡
𝑖𝑖_Exit for each aircraft defined as 𝑑𝑑𝑡𝑡

𝑖𝑖_Exit = ‖𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑤𝑤𝑖𝑖‖ 16 

Thus, the state space for each aircraft 𝑖𝑖 at time 𝑡𝑡 is defined as: 17 

𝑠𝑠𝑡𝑡
𝑖𝑖  = �𝑝𝑝𝑖𝑖(𝑡𝑡), 𝑣𝑣𝑖𝑖(𝑡𝑡), 𝑑𝑑𝑡𝑡

𝑖𝑖_Exit, 𝑂𝑂W(𝑡𝑡)�                                                                          (9) 18 

4.1.2. Action space 19 

The action of each aircraft is heading change, which is a continuous variable representing course 20 

adjustments. The action space for each aircraft 𝑖𝑖 at time 𝑡𝑡 is defined as: ∆ℎ𝑖𝑖(𝑡𝑡), which is within the range 21 

[-30, 30] degrees, denoted as: 22 

𝑎𝑎𝑡𝑡
𝑖𝑖  = ∆ℎ𝑖𝑖(𝑡𝑡)                                                                                                   (10) 23 

4.1.3. Reward function 24 

The reward function is a critical component that guides the learning process by evaluating the 25 

immediate benefit of an action taken in a given state. In the context of multi-aircraft trajectory planning, 26 

the objective is to minimize total rerouting distance and heading change maneuvers while ensuring safety 27 

through several constraints. These objectives and constraints are incorporated into the reward function, 28 

which is defined for each agent 𝑖𝑖 at time 𝑡𝑡 as follows: 29 
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Separation assurance: 𝑟𝑟𝑖𝑖(𝑡𝑡)
sepa is given as a negative reward if the distance between aircraft 𝑖𝑖 and any 1 

other aircraft 𝑗𝑗  falls below the minimum reparation distance 𝑑𝑑min
flight . This penalizes unsafe proximity 2 

between aircraft. 3 

𝑟𝑟𝑖𝑖(𝑡𝑡)
sepa = �−1, if  �𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑝𝑝𝑗𝑗(𝑡𝑡)� < 𝑑𝑑min

flight, ∀𝑗𝑗 ≠ 𝑖𝑖
0, otherwise   

                                                         (11) 4 

Dynamic thunderstorm cell avoidance: 𝑟𝑟𝑖𝑖(𝑡𝑡)
W  is given a negative reward if aircraft 𝑖𝑖  has a loss of 5 

separation with a thunderstorm cell 𝑂𝑂W at time 𝑡𝑡 . This encourages the aircraft to avoid hazardous 6 

thunderstorm cells. 7 

𝑟𝑟𝑖𝑖(𝑡𝑡)
W = �−1, if ‖𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑝𝑝𝑂𝑂W(𝑡𝑡)‖ < 𝑑𝑑min

W + Rmajor_axis
W , ∀𝑖𝑖 ∈ {1,… , 𝑛𝑛}, ∀𝑡𝑡 ∈ 𝑇𝑇

0, otherwise
                  (12) 8 

Exit waypoint reachability: 𝑟𝑟𝑖𝑖(𝑡𝑡)
exit is assigned a positive reward if the aircraft reaches its designated exit 9 

waypoint, encouraging the aircraft to rejoin its original air route. 10 

𝑟𝑟𝑖𝑖(𝑡𝑡)
exit = �0, if 𝑝𝑝𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑖𝑖

−1, otherwise                                                                                      (13) 11 

Heading change discouragement: 𝑟𝑟𝑖𝑖(𝑡𝑡)
heading is a negative reward to minimize course change actions that 12 

subsequently reduce possible interactions and discomfort of passengers. Here ℎinterval is the interval of 13 

heading change, which acts as a normalization term making the reward in a set {-1, 0}.  14 

𝑟𝑟𝑖𝑖(𝑡𝑡)
heading = − ∆ℎ𝑖𝑖(𝑡𝑡)

ℎinterval                                                                                          (14) 15 

Rerouting distance minimization: 𝑟𝑟𝑖𝑖(𝑡𝑡)
dist  is a negative reward proportional to the ratio of the actual 16 

rerouting distance to the shortest distance. 17 

𝑟𝑟𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = − ‖𝑝𝑝𝑖𝑖(𝑡𝑡) − 𝑤𝑤𝑖𝑖‖

‖𝑝𝑝𝑖𝑖(𝑡𝑡0) − 𝑤𝑤𝑖𝑖‖
                                                                                      (15) 18 

where 𝑝𝑝𝑖𝑖(𝑡𝑡) is the current position of aircraft 𝑖𝑖, 𝑝𝑝𝑖𝑖(𝑡𝑡0) is the position of aircraft 𝑖𝑖 at the start of rerouting 19 

(when it enters the affected airspace), and 𝑤𝑤𝑖𝑖 is the position of its corresponding exit waypoint. The reward 20 

𝑟𝑟𝑖𝑖(𝑡𝑡)
dist falls in the range of [-1, 0]. 21 

Each of the five rewards now is normalized into [-1, 0], and their significance is adjusted by weights 22 

𝜔𝜔sepa, 𝜔𝜔W, 𝜔𝜔exit, 𝜔𝜔heading, and 𝜔𝜔dist. Based on that, the total system reward 𝑟𝑟𝑡𝑡
total for all agents at time 𝑡𝑡 is 23 

computed by summing the weighted individual rewards: 24 

𝑟𝑟𝑡𝑡
total = � 𝑟𝑟𝑖𝑖(𝑡𝑡)

𝑛𝑛

𝑖𝑖=1
= ��𝜔𝜔sepa𝑟𝑟𝑖𝑖(𝑡𝑡)

sepa + 𝜔𝜔W𝑟𝑟𝑖𝑖(𝑡𝑡)
W + 𝜔𝜔exit𝑟𝑟𝑖𝑖(𝑡𝑡)

exit + 𝜔𝜔heading𝑟𝑟𝑖𝑖(𝑡𝑡)
heading + 𝜔𝜔dist𝑟𝑟𝑖𝑖(𝑡𝑡)

dist�
𝑛𝑛

𝑖𝑖=1
     (16) 25 

With the normalized rewards, fine-tuned weights are assigned for each reward based on the priority 26 

of tasks. Separation assurance task with other aircraft is the top priority and the  𝜔𝜔sepa  is set to 10. 27 
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Avoidance of thunderstorm cells is given the second significance with weight 𝜔𝜔W = 8. Note that the 1 

weights 𝜔𝜔sepa and 𝜔𝜔W are given much larger values than the other to impose feasibility requirements. As 2 

frequent heading changes may increase airspace complexity, the weight 𝜔𝜔heading  is set to 1, while the 3 

efficiency cost of rerouting distance is given a weight of 0.5. Lastly, the weight 𝜔𝜔exit is set to 10 as the only 4 

positive goal reach reward to ensure that the rerouted aircraft can join remaining flight routes via their 5 

designated exit waypoints. These normalized rewards, along with their respective weights, guide the 6 

learning process in optimizing aircraft trajectories while adhering to safety and operational constraints. 7 

The DEC-MDP framework effectively models the decentralized nature of multi-aircraft trajectory 8 

planning, allowing each agent to independently manage its flight path while contributing to a shared 9 

objective. The complexity of dynamic interactions, stochastic weather effects, and the need for real-time 10 

decision-making make deep reinforcement learning an appropriate solution. 11 

4.2. Independent Deep Deterministic Policy Gradient (IDDPG) algorithm 12 

In deep reinforcement learning, various algorithms cater to different challenges, each with distinct 13 

strengths. Among these, Deep Deterministic Policy Gradient (DDPG) excels in handling problems with 14 

large and continuous action spaces [47], making it particularly suitable for complex decision-making tasks 15 

like air traffic management (ATM), where continuous control is essential. It has demonstrated its 16 

effectiveness in single-agent scenarios within the ATM fields [32,48]. However, the decentralized Markov 17 

