- 1 Exploring prehabilitation interventions for patients with gynaecological cancer undergoing radiotherapy: A
- 2 scoping review
- 4 Prehabilitation for gynaecological cancer patients undergoing radiotherapy
- 6 Elizabeth McGladrigan^{1*}, Elizabeth Wrench¹, Ewan Dean¹, Aneurin O'Neil², Lisa Ashmore^{1¶}, Christopher
 7 Gaffney^{1¶}
- ¹Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, Lancashire,
 United Kingdom
- 11 ²UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, Lancashire, United Kingdom
- *Corresponding author
- 14 Email: <u>b.mcgladrigan@lancaster.ac.uk</u> (EM)
- ...
- 17 [¶]These authors contributed equally to the work
- . .

- ~ 4

27 Abstract

28 Purpose

Radiotherapy imposes a significant physiological and psychological burden on gynaecological cancer patients.
 Prehabilitation is being increasingly used to prepare individuals for cancer treatment and improve their well-being
 and resilience, but it is largely unexplored in non-surgical populations. This scoping review aims to provide a
 comprehensive overview of the current literature regarding prehabilitation interventions for individuals with
 gynaecological cancer undergoing radiotherapy.

34 Methods

35 The review was conducted following Joanna Briggs Institute guidelines for scoping reviews. Literature searches were

36 completed in February and October 2024 across: the Allied and Complementary Medicine Database; British Nursing

37 Index; Cumulative Index to Nursing and Allied Health Literature; Cochrane library (Controlled trials and systematic

38 reviews); Embase; Medical Literature Analysis and Retrieval System Online; and the Psychological Information

39 Database. Grey literature searches were conducted via Google Scholar, Overton.io, and Trip Pro Medical Database.

40 Results

Ninety records met the inclusion criteria, pertaining to 56 studies. Cervical cancer was the most represented
gynaecological cancer type across studies. A small number of multimodal prehabilitation studies were identified
(n=4). Studies evaluating unimodal interventions were more common, with nutritional interventions (n= 24) being
the most frequent, followed by psychological (n=22) and physical exercise (n=6) interventions. There was
considerable variation across studies in respect to intervention initiation, duration, delivery and outcome measures.

46 Conclusions

The physical and psychological impacts of cancer diagnosis and treatment are closely entwined. Further development
of multimodal prehabilitation to cohesively address these is an important area for future research. Studies evaluating
exercise interventions are relatively unexplored in this patient population and the potential barriers to engagement
must be considered. Future research should aim to focus on complete and transparent reporting of interventions,

2

51 with input from those with lived experience, and adopting a standardised set of outcome measures reported across

52 all trials.

53 Key words - Prehabilitation, Gynaecology, Radiotherapy, Cancer, Gynaecological Cancer

54 Introduction

Radiotherapy is a mainstay in the treatment of gynaecological malignancies and may be given as a primary
treatment, in combination with chemotherapy, and in a neo-adjuvant or adjuvant setting e.g. for patients receiving
surgery [1]. Highly conformal external-beam radiotherapy and brachytherapy techniques have led to reduced
morbidity and mortality [2]. However, these treatments still impose a significant physiological and psychosocial
burden on patients [1,3].

60

61 Radiation-induced cellular death and injury, key to its anti-neoplastic mechanisms, cause adverse effects such as 62 urinary tract and gastrointestinal injury which may present as radiation cystitis, diarrhoea, frequency, urgency, 63 nausea, or bloating [1,2]. Whilst the acute toxicities generally resolve within 12 weeks of completing radiotherapy, 64 many patients experience chronic side-effects that persist months or years later [2,4]. Most radiotherapy side effects 65 are localised to the treatment area, yet fatigue is a commonly reported symptom that may occur acutely or persist 66 long-term [5]. Cancer-related fatigue is characterised by physical, emotional, and/or cognitive tiredness, exhaustion, 67 or weakness related to cancer and its treatment which can significantly alter daily living [5]. Disease and treatment-68 related burden can also profoundly impact a person's sexual well-being. Brachytherapy, a technique requiring the 69 insertion of an applicator into the vagina and uterus for prolonged periods, has been highlighted as a source of 70 trauma and distress for gynaecological cancer survivors resulting from factors such as pain, vulnerability, anxiety, 71 and loss of autonomy [6,7]. Unsurprisingly, the acute and chronic side-effects experienced by gynaecological cancer 72 survivors have a profound impact on quality of life, affecting important aspects such as intimacy, social activities, and 73 employment [3,8].

74

75 The period between diagnosis and treatments provides an opportunity for early engagement with prehabilitation
76 activities that are designed to optimise patients' physiological and psychological well-being and resilience [9]. Whilst

unimodal exercise regimens have been used by some prior to surgery, prehabilitation is ideally delivered via a
multimodal regimen comprising targeted exercise, nutrition and psychological interventions and support [9,10].

79

80 Prehabilitation benefits patients undergoing cancer surgery, including reduced complication severity and length of 81 hospital stay [11–13] and prehabilitation interventions for gynaecological cancer patients prior to surgery have been 82 explored in a recent scoping [14] and systematic review [15]. However, the evidence base for prehabilitation is highly 83 variable and there is a comparative dearth of research prehabilitation prior to non-surgical cancer treatments such 84 as radiotherapy [16]. Additionally, the term prehabilitation is not used ubiquitously in the literature and has only 85 become more frequently used in recent years [9] making it difficult to determine the true extent of the evidence 86 base relating to prehabilitation in this population. Unlike surgery, radiotherapy treatment may be given over a 87 period of weeks providing additional time for patients to participate in health optimising activities. As such, the 88 timing and duration for prehabilitation is less clearly defined in this population. Furthermore, chemotherapy, 89 surgery, radiotherapy, and the various combinations of these treatments all pose unique challenges that necessitate 90 tailored support meaning prehabilitation developed for surgical cohorts may not be the best approach for those 91 treated with radiotherapy [17]. Therefore, it is of interest to explore prehabilitation in the context of individuals with 92 gynaecological malignancies receiving radiotherapy. In particular, establishing (1) what prehabilitation interventions 93 are being delivered, (2) their underpinning rationale, (3) the point of delivery and duration of these interventions, 94 and (4) what outcome measures are being reported within the literature. The objective of this scoping review is to 95 provide a comprehensive overview of the current literature regarding prehabilitation interventions for 96 gynaecological cancer patients undergoing radiotherapy.

97

98 Methods

99 Scoping reviews are a form of evidence synthesis ideal for identifying and mapping the breadth of evidence available
100 for a given topic, clarifying key concepts and highlighting gaps in the literature [18]. They are particularly useful for
101 examining emerging evidence where it is less clear if more precise questions, such as those regarding efficacy, can be
102 asked and suitably addressed in a systematic review [19]. Unlike systematic reviews, the exploratory nature of a

4

103 scoping review allows for broader research questions and is not intended to assess effectiveness or validity of

104 studies [19].

105

106 The methodology for this scoping review was conducted following Joanna Briggs Institute (JBI) guidelines for scoping

- 107 reviews [20] and reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-
- 108 Analyses extension for Scoping Reviews (PRISMA-ScR) checklist [21] (S1 Checklist). The study protocol outlining the
- 109 objectives, inclusion criteria and methods was registered *a priori* with the Open Science Framework
- 110 (<u>https://osf.io/jgrv3</u>). This study was a scoping review of the literature and did not require ethical approval.

111

- Preliminary searches of the Cochrane Database of Systematic Reviews, Open Science Framework, JBI Evidence 112 113 Synthesis and Google were completed in December 2023 and no current or in-progress reviews on this topic for the specified patient population were identified. A subsequent search was conducted in January 2024, following the 114 identification of a recently published scoping review addressing prehabilitation for radiotherapy. However, this 115 review included studies evaluating prehabilitation in any adult patient undergoing radiotherapy, not limited by 116 tumour site, and there were no studies specifically addressing gynaecological cancer. The research questions and 117 inclusion criteria of this proposed review are sufficiently different to those addressed by Flores et al [22] to warrant a 118 119 further scoping review. 120
- 121 Inclusion/exclusion criteria

As advised for scoping reviews, the inclusion criteria was developed using the Population, Concept and Context (PCC)framework [20].

- 124
- We included prospective or retrospective studies that reported on or evaluated (1) prehabilitation for (2) adult (≥18
 years old), female patients with a gynaecological malignancy prior to or during radiotherapy, with or without
- 127 chemotherapy, (3) in any setting where care is provided or an intervention can be delivered to this population. We
- 128 defined prehabilitation as an intervention prior to or during radiotherapy where unimodal addressed either physical,
- 129 psychological or nutritional well-being and multimodal delivery was the combination of at least two different

categories, e.g. physical and psychological. Preliminary searches indicated there were only a small number of studies
evaluating multimodal interventions, as such the authors agreed that inclusion of unimodal prehabilitation
interventions was necessary to suitably address the research questions and explore the breadth of prehabilitation
literature in this population. Despite prehabilitation sitting within the broader context of health improvement, this
review did not include studies focused primarily on smoking cessation, alcohol reduction or medication
management, as they as are not encompassed by the primary prehabilitation interventions – tailored physical
exercise, nutritional support and psychological support.

137

138 Grey literature, conference proceedings, clinical trial protocols and records; and peer-reviewed qualitative, quantitative or mixed-methods publications, were all considered for inclusion. This breadth aligns with a scoping 139 140 methodology and was considered important to fully gauge the variety of studies evaluating interventions for this population and the various aspects of applying these clinically. Social media posts, animal studies, blogs, and 141 podcasts were excluded. Any relevant systematic or scoping reviews were excluded and hand-searched for primary 142 143 studies that met the above criteria. Sources were excluded if they were not available in English language due to limited resources available for translation. The authors agreed that sources evaluating prehabilitation interventions 144 in a broader population would be considered for inclusion if there was sufficient separation in the results for the 145 146 target population, in addition to ongoing clinical trials, as they could provide valuable insight to the review questions. 147

148

149 Search strategy

An initial search was conducted in Medical Literature Analysis and Retrieval System Online (MEDLINE) and
Cumulative Index to Nursing and Allied Health Literature (CINAHL) with an adapted version of the terms used by
Saggu *et al* [14]. The full search strategy was then developed using an analysis of text words contained within the
titles and abstracts of retrieved papers and any index terms used to describe the articles. This search strategy was
adapted and applied to each database including: Allied and Complementary Medicine Database (AMED) (Ovid);
British Nursing Index (BNI) (ProQuest); CINAHL (EBSCO); Cochrane library (Controlled trials and systematic reviews);
Embase (Ovid); MEDLINE (EBSCO); Psychological Information Database (PsycINFO) (EBSCO). Each search strategy was

6

- 157 then peer reviewed by a research librarian and modified according to feedback. A search for grey literature was also
- 158 conducted via Google Scholar, Overton.io, and Trip Pro Medical Database. Final searches were conducted in
- 159 February and October 2024 and full search strategies are available in the supplementary materials (S2 Table and S3
- **160** Table). Included sources and identified reviews were hand-searched for additional eligible articles.
- 161

162 Study selection

All identified records were uploaded to EndNote (Clarivate Analytics, PA, USA) and duplicates removed. The remaining abstracts were then uploaded to Rayyan (Qatar Computing Research Institute, Doha, Qatar) for title and abstract screening by the primary reviewer (EM) and the secondary screening was divided equally between two independent reviewers (ED and EW). The full-text screening for any potentially relevant sources were then screened in duplicate by the reviewers (EM, EW, ED or AON). Any conflicts were resolved by discussion between the relevant reviewers. A small number of sources (n=8) were unable to be uploaded to Rayyan, the title and abstracts of each source were reviewed against the inclusion criteria and were found not to be relevant to the review.

170

171 Data charting

172 Relevant data were charted using a standardised form developed for this study by a reviewer (EM). This data extraction form was developed in accordance with JBI guidance [20] and piloted across different sources by two 173 174 reviewers (EM and EW). Where multiple sources for the same studies were identified, the records were collated for data extraction to minimise risk of double counting [23]. A random sample (n=8) were then verified by independent 175 reviewers (ED or AON). Data items were extracted as published including: title, author, year of publication, 176 aims/purpose, population, study design, intervention type, comparator; and outcome measures, along with items 177 178 from the Template for Intervention Description and Replication (TIDieR) checklist [24]. In the case of ongoing trials, all data items were extracted from available clinical trial records or published study protocols including planned 179 intervention components and outcome measures. Authors were contacted for missing or additional information with 180 a subsequent follow-up email after a minimum of two weeks, as necessary. Critical appraisal of the quality of 181 included studies was not performed as this is not generally recommended for scoping reviews [19,21]. Data are 182 183 presented in tabular and diagrammatic formats accompanied by a descriptive summary in a manner that aligns with

- 184 the review objectives. Figures were prepared in GraphPad Prism 10 (GraphPad Software 2365 Northside Dr. Suite 560
- 185 San Diego, CA 92108) and the GNU Image Manipulation Programme (GIMP 2.10.38, gimp.org), unless otherwise

186 stated.

187

188 Results

189 Study selection and descriptive characteristics of the studies

The systematic search identified 8,921 records (Fig 1). Following deduplication in EndNote, 6,835 titles and abstracts
 were screened against the inclusion criteria. A total of 234 records were then further assessed for eligibility, 90 were
 included pertaining to 56 studies.

