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Abstract
In-situ microscopic methods can help researchers to analyse microstructural changes of materials structures under differ-
ent conditions (e.g., temperature and pressure) at various length scales. Digital Image Correlation (DIC) combines image 
registration and tracking to enable accurate measurements of changes in materials in 2D and 3D. This review focuses on 
combining microscopy and DIC to study the properties of materials (including natural/synthetic biomaterials, biological 
samples and their composites) in academic, public and industry settings, including exciting examples of bioimaging.

Article highlights

•	 In-situ microscopic methods facilitate understanding of microstructural changes of materials.
•	 The DIC technique can be used with optical and non-optical microscopic methods.
•	 The DIC technique is applicable for a broad range of length scales and time scales.
•	 The techniques are applicable for a variety of soft and hard materials and their composites, including natural/biologi-

cal materials.

Keywords  Composites · Digital image correlation · In-situ optical microscopy · In-situ non-optical microscopy ·  
Materials characterization

1  Introduction

Polymer composites are ubiquitous in our everyday lives because of their functional/mechanical properties [1], the 
mechanical properties of such materials are underpinned by the nanoscale/microscale features constituting the 
structures [2], and there are some excellent reviews on this topic [3–7]. Traditional mechanical testing methods obtain 
information about the macroscopic physical properties of polymers and their composites, and it is important to note 
that that can miss information about the contribution of the nanoscale/microscale structures present in these materi-
als [8], and there is significant interest in applying such methods to analyzing biological samples (particularly to assess 
cell mechanics) [9]. Correlation of multi-scale structures and macroscopic properties is an area of current analytical 
research [10, 11]; a variety of different laboratory and computational techniques can be employed to understand 
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the behavior of polymers and their composites [12–15]. Methods for mechanical characterization (e.g., compressive, 
tensile, rheology, etc.) at various length scales coupled with DIC have been employed to analyze polymer-based 
materials (including composites) undergoing large deformations [16–18]; e.g., polylactide-based materials [19], the 
thermoset elastomer polyurea [20], shape-memory polymers [21], 3D printed polymeric metamaterials [22], all cel-
lulose composites [23], nitrile rubber composites [24], fiber reinforced polypropylene composites [25], glass fiber 
reinforced thermoplastics [26], carbon black-silicone composites [27], polymer fiber reinforced concrete [28].

The DIC technique (Fig. 1) [29] is one of the most frequently exploited methods used with optical and non-optical 
microscopic methods (e.g., atomic force microscopy [AFM], scanning electron microscopy [SEM], etc.) for measure-
ments from the nm to cm scale, potentially employing both 2D DIC (with a single camera) and 3D DIC or stereo DIC 
(with 2 synchronized cameras) to achieve high-spatial-resolution imaging [16, 17, 30]. The fundamental DIC procedure 
involves application of a speckle pattern to a surface, capturing a series of digital images during mechanical testing, 
followed by DIC analysis to determine displacements/strains on the surface [30–32].

A significant challenge in all DIC applications (including local DIC and global DIC [GDIC]) involves creating opti-
mized DIC patterns for specimens via preparation of speckle patterns on test sample surfaces [16, 17, 30–34]; the 
macroscale DIC patterns are mostly random grey scale patterns that are deposited via a variety of techniques [30, 34, 
35]; for nanoscale patterning drop casting or spraying droplets of nanoparticle-loaded solvents are popular, how-
ever, the homogeneity of particle density is a challenge because they tend to cluster [35–39]. In correlative imaging 
samples are studied through two or more techniques with images located in the same field of view yielding greater 
insights than any single technique can offer; correlative microscopy has extraordinary potential for investigating 
materials properties, particularly their micromechanical characteristics [40].

This review offers an oversight of in-situ optical and non-optical microscopies methods and techniques of taking 
images to incorporate with DIC, as well as software to improve images with microscopes for DIC to help readers to 
choose the most suitable corroborative techniques to address important fundamental/applied questions in polymer 
composite science and engineering with a view to high impact outcomes in technical and medical applications. In 
the near to medium term, we believe these will be combined with computational approaches to enhance product 
development in industry (Fig. 2) [41, 42].