Decision Process (DEC-MDP) framework, which we model this problem, demands a multi-agent 18 

cooperative approach that standard DDPG, designed for single-agent environments, cannot fulfill. This 19 

challenge motivates us to adopt the Independent Deep Deterministic Policy Gradient (IDDPG) framework, 20 

tailored for multi-agent cooperation [49]. 21 

The goal of the IDDPG algorithm is to enable each aircraft agent to learn an optimal policy that 22 

maximizes its expected cumulative reward with an actor-critic architecture. Each agent 𝑖𝑖 possesses an actor 23 

network 𝜇𝜇𝑖𝑖(𝑠𝑠𝑡𝑡
𝑖𝑖|𝜃𝜃𝜇𝜇𝑖𝑖) that maps its current state 𝑠𝑠𝑡𝑡

𝑖𝑖  to a continuous action 𝑎𝑎𝑡𝑡
𝑖𝑖  (e.g., heading change). The 24 

policy network is parameterized by 𝜃𝜃𝜇𝜇𝑖𝑖 , which is adjusted to improve decision-making based on observed 25 

states and received rewards. Concurrently, each agent has a critic network 𝑄𝑄𝑖𝑖(𝑠𝑠𝑡𝑡
𝑖𝑖, 𝑎𝑎𝑡𝑡

𝑖𝑖|𝜃𝜃𝑄𝑄𝑖𝑖) that evaluates the 26 

quality of the chosen action 𝑎𝑎𝑡𝑡
𝑖𝑖  by estimating the expected return (Q-value). The critic network is 27 

parameterized by 𝜃𝜃𝑄𝑄𝑖𝑖 , which is updated to minimize the loss function defined by the difference between 28 

predicted Q-values and target Q-values derived from the environment’s feedback.  29 

Mathematically, the goal can be expressed as optimizing each agent’s policy 𝜇𝜇𝑖𝑖 and value function 𝑄𝑄𝑖𝑖 30 

to maximize the expected cumulative reward 𝔼𝔼�∑ 𝛾𝛾𝑡𝑡𝑇𝑇
𝑡𝑡=0 𝑟𝑟𝑖𝑖(𝑡𝑡)� , where 𝛾𝛾  is the discount factor. This 31 

optimization is performed through iterative updates of the policy and critic network parameters using 32 
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gradient ascent and descend, and the policy gradient ∇𝜃𝜃𝜇𝜇𝑖𝑖𝒥𝒥(𝜇𝜇𝑖𝑖) and loss function ℒ(𝜃𝜃𝑄𝑄𝑖𝑖) are calculated 1 

by: 2 

∇𝜃𝜃𝜇𝜇𝑖𝑖𝒥𝒥(𝜇𝜇𝑖𝑖) = 𝔼𝔼𝒟𝒟�∇𝑎𝑎𝑡𝑡
𝑖𝑖𝑄𝑄𝑖𝑖(𝑠𝑠𝑡𝑡

𝑖𝑖, 𝑎𝑎𝑡𝑡
𝑖𝑖|𝜃𝜃𝑄𝑄𝑖𝑖)∇𝜃𝜃𝜇𝜇𝑖𝑖𝜇𝜇𝑖𝑖(𝑠𝑠𝑡𝑡

𝑖𝑖|𝜃𝜃𝜇𝜇𝑖𝑖)�                                                    (17) 3 

ℒ(𝜃𝜃𝑄𝑄𝑖𝑖) = 𝔼𝔼𝒟𝒟 ��𝑟𝑟𝑖𝑖(𝑡𝑡) + 𝛾𝛾𝑄𝑄𝑖𝑖
′�𝑠𝑠𝑡𝑡+1

𝑖𝑖 , 𝜇𝜇𝑖𝑖
′�𝑠𝑠𝑡𝑡+1

𝑖𝑖 |𝜃𝜃𝜇𝜇𝑖𝑖
′�|𝜃𝜃𝑄𝑄𝑖𝑖

′� − 𝑄𝑄𝑖𝑖(𝑠𝑠𝑡𝑡
𝑖𝑖, 𝑎𝑎𝑡𝑡

𝑖𝑖|𝜃𝜃𝑄𝑄𝑖𝑖)�
2
�                        (18) 4 

where 𝒟𝒟 is the experience replay, 𝜇𝜇𝑖𝑖
′  and 𝑄𝑄𝑖𝑖

′  denote target actor and critic neural networks, which are 5 

parameterized by 𝜃𝜃𝜇𝜇𝑖𝑖
′  and 𝜃𝜃𝑄𝑄𝑖𝑖

′
. 6 

Fig. 5 illustrates the architecture and training process of the IDDPG algorithm, with an emphasis on 7 

the integration of shared and individual network components. The training begins with the Experience 8 

Replay component, where observations from the simulated airspace environment, specifically state 9 

transitions (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1), are stored in the replay buffer 𝒟𝒟. This buffer plays a crucial role in stabilizing 10 

learning by allowing the algorithm to reuse past experiences during training. Mini-batches of these 11 

experiences ℬsize are sampled from the buffer to update the networks. 12 

 13 
Fig. 5. Training process of the proposed IDDPG framework. 14 

Central to the IDDPG framework are the shared actor and critic networks, which process the 15 

observation of individual agents that are sampled from the state inside experience replay. The shared actor 16 

network parameterized by 𝜃𝜃𝜇𝜇 is responsible for generating actions 𝑎𝑎𝑛𝑛 based on the state observations. These 17 

actions are then evaluated by the shared critic network, parameterized by 𝜃𝜃𝑄𝑄, which calculates the Q-value 18 

to measure the expected future reward given the current state and action.  19 

This shared architecture ensures that all agents are learning from a consistent set of experiences, which 20 

helps mitigate the non-stationarity issue of the IDDPG algorithm [49]. The problem arises when each agent 21 

independently updates its own policy in response to the actions of others, this dynamic can lead to a 22 
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constantly changing environment from the perspective of any single agent, causing difficulties in learning 1 

stable and optimal policies. This eventually leads to instability in the learning process and difficulty in value 2 

estimation, preventing convergence to a stable solution. However, by utilizing shared neural networks and 3 

experience replay, all agents essentially learn from a shared experience, ensuring consistency during the 4 

learning process. The shared network is updated based on observations from all agents, making the learning 5 

process more stable and less susceptible to the fluctuations caused by nonstationary. 6 

To refine the networks, actor and critic optimizers are employed. The actor optimizer updates the 7 

parameters of the actor network using the policy gradient ∇𝜃𝜃𝜇𝜇𝑖𝑖 𝒥𝒥 , which guides the network toward actions 8 

that maximize expected rewards. Simultaneously, the critic optimizer uses the loss function ℒ(𝜃𝜃𝑄𝑄𝑖𝑖) to 9 

adjust the critic network, improving its accuracy in estimating Q-values.  10 

Additionally, target networks are incorporated to enhance the stability of the training process [50], as 11 

shown in Fig. 5. The target actor 𝜇𝜇𝑖𝑖
′ and target critic 𝑄𝑄𝑖𝑖

′ networks, which are slowly updated to track the 12 

main networks, serve as stable references during training. Both target networks are updated using a soft 13 

update mechanism where their parameters 𝜃𝜃𝜇𝜇𝑖𝑖
′  and 𝜃𝜃𝑄𝑄𝑖𝑖

′
 are gradually adjusted towards the current 14 

parameters of the main actor and critic networks. This slow update ensures a stable reference for calculating 15 

future values, which is essential for accurate and stable updates to the actor network, ultimately leading to 16 

a more robust training process. 17 

The parameters in all four neural networks are updated as the training iteration progresses, and the 18 

actor neural network will ultimately provide a near-optimal action for the input observation. By integrating 19 

shared networks for consistency and target networks for stability, the IDDPG algorithm effectively 20 

addresses the challenges of multi-agent cooperative environments, enabling robust learning and decision-21 

making in complex and dynamic airspace scenarios. 22 

5. Simulation and Results 23 

In this section, we conduct a comprehensive evaluation of our algorithm’s performance. We start by 24 

describing the configurations of the simulation environment and algorithm hyperparameters used. Next, we 25 

analyze the training process of the proposed IDDPG learning framework, focusing on its convergence 26 

across different observation settings to determine the optimal configuration. The effectiveness of the 27 

algorithm is then validated in a real-world scenario selected from the Singapore Flight Information Region 28 