- 193
- 194

195

Fig 1. PRISMA flow diagram of study selection

- 196
- 197 The characteristics and details of the included studies are summarised in Tables 1-6. The 56 studies were categorised as multimodal (n=4) [25–33], physical/exercise (n=6) [34–42], psychological (n=22) [43–79], and nutritional (n=24) 198 199 [80–114]. The studies were conducted in Australia (n=4), Brazil (n=2), Canada (n=2), Chile (n=1), China (n=5), England (n=1), France (n=2), Finland (n=1), Germany (n=2), Italy (n=1), India (n=8), Japan (n=1), Republic of Korea (n=1), 200 Mexico (n=4), Myanmar (n=1), Norway (n=2), Spain (n=5), Sweden (n=2), Thailand (n=2), Turkey (n=1), and the USA 201 202 (n=8). Several ongoing clinical trials were included (n=10) [28,36,39,43,51,72,73,91,102,108] and the earliest included record was published in 1958 [104]. Sources included peer-reviewed journal articles (n=50), conference 203 abstracts (n=13), clinical trial records (n=20), peer-reviewed study protocols (n=4), a pre-print author manuscript 204 (n=1) and dissertations (n=2). Cervical cancer was the most highly represented gynaecological cancer type across 205 206 study populations, however, studies also included endometrial, uterine, vaginal, vulval, ovarian and fallopian tube 207 malignancies (Fig 2). 208
- 209

Fig 2. Number of studies including different gynaecological cancers by type.

Table 1. Characteristics of included completed studies.

Title (clinical trial	Author and	Source type	Country	Aims/purpose	Population	Study design
identifier)	year					
Multimodal		·				
ENhAncing Lifestyle Behaviors in EndometriaL CancEr (ENABLE): A Pilot Randomized Controlled Trial (ACTRN12619000631101)	Edbrooke et al (2019, 2020, 2022) [25,29,30]	Clinical trial record (2019) Conference abstract (2020) Peer-reviewed journal article (2022)	Australia	To assess the feasibility and safety of an allied health intervention during adjuvant treatment	Patients with endometrial cancer scheduled for adjuvant treatment (BT, external beam XRT or concurrent CXRT followed by adjuvant CTx) following surgery	Pilot RCT
Enhanced Recovery Pathway (ERP) in Patients Undergoing Brachytherapy for Gynecologic Cancer (GYN-BT)	Andring et al (2022a , 2022b, 2023) [26,31,32]	Conference abstracts	USA	To implement an ERP for patients with gynaecological malignancies, scheduled for brachytherapy, to standardise and optimise the peri- operative phase and evaluate the impact on patient experience	Patients with cervical cancer scheduled for BT	Single-arm interventional study (pre-post study)
Prehabilitation in Locally Advanced Cervical Cancer Patients Receiving Radiotherapy	Kaliamurthi et al (2022) [27]	Conference abstract	India	To assess the impact of prehabilitation on cervical cancer patients receiving XRT ± CTx on OTT, HRQoL and to assess the treatment related morbidity requiring hospital admission	Patients with locally advanced cervical cancer scheduled for XRT ± CTx followed by BT	Single-arm interventional study (pre-post study)
Physical/exercise						
Strengthening of Pelvic Floor Muscles for Incontinence in Cervical Cancer	Jagdish et al (2022) [38] Jagdish and Daptardar	Conference abstract (2022) Pre-print author	India	To analyse the effect of PFME on urinary incontinence in patients with cervical cancer	Patients with cervical cancer scheduled to undergo external beam XRT and BT	Single-arm interventional study (pre-post study)
Pre-rehabilitation of the pelvic floor before radiation	(2023) [42] Sacomori et al (2020) [35]	manuscript (2023) Peer-reviewed journal articles	Chile	To evaluate the influence of teaching PFMEs prior to external beam XRT or BT on pelvic floor muscle function	Patients with cervical cancer referred for curative XRT and/or BT	Single-arm interventional

therapy for cervical cancer: a pilot study	Araya-Castro et al (2020) [40]					study (pre-post study)
Prophylactic complex physiotherapy in gynecologic cancer survivors: patient- reported outcomes based on a lymphedema questionnaire	Daggez et al (2023) [34]	Peer-reviewed journal article	Turkey	To evaluate prophylactic complex physiotherapy in gynaecological cancer patients and the effect on patient-reported symptoms	Patients with gynaecological (Endometrial, ovarian, cervical, vulvar) cancer who underwent a lymphadenectomy and were recommended for prophylactic complex physiotherapy prior to adjuvant treatment (CTx, XRT, CXRT)	Cohort study
Exercise during treatment for advanced cervical cancer	Tórtola-Navarro (2023) [37]	Peer-reviewed journal article	Spain	To design an individualised physical activity (PA) programme to be delivered during treatment to test its feasibility and evaluate the impact on the patient's side effects, functional status and QoL	A patient with cervical cancer scheduled for CXRT and posterior BT	Case study
Psychological	1	1				1
A nurse led psychosocial intervention with peer support to reduce psychosocial needs in women with gynaecological cancer (ACTRN12609000312246)	Schofield (2009) [46] Bergin et al (2016) [69]	Clinical trial record (2009) Peer-reviewed journal article (2016)	Australia	To develop a nurse-led psychosocial intervention with peer support for patients with gynaecological cancers to address their psychosocial and psychosexual needs; reduce anxiety and symptom distress	Patients with gynaecological cancer scheduled for curative XRT	Pilot study
PeNTAGOn: A nurse- and peer-led psycho-educational intervention to support women with gynaecological cancers receiving curative radiotherapy (ACTRN12611000744954)	Schofield et al (2011, 2013, 2020) [48,49,68] Gough et al (2022) [47]	Clinical trial record (2011) Peer-reviewed study protocol (2013) Peer-reviewed journal articles (2020, 2022)	Australia	To evaluate the impact of a psychoeducational intervention at reducing distress in patients with gynaecological cancers receiving curative XRT	Patients with cervical, endometrial/uterine, vaginal, vulvar, ovarian, fallopian tube or other gynaecological cancers scheduled for external beam XRT, BT ± CTx, CXRT or a combination	RCT

A study to assess effectiveness of social support group among cervical cancer patients and their caregivers (CTRI/2019/07/020057)	Thakur (2019) [78] Thakur et al (2021) [61]	Clinical trial record (2019) Peer-reviewed journal article (2021)	India	To evaluate the effectiveness of a support group intervention on the levels of pain and fatigue experienced by cervical cancer patients	Patients with cervical cancer receiving CXRT	Quasi-experimental study with total enumeration sampling
A Randomized Controlled Trial on Pranayama and Yoga Nidra for Anxiety and Depression in Patients With Cervical Cancer Undergoing Standard of Care (CTRI/2022/02/040423)	Patil (2022) [77] Nuzhath et al (2024) [59]	Clinical trial record (2022) Peer-reviewed journal article (2024)	India	To evaluate the effect of pranayama and yoga nidra on levels of anxiety and depression in cervical cancer patients undergoing CXRT and BT	Patients with cervical cancer scheduled for CXRT and BT	RCT
A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and breast brachytherapy patients	León-Pizarro et al (2007) [60]	Peer-reviewed journal article	Spain	To determine the efficacy of a relaxation intervention including guided imagery at reducing anxiety and depression in patients with gynaecological or breast cancer receiving BT	Patients with breast or gynaecological cancer scheduled for BT	RCT
An effective group psychoeducational intervention for improving compliance with vaginal dilation: A randomized controlled trial	Jeffries (2002) [44] Jeffries et al (2006) [52]	Dissertation (2002) Peer-reviewed journal article (2006)	Canada	To evaluate the impact of a group psychoeducational sexual intervention on sexual health including compliance with vaginal dilation	Patients with cervical or endometrial cancer scheduled for XRT	RCT
Assessment of an onco- sexology support and follow- up program in cervical or vaginal cancer patients undergoing brachytherapy	Kpoghomou et al (2021) [70]	Peer-reviewed journal article	France	To evaluate the impact of an onco- sexology support and follow-up intervention on sexuality, late-effects and clinical monitoring	Patients with cervical or vaginal cancer scheduled for external beam XRT and BT	Retrospective cohort study
Effect of Foot Reflexology and Aromatherapy on Anxiety and Pain During	Blackburn et al (2021) [62]	Peer-reviewed journal article	USA	To determine if aromatherapy and reflexology impact levels of pain and anxiety during BT	Patients with cervical cancer scheduled for BT	RCT

Brachytherapy for Cervical						
Cancer Effect of guided imagery relaxation on anxiety in cervical cancer: randomized clinical trial (RBR-7ssvytb)	de Oliveira Santana et al (2021, 2023) [45,67]	Clinical trial record (2021) Peer-reviewed journal article (2023)	Brazil	To evaluate the effect of virtual reality image guided relaxation	Patients with cervical cancer scheduled for CXRT	RCT
Effectiveness of an Interventional Package on the Level of Anxiety, Depression, and Fatigue among Patients with Cervical Cancer (CTRI/2017/06/008732)	Kaur (2017) [79] Kaur et al (2018) [65]	Clinical trial record (2017) Peer-reviewed journal article (2018)	India	To evaluate the effect of an interventional package including progressive muscle relaxation, counselling and self-care techniques on levels of anxiety, depression and fatigue	Patients with cervical cancer scheduled for CXRT	Quasi-experimental study with total enumeration sampling
Effectiveness of Yoga Nidra in Mitigating Stress in Women Undergoing Curative Radiotherapy for Cervical Cancer	D'cunha et al (2021) [64]	Peer-reviewed journal article	India	To evaluate the effect of structured relaxation exercise through yoga nidra on stress levels	Patients with cervical cancer scheduled to receive CXRT	RCT
Effects of Integrated Music- Video Therapy on Pain and Anxiety During High-Dose- Rate Brachytherapy	Lim (2024) [71]	Peer-reviewed journal article	Republic of Korea	To examine the effect of an integrated music-video therapy on pain and anxiety levels experienced by individuals with gynaecological cancer at different stages of BT	Patients with cervical cancer receiving XRT (± CTx) and BT	Single group crossover study
Effects of mindfulness-based stress reduction on cervical cancer patients undergoing concurrent radiochemotherapy	An et al (2020) [63]	Peer-reviewed journal article	China	To evaluate the effect of mindfulness based stress reduction on side effects, self-perceived burden and QoL	Patients with cervical cancer scheduled for CXRT	Cohort study
Humanity Assurance Protocol in Interventional RadiotheraPY (HAPPY)	Lancellotta et al (2019, 2023) [50,76] Tagliaferri et al (2024) [58]	Peer-reviewed journal articles (2019, 2024) Conference abstract (2023)	Italy	To propose a series of suggestions and interventions to enhance patients' psychological well-being and evaluate their effectiveness when implemented	Patients with endometrial or cervical cancer scheduled for BT following surgery ± external beam XRT	Single-arm interventional study (pre-post study)

Impact of early institution of Palliative care on Quality of Life of patients with locally advanced cancer of the uterine cervix- A prospective randomized study EIPAQ- CX (CTRI/2017/05/008704)	Rai (2017) [75] Dey et al (2023) [57]	Clinical trial record (2017) Peer-reviewed journal article (2023)	India	To evaluate the feasibility and impact of an early palliative care intervention on QoL for cervical cancer patients undergoing radical CXRT	Patients with cervical cancer scheduled for radical CXRT and BT	Pilot RCT
Music Relaxation Video and Pain Control: A Randomized Controlled Trial For Women Receiving Intracavitary Brachytherapy For Gynaecological Cancer	Chi et al (2011, 2015) [56,74] Chi (2009) [66]	Conference abstract (2011) Dissertation (2009) Peer-reviewed journal article (2015)	USA	To evaluate the effects of music relaxation videos on pain, opioid use and anxiety in patients scheduled for BT	Patients with cervical cancer scheduled for BT	RCT
Preservation of Immune Function in Cervical Cancer Patients during Chemoradiation using a Novel Integrative Approach	Lutgendorf et al (2010) [54] Hart et al (2011) [55]	Peer-reviewed journal articles	USA	To evaluate the effects of healing touch therapy or relaxation training on immune cell activity, mood and QoL	Patients with cervical cancer scheduled for CXRT and BT	RCT
Regular counselling by an oncology nurse increases coping with side effects during outpatients radiotherapy of gynecological malignancies	Varre et al (1999) [53]	Conference abstract	Norway	To evaluate the effect of nurse administered counselling on anxiety, coping and QoL	Patients with gynaecological cancer scheduled for XRT	Pilot RCT
Nutritional	-					
A phase 2 randomized controlled trial of oral resistant starch supplements in the prevention of acute radiation proctitis in patients treated for cervical cancer	Sasidharan et al (2016, 2019) [98,99]	Conference abstract (2016) Peer-reviewed journal article (2019)	India	To evaluate the benefits of oral prebiotic amylase resistant starch in reducing the incidence of radiation proctitis in cervical cancer patients	Patients with cervical cancer scheduled for radical CXRT	Double-blind, RCT with placebo

A Randomized, Double-Blind Pilot Trial of Hydrolyzed Rice Bran versus Placebo for Radioprotective Effect on Acute Gastroenteritis Secondary to Chemoradiotherapy in Patients with Cervical Cancer (UMIN000004350)	Itoh et al (2015) [90]	Peer-reviewed journal article	Japan	To evaluate the radioprotective effect of hydrolysed rice bran on the severity of CXRT related acute gastroenteritis in cervical cancer patients	Patients with cervical cancer scheduled for CXRT ± BT	Double-blind, pilot RCT with placebo
Arginine, glutamine, and fish oil supplementation in cancer patients treated with concurrent chemoradiotherapy: A randomized control study	Chitapanarux et al (2020) [83]	Peer-reviewed journal article	Thailand	To evaluate the effect of arginine, glutamine and fish oil supplements on CXRT completion rates and toxicities	Patients with cervical, oesophageal or head and neck cancer scheduled for definitive or adjuvant CXRT	RCT
Changes of immune response and side effects before and after nutritional intervention in cervical cancer patients with concurrent chemoradiotherapy	Chen (2018) [114]	Peer-reviewed journal article	China	To investigate the impact of a targeted nutritional intervention on immune response and side effects in cervical cancer patients	Patients with cervical cancer scheduled for CXRT	Cohort study
Decreasing the Adverse Effects in Pelvic Radiation Therapy: A Randomized Controlled Trial Evaluating the Use of Probiotics (NCT02351089)	Ahrén et al (2023) [81]	Peer-reviewed journal article	Sweden	To evaluate the benefit of probiotics XRT-related GI side effects	Patients with cervical, corpus uteri, vaginal or vulval cancer scheduled for primary or adjuvant external beam XRT ± CTx	Double-blind, RCT with placebo
Dietary regime during radiation therapy for carcinoma of the uterus	Turner (1958) [104]	Peer-reviewed journal article	Australia	To describe the impact of a dietary regime on side effects and patient well-being	Patients with cervical cancer receiving external beam XRT and BT	Single-arm interventional (pre- post) study
Effect of an Anti- inflammatory Diet on Patients with Cervical Cancer (NCT03994055)	Cetina (2019) [112] J. Luvián-	Clinical trial record (2019) Conference abstract (2021)	Mexico	To compare the effects of an anti- inflammatory diet and a low residue diet on nutritional status and GI toxicity	Patients with cervical cancer scheduled for CXRT and BT	RCT