Fig. 1   Schematic illustration of the undeformed subset and the corresponding deformed subset in 2D-DIC. Reproduced from [29] with per-
mission from the publisher (John Wiley and Sons)
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2 � In‑situ optical microscopy

2.1 � Polarized light optical microscopy

Étienne-Louis Malus’s pioneering work on light polarization [43, 44], underpinned research and development of applica-
tions of polarized light in various scientific and technological fields (including spectroscopy, materials analysis, liquid 
crystal displays, and optical communication systems) [31, 45–47]. Polarized light is widely used for imaging thin sec-
tions of biological tissues (i.e., natural polymer composite materials), often in combination with polarization-sensitive 

Fig. 2   DIC applications for microscale and mesoscale structure, defects, and damage, a strain of z-binders due to failure in 3D woven poly-
mer composite, b mesoscale strain concentrations linked to damage development for a 10 mm wide ceramic matrix composite at 900 °C, c 
topographical surface deformation of a twill woven composite, d varying local volume fraction within weave resulting in strain concentra-
tions, e discontinuous fiber tows strain concentrations at the ends of fiber bundles, f delamination detection through out-of-plane motion 
of laminate composites, g crack front propagation observed with 2D-DIC shear strains during end-notch flexure test of carbon/epoxy woven 
laminate, h 30 mm long concentrated shear region influenced by architecture of 3D woven composite, i compression after impact for 3D 
woven composite showing broken z-binders as strain concentrations and (j) strain field for combined tension/torsion loading of 3D woven 
composite showing influence of the weave. Reproduced from [42] with permission from the publisher (Elsevier)
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fluorescence microscopy, polarization-sensitive hyperspectral imaging, polarization-sensitive multiphoton microscopy, 
etc. [48]. Polarized light optical microscopy (PLM) allows investigation of changes in microscale internal network struc-
ture of polymer-based materials caused by deformation [49, 50], furthermore, PLM is a valuable method for detecting 
and characterizing anisotropy in specimens that influence the polarization plane of light [51]. Cross polarization of light 
can enhance macroscopic, optical, and surface DIC measurements (Fig. 3) [31]; interesting studies have demonstrated 
enhanced image contract and mechanical testing using DIC in cellulose nanocrystal films [52] and bat wing skin [53].

2.2 � Stereo light microscopy

Stereo-DIC, also known as 3D-DIC [41], works over μm to m length scales with ns time resolution [54]. Stereo light micro-
scopes (SLM) can be used to assist the DIC methods to measure deformation in small-scale sections [55], and stereo-DIC 
has been used to analyze various composite materials, including fiber-reinforced composites [56, 57], and given their 
potential in mechanics, materials research, and biological engineering, there is a strong demand for a low-cost, simple, 
and effective 3D-DIC technique for measuring small object shapes and deformations, which holds significant scientific 
value [58–64]. A diffraction assisted image correlation (DAIC) method (Fig. 4) can be used with samples ranging from 
submillimeter to a few centimeters and is much cheaper than existing systems (since both diffracted images are captured 
with one camera, synchronization issues are eliminated, and DAIC simplifies measurements by relying on diffraction 
rules for point correspondence, removing the need for intricate calibrations of the imaging system) [65]. Traditional 
binocular systems use parallax from two cameras for 3D spatial information but face challenges with precision on large 
objects, their processing algorithms are complicated by lens distortion, transformation, and calibration issues, making 
high-precision measurements difficult, and a new method utilizing a telecentric camera can circumvent these issues [66].

2.3 � Fluorescence microscopy and super‑resolution fluorescence microscopy

Fluorescence is a widespread phenomenon utilized, extensively worldwide for a variety of applications [67–69]. Fluores-
cence microscopy offers users high contrast, non/minimal-invasiveness, minimal preparation requirements, and ease of 
use [68]. In 2014, three chemists were jointly awarded the Nobel Prize for their contributions to advancing super-resolved 
fluorescence microscopy [70]. Originally aimed at biological systems by overcoming the diffraction limit of light, super-
resolution fluorescence microscopy (SRFM) has now found significant applications in materials science, particularly in 

Fig. 3   a Specular reflections maintain the polarization of incident light, while diffuse reflections do not. b The horizontal polarizer on the 
camera’s lens attenuates the vertically polarized specular reflections to avoid saturated pixels). Reproduced from [31] with permission from 
the publisher (Springer Nature)
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polymer research [71, 72]. This shift has prompted a growing number of studies focusing on developing and utilizing new 
fluorescence visualization techniques to deepen our insights into the specimens under investigation [73, 74]. These new 
methods include light sheet fluorescence microscopy (LSFM) [75, 76]; photoactivated localization microscopy (PALM) 
[77–79]; points accumulation for imaging in nanoscale topography (PAINT) [80, 81]; reversible saturable/switchable 
optical linear fluorescence transitions (RESOLFT) microscopy [82, 83]; single-molecule localization microscopy (SMLM) 
(Fig. 5) [84–86]; stimulated emission depletion (STED) microscopy [72, 87, 88]; stochastic optical fluctuation imaging (SOFI) 
[89]; stochastic optical reconstruction microscopy (STORM) and direct STORM (dSTORM) reconstruct the positions of all 
fluorophores employed to achieve images with a resolution of 20 nm which makes them valuable tools for biological 
imaging applications [90, 91]; and structured illumination microscopy methods [92]. We have now entered an era where 
developments in fluorescence imaging strategies (e.g., staining techniques like post-staining following force loading, 
pre-treatment, and activation of turn-on fluorescence) [79], and quantification methods [93, 94] offer opportunities for 
super-resolution fluorescence microscopy (SRFM) to investigate the mechanical properties of polymer composite-based 
materials and deliver exciting results (Fig. 6) [73, 74].

2.4 � Confocal laser scanning microscopy (CLSM)

High quality confocal microscopy [95] underpins the mechanical scanning confocal laser microscope [96]. Confocal laser 
scanning microscopy (CLSM) is applicable to polymer-based materials [97–99], and is utilized by biologists to delineate 
biological pathways, comprehend intracellular mechanisms, and observe the general structures of living cells [100, 101]; it 
is capable of high-resolution functional cell imaging, albeit restricted to a depth of about 300 μm [102]. AFM typically offers 

Fig. 4   Schematic diagram of optical arrangement of the single-camera microscopic 3D-DIC method. Reproduced from [65] with permission 
from the publisher. © 2013 Optical Society of America
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sub 1 nm resolution [103–106], hence, combining AFM and CLSM is interesting for biological applications [100, 101, 107], 
collecting much more precise 3D images and in-depth analysis of a specimen’s structure (Fig. 7) [100–102, 107–110]. One 
novel technique for improving 3D image capture by LSCM involves combining it with DIC, referred to as the confocal-DIC 
method [110]; while it is predominantly employed to examine biological samples and colloidal particles [111], it can also aid 
in characterizing porous structures and nanostructures [112]. Some microscopy-DIC methods are listed in Table 1.

Fig. 5   Schematic represen-
tation of the microscope 
modalities. a SMLM. The 
microscope setup (i), the 
working principle (ii), and 
some examples to achieve on/
off switching of fluorescent 
proteins and organic dyes (iii) 
are shown. b STED micros-
copy. The microscope setup 
(i), the working principle 
(ii), and a Jablonski diagram 
of the STED excitation and 
emission (iii) are shown. 
Abbreviations: DM dichroic 
mirror, SMLM single-molecule 
localization microscopy, STED 
stimulated emission deple-
tion. Reproduced from [85] 
with permission from the pub-
lisher (Annual Reviews)
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3 � In‑situ non‑optical microscopy

3.1 � SEM

SEM images samples over length scales ranging from nm to cm [115], typically via secondary electron imaging (SEI) and 
backscattered electron imaging (BEI) (Fig. 8) [93]. The application of DIC-SEM is attributed to the synergistic benefits of 
combining these two powerful techniques, as well as the continuous advancements in the underlying technologies and 
their increasing accessibility to researchers across various fields [34, 116, 117]. DIC-SEM has been used to study topics 
such as grain boundary sliding, deformation twinning in materials, crack propagation phase transformations, as well 
as characterizing the mechanical properties of individual grains, inclusions, and other microstructural features within a 
material [16, 34, 118–121].

3.2 � Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM)

TEM is extensively utilized for analyzing and imaging nanoscale samples [31, 115, 122–124]; high-resolution TEM (HRTEM) 
has a resolution of ≈ 0.5 Å (0.050 nm); cryo-TEM rapidly freezes samples for analysis without inducing changes like 
agglomeration or deformation. In situ TEM demands special materials—electron-transparent and ultrathin samples—lim-
iting the range of materials tested, with imaging capped at ≈30 frames/second. These techniques necessitate controlled 
conditions, such as a vacuum SEM/TEM environment, as opposed to reactive air, and recent studies have incorporated 
DIC measurements in TEM (Fig. 9) [124–126]. STEM merges SEM and TEM modes, has atomic level resolution [127], and 
has been used to analyze phase separation in polymer blends [128] and a variety of other materials (Fig. 10) [129–135].

3.3 � X‑ray microscopy

The intricate morphology of many modern materials spans various length scales, requiring multi-scale modeling to 
understand mechanical behavior from atomic to macroscopic levels [137]. Synchrotron X-ray facilities have improved our 

Fig. 6   Schematic illustrating the visualization of different types of hydrogel networks, observation of structural transitions, and super-reso-
lution imaging based on fluorescence microscopy. Reproduced from [73] with permission from the publisher (Springer Nature)
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ability to study material structures at various length scales using small and wide-angle X-ray scattering (SAXS and WAXS); 
indeed, in situ mechanical testing in combination with SAXS/WAXS enables the measurement of nanoscale deformations 
that can be combined with DIC to analyze deformation across multiple length scales simultaneously (Fig. 11) [138–140]. 
X-ray imaging has transformed microscopy, and in situ soft X-ray Scanning Transmission X-ray Microscopy (STXM) has a 
spatial resolution of ≈25 nm [126, 141–143] which is applicable to biological samples (Fig. 12); cross-compatibility with 
CLSM/TEM enables mapping of macromolecule structure/composition through multi-microscopy approaches, which can 
image complex systems, e.g., biofilms [144]. While advanced microscopy offers many benefits, it can be time-consuming 

Fig. 7   Examples of visualization of AFM and CLSM data. a: AFM range image (gray scale proportional to the elevation); b: CLSM maximum 
intensity projection image; c: AFM pseudo-colored isometric view; d: CLSM volumetric imaging. The AFM images show the cell body of a live 
neuronal cell, while CLSM images show the whole live neuron stained with FM 1–43. Reproduced from [101] with permission from the pub-
lisher (John Wiley & Sons, Inc.)
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Table 1   Examples of optical microscopy-DIC methods

Methods Size/pixels Techniques Software References

Polarized light microscopy + SEM 1–200 µm Step-and-shoot Fiji [49]
Polarized light microscopy + SEM ≈150 µm PLM/INT NIS Elements [50]
Polarized light microscopy 0.73 μm Cross-polarized [51]
Stereo light microscopy 2456 × 2058 pixels Scheimpflug cameras for 3D 

microscopic DIC
Ncorr [54]

Stereo light microscope 0.063 × 0.063 mm 2D DIC (MDIC) Elite Software [113]
Light sheet fluorescence microscopy (LSFM) 532/580 nm OptoRheo ImageJ/Fiji [76]
Confocal microscopy 0.5 μm Hand-drawn contouring system SURPASS, Leica 

LAS X 3D, IMARIS
[114]

Fig. 8   Image formation in fluorescence and electron microscopy. A Widefield microscopy captures live Schizosaccharomyces pombe cells 
expressing sfGFP-tubulin, illuminating the entire sample volume simultaneously. Out-of-focus fluorescence can obscure fine details. B Con-
focal microscopy scans individual diffraction-limited laser spots (laser-scanning) or sweeps them (spinning disk) to avoid out-of-focus light, 
enhancing contrast and detail across sample depths. C Confocal slices can be compiled into a 3D ‘z-stack’, which can be projected as a single 
image through summed or maximum intensity values. D TIRF microscopy employs an evanescent field that illuminates only a few hundred 
nanometers from the coverslip, capturing fluorescence primarily from structures near the coverslip, differing from (A)–(C). All fluorescence 
scale bars = 10 μm. E TEM reveals mitochondria in a thin embedded section, comparing different preparation protocols: conventional (elec-
tron dense) and Tokuyasu (electron lucent). Tokuyasu image by I. J. White. F SEM detects exocytosis events on endothelial cells, visualizing 
Von Willebrand factor strings. G SEM with backscattered electron detection highlights gold-labelled antibodies on Von Willebrand factor. 
Images by K. O’Neill and D. Cutler. H SEM with BSE of a resin-embedded thin section shows heavy metal areas producing stronger signals 
(light) compared to lighter regions. This method often inverts data for clearer comparison, with green ellipses indicating interaction vol-
umes of the electron beam at varying voltages. All EM scale bars = 500 nm. Reproduced reference [93] with permission from the publisher 
(John Wiley & Sons)
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Fig. 9   Picture of the in situ electrochemical TEM chip. a Schematic view of the in situ electrochemical TEM chip, and b the viewing window 
was indicated by the red dashed circle. Reproduced from [136] with permission from the publisher (John Wiley and Sons)

Fig. 10   Schematic illustration of different scanning strategies and their relative acquisition time. The standard pixel-by-pixel raster scan of 
Scanning Transmission Electron Microscopy (STEM) includes the addition of a ’flyback’ time to relocate the beam at the beginning of the 
next row. Via a serpentine scan, the frame rate can be improved by avoiding any dead time τ, but the rectification of odd and even rows is 
required to compensate for hysteresis effects of the magnetic scan coils. Sparse imaging results in the recording of fewer pixels through a 
random-walk scan thus reduce the total time. Here, a reconstruction algorithm is needed to “inpaint” the full frame. Both approaches can 
be combined to achieve the highest possible STEM image acquisition speed while avoiding an increase in electron dose. Reproduced from 
[134] with permission from the publisher (Springer Nature)
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and involve complex digital image algorithms [145]; new software like STXM_deconv helps users with limited image 
processing skills [146], and Gaussian mixture (GM) and Bayesian Gaussian mixture (BGM) clustering methods operate 
based on similarity and proximity rather than traditional algorithms [147]. Employing these strategies demonstrates 
X-ray microscopy’s ability to enable mapping and analyzing elemental structures, aiding DIC method in investigating 
the chemical/micromechanical properties of polymer-based materials.

3.4 � Atomic force microscopy (AFM)

Atomic Force Microscopy (AFM) has nm scale resolution via a surface probe technique that enables topographical and 
nanomechanical measurements (potentially under physiological conditions) [103, 148] and recent advances enabled 
studies of multiparametric heterogeneity of materials [149, 150]. Combination with Total Internal Reflection Fluorescence 
Microscopy (TIRFM) [151] and Scanning Near-Field Optical Microscopy (SNOM/NSOM) [152] has enabled interesting 

Fig. 11   Experimental setup. A Schematic illustration of a sample tested in tension and simultaneously monitored with DIC and SAXS or 
WAXS at 10 discrete vertical positions in the horizontal-centre of the sample. The sample is subjected to continuous tensile loading in the 
test rig and the whole rig is translated vertically to move the sample between the measurement points inside the beam. B Photograph of 
the experimental setup at the I911-4 beamline (MAX IV Laboratory, Lund University, Lund, Sweden). Reproduced from [138] with permission 
from the publisher (Elsevier BV)

Fig. 12   Schematic represen-
tation of the TR-STXM setup 
realized at ALS beamline 
11.0.2.2. The STXM is situated 
in a high-vacuum cham-
ber. Gray colored parts are 
optional components for 
(dynamic) magnetic measure-
ments. Reproduced from [142] 
with permission from the pub-
lisher (Elsevier BV)
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biological applications, e.g., (Fig. 13). It has also been possible to demonstrate simultaneous imaging and nanomanipu-
lation [149, 150]. Some non-optical microscopes-DIC methods are listed in Table 2.

4 � Software

The DIC methodology employed for measuring mechanical properties involves image acquisition, processing, and 
correlation; free and commercial software have been created for analysis of DIC data, examples of which are listed 
in Table 3 [52, 113, 159–164]. These resources are versatile and can be utilized across various research fields where 
understanding structure–property relationships are of critical importance, and we foresee them playing an increas-
ingly important role in research and development in academia and industry (Fig. 14).

5 � Combination with other techniques

The exciting properties of natural/synthetic composites highlights the importance of understanding their mechanical 
behavior [167]. DIC can analyze the behavior of such composites under different loads and moreover, be combined 
with other mechanical methods for greater insights [168], where DIC provides high-resolution images and insights 
about the micromechanical characteristics of such materials [169]. The combination of DIC and finite element analysis 
(FEA) has been used to investigate dentin micromechanics [170] or those of human soft tissues [171], to conducting 
fatigue tests on composites [172], to study distributed fiber optic sensors (DFOS) in concrete structures [173], or 
indeed small punch tests (SPT) for specimen mapping [174]. Nanoindentation measurements are well established 
in the analysis of polymer-based materials and their composites [175–178]. A nanoindentation method allows for 
local mechanical characterization of materials at micro and nanometer scales; this technique has been applied 
across diverse fields, including biology, engineering, geology and materials science [167, 179]; however, despite 

Fig. 13   a–f Correlative AFM + STED imaging of Cos7 cells labelled with Atto 647 N. a Confocal raw image, b STED raw image, c 3D rendered 
view of AFM measured height extracted from AFM force curves, deconvolved (d) confocal and (e) STED images, and (f) an elasticity map 
calculated from AFM force curves. g Schematic diagram of a combined AFM/STED imaging set-up. The AFM cantilever is aligned such that 
STED and AFM have a common scan area. Fluorescence excitation pulses are combined with depletion pulses using a dichroic mirror (DM2), 
and fluorescent emission is separated using a dichroic mirror (DM1). AFM images are acquired by translating the sample. For each pixel a 
force curve is measured by approaching the tip toward the sample and recording the tip–sample interaction force as a function of the can-
tilever z-position (see inset), and the Young’s modulus is estimated from the gradient. Scale bars in (a and b): 2 μm. (a–f). Reproduced from 
[150] with permission from the publisher (Royal Society of Chemistry)
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its widespread use, this method cannot independently account for the elastic, hardness [179, 180], and chemical 
[181–183] properties of shale due to the inherent complexity of the source rocks, but the combination with DIC 
can effectively resolve these issues. Some 3D imaging technologies (e.g., computed tomography (CT) [184–187], 
etc.) combined with DIC algorithms offer opportunities assess internal displacement/deformation information of 
materials-digital volume correlation (DVC), this is becoming increasingly important in the field of analyzing material 
microstructures, and we point the interested reader towards excellent review articles [188–191]. Some examples of 
DIC combined other techniques are listed in Table 4.

6 � Conclusion

The mechanical properties of polymer-based materials is one of the factors that make them ubiquitous in our everyday 
lives [3, 4]. DIC can be integrated with both traditional and innovative techniques to validate and enhance mechanical 
testing studies, providing deeper insights into the material’s characteristics and factors influencing them. While effective 
in controlled lab settings, DIC studies undertaken in natural environments are challenging owing to a variety of com-
plications including uneven illumination, shadows, blurring, and noise, which can hinder its effectiveness and may be 
addressed in future research. In this review we highlight the viability of both optical and non-optical microscopic meth-
ods for obtaining high-quality images using DIC across various length and time scales which have attracted significant 

Fig. 14   Steps in the life cycle of polymeric materials that correlative microscopy can contribute to study and understand. Reproduced from 
[40] with permission from the publisher (John Wiley & Sons)

Table 4   Examples of application of DIC combined with other techniques to analyse composites

Combination methods DIC measure Combined-method measure Microscopy Specimen References

DIC-FEA Strain Stress Optical Dentin [170]
DIC-fatigue test Map strain Stiffness/absorb energy E-glass fiber [172]
DIC-DFOS Strain Crack monitoring Optical Concrete structures [173]
DIC-SPT Elastic and plastic Tensile Optical Steel [174]
DIC-Nanoindentation Elastic/hardness SEM Rocks [179, 180]
DIC-Nanoindentation Stiffness Viscoelasticity AFM Composite [167]
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attention from researchers in academia and industry. We believe such techniques will play an important role in the 
future of materials science and engineering [192]; indeed DIC is one of a variety of computational approaches that can 
be applied to generate large datasets to feed into models that enable the development and production of advanced 
materials to precisely designed properties potentially employing AI/ML approaches to facilitate this [193, 194].
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