[13], followed by an assessment of its generalization capabilities using air route structures generated based 29 

on the common guidelines in airspace planning [51]. Finally, we evaluate the robustness of our model under 30 

diverse thunderstorm conditions. 31 
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5.1. Environment settings 1 

The training scenarios were designed to simulate the complex interactions between airspace structures, 2 

aircraft, and thunderstorm cells within a 200 × 200 square nautical miles (nm2) en route airspace. Each 3 

training episode involved resetting the airspace structure, with random generation of air routes defined by 4 

randomly selecting entry and exit waypoints with a minimum length of 100 nm. A total of five aircraft were 5 

randomly assigned to these routes, with a separation interval of 25 time steps (equivalent to 5 minutes) on 6 

the same route. All aircraft operate at the same flight level, maintaining a constant cruising speed of 400 7 

knots. Aircraft may adjust their heading within a range of [-30, 30] degrees per time step for rerouting 8 

around thunderstorm cells. The minimum separation between aircraft is set at 5 nm. Two dynamic 9 

thunderstorm cells were introduced in this training setting, each with varying speed, direction, size, and 10 

shape. Their speed ranged from 50 to 90 knots, with direction varying depending on the scenario. For the 11 

thunderstorm cells, we consider ellipsoid shapes with a semi-major axis in the range from 15 to 30 nm, 12 

including the 5 nm for the separation buffer between the cell and the aircraft. The shape of these cells was 13 

updated every 5 time steps, with each time step lasting 12 seconds [17], and each simulation episode 14 

allowed for a maximum of 150 time steps (equivalent to 30 minutes).  15 

 16 
Table 1. Simulation environment configurations. 17 

Category Parameter Value/description 
Airspace Phase  En route  
 Size of environment  200 nm × 200 nm 
Aircraft Speed 400 knots 
 Altitude Constant 
 Heading change range [-30, 30] degrees 
 Separation minima 5 nm 
Storm cell Speed [50, 90] knots 
 Movement direction [0, 359] degrees 
 Size (radius) [10, 25] nm 
 Separation with aircraft 5 nm 
 Update frequency 5 time steps 
Duration Time step 12 seconds 
 maximum steps 150 
Hardware CPU Intel i9-11900 

 GPU 
NVIDIA GeForce 
RTX 3080 

 Memory 32GB 
Software Custom-built simulator in Python 3.9 

 18 
All training and testing simulations were executed on a hardware setup consisting of an Intel i9-11900 19 

CPU, NVIDIA GeForce RTX 3080 GPU, and 32GB of memory, using a custom-built simulator developed 20 
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in Python 3.9. Table 1 provides a comprehensive summary of the environment configurations and Table 2 1 

presents the hyperparameter setting for the IDDPG algorithm used in this study.  2 

Table 3 presents the performance metrics used to evaluate the safety and efficiency of the proposed 3 

method. Safety metrics include the aircraft loss of separation (LOS), defined as the ratio of LOS incidents 4 

between aircraft ( 𝑛𝑛LOS_aircraft) to the total number of aircraft ( 𝑛𝑛total_aircraft). The LOS rate with 5 

thunderstorm cells is defined as the ratio of LOS events with thunderstorm cells (𝑛𝑛LOS_storm) to the total 6 

number of aircraft. Efficiency metrics include the goal reach rate, which represents the proportion of aircraft 7 

that successfully reach their intended destinations (𝑛𝑛all_reach), and the flight distance ratio, which compares 8 

the actual flight distance to the planned route distance, indicating the efficiency of the planning process. 9 

 10 
Table 2. Hyperparameter settings for IDDPG algorithm. 11 

Parameter Value 
Minibatch size 512 
Reply buffer size 100000 
Actor learning rate 0.0001 
Critic learning rate  0.0001 
Discount factor 0.95 
Number of training episodes 20000 
Soft update rate  0.01 
Target network update frequency  1 
Maximum play per episode 200 
Noise level 1->0.03 

 12 
 13 

Table 3. Performance Metrics. 14 

Metric Description 
Aircraft loss of separation rate 𝑛𝑛LOS_aircraft/𝑛𝑛total_aircraft 
Thunderstorm loss of separation rate 𝑛𝑛LOS_storm/𝑛𝑛total_aircraft 
Goal reach rate 𝑛𝑛all_reach/𝑛𝑛total_aircraft 

Flight distance ratio Actual distance/planned 
route distance 

 15 

5.2. Model training results 16 

Based on the settings detailed in Section 5.1, we conducted model training to evaluate the effectiveness 17 

of various input states in the Independent Deep Deterministic Policy Gradient (IDDPG) algorithm. The 18 

choice of state observations fed into the neural network is crucial for training a robust and efficient model. 19 

To identify the optimal observation configuration, we compared several representative state inputs within 20 

the IDDPG framework. 21 
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The four primary types of observations considered were: (i) Aircraft’s own state: This includes 1 

position, speed, heading, and other relevant information about the aircraft itself; (ii) Weather radar sensor 2 

data: This includes information from the onboard weather radar, detecting nearby thunderstorm cells and 3 

feeding this data into the neural network; (iii) Other aircraft’s state: This includes the state information (e.g., 4 

position, speed, heading) of other nearby aircraft, combined with the aircraft’s own state data; (vi) ADS-B 5 

sensor data: This includes information obtained from ADS-B (Automatic Dependent Surveillance–6 

Broadcast) sensors, which provide the state of nearby aircraft as perceived through the sensor. 7 

Increased input information can enhance the learning capability of the model by providing more 8 

comprehensive situational awareness. However, this also increases the complexity of the neural network, 9 

potentially reducing learning efficiency and leading to the inclusion of redundant or irrelevant information, 10 

which may degrade the model’s overall performance. Therefore, determining an optimal balance of input 11 

information is essential for improving the effectiveness and efficiency of the neural network model. 12 

To investigate the impact of different input configurations, we defined four variations of the training 13 

algorithms, including IDDPG: Inputs only the aircraft’s own state and weather radar sensor data. This serves 14 

as the baseline model. IDDPG-n: Inputs the aircraft’s own state, weather radar sensor data, and direct state 15 

information of other aircraft. The “n” denotes the inclusion of other aircraft’s state information directly into 16 

the neural network. IDDPG-s: Inputs the aircraft’s own state, weather radar sensor data, and ADS-B sensor 17 

data for nearby aircraft. The “s” denotes the inclusion of other aircraft’s information perceived through 18 

sensors like ADS-B. IDDPG-ns: Combines all the inputs from the previous variations—aircraft’s own state, 19 

weather radar sensor data, other aircraft’s state, and ADS-B sensor data. This variation represents the most 20 

comprehensive state input configuration. 21 

It is important to note that all variations were tested under identical conditions regarding the number 22 

of aircraft and thunderstorm cells, origin-destination pairs, and movement trajectories to ensure a fair 23 

comparison. Additionally, variations in air route length across different episodes may cause fluctuations in 24 

reward curves. Episodes with longer routes require more time steps to reach the destination, leading to a 25 

higher accumulation of negative rewards due to time-step penalties. 26 

The obtained training curves and convergence results for the four IDDPG variations are shown in Fig. 27 