	Morales et al (2023) [94]					
Effect of Probiotics for the Prevention of Acute Radiation-Induced Diarrhoea Among Cervical Cancer Patients: a Randomized Double-Blind Placebo- Controlled Study (TCTR20170314001)	Linn et al (2019) [93]	Peer-reviewed journal article	Myanmar	To investigate the impact of a probiotic supplement in prevention of radiation-induced diarrhoea	Patients with cervical cancer scheduled for CXRT	Double-blind, RCT with placebo
Effectiveness of a nutritional intervention in the reduction of gastrointestinal toxicity during teletherapy in women with gynaecological tumours	Soto-Lugo et al (2017, 2018) [100,101]	Peer-reviewed journal articles	Mexico	To evaluate whether a dietary intervention low in oligosaccharides, disaccharides, monosaccharides and fermentable polyols reduces XRT- related acute GI side effects	Patients with cervical or endometrial cancer scheduled for radical or adjuvant external beam XRT ± CTx	RCT
Efficacy of ω-3 supplementation on nutritional status, skeletal muscle, and chemoradiotherapy toxicity in cervical cancer patients (NCT02779868)	Chaves (2016) [113] Aredes et al (2017, 2019) [92,103]	Clinical trial record (2016) Conference abstract (2017) Peer-reviewed journal article (2019)	Brazil	To evaluate the effect of ω-3 supplementation on body composition in cervical cancer patients receiving CXRT	Patients with cervical cancer undergoing CXRT who are at nutritional risk or are experiencing malnutrition	Triple-blind, RCT with placebo
Effect of inulin and fructo- oligosaccharide on the prevention of acute radiation enteritis in patients with gynecological cancer and impact on quality-of-life: a randomized, double-blind, placebo-controlled trial	García-Peris et al (2012, 2016) [86,87]	Peer-reviewed journal articles	Spain	To evaluate the effect of a fibre mixture containing inulin and fructo- oligosaccharide on GI toxicity and the effects of pelvic radiotherapy on intestinal microbiota	Patients with endometrial, cervical, uterine, vulval or vaginal cancer scheduled for external beam XRT and BT	Double-blind, RCT with placebo
Effects of Probiotic <i>Lactobacillus</i> <i>Casei</i> DN-114 001 in Prevention of Radiation-	Giralt et al (2008) [88]	Peer-reviewed journal article	Spain	To evaluate the impact of a probiotic drink on the incidence of XRT- induced diarrhoea	Patients with endometrial cancer scheduled for adjuvant XRT or cervical cancer patients scheduled for CXRT	Double-blind, RCT with placebo

Induced Diarrhea: Results						
From Multicenter,						
Randomized, Placebo-						
Controlled Nutritional Trial						
Efficacy of Glutamine in the	Vidal-Casariego	Peer-reviewed	Spain	To assess if glutamine has a proactive	Patients with endometrial,	Double-blind, RCT
Prevention of Acute	et al (2014)	journal article		effect for patients receiving pelvic	cervical or other	with placebo
Radiation Enteritis	[105]	-		XRT to reduce radiation enteritis	pelvic/abdominal malignancies	
(NCT00828399)					scheduled for XRT	
Effect of symbiotic	de Loera-	Peer-reviewed	Mexico	To evaluate the impact of synbiotic	Patients with cervical cancer	Double-blind, RCT
supplementation on fecal	Rodriguez et al	journal article		supplements on faecal calprotectin	scheduled for CXRT	with placebo
calprotectin levels and lactic	(2018) [85]			levels, bacterial DNA levels and GI		
acid bacteria, Bifidobacteria,				side effects		
Escherichia coli and						
Salmonella DNA in patients						
with cervical cancer						
Multicenter, Phase 3 Trial	Muecke et al	Peer-reviewed	Germany	To assess the impact of oral	Patients with cervical or	RCT
Comparing Selenium	(2010) [96]	journal article		selenium supplementation on	corpus uteri cancer scheduled	
Supplementation With				selenium levels and XRT side effects	for adjuvant external beam	
Observation in Gynecologic					XRT ± BT	
Radiation Oncology						
Phase II Study Assessing the	Craighead and	Peer-reviewed	Canada	To assess patients' compliance with	Patients with endometrial or	Quasi-experimental
Feasibility of Using Elemental	Young (1998)	journal article		an elemental dietary supplement	cervical cancer scheduled for	study
Supplements to Reduce	[84]			regime and its efficacy in preventing	adjuvant or radical external	
Acute Enteritis in Patients				acute radiation enteritis	beam XRT ± BT	
Receiving Radical Pelvic						
Radiotherapy						
Preservation of intestinal	Salminen et al	Peer-reviewed	Finland	To evaluate the impact of a dietary	Patients with cervix or uterine	RCT
integrity during radiotherapy	(1988) [97]	journal article		intervention including Lactobacillus	cancer scheduled for external	
using live Lactobacillus				acidophilus cultures on GI toxicities	beam XRT and BT	
acidophilus cultures						
Randomized controlled trial	Chitapanarux et	Peer-reviewed	Thailand	To evaluate the effect of an oral	Patients with cervical cancer	Double-blind, RCT
of live lactobacillus	al (2010) [82]	journal article		probiotic containing live lactobacillus	external beam XRT and BT	with placebo
acidophilus plus				acidophilus and bifidobacterium		
bifidobacterium bifidum in				<i>bifidum</i> on incidence and severity of		
prophylaxis of diarrhea				XRT-induced diarrhoea		

during radiotherapy in cervical cancer patients						
Repurposing Individualized Nutritional Intervention as a Therapeutic Component to Prevent the Adverse Effects of Radiotherapy in Patients With Cervical Cancer	Medina-Jiménez and Monroy- Torres (2020) [95]	Peer-reviewed journal article	Mexico	To evaluate the impact of a tailored nutritional intervention with counselling on weight change and GI toxicities	Patients with cervical cancer scheduled for XRT	Quasi-experimental study with a retrospective comparison group
The effect of selenium supplementation on the efficacy of concurrent radiotherapy for cervical cancer: a randomized, double-blind, placebo- controlled phase II clinical trial (ChiCTR2100043379)	Huang (2021) [89] Yang et al (2023) [106]	Clinical trial record (2021) Peer-reviewed journal article (2023)	China	To evaluate the safety and efficacy of selenium supplementation in reducing CXRT haematological toxicity	Patients with cervical cancer scheduled for primary CXRT and BT	Double-blind, RCT with placebo
The effect of a low fat, low lactose diet during pelvic radiotherapy	Bye et al (1992, 1993, 1995) [109–111]	Peer-reviewed journal articles	Norway	To evaluate the impact of a low fat, low lactose dietary intervention on nutritional status, GI toxicities and QoL	Patients with endometrial, ovarian or cervical cancer external beam XRT ± BT	RCT

Abbreviations: BT = brachytherapy, CTx = chemotherapy, CXRT = chemoradiotherapy, ERP = enhanced recover pathway, GI = gastrointestinal, HRQoL = health related quality of life, OTT = overall treatment time, PFME = pelvic floor muscle strengthening exercises, QoL = Quality of life, RCT = randomised controlled trial, XRT = radiotherapy

Table 2. Characteristics of included ongoing clinical trials.

Title (clinical trial	Author and	Source type	Country	Aims/purpose	Population	Study design	
identifier)	year						
Multimodal							
RadBone: bone toxicity	The Christie	Clinical trial record	England	To determine the feasibility and	Patients with endometrial or	RCT	
following pelvic radiotherapy	NHS Foundation	(2020)		acceptability of a musculoskeletal	cervical cancer undergoing		

(NCT04555317) Physical/exercise	Trust (Sponsor) (2020) [33] Grigoriadou et al (2022) [28]	Peer-reviewed study protocol (2022)	China	health package intervention and remote or in-person prehabilitation in women undergoing radiotherapy for gynaecological malignancies	curative or adjuvant radiotherapy	DCT
Early Intervention to Prevent Lower Limb Lymphedema of Gynecological Malignancy (NCT05793749)	Zou (2023)[39]	Clinical trial record	China	To evaluate the impact of prophylactic physiotherapy on the incidence of lymphoedema and QoL in patients with gynaecological cancers	Patients with gynaecological malignancies scheduled for adjuvant XRT following lymphadenectomy	RCT
Randomised Trial Evaluating the Benefit of a Fitness Tracker Based Workout During Radiotherapy (OnkoFit II) (NCT04517019)	Gani (2020) [41] Hauth et al (2021) [36]	Clinical trial record (2020) Peer-reviewed study protocol (2021)	Germany	To investigate the impact of an activity tracker-based fitness programme on cancer-related fatigue, QoL and pre-operative health status of patients undergoing radiotherapy	Patients with uterus cervix, lung, brain, head and neck, pancreatic, rectal or oesophageal cancer or sarcoma indicated for preoperative, definitive or postoperative CXRT	RCT
Psychological Impact of an Educational Physiotherapy-Yoga Intervention on Perceived Stress in Women Treated	Texier and Meignant (2024) [72]	Clinical trial record	France	To evaluate the impact of an educational physiotherapy-yoga intervention on perceived stress	Individuals with cervical cancer scheduled for BT with a stress level ≥3 (Visual analogue scale 0 to 10)	RCT
With Brachytherapy for Cervical Cancer (KYOCOL) (NCT06263283)						
Study Protocol for the Social Interventions for Support During Treatment for Endometrial Cancer and Recurrence (SISTER) study: a community engaged national randomized trial	Oluloro et al (2024) [73]	Peer-reviewed study protocol	USA	To determine whether virtual support interventions improve treatment completion, compare the efficacy of these interventions on the level of social isolation during cancer treatment amongst Black women with high-risk endometrial cancer, and evaluate the barriers and facilitators to social support delivery	Black/African American individuals with high risk endometrial cancer scheduled for adjuvant CTx, XRT or immunotherapy	RCT

				for patients, providers and cancer centre leaders		
Using Reiki Therapy to Improve Symptoms Associated With Brachytherapy in Patients With Gynecological Malignancies (Reiki-Brachy) (NCT05979610)	Burt (2023) [43]	Clinical trial record	USA	To evaluate the impact of reiki therapy on pain and anxiety in patients receiving BT	Patients with cervical, endometrial, vaginal or vulval cancer scheduled for BT	RCT
Yoga Therapy During Chemotherapy and Radiation Treatment for the Improvement of Physical and Emotional Well-Being in Patients With Stage IB2-IIIB Cervical Cancer (NCT04622670)	Ramondetta (2020) [51]	Clinical trial record	USA	To evaluate the effect of a yoga intervention during CXRT on physical and emotional well-being	Patients with gynaecological cancer scheduled for curative CXRT	RCT
Nutritional						
Dietary Fiber During Radiotherapy and Intestinal Inflammation - a Placebo- controlled Randomized Trial (FIDURA) (NCT04534075)	Steineck (2020) [102] Ahlin et al (2021) [80]	Clinical trial record (2020) Peer-reviewed journal article (2021)	Sweden	To investigate whether additional dietary fibre has benefits on long- term intestinal health for cancer survivors	Patients with a pelvic cavity tumour (including gynaecological cancer) scheduled for neoadjuvant or curative XRT	Double-blind, RCT with placebo
The Effects of Immunonutrition Therapy on the Nutritional Status, Immune Function, and Quality of Life of Locally Advanced Cervical Cancer Patients With Malnutrition: an Open-label Randomized Controlled Study (NCT06349148)	Shuang-Zheng (2024) [108]	Clinical trial record	China	To evaluate the effect of immunonutrition on individuals with cervical cancer treated with concurrent CXRT	Individuals with locally advanced cervical cancer undergoing XRT ± CTx with moderate or severe malnutrition	RCT

Time-Restricted Eating	Li (2023) [91]	Clinical trial record	USA	To evaluate the effect of time-	Patients with cervical or rectal	RCT
Versus Nutritional		(2023)		restricted eating on CXRT side effects	cancer scheduled for CXRT or	
Counseling for the Reduction	Eustace et al			compared to nutritional counselling	prostate cancer scheduled for	
of Radiation or	(2024) [107]	Conference abstract			XRT + androgen deprivation	
Chemoradiation Tx Side		(2024)			therapy	
Effects in Patients With						
Prostate, Cervical, or Rectal						
Cancers (NCT05722288)						

Table 3. Overview of the studies evaluating multimodal prehabilitation interventions using a modified TIDieR checklist.

