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A B S T R A C T

Accurate aircraft arrival transit time predictions are critical for reliable, efficient airport traffic management.
This task is made more challenging by the different airspace characteristics across airports. While recent data-
driven models show promise, two key limitations remain, namely the exclusion of tactical arrival operations
and inadequate weather consideration. In this study, we develop a two-stage gradient boosting framework
for aircraft arrival transit time prediction, incorporating new weather and trajectory features. The framework
decomposes the prediction problem into holding pattern classification and transit time regression, explicitly
modeling operational decision-making processes. Specifically, we perform a case study on 58,378 arrival flights
in 2018 at the Hong Kong International Airport (HKIA). We introduce several new features including Bayesian
weather-induced traffic features, route-specific rainfall intensity metrics, and trajectory-based identifiers for
Standard Terminal Arrival (STAR) assignments. Our results show that the proposed framework with these
features significantly improves predictive accuracy, particularly under adverse weather conditions. The two-
stage gradient-boosting framework achieves a 6.09 percentage point reduction in mean absolute percentage
error (MAPE) under extreme weather scenarios. Our Bayesian weather-induced traffic features outperform the
established ATMAP weather metric, demonstrating superior capability in capturing weather impacts on arrival
times. This new framework provides a more comprehensive understanding of airspace characteristics. The use
of data types that are commonly available in almost all airports in the feature derivation makes it possible to
apply the same approach in other airports.
. Introduction

Accurate estimated time of arrival (ETA) prediction can provide
ir traffic control officers (ATCO) and airport operators with essential
nformation to optimize landing sequences and reduce the overall
ircraft’s airborne time. Such an optimization will improve arrival
fficiency by reducing flight delays and fuel consumption, thereby
ringing numerous benefits to stakeholders. ETA prediction requires
stimating the arrival transit time, which is the time an aircraft spends
t the terminal airspace prior to landing. The benefit of predicting
rrival transit time accurately on improving efficiency was previously
emonstrated by Jun et al. (2022), who developed a strategy for ATCO
o reduce overall delays by shifting holding from the terminal area
o en route airspace. However, arrival transit time prediction can be
hallenging as it involves randomness and complexity pertaining to the
onverging air traffic in the terminal airspace. These characteristics and
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patterns (which need to be realistically modeled for an accurate pre-
diction) vary from airport to airport, depending on flight and weather
patterns in that particular airspace.

Despite the growing body of literature, gaps remain in accurately
predicting aircraft arrival transit time within the terminal airspace,
mainly owing to the challenges in comprehensively modeling airspace
characteristics as mentioned above. In particular, limitations still exist
in accounting for tactical arrival operation (such as holding patterns)
and weather variations in the prediction models. Indeed, the final
approach phase has not been the main focus in flight-time or delay pre-
diction researches. Most of existing studies have been focused more on
the en route stage or the entire flight with origin–destination (OD) pairs,
including delay propagation and air traffic network effect (Rebollo &
Balakrishnan, 2014; Wang et al., 2022; Yu et al., 2019; Zhu & Li, 2021).
Considering these limitations and the importance of accurate arrival
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transit time prediction, we realize the need to improve the prediction
odel capability, particularly in capturing airspace-specific flight and
eather characteristics.

This paper makes several contributions to the field of aircraft ar-
rival transit time prediction by introducing new features and adapting
stablished machine learning techniques to the unique requirements
f air traffic management. Firstly, we conduct a comprehensive, data-
riven feature investigation for arrival transit time prediction at the

Hong Kong International Airport (HKIA), providing new insights into
air traffic operations in Hong Kong. Secondly, based on a Bayesian
weather impact model (Lui et al., 2022), we derive two new features
hat outperform the commonly used air traffic management airport
erformance (ATMAP) weather metric. These features quantify the
eather-induced total number of delayed flights and the amount of
elays in an hour, as will be further elaborated in Section 3.1.2. Thirdly,

we analyze radar rainfall images along the aircraft’s assigned route and
derive suitable metrics to quantify the impact of heavy precipitation
on arrival transit times, providing a more detailed and accurate rep-
resentation of weather conditions affecting each flight. In addition to
these weather-related features, we introduce trajectory-based features,
specifically the identification of holding patterns and assigned Standard
Terminal Arrival (STAR), which offer valuable insights into the actual
flight paths and operational conditions experienced by aircraft during
the arrival phase.

These comprehensive features are effectively used in the arrival
transit time prediction with a newly developed two-stage gradient
oosting framework. This framework decomposes the complex predic-
ion problem into two sequential learning tasks, namely (1) a special-
zed holding pattern classifier that captures the binary decision process
n air traffic management, and (2) a transit time regressor that incorpo-
ates both the predicted holding probability and other input features.
his decomposition approach not only explicitly models the signifi-
ant impact of holding patterns on arrival times but also allows for
ifferential feature importance between holding decisions and transit
ime estimation. By leveraging the probability output from the holding
attern classifier as an additional feature in transit time prediction,
ur framework captures the uncertainty in operational decisions while
aintaining the sequential nature of air traffic management processes,

esulting in a more nuanced and operationally relevant prediction
ystem.

This paper is structured as follows. In Section 2, we provide an
verview of the current state-of-the-art of arrival transit time prediction
odel and their limitations. In Section 3, we introduce our methods,

with a brief description of our new framework, feature engineering pro-
cedures, and the prediction models used. Section 4 introduces our case
study pertaining to Hong Kong, including data description, data analy-
sis, and case implementation. Our results are presented and discussed
in Section 5, and Section 6 concludes our work.

2. Overview of the current state-of-the-art

Arrival transit time is defined as the duration between an air-
craft’s entry into terminal airspace and its touchdown on the runway.
Specifically, we measure from the timestamp when the aircraft crosses
the terminal maneuvering area (TMA) boundary until the timestamp
of its actual landing on the designated runway. This measurement
captures the complete terminal phase of flight, including any holding
patterns, vectoring, or delay absorption procedures implemented dur-
ing the arrival sequence. Traditionally, predicting aircraft arrival transit
time inside the terminal airspace relies on deterministic physics-based
models that incorporate aircraft type, wind conditions, and separation
requirements (Nedell et al., 1990). However, these models do not
account for uncertainties that are inherent in real operations, which
can lead to inaccurate predictions. With the increasing availability of
aviation data from real-world operation, data-driven methodologies
have been widely applied in aircraft ETA/arrival transit time prediction
2 
inside the terminal airspace to better estimate the arrival time. Owing
to this increased availability of data, improving arrival transit time
prediction has been made possible by applying advanced machine
learning and statistical technique (Sternberg et al., 2016). Regression
model is one of the common methods to predict ETA and arrival transit
time, by utilizing each aircraft’s operation data before it enters into the
terminal airspace (Dhief et al., 2020; Hong & Lee, 2015; Wang et al.,
2018; Zhang et al., 2022). Some notable examples are discussed below.

Glina et al. (2012) used quantile regression forests (QRF) for the
prediction and uncertainty quantification of aircraft landing times, with
a case study at Dallas/Fort Worth International Airport. They presented
the machine learning approaches’ capability for ETA prediction in
terms of predictive accuracy and computational performance. Kern
et al. (2015) presented a method for enhancing aircraft ETA predictions
with random forest (RF), with input features including general flight,
weather, and air traffic information. Jie et al. (2019) investigated
the potential of spatiotemporal clustering of ADS-B trajectory data in
ETA prediction, based on nearly 3,000 flights within three minutes in
the terminal area; the study was performed for multiple Chinese air-
ports. Wang et al. (2018) proposed a hybrid machine learning method
for ETA prediction. The model’s first layer used principal component
analysis and clustering techniques to cluster the flights. The second
layer applied a multi-linear regression and multi-cell neural network for
ETA prediction based on 8,677 flights at Beijing Capital International
Airport (BCIA). Following this work, they further improved the model
erformance by including more prediction models and different pre-

processing settings based on more data (12,775 flights) from the same
airport (Wang et al., 2020). One of the most recent works on BCIA was
presented by Ma et al. (2022), which offered a spatiotemporal neural
etwork model for ETA that considers both trajectory patterns and time

prediction. Other researchers constructed an ETA prediction study at
Guangzhou Baiyun International Airport concerning wind profile and
arrival sequence pressure (Gui et al., 2021; Zhang et al., 2022). Dhief
et al. (2020) predicted the aircraft landing time at Singapore Changi
Airport and assessed the feature importance of each factor via gradient
boosting machine (GBM), RF, and extra trees. In their follow-up work,
they developed an arrival flight delay mitigation strategy with the
olding and TMA delay prediction using CatBoost (Jun et al., 2022).
ecently, Wang et al. (2023) expanded the scope of their ETA predic-

ion study from single airport to a multi-airport system, which shows
he potential of further scope improvement in aircraft ETA prediction.

Despite the demonstrated effectiveness of data-driven arrival tran-
sit time prediction development, there are still rooms for improve-
ment. Specifically, although arrival flights with maneuvers such as
go-around (Dai et al., 2021; Dhief et al., 2022) and holding pat-
terns (Jun et al., 2022; Lui, Klein, & Liem, 2020) have been observed
and studied, they are often removed from the dataset as outlier flights
prior to training the prediction model in ETA prediction studies (Dhief
et al., 2020; Jie et al., 2019; Liu et al., 2023; Wang et al., 2018,
2020). Whilst this approach is reasonable for airports with few tactical
arrival operations such as holding patterns, it may not suffice when
he arrival traffic conditions are more complex. Rather than excluding

them, incorporating these maneuvers into model training can enable
more realistic forecasts of terminal air traffic flows.

Furthermore, the limited inclusion of weather factors in current
terminal airspace arrival time prediction studies represents a major gap.

his is evident in our results that will be presented in Section 5.4,
whereby more comprehensive representation of meteorological fac-
tors positively affects the forecast accuracy. Some past studies have
incorporated wind profiles (Gui et al., 2021; Zhang et al., 2022),
urface winds (Dhief et al., 2020), and precipitation (Kern et al.,

2015). However, convection, which is a key driver of disruptions in
erminal airspace, is frequently excluded (Dhief et al., 2020; Wang

et al., 2018, 2020; Zhang et al., 2022) or only partially accounted
for (Kern et al., 2015; Ma et al., 2022) in arrival time models. This
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Table 1
Comparison of different works in terms of additional weather and trajectory consideration and dataset for the arrival transit time prediction task. (In the table, METAR refers to
the meteorological aerodrome reports and ATMAP is as previously defined).

Literature Additional dataset Additional Consideration

METAR Radar image Weather Standard arrival route Tactical arrival operations

Glina et al. (2012), Jie et al. (2019) No No No No No
Kern et al. (2015) Yes No No dangerous phenomenon No No
Wang et al. (2018, 2020) No No No No Removed as outliers
Dhief et al. (2020) Yes No Surface wind only No Removed as outliers
Gui et al. (2021), Zhang et al. (2022) No No Wind profile only No No
Ma et al. (2022) No Yes Radar echo layer only No No
Jun et al. (2022) Yes No ATMAP Yes Holding
This work Yes Yes Weather-induced & Yes Holding

radar-based features
f

f
b
a
o
t
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t
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deficiency constitutes a critical gap because convective weather con-
ditions such as thunderstorms frequently necessitate major deviations
from scheduled flight plans. A recent study by Jun et al. (2022) used

TMAP weather score developed by Eurocontrol (Eurocontrol, 2011)
s a weather input. However, as an expert-based algorithm developed
or European airports, ATMAP’s generic weather scoring approach does
ot effectively capture localized meteorological impacts on arrival effi-
iency at specific airports like HKIA, as it lacks airport-specific tuning
nd validation (Lui et al., 2022). A more systematic, comprehensive

approach is needed to integrate relevant weather conditions into arrival
transit time prediction models.

Realizing the limitations of existing models encourages us to de-
velop a framework for arrival transit time prediction that can compre-
hensively incorporate more features related to weather and trajectory
and is aligned with ATCO’s decision making process. For clearer com-
parison, Table 1 summarizes the key consideration in this work, along
with those of some important representative literature. In addition, we
also seek to investigate the values and benefits of including them in the
regression model training to properly account for weather conditions
and tactical arrival flight operations. Our methods, particularly on the
new feature derivation, will be described in the next section.

3. Methodology

The derivation of our methodology is primarily driven by the re-
alization that while holding patterns can significantly impact arrival
transit times, it is challenging to model the relationship, which is
complex and nonlinear. As such, rather than treating holding pat-
tern occurrence as a simple binary feature (which is impractical since
holding cannot be known at the time an aircraft enters the terminal
airspace), we propose to model its probability instead, and includes it
n the prediction task via a two-stage gradient boosting framework.
n particular, this framework first predicts the likelihood of holding
atterns using a dedicated classifier, then incorporates this probabilistic
rediction alongside other features to estimate arrival transit times.
his decomposition allows our model to capture both the direct im-
act of operational decisions (through holding pattern prediction) and
heir uncertainty (through holding probabilities), while maintaining the
equential nature of air traffic management processes.

Fig. 1 illustrates the new two-stage gradient boosting framework for
rrival transit time prediction, along with the complete data processing

pipeline. The framework begins with multiple raw data sources (shown
in database icons on the left), including METAR data, flight informa-
tion, radar images, ADS-B trajectory data, and STAR configuration.
These raw data undergo three parallel feature extraction processes,
amely (1) a weather impact model that derives weather-induced

traffic features including the number of delayed flights and summation
f arrival delay time, (2) radar image feature extraction that computes
ean critical rainfall amount, and (3) trajectory feature extraction

hat processes STAR information. Additionally, baseline input features
shown within the blue-framed box under the ‘‘input features’’ column)

re also considered; these include standard entry state parameters such

3 
as latitude, longitude, altitude, heading, groundspeed, descent rate, and
hour, which have been commonly used in previous studies (Dhief et al.,
2020; Gui et al., 2021; Wang et al., 2018, 2020; Zhang et al., 2022).

The extracted features are then fed into the two-stage prediction
ramework. Upon completing data preprocessing, a gradient boosting

classifier predicts the likelihood of holding patterns for each flight in
Stage 1 (Classification). This probabilistic prediction, alongside other
eatures, then serves as input to Stage 2 (Regression), where a gradient
oosting regressor predicts the final arrival transit time. This sequential
pproach allows the model to first assess the probability of significant
perational events (holding patterns) before making the final transit
ime prediction, mirroring the actual decision-making process in air
raffic management.

3.1. Feature extraction

In this section, we introduce the feature extraction procedure for
the trajectory and weather features in our prediction framework.

3.1.1. Trajectory features
For this part, we wish to detect the corresponding arrival route

(based on STAR) and holding pattern operations from data. To do so,
we first trim raw arrival flight data to contain only points that are
within the local area, such that all flight data are within the same geo-
metric boundary. To improve computational efficiency, it is necessary
o reduce the number of points that represent a flight trajectory, while
reserving the geometric characteristics of the flight path. We achieve
his by using the Ramer–Douglas–Peucker (RDP) algorithm (Douglas &

Peucker, 1973). Based on these simplified data, the required detection
procedures are performed, as summarized in Fig. 2.

Standard Terminal Arrival (STAR). Our STAR detection procedure
leverages the dynamic time warping (DTW) algorithm to measure the
similarity between flight trajectories and STAR routes. For two tempo-
ral sequences 𝑋 = (𝑥1,… , 𝑥𝑚) and 𝑌 = (𝑦1,… , 𝑦𝑛), DTW computes an
optimal alignment via a minimization problem, as shown below:

𝐷 𝑇 𝑊 (𝑋 , 𝑌 ) = min
𝜙

𝑇
∑

𝑖=1
𝑑
(

𝑥𝜙𝑥(𝑖), 𝑦𝜙𝑦(𝑖)
)

, (1)

where 𝜙 =
(

𝜙𝑥, 𝜙𝑦
)

represents the warping path and 𝑑 (⋅, ⋅) is the
Euclidean distance between points. For each flight trajectory 𝐹 , we
determine its corresponding STAR 𝑠∗ through:

𝑠∗ = ar g min
𝑠∈

𝐷 𝑇 𝑊 (𝐹 , 𝑠), (2)

where  represents the set of available STAR routes. The efficiency of
the STAR detection is enhanced through the following process. First,
trajectory points are filtered using the standard altimeter setting region
to reduce the dataset size. Second, we identify the closest entry points
between the filtered flight trajectory and STAR routes, providing the
most suitable starting points for the DTW algorithm. This dual approach
notably reduces both the number of points to be compared and the

warping path search space.
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Fig. 1. The two-stage gradient boosting framework incorporating multi-source data preprocessing (METAR, flight information, radar images, ADS-B data, and STAR configuration),
feature extraction processes (weather impact model, radar image analysis, and trajectory features), holding pattern likelihood prediction (Stage 1: Classification), and final arrival
transit time estimation (Stage 2: Regression).
Fig. 2. Trajectory-based feature extraction procedure for STAR detection and HP
detection.

Holding pattern (HP). The holding pattern detection procedure used in
this study employs a geometric self-intersection analysis on trajectories
that are already simplified using the RDP algorithm (based on a work
by Lui, Klein, and Liem (2020)). Our method processes the original
trajectory 𝑇 = {𝑣1,… , 𝑣𝑛} to generate line segments 𝐿𝑖 = 𝑣𝑖𝑣𝑖+1,
represented as the lines connecting two adjacent red points in Fig. 3(a).
The detection algorithm evaluates all pairwise segment combinations
(𝐿 , 𝐿 ) ∈ 𝐿×𝐿. For each valid pair, spatial intersection is detected via
𝑖 𝑗

4 
the counter-clockwise orientation test, which evaluates whether points
from one line segment lie on the opposite side of the other line segment,
and vice versa.

The intersection points, if found, are labeled and used to identify the
starting and ending points of an HP, as shown by the blue and green
crosses in Fig. 3(a). Once the starting and ending points are identified,
we can separate parts of the flight trajectory corresponding to pre-
holding, holding, and post-holding phases, as shown in Fig. 3(b). This
procedure extracts a binary holding feature (1 = holding, 0 = other-
wise) that will serve as the target variable for our first-stage prediction
model, which will be further elaborated in Section 3.2.1.

3.1.2. Weather features
In this section, we explain the procedures to obtain weather-based

features. In particular, the weather-induced traffic features described
are derived upon a Bayesian-based weather impact model developed
by Lui et al. (2022). In addition, we also introduce features based on
radar rainfall images.

Weather-induced traffic features. Weather-induced traffic features con-
sidered in this study are derived based on meteorological aerodrome
reports (METAR) data and flight information data. METAR provides
hourly weather reports for an area enclosed within a 16 km radius
around an airport. For ATM purposes, raw METAR data offer a lengthy
string containing a variety of weather components, such as visibility,
moisture, wind, etc. Flight information data used here refer to records
of aircraft’s actual and scheduled operations. ATMAP weather score is
a conventional metric to quantify the adverse level of weather from
METAR data (Eurocontrol, 2011). ATMAP was created by Eurocontrol
in 2009 with the main purpose of evaluating airport performance.
There are five components of the ATMAP weather score, namely wind,
visibility, precipitation, freeze condition, and dangerous phenomenon.
Yet, the impact of dangerous phenomenon on traffic performance is
hard to quantify due to the inherent ATMAP scoring mechanism.

To account for dangerous phenomena specified in METAR data,
separate models are derived for data containing dangerous phenomena,
depending on the target airport. For instance, we need to include thun-
derstorms, shower, and cumulonimbus to fit the Hong Kong situation.
Different airports might have different critical dangerous phenomena,
such as volcanic ash, which needs further examination. However, it is
important to note that convective weather (including thunderstorms,
showers, and cumulonimbus clouds) is a predominant hazard for the
majority of airports worldwide, albeit with different scales. As such, the
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Fig. 3. Automatic holding pattern detection based on segmentation and intersection.

case study of HKIA presented herein serves as a representative example
of the challenges faced by most airports in terms of weather impact on
air traffic management. For an effective implementation of our model
in other airports, information specific to the airport of interest should
be considered and applied.

Using a Bayesian-based weather impact model (Lui et al., 2022),
we can obtain the corresponding functions for normalized mean arrival
delay per hour (𝜇̃) and delay rate per hour (𝑅𝑇𝑑) as functions of the
weather score 𝑥 (by excluding the dangerous phenomena), for a given
set of ATMAP weather scores and flight information data,

𝜇̃ ∼ 
(


(

𝑥||
|

𝜽𝜇
)

, 𝜎2𝜇
)

, (3)

𝑅𝑇𝑑 ∼ 
(


(

𝑥||
|

𝜽𝑑
)

, 𝜎2𝑑
)

, (4)

where  refers to the mean trend function and 𝜽 presents the associated
local parameters. The Gompertz function is used as the mean trend
function  , which was found to be the most accurate model describing
the air traffic situation in Hong Kong in terms of the expected log
pointwise predictive density (ELPD). The analysis, which was presented
in the original work by Lui et al. (2022), was performed by comparing
ive trend functions (logistic, Gompertz, power, quadratic, and linear).
or other airports, an evaluation based on ELPD is required for the

mean trend function selection.
5 
Actual values of 𝜇̃ and 𝑅𝑇𝑑 used to derive the models can be
obtained from historical flight information data. To obtain 𝜇̃, we first
calculate the average aircraft arrival delay (𝜇𝐴𝐷) based on 𝑁 flights, as
shown below,

𝜇𝐴𝐷 = 1
𝑁

𝑁
∑

𝑓=1
(𝐴𝐴𝑇𝑓 − 𝑆 𝐴𝑇𝑓 )+. (5)

Each occurrence of aircraft arrival delay is defined as the difference
between scheduled arrival time (SAT) and actual arrival time (AAT) for
each flight. The notation 𝑓 indicates the flight index and the super-
script + denotes the non-negativity of the metric. Once 𝜇𝐴𝐷 values are
calculated, 𝜇̃ can then be obtained by normalizing 𝜇𝐴𝐷,

𝜇̃ =
𝜇𝐴𝐷 − min(𝝁𝑨𝑫 )

max(𝝁𝑨𝑫 )
. (6)

Meanwhile, 𝑅𝑇𝑑 is obtained by calculating the total number of delayed
flights,

𝑅𝑇𝑑 = 1
𝑁

𝑁
∑

𝑓=1
𝐷𝑓 , where 𝐷𝑓 =

{

1 when flight 𝑓 is delayed;
0 otherwise.

(7)

To determine the delay indicator 𝐷𝑓 , a flight is considered delayed
when it cannot arrive within 15 minutes of the scheduled time (Mueller
 Chatterji, 2002), following the documentation from the Federal

Aviation Administration (FAA). Upon deriving the functions shown
in Eq. (6) and Eq. (7), we can obtain parametric expressions of 𝜇̃ and
𝑅𝑇𝑑 as functions of ATMAP weather score, which will in turn be used
to derive weather-induced traffic features used in the arrival transit
time regression models. Recall that we also need to derive an additional

odel for each dangerous phenomenon detected in the target airport.
Hence, we can obtain the corresponding 𝜇̃ and 𝑅𝑇𝑑 values for any
weather conditions, with or without dangerous phenomena.

Both 𝜇̃ and 𝑅𝑇𝑑 are dimensionless quantities. To produce suitable
input features for arrival transit time prediction models (i.e., the present
work), we need to associate the current hourly flight information data
to generate a meaningful indicator. For the 𝑡-th hour, there are 𝑁 flights
arriving at the terminal airspace. Based on the definition of 𝑅𝑇𝑑 , we can
nfer the number of weather-dependent delayed flights 𝑁𝑑 for the 𝑡-th hour

as the product of 𝑁 and 𝑅𝑇𝑑 :

𝑁 𝑡
𝑑 =

(

𝑁 × 𝑅𝑇𝑑
)

𝑡 . (8)

This is the first weather-induced traffic feature we can obtain from
the weather impact model. Within the same hour, the summation of

eather-induced arrival delays (𝑆𝐴𝐷) for all flights is used as the second
eather-induced feature. Technically, this value should be obtained by

aking the summation of delay time of all arrival flights in the 𝑡-th
our (𝛿𝑡𝑓 , 𝑓 = 1,… , 𝑁). To simplify the calculation, we approximate
𝐴𝐷 by multiplying 𝑁 𝑡

𝑑 (which is obtained using Eq. (8)) and 𝜇𝑡
𝐴𝐷

from Eq. (5)), instead of using the actual delay time for each flight
(which requires extra processing). This calculation is shown below,

𝑆𝑡
𝐴𝐷 =

𝑁
∑

𝑓=1
𝛿𝑡𝑓 ≈ 𝑁 𝑡

𝑑 × 𝜇𝑡
𝐴𝐷. (9)

The derivation of 𝑁𝑑 and 𝑆𝐴𝐷 and their usage in arrival transit time
prediction models constitute some original contributions of the present

ork. The importance of deriving these two weather-induced traffic
features (𝑁 𝑡

𝑑 and 𝑆𝑡
𝐴𝐷), instead of using ATMAP scores of METAR

data directly in regression models, will be discussed and presented in
Section 5.4.

Radar rainfall image feature. To include the impact of heavy precipita-
tion in the arrival transit time prediction model, we introduce a feature
ased on rainfall intensity, namely the mean critical rainfall amount 𝜇𝑅.
his quantity is obtained from the radar rainfall image and the STAR

information.
Before explaining the derivation of 𝜇𝑅, we define the relevant radar

image parameters that will be used in the description. Some of these
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Fig. 4. Image parameters for 𝜇𝑅 derivation, shown on an example radar rainfall image
from the Hong Kong Observatory (HKO).

parameters are illustrated in Fig. 4. First, we define the image’s area
as 𝑆 lon

km × 𝑆 lat
km, where 𝑆 lon

km and 𝑆 lat
km correspond to the covered distance

(in km) in the longitudinal and latitudinal direction, respectively. The
corresponding image resolution is given as 𝑁 lon

pix ×𝑁 lat
pix, indicating the

number of pixels in the image, where 𝑁 lon
pix and 𝑁 lat

pix refer to the number
of pixels in the longitudinal and latitudinal direction, respectively.
Additionally, we refer to the rainfall intensity at individual pixels as
𝐼𝑟, as shown in Fig. 4.

For square radar rainfall images, where 𝑆km = 𝑆 lon
km = 𝑆 lat

km, we also
have the same number of pixels on both longitudinal and latitudinal
directions,

𝑁pix = 𝑁 lon
pix = 𝑁 lat

pix. (10)

Based on these parameters, we can define 𝜏 as the length in kilometer
per pixel,

𝜏 =
𝑆km
𝑁pix

. (11)

To obtain 𝜇𝑅, we then define the critical area by setting a distance 𝑅km
around each waypoint (along the STAR route) to frame a 2-D square
geospatial area. The framed area around a waypoint corresponds to the
critical area for that particular waypoint. Converting the information
contained within radar images into geospatial data is highly dependent
on radar resolution. Based on the radar image resolution 𝜏, we convert
a radius in kilometers (𝑅km) to its equivalent in pixels:

𝑅pix = ⌊

𝑅km
𝜏

⌉, (12)

where ⌊⋅⌉ denotes rounding to the nearest integer, as the number of
pixels must be a whole number. Assume that for arrival flight 𝑓 , STAR𝑚
with 𝑛 waypoints are detected based on the procedure described in
Section 3.1.1. Including the airport, there are 𝑛+ 1 essential waypoints
for this particular flight. For an individual waypoint, we assign a pixel
based on its coordinate. Since our critical area is defined as a square,
the total number of critical pixels around each waypoint can then be
computed as:

𝑃 =
[

2𝑅pix + 1]2 . (13)

The side length of one critical area is 2𝑅pix + 1, based on the definition
given in Eq. (12) and includes the center pixel. For all waypoints, 𝑃
is the same since we assume the same 𝑅km and 𝑅pix. Thus, the mean
critical rainfall amount 𝜇𝑅 can be computed by averaging the rainfall
intensity in all critical areas of all waypoints,

𝜇𝑅 = 1
[𝑛+1
∑

𝑃
∑

(

𝐼𝑟
)

𝑗 ,𝑘
]

, (14)

𝑃 (𝑛 + 1) 𝑘=1 𝑗=1

6 
where
(

𝐼𝑟
)

𝑗 ,𝑘 refers to the rainfall intensity for the 𝑗-th pixel of the 𝑘-th
waypoint.

3.2. Two-stage gradient boosting framework

Using the derived input features presented above, we now describe
the new two-stage gradient boosting framework that can estimate the
arrival transit time (in Stage 2) after predicting the holding pattern
likelihood (in Stage 1). This approach is devised after some careful
consideration. A single-stage model that directly predicts transit time
would fail to explicitly account for the binary nature of holding pattern
decisions. Similarly, treating holding patterns as a simple binary feature
is impractical since holding cannot be known at the time an aircraft
enters the terminal airspace, as mentioned in the opening of Section 3.
Our proposed framework addresses these limitations by modeling hold-
ing patterns probabilistically and incorporating this uncertainty into
the final transit time prediction.

Let 𝐗 ∈ R𝑛×𝑑 denote our training feature matrix with 𝑛 samples and
𝑑 features, combining entry state features 𝐗entry (latitude, longitude,
altitude, heading, groundspeed, descent rate, and hour), operational
features 𝐗op (STAR), and weather features 𝐗weather (weather score and
mean rainfall):

𝐗 =
[

𝐗entry,𝐗op,𝐗weather
]

. (15)

Our training dataset comprises 80% of full dataset, which accounts for
46,702 flights recorded for overall data, as will be further discussed in
Section 4.1.2. Prior to the training process, the preprocessing pipeline
handles mixed data types through one-hot encoding for categorical
variables and standard scaling for numerical features.

3.2.1. Stage 1: Holding pattern likelihood prediction
The first stage employs a gradient boosting classification method

to estimate holding pattern probabilities. This method is selected over
alternatives (such as random forests or neural networks) due to its supe-
rior performance in handling imbalanced datasets and ability to capture
complex feature interactions while maintaining interpretability.

Given a flight’s feature vector 𝐱𝑓 ∈ R𝑑 (i.e., the transpose of the
𝑓 -th row in the matrix 𝐗 given in Eq. (15)), we define 𝑦ℎ𝑓 ∈ 0, 1 to
denote the binary holding indicator where 1 represents the presence of
a holding pattern for flight 𝑓 , and 0 when there is none. The gradient
boosting classifier 𝑀ℎ ∶ R𝑑 → [0, 1] estimates the probability of a
holding pattern. For any flight feature vector 𝐱𝑓 , the model outputs:

𝑀ℎ
(

𝐱𝑓
)

= 𝑝
(

𝑦ℎ𝑓 = 1 ||
|

𝐱𝑓
)

. (16)

This model learns to minimize the binary cross-entropy loss function
𝐿ℎ, which is particularly suitable for capturing prediction uncertainty
in binary classification tasks:

𝐿ℎ = −1
𝑛

𝑛
∑

𝑓=1

[

𝑦ℎ𝑓 log
(

𝑀ℎ
(

𝐱𝑓
))

+
(

1 − 𝑦ℎ𝑓
)

log
(

1 −𝑀ℎ
(

𝐱𝑓
))

]

. (17)

3.2.2. Stage 2: Arrival transit time prediction
The second stage leverages both the original features and the pre-

dicted holding pattern probability to improve transit time prediction
accuracy. We construct an augmented feature matrix 𝐗aug ∈ R𝑛×(𝑑+1)

by concatenating the original features (from Eq. (15)) with the holding
probability predictions:

𝐗aug =
[

𝐗, 𝐩̂
]

, (18)

where 𝐩̂ =
[

𝑀ℎ
(

𝐱1
)

,… , 𝑀ℎ
(

𝐱𝑛
)]⊤ ∈ R𝑛 represents the vector of pre-

dicted holding probabilities from Stage 1. Given a flight’s augmented
feature vector 𝐱aug,𝑓 ∈ R𝑑+1, let 𝑦𝑡𝑓 ∈ R+ denote the arrival transit
time for flight 𝑓 . The gradient boosting regressor 𝑀𝑡 predicts the arrival
transit time:
𝑡 ( )
𝑦̂𝑓 = 𝑀𝑡 𝐱aug,𝑓 . (19)
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The model learns to minimize the mean squared error loss 𝐿𝑡:

𝐿𝑡 =
1
𝑛

𝑛
∑

𝑓=1

(

𝑦𝑡𝑓 −𝑀𝑡
(

𝐱aug,𝑓
)

)2
. (20)

This two-stage architecture provides several advantages. First, it ex-
plicitly models the uncertainty in holding pattern decisions through
probability estimates rather than binary predictions. Second, by in-
corporating these probabilities into the transit time prediction, the
model can learn complex relationships between holding likelihood and
transit time. Finally, this approach maintains the sequential nature of
air traffic management decisions, where holding pattern assessments
inform subsequent transit time estimates.

3.2.3. Model selection
To find the appropriate models for our framework, we evaluate and

implement two state-of-the-art gradient boosting algorithms, namely
XGBoost and LightGBM for both stages. Both algorithms extend the
traditional gradient-boosted decision tree (GBDT) methodology, which
iteratively constructs an ensemble of weak learners to create a robust
predictive model (Friedman, 2001).

XGBoost employs an additive strategy where each new tree fo-
cuses on correcting the residual errors of previous iterations (Chen
& Guestrin, 2016). This method optimizes both model performance
and computational efficiency through second-order gradient statistics
and advanced regularization techniques. For our holding pattern clas-
sification task, XGBoost’s capacity to handle class imbalance through
weighted objective functions is particularly advantageous.

LightGBM offers complementary strengths with its leaf-wise tree
growth strategy and gradient-based one-side sampling (Ke et al., 2017).
These innovations result in reduced memory consumption and accel-
erated training speeds while maintaining competitive accuracy. The
framework’s efficient parallel training capabilities are especially valu-
able for our large-scale arrival management system.

4. Case study at the Hong Kong International Airport (HKIA)

To investigate the capability of our proposed additional features, we
use HKIA as a case study. HKIA is one of the largest passenger hubs,
gateways for various destinations, and transshipment centers in Asia
and worldwide.3

Besides its high air traffic demand (Hon, 2021; Ng et al., 2017) and
complex traffic mix (Hon et al., 2022), the unique airspace configura-
tion surrounding HKIA makes it an interesting case study to test the
generalizability of features in arrival transit time prediction models.
Hong Kong airspace is located between the airspaces of Guangzhou,
Macao, Zhuhai, and Shenzhen, in a way that HKIA is positioned at
the north of the Hong Kong airspace. Fig. 5 shows the comparison
between Hong Kong airspace and San Francisco airspace; the latter
exhibits a circular airspace around the airport, which is more common.
Note that the San Francisco airspace is shown here only for illustration
and airspace shape comparison purposes; the analyses presented in this
paper will be focused solely on the air traffic pertaining to HKIA, to
maintain the focus and scope of the current paper.

Details of the case study at HKIA will be presented in this section.
First, the data used in this study are described in Section 4.1, which
include weather and flight data. The corresponding data analyses are
presented in Section 4.2, to describe the characteristics of air traffic ac-
tivities around HKIA. Next, Section 4.3 presents our feature importance
analysis, which validates both our proposed framework and feature
selection approach. Section 4.4 then details our experimental method-
ology, including comparative model evaluation and implementation
specifications.

3 HKIA at a glance. https://www.hongkongairport.com/iwov-resources/
file/the-airport/hkia-at-a-glance/facts-figures/2021TC.pdf (in Chinese, last
accessed on 22 November 2024).
7 
Fig. 5. Airspace geometry comparison.

4.1. Data description

For our investigation, we use flight and weather data, which are
described below. The STAR and airspace configurations used in this
study are obtained from the Aeronautical Information Publication (AIP)
Hong Kong 2019.4 It is important to note that not all STAR procedures
are active during a given day, and the active STAR may vary based
on factors such as runway configuration, weather conditions, and air
traffic control decisions. Given the large dataset spanning six months
and the computational complexity involved in the analyses, the daily
variation of STAR is not considered in the present study.

4 Hong Kong Aeronautical Information Services. https://www.ais.gov.hk/
index.html (last accessed on 22 November 2024).

https://www.hongkongairport.com/iwov-resources/file/the-airport/hkia-at-a-glance/facts-figures/2021TC.pdf
https://www.hongkongairport.com/iwov-resources/file/the-airport/hkia-at-a-glance/facts-figures/2021TC.pdf
https://www.ais.gov.hk/index.html
https://www.ais.gov.hk/index.html
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4.1.1. Weather data
We use two weather data sources in this study, which are METAR

data at HKIA and 256 km high-resolution radar rainfall images col-
lected and provided by the Hong Kong Observatory (HKO). Over 55,000
local METAR data (from 2017–2018) are used in this study for the
weather feature derivation, which are obtained from https://navlost.
eu. The observed dangerous phenomena at HKIA are thunderstorms,
cumulonimbus, and shower rainfall, which will be included in the
weather-induced traffic feature derivation.

To further evaluate the model performance under extreme weather,
we use a weather score greater than or equal to 2 as the threshold
for extreme weather scenarios. The selection of 2 refers to previous
literature, in which 1.5 is commonly used as the standard for bad
weather day (Eurocontrol, 2011; Murça et al., 2018; Schultz et al.,
2018).

The ground weather radar images provided by HKO cover an ap-
proximately circular area of 256 km around Hong Kong. The resulting
radar reflectivity values can serve as an estimate of the instantaneous
rainfall rate. This information is freely available online.5 This data
source has been commonly used in several recent research on HKIA,
due to its high resolution and availability (Liu et al., 2023; Lui, Liem,
& Hon, 2020). In particular, 4,378 radar rainfall images are used in this
study.

Fig. 6 shows an example of radar image and the corresponding
extracted values, following the procedure described below. In order to
obtain rainfall intensity values from the image, we start by associating
the right color bar’s rainfall intensity information with the correspond-
ing RGB value (as shown in Fig. 6(a)). We then proceed to examine
each rainfall image pixel individually to find the corresponding rainfall
intensity value based on its RGB value. We achieve this by computing
the square of the Euclidean distance of color vectors (in terms of their
RGB values) between the pixel and the reference color bar to find the
rainfall intensity value that corresponds to the minimum distance. The
square of the Euclidean distance between RGB values is a standard
metric for quantifying color difference. With this ‘‘color mapping’’
procedure, we can assign the corresponding rainfall intensity value for
each pixel in the radar rainfall image.

4.1.2. Flight data
In this study, we use the automatic dependent

surveillance-broadcast (ADS-B) technology from the Flightradar24 plat-
form (Flightradar24, 2022) as flight trajectory data. The period under
review is from January 2018 to July 2018, which includes 58,378
arrival flights’ ADS-B data. Among these flights, 2,348 (which account
for 4.1% of the overall flight data) are under extreme weather based
on the threshold described above. The real-time operation states and
geographical location states are recorded in the ADS-B data. Flight
information data, which contain the actual and scheduled arrival time
of flights, are collected by the HKIA and are publicly available.6
433,680 arrival flight information are used for the weather impact
model derivation.

4.2. Preliminary data analysis

Using the data described above, we perform a preliminary data
analysis to characterize air traffic movements within the HKIA terminal
airspace. The main purpose of performing these analyses is to identify
tactical arrival operations and weather conditions pertaining to HKIA
that will affect arrival transit time. In our study, we adhere to the
operational patterns in HKIA airspace as closely as possible, to ensure

5 Hong Kong Observatory Radar Image (256 km). https://www.hko.gov.hk/
en/wxinfo/radars/radar.htm (last accessed on 22 November 2024).

6 Flight schedule information of Hong Kong International Airport (His-
torical). https://data.gov.hk/en-data/dataset/aahk-team1-flight-info (last ac-
cessed on 22 November 2024).
8 
Fig. 6. Illustration of the hourly rainfall intensity based on a radar image (22:00, 13th
June 2018).

that our results reflect the actual operations in HKIA. This includes the
selection of entry waypoints and the proportion of flights – including
those entering holding patterns – at each waypoint.

Based on the number of flights observed in the flight trajectory data,
Fig. 7 shows the proportion of arrival flights with holding patterns for
four main entry waypoints to the HKIA STAR, including ABBEY, BETTY,
CANTO, and SIERA. These entry points are illustrated in Fig. 8. The
vertical bar charts shown in Fig. 7 are ordered from the most commonly
used entry point to the least frequently used, and the proportion of
flights with holding patterns is shown in each bar chart. The horizontal
bar chart on top shows the proportion of arrival flights entering from
each waypoint.

From Fig. 7, we can observe that most arrival flights enter the STAR
through ABBEY, which is located east of the HKIA, while the least-used
entry is CANTO. Operation-wise, CANTO can be treated as a ‘‘backup’’
option for regular operation entry. Most of the time, CANTO serves
as one of the waypoints in the SIERA-series STAR. One interesting
observation is that the proportions of holding pattern at the two least-
used entries (BETTY and CANTO) can reach around 37%, which is
higher compared to the two more frequently used entries. In general,

https://navlost.eu
https://navlost.eu
https://navlost.eu
https://www.hko.gov.hk/en/wxinfo/radars/radar.htm
https://www.hko.gov.hk/en/wxinfo/radars/radar.htm
https://data.gov.hk/en-data/dataset/aahk-team1-flight-info
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Fig. 7. Holding-pattern counts for different entries of HKIA STAR and their relative proportions.
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Fig. 8. Illustration of the STAR entries of Hong Kong airspace.

holding patterns are common occurrences within the HKIA terminal
airspace, regardless of the entry point.

Next, we examine the relationship between extreme weather condi-
tions and aircraft arrival transit time. Fig. 9 presents the distribution
f arrival transit times for both the complete dataset (blue) and the

subset of flights operating under extreme weather conditions (red).
he 𝑥-axis represents transit time in seconds, whereas the 𝑦-axis shows
he corresponding probability density. Our analysis reveals that on
verage, flights experience longer transit times under extreme weather
onditions, with a mean of 2,726.76 s compared to 2,469.26 s for the

overall dataset—a difference of approximately four minutes. Addition-
ally, transit time variability increases under extreme weather, with the
standard deviation rising from 25.58 to 26.90 s. These quantitative
differences, despite the seemingly similar shapes of the distributions,
underscore the importance of incorporating weather information in
arrival transit time prediction models.
9 
Fig. 9. The distribution of aircraft arrival transit time for overall data and data under
extreme weather, where the mean shift in transit time due to extreme weather is
indicated by the black arrow.

4.3. Feature importance analysis

In addition to preliminary data analysis, we also perform a feature
importance analysis to gain insight into the factors that influence
arrival traffic. In particular, we employ the permutation feature impor-
tance, which is a widely used method for evaluating the importance
f features in tabular data (Fisher et al., 2019). This approach in-
olves evaluating the effect of feature permutation on the prediction
rror, which enables the quantification of the relative importance of

each input feature. We perform separate analyses for both overall and
extreme-weather datasets using XGBoost, with the same 8:2 training-
test split ratio used in our prediction study. Fig. 10 presents the results
for both scenarios.

As Fig. 10(a) illustrates, trajectory-based features rank first and
third as the most important features. The HP feature is essential among
all inputs, with the highest permutation importance score of around
.4. For the baseline features, entry longitude, latitude, and ground-

speed have a more critical impact on arrival transit time for the overall
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Fig. 10. The permutation feature importance through XGBoost on two studied datasets.
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data. Except for vertical rate, all other input features have a positive
impact. In summary, under normal circumstances, the 2-D geographical
position information (STAR, longitude, latitude) and potential holding
of entry aircraft dominate the prediction of arrival transit time. We
observe that weather factors are not the most critical. Since most of the
overall data are under good weather conditions, the weather impact is
not evident in most cases. The importance of holding pattern indicator
in arrival transit time prediction shown herein further confirms the
need for its occurrence prediction, since holding pattern information
is not known at the time of TMA entry. In our solution, this is achieved
in Stage 1 of the framework, as described in Section 3.2.1.

The importance of weather-based features increases under extreme
weather conditions. In particular, 𝑁𝑑 and 𝜇𝑅 rank fifth and seventh in
the list of the most important features, respectively (Fig. 10(b)). How-
ever, the magnitude of their impact remains limited, possibly due to the
effectiveness of the strategies and operational adjustments deployed by

ong Kong ATCO. Given the frequency of convective weather in Hong
ong, ATCO is well-equipped to handle adverse weather situations
y implementing measures such as rerouting, holding patterns, and
djusting aircraft separation distances, which help mitigate the impact
f weather on flight operations and arrival transit times.

Another interesting change is the crucial sequence for entry ground-
peed. Intuitively, a high correlation exists between mean ground speed
nd the aircraft’s arrival transit time inside the terminal airspace.
 n

10 
For typical cases, entry groundspeed is partially inferred to represent
the speed situation inside the terminal airspace. However, ground-
speed’s low feature importance score drastically reduces under extreme
weather. This phenomenon indicates the unstable speed profile for
aircraft under adverse weather. ATCO tends to arrange tactical arrival
operations for aircraft under extreme weather circumstances.

4.4. Experiment setup

To evaluate the performance of our proposed two-stage frame-
ork (using both LightGBM and XGBoost), we conduct experiments

omparing it with other models. These include conventional machine
learning methods such as Random Forest (Ho, 1995) and K-Nearest
Neighbor (Altman, 1992), as well as deep learning algorithms including

eep Forward Networks and Long Short-Term Memory (LSTM), which
ere used in most recent arrival flight time prediction studies (Basturk

& Cetek, 2021; Deng et al., 2023; Nguyen & Liem, 2025). Additionally,
we compare our results against single-stage XGBoost and LightGBM

odels that do not incorporate a holding pattern prediction stage.
However, it is important to note that deep neural network (DNN) may
be prone to overfitting on smaller tabular datasets due to their high
model complexity, which can contribute to fitting failures.

Including the scenario with only baseline inputs, we have six sce-
arios in total, which are illustrated in Fig. 11. Note that all models
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Fig. 11. Six scenarios for our model evaluation, where each scenario has a different set of input features.
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mentioned above will be applied to all six scenarios. In choosing which
scenarios to be included in the analyses, we perform some preliminary
xperiments and observations to carefully select representative scenar-
os that can capture the features’ impact and most relevant interaction.
s such, we can draw meaningful conclusions about the impact of
ifferent feature types on the model’s predictive performance, without

exhaustively presenting all possible feature combinations—where some
might not offer meaningful results and insights.

To ensure the reliability of our results, we implement a compre-
hensive validation strategy. For each experiment, we first partition the
data into training (80%) and test (20%) sets using different random
seeds to ensure robust evaluation across multiple data splits. Within
the training phase for each experiment, we apply a five-fold cross-
validation for the holding pattern classifier in Stage 1, generating
unbiased out-of-fold predictions that are used as features for the transit
time regressor. In our machine learning pipeline, we employ separate
preprocessing modules, including standardization using the 𝑧-score for
numerical inputs and one-hot encoding for categorical features (STAR
indicators). For hyperparameter tuning, we utilize the random search
algorithm (Bergstra & Bengio, 2012), which can efficiently explore a
arge hyperparameter space. We perform a three-fold cross-validation
nd evaluate 100 different combinations to determine the optimal
yperparameters for each regression model.

The predictive accuracy of the models is evaluated using multiple
complementary metrics. For holding likelihood prediction, we utilize
ccuracy, precision, and the area under the curve (AUC) metrics. Accu-

racy measures the overall correctness of predictions and is calculated
as:

Accuracy =
True Positives + True Negatives

Total Observations , (21)

where True Positives and True Negatives represent correctly predicted
positive and negative cases, respectively. Precision quantifies the pro-
portion of correct positive predictions and is expressed as:

Precision = True Positives
True Positives + False Positives , (22)

where False Positives are instances incorrectly predicted as positive.
The AUC metric evaluates the model’s ability to distinguish between
classes and is defined as:

AUC = ∫

1

0
TPR (𝑠) FPR′ (𝑠) d𝑠, (23)

where TPR represents the True Positive Rate and FPR represents the
alse Positive Rate at different classification thresholds 𝑠.

For the overall arrival transit time prediction assessment, we employ
two standard metrics, namely the root mean squared error (RMSE) and
mean absolute percentage error (MAPE). The RMSE is defined as:

RMSE =

√

√

√

√

1
𝑛

𝑛
∑

(

𝑦𝑡𝑓 − 𝑦̂𝑡𝑓
)2

, (24)

𝑓=1

11 
where 𝑛 represents the total number of observations, 𝑦𝑡𝑓 denotes the
actual arrival transit time value for the 𝑓 -th flight, and 𝑦̂𝑡𝑓 represents
the corresponding predicted value, as introduced in Section 3.2.2. This
metric effectively captures the model’s prediction accuracy while giving
higher weights to larger errors due to its quadratic nature. The MAPE
provides a scale-independent measure of accuracy and is calculated as:

MAPE = 1
𝑛

𝑛
∑

𝑓=1

|

|

|

|

|

|

𝑦𝑡𝑓 − 𝑦̂𝑡𝑓
𝑦𝑡𝑓

|

|

|

|

|

|

× 100%. (25)

This metric offers the advantage of expressing prediction errors in per-
centage terms, facilitating interpretation and cross-comparison across
different scales. For evaluating individual flight predictions, we utilize
the absolute error (AE), expressed as:

AE𝑓 = |

|

|

𝑦𝑡𝑓 − 𝑦̂𝑡𝑓
|

|

|

. (26)

This metric provides a direct measure of prediction accuracy at the in-
ividual flight level, complementing the aggregate performance metrics
escribed above.

5. Results and discussion

In this section, we present a comprehensive evaluation of our
ethodology for predicting aircraft arrival transit times at HKIA. Our

nalyses are structured in four parts, beginning with the validation re-
ults of our machine learning models for holding likelihood prediction
n Section 5.1. We then examine the general predictive performance

across overall data and extreme weather cases (Section 5.2), analyze
the impact of our proposed framework on individual flight predictions
(Section 5.3), and finally assess the effectiveness of our weather impact

odel for feature extraction (Section 5.4).

5.1. Holding pattern likelihood prediction

Our initial validation focuses on comparing the predictive accuracy
of different machine learning models (including DNN, LightGBM, Ran-
dom Forest, and XGBoost) for holding pattern likelihood, as illustrated
in Fig. 12. The evaluation metrics reveal XGBoost as the top performer,
chieving an AUC of 0.827, accuracy of 0.759, and precision of 0.667.
ightGBM demonstrates similarly strong performance, with an AUC of
.823, accuracy of 0.755, and precision of 0.662, closely matching

XGBoost’s capabilities. While Random Forest and DNN models also
perform sufficiently well, their metrics are notably lower than those of
the gradient boosting approaches. Random Forest achieves an AUC of
0.798, accuracy of 0.727, and precision of 0.655, while DNN records an
AUC of 0.793, accuracy of 0.733, and precision of 0.592. Despite DNN
maintaining competitive accuracy and AUC scores, it has the lowest

precision among all tested models.
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Table 2
General predictive error comparison across eight models and six scenarios on overall data.

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%]

Random Forest 408.26 13.04 375.09 11.39 399.47 12.86 397.50 12.72 394.70 12.70 361.77 11.10
kNN 418.10 13.24 370.08 10.95 409.38 13.04 403.67 12.85 396.39 12.61 367.92 11.01
XGBoost 400.39 12.70 354.80 10.53 386.37 12.37 378.50 12.17 369.96 11.98 336.00 10.21
LightGBM 402.20 12.71 354.73 10.51 392.69 12.60 379.30 12.27 372.79 12.11 338.45 10.30
DNN 455.17 14.97 405.09 12.45 453.20 14.94 418.07 13.30 415.67 13.43 371.34 11.02
LSTM 410.75 12.75 365.72 10.51 406.32 12.83 405.16 12.72 404.51 12.58 353.78 10.49
2S-LightGBM 402.63 12.74 354.30 10.52 389.71 12.45 373.66 12.00 364.76 11.77 323.15 9.81
2S-XGBoost 401.77 12.70 353.60 10.49 387.67 12.38 370.31 11.91 359.48 11.61 318.17 9.66
Fig. 12. The performance comparison of holding likelihood prediction.

The consistently high AUC scores across all models, ranging from
0.793 to 0.827, demonstrate robust discriminative capability in predict-
ing holding likelihood. These results indicate that our selected features
and modeling approaches (i.e., the two-stage gradient boosting frame-
work) effectively capture the underlying patterns in holding operations
at HKIA, providing a solid foundation for subsequent analyses.

5.2. General predictive accuracy of arrival transit time

This section presents the general predictive accuracy for overall data
and extreme weather cases for all six scenarios and eight models. As
mentioned in Section 4.1.2, 2,348 arrival flights under extreme weather
represent the extreme weather cases, which stand for 4.1% of the
overall data. We test all models mentioned in Section 4.4, and evaluate
predictive performance based on their RMSE and MAPE values for
further investigation. The general predictive errors for overall data and
extreme weather cases are presented in Tables 2 and 3, respectively.
Our new two-stage methods are indicated by the label ‘2S’ in the
tables. The combinations of scenario and regression model that yield
the minimum RMSE and MAPE values are highlighted in bold.

The proposed two-stage gradient boosting framework demonstrates
remarkable advantages over traditional single-stage approaches, es-
tablishing its effectiveness across both normal and extreme weather
conditions. Through the innovative approach of explicitly modeling
holding pattern uncertainty via probability estimates before transit time
prediction, our framework achieves consistently superior performance
compared to conventional machine learning and deep learning meth-
ods. This improvement is particularly evident in scenario 6, i.e., the
12 
most comprehensive testing configuration, where the 2S-XGBoost im-
plementation achieves an outstanding RMSE of 318.17 s and MAPE of
9.66% under normal conditions, significantly outperforming all other
models.

The framework’s robustness becomes even more apparent when
examining performance under extreme weather conditions, where it
maintains exceptional prediction accuracy with an RMSE of 354.40 s
and MAPE of 10.15%. This stability stands in stark contrast to other
models, particularly deep learning approaches such as LSTM, which
exhibit substantial performance degradation with MAPE exceeding 60%
in challenging weather conditions. These findings align with recent
research indicating that tree-based methods continue to represent the
state-of-the-art approach for medium-sized datasets, specifically those
with sample sizes in the order of 

(

103
)

(Grinsztajn et al., 2022).
The sustained performance advantage of our two-stage architec-

ture, especially under extreme weather scenarios, demonstrates its
effectiveness in capturing the complex, sequential nature of air traffic
management decisions. By incorporating holding pattern probabilities
into the final transit time predictions, the framework delivers more nu-
anced and reliable estimates. This enhanced accuracy has implications
for improving operational efficiency and decision-making processes in
air traffic management systems, particularly during adverse weather
conditions when precise predictions are most crucial.

5.3. Predictive performance of individual flight

In this subsection, we aim to evaluate the predictive performance
of individual flight using the cumulative distribution function for abso-
lute error visualization. We also demonstrate the individual predictive
performance of our proposed framework for both overall data and
data under extreme weather. Fig. 13 shows the empirical cumulative
histogram (denoted as ‘‘Empirical’’) and Gaussian fit (denoted as ‘‘GF’’)
based on the statistics of the absolute errors, where the blue line
represents scenario 1 with baseline inputs using XGBoost and the red
line represents scenario 6 with our proposed framework.

As shown in Fig. 13, including the proposed additional input fea-
tures into the new two-stage framework shows a notable predictive
accuracy improvement. For overall data, using only the baseline inputs
and XGBoost (the best among other single-stage model) yields a 79.6%
likelihood that the absolute predictive error falls below 500 s, whereas
the value can reach 90.9% with our new framework. Similarly, for
the extreme weather case, the likelihood of occurrence increases from
56.5% to 83.5%.

Besides increasing the likelihood of achieving a lower predictive
error, our new framework can also reduce the maximum absolute
error for individual prediction. Comparing the maximum absolute error
values for the overall data shows a 256.86 s reduction between scenar-
ios 1 and 6, while the reduction is 236.5 s for the extreme weather
case. There are noticeable shifts in the maximum prediction errors
(in seconds) for both cases, which demonstrate the effectiveness of
including the new features derived herein to reduce predictive errors
for both individual flight and aggregate data, thereby highlighting the
contribution and importance of the present work.
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Table 3
General predictive error comparison across eight models and six scenarios for extreme weather cases.

Model Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%] RMSE[s] MAPE[%]

Random Forest 549.68 16.85 509.68 14.67 498.07 15.36 451.91 13.88 447.36 13.80 443.23 13.31
kNN 546.84 16.91 519.58 15.04 531.82 16.09 494.14 15.26 490.55 14.83 495.91 14.38
XGBoost 509.68 14.67 479.21 13.80 414.37 12.59 369.06 12.04 367.71 11.01 376.49 10.92
LightGBM 522.97 15.88 477.28 13.91 426.30 13.02 389.36 12.10 371.75 11.01 375.09 10.90
DNN 705.93 20.15 627.79 18.00 697.95 20.11 677.44 19.59 665.83 19.63 599.75 17.52
LSTM 1961.36 64.58 1917.05 62.69 1903.46 62.07 2023.13 67.19 2108.03 70.79 1937.51 63.56
2S-LightGBM 533.49 16.18 488.02 14.24 426.60 12.70 391.87 11.76 366.76 10.81 354.85 10.27
2S-XGBoost 533.43 16.24 486.60 14.11 426.09 12.72 396.40 11.85 486.60 14.11 354.40 10.15
U
(

a

Fig. 13. The cumulative distribution function for individual absolute error on arrival
ransit time, using the single-stage XGBoost for scenario 1 (without holding pattern
robability) and the two-stage XGBoost for scenario 6.

5.4. Improvements by our weather-induced traffic features

In our study, 𝑁𝑑 and 𝑆𝐴𝐷 are newly derived from a Bayesian-based
eather impact model. However, the benefits of using these values,
 i

13 
Fig. 14. The predictive error reduction of our proposed weather-induced features, the
green triangles refer to the mean values.

instead of raw weather information data, are yet to be examined. We
conduct a control group study comparing three scenarios: baseline
inputs only (scenario 1), all available inputs (scenario 6), and all
inputs with weather-induced traffic features replaced by the ATMAP
weather score (scenario 6-ATMAP). ATMAP weather score is selected
here because it is a commonly used weather feature in other ATM
studies (Jun et al., 2022; Murça et al., 2018; Schultz et al., 2018, 2021).

sing 2S-XGBoost as the model, we perform our study on two datasets
overall and extreme weather cases). The evaluation metric is MAPE.

Results pertaining to the overall data show that, with appropriate
pplication of the Bayesian-based weather impact model, our weather-
nduced traffic features perform better in increasing the arrival transit
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time predictive accuracy than when using the conventional ATMAP
weather score directly. As shown in Fig. 14(a), considering only the
aseline inputs yields the highest MAPE, around 12.45% to 12.87%.
ncluding ATMAP weather score, the mean MAPE reduces from 12.70%
o around 10.20%. With our proposed weather-induced features, i.e.,
𝑁𝑑 and 𝑆𝐴𝐷, the predictive error of the model notably decreases the
most. The approximate amplitude of error reduction (compared to the
aseline case) is 3.04 percentage points.

For the extreme weather cases, the predictive error for the baseline
ase increases from 12.70% to 16.24%. Under this circumstance, the

ATMAP weather score still performs well, reducing the MAPE by 4.3
ercentage point. A more notable improvement is observed when using
𝑑 and 𝑆𝐴𝐷 in the prediction model, which is similar to our observation

f the overall data. The mean error is 10.15%, which is around 6.09
ercentage point reduction from the baseline case, and the lowest
ound for the boxplot can reach 9.67%.

To sum up, our proposed weather-induced features (𝑁𝑑 and 𝑆𝐴𝐷)
xhibit better performance in reducing the arrival transit time predic-
ion error than the ATMAP weather score for both regular and extreme
eather cases with our two-stage gradient boosting framework, thereby
ighlighting their importance in arrival transit time prediction. We
elieve that this is because the newly derived features have ‘‘translated’’
eather score into metrics related to aircraft delays, which are more

elevant to arrival transit time prediction.

6. Conclusion

To the best of our knowledge, this study presents the first large-
scale, data-driven feature investigation for arrival transit time predic-
tion at HKIA that comprehensively addresses both general and extreme
weather conditions. Our two-stage gradient boosting framework, which
decomposes the prediction problem into holding pattern classifica-
tion and transit time regression, demonstrates the value of modeling
operational decision-making processes explicitly. The framework’s ef-
fectiveness is enhanced by our newly-derived features, including the
weather-induced traffic features that outperform traditional ATMAP
cores, route-specific rainfall intensity metrics that capture localized

weather impacts, and trajectory-based features that identify holding
patterns and STAR assignments.

Our results demonstrated that the proposed framework with
eather and trajectory features could notably improve arrival transit

time prediction accuracy. Under extreme weather conditions, our new
S-XGBoost approach reduced error (MAPE) by 6.09 percentage points

compared to the baseline case. Additionally, the derived weather-
induced traffic features were found to be more effective than the
commonly used ATMAP weather score in modeling weather impact on
rrival transit time within the HKIA terminal airspace. This was espe-
ially so under extreme weather conditions. The findings highlighted
he importance of capturing real-world uncertainties from weather and
rajectory deviations that were often neglected in previous studies.

Whilst promising, further expanding the consideration of trajectory
eatures (such as vectoring and shortcut) in the modeling structure

(including their predictions in Stage 1) and accounting for weather
time-lag effects could further enhance model versatility for general-
ized use across airports. Implementing our proposed approach outside
HKIA may require certain tuning and adjustment. Different airports
have varying airspace structures, operational procedures, and weather
atterns, which could influence the effectiveness of our model. The
ser’s domain knowledge of the specific airport/airspace of interest

will help ensure the effective implementation of our model. For future
ork, it will be interesting and insightful to demonstrate and validate

our developed approach at other airports, taking into account their
specific characteristics and constraints; this effort will require close
collaborations with other researchers from different countries and ac-
cess to suitable data. In addition, performing the feature investigation
on other ETA prediction models beyond those analyzed in this study,
14 
such as new deep learning structures, can also further validate the
ffectiveness of the features introduced in this study. With continued
efinement, we envision that these data-driven arrival time predic-
ions will support improved traffic flow optimization through more
fficient, weather-aware flight sequencing. Overall, this research pro-

vides valuable insights into leveraging airspace-specific flight patterns
and meteorology information to increase prediction performance. Our
approach helps move towards next-generation forecasting capabilities
that consider the dynamics of the entire terminal airspace system.

Abbreviations

HKIA Hong Kong International Airport
ATCO Air traffic control officers
ETA Estimated time of arrival
STAR Standard Terminal Arrival
METAR Meteorological aerodrome reports
𝑁𝑑 The number of weather-induced delayed flights
𝑆𝐴𝐷 The summation of weather-induced arrival delay
ATMAP Air traffic management airport performance
RDP Ramer–Douglas–Peucker
DTW Dynamic time warping
HP Holding pattern
𝜇̃ Normalized mean arrival delay per hour
𝑅𝑇𝑑 Delay rate per hour
 Mean trend function
𝜃 Local parameters
𝜇𝐴𝐷 Mean arrival delay per hour
𝐴𝐴𝑇 Actual arrival time
𝑆 𝐴𝑇 Scheduled arrival time
𝑁 The number of flights per hour
𝛿 The amount of flight arrival delay
𝑆 lon

km Distance on the longitude side
𝑆 lat

km Distance on the latitude side
𝑁 lon

pix The number of pixels on the longitude side
𝑁 lat

pix The number of pixels on the latitude side
𝐼𝑟 Rainfall intensity
𝜏 Length in km per pixel
𝑅km Radius of the critical area (in km)
𝑅pix Radius of the critical area (in the number of pixels)
𝑃 The number of critical pixels around each waypoint
𝜇𝑅 Mean rainfall amount for critical area
𝑛 The number of flights
𝑑 Total number of features
𝑓 ∈ 1,… , 𝑛 Flight index
𝐗 ∈ R𝑛×𝑑 Training feature matrix
𝐱𝑓 ∈ R𝑑 Feature vector for flight 𝑓
𝑦ℎ𝑓 ∈ 0, 1 The binary holding indicator for flight 𝑓
𝑦𝑡𝑓 ∈ R+ Arrival transit time for flight 𝑓
AUC Area under the curve
AE Absolute error
MAPE Mean absolute percentage error
RMSE Root mean squared error
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