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Abstract

Basket trials test a single therapeutic treatment on several patient populations under one master

protocol. A potentially desirable adaptive design feature in these studies is the ability to incorporate

new baskets to an ongoing trial. Limited basket sample sizes can result in reduced power and precision

of treatment effect estimates, which could be amplified in added baskets due to the shorter recruitment

time. While various Bayesian information borrowing techniques have been introduced to tackle the

issue of small sample sizes, the impact of including new baskets in the trial and into the borrowing

model has yet to be investigated. We explore approaches for adding baskets to an ongoing trial under

information borrowing and highlight when it is beneficial to add a basket compared to running separate

trials for any new baskets.

All basket trials have some pre-defined efficacy criteria to determine whether the treatment is effective

for patients in each of the baskets on the trial. The efficacy criteria is often calibrated prior to the trial

in order to control the basket-wise type I error rate to a nominal level. Traditionally, this is done under

a null scenario in which the treatment is ineffective in all baskets, however, we show that calibrating

under this scenario alone will not guarantee error control under alternative scenarios. We propose

a novel calibration approach for the efficacy criteria that is more robust to false decision making.

Simulation studies are conducted to assess the performance of the approaches for adding a basket,

which is primarily monitored through type I error rate control and statistical power. The results display

a substantial improvement in power for a new basket when information borrowing is utilised, however,

this comes with potential inflation of error rates. We show that this can be reduced under the proposed

calibration procedure.
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Introduction

Basket trials are a form of master protocol in which a single treatment is administered to patients across
different disease types, all of whom possess the same genetic aberration. Different disease type sub-
populations form their own treatment basket1. Typically, basket trials are implemented in the early stages
of the drug development process in order to determine the efficacy of a treatment in each of the individual
baskets on the trial2. They often consist of a single treatment arm using a small number of patients.

One of the main benefits of basket trials is that they allow testing of treatments on small sub-groups of
patients, which may result from being in the early-phase setting or from investigating rare diseases3. With
such small sample sizes, individual studies for each condition would not traditionally be warranted due to
financial and time constraints. By allowing for testing on multiple disease types in a single study, the drug
development process is substantially expedited4,5. Basket trials, like other efficient study designs such as
platform and umbrella trials, can provide flexibility by utilising adaptive design features, which allow for
modification of the design and analysis while the study is still ongoing. Such modifications include interim
analysis with futility and efficacy stopping, sample size adjustment, or as is the focus of this work, the
addition of a single or multiple baskets to an ongoing trial. This situation could arise when a new group
of patients is identified to potentially benefit from the treatment, where these patients harbour the genetic
aberration under investigation, but suffer from a different type of disease.

Several prominent clinical trials have utilised the addition of a basket. An example of this is the VE-
BASKET trial6, exploring the effect of vemurafeib on various non-melanoma cancers with the BRAFV600
mutation. In this study, the number of baskets comprising the study changed while the trial was ongoing.
The study opened with six disease-specific baskets, three of which were closed due to insufficient accrual.
Two baskets were added due to sufficient enrolment of patients in an ‘all other’ basket consisting of patients
with BRAFV600 mutations but with different disease types to the defined baskets. In addition to the VE-
BASKET trial, there is an ongoing basket trial that is looking at the effect of tucatinib and trastuzumab on a
number of solid tumours with the HER2 alteration7. The established baskets include cervical cancer, uterine
cancer, urothelial cancer amongst others, and like the VE-BASKET trial, this trial also included two baskets
consisting of all other HER2 amplified solid tumour types or HER2 mutated solid tumour types8. The study
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protocol of the HER2 trial outlines the ability to adapt the trial design based on recruitment rates within the
two ‘all other’ baskets, which will allow new disease-specific baskets to be formed within the trial. Both the
VE-BASKET and HER2 trials feature the addition of baskets within their trial protocol, however, it is not
stated explicitly how these new baskets are analysed compared to baskets that began the trial. In both trials
it appears stratified analysis of each basket is (or will) be conducted, thus these new baskets being formed
will have no impact on the established baskets on the trial. This is with the exception of the ‘all other’
basket, where the sample size was reduced as the new baskets were created from the patients within this
basket. Should information be shared between the established and new baskets, the added baskets will have
an impact on inference in all baskets on the trial. Thus, when information is shared, careful consideration
on how to handle the addition of baskets is required. This motivates the work presented in this paper, with
the purpose of exploring methodology for analysing trials where baskets have been added.

While basket trials are desirable as they allow the testing of treatments on small groups of patients,
a prominent issue in basket trials is the lack of statistical power and precision of estimates. This can
be amplified in baskets that are added part-way through an ongoing trial. The combination of reduced
recruitment rate (when the new disease type is rare) and shorter recruitment time due to the late addition to
the trial, can result in a further reduction in sample sizes compared to baskets that opened at the beginning of
the trial. To tackle the issue of small sample sizes, Bayesian information borrowing methods were proposed
for use in basket trials. These methods utilise the assumption that, as patients across baskets share the same
genetic mutation, they will have a similar response to the treatment. As such, patients are ‘exchangeable’
between baskets, meaning patients can be moved between treatment baskets without changing the overall
treatment effect estimates9. One can use this assumption to draw on information from one basket when
making inference in another, which has the potential to improve power and precision of estimates. However,
when the exchangeability assumption is violated, and there is heterogeneity amongst the response rates in
different baskets, any information borrowing has the potential to inflate the type I error rate10. The trade-off
between power improvement and error rate inflation among heterogeneous baskets is a well known issue
and has been observed in several simulation studies including that by Chu and Yuan3, Jin et al.11 and
Daniells et al.12.

Over recent years, several prominent methods for information borrowing in basket trials have
been proposed. These include the Bayesian hierarchical model (BHM)13 and several adaptations to
this method, such as the calibrated Bayesian hierarchical model (CBHM)3 which defines the prior
on the borrowing parameter as a function of homogeneity, the exchangeability-nonexchangeability
model (EXNEX)14 which allows for flexible borrowing between subsets of baskets and the modified
exchangeability-nonexchangeability model (mEXNEXc)12 which modifies the EXNEX model to account
for homogeneity/heterogeneity between baskets. However, to the best of our knowledge, any discussion on
the addition of baskets whilst utilising information borrowing is sparse.

This purpose of this work is to propose and investigate several approaches for the analysis of newly added
baskets under an information borrowing structure, which primarily utilises the EXNEX model. To identify
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when and which approach is deemed appropriate for use, thorough simulation studies under a variety of
settings have been conducted, primarily monitoring the type I error rate and power. The simplest approach
to such an addition would be to analyse the new baskets akin to baskets that were already in the trial at
the start, a problem which is mathematically equivalent to a case of unequal sample sizes. This work also
explores additional methodology, which is motivated by the concern that new baskets could negatively
impact the type I error rate and power of existing baskets should the response rates be heterogeneous across
baskets. However, substantial power can be gained by borrowing from new baskets in cases of homogeneity.
Control of the type I error rate in the the new basket must also be considered.