Study	Why	What	Who	When and how much
ENhAncing	Patients have reported high levels of	Participants in the intervention group received a multi-	Dietician,	Pre-, during and post adjuvant
Lifestyle	distress and support needs.	disciplinary program of social support, lifestyle education,	physiotherapist and	treatment - initiation variable
Behaviors in	Endometrial cancer patients have	and behavioural change support.	social worker	as patients may be having BT,
EndometriaL	expressed a desire for additional		(with 5, 6, and	XRT or CXRT
CancEr (ENABLE)	support and monitoring as an	The program included 1:1 sessions on diet, PA, and weight	13 years of	
[25,29,30]	external motivation to successfully	management, starting with a face-to-face session and	oncology	8 weeks
	change health behaviours.	followed by remote sessions	rehabilitation	
			experience	Initial multi-disciplinary
	A low-cost allied health intervention	Individualised education was provided including home-based	respectively)	meeting (approx. 1.5 hours)
	has potential to improve outcomes.	PA programs, patient-centred nutrition goals, and behaviour		with weekly video or
	Positive association reported	change strategies. Optional tools included a pedometer,		telephone follow-ups (20-30
	between meeting physical activity	diary, and motivational text messages		minutes)
	guidelines and HRQoL			
		Social work intervention was tailored according to the		Recommended that
	Behaviour change strategies were	individual's needs and support service referrals were made		participants engage in
	based on HealthChange [®]	as necessary		moderate intensity exercise
	methodologies			for ≥10 minutes, working
		Participants were provided with the Cancer Council's		towards a goal of 150 minutes
	Intervention timing close to	educational booklet "Exercise for People Living with Cancer"		of aerobic exercise per week
	diagnosis during adjuvant treatment			
	to provide active coping strategies			

Enhanced Recovery Pathway (ERP) in Patients Undergoing Brachytherapy for Gynecologic Cancer (GYN-BT) [26,31,32]	and patients may be more open to making lifestyle changes ERPs in surgery has been shown the improve outcomes such as patient satisfaction and recovery times Gynaecological cancer patients who undergo CXRT and BT often have substantial recovery needs	Usual care participants received routine support, with referrals to social work or psychology if indicated but no structured weight management or exercise support Multidisciplinary interventions including: prehabilitation; early social work and psychiatry referrals; education; pre- operative carbohydrate loading; goal directed fluids based on individual patient output; preventative nausea control; and opioid-sparing multimodal analgesia	Multidisciplinary team including a radiation oncologist and anaesthetist	Covering the pre-, intra- and post-operative phases. Number of BT procedures variable depending on delivery of HDR (4-5 times), PDR (1-2 times) and individual patient factors.
Prehabilitation in Locally Advanced Cervical Cancer Patients Receiving Radiotherapy [27]	Prehabilitation intervention was introduced with the goal to enhance patient health and prevent or reduce treatment related impairments	Following baseline functional assessment, patients received physiotherapy, nutritional support and counselling	Not reported	Initiated 2 weeks prior to initiation of XRT until the end of treatment
RadBone: bone toxicity following pelvic radiotherapy [28,33] (ongoing study)	Patients treated with XRT are at risk of bone toxicity such as XRT-related insufficiency fractures There is significant cost, morbidity and mortality associated with osteoporotic fragility fractures Previous reports of the benefit of zoledronic acid administration prior to spinal XRT in reducing bone toxicity	Patients undergo a musculoskeletal health assessment and a prehabilitation exercise programme from Prehab4Cancer The tailored exercise regimen comprises RE-HIIT, progressive/continuous aerobic training, and resistance training targeting large muscle groups. Training zones are calculated using age-adjusted heart rate formulae. Nutritional support uses the PG-SGA screening tool, with patients receiving nutritional advice, weight monitoring, and referrals to dietitians, dependant on risk. Well-being support includes assessments like EQ5D, EORTC QLQ-C30, WHODAS, and Self-Efficacy Scale, with referrals to mental health services or liaison with clinical teams if necessary Bone health is evaluated using FRAX and baseline DEXA	Prehab4Cancer's exercise specialists receive training in nutrition, cancer rehab, and Sage and Thyme foundation communication skills Local instructors are Level 3 qualified or have Level 4 cancer or pulmonary rehab	Personalised exercise package during XRT, from initial assessment continuing for 12 weeks Bone health: Medium risk or above - calcium (1000 mg once daily) and vitamin D (800 IU/day) High risk - alendronate 70mg once weekly or annual intravenous zoledronic acid infusion
		scans, with treatments aligned with UK recommendations, including educational leaflets from the Royal Osteoporosis Society and supplements	qualifications and have shadowed	

Observational arm receives usual care and investigations	specialists in clinical settings	
--	-------------------------------------	--

Abbreviations: BT = brachytherapy, CXRT = chemoradiotherapy, DEXA = dual-energy x-ray absorptiometry, EORTC QLQ = European Organisation For Research And Treatment Of Cancer (EORTC) Core Quality of Life Questionnaire, FRAX = fracture risk assessment, HIIT = high-intensity interval training, XRT = radiotherapy, ERP = enhanced recovery pathway, HRQoL = health related quality of life, HDR = high dose rate, PA = physical activity, PG-SGA = patient generated subjective global assessment, PDR = pulsed dose rate, WHODAS = World Health Organisation Disability Assessment Schedule

Study	Why	What	Who	When and how much
Strengthening of	UI is an issue commonly experienced by	Participants received instruction using a pelvic model to	Not reported	Pre- during and post XRT
Pelvic Floor	cervical cancer patients potentially caused by	demonstrate pelvic floor muscle contractions. Repeat		
Muscles for	dysfunction PFM and neural controls	demonstrations were provided, and a pamphlet was		Period of 12 weeks
Incontinence in	influencing storage and voiding	offered based on patient preference.		beginning when patients
Cervical Cancer				came for their planning scar
[38]	XRT also causes actinic injuries contributing	The intervention included 4 PFMEs:		
	to PFM dysfunction	1) Kegel exercises 2) squeeze and release 3) pelvic		PFMEs performed 4x daily
		floor/inner thigh ball squeeze 4) lower trunk		(approx. 18-20 minutes for
	Prehabilitation with PFMEs to preserve or	rotation/lying hip rotation		the 4 exercises)
	increase PFM strength may prevent or			
	reduce UI	Daily follow-ups were conducted, and compliance was		
		tracked using a logbook.		
Early Intervention	Patients may develop lower limb	Prophylactic lymphoedema treatment with manual	Lymphoedema	Post-surgery, during XRT
to Prevent Lower	lymphoedema resulting from surgery and	lymphatic drainage, preventative compression stockings	therapist	
Limb	XRT. Lymphoedema is difficult to cure and	after each drainage, skin care and functional exercises.		Manual lymphatic drainage
Lymphedema of	has a significant impact on limb function,			2x weekly after the start of
Gynecological	psychological well-being and QoL	Control group to receive standard care		XRT (Total of 10 times).
Malignancy				Interval of at least 48 hours
(NCT05793749)	Long-term lymphoedema treatment can be a			but < 2 weeks
[39]	financial and psychological burden			
(ongoing study)				

Table 4. Overview of the studies evaluating unimodal physical exercise interventions using a modified TIDieR checklist.

	Evidence that early intervention with lymphatic drainage and exercise may prevent lymphoedema			Functional exercises 2x daily (approx. 15-20 minutes each time)
Pre-rehabilitation of the pelvic floor before radiation therapy for cervical cancer: a pilot study [35,40]	XRT is a risk factor for PFM dysfunction Rehabilitation treatments to reduce XRT impact include vaginal desensitisation, pelvic floor re-education and electrostimulation Limited evidence for the use of these in prehabilitation but there is evidence to support PFMEs to prevent UI	 Participants taught PFMEs during physical therapy session and provided with educational materials and pre- recorded audio instruction to continue at home Low contractions = 8 maximal voluntary contractions (6s each with a rest of 10s) One-second contractions = 8 maximal voluntary contractions followed by rest The "knack" = a voluntary precontraction of the PF prior to activities that increase intra-abdominal pressure 	Physical therapist specialising in oncology and pelvic floor rehabilitation	Pre-, during and post-XRT 30 minute session approx. 1 month pre-XRT instructed to perform 2x daily
Prophylactic complex physiotherapy in gynecologic cancer survivors [34]	Complex decongestive therapy is an effective and non-invasive technique but prophylactic use is not standard of care The exercises chosen were to enhance muscle function and increase lymphatic drainage by facilitating movement of the lymphatic fluid in the interstitial compartment to the lymphatic system	All patients were informed about lower extremity lymphoedema, preventive complex physiotherapy and skin care The physiotherapy included manual lymphatic drainage massage, a home exercise program (breathing and lower extremity exercises), and compression stockings. Patients who declined prophylactic physiotherapy formed the control group receiving usual care	Gynaecology oncologist and physiotherapists	Referred to the physiotherapy unit at first post-operative visit prior to adjuvant treatment (Pre- XRT) Duration not reported 5x per week
Exercise during treatment for advanced cervical cancer [37]	Patients with gynaecological cancers often present with cancer related fatigue, reduced cardiorespiratory capacity and lower activity levels PA is linked to improved health outcomes in cancer patients but there is a gap in evidence for PA during treatment and in cervical cancer patients Exercises were chosen to provide a full body workout with additional attention given to	During the familiarisation phase the trainer performed initial assessments, taught the exercise techniques and worked on postural control The exercise programme consisting of strength (supervised) and cardiorespiratory (unsupervised) training	Researcher with a background in in sports science, exercise physiology and nutrition	Pre-, during and post CXRT 2 week familiarisation period prior to CXRT, 6 week intervention finishing up to 2 weeks post-XRT 2x weekly strength training (7 exercises) -exercise prescription varied e.g. 2 sets of 8 reps per exercise an intensity of 3–1 RIR

	the lower limbs to reduce functional impairment			compared to 2 sets of 15 reps at 7–4 RIR post CTx
				Cardiorespiratory training was 90-180 minutes of walking weekly at 65-85% theoretical maximum HR
OnkoFit II (NCT04517019) [36,41]	PA is linked to improved HRQoL and has been shown to be feasible during XRT but further trials are required to optimise strategies and timing	Baseline step measurements form the basis of personalised weekly step goal Arm A: Exercise advice and educational booklet	Not reported	Pre-, during XRT Baseline steps for step goal calculated for approx. 7 days from consent to XRT
(ongoing study)	The goal is to test a PA programme that requires minimal resources and can be implemented easily into current workflow as 1:1 PA programmes have geographical and	Arm B: Exercise advice, booklet and activity tracker with no step goal Arm C: Exercise advice, booklet, activity tracker and		Arm A and B: 1.5 hours of moderate PA or 75 minutes
	resource limitations	personalised step goal calculated from baseline measurement and increased from previous week's		of strenuous PA weekly Arm C: as A and B but with
	Activity trackers are easy to use and provide real-time data that may improve self- awareness and motivation	average by 10% each week		additional weekly step goal up to 6000 steps during XRT
	6000-step threshold based on literature search indicating that a sedentary lifestyle was defined by this threshold			

Abbreviations: CTx = chemotherapy, HR = heart rate, HRQoL = health related quality of life, PA = physical activity, PFM = pelvic floor muscles, PFME = pelvic floor muscle exercise, QoL = quality of life, RIR = reps in reserve, UI = urinary incontinence, XRT = radiotherapy

Table 5. Overview of the studies evaluating unimodal psychological interventions using a modified TIDieR checklist.

Study	Why	What	Who	When and how much
A nurse led	Timely provision of self-care	Trained nurses led face-to-face or telephone	CNS and peers	Pre-, during and post- XRT
psychosocial	information for adverse effects is	consultations.	(gynae cancer	
intervention with	associated with better coping, reduced		survivors ≥2	Approx. 12 weeks
peer support to	fear of sexual intercourse and improved	Session 1: Patients had XRT facility tour followed by a	years post-XRT)	
reduce psychosocial	compliance with vaginal rehabilitation	consultation to address their top 3 concerns prior to XRT		3 nurse consultations (pre-
needs in women with		and coaching on self-care for side effects and stress	Both attended	treatment, mid-treatment,
gynaecological	Peer support can increase patient	reduction offered. Session 2: Discussion about XRT side-	relevant training	end-of-treatment) (approx.
cancer	satisfaction through addressing	effects and normalising fears. Coaching in interventions to	workshops	30-60 minutes)
[46,69]	patients' needs and providing	address adverse effects and optimising vaginal health.		
	psychosocial support	Session 3: Focus on vaginal health and psychosexual		5 peer support
		recovery including how to approach resuming sexual		consultations (phone) (pre-
	The nurse led intervention was	activity		treatment, mid-treatment,
	designed to address patients			end-of-treatment, 2 and 4
	psychosocial, psychosexual and physical	Peers matched by diagnosis, treatment, and age. Peers		weeks post-treatment)
	needs using tailored information to	offered psychosocial support, encouraged adherence to		
	improve recall and an orientation	self-care, and referred complex issues back to the		
	element based on evidence on	treatment team		
	preparing patients for potentially			
	threatening medical procedures			
PeNTAGOn [48,49,68]	Patients with gynae cancer undergoing	Session 1: XRT unit tour and consultation. Misconceptions	CNS and	Pre-, during and post- XRT
	XRT experience distressing side-effects	clarified, distress assessed, and controlled breathing	matched peers	
	that impact psychosocial functioning	exercises with positive self-talk taught. The nurse	(gynae cancer	4 nurse consultations -face-
	and relationship	discusses supportive care needs, vaginal health,	survivors ≥2	to-face/phone (pre-, mid-,
		psychosexual rehabilitation, menopause, and infertility.	years post-XRT)	end-of- and post-
	Comprehensive treatment preparation	Self-care coaching and tailored information are provided.		treatment) (approx. 30-60
	that addresses patients' informational,	Session 2: Focus on side effects and self-care strategies,	Both attended	minutes)
	physical and psychological needs may	including vaginal dilator use and PFMEs. Patient's	relevant training	
	reduce distress	treatment experience, fears, and peer call feedback are	workshops	4 peer-led support sessions
		assessed. Self-care barriers and stress-reduction strategies		– phone (pre-, mid-, end-
	Intervention based on pilot study and	discussed. Session 3: Addresses anxiety about XRT		of- and post-treatment)
	patient feedback	completion, ongoing issues, side effects, and resuming		(approx. 30 minutes)
		sexual activity. Provides survivorship care plan. Session 4:		
	Nurses use an XRT prompt sheet	Discusses post-treatment concerns, self-care barriers,		
	developed using the literature and	vaginal dilator use, and elicits any new concerns		