6. The baseline IDDPG model (red line), which only includes the aircraft’s own state and weather radar 28 

sensor data, shows the slowest convergence and the lowest final reward, indicating its limited ability to 29 

handle complex multi-aircraft scenarios. Introducing other aircraft’s state information directly into the 30 

neural network training in IDDPG-n (blue line) improves performance, with faster convergence and higher 31 

final rewards, demonstrating that direct awareness of other aircraft in the neural network enhances conflict 32 

avoidance. However, this improvement plateaus indicating challenges in scalability under higher traffic 33 

densities. The IDDPG-s model (purple line), which incorporates other aircraft’s states and weather radar 34 
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information into sensor data as input, delivers the best performance with the highest rewards. This model’s 1 

ability to adapt flexibly to dynamic situations by leveraging real-time input from the sensor’s state makes 2 

it the most robust and scalable for multi-aircraft trajectory planning under rapidly evolving thunderstorm 3 

conditions. In contrast, the IDDPG-ns model (green line), which combines all input sources, fails to 4 

outperform IDDPG-s, as the added complexity may lead to inefficiencies and overfitting, reducing its 5 

overall effectiveness. 6 

  7 
Fig. 6. Training curves for different state variations of the IDDPG algorithm. 8 

 9 
The training results underscore the significance of carefully selecting state observations for deep 10 

reinforcement learning models in dynamic, complex airspace environments. While adding more input 11 

information can improve the model’s performance, it also increases the complexity of the neural network, 12 

which might introduce inefficiencies or overfitting. The IDDPG-s variation, which balances the input of 13 

sensor data with state information, demonstrates the best performance, making it the optimal choice for 14 

real-time multi-aircraft trajectory planning under diverse conditions. Its performance is tested in the 15 

following sections.   16 

5.3. Effectiveness and scalability in real-world scenarios from Singapore FIR 17 

In this section, we evaluate the effectiveness and scalability of the trained IDDPG-s in a real-world en 18 

route airspace within the Singapore Flight Information Region (FIR), as depicted in Fig. 7. This area is 19 

situated within the oceanic portion of the FIR, where radar coverage and ATC services are unavailable. The 20 

multi-agent method proposed in this study is particularly critical for autonomously managing multi-aircraft 21 

co-operative trajectory planning, especially in the context of future high-density traffic and increased 22 

convective weather conditions. 23 
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We selected a 200×200 nm airspace within this FIR that includes three major air routes: N884, M767, 1 

and M768, intersecting at two critical waypoints, LAGOT and TODAM. This configuration represents one 2 

of the most complex traffic scenarios in the region. Each air route includes designated entry and exit 3 

waypoints, such as 𝑤𝑤N884
in  and 𝑤𝑤N884

exit  for route N884. Simulated aircraft traffic enters the airspace through 4 

the entry waypoints and exits via the corresponding exit waypoints to continue their remaining flights. A 5 

minimum longitudinal separation of 10 minutes is typically applied on these routes [13]. In this work, we 6 

reduce the separation to 5 minutes (25 time steps) to test our model in a doubled-capacity scenario. Four 7 

aircraft are randomly introduced from three entry waypoints, reflecting state-of-the-art simulation scenarios, 8 

which include four aircraft within a 200×200 nm area over a 30-minute interval [28]. Additionally, two 9 

dynamic thunderstorm cells with varying speed, size, and shape are simulated, moving from northwest to 10 

southeast across the region. 11 

 12 
Fig. 7. A real-world en route airspace area selected from Singapore FIR for model testing. 13 

 14 
Fig. 8 presents an example of simulation results with conflict-free trajectories for four aircraft (labeled 15 

as a0, a1, a2, and a3) navigating through the considered en route airspace under the influence of two 16 

dynamic thunderstorm cells (represented as heatmap contours). The transparency of the contours decreases 17 

over time to indicate their temporal evolution. More specifically, this figure provides four screenshots of 18 

the simulation at ¼ time step, ½ time step, ¾ time step, and the final step. The air routes (M767, M768, and 19 

N884) are marked as shaded bands with their respective entry and exit waypoints represented by solid 20 

triangles and stars, respectively. The trajectory flown by each aircraft is represented by a dashed line, with 21 

the paths changing dynamically in response to the evolving positions of the thunderstorm cells. 22 

Results show that all aircraft successfully navigate around the thunderstorm cells while maintaining 23 

safe separation distances from both the storms and other aircraft. Initially, the aircraft follow their pre-24 
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determined paths along the air routes, as seen in Fig. 8(a). As the thunderstorm cells move and change 1 

shape, the aircraft adjust their headings to avoid these hazards. This avoidance behavior is evident in Fig. 2 

8(b) and Fig. 8(c), where the aircraft begin to deviate from their original paths to ensure they maintain a 3 

safe distance from the thunderstorm cells. Fig. 8(d) represents the final step of the simulation, and the 4 

trajectories show that the aircraft have effectively rerouted around the thunderstorm cells and are on course 5 

to safely reach their respective exit waypoints. 6 

       7 
a. t = ¼ time step                                         b. t = ½ time step 8 

    9 
c. t = ¾ time step                                            d. t = final step 10 

Fig. 8. Conflict-free trajectories of multiple aircraft and moving thunderstorm cells at different time steps. Note that 11 

the enter and exit waypoints are represented by the symbols of solid triangle and star, respectively. The dynamics of 12 

the thunderstorm cells are depicted using evolving contours, with decreasing transparency to represent their 13 

progression over different time steps. 14 
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These dynamic adjustments are driven by our reward function, which penalizes proximity to 1 

thunderstorm cells and other aircraft, thereby encouraging the model to find safe and efficient alternative 2 

paths. The state inputs, which include information from onboard sensors (such as ADS-B data for other 3 

aircraft and radar data for thunderstorm cells), allow the model to perceive the evolving environment in 4 

real-time and make informed decisions on trajectory adjustments. The obtained results demonstrate the 5 

effectiveness of the proposed multi-agent deep reinforcement learning framework in handling complex, 6 

dynamic airspace scenarios. The aircraft can reroute in real-time, avoiding LOS with both thunderstorm 7 

cells and other aircraft, while still adhering to their flight objectives. 8 

  To evaluate the scalability of the proposed model, we conducted additional simulation tests with 9 

increasing numbers of aircraft (5, 6, 7, and 8) under the same dynamic weather conditions. Each scenario 10 

was tested 100 times, with aircraft randomly entering the airspace from three different waypoints, 11 

simulating a variety of traffic arrival processes. This setup allowed us to assess how well the model performs 12 

as airspace becomes more congested and the complexity of the traffic scenario increases.  13 

In Fig. 9, we present conflict-free trajectories for varying numbers (n = 5, 6, 7, and 8) under the 14 

influence of moving thunderstorm cells. Each sub-figure represents a different traffic density scenario. The 15 

aircraft are labeled as a1 to a8 depending on the number of aircraft in each subfigure. Each aircraft adjusts 16 

its trajectory to avoid both other aircraft and the thunderstorm cells. In particular, aircraft like a5 in each 17 

scenario deviates significantly from the original routes to maintain safe distances. In some scenarios, there 18 

appear to be sharp turns and holding patterns in the trajectories (e.g., a5 (blue dotted line) in the 7-aircraft 19 

scenario as shown in Fig. 9(c)). These behaviors are necessary due to the proximity of multiple moving 20 

obstacles (both other aircraft and a dynamic thunderstorm cell). The system resolves these potential 21 

conflicts with preemptive maneuvers, resulting in sharp course changes to avoid separation losses. 22 

A detailed statistical result from 100 test runs for each traffic density scenario is provided in Table 4. 23 

Results show that the LOS rate with other aircraft remained consistently low across all scenarios, with a 24 

slight increase to 1% in the scenario with 7 aircraft. However, the LOS rate with thunderstorm cells 25 

increased with the number of aircraft, reaching 5% in the scenario with 8 aircraft. This can be attributed to 26 

the higher weight assigned to aircraft conflicts compared to thunderstorm cell conflicts in the reward 27 

function, as defined in subsection 4.1.3. In such congested airspace, the model prioritizes avoiding aircraft 28 

conflicts, which inadvertently increases the likelihood of thunderstorm cell conflicts. 29 

In terms of goal reach rate, there was a slight decrease as the number of aircraft increased. While the 30 

goal reach rate was 100% for 4 aircraft, it dropped to 95% when 8 aircraft were involved. This slight decline 31 

shows the growing difficulty in ensuring that all aircraft can safely navigate to their destinations, as the 32 

airspace becomes more crowded. The flight distance ratio, which compares the actual flight distance to the 33 

planned route distance, also showed slight increases with the number of aircraft (see Table 4). This reflects 34 
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the additional maneuvers required to avoid conflicts, particularly with thunderstorm cells. However, despite 1 

these increases, the ratios remained within an acceptable range, with a mean of 1.17 and a standard deviation 2 

of 0.17 for the most dense traffic scenario, indicating that the model continues to manage rerouting 3 

efficiently, even as traffic density increases, as shown in Fig. 10. 4 

  5 
   a. n = 5 aircraft                                               b. n = 6 aircraft 6 

   7 
c. n = 7 aircraft                                             d. n = 8 aircraft 8 

Fig. 9. Conflict-free trajectories of varying numbers of aircraft under moving thunderstorm cells. 9 
 10 

The scalability tests demonstrate that our proposed model effectively handles multi-aircraft trajectory 11 

planning under dynamic weather conditions, even as the number of aircraft increases. Notably, our model 12 

maintains low LOS rates with other aircraft, demonstrating its capability to ensure safe separation in dense 13 

traffic with only a small and acceptable efficiency loss on rerouting distance.  14 



26 
 

Table. 4. Scalability analysis with an increased number of aircraft in 100 test runs. 1 

Performance metrics 
Number of aircraft 

4 5 6 7 8 
Aircraft LOS rate 0 0 0 1% 0 
Thunderstorm LOS rate 0 2% 2% 3% 5% 
Goal reach rate 100% 98% 98% 96% 95% 
Flight distance ratio 
(Mean/standard deviation) 1.08/0.06 1.17/0.15 1.17/0.16 1.16/0.17 1.17/0.17 

 2 

 3 
Fig. 10. Flight distance ratios remained within an acceptable range with the increased traffic density. 4 

 5 

5.4. Generalization across complex air route structures 6 

In this section, we evaluate the generalization ability of our trained model across complex airspace 7 

structures and weather patterns. Two representative air route configurations (ARS-1 and ARS-2), generated 8 

based on EuroControl guidelines [51], are used to test the model under varying traffic densities, with aircraft 9 

numbers increasing from 4, 6, to 8. Additionally, the thunderstorm cells in these simulations are larger, with 10 

a radius of 25 nautical miles, and move in different directions. These settings aim to assess the model’s 11 

robustness and adaptability in managing multi-aircraft trajectory planning under more diverse and 12 

challenging conditions compared to the real-world scenario previously analyzed. The obtained results are 13 

presented in Fig. 11 and Table 5.  14 

The results indicate that the model consistently maintained a zero LOS rate with other aircraft across 15 

all tested scenarios, regardless of the air route structure or the number of aircraft. This highlights the model’s 16 

ability to ensure safe separation between aircraft, even in highly congested airspace. However, the LOS rate 17 

with thunderstorm cells slightly increased as the number of aircraft rose, reaching 2% in ARS-1 with 8 18 

aircraft and 1% in ARS-2 with 8 aircraft. This increase suggests that while the model effectively prioritizes 19 
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avoiding LOS between aircraft, the added complexity of more aircraft and larger thunderstorm cells slightly 1 

compromises its ability to avoid weather-related hazards.  2 

The goal reach rate remained high across all scenarios, with 100% in scenarios with 4 and 6 aircraft, 3 

and a slight decrease to 98% or 99% with 8 aircraft. The mean distance ratio ranged from approximately 4 

1.19 to 1.24, indicating that while the model generally maintains efficient rerouting, the presence of larger 5 

thunderstorm cells and increased traffic density require longer detours. Notably, the ARS-2 configuration 6 

exhibited slightly lower flight distance ratios than ARS-1, suggesting that this air route structure might offer 7 

more efficient paths under the given conditions. 8 

Overall, the results from the generalization testing affirm the model’s effectiveness in adapting to new 9 

and complex air route structures while maintaining high levels of safety and efficiency. This demonstrates 10 

the potential application of our model in different airspace structures, reducing the need for redevelopment 11 

and retraining of the DRL model. 12 

5.5. Algorithm comparisons with Fast Marching Tree (FMT) and single-agent Deep Deterministic Policy 13 

Gradient (DDPG) 14 

In this subsection, we compare our proposed decentralized multi-agent IDDPG algorithm with a FMT 15 

algorithm and a single-agent DDPG model. We used the FMT algorithm as one baseline for comparison, 16 

as it represents the state-of-the-art approach for aircraft rerouting under thunderstorm constraints [28]. 17 

While the single-agent DDPG represents the state-of-the-art reinforcement learning algorithm in aircraft 18 

conflict resolution [32] without considering thunderstorms. To ensure a fair comparison, we adopted the 19 

single-agent DDPG structure to address the problem setting in this study. 20 

(i). Comparison with FMT algorithm 21 

The Fast Marching Tree algorithm is a sampling-based path-planning method that incrementally builds 22 

a tree of feasible trajectories by connecting sampled waypoints to minimize costs, such as distance or risk 23 

while avoiding obstacles like thunderstorms. It efficiently searches for solutions by leveraging pre-sampled 24 

nodes and fast propagation techniques. We compare it with the proposed IDDPG model.  25 

The comparison is conducted using the ARS-2 airspace structure, with increasing traffic density 26 

scenarios involving 4, 6, and 8 aircraft. Each simulation includes one dynamic thunderstorm cell with 27 

varying, but predictable, trajectories. The other settings remain consistent with those described in Section 28 

5.4. In the FMT algorithm, 2000 sampling nodes are used to generate potential paths for trajectory planning. 29 

A local neighborhood radius of 10 nm is defined, within which an aircraft can evaluate nearby nodes for 30 

path expansion. During trajectory planning, each aircraft considers both other aircraft and dynamic 31 

thunderstorm cells as obstacles, ensuring safe separation and efficient navigation around weather 32 

disturbances while reaching its designated destination. 100 test runs were conducted for both algorithms 33 
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and their performance is evaluated based on defined performance metrics. An illustration of planned 1 

trajectories by FMT algorithm with different aircraft is presented in Fig. 12, while detailed metrics achieved 2 

by FMT are provided in Table 6.   3 

  4 
a. Air route structure-1 (ARS-1) with increased number of aircraft from 4, 6, to 8. 5 

   6 
b. Air route structure-2 (ARS-2) with increased number of aircraft from 4, 6, to 8. 7 

Fig. 11. Generalization testing of proposed IDDPG algorithm in two complex and representative air route structures 8 
with increased traffic density.  9 

  10 
a. 4 aircraft                                       b. 6 aircraft                                                c. 8 aircraft 11 

Fig. 12. Planned trajectories using Fast Marching Tree (FMT) algorithm in ARS-2 airspace structure with increased 12 
traffic density from 4, 6, to 8 aircraft. Note that the red circle represents thunderstorm cells, which move from northeast 13 
down to southwest in the environment.  14 

 15 
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The comparison between the proposed IDDPG algorithm and the Fast Marching Tree (FMT) 1 

algorithm highlights distinct advantages in handling multi-aircraft trajectory planning under dynamic 2 

thunderstorm conditions. 3 

When observing Fig. 11(b) (IDDPG) and Fig. 12 (FMT), one major difference lies in trajectory 4 

planning. The FMT algorithm frequently results in unrealistic sharp turns and zigzag paths (e.g., sudden 5 

180-degree changes), which are unsuitable for actual aircraft performance. This limitation is especially 6 

evident as traffic density increases, where the FMT algorithm produces increasingly complex and zigzag 7 

trajectories. In contrast, the IDDPG algorithm generates smooth and natural trajectories, even with 8 

increased traffic densities. This difference suggests that IDDPG handles complex dynamic environments 9 

more efficiently, leading to more realistic flight paths. 10 

Another observation is about traffic flow organization. The FMT algorithm simply generates 11 

avoidance actions without a sense of re-organizing the traffic flow. This lack of coordination leads to 12 

numerous trajectory intersections and conflict hotspots (see Fig. 12(c)), significantly increasing airspace 13 

complexity and the risk of mid-air collisions. On the other hand, IDDPG’s cooperative decision-making 14 

strategy produces more organized traffic flows, which reduces the number of conflicting trajectory 15 

intersections (see Fig. 11(b)). This highlights the ability of IDDPG to manage not just conflict avoidance 16 

but also to coordinate traffic in a way that mitigates future risks. 17 

The results from Table 5 (IDDPG in ARS-2) and Table 6 (FMT in ARS-2) further illustrate key 18 

performance differences. Loss of Separation (LOS) rates are notably lower with IDDPG. While IDDPG 19 

achieves a 0% aircraft LOS rate even under dense traffic conditions (up to 8 aircraft), the FMT algorithm’s 20 

LOS rate increases significantly, reaching up to 17% with 8 aircraft. This highlights the capability of 21 

IDDPG in maintaining safe separation between aircraft, especially when dealing with dynamic 22 

thunderstorm cells. 23 

Additionally, the avoidance threshold used by the FMT algorithm affects its performance. Smaller 24 

thresholds (e.g., 20 nm) result in faster computation time (3.36 s) but lead to higher LOS rates (7%). In 25 

contrast, larger thresholds (e.g., 40 nm) slightly lower the LOS rate (6%) but increase the computation time 26 

(8.32s). IDDPG does not require a fixed avoidance threshold; instead, it dynamically adjusts avoidance 27 

actions based on the current scenario, offering more flexibility and better efficiency. This adaptability 28 

allows the IDDPG to consistently ensure separation without being constrained by the computational 29 

overhead of threshold settings. 30 

Lastly, computational efficiency is another major differentiator. As traffic density increases from 4 to 31 

8 aircraft, the average computation time of FMT at each time step grows significantly (from 5.04s to 41.29s 32 

at a 30 nm threshold). The growing computational burden is a result of repeated recalculations as aircraft 33 

must recheck their trajectories in response to dynamic changes in the environment. IDDPG, on the other 34 
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hand, maintains better scalability and is more computationally efficient (less than 20 milliseconds per 1 

solution), making it more suitable for time-sensitive applications. 2 

 3 
Table. 5. Generalization analysis of proposed IDDPG algorithm in diverse air route structures under 100 test runs. 4 

Performance metrics 
(Average) 

Air route structures 
ARS-1 ARS-2 

Number of AC in each testing 4 6 8 4 6 8 
Aircraft LOS rate 0 0 0 0 0 0 
Thunderstorm LOS rate 0 1% 2% 0 0 1% 
Goal reach rate 100% 99% 98% 100% 100% 99% 
Flight distance ratio 
(Mean/standard deviation) 1.23/0.16 1.24/0.18 1.24/0.19 1.19/0.12 1.21/0.15 1.24/0.18 

 5 
Table. 6. Performance analysis of the Fast Marching Tree (FMT) algorithm in ARS-2 scenarios under 100 test runs. 6 

Number of aircraft  4 6 8 
Avoidance threshold (nm) 20 30 40 30 30 
Aircraft LOS rate 7.00% 6.00% 6.00% 12.00% 17.00% 

Thunderstorm LOS rate 1.00% 1.00% 1.00% 1.00% 1.00% 

Goal reach rate 92% 93% 93% 87% 82% 
Flight distance ratio 
(Mean/standard deviation) 1.13/0.02 1.16/0.03 1.26/0.07 1.25/0.14 1.28/0.20 

Computation time* (s) 3.36 5.04 8.32 18.99 41.29 
* Computation time measures the average time needed for trajectory planning at each time step.   7 

 8 
In conclusion, IDDPG demonstrates superior performance compared to FMT in terms of trajectory 9 

smoothness, safety (lower LOS rates), and scalability in real-time dynamic airspace scenarios. While FMT 10 

performs well under static conditions [28], it may struggle to manage the complexities and unpredictability 11 

of dynamic weather and increasing traffic, where the proposed DRL-based IDDPG excels. 12 

(ii). Comparison with the centralized single-agent DDPG model 13 

We first present the state definitions and network set up for IDDPG and single-agent DDPG models. 14 

The proposed IDDPG employs centralized training and decentralized execution (CTDE) paradigm [52,53]. 15 

During training, a shared actor-critic network uses combined experiences from all aircraft to optimize joint 16 

behavior. During execution, each aircraft acts independently based on its own observations, with 17 

coordination ensured through the shared policy. The single-agent DDPG model uses a centralized approach, 18 

where a single network controls all aircraft. Actor, critic, and experience replay are shared, with inputs 19 

comprising all aircraft observations. Training and execution use the same centralized state. We conducted 20 

100 independent evaluations for both the decentralized multi-agent IDDPG and centralized single-agent 21 

DDPG models, with results presented in Fig. 13. The IDDPG consistently outperforms the single-agent 22 

DDPG in most key metrics as the number of aircraft increases, demonstrating its advantages in scalability 23 

and robustness. 24 
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In terms of goal reach rate (Fig. 13(a)), the IDDPG maintains a high success rate above 92% even 1 

with 10 aircraft, whereas the single-agent DDPG shows a significant decline, dropping below 50% when 2 

handling 10 aircraft. This highlights the ability of decentralized IDDPG to handle increasing complexity 3 

and maintain operational efficiency. For loss of separation rates, both for aircraft and thunderstorms (Fig. 4 

13(b) and Fig. 13(c)), the single-agent DDPG has significant performance issues. The aircraft LOS rate 5 

fluctuates and reaches up to 4%, while the thunderstorm LOS rate sharply increases to 49% with 10 aircraft. 6 

In contrast, IDDPG maintains much lower and more stable rates in both metrics, with aircraft LOS rates 7 

never exceeding 2% and thunderstorm LOS rates remaining below 10%. This demonstrates the robustness 8 

of IDDPG in ensuring safety and adaptability under increasing airspace demands and dynamic storm 9 

conditions. However, for flight distance ratio (Fig. 13(d)), the single-agent DDPG achieves lower mean 10 

values and smaller standard deviations compared to IDDPG, reflecting its centralized policy’s ability to 11 

provide better cooperative decisions from a global perspective. IDDPG shows higher variance and longer 12 

distances due to its decentralized execution, where coordination between agents is inherently weaker than 13 

in a centralized method. 14 

 15 
Fig. 13. Comparisons between decentralized multi-agent IDDPG and centralized single-agent DDPG. 16 

 17 
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Overall, if scalability and system robustness are not concerns, the single-agent DDPG may be a 1 

suitable choice for applications where distance minimization is a priority. However, for scenarios requiring 2 

scalability and resilience, such as managing large airspaces with many aircraft under thunderstorms, the 3 

decentralized decision-making approach of IDDPG is more robust, ensuring better overall performance 4 

under dynamic and complex conditions. 5 

 6 

5.6. Robustness under diverse weather conditions 7 

In this section, we demonstrate the robustness of our multi-aircraft trajectory planning model under 8 

varying weather complexities. These complexities are defined by different sizes, numbers, and moving 9 

trajectories of thunderstorm cells. Six distinct weather scenarios are created, each with varying levels of 10 

complexity: from a single small thunderstorm cell (15 nm radius) to scenarios with three large thunderstorm 11 

cells (25 nm radius). These scenarios are named accordingly (e.g., c_1S for one small cell, c_3L for three 12 

large cells). To quantify the severity of each scenario, the percentage of airspace covered by thunderstorm 13 

cells is calculated, with coverage ranging from 1.77% to 14.73%, as shown in Table 7. 14 

Overall, results indicate that as the weather complexity increases, the LOS rates with thunderstorm 15 

cells rise accordingly. For example, in the scenario with three large thunderstorm cells (c_3L), which cover 16 

14.73% of the airspace, the LOS rate with thunderstorm cells peaks at 34%, detailed in Table 7. Conversely, 17 

LOS rates with other aircraft remain low across all scenarios, with a maximum of 4% in the most severe 18 

weather conditions. Goal reach rates decrease as thunderstorm cell coverage increases, dropping from 94% 19 

in the least severe scenario (c_1S) to 63% in the most severe (c_3L). The flight distance ratio, which 20 

measures the efficiency of the rerouting, also increases with weather severity, with the highest mean ratio 21 

of 1.29 observed in the c_2L scenario. Despite the increased weather severity, the model maintains 22 

relatively low LOS rates with other aircraft, ensuring safety in highly congested airspace. However, the 23 

rising LOS rates with thunderstorm cells and decreasing goal reach rates indicate that the model’s 24 

performance is challenged as environmental complexity increases. 25 

Another notable observation is the significant impact of random trajectories of thunderstorm cells. In 26 

Section 5.3, where thunderstorm cell trajectories were predicted, the LOS rate with thunderstorm cells was 27 

0%. In contrast, this section shows a notable increase in the LOS rate with thunderstorm cells, exceeding 28 

10% even with small cells, and reaching 34% in the scenario with three large cells, although the LOS rate 29 

between aircraft remained low across all scenarios. This observation suggests that the model performs better 30 

with predicted thunderstorm cell trajectories, indicating a potential area for future research on more 31 

advanced prediction models. 32 

Overall, these findings demonstrate the effectiveness of the proposed mode under moderate conditions 33 

while highlighting areas for further refinement, particularly in scenarios involving unpredictable and severe 34 
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weather patterns. Future work should focus on integrating thunderstorm cell trajectory prediction into the 1 

model to further reduce LOS rates and improve the safety and efficiency of air traffic management in 2 

thunderstorm weather scenarios. 3 

  4 
Table 7. Simulation setting and testing results under diverse weather scenarios. 5 

Size of thunderstorm cell Small (15 nm) Large (25 nm) 
Number of thunderstorm cell 1 2 3 1 2 3 
Name of scenario c_1S c_2S c_3S c_1L c_2L c_3L 
Percentage of coverage 1.77% 3.54% 5.31% 4.91% 9.82% 14.73% 
Aircraft LOS rate 1% 0% 3% 4%  4%   3% 
Thunderstorm LOS rate 5% 12% 11%  10%  24%  34% 
Goal reach rate 94% 88% 86%  86% 72%  63%  
Flight distance ratio 
(Mean/standard deviation) 1.14/0.28 1.22/0.60 1.26/0.76  1.20/0.66  1.29/0.92 1.25/0.90 

 6 

5.7. Impact of estimated time of arrival (ETA) uncertainty on model performance 7 

Uncertainties in ETA may significantly disrupt pre-planned separations between aircraft on the same 8 

air route, which can lead to an increased rate of loss of separation at entry waypoints [54]. To address this, 9 

we conducted numerical simulations to evaluate the impact of varying levels of ETA uncertainty on model 10 

performance. The simulation environment utilizes the Singapore FIR airspace and air route structure, as 11 

defined in Section 5.1. Each simulation batch consists of 30 aircraft, with a pre-planned time separation of 12 

10 minutes between consecutive entries [13]. ETA uncertainty is introduced by adding sampled values to 13 

the pre-planned ETA for each aircraft. Based on the literature [55], ETA uncertainty follows a normal 14 

distribution and is classified into four levels in this study: negligible, low, medium, and high levels.  15 

The negligible level assumes normal operations with accurate onboard trajectory prediction systems, 16 

leading to minimal deviations [55]. The high level represents severe ETA deviations caused by 17 

unpredictable trajectory changes under adverse weather conditions [56].  The low and medium uncertainty 18 

levels account for intermediate deviations that lie between the negligible and high levels. These uncertainty 19 

levels were modeled using normal distributions, with mean and standard deviation (S.D.): negligible 20 

(mean=0, S.D.=30 seconds), low (mean=0, S.D.=90 seconds), medium (mean=0, S.D.=210 seconds), and 21 

high (mean=0, SD=450 seconds). To evaluate the model’s performance to these different levels of ETA 22 

uncertainty, we conducted 100 independent simulation runs for each uncertainty level, with each run 23 

including a batch of 30 aircraft.  24 

The simulated ETA values for each uncertainty level are presented in Fig. 14. The results show that 25 

the negligible uncertainty level leads to deviations within ±1 minutes, while the low uncertainty level results 26 

in deviations within ±5 minutes. Medium uncertainty increases the deviations to ±10 minutes, and high 27 

uncertainty leads to deviations of up to ±20 minutes. These simulated ETA values closely align with real-28 
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world observations reported in the literature [55,56], which confirmed the validity of the defined uncertainty 1 

levels. 2 

 3 

Fig. 14. Distributions of simulated ETA uncertainty at various uncertainty levels. 4 

 5 

Table 8 and Figs. 15-17 present simulation results under different uncertainty levels. Under high 6 

uncertainty, the model’s performance is significantly impacted due to large deviations in aircraft separations, 7 

ranging from as high as 25 minutes to near zero, as shown in Fig. 16. The wide range of separations leads 8 

to underutilized airspace during periods of large separations, where preceding aircraft exit the airspace well 9 

before the following ones enter. This underutilization is demonstrated in Fig. 15, where 5.62% of the time 10 

the airspace is completely unoccupied. On the other hand, small separations result in a significant increase 11 

in the loss of separation rate at entry waypoints, reaching 38% as reported in Table 8. This conflict arises 12 

as the model primarily reacts to aircraft already within the airspace and does not account for conflicts at 13 

entry points caused by uncertain ETAs. Consequently, the total time required to clear a batch of 30 aircraft 14 

is the longest among all levels, as shown in Fig. 17. These results suggest that future work should consider 15 

optimizing multisector scheduling to better manage ETA uncertainties at entry points and improve 16 

coordination across airspace sectors. 17 

 18 

Table 8. Sensitivity of proposed model under various ETA uncertainty levels in 100 runs. 19 

Performance metrics Uncertainty levels 
Negligible Low Medium High 

Aircraft LOS rate 1% 2% 6% 38% 
Thunderstorm LOS rate 1% 3% 2% 2% 
Goal reach rate 98% 95% 92% 60% 
Flight distance ratio (mean/S.D.) 1.18/0.23 1.18/0.25 1.15/0.21 1.22/0.28 

 20 
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 1 

Fig. 15. Aircraft density in the airspace under different ETA uncertainty levels. 2 

 3 

At the negligible level, aircraft separations remain consistent and well above the minimum required 4 

separation, as observed in Fig. 16. This stability ensures optimal airspace utilization, with minimal 5 

occurrences of empty airspace, as shown in Fig. 15, where only 0.13% of the time the airspace is unoccupied. 6 

Consequently, the aircraft maintain safe distances, resulting in the lowest loss of separation rate at 1%, as 7 

reported in Table 8. Additionally, the high goal reach rate of 98% indicates efficient and effective 8 

operations under this level of uncertainty. The total time required to clear a batch of 30 aircraft is also 9 

among the shortest, with minimal variance, as illustrated in Fig. 17. These findings demonstrate that 10 

negligible uncertainty conditions lead to both high safety and efficiency. 11 

Under low and medium uncertainty levels, the model begins to experience moderate impacts on 12 

performance. While separations remain generally above the minimum threshold, deviations increase, 13 

leading to slight inefficiencies in airspace utilization. As shown in Fig. 15, the distribution of aircraft density 14 

within the airspace becomes less balanced, with noticeable increases in time periods where fewer or more 15 
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aircraft occupy the airspace simultaneously. This imbalance results in a gradual rise in the loss of separation 1 

rates to 2% for low uncertainty and 6% for medium uncertainty (Table 8). Goal reach rates, while still high, 2 

decline slightly to 95% and 92% for low and medium uncertainty levels respectively, indicating a moderate 3 

degradation in operational effectiveness. The total clearance time for a batch of 30 aircraft also increases 4 

slightly, as shown in Fig. 17, though the variance remains manageable. These results suggest that while the 5 

model remains effective under low and medium uncertainty, its performance could benefit from additional 6 

proactive measures such as optimization of ETAs across multiple sectors. 7 

 8 

  9 

Fig. 16. Actual aircraft separations at entry waypoints under various ETA uncertainty levels. Note that the actual 10 
separation between aircraft is sorted and presented from the largest to the smallest for improved presentation clarity.  11 

 12 

 13 

Fig. 17. Total time for completing a simulation run at different uncertainty levels.  14 
 15 
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The proposed model demonstrates robustness in handling ETA uncertainties at negligible, low, and 1 

medium levels, with minimal impacts on safety and efficiency. However, high ETA uncertainty 2 

significantly degrades performance due to the lack of optimization for ETAs across multiple sectors, as the 3 

model focuses only on within-sector dynamics. In single-sector scenarios, ETA uncertainty has little impact 4 

(Fig. 15) on demand and capacity balancing since all aircraft adhere to predefined entry points. In contrast, 5 

multi-sector scenarios may experience imbalances as rerouted aircraft arrive from non-designated entry 6 

points due to adverse weather. Future efforts should incorporate multi-sector coordination and optimize 7 

demand-capacity balancing to address these challenges. 8 

5.8. Ablation study of key reward functions used in our model 9 

Ablation studies are essential for evaluating how individual reward components impact model 10 

performance [57]. By removing specific reward components that are used in the proposed model, we assess 11 

their contributions to safety and efficiency indicators.  12 

In this study, we exclude two foundational reward components from ablation testing, which are crash-13 

related rewards and goal-reaching rewards. Crash-related rewards ensure safety by penalizing direct 14 

conflicts with thunderstorms or other aircraft, and their removal leads to non-convergence, invalidating the 15 

analysis. Similarly, the goal-reaching reward, which incentivizes aircraft to reach exit waypoints, is crucial 16 

for training convergence. These two rewards are indispensable and remain part of the model. 17 

The ablation study focuses on four key reward components: (i) Near aircraft penalty: adds a gradient-18 

based penalty as the separation between aircraft decreases below 30 nm but remains above 5 nm, which 19 

helps to reduce the sparse reward effect during training. Removing it will stop this gradient contribution, 20 

leading to potential degradation of learning. Similarly, (ii) Near storm penalty: provides a gradient for 21 

avoiding conflicts between aircraft and thunderstorms. (iii) Distance to goal: minimizes travel distance and 22 

supplies a gradient for each step toward the goal, and its removal may diminish the global gradient that is 23 

essential for effective learning. Lastly, (iv) Heading change: provides a small reward that discourages 24 

frequent heading adjustments. Besides, we also perform a reward scaling analysis to evaluate the model’s 25 

robustness to vary reward magnitudes by testing baseline (1x), double (2x), fivefold (5x), and tenfold (10x) 26 

reward values.  27 

Each ablation test involves training models with one reward removed and evaluating them under 28 

identical simulation environments and parameters as the full model. Each trained model is tested on 100 29 

independent scenarios. Model performances are evaluated with results presented in Fig. 18.  Note that the 30 

aircraft stray rate indicates the percentage of aircraft that have no conflict but do not reach the exit waypoint 31 

within a sufficient amount of time step in a simulation run.  32 
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As shown in Fig. 18, the full model, serving as the baseline, performs well with a goal reach rate of 1 

98%, with only a 2% thunderstorm loss of separation (LOS) rate and no aircraft straying or conflict. In 2 

contrast, the most significant degradation occurs when the distance to goal reward is removed. In this case, 3 

the goal reach rate drops to 45%, while both aircraft and thunderstorm conflict rates rise to 9%. Additionally, 4 

37% of aircraft stray, failing to reach their designated exit waypoints within the allocated time. This severe 5 

performance drop stems from the removal of the gradient provided by this reward component at each step, 6 

resulting in a sparse reward environment. In this setting, the agent only receives a one-time reward upon 7 

reaching the goal, with no intermediate feedback to guide task completion. 8 

Ablation of the near aircraft penalty and near storm penalty similarly impacts performance, though to 9 

a lesser extent. Removing these components diminishes the gradient of proactive avoidance, causing the 10 

aircraft to react only when separations fall below critical thresholds with other aircraft or thunderstorms. 11 

This leads to increases in conflict rates: 4% aircraft LOS rate and 7% thunderstorm LOS rate for the absence 12 

of the near aircraft penalty, while 4% and 11% rates for the absence of the near storm penalty. Conversely, 13 

removing the heading change reward has minimal impact on performance. This component introduces only 14 

a minor penalty to discourage unnecessary heading adjustments, without contributing significant gradients 15 

for task completion.  16 

The reward scaling results in Table 9 demonstrate the robustness of the proposed model to varying 17 

reward magnitudes. Across all scaling levels (1x, 2x, 5x, 10x), the model maintains consistently high 18 

performance, with aircraft LOS rates remaining at or near 0%, thunderstorm LOS rates between 1-3%, and 19 

goal reach rates stable at 97-98%. These results indicate that the model effectively balances safety and 20 

efficiency, regardless of reward scaling.  21 

 22 

 23 
Fig. 18. Ablation study of reward functions. 24 
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 1 

Table 9. Proposed model is robust to reward scaling effects. 2 

Performance metrics Reward scale levels 
1x (baseline) 2x 5x 10x 

Aircraft LOS rate 0% 0% 0% 1% 
Thunderstorm LOS rate 2% 3% 3% 1% 
Goal reach rate 98% 97% 97% 98% 
Distance ratio (Mean/S.D.) 1.17/0.15 1.31/0.28 1.16/0.21 1.14/0.11 

 3 

In summary, ablation results highlight the critical role of the distance to goal reward in providing 4 

consistent learning gradients, while near aircraft and near storm penalties ensure proactive safety actions. 5 

These findings suggest that the key to designing effective reward functions lies in introducing appropriate 6 

gradients to mitigate the sparse reward limitations of reinforcement learning models.  7 

6. Conclusions 8 

This study addresses the growing challenges posed by increasingly frequent and severe thunderstorm 9 

cells, a consequence of climate change, on multi-aircraft co-operative trajectory planning in en route 10 

airspace. Addressing the limitations of existing centralized methods, we developed a decentralized Markov 11 

Decision Process model with a novel approach of the Independent Deep Deterministic Policy Gradient 12 

(IDDPG) framework to enhance safety, efficiency, and robustness. Results from extensive real-world and 13 

simulated scenarios demonstrated that the proposed framework effectively manages complex scenarios, 14 

maintaining low loss of separation (LOS) rates and ensuring high levels of safety even as the number of 15 

aircraft and weather severity increased. We summarize the key takeaways as follows.  16 

(i) The proposed model demonstrated strong effectiveness and robustness when applied to various 17 

real-world simulated scenarios, particularly in oceanic airspace within the Singapore FIR, where 18 

radar coverage and air traffic control services are limited. Across all tested scenarios, the model 19 

consistently maintained low LOS rates with other aircraft, ranging from 0% to 4%, even as traffic 20 

density doubled compared with the state-of-the-art testing [28]. This indicates its robustness in 21 

ensuring safe separation in complex combinations of traffic and weather conditions. 22 

(ii) Simulation results demonstrate the scalability of our model as it effectively handled an increasing 23 

number of aircraft, from 4 to 8, with minimal impact on safety. The goal reach rate only slightly 24 

decreased from 100% to 95% as traffic density doubled, demonstrating that the model can 25 

accommodate higher traffic volumes while maintaining operational efficiency. 26 

(iii) In terms of rerouting efficiency, the model maintained a reasonable flight distance ratio, with a 27 

mean ratio of 1.1725 in the most congested scenario involving 8 aircraft with two dynamic 28 
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thunderstorm cells. This suggests that while additional maneuvers were necessary to avoid conflicts, 1 

the overall efficiency of rerouting was maintained. 2 

(iv) We observed the significant impact of trajectory unpredictability of thunderstorm cells on the 3 

model’s performance. While the model maintained a low aircraft LOS rate across all scenarios, the 4 

LOS rate with thunderstorm cells increased notably when the thunderstorm paths were randomized. 5 

This finding highlights the importance of incorporating more accurate thunderstorm cell trajectory 6 

predictions in future work, as doing so could further enhance the robustness and reduce the 7 

likelihood of weather-related conflicts. 8 

While this study represents a significant advancement in applying multi-agent DRL for multi-aircraft 9 

cooperative trajectory planning under dynamic thunderstorm cells, several areas remain for further 10 

enhancement and exploration. First, future research could enhance the robustness of the model by 11 

integrating other uncertainties, particularly regarding thunderstorm evolution [18] and uncertain trajectory 12 

positions [54]. Second, the focus of this work is on en route phase, expanding the model to consider different 13 

phases of flight, such as in terminal airspace, would provide a more collaborative solution for gate-to-gate 14 

air traffic management [58]. Additionally, this work assumes a fully autonomous decision-making 15 

environment. Future research could consider human-centered [59] and human-AI hybrid concepts [60], 16 

where pilot inputs and air traffic controller feedback are integrated into the decision-making process, 17 

enhancing the model’s applicability in real-world operations. 18 
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