The second novel aspect of this work regards the calibration of efficacy criteria. When implementing
Bayesian borrowing models, posterior probabilities are computed and compared to some pre-defined cut-
off value in order to determine whether or not a treatment is efficacious in each of the baskets. Traditionally,
these cut-off values are calibrated through simulation studies under a global null scenario, where all baskets
are truly ineffective. This calibration aims to control the basket specific type I error rate to a nominal level.
However, when the cut-off value is applied to cases where at least one basket is effective to treatment, it is
not guaranteed that error rates will remain controlled at the nominal level when information borrowing
is utilised10. In fact, inflation in the type I error rate often occurs in cases of heterogeneity amongst
the response rates across baskets, as borrowing information causes shifts in the posterior probabilities
away from the true treatment effect. This brings into question whether calibrating under the global null
is sufficient, as more often than not, there is an expectation that the treatment is efficacious in at least one
basket. In this work we propose a novel calibration technique, called the Robust Calibration Procedure
(RCaP), which controls the type I error rate on average across several possible true response rate scenarios,
with the potential to weight scenarios based on their importance (type I error rate control may be deemed
more important under a particular stetting) or the prior likelihood of the scenario occurring in the trial, both
of which would be specified by the clinician. Presented in this work is a comparison between operating
characteristics under the traditional approach of calibrating under the global null and under the RCaP.

This work is structured as follows, we begin with providing further details on the previously introduced
VE-BASKET study. We then describe the EXNEX model, approaches for the analysis of newly added
baskets, and outline the novel calibration procedure, RCaP. Results of several simulation studies are
presented starting with a comparison of calibration techniques, followed by results of simulation studies
to compare performance of the approaches for adding newly identified baskets.

Motivating Trial: The VE-BASKET Study

The VE-BASKET trial was a phase II, non-randomised, basket trial, investigating the effect of vemurafenib
on several cancer types with patients possessing the BRAFV600 mutation6. A total of 122 patients were
enrolled across seven baskets, with efficacy evaluated after eight weeks of treatment. The primary endpoint
was the overall response rate (ORR) with a null response rate of 15% indicating inactivity and target
response rate of 45%. A response rate of 35% was considered low but still indicative of a response. Sample
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sizes of 13 patients per basket were obtained through a Simon’s two stage design15 based on 80% power
and 10% type I error rate.

Figure 1. VE-BASKET Trial Design. Vemurafenib is tested on several cancer types, with two new baskets formed
from the ‘all other’ group in the trial.

The trial opened with six disease specific baskets: non-small-cell lung cancer (NSCLC), ovarian cancer,
colorectal cancer, cholangiocarcinoma, breast cancer and multiple myeloma. Also present was an ‘all
other’ basket consisting of patients with other disease types with the BRAFV600 mutation. This initial
trial structure was adapted based on recruitment rates, with the breast cancer, ovarian cancer and multiple
myeloma baskets closing due to insufficient accrual. Patients were moved from these baskets to the ‘all
other’ basket for analysis. During the trial it was observed that the recruitment of two disease-types in
the ‘all other’ basket was high enough to meet the specified sample size requirements for a basket, and
thus two new baskets were formed and added to the trial: an Edrheim-Chester disease or Langerhans’ cell
histiocytosis (ECD/LCH) basket and an anaplastic thyroid cancer basket. Figure 1 displays the general trial
schematic.
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The flexible nature of the VE-BASKET trial, with its formation of new baskets and closure of existing
ones, brings about the question of how to conduct analysis when these adaptations to the trial design have
been made.

Methodology

Setting

This work focuses on a setting with a single treatment arm within each basket and binary endpoints, in
which a patient either responds positively to a treatment or does not. Consider a basket trial with a total
of K baskets. Denote the number of responses in basket k by Yk, which follows a binomial distribution,
Yk ∼ Binomial(nk, pk), with nk and pk indicating the sample size and response rate in basket k. Interest
lies in estimating the unknown response rate pk. Denote q0 and q1 as the null and target response rate
respectively.

Now consider a case where baskets of patients are added to an ongoing trial and thus split the K baskets
into two sets. Let K0 be the total number of baskets that began the trial, labelled as existing baskets,

thus having K ′ = K −K0 new baskets added part way through the study. Existing baskets are indexed
k0 = 1, . . . ,K0 and new baskets k′ = K0 + 1, . . . ,K. Note that a new basket, k′, may be added at any
time during the study and it is not required that all new baskets be added at the same time.

The objective is to test the family of hypotheses:

H0 : pk0
≤ q0 vs. Ha : pk0

> q0, k0 = 1, . . . ,K0,

H0 : pk′ ≤ q0 vs. Ha : pk′ > q0, k′ = K0 + 1, . . . ,K.

To test these hypotheses, a Bayesian framework is utilised. Posterior probabilities are used to determine
the efficacy of the treatment on each of the individual baskets in the trial. As such, given observed response
data D, the treatment is deemed effective in an existing basket k0 if P(pk0

> q0|D) > ∆k0
and effective

in a new basket k′ if P(pk′ > q0|D) > ∆k′ . Both cut-off values ∆k0
and ∆k′ are typically determined

through calibration in order to control some metric, often related to false decision making, at a nominal
level. Traditionally this calibration is done under a global null scenario in which all baskets are ineffective
to treatment, in order to control the basket-specific type I error rate to a nominal level11,16,17.

The Exchangeability-Nonexchangeability Model

Information borrowing models utilise the exchangeability assumption, which states that as patients across
all baskets share a common genetic component, their response to treatment will be similar. Thus information
can be shared between baskets in order to improve inference. The Bayesian hierarchical model (BHM) first
outlined by Berry et al.13 is a key basis for many information borrowing models, one of which is the
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exchangeability-nonexchangeability (EXNEX) model proposed by Neuenschwander et al.14. The EXNEX
model consists of two components:

1. EX (exchangeable component): with prior probability πk, basket k is exchangeable and a Bayesian
hierarchical model is applied. Information borrowing is therefore conducted between all baskets
assigned to the exchangeable component.

2. NEX (nonexchangeable component): with prior probability 1− πk, basket k is nonexchangeable with
any other basket, and as a result is analysed independently.

Yk ∼ Binomial(nk, pk), k = 1, . . . ,K

θk = logit(pk),

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

M1k ∼ N(µ, σ2), (EX)

µ ∼ N(logit(q0), ν2µ),

σ ∼ g(·),

M2k ∼ N(mk, ν
2
k). (NEX) (1)

The EX component has the form of a BHM with the log-odds of the response rates for each basket following
a normal distribution, centred around a common mean µ with variance σ2. Borrowing occurs between
baskets in the EX component where estimates of response rates are shrunk towards the common mean µ

with the degree of shrinkage controlled by σ2. As σ2 tends to zero, borrowing moves towards complete
pooling of results, however, as it tends to infinity a stratified analysis is conducted on each basket. The prior
on µ is centred around the average null response rate across the baskets with a large variance, whilst the prior
on σ, g(·), is more widely debated with inverse-gamma, half-normal or half-Cauchy priors implemented
across the literature18. In the EXNEX model, Neuenschwander et al.14 implement a half-normal(0,1) prior
placed on σ as they state that this is a ‘rather conservative prior for the borrowing parameter’ and as such
allows for anywhere between a small and large amount of heterogeneity between baskets.

Issues arise in a BHM when the exchangeability assumption is violated, which occurs in the presence
of baskets with heterogeneous response rates. In such cases, when information is borrowed between all
baskets, the type I error rate is likely to inflate as the posterior probabilities are pulled towards the common
mean, µ, and away from the true treatment effect. The EXNEX model relaxes the full exchangeability
assumption, allowing for some heterogeneity between treatment effects (thereby reducing type I error
rate inflation) through the incorporation of the NEX component within which baskets are analysed
independently, with basket-specific priors on the logit transformed response rates. Neuenschwander et al.14

propose setting the parameters as follows:

mk = log

(
ρk

1− ρk

)
, ν2k =

1

ρk
+

1

1− ρk
, (2)

where ρk is a plausible guess for the true response rate in basket k.
The prior probabilities, πk, for assignment to the EX/NEX component are selected prior to the trial. There

is often little to no information available on the probability of exchangeability of baskets before the trial,
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so it is suggested to fix πk = 0.5 for all k baskets. Alternatively, a Dirichlet prior could be placed on these
values, however, Neuenschwander et al.19 prove that only the mean, πk, of the distribution on the mixture
weights, δk, affects inference in this case.

Approaches for Adding A Basket

We now propose four different approaches for the calibration and analysis of newly added baskets to an
ongoing basket trial. In all four cases, existing baskets are analysed through an EXNEX model, however,
treatment of the new basket varies. Approaches are outlined below and are summarised in Table 1.

1. IND - INDependent analysis of new baskets.
Analyse the K0 existing baskets by applying an EXNEX model (as in Model (1)) and calibrate ∆k0

based on the same model. Analyse the K ′ new baskets independently of existing baskets (modelled
as in the NEX component in Model (1)) and calibrate ∆k′ based on the same model.
Analysing the new baskets as independent may be considered desirable as it eliminates potential
negative effects of smaller sample sizes in new baskets on inference in existing baskets.

2. UNPL - UNPLanned addition of new baskets.
Calibrate ∆k0 based on an EXNEX model applied to the K0 existing baskets. When conducting
analysis borrow between all K baskets through an EXNEX model. When sample sizes are equal
across existing baskets, set ∆k′ = ∆k0 for the new baskets. If sample sizes are unequal in the existing
baskets, set ∆k′ = ∆i0 where existing basket i has sample size ni closest to the sample size of the
new basket k′, i.e. i = argmini{|ni − nk′ |}.
This is a naive analysis as ∆k0 and ∆k′ are not adjusted to account for the additional baskets, instead
these values only consider the existing baskets that began the trial. This may occur when an addition
is not planned for, but once it occurs, a decision is made to borrow information from any new baskets.
The motivation behind this decision would likely be linked to power requirements and the potential
that borrowing carries to improve power for both new and existing baskets.

3. PL1 - PLanned addition of new baskets where a single EXNEX model is applied.
Calibrate ∆k0 and ∆k′ assuming that new baskets will be added during the study. To calibrate and
analyse, borrow between all K baskets (new and existing) through an EXNEX model.
The situation where it is known for certain that new baskets will be added but the timing of addition
is unknown, could occur if it is apparent that a basket of patients will benefit from the study, however,
are not ready in time for the commencement of the trial. This could be down to logistical issues,
diagnostic techniques, or some other factors. Thus it is planned to add the basket at a later time. This
approach has two subsets:

(a) The time of addition of the new basket(s) is known and fixed. In this case, the sample sizes, nk,
for each of the k = 1, . . . ,K baskets are known and fixed in the calibration procedure.

(b) The time of addition of the new basket(s) is unknown. This may occur if it is desirable to add a
basket as soon as it is available. In this case further simulation studies are required to explore the
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effect of sample size on operating characteristics, with the basket-wise type I error rate evaluated
under different sample sizes. Based on these exploratory simulation studies, the trial could be
calibrated under the sample size setting that resulted in the highest basket-wise type I error rate.
This would ensure type I error control under all of the sample size configurations considered,
but may come at the cost of reduced power if the efficacy criteria is overly conservative (i.e. too
close to 1).

4. PL2 - PLanned addition of new baskets where two EXNEX models are applied.
Calibrate ∆k0 based on an EXNEX model applied to the K0 existing baskets so when analysing the
existing baskets, do not borrow from any new baskets. Calibrate ∆k′ based on an EXNEX model
applied to all K baskets. Therefore, when analysing new baskets, information is borrowed between
all baskets, new and existing. This results in two EXNEX models and, like PL1, consists of two
subsets: (a) Timing of addition is known and fixed and (b) Timing of addition is unknown.
As in IND, analysing baskets in this way will eliminate the effect on type I error rate of reduced
sample sizes in the new baskets, on estimation of response rates in existing baskets. However, by
allowing full information borrowing between all baskets when analysing the new baskets, one may
combat the issue of lack of statistical power and precision of estimates that arises due to the limited
sample size.

Table 1. Summary of the proposed approaches for analysis and calibration of new and existing baskets.

Approach Calibration Analysis
∆k0 ∆k′ Existing Baskets New Baskets

IND EXNEX on all k0 Independent on all k′ EXNEX on all k0 Independent on all k′

UNPL EXNEX on all k0 ∆k0 = ∆k′ EXNEX on all k
PL1 EXNEX on all k EXNEX on all k
PL2 EXNEX on all k0 EXNEX on all k EXNEX on all k0 EXNEX on all k

Both the IND and PL2 approaches utilise the same calibration and analysis models for existing baskets,
with an EXNEX model applied to all K0 existing baskets. Similarly, both the PL1 and PL2 approaches
utilise the same calibration and analysis models for the new baskets, with an EXNEX model applied to all
K baskets in the trial. Full model specifications are provided in the supplementary material.

RCaP: Robust Calibration Procedure

A treatment is deemed effective in basket k if the posterior probability that the response rate, pk, is greater
than q0, exceeds a cut-off value ∆k. In a few basket trials, such as the work by Zheng and Wason20 and
Ouma et al.21, these ∆k are fixed at some value, i.e. 0.975, however, an alternative is to calibrate the cut-off
value in order to control some operating characteristic to a desirable level. This was implemented by Kaizer
et al.16, Hobbs and Landin17, Chu and Yuan3, Jin et al.11 and Berry et al.13, who followed a conventional
approach where ∆k was calibrated under a single global null scenario in which the treatment is ineffective
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across all baskets. In each of these cases ∆k was calibrated to achieve an 100α% type I error rate in each
basket under the global null. However, this type of calibration does not guarantee type I error rate control
across other scenarios when information borrowing is implemented. When borrowing information from
baskets which have a heterogeneous response rate but respond positively to the treatment, the posterior
probabilities are pulled upwards for baskets with an ineffective response rate compared to probabilities
computed under the global null scenario, thus increasing the probability of exceeding the calibrated value,
∆k. Therefore, type I error rate control is only guaranteed in the global scenario for which ∆k was calibrated
under, with other scenarios likely to demonstrate undesirable inflation of the type I error rate. Type I error
rate inflation under the EXNEX model is observed in the simulation study conducted by Daniells et al.12.
In this study the greatest type I error inflation is observed under a scenario in which two baskets have a
response rate of 0.45, a further two have a response rate of 0.35 and just one basket is ineffective to the
treatment with a response rate of 0.15. The type I error rate for the one ineffective basket was 17.3%, a
substantial inflation over the nominal 10% level for which efficacy criteria were calibrated for. All non-null
scenarios in this study demonstrated type I error rate inflation anywhere from 11.3-17.3% under the EXNEX
model. Similar findings are presented in the simulation studies by Jin et al.11 and Chen and Hsiao22, where
efficacy criteria was again calibrated to control the type I error rate to 10% under a global null scenario.
These studies presented a maximum type I error rate of 33.6% and 23.5% respectively under the EXNEX
model. Although ∆k is typically calibrated to control the type I error rate, the calibration procedure remains
the same for the control of any metric obtained from the posterior density such as the family-wise error rate
or power.

We propose a novel calibration procedure, the Robust Calibration Procedure (RCaP), where as opposed
to calibrating under a single global null scenario (which we refer to as the ‘calibration under the global null
approach’), ∆k is calibrated across numerous potential scenarios so that some metric, Q, is controlled on

average across potential trial outcomes. Algorithm 1 is a guide on how to implement the RCaP, which has
been generalized to account for the calibration of any metric or endpoint.

Consider a case with M simulation scenarios p1, . . . ,pM one wishes to calibrate across. Denote the
sample size and true response rate of basket k under scenario m as nmk and pmk respectively with
k = 1, . . . ,K and m = 1, . . . ,M . The simulation scenarios are represented by vectors consisting of true
response rate probabilities, i.e. pm = (pm1, . . . , pmK) for all m = 1, . . . ,M . The scenarios pm are used
to generate data alongside the basket sample sizes nm = (nm1, . . . , nmK) from some data-generating
function F . New data is generated using this distribution within each simulation run.

Each scenario, pm may carry a weight that is pre-specified by the investigators, with higher weights
indicating that type I error rate control is deemed more crucial under certain scenarios. Define weights ωm

for each scenario m = 1, . . . ,M , where ωm are positive integers. Integer values are required in Algorithm
1 for implementing RCaP, as they reflect the quantity of posterior probabilities that a scenario contributes to
the calibration of efficacy criteria. A larger weight increases the contribution of a scenario relative to other
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scenarios in the calibration, which will provide better type I error rate control under that scenario compared
to scenarios with a lower weight. If no weight is defined, set ωm = 1 for all scenarios.

Algorithm 1 RCaP - Calibrate ∆k across several simulation scenarios for any metric, Q.

Data: Total number of simulation scenarios, M , scenarios p1, . . . ,pM , basket sample sizes n1, . . . ,nM

under each scenario, number of simulation runs for each scenario, R, and integer weights for the
scenarios, ω1, . . . , ωM ;
Initialization: Q1, . . . ,QK empty vectors for storing Q
for m = 1 to M do

for r = 1 to R do
Generate data X ∼ F (pm,nm)
Fit information borrowing model to obtain posterior densities
for k = 1 to K do

Compute a quantity, Q, obtained from the posterior required for the metric of interest
if Basket k satisfies the basket specific criterion, T (·) then

for j = 1 to ωm do
Qk = Qk ∪Q

end for
end if

end for
end for

end for
∆k = 100(1− α)% quantile of Qk for each basket k.
return Cut-off values ∆k for each basket k;

Algorithm 1 requires the specification of sample sizes and the M simulation scenarios to be included,
alongside their weights, ωm for m = 1, . . . ,M . For a simulation scenario, pm, a total of R data sets are
generated from F (pm,nm). A model is then fit to each of these R data sets to obtain posterior densities.
Some quantity, Q, is computed from the posterior. This quantity is later used to compute the metric of
interest such as the type I error rate or FWER. A binary basket-specific condition, T (·) is introduced which
takes value one when satisfied and zero otherwise. Weights ωm are utilised in the following step: if basket k
satisfies T (·), then ωm copies of Q under each of the 1, . . . ,K baskets are stored in vectors Q1, . . . ,QK .
All preceding steps are repeated under each of the M simulation scenarios, thus the higher the weight ωm,
the more scenario m contributes to the vectors Q1, . . . ,QK . To compute cut-off values, ∆k, the appropriate
quantile is taken within each of the Qk vectors. As such, ∆k will be the quantile of the combined quantities
across all M scenarios that satisfy the basket-specific criterion (weighted by ωm), thereby controlling the
metric on average across all scenarios when combined. Note that the ∆k values should be set as equal for
any baskets with equal sample sizes.

When the metric of interest is the type I error rate, the quantity computed is Q = P(pmk > q0|X). The
probability of a type I error can only be computed when a basket is ineffective, thus the basket-specific
condition requires that the true response rate pmk = q0. When calibrating for type I error control, the
algorithm will only use scenarios where at least one basket is ineffective to the treatment when calibrating
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efficacy criteria (as these are the scenarios for which the basket specific criterion is satisfied). The full
algorithm applied to control the type I error rate is provided in the supplementary material.

When utilising RCaP, one would expect superior control of the type I error rate across all scenarios
compared to calibration under just the global null, as the ∆k values obtained will likely be closer to 1 and
hence more conservative to ensure error control across multiple scenarios rather than just the global null.
With the increased conservative nature, it becomes more difficult for the posterior probability P(pk > q0|X)

to exceed ∆k and deem the treatment effective. As such, a decrease in power is also likely. Both concepts
are explored in the simulation studies presented in this work.

Simulation Study

General Setting

In order to explore and compare operating characteristics of the proposed approaches for handling the
addition of a new basket to an ongoing trial, numerous simulation studies have been conducted. The
simulation studies are split into two categories with the first category exploring the case in which the
response rates in each basket are fixed to pre-defined values within the simulation study and the second
category exploring the case in which the response rates are randomly generated within simulation runs.
Within these simulation studies: RCaP is compared to calibration under the global null, followed by a
comparison between the approaches for adding a basket to an ongoing trial. Throughout this section, all
four approaches for adding baskets are considered, however, only subset (a) of PL1 and PL2 in which the
time of addition is known are implemented. An exploration into the effect of timing of addition is provided
in the supplementary materials to assess the performance of PL1(b) and PL2(b).

We consider a setting with K0 = 4 existing baskets and K ′ = 1 new basket added part-way through the
study. Let the null and target response rates be q0 = 0.2 and q1 = 0.4 respectively. For existing baskets,
sample sizes were fixed at nk0

= 24 for k0 = 1, . . . , 4. For the new basket, k′ = 5, the timing of addition
is known with a total of nk′ = 14. Analysis will occur when the outcome in all 24 patients in the current
baskets have been observed, as well as, all 14 patients in the new basket. These sample sizes are obtained
by a Simon two-stage design15 with a nominal targeted type I error rate and power of 10% and 80%
respectively.

The metric considered throughout these simulation studies is the percentage of simulated data sets in
which the null hypothesis is rejected (% Reject). Further operating characteristics are presented in the
supplementary material which include: the family wise error rate, mean point estimates of the response rate
in each basket and their standard deviations, as well as the percentage of simulated data sets in which the
correct conclusion regarding accepting/rejecting the null was made across all K baskets (% All Correct).

All simulations are conducted using the ‘rjags’ package v 4.1323 within RStudio v 1.1.45324, with R v
4.1.2. Simulations consist of 10,000 simulation runs for each data scenario and approach considered.
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Prior Specification

Throughout the simulations an independent analysis model is specified such that the prior placed on the
logit transformation of the response rate pk follows a Normal distribution: θk ∼ N(logit(0.2), 102) and
is therefore centred around the null response rate with a large variance. The same prior is placed on µ

in the exchangeability component of the EXNEX model with a half-normal(0, 1) prior placed on σ. The
prior on the NEX component is specified as in Equation (2) as suggested by Neuenschwander et al.14, where
ρk = 0.3 (a plausible guess for the true response rate, pk) is set at a response rate considered as a marginally
effective response to treatment, lying between the null and target response rate. The prior probabilities for
assignment to the EX/NEX component are fixed at πk = 0.5 for all baskets. Full model specifications are
provided in the supplementary material.

Description of the Fixed Data Scenarios Simulation Study

Consider a setting in which true response rates are fixed, with each basket having either a null response
rate (pk = 0.2) or effective response rate (pk = 0.4). Scenarios 1-6 presented in Table 2, with scenarios
7-10 contributing to the calibration of efficacy criteria, as later discussed. Scenario 1 is the global null
under which all baskets are ineffective, whereas, scenario 4 is the case where all baskets are truly effective.
Under scenario 2, just one existing basket is truly effective, with the rest ineffective and under scenario
3 all existing baskets are effective with the new basket ineffective. Under scenario 5, all existing baskets
are ineffective with the new basket effective. Finally, scenario 6 is the case where the new basket and one
existing basket are effective, with the rest of the existing baskets ineffective.

Table 2. Simulation study scenarios: true response rates used within the simulation study.

p1 p2 p3 p4 p5

Scenario 1 0.2 0.2 0.2 0.2 0.2
Scenario 2 0.4 0.2 0.2 0.2 0.2
Scenario 3 0.4 0.4 0.4 0.4 0.2
Scenario 4 0.4 0.4 0.4 0.4 0.4
Scenario 5 0.2 0.2 0.2 0.2 0.4
Scenario 6 0.4 0.2 0.2 0.2 0.4
Scenario 7 0.4 0.4 0.2 0.2 0.2
Scenario 8 0.4 0.4 0.4 0.2 0.2
Scenario 9 0.4 0.4 0.2 0.2 0.4
Scenario 10 0.4 0.4 0.4 0.2 0.4

The cut-off values ∆k0
and ∆k′ are calibrated for each approach separately as described in Table 1.

The calibration under the global null approach means that ∆k0
and ∆k′ are calibrated under scenario 1 to

achieve 10% type I error rate. Under RCaP, an average 10% type I error rate is achieved across a number
of scenarios. When implementing the RCaP procedure, consideration must be taken into which scenarios
to include in the calibration. For the IND, PL1(a) and PL2(a) approaches, RCaP was implemented across
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scenarios 1, 2, 3, 7 and 8. As the sample size in the new basket differs from the existing baskets, these
scenarios do not cover all possible partial nulls in which a basket has response rate of either 0.2 or 0.4,
thus one may wish to also include scenarios in which the new basket has an effective response rate into
the RCaP. This would involve including all scenarios 1-10 from Table 2 into the RCaP. A simulation study
is presented in the supplementary material that compares calibrating across scenarios 1-7 and calibrating
across scenarios 1-10. Results indicated minimal differences in power and error rates and thus calibration
across fewer scenarios is preferred due to the lower computational cost. Note that calibration under the
UNPL approach differs from the other three approaches as its calibration only takes into account the K0 = 4

existing baskets, with the new basket being an unplanned addition. Thus the four scenarios presented in
Table 3 were implemented for the RCaP. These scenarios cover all global and partial nulls given K = 4

baskets of equal sample size.

Table 3. Scenarios implemented in the RCaP for the simulation under an UNPL approach.

p1 p2 p3 p4

Scenario 1 0.2 0.2 0.2 0.2
Scenario 2 0.4 0.2 0.2 0.2
Scenario 3 0.4 0.4 0.2 0.2
Scenario 4 0.4 0.4 0.4 0.2

For the simulation study presented in this work, all scenarios carry the same importance and thus weights
were set as ωm = 1 for all scenarios, however, included in the supplementary material is an exploration of
these weights, demonstrating how operating characteristics changed based on their selection. To summarise,
the results varied based on the approach implemented, however, placing more weight on scenarios where
more baskets have an effective response rate will result in more conservative cut-off values as type I error
is expected to be higher under these scenarios. In contrast, placing more weight on scenarios where the
response rate is mainly ineffective across baskets, leads to less conservative cut-off values.

Although the simulation results focus on scenarios 1-6, the supplementary material contains results for
scenarios 7-10, as well as cases where a varying number of baskets have a marginally effective response to
treatment.

Results of the Fixed Data Scenarios Simulation Study

A Comparison of Calibration Approaches Under the setting described above, with the six fixed response
rate scenarios presented in Table 2, comparisons are now drawn between the two calibration approaches: the
RCaP and calibrating under the global null. The calibration for RCaP is implemented under scenarios 1, 2,
3, 7 and 8, as described in the previous section, whilst calibration under the global null refers to calibration
solely under scenario 1. The calibrated efficacy criteria for both new and existing baskets (∆k0 ,∆k′) are
presented in Table 4. One key observation from Table 4 is the conservative nature of the RCaP, with
consistently higher efficacy criteria for all approaches. The exception to this is the efficacy criteria for
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the new basket under an IND approach as an independent analysis does not possess the same error inflation
under non-null scenarios as the other approaches. The conservative nature of the RCaP is expected finding
given that the goal is to ensure error control across not only the global null but in non-null cases too. These
calibrated efficacy criteria are used across all simulation studies in this work.

Table 4. Calibrated ∆k0 and ∆k′ values for IND, UNPL, PL1(a) and PL2(a) under the two separate calibration
methods: calibration under the global null and the RCaP.

Calibration under the global null RCaP
∆k0 ∆k′ ∆k0 ∆k′

IND 0.860 0.900 0.903 0.890
UNPL 0.860 0.860 0.906 0.906
PL1(a) 0.857 0.841 0.903 0.902
PL2(a) 0.860 0.841 0.903 0.902

Given the calibrated efficacy criteria, a simulation study is now conducted, with the cut-off values under
both calibration techniques implemented. For each of the six fixed scenarios presented in Table 2 and four
approaches for the addition of a basket, the absolute difference between the observed type I error rate/power
and the targeted level (10% and 80% respectively) are measured under each calibration approach. These
absolute differences are presented in Figure 2.

First consider the global null scenario, scenario 1. The calibration under the global null approach achieves
exactly the nominal 10% type I error rate, whilst the RCaP reduces the error rate up to 4.3% of the nominal
level in existing baskets and 4.7% in the new basket. Under scenario 2, RCaP results in an under-powered
study, with up to a 6.3% reduction of the nominal 80% level, however, this came with a 2% decrease in
type I error rate from the targeted value in existing baskets and 3.7% in the new. Whereas, calibrating under
the global null inflates the error rate by up to 3% and 3.7% in existing and new baskets respectively with a
2.7% increase in power over the nominal level.

The most blatant benefit of the RCaP is observed under scenario 3 in which the new basket is the only
one with an ineffective response rate. For this basket, when calibrating under the global null, error rates
are almost tripled to nearly 30% type I error rate, compared to just 13% under the RCaP. Under both
calibrations, the study is over-powered, with up to a 10.4% and 6.5% increase over the nominal 80% level
under the global null calibration and RCaP respectively.

In cases where the new basket is effective (scenarios 4-6), both calibration approaches lead to under-
powered estimates in the new basket with the exception of scenario 4, where the power in the new baskets
is increased up to 6.3% over the 80% targeted value across the IND, PL1(a) and PL2(a) approaches when
calibrating under the global null. For this scenario, RCaP leads to under-powered estimates in the new
basket for all four approaches. Power in existing baskets exceeds the nominal 80% value in scenario 4,
with slightly higher power observed when calibrating under the global null. Under scenarios 5 and 6, RCaP
reduces the type I error rate compared to the nominal level, with an absolute difference of up to a 3.6% and
1.4% reduction in scenarios 5 and 6 respectively. In scenario 6, power in existing baskets is up to a 4.3%
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Method IND UNPL PL1(a) PL2(a) Calibration RCaP Global Null
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Figure 2. The absolute difference in type I error rate and power compared to the targeted values of 10% and
80% respectively. This is given for all four approaches for adding a basket under the two different calibration
schemes, the calibration under the global null and the RCaP. Results are split into 3 categories: mean error in
which the percentage of data sets within which the null was rejected is averaged across all ineffective existing
baskets; mean power as above but for all effective existing baskets and new basket error/power in which results
are the percentage of data sets within which the null was rejected just in the new basket.

reduction of the nominal level using the RCaP compared to an increase of 4% under a calibration under the
global null approach.

Prepared using sagej.cls



17

Across the scenarios, estimates in existing baskets are under-powered in two cases (scenarios 2 and 6)
with a maximum reduction in power of 6.3% using RCaP. Across all scenarios, power in the new basket
tends to lie below the nominal 80% level under both the calibration approaches. This is due to the smaller
sample size of just 14 patients. The new baskets’ power is reduced by up to 26.6% under the RCaP compared
to 18.6% under the calibration under the global null. However, this comes alongside far superior control of
the type I error rate across all baskets on the trial using RCaP. For existing baskets, when calibrating under
the global null, the type I error rate has up to a 5.4% increase over the nominal 10% level. Whereas, RCaP
controls the type I error rate at or below the nominal level across all considered scenarios for the existing
baskets, whilst demonstrating a substantially lower type I error rate in the new basket across all scenarios.

The findings here corroborate previous findings in the literature in terms of the trade-off between
improvements in type I error rate control and reduction in power10. It is intuitive that the conservative
nature of RCaP will reduce the power, however, the type I error rate control is deemed desirable compared
to calibration under the global null in this work. Thus, further results presented in this work utilise the RCaP
to calibrate ∆k0 and ∆k′ . Results for simulation studies in which efficacy criteria are calibrated under the
global null are provided in the supplementary material, the results demonstrate higher power but inflated
type I error rate in all but the global null scenario under which the efficacy criteria was calibrated.

A Comparison of Approaches for Adding a Basket We now compare the four approaches for adding a
basket to an ongoing study under the six fixed data scenarios. The results for power and type I error rate
for each approach are presented in Figure 3, which show the percentage of simulated data sets in which the
null hypothesis was rejected. Dashed lines represent both the nominal 10% type I error rate and 80% power.
Results for a further ten scenarios are presented in the supplementary material. These additional scenarios
cover different combinations of effective and ineffective new and existing baskets alongside cases in which
some baskets have marginally effective response rates.

As ∆k0
and ∆k′ are calibrated using RCaP to achieve an average 10% type I error rate, in some scenarios

- including the global null case - the type I error rate lies below the nominal level. However, under IND,
the new basket is always analysed independently and as such, the error rate will remain at the nominal 10%
level across all scenarios. Under the global null, the UNPL and PL1(a) approach in which information is
borrowed between all K = 5 baskets, have slightly lower type I error rates in existing baskets compared to
other approaches at approximately 5.8%. UNPL, PL1(a) and PL2(a) all have similar error rates in the new
basket at around 5.3%.

When analysing existing baskets, IND and PL2(a) are equivalent as they both borrow via the EXNEX
model between just the four existing baskets. Under scenario 2, both approaches give the highest power at
75.7%, which does lie below the targeted 80% value, but is higher than UNPL and PL1(a) which have power
of 73.7% and 74.1% respectively. Both UNPL and PL1(a) borrow from the new basket when analysing the
existing baskets. Hence, as the new basket has a null response rate, the posterior probabilities are pulled
down towards the common mean resulting in lower power. Error rates for all baskets are consistent across
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Figure 3. Fixed scenario simulation study results: The percentage of data sets within which the null hypothesis
was rejected per basket, where ∆k0 and ∆k′ were calibrated with RCaP to achieve a 10% type I error rate on
average. Results are provided for all four approaches for adding a basket.

approaches with the exception of the IND approach where the new basket type I error is approximately 3%
higher as it controls type I error rate at the nominal 10% level across all scenarios.

Scenario 3 shows consistent power above the targeted 80% level in all non-null existing baskets across
all four approaches. The UNPL approach demonstrates marginally lower power than other methods. The
average power under UNPL is 85.7% compared to 86.2% under PL1(a). Both approaches analyse baskets
in the same way, borrowing between all K baskets via the EXNEX model, the only difference being the
analysis model implemented for calibration. ∆k0 is more conservative under UNPL compared to PL1(a),
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leading to fewer rejections of the null hypothesis and lower power/error rates. PL1(a) and PL2(a) have
marginally higher error rates in the new basket at 13.1% under scenario 3. This value is slightly lower under
the UNPL approach at 12.8%, this is due to the ∆k′ value being higher than PL1(a).

Under scenario 4, substantial improvement in power is observed in the new basket when information
borrowing is utilised. PL1(a) gives the greatest power for all baskets. Due to the lack of information
borrowing and reduced sample size in the new basket, the maximum power achieved by the IND approach
is 65%. A lack of power is also evident for the new basket in scenario 5. Due the heterogeneity across new
and existing baskets, the IND approach has power of 65%, which is greater than the other three approaches.
Both PL1(a) and PL2(a) approaches have power of just 53.8%. Similar findings are present in scenario 6
in terms of the new basket, however both the UNPL and PL1(a) approach give slightly higher power in the
existing baskets at 77.7% compared to 75.7% under an IND and PL2(a) analysis.

Overall, the largest difference in power across approaches in all scenarios is just 2%. In the presented
scenarios, for existing baskets, the type I error rate is always controlled at or below the nominal level across
all approaches. Differences in the type I error rate are observed in the new basket, where the IND approach
always controls the type I error rate to the nominal level, whilst error inflation is present under the other
three approaches in scenario 3 (type I error rate of around 13%).

Description of the Random Data Scenarios Simulation Study

In order to further compare the performance of the four approaches for adding baskets, a second simulation
study is considered. The goal of this study is to further identify where discrepancies between approaches
arise. To do so, rather than fixing the true response rate for the new basket prior to the trial, it is randomly
generated within each trial run of the simulation.

Following the same set-up as the fixed data scenario simulation study, four settings are considered. In
each setting the response rates for existing baskets are fixed while the response rate for the new basket
is randomly selected with uniform probability across an interval. Three sub-cases are considered in each
setting, varying the interval from which p5 is sampled: sub-case (a) where the new basket is ineffective to
treatment (i.e. null) so p5 ∈ [0.1, 0.2], thus it is expected that the null is not rejected, sub-case (b) where the
new basket has an effective response rate so p5 ∈ [0.4, 0.5], thus it is expected that the null is rejected and
finally sub-case (c) where the new baskets response rate lies between the null and target response rate, so
p5 ∈ [0.2, 0.3]. The four settings are:

1. Fix the response rate in all the existing baskets as ineffective, i.e. p1,2,3,4 = 0.2;
2. Fix the response rate in all the existing baskets as effective, i.e. p1,2,3,4 = 0.4;
3. Fix the response rate in two of the existing baskets as effective, i.e. p1,2 = 0.4 and two ineffective,

i.e. p3,4 = 0.2;
4. Fix the response rate in one of the existing baskets as effective i.e. p1 = 0.4, two as marginally

effective i.e. p2,3 = 0.3 and one as ineffective i.e. p4 = 0.2,
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where p5 is varied across one of the 3 intervals (a), (b) or (c) in each of the four settings.

The efficacy criteria are obtained using RCaP, with the ∆k0
and ∆k′ from Table 4 utilised. A total of 12

simulation settings are implemented (settings 1-4 under sub-cases (a)-(c)), where in each, 10,000 random
data scenarios were generated. From this, pair-wise discrepancies between approaches are identified. Pair-
wise discrepancies occur when one approach concludes that the null hypothesis should be rejected in a
basket, whilst another does not reject the null (hence resulting in differing efficacy conclusions). Cases
where both approaches under comparison make the incorrect conclusion are not included as the aim is to
identify differences between the approaches.

Results of the Random Data Scenarios Simulation Study

The pair-wise discrepancies between approaches for adding are presented as several heat maps in Figure 4.
The metric of interest is the difference in proportion of correct conclusions made when discrepancies arise
between the two approaches under comparison. Each sub-plot within Figure 4 represents a comparison
between two approaches. Within each heat map, the colour of the cell represents the superior approach
with brighter colours depicting a greater degree of difference in proportion of correct inference between
the two approaches under comparison. A blue cell indicates that an IND approach is superior to its
competitor approach in that setting, purple indicates that UNPL is superior, red indicates that PL1(a) is
superior and green indicates that PL2(a) is superior. The values of the proportion of correct conclusions are
also displayed. A negative proportion implies the approach corresponding to the column outperforms the
competitor approach in the corresponding row in terms of correct conclusions made when discrepancies
occurred.

Consider the pair-wise comparison between IND and UNPL. The IND approach outperforms UNPL in 8
out of the 12 simulations, making a greater proportion of correct conclusions where discrepancies occurred.
In setting 1 where the existing baskets are null, the difference in approaches is substantial. For example,
when the new basket is effective, IND is preferred with a difference in proportion of correct conclusion of
0.95, but when ineffective, this difference is 0.91 in favour of an UNPL approach. Other cases where UNPL
is preferred over IND is when there is again homogeneity between existing and new baskets’ response rates,
i.e. in setting 2 where both new and existing baskets are effective. When there is heterogeneity between all
baskets, IND tends to outperform the UNPL approach.

The analysis approach in UNPL is identical to that in PL1(a), the only difference being the calibrated ∆k0

and ∆k′ values. As such, a similar pattern in results of the IND-UNPL pair-wise comparison are observed in
the pair-wise comparison between IND and PL1(a). Under UNPL, the efficacy criteria is more conservative,
leading to fewer rejections of the null compared to PL1(a), regardless of whether a basket is truly effective
or not. The more conservative cut-off value results in the UNPL approach outperforming PL1(a) in all sub-
cases of setting 1, as the ideal is for the hypothesis to not be rejected. However, in cases where at least one
existing basket is effective, PL1(a) gives more correct conclusions over UNPL. This will come from the
less conservative cut-off values, leading to more correct rejections.
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Figure 4. The six heat-map presents pair-wise comparisons between the four approaches for adding baskets.
Within each heat-map, the results of the 12 simulation settings are presented where the metric is the difference in
proportion of times the approach corresponding to rows outperformed the approach corresponding to the column
(with negative values indicating the approach in the column gave more correct conclusions than the approach in
the row where discrepancies between the two approaches arise). The colour in the heat map represents which
approach gave superior correct conclusion, with shade representing the amount of difference between
approaches. Blue represents IND giving more correct conclusions where discrepancies lie, Purple for UNPL, Red
for PL1(a) and Green for PL2(b).

Under the IND and PL2(a) approaches, any discrepancies that arise will come from the new basket. In
settings 2-4 when at least one existing basket is effective, approaches are fairly equal in terms of difference
in correct conclusions, with IND performing best when there is heterogeneity between all baskets, with the
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new basket effective (ranging from 0.23-0.31 difference in proportion of correct conclusion in favour of
an PL2(a) approach). However, the Pl2(a) approach has superior performance compared to IND when all
baskets have a homogeneous response.

Similarly, under PL1(a) and PL2(a), analysis for the new basket follows the same model and thus
differences only lie in existing baskets. In cases of complete homogeneity between existing baskets with
the new basket also having a homogeneous response rate, PL1(a) is the clear winner as power can be
gained through borrowing between all baskets. However, in cases where heterogeneity is observed between
response rates, such as when the new basket is effective and existing ineffective and vice-versa, PL2(a)
is superior as it does not draw on information from these heterogeneous baskets when analysing existing
baskets. The comparisons between UNPL and PL2(a) result in the same conclusions.

In summary, the IND approach has been identified to provide more accurate rejections of the null
hypothesis when compared pair-wise to the other three approaches. In 22 out of 36 comparisons, the IND
approach outperforms its competitor, with most of these cases occurring when heterogeneity is observed
amongst baskets’ response rates. In cases of homogeneity amongst the response rates, the other three
approaches which have stronger borrowing make more accurate rejections of the null hypothesis. In such
cases PL1(a) outperforms both IND and PL2(a).

Discussion

In this work, we presented four approaches for calibration and analysis of trials when a new basket is
added part-way through. Approaches utilise the EXNEX Bayesian information borrowing model which
was selected for its flexible borrowing between subsets of baskets.

Through the simulation studies presented, none of the outlined approaches for adding a basket
outperforms its competitors across all cases. An approach which analyses new baskets as independent whilst
retaining information borrowing between existing baskets understandably has better error rate control and
power in cases of heterogeneity between new and existing baskets’ response rates, with type I error rate
control in the new basket guaranteed. However, significant power can be gained via information borrowing
between all baskets when the new basket is homogeneous to existing ones. This is supported by results
from the fixed and random data scenarios. The fixed data scenario simulation results demonstrated that
when the treatment is effective for the population in the new basket, performance of the approaches vary
based on the number of effective existing baskets. In our simulations, when at least half of the existing
baskets were effective, higher power was observed in the new basket for the approaches that implemented
information borrowing. However, when less than half of the existing baskets were effective, borrowing
information reduced power by up to 7%, thus an independent approach is more appropriate. A key finding
was also drawn from the random data scenario simulation study, where a planned addition of a new basket
outperformed an unplanned addition in almost all settings. The exception being when all existing baskets
were null. This was driven by the more conservative calibrated efficacy criteria under the UNPL approach,
as both PL1(a) and UNPL follow the same analysis model. These findings are not directly comparable to
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the fixed data scenario simulation study as the true response rates in the new basket vary between the two
studies, however, the comparison between performance remains consistent.

Throughout the simulation studies in this work, an assumption is made that the timing of addition of a
new basket is known, and thus we assume a fixed sample size in each basket. In practice the calibration of
efficacy criteria mostly occurs prior to the commencement of the trial, and hence before observed sample
sizes are available. Due to uncertainty in the observed sample sizes, the assumption of fixed sample size has
been used to conduct calibration. However, simulation studies in the supplementary material explored the
setting where timing of addition (and the sample size in the new basket) is unknown. In these simulations,
the impact of sample size uncertainty is explored by monitoring the type I error rate and power as the
number of patients in the new basket ranged from 1 up to the sample size of the existing baskets. It is shown
that results are fairly robust to the timing of addition, with increased power in new baskets when sample
sizes are larger, but consistent type I error rate and power in existing baskets regardless of the size of the
new basket. This implies that the size of the new basket has no detrimental effect on baskets that opened
at the start of the trial, therefore it is deduced that the main driver of error inflation in the existing baskets
is heterogeneity between the new and existing baskets’ response rates rather than the sample size. As the
sample size increases, the difference in error rates/power between analysing the new basket as independent
and conducting information borrowing will decrease, and thus in such a case it may be beneficial to always
analyse as independent to avoid issues when heterogeneity arises. In addition, should the impact of much
greater or much smaller sample sizes than planned be of concern, an alternative approach could be to
calibrate based on the ‘worst case scenario’ for the sample sizes (i.e. the sample size which is expected to
observe the greatest type I error rate for instance).

Not considered in this work is the possibility of unequal sample sizes across existing baskets. Although
unequal sample sizes would be more realistic given the setting, in our simulation studies, we opt for an
equal number of patients in the existing baskets. This was chosen in order to simplify the simulation study
and the number of different scenarios that would need to be considered. That being said, unequal sample
sizes in basket trials with information borrowing has been explored in previous work by Daniells et al.12,
where it was demonstrated that a smaller basket sample size will likely result in uniformly lower power
with an increased potential of type I error rate inflation as expected. We conjecture that the same findings
will apply when adding new baskets. It is expected that smaller existing baskets will demonstrate more
substantial improvements in power when information is borrowed from new baskets compared to baskets
with an already large sample size, however, may also demonstrate greater type I error rate inflation in cases
of heterogeneity amongst response rates. Should a basket be larger in size compared to others on the trial,
then the benefits of borrowing information will be reduced in this basket.

Although all simulation studies conducted had just a single basket added alongside four existing baskets,
a further simulation is presented in the supplementary material, where two new baskets were added to a
trial with two existing baskets. The same conclusions are drawn from the results as in the simulation studies
presented in this work, but with an unplanned addition performing significantly worse than other approaches
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due to the lack of certainty in the calibration process with only two relatively small baskets being used. It
is believed that as the ratio of existing to new baskets increases, the power gained through information
borrowing in the new basket further improves due to the gain in certainty around point estimates.

We have also promoted a transition away from the traditional calibration approach in which the type I
error rate is controlled under a global null scenario, towards the novel calibration technique, RCaP, where the
type I error rate is controlled on average across several plausible data scenarios. The concept of calibration
across several scenarios is not a wholly new concept and has been implemented extensively in the dose-
finding setting, in particular when using the Continual Reassessment Method (CRM)25,26. In practice, the
CRM’s model parameters are calibrated to maximise the average percentage of correct doses selected across
several dose-toxicity scenarios. Also, Best et al.27 argued for the use of average type I error rate in the
pivotal study setting. They utilise average type I error rate when assessing Bayesian designs which borrow
information from control or historical data. However, to the best of our knowledge the concept has not been
implemented in the basket trial setting.

The proposed RCaP provides flexibility by allowing the clinician to specify potential outcomes of the
trial in which one would like to control the error rate across, whilst specifying weights to these outcomes
to highlight how likely they are to occur and their importance in the calibration. Throughout the simulation
studies presented, equal weights across all scenarios were used. A further exploration of these weights is
provided in the supplementary material which demonstrates the important role weights play in the RCaP. To
summarise the key findings, placing more weight on scenarios with fewer ineffective baskets will produce
more conservative cut-off values and with that an improvement in error control but a loss in power. Putting
more weight on scenarios with mostly ineffective baskets gives less conservative cut-off values and thus
higher power.

The advantages of using RCaP over the calibration under the global null approach are not uniform across
the scenarios or the implemented approach for adding a basket. As expected, RCaP is more advantageous
over calibrating under just the global null when the true scenario differs more substantially from the global
null scenario. However, the advantage of superior error control compared to the calibration under the global
null approach is consistent across all scenarios, with impact on power varied based on the number of
effective baskets, showing a small loss in power relative to the targeted value in a handful of cases.

Other adaptive design features, such as interim analyses with futility/efficacy stopping, are desirable
and have been considered across different information borrowing methods in the basket trial setting. This
includes the work by Jin et al.11, Berry et al.13, Chu and Yuan3 and Psioda et al.28. No such design features
were included in this work, however, the methodology described here could be extended to incorporate such
features. In addition, only a single treatment arm was considered in this work but the methodology can be
easily extended to the multi-arm setting in which the treatment is compared to a control group. Similarly,
although only a Binomial model is considered for modelling response data, more complex models such as
an overdispersion model be considered. These models are useful when considering discrete data, and are
used to account for unexpected variance in the responses between patients suffering from the same disease
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i.e. variance across patients in the same basket29. The impact of using an alternative model has not been
considered, however, it is believed that the comparison between approaches of addition of a new baskets
and comparison between calibration approaches will remain similar, as information borrowing can still be
implemented between baskets. Finally, the only model parameters calibrated here have been the efficacy
criteria, with the prior distributions and their parameters chosen as fixed. Further research into the selection
of these priors/parameters could be of interest.

Data Availability

All simulations were conducted through the computing software JAGS in R through the ‘rjags’
package23. All data are randomly simulated within the simulation study and as such, no new data
has been evaluated. Simulations can be reproduced using the open accessible code available at
https://github.com/LibbyDaniells/AddingABasket.
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