	patient/professional input as a guide to tailor the intervention	Peer provides psychosocial support and normalises patient's emotions and reactions. Encourage adherence to self-care		
		Usual care - regular assessments by a nurse and/or radiation oncologist throughout treatment		
A study to assess	Studies have shown cancer support	Groups formulated for patients (and their caregivers)	Not reported	During XRT
effectiveness of social support group among cervical cancer patients and their caregivers [61,78]	groups can improve QoL and coping The intervention protocol was validated by experts in nursing and radiation oncology then piloted with a small group	having XRT at a similar time Sessions discussed cancer, treatment, and management of XRT side effects. In the 3 rd session the group were taught stress management and relaxation strategies		30 minute meetings, 1x weekly for 3 weeks
		Comparison group received routine care		
A Randomized Controlled Trial on Pranayama and Yoga Nidra for Anxiety and Depression in Patients With Cervical Cancer Undergoing Standard of Care [59,77]	Yoga Nidra promotes deep relaxation, while Pranayama is a self-managed breathing practice suitable for all ages and genders to support physical and mental health	3 component yoga intervention: 1) breathing exercises, 2) Pranayama, 3) Yoga Nidra relaxation	Yoga professional	During XRT 30 minute yoga intervention, 2x daily, 5x per week for 6 weeks
A randomized trial of the effect of training in relaxation and guided imagery techniques in improving psychological and quality-of-life indices for gynecologic and	Psychological interventions such as relaxation and behavioural therapy have been effective in reducing the emotional and psychological burden associated with CTx and other medical procedures Relaxation is a low cost and accessible intervention	All patients informed about BT and discussed concerns Experimental group received additional relaxation and guided imagery training and were provided with a tape to use during BT. The recording instructed patients on full body relaxation and breathing techniques followed by guided imagery based on information provided by the patient prior to recording	Not reported	Pre- and during BT Intervention delivered 1-2 weeks prior to hospitalisation The first part of the intervention was 45-50 minutes. Experimental group received an additional training on

breast brachytherapy				relaxation and guided
patients [60]		· · · · ·	-	imagery
An effective group	XRT and other treatments can cause	Control group received a brief session on vaginal damage	Control – XRT	During and post-XRT
psychoeducational	significant changes to the vagina and	from XRT and use of dilators and lubricants, with partners	nurse or XRT	
intervention for	other distressing side-effects e.g.	allowed	technician	Control – 30 minute
improving	treatment induced menopause			session in last week of XRT
compliance with		The psychoeducational group participated in small groups	Experimental –	
vaginal dilation: A	Compliance with vaginal dilation and	sessions (excluding sexual partners) and a follow-up call to	Clinical	Experimental – 2 x 2 hour
randomized controlled trial	use of lubricants was hypothesised to reduce side-effects of XRT	problem solve unexpected issues relating to dilator use	psychologists and XRT	sessions over 1-2 weeks during XRT and a
[44,52]		Session 1: Introductions and goals overview. Covered	oncology nurse	telephone session 3 weeks
	Intervention was based on the	body image, cancer myths, female anatomy, XRT effects,		post-XRT
	information motivation behavioural	Kegel exercises, vaginal dilators, and menopause symptom		•
	skills model	control. Homework: practice Kegel exercises, use dilators		
		(if no contraindication), examine genitals with a mirror,		
	Time was made available during the	and pre-read Session 2 notes. Session 2: Reviewed		
	sessions for peer discussion on sexuality	homework and discussed dilator use and sexual		
	to help participants overcome	misconceptions. Addressed sexuality in later years, female		
	reservations relating to new behaviours	sexual response, radiotherapy and menopause effects,		
	(e.g. dilator use) and address concerns	resuming sexual activity, and normalising feelings.		
	about resuming sexual activity	Concluded with a wrap-up and resources on sexuality		
Assessment of an	XRT and BT can induce long-term	The experimental group received a 3-step sex therapy	A dedicated	Pre, during and post BT
onco-sexology	vaginal changes which can impact	support programme. Step 1: The nurse discusses BT	nurse with a	
support and follow-	patients' physical and psychosexual	service and collects personal details including details	degree in	3 sessions - at initial
up program in	well-being	relating to sex. Step 2: During hospitalisation, side-effects	sexology	consultation prior to
cervical or vaginal	wen being	of BT their impact on sexuality are discussed. Patients are	SCACIOBY	brachytherapy, during
cancer patients	Patients value their sexuality but it is	taught the concept of vaginal re-education and vaginal		hospital stay for BT and at
undergoing	rarely addressed during routine care	dilators. Step 3: Body image and sexual function are		2 month follow up
brachytherapy [70]	and follow-up	evaluated. Then importance of vaginal dilatation is		
brachytherapy [70]		reiterated		
		Control group received usual care including explanation of		
		BT side-effects and dilator use at the initial consultation		
		with their physician and hospitalisation		

Effect of Foot	Aromatherapy uses essential oils to	In the experimental group, practitioners introduce	2 mental health	During BT period
Reflexology and	create a mind-body connection,	themselves, explain reflexology and instruct the patient to	clinical nurse	
Aromatherapy on	releasing endorphins and serotonin.	focus on slow, deep breathing	specialist trained	During planning period
Anxiety and Pain	Reflexology stimulates neural pathways		in reflexology	after BT applicator
During Brachytherapy	to manage pain and enhance body	Each session begins with relaxation techniques, including		placement
for Cervical Cancer	function	ankle-loosening, range of motion exercises, metatarsal		
[62]		scrubbing, spinal stroking, and foot rocking. This is		5x total, 30 minutes per
	These safe and cost-effective methods	followed moderate pressure reflexology, focusing on key		reflexology session
	may complement conventional	reflex points. An essential oil diffuser is placed at the		
	treatments, potentially improving pain	patient's bedside, diffusing the chosen scent until		
	and anxiety	discharge		
Effect of guided	Relaxation techniques with guided	Relaxation and guided imagery using a VR technique was	Researcher –	During XRT
imagery relaxation on	imagery are low-cost, safe and easily	conducted in a private, quiet room. Individuals could	qualifications not	
anxiety in cervical	applied	choose an interactive video and were instructed on how	reported	3 x weekly (4 weeks, 12
cancer:		to use the equipment		sessions total)
randomized clinical	Utilises visualisation to promote			
trial [45,67]	neurophysiological responses and has	Step 1: initial relaxation. Step 2: controlled breathing and		Approx. 10 minutes per
	been shown to improve QoL and	muscle movements. Step 3: imagery with sensory		video
	physical and psychological well-being	guidance and alternating slow and deep breathing. Step 4:		
	when combined with drug treatment	focusing on their body and returning to normal		
		environment.		
	Simulation technology can provide			
	immersive and interactive experience	Control group received usual care		
Effectiveness of an	Guided imagery and muscle relaxation	The interventions utilised JPMR, counselling, self-care and	Researcher –	During XRT
Interventional	has been used during CTx to reduce	side effect advice	qualifications not	
Package on the Level	anxiety		reported	JPMR instructed 7x during
of Anxiety,		Comparison group received routine care		4.5 weeks of treatment
Depression, and	An interventional package was used			
Fatigue among	instead of a singular intervention to			Counselling 1 st and 3 rd
Patients with Cervical	better address the complex experience			week
Cancer [65,79]	of cervical cancer patients			
				Information booklet 1 st and
	The conceptual framework was Orem's			last week
	self-care deficit theory			

Effectiveness of Yoga	Yoga is effective in reducing	Intervention group received in-person teaching followed	Principal	Pre- and during XRT
Nidra in Mitigating Stress in Women Undergoing Curative	physiological and psychological stress Yoga Nidra is easy to learn and requires	by independent practice using pre-recorded verbal instruction	investigator - Yoga practitioner	Initial 23 minute taught session pre-XRT
Radiotherapy	no asanas so is less physically strenuous	Individuals learn to actively alter their states of		
for Cervical Cancer	for cancer patients and can be practiced	consciousness and respiratory rate. The practice involves		Relaxation exercises 2x
[64]	safely without supervision	steps such as relaxation, setting a resolve, rotating		daily, 5x per week for 4
		consciousness through the body, breath awareness, image		weeks (duration of XRT)
Effects of Integrated		visualisation, and repeating the resolve	Deserveher	During DT
Effects of Integrated Music-Video Therapy	Music therapy has been reported to relieve pain and anxiety in individuals	The video was projected onto the ceiling to allow the individuals to watch whilst lying on the therapy bed	Researcher monitored	During BT
on Pain and Anxiety	with cancer and painful procedures	individuals to watch whilst lying on the therapy bed	participant	Individuals were
During High-Dose-		Music selected according to the participant's preference	remotely during	randomised to receive the
Rate Brachytherapy	Previous research has suggested that	of genre was run simultaneously with the video	therapy	music therapy during
	integrated music-video therapy is more			sessions 1-3 or 4-6 of BT
	effective at distracting participants from	Participants were provided with headphones and could	Video production	
	pain than music therapy alone	control volume	specialist	Music played for
			involved in video	approximately 40 minutes
	Music-video therapy is a non-invasive	Genres included folk, Christian (classic and contemporary),	selection and	(beginning – end of BT
	approach that can be administered	Buddhist hymns, pop, Korean trot, ballads, Korean traditional and meditation	content validity	session)
	easily and safely in a BT environment			
	Nature videos were chosen based on			
	previous research suggesting watching			
	natural scenery reduces anxiety and			
	stress			
	Songs were chosen based on each			
	participant's preference due to			
	suggestion in the literature that tailored			
	music is more effective than generic			
Effects of	Patients with cervical cancer often	In addition to the usual nursing care, the observational	Not reported	During XRT
mindfulness-based	experience significant physical and	group engaged with mindfulness based relaxation, each		
stress reduction on	psychological burden associated with	week reviewing the previous week's work and daily		6 weeks, 2 hour in-person
cervical cancer	illness and treatment	practice at home		session and daily at-home
patients undergoing				practice

concurrent radio- chemotherapy [63]	Mindfulness based relaxation has been shown to have a positive impact on negative emotions, self-perceived burden, sleep and CRF	Week 1: Patients introduced, taught mindfulness-based stress reduction including mindful breathing and discussed any doubts. Week 2: Practiced meditation with classical music, reflecting on feelings. Homework: As previous + meditation exercises. Week 3: Practiced body scan techniques with classical music, focusing on sensations Week 4: Practiced walking meditation with classical music, focusing on body movements and ground contact. Week 5: Taught eight-sectioned exercises. They practiced the first 3 sections, noting changes in emotions and sensations. Week 6: Practiced emotional regulation through meditation and mindful breathing		Teaching hours: Monday- Saturday at 2 different times. Patient choice of hours depending on their capacity
Humanity Assurance Protocol in Interventional RadiotheraPY (HAPPY) [50,58,76]	Diagnosis and treatments such as BT can induce significant anxiety and distress Each recommendation/ intervention addresses an identified cluster of needs/issues expressed by patients in a preliminary study	During BT patients could select music, videos, paintings, psychological support and/or prescription anxiolytics as necessary. Information booklets with FAQs were given prior to BT. Reassuring and familiar terms were used frequently. External genital depilation was done at home. A bladder catheter was fitted shortly before the procedure to minimise in-situ duration and discomfort. An operator was present during positioning and plan optimisation using proximity and touch for reassurance and minimise feelings of isolation	Multiprofessional group including oncologist and RT technician	Pre- and during BT
Impact of an Educational Physiotherapy-Yoga Intervention on Perceived Stress in Women Treated With Brachytherapy for Cervical Cancer (KYOCOL) (NCT06263283) [72] (ongoing study)	Individuals with cervical cancer undergoing BT are at risk of experiencing increased anxiety Yoga is a mind-body practice that can reduce stress in individuals with cancer Recent literature review indicates need for more non-pharmacological interventions to support patients receiving BT Previous research has demonstrated feasibility of a physiotherapy-yoga	The control group will receive standard care according to their centre (psychological support, physiotherapy and dietetic input can be suggested as necessary) The experimental group receive yoga sessions supervised by a physiotherapist Option for patient to also continue to practice using the educational tools provided	Physiotherapist	During and post-BT Sessions at 3 timepoints during the course of BT Optional additional autonomous practice throughout treatment and up to 15 days post-BT

	intervention with patient education for individuals with breast cancer			
Impact of early institution of palliative care on	Early integration of palliative care has been used for some patients to address important issues and facilitate shared-	Patients attended palliative care clinic at pre-, during, post-XRT in addition to additional visits as required by the patient	Palliative care team including palliative care	Pre -, during and post XRT/BT
quality of life of	decision making to reduce the physical		doctor, nurse and	Referred pre-XRT, clinic
patients with locally advanced cancer of the uterine cervix - EIPAQ-CX [57,75]	and psychological burden experienced by patients	The team managed physical symptoms and provided individual counselling sessions to the patient and their caregiver at their clinic or home where required	a social worker	sessions and every 2 weeks during XRT, additional care during weekly XRT review, a session post-XRT/pre-BT,
		Caregivers were also educated on prognosis and optimal home-based care strategies		a session 6 weeks post-BT and 3 months post-BT
Music Relaxation Video and Pain	Auditory stimulation can engage neurological pathways to lower pain	Experimental group participants selected a music relaxation video to watch during BT. The video options	Music therapist selected initial	During BT
Control: A	perception	provided were selected with attention given to harmonic	videos for the	Each video was 30 minutes
Randomized Controlled Trial For		consonance and tempo, the visual element consisted of	patient to choose	and shown to the patient
Women Receiving	Music should have a slow, stable rhythm, low-frequency tones, and	peaceful images	from	at 4 intervals (total 120 minutes)
Intracavitary Brachytherapy For	soothing melodies for anxiety reduction	For each session the video was started shortly before the BT pulse began and was played without interruption	Videos played in the patient's	Intervention delivered on
Gynaecological	Effective therapeutic music should be		room observed	2 nd day as inpatient at 9am,
Cancer [56,66,74]	played for 20-30 minutes, twice daily		by the investigator	1pm and 5pm then on day 3 at 9am
	Combining music with visual arts			
	enhances pain reduction			
Preservation of	Biofield therapies, e.g. HT, may affect	The experimental group received HT sessions including: 1)	3 nurses certified	During CXRT
Immune Function in	disease processes by inducing	grounding and centring to support healing and immune	healing touch	
Cervical Cancer	relaxation, which reduces stress	function, 2) pain drain to reduce energy congestion and	practitioners	HT (20-30 minutes) or
Patients during	responses and enhances immune	detoxify the liver, 3) chakra connection to balance energy	Delevation	relaxation (20-25 minutes)
Chemoradiation	function	centres, 4) magnetic unruffling to clear congested energy	Relaxation	interventions were done 4x per week after each XRT
using a Novel Integrative Approach	HT aims to restore energy balance,	and distress, and 5) mind clearing for relaxation and focus. Some techniques involved physical touch.	therapy was delivered by 3	session on non-
[54,55]	facilitating self-healing through a caring	Some techniques involved physical touch.	primary	chemotherapy days
[3-7,33]	relationship between practitioner and	The relaxation therapy control group received sessions	therapists	chemotherapy days
	patient	guided by staff using scripts for progressive relaxation,	(trained research	
		autogenic relaxation, and imagery-based relaxation	assistant or	

	Limited research suggests reductions in		graduate	
	pain, distress, fatigue, and improved	The additional control group received usual care	students)	
	QoL particularly in cancer patients			
Regular counselling	Not reported	In the experimental group patients and their relatives	Oncology nurse	During XRT
by an oncology nurse		received a nurse-led counselling session including		3x 60 minutes sessions
increases coping with side effects during		discussion of XRT-related side effect, sexuality and		3X 60 minutes sessions
outpatients		psychosocial concerns		
radiotherapy of				
gynecological				
malignancies [53]				
SISTER [73]	In the USA, Black women are at an	The enhanced usual care group receive information on	Facilitated	Pre and during treatment
5151 EIX [75]	increased risk of being diagnosed with	local support groups recommended by The National	support group: a	(XRT, CTx or
(ongoing study)	high-risk endometrial cancer and	Comprehensive Cancer Network. Written materials are	trained ECANA	immunotherapy)
(ongoing study)	experience poorer overall 5-year	from the ECANA relating to coping with side effects and	peer supporter	initiatiotiterapy)
	survival rates	establishing support structures and healthy behaviours	and a co-	Facilitated support group:
		during treatment	facilitator (a	weekly meeting
	Social isolation contributes to poor		professional	weekly meeting
	overall survival in individuals with		trained in either	1:1 peer support: calls are
	cancer and is an identified sub-issue	The facilitated virtual support group will include group	nutrition,	no more frequent than 1x
	within distress	conversation and structured topics (e.g. side effects,	psychotherapy,	weekly and no less
		nutrition, mental wellbeing, finances and family dynamics)	cognitive	frequent than 1x every 3
	Black women with cancer are at an	with facilitated discussion relating. The topics will be	behavioural	weeks (allows for
	increased risk of social isolation due to	consistent between each group	therapy, or	treatment schedule
	systemic and structural stressors		medicine)	variation)
	,	The peer support group receive 1:1 sessions via telephone		
	Previous research suggests	timed to be close to or during a treatment visit. Session	Peer support:	
	interventions such as culturally relevant	content is tailored to the needs of the individuals and	ECANA peer	
	peer support groups can be effective in	focuses on social support	supporter	
	reducing social isolation in Black			
	women with breast cancer			
	The intervention arms were developed			
	using a multi-level process including a			
	systematic review of relevant literature			
	and input from multiple stakeholders			

Using Reiki Therapy to Improve Symptoms Associated With Brachytherapy in Patients With Gynecological Malignancies (Reiki- Brachy) [43] (ongoing study)	Reiki is an energy healing practice with the goal to promote relaxation and physical, emotional and spiritual well- being	In a quiet clinic room with calming music and optional aromatherapy, the Reiki therapist places their hands on or near the patient's body, using various hand positions to align with energy centres. The therapist channels energy into the patient, who may feel warmth, tingling, or relaxation. Techniques include different hand movements and visualisation	Reiki therapist	During BT 1 session between placement of BT device and first treatment
Yoga Therapy During Chemotherapy and Radiation Treatment for the Improvement of Physical and Emotional Well-Being in Patients With Stage IB2-IIIB Cervical Cancer (NCT04622670) [51]	Yoga practice promotes mind-body connection through meditation and controlled breathing	Patients in the intervention group attend yoga classes throughout CXRT followed by a yoga manual and video post-treatment The waitlist control group receive usual care and are offered group yoga classes 3 months post-CRT	Yoga therapist with 10+ years' experience	During CXRT 2 x 60 minute classes per week, 5-6 weeks, up to 15 classes during CXRT

Abbreviations: BT = brachytherapy, CNS = cancer nurse specialist, CRF = cancer-related fatigue, CTx = chemotherapy, CXRT = chemoradiotherapy, ECANA = Endometrial Cancer American Network for African-Americans, FAQ = frequently asked questions, HT = healing touch, JPMR = Jacobson Progressive Muscle Relaxation, PFME = pelvic floor muscle exercise, VR = virtual reality, XRT = radiotherapy

Table 6. Overview of the studies evaluating unimodal nutritional interventions using a modified TIDieR checklist.

Study	Why	What	Who	When and how much
A phase 2	Acute radiation proctitis, occurring during or soon	The experimental group were given high-	Study	During XRT
randomized	after XRT, is due to epithelial and vascular	amylose maize starch, containing a high	dietician	
controlled trial of	damage, while chronic radiation proctitis	proportion of amylase-resistant starch	supervised	30g of experimental or placebo
oral resistant starch	manifests months or years later, characterised by		administration	starch mixed with 150ml of liquid
supplements in the prevention of acute	ischemia and bleeding	Control group received a placebo containing commercially available maize starch	of the starch	2x daily for 6 weeks (duration of XRT + BT)
radiation proctitis in	Reducing rectal dose may reduce toxicity but can			ARI + BI)
patients treated for	be difficult with conventional XRT in low-income	Both were mixed with water or milk		
cervical cancer	countries			
[98,99]	countries			
[90,99]	Increasing amylase-resistant starch intake can			
	boost colonic butyrate, beneficial for gut health.			
	High-amylose maize starch is hypothesised to			
	prevent radiation proctitis by increasing colonic			
	butyrate production, thus reducing inflammation			
	and aiding mucosal healing			
A Randomized,	Animal studies indicate HRB significantly reduces	The experimental group received HRB	Not reported	Pre- and during XRT
Double-Blind Pilot	inflammation in colitis models. It may also inhibit		notreported	
Trial of Hydrolyzed	mast cell degranulation and cytokine production	Control group received a dextrin based placebo		3 packets of HRB (1g of HRB per
Rice Bran versus				packet) or placebo 3x daily,
Placebo for	A human study has suggested potential anti-			starting up to 1 week pre-CXRT
Radioprotective	inflammatory benefits			until the end of XRT
Effect on Acute	,			
Gastroenteritis	HRB may reduce the effect of XRT-related			
Secondary to	intestinal inflammation			
Chemoradiotherapy				
in Patients with				
Cervical Cancer [90]				
Arginine, glutamine,	CXRT related toxicities may result in poor	The standard diet group received nutritional	Dietician,	During XRT
and fish oil	outcomes due to unplanned breaks, increased	counselling throughout XRT with a calorie and	nurse and a	
supplementation in	overall treatment time and incomplete treatment	protein recommendation	doctor	Nutritional formula of fat 28.5
cancer patients				g/L from corn oil, medium chain
treated with				triglyceride, and fish oil and

concurrent	Supplements including arginine, glutamine, and	The experimental group received arginine,		protein 61.5 g/L from casein,
chemoradiotherapy:	omega-3 fatty acids may improve immune health	glutamine, and fish oil		arginine, and glutamine
A randomized	and have been linked to reduced post-operative	supplementation through formula and sachets		
control study [83]	complications in some cancer patients			2 glasses per day (1 glass = 250
				mL: 250 kcal), 1 hour pre- and
				post-XRT session and supplement
				sachets over the weekend
Changes of immune	Nutritional status can impact CXRT toxicities	The comparison group received standard	Not reported	During and post-XRT
response and side		nutritional support e.g. avoiding foods with a		
effects before and		high fat content		Started at the same time as CXRT
after nutritional				until 1 week post-treatment
intervention in		The intervention group were assessed and		
cervical cancer		treated according to nutritional status –		Malnourished group
patients with		patients with a good nutritional status were		recommended 84-126 kJ/(kg-d),
concurrent		advised to continue regular diet, whereas		15-20% protein, 25-30% fat and
chemoradiotherapy		patients with suspected or confirmed		50-60% carbohydrates
[114]		malnutrition were given tailored nutritional		
		advice including calorie and macro goals		
Decreasing the	Germ-free mice resist radiation enteritis,	HDP and LDP groups given capsules containing	Not reported	Pre-, during and post- XRT
Adverse Effects in	suggesting gut microbes affect radiosensitivity	Lactiplantibacillus plantarum HEAL9 and		
Pelvic Radiation		Lactiplantibacillus plantarum 299 with		2 capsules daily from 1-2 weeks
Therapy: A	Increasing lactobacilli intake in experimental	maltodextrin filler		pre-XRT until 2 weeks after XRT
Randomized	animals reduces bacterial translocation and			(XRT 23-26 days)
Controlled Trial	inflammation	Control group given placebo capsules		
Evaluating the Use of		containing cornstarch		1:1 bacterial strain -total dose of
Probiotics [81]	Probiotics may enhance mucous production,			1
	improve barrier function, and modulate	An appointment was scheduled halfway		× 10 ¹⁰ CFU/capsule (LDP) or 5
	microbiota, potentially preconditioning the gut to	through XRT to remind patients to take the		× 10 ¹⁰ CFU/capsule (HDP)
	be resistant radiation-induced injury	product and fill out the daily GI health diary		
FIDURA [80,102]	Based on the hypothesis that increased dietary	All participants given dietary advice including	Dietician	Pre-, during and post-XRT
	fibre during XRT may reduce long-term GI issues	recipes and fibre goal		
(ongoing study)	by maintaining intestinal mucus layers and			16g of dietary fibre from food
	preventing gut-wall starvation, which otherwise	Experimental group receive additional fibre via		
	may lead to inflammation and chronic conditions	psyllium husk capsules		5.5g of additional dietary fibre in
				psyllium capsules

	Mobile applications are easily accessible for patients and facilitate direct transfer of individual nutritional data for analysis	Control group receive placebo capsules containing maltodextrin with no additional fibre		15 capsules (5 x 3) daily from 2 weeks pre-XRT until 4 weeks post -XRT
	Capsules given instead of powder for palatability	Use mobile application to track dietary fibre		
Dietary regime during radiation therapy for carcinoma of the uterus [104]	Diet designed to reduce faecal residue during BT to avoid disturbing treatment due to bowel motions The bland, low-fibre diet to reduce irritation of the bowel due to XRT-related inflammation	Patients received LRD during BT followed by an increased but bland, low-fibre diet	Not reported	Pre-, during XRT/BT and post-XRT LRD 2 days before BT and until radon source removed (approx. 6-12 days) Bland, low-fibre diet for 4 weeks until end of XRT and resolve of acute side effects Daily intake of 2000 calories with 90g of protein
Effect of an Anti- inflammatory Diet on Patients with Cervical Cancer [94,112]	GI toxicities can leave patients at risk of malnutrition and micronutrient deficiencies Probiotics have shown anti-inflammatory effects in inflammatory bowel disease, while micronutrients and trace elements offer antioxidant and immune-modulating benefits during intestinal inflammation. These may reduce inflammation and symptoms in PRD LRD is used to reduce XRT-induced diarrhoea but does not prevent malnutrition	Control group following LRD Experimental group following AID including foods containing immune modulating ingredients e.g. Omega-3 fatty acids, antioxidants, soluble fibre and probiotics In-person and written dietary advice individualised according to comorbidities and given with consideration of food accessibility in their home area	Nutritionists	Pre-, during and post CXRT and BT 5 appointments: 2 weeks prior to treatment, at the start of CXRT, during the 3rd cycle of CTx, at the end of BT and 3 months after completion AID = 28-31 kcal/kg/day, based on 30-40% fat, 20% protein, and 40-50% carbohydrates LRD = 28-31 kcal/kg/day, based on 20% fat, 20% protein, and 60% carbohydrates, ≤20g fibre and ≤5g of lactose
Effect of Probiotics	Research suggests that probiotic supplementation	All participants received a pamphlet with	Not reported	During XRT
for the Prevention of	may prevent or reduce RID	standard dietary recommendations		5

Acute Radiation-				1 capsule 3x daily for the
Induced Diarrhoea	Potential mechanisms, include correcting	The intervention group received capsules		duration of XRT (5 weeks)
Among Cervical	dysbiosis, reducing intestinal inflammation and	containing Lactobacillus acidophilus LA-5		
Cancer Patients: a	apoptosis, upregulating the gut immune	plus Bifidobacterium animalis subsp. lactis BB-		
Randomized Double-	response, and aiding lactose digestion	12		
Blind Placebo-				
Controlled Study [93]	Lactobacillus and Bifidobacterium are commonly	Control group given placebo capsule containing		
,	used strains in previous studies	starch		
Effectiveness of a	GI toxicities can impact nutritional status, QoL	Control group followed standard Mexican diet	Not reported	During XRT
nutritional	and may cause patients to suspend or discontinue			
intervention in the	XRT resulting in poor outcomes	Experimental group followed FODMAP diet		Duration of XRT (approx. 5-6
reduction of		using a nutritional guide		weeks)
gastrointestinal	FODMAP diet modifies factors that influence			
toxicity during	radiation-induced enteropathy such as regulation			
teletherapy in	of intestinal motility, reduced lactose intake and			
women with	osmotic agents			
gynaecological				
tumours [100,101]				
Efficacy of ω -3	Weight and skeletal muscle loss are associated	All participants received an isocaloric	Lead	During CXRT
supplementation on	with unfavourable outcomes e.g. high risk of	nutritional supplement due to being at	investigator -	
nutritional status,	toxicity	nutritional risk	dietician	4 capsules (total 2.5g of omega-3
skeletal muscle, and				– 2g EPA + 450mg DHA OR 2.5g
chemoradiotherapy	ω -3 has been associated with modulating the	Control group received capsules containing		olive oil) daily for duration of
toxicity in cervical	inflammatory response, promoting appetite, and	olive oil		CXRT (average 45 days)
cancer patients	preservation of body weight and skeletal muscle			
[92,103,113]	mass	Experimental group received capsules		
		containing ω -3 (EPA and DHA)		
Effect of inulin and	Bifidobacterium and Lactobacillus bacterial	Control group received a maltodextrin placebo	Not reported	Pre-, during and post-XRT
fructo-	strains offer benefits such as pathogen growth			
oligosaccharide on	inhibition	Experimental group received a fibre mixture		Prebiotics started 1 week pre-
the prevention of		(inulin and FOS)		XRT until 3 weeks post-XRT
acute radiation	Rectal biopsies from pelvic RT patients show			
enteritis in patients	intestinal damage, potentially exacerbated by			6g 2x daily of fibre mixture (1:1
with gynecological	microbiota changes			inulin:FOS) or placebo in 200ml
cancer and impact				of water
on quality-of-life: a				

randomized, double- blind, placebo- controlled trial	Carbohydrates, e.g. inulin and FOS, may stimulate the proliferation of healthy bacteria			
[86,87] Effects of Probiotic Lactobacillus Casei DN-114 001 in Prevention of Radiation-Induced Diarrhoea: Results From Multicenter, Randomized, Placebo-Controlled Nutritional Trial [88]	XRT damages basal epithelial cells, impairing the epithelium's renewal capacity Oral probiotics have shown effectiveness in conditions like gastroenteritis Probiotic efficacy varies by strain, with <i>Lactobacillus casei</i> providing significant functional benefits The probiotic strain DN-114 001 has improved	Participants received a fermented liquid yoghurt containing <i>L. casei</i> DN-114 001, + standard starters <i>Streptococcus thermophilus</i> and <i>Lactobacillus delbrueckii</i> subsp. Bulgaricus (experimental), or a matching sterilised placebo Dietary guidelines, including lists of allowed and restricted foods were given. Fermented yoghurts and other dairy products were prohibited, but other dairy-derived foods were	Not reported	Pre- and during XRT 1 week pre-XRT and throughout treatment course Intervention group received 96ml 3x daily containing 108 CFU/g of <i>L. casei</i> DN-114 001, in addition to the standard starters OR same amount of sterilised product
Efficacy of glutamine	inflammation markers in patients with chronic inflammatory bowel diseases Glutamine supports intestinal health, serves as a	allowed Participants received a powder to be dissolved	Dietician	Pre- and during XRT
in the prevention of acute radiation enteritis: a randomized controlled trial [105]	precursor to the antioxidant glutathione, modulates immune responses, and aids in cell protection and apoptosis regulation Studies on its efficacy in preventing ARE have shown mixed results	in water of either oral glutamine (experimental) or whole casein (placebo) Participants with kidney disease were advised to adjust their protein intake with consideration of the added contribution from	Dietician	3x 10g sachets daily dissolved in 200ml of water beginning 3 days pre-XRT until completion
	The selected dose of glutamine follows previous studies involving XRT and chemotherapy	the study product		
Effect of symbiotic supplementation on fecal calprotectin levels and lactic acid bacteria, Bifidobacteria, Escherichia coli and Salmonella DNA in	Synbiotics, containing prebiotics and probiotics, promote health benefits including immunomodulation and intestinal integrity maintenance. Prebiotics like inulin and oligofructose stimulate beneficial bacteria growth, inhibiting pathogenic bacteria and reducing inflammation	Patients received a gel containing either a synbiotics mixture of <i>Lactobacillus acidophilus</i> NCFM, <i>Bifidobacterium lactis</i> Bi-07 and blue agave inulin (experimental) or a placebo Diet was monitored every 15 days to ensure no diet modifications were done throughout the intervention	Supervised by nutritionists	During XRT Synbiotic contained: 1 x 107 colony-forming unit (CFU)/g biogel of Lactobacillus acidophilus NCFM, Bifidobacterium lactis Bi-07 1 x 106 CFU/g biogel, and blue agave inulin

patients with cervical cancer [85]	Synbiotics reduce inflammation in conditions like ulcerative colitis and ARE, with prebiotics such as oligofructose-enriched inulin showing early reduction in FCP (inflammation marker)			3x 20g gel daily for 7 weeks
Multicenter, Phase 3 Trial Comparing Selenium Supplementation With Observation in Gynecologic Radiation Oncology [96]	Early evidence suggests Se may alleviate chemotherapy and XRT toxicity by increasing antioxidant capacity through enhanced biosynthesis of enzymes that neutralise XRT- induced hydroperoxides and free radicals in the intestinal mucosa Se may stimulate mucosal repopulation mechanisms before radiation exposure but XRT can exacerbate Se deficiency Dose and scheduling chosen based on efficacy and tolerability in previous trials	Experimental group received oral Se supplementation Control group received no supplementation	Not reported	During XRT 500μg of Se (inorganic sodium selenite) orally on XRT days and 300μg of Se on non-XRT days until the last day of XRT
Phase II Study Assessing the Feasibility of Using Elemental Supplements to Reduce Acute Enteritis in Patients Receiving Radical Pelvic Radiotherapy [84]	Studies have suggested that elemental diets can prevent ARE in pelvic XRT patients Elemental diets may produce less free radicals, and are associated with reduced superoxide dismutase or xanthine oxidase activity in the intestine which could minimise XRT damage by preventing free-radical build up 2-3 servings chosen to minimise non-compliance due to disease/XRT-related nausea or bloating	A cohort of patients receiving radical pelvic XRT (without ES) were used for baseline ARE data All participants given XRT diet sheet (low fibre, low lactose, moderate fat) and ES group given instruction on ES diet ES = low osmolar hydrolysate that comprises partially hydrolysed whey/meat/soy protein, safflower oil, medium chain triglycerides, and cornstarch carbohydrate forms	Dietician and radiation oncologist	Pre- and during XRT Low osmolar hydrolysate (460 mOsm/kg water). Calories per 250 ml varies from 1,050 J - 1,260 J 2-3 servings (1 serving = 39g of vital powder 250ml water) daily from 3 days pre-XRT until the end XRT (5-6 weeks)
Preservation of intestinal integrity during radiotherapy using live <i>Lactobacillus</i> <i>acidophilus</i> cultures [97]	Intestinal mucosa relies on gut bacterial flora and luminal contents for nutrients but XRT alters flora, mucosal cell permeability, and intestinal motility Lactic acid bacteria, e.g. <i>Lactobacillus</i> , has been suggested to prevent diarrhoea caused by pathogenic bacteria and its' bacteriocin	All participants received dietary counselling emphasising sufficient energy and protein intake, whilst avoiding high-fibre, high-lactose and high-fat diets Experimental group received additional yoghurt product containing live <i>Lactobacillus</i> <i>acidophilus</i> (NCDO 1748)	Physician and nutritionist	Pre-, during and post-XRT 150ml of product daily (at least 2×109 live <i>Lactobacillus</i> <i>acidophilus</i> bacteria) from 5 days pre-XRT to 10 days post XRT

	production may help balance microflora during XRT Acidophilus strain used was tested for radiation stability	The product was treated with lactase to hydrolyse lactose and additional lactulose was added to promote growth of lactobacilli in the colon		
Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients [82]	Severity of acute bowel reactions may predetermine the degree of chronic bowel changes <i>Lactobacilli</i> may help balance the microflora during XRT, potentially preventing or reducing GI toxicity	Participants received either capsules of lactobacillus acidophilus plus bifidobacterium bifidum (Infloran [®]) (Experimental) or placebo capsules containing magnesium stearate, talc, and purified water Participants received standard XRT dietary recommendations and were banned from eating yoghurt or other dairy foods produced by fermentation	Not reported	Pre- and during XRT 2 × 10 ⁹ units of a <i>lactobacillus</i> <i>acidophilus</i> plus <i>bifidobacterium</i> <i>bifidum</i> (equivalent to 2 capsules) twice daily before meals, from 7 days pre-XRT until the end of XRT
Repurposing Individualized Nutritional Intervention as a Therapeutic Component to Prevent the Adverse Effects of Radiotherapy in Patients With Cervical Cancer [95]	Malnutrition due to low BMI and weight loss >5% of total body weight are predictive indicators for developing XRT toxicity Previous studies have demonstrated the benefit of an individualised nutritional intervention in reducing treatment related toxicities in patients receiving XRT for other pelvic malignancies Energy and nutrient intake recommendations based on ESPEN guidelines for cancer patients	Retrospective cohort received standard nutritional counselling including allowed and restricted foods + general recommendations for GI toxicities Experimental group received individualised dietary advice and counselling adjusted throughout XRT according to GI adverse effects the patient experienced and their food tolerance	Not reported	During XRT Counselling weekly (4-5 weeks) Dietary calculation based on established guidelines and formula, suggesting 25 to 30 kcal/kg/day with 1.2 to 1.5g protein/kg/day (20-30% protein, 30-40% fats, 40-50% carbohydrates)
The effect of selenium supplementation on the efficacy of concurrent radiotherapy for cervical cancer: a randomized, double-	Se is an essential trace element with significant biological functions in human health Small studies indicate that Se can enhance the effects of XRT whilst potentially reducing their toxicity but further RCTs are required for understanding its effect in cervical cancer patients	Selenium yeast tablets (experimental) or placebo	Not reported	During XRT Selenium yeast tablets (100 μg Se) or placebo twice a day (approx. 5 weeks)

blind, placebo- controlled phase II clinical trial [89,106]				
The effect of a low fat, low lactose diet	Several factors can induce diarrhoea during XRT, including malabsorption of lactose and bile salts	Control group received standard hospital diet	Dietician	During and post-XRT
during pelvic		Intervention group prescribed a tailored low fat		Diet to be continued throughout
radiotherapy [109– 111]	Removing lactose from the diet and restricting milk intake may help, as can a low-fat diet to	and lactose diet. Carbohydrates and proteins were increased to compensate for reduced fat		XRT until 6 weeks post
	reduce faecal bile salt content and diarrhoea			Control - 80 g (44% of energy
		Advised to take nutritional supplements		from fat)
		containing medium-chain triglycerides if they		
		were unable to maintain their body weight		Experimental - maximum of 40g fat and 10g lactose per day
The Effects of	Malnutrition is a common complication in	Individuals are screened using the Nutritional	Specialist	During CXRT
Immunonutrition	patients with Locally Advanced Cervical Cancer	Risk Screening 2002 tool. Anyone identified as	nurses	
Therapy on the	undergoing CXRT	being at nutritional risk are then assessed by		Education upon admission and
Nutritional Status,		doctors and nutritionists using the PG-SGA and	Nutritionists	nutritional support throughout CXRT for a total of 5 weeks
Immune Function, and Quality of Life of	Individual with cancer commonly experience issues such as immune imbalances, metabolic	Global Leadership Initiative on Malnutrition criteria		CART for a total of 5 weeks
Locally Advanced	abnormalities and inflammation	Citteria		Experimental group receive 2
Cervical Cancer		Experimental group receive enteral		bottles of immunonutrients per
Patients With	Immunonutrition therapy aims to prevent or	immunonutrition (Impact, Nestlé)		day (approx. 700 kcal)
Malnutrition: an	correct malnutrition, regulate immune function			
Open-label	and reduce inflammatory response through the	The active comparator group receive		
Randomized	delivery of specific immunonutrients	isoenergetic standard oral enteral nutrition		
Controlled Study		(emulsion or Nutrison)		
(NCT06349148)				
[108]		All participants receive nutritional education		
		from specialist nurses and nutritionists		
(ongoing study)				
Time-Restricted	XRT results in the generation of reactive oxygen	Active comparator arm receive nutritional	Dietician with	During XRT
Eating Versus Nutritional	species ultimately leading to lethal double-strand DNA breaks	counselling only	20+ years of	Time restricted esting Manday
Counseling for the	DINA DIEdKS	The experimental arm undergo time-restricted	experience in radiation	Time-restricted eating Monday- Friday during XRT for a minimum
Reduction of		eating	oncology	of 14 hours (6-8 hours before
Radiation or		County	Cheology	until 4-6 hours after XRT)

Chemoradiation Tx Side Effects in Patients With Prostate, Cervical, or	Mitochondrial respiration is a major intracellular source of reactive oxygen species in normal tissues	All participants meet with a dietician to discuss preventative dietary advice without macronutrient or calorie restrictions	
Rectal Cancers [91,107]	Time restricted eating may reduce the amount reactive oxygen species generated during this process and mitigate DNA damage in normal	Offered weekly meetings with the dietician during XRT and on-demand dietary education through a mobile application	
(ongoing study)	tissues		

Abbreviations: AID = anti-inflammatory diet, ARE = Acute radiation enteritis, BMI = body mass index, CFU = colony-forming capsule, CXRT = chemoradiotherapy, DHA = Docosahexaenoic Acid, EPA = eicosapentaenoic acid, ES = elemental supplements, ESPEN = European Society for Clinical Nutritional and Metabolism, FCP = faecal calprotectin, FODMAP = low fermentable oligosaccharides disaccharides, monosaccharides and polyols, FOS = fructo-oligosaccharides, GI = gastrointestinal, HDP = high-dose probiotic, HRB = hydrolysed rice bran, LDP = low-dose probiotic, LRD = low-residue diet, PRD = pelvic radiation disease, RID = radiation induced diarrhoea, Se = selenium, XRT = radiotherapy, ω-3 = omega-3

193

194 What interventions are being reported in the literature?

195 Multimodal

Studies evaluating multimodal prehabilitation utilised multidisciplinary teams to address the complex needs of their 196 197 target population including: social workers; dieticians; physiotherapists; radiation oncologists; and prehabilitation exercise specialists (Table 2). Two of the studies report offering referral to mental health or psychiatry services 198 where necessary rather than this being specifically embedded within the prehabilitation [26,28]. Some multimodal 199 regimens also utilised early input from social services [25,26]. Kaliamurthi et al. [27] provided patients with cervical 200 cancer a programme consisting of counselling, nutritional support and physiotherapy. Only one study did not 201 202 specifically mention including a physical exercise element, this was targeted to patients undergoing brachytherapy 203 so the intervention focused on carbohydrate loading, pain control and psychological support [26]. RadBone [28] is an 204 ongoing clinical trial that utilises the resources of an established prehabilitation service to provide tailored exercise, 205 nutritional and psychological support in combination with a targeted musculoskeletal health package.

206

207 Unimodal – Physical/Exercise

208 Of the six studies reporting on a unimodal physical exercise intervention, only two implemented a physical activity programme that resemble those more commonly used in prehabilitation prior to surgery. Of these, one was a case 209 study providing a completely tailored exercise intervention for an individual during treatment [37] and the other is 210 an ongoing clinical trial involving a variety of patient groups undergoing radiotherapy using an activity tracker-based 211 212 programme [36]. Two single-arm (pre-post) interventional studies focused on teaching pelvic floor muscle exercises 213 (PFMEs) and encouraging participants to perform these exercises at home facilitated by educational materials 214 and/or pre-recorded instructions [35,38]. The final category of physical interventions was targeted towards postsurgical patients prior to adjuvant treatment. These studies focus on prophylactic complex physiotherapy including 215 manual lymphatic drainage, skin care, use of compression stockings, and functional exercises that could be 216 217 performed at home [34,39].

218

219 Unimodal – Psychological

220 The majority of studies addressing psychological wellbeing (n=17) [43,51,54,56,58–65,67–69,71,72] incorporated relaxation and stress reduction techniques such as controlled breathing exercises, aromatherapy, progressive muscle 221 relaxation, guided imagery, videos, music, meditation, mindfulness, and stress management coaching. Three of 222 which also evaluated the effect of the complementary therapies: healing touch [54], reiki [43], and reflexology with 223 224 aromatherapy [62]. In the PeNTAGOn trial, and an earlier pilot study [69], Schofield et al. [68] used both specialist 225 nurses and matched peers to deliver a tailored psychoeducational intervention that involved elements of relaxation 226 combined with timely delivery of information and support to address patients' concerns and psychosexual needs. Kpoghomou et al. [70] and Varre et al. [53] also provided nurse-led counselling to support and manage patients' 227 psychological and psychosexual wellbeing, whereas, Jeffries et al. [52] favoured a small group approach with taught 228 229 elements and peer discussion facilitated by healthcare professionals. In their ongoing trial, Oluloro et al. [73] are evaluating the implementation of virtual support groups hosted by a trained peer-support and a specialist co-230 231 facilitator to promote group conversation and discussion of structured topics including mental well-being, finances 232 and family dynamics. The support group intervention is also being compared against enhanced care including more 233 targeted written information and a 1:1 support intervention with a peer trained by the Endometrial Cancer American Network for African-Americans [73]. 234

235

236 Unimodal – nutritional

237 Twelve (50%) of the studies evaluating nutritional interventions were randomised, placebo-controlled trials. Several

of these studies focused on the introduction of probiotics or synbiotics (prebiotics and probiotics) into the

239 participants' diets. The strain and combination of bacteria used, varied between studies including: Lactobacillus casei

240 DN-114 001 with standard starters Streptococcus thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus [88];

241 Lactobacillus acidophilus LA-5 and Bifidobacterium animalis subsp. lactis BB-12 [93];

242 Lactiplantibacillus plantarum HEAL9 and 299 [81]; Lactobacillus acidophilus with Bifidobacterium bifidum [82];

243 Lactobacillus acidophilus (NCDO 1748) [97]; and Lactobacillus acidophilus NCFM, Bifidobacterium lactis Bi-07 with

- blue agave inulin [85]. Garcia-Peris et al. [86] instead opted for a mixture of prebiotics, inulin and fructo-
- oligosaccharide, to stimulate proliferation of *Lactobacillus* spp and *Bifidobacterium* spp populations.
- 246

247 Two studies provided patients with Omega-3 supplements, with Chitapanarux et al. [83] additionally including 248 arginine and glutamine into their supplement regimen. Whereas, Muecke et al. [96] and Yang et al. [106] provided selenium supplements to cervical cancer patients. Some focused on modifying factors through dietary changes, such 249 as no or low-residue (little to no fibre) [104]; anti-inflammatory [112]; low fat and lactose [110]; or low fermentable 250 oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) [100] diets. Other studies included 251 glutamine [105], hydrolysed rice bran [90], oral resistant starch [99], immunonutrient [108] or elemental [84] 252 253 supplements. One ongoing trial is evaluating the effect of time-restricted eating compared to nutritional counselling 254 during radiotherapy [91,107].

255

256 What are the rationales underpinning these interventions?

257 Any identified theories and/or rationales for each study are outlined in Tables 3-6. More broadly, multimodal 258 interventions were introduced to improve outcomes and prevent or reduce treatment-related morbidity. Edbrooke et al. [25] identified that gynaecological cancer patients require increased emotional and social support due to high-259 260 levels of distress. They highlighted that their target patient population did not meet nutritional and exercise recommendations and had expressed the need for external motivation to drive behavioural changes [25]. Therefore, 261 they used a multidisciplinary team to provide psychological, nutritional and exercise support underpinned by 262 263 HealthChange[®] methodologies with features such as pedometers and text prompts to provide additional motivation 264 [25].

- 204 [2
- 265

Lymphoedema is a chronic process, experienced by many gynaecological cancer survivors, that is associated with
physical, psychosocial and financial burden [34,39,115]. Daggez *et al.* [34] and Zou *et al.* [39] both utilise a technique
that is currently used for the conservative management of lower extremity lymphoedema but introduced it in a
prophylactic setting. The exercise program used by Daggez *et al.* [34] was chosen specifically to induce muscle
function and promote lymphatic drainage. Adjuvant radiotherapy is a risk factor for lymphoedema therefore the

studies included, or intend to include, post-surgical patients scheduled for radiotherapy. Similarly, as radiotherapy is 271 272 also considered a risk factor for pelvic floor dysfunction, Jagdish et al. [38] and Sacomori et al. [35] adopted pelvic 273 floor strengthening techniques more commonly used in a rehabilitation setting but initiated them prior to 274 radiotherapy as a preventative measure. Hauth et al. [36] acknowledged that whilst a personal supervised physical 275 activity programme is desirable for prehabilitation, it is not always feasible due to cost, geographical limitations and 276 resources. Instead, they designed a physical activity programme that can be carried out at home, is less resource intensive, and more easily implemented into a busy radiotherapy workflow [36]. The ongoing Onkofit II trial [36] uses 277 a wearable activity tracker to monitor patient activity and provide a motivational element to the intervention. 278 Interestingly, when developing a physical activity programme, Tórtola-Navarro et al. [37] altered their exercise 279 280 prescription relative to the timing of treatment, reducing the intensity of physical activity in the days following 281 chemotherapy to account for the anticipated increase in side-effects experienced by the patient.

282

283 Psychological interventions aimed to reduce stress and help patients cope with the complex psychological burden 284 associated with treatment and disease. Relaxation techniques were favoured by researchers due to their safety, accessibility, low-cost and effectiveness amongst similar populations in the literature [60,63,65,67,71]. De Oliveira 285 286 Santana et al. [67] used virtual reality technology to provide a more immersive guided-imagery experience that can 287 be applied in a clinical environment to overcome physical barriers of accessing nature. Of the studies focused specifically on patients receiving brachytherapy, interventions promoting relaxation and pain reduction were 288 particularly prevalent due to the high levels of discomfort and distress experienced by patients. Chi et al. [56] 289 290 introduced combined audiovisual stimulation to modify pain perception and maximise the anxiolytic effects of both 291 music and guided imagery. The music was chosen with consideration of the literature suggesting a slow, constant 292 rhythm with predictable dynamics and harmonic consonance at a tempo, similar to the resting human heart rate, 293 was optimal for relaxation [56]. In a similar study, Lim [71] prioritised music based on individual preference and 294 projected nature videos onto the ceiling to ensure the participant could engage with the intervention whilst lying on 295 the therapy bed. Several studies particularly emphasised the relevance of mind-body connection as a core element of the intervention to promote relaxation [51,59,62,64,67,72]. Tagliaferri et al. [58] took a multidisciplinary approach to 296 297 assess the needs of brachytherapy patients from different perspective and developed a number of interventions and 298 recommendations to address the needs and concerns expressed by patients. As an example, they allowed patients to

select music and relaxing videos to create a relaxing environment; altered language used to reduce stressful trigger
 words for patients; provided an information booklet in a timely manner prior to the treatment to facilitate shared
 decision making; and increased staff presence in the interventional room to decrease feelings of isolation [50,58].

302

303 The prevalence of physical and psychosexual concerns following radiotherapy and the complexities of compliance 304 with rehabilitative strategies, such as vaginal dilation, prompted researchers to counteract this with timely intervention strategies. Bergin et al. [69] and Schofield et al. [68] took a psychoeducational approach to improve 305 coping, and reduce the psychological impact of treatment. The nurse-led consultations were included to provide 306 307 tailored information at relevant timepoints throughout treatment to improve patient recall and involved elements 308 such as radiotherapy department orientation to enhance patients' sense of preparedness [68,69]. Peer support was a 309 key component of the intervention to help patients make sense of their journey and provide social support [68,69]. Similarly, Jeffries et al. [52] developed a psychoeducational intervention, underpinned by a behaviour change model, 310 311 involving groups of peers to normalise patient experience and overcome attitudinal barriers to care strategies. 312 Kpoghomou et al. [70] introduced a programme in response to the lack of support patients are currently given regarding their sexual concerns, aiming to reduce side effects through supportive and educational measures. 313

314

315 Many of the nutritional interventions aimed to prevent or reduce the adverse gastrointestinal effects experienced by gynaecological patients, such as radiation enteritis, due to the impact on quality of life and treatment tolerability. 316 Radiotherapy can disrupt the gut microbiota and cause intestinal inflammation and injury. A number of studies cited 317 318 the positive effects of probiotics in patients with other inflammatory bowel conditions and theorised that probiotics may correct dysbiosis; improve or maintain intestinal barrier function; and/or offer beneficial immunomodulatory 319 effects [81,82,88,93,97]. Whilst probiotic strains varied between studies, generally they were chosen due to safety 320 321 and/or benefit in previous studies. Dietary changes and recommendations were often implemented to reduce or 322 modify factors that may influence gastrointestinal toxicities. Bye et al. [110] theorised a low-fat, low-lactose diet 323 would reduce diarrhoea during treatment by minimising faecal bile salt excretion and fluid accumulation within the intestinal lumen. However, they also highlighted that inadequate nutrition could impact healing so included 324 325 compensatory measures and tailored advice to achieve sufficient energy intake and minimise weight loss. More 326 recently, Soto-Lugo and colleagues [100] evaluated a low FODMAP diet to explore if gastrointestinal toxicity could be

- 327 managed more effectively by modifying multiple factors rather than a single dietary element. Both Aredes et al.
- **328** [103] and Medina-Jiménez et al. [95] aimed to reduce malnutrition and fat-free mass loss due to their association
- 329 with treatment toxicity and poor outcomes. Aredes et al. [103] provided patients with nutritional risk omega-3 and
- **330** nutritional formula supplements whereas Medina-Jiménez et al. [95] opted for a tailored nutritional intervention
- 331 with individual counselling due to the benefits of this approach in other radiotherapy patient populations compared
- **332** to standard recommendations.
- 333

334 What are the timings and duration of these interventions?

- **335** Interventions were broadly divided between those beginning prior to radiotherapy (external-beam or
- brachytherapy) (n=27) and those initiated at the point of or shortly after beginning radiotherapy (n=29) (Fig 3). Point
- of intervention and duration was variable and difficult to determine for some studies due to ambiguous reporting.
- 338 Most spanned the radiotherapy treatment period with some continuing for longer. The timings of individual studies
- are outlined in Tables 3-6, the duration of the interventions and number of sessions varied depending on factors
- such as treatment length (e.g. brachytherapy alone compared to chemoradiotherapy) and use of familiarisation
- 341 periods.
- 342

Fig 3. Point of initiation for unimodal and multimodal interventions.

343

344 What outcome measures are being reported within the literature?

Outcome measures varied both across and within study categories. Quality of life was the most consistent outcome
measured across studies. This was assessed by a variety of tools, used alone or in combination, including: the
European Organisation For Research And Treatment Of Cancer (EORTC) Core Quality of Life Questionnaire QLQ-C30
(n=11) [27,31,37,39,53,86,88,94,100,103,108], EORTC QLQ-CX24 (cervical cancer module) (n=3) (25,29,97), EORTC
QLQ-EN24 (endometrial cancer module) (n=1) [100], EORTC QLQ-36 (n=1) [111], EuroQol (EQ)-5D-3L (n=1) [103], EQ5D-5L (n=1) [28], Cuestionario de Calidad de Vida QL-CA-AFex (CCV) (n=1) [60], Functional Assessment of Cancer
Therapy (FACT) -General subscale (n=5) [25,36,54,57,68], and FACT-Cervix (n=1) [63].

Both ENABLE [25] and the ongoing RadBone trial [28] assess feasibility considering recruitment rate, attrition, and 353 study eligibility. The ENABLE study utilised the Patient Generated-Subjective Global Assessment (PG-SGA), 354 355 bioelectrical impedance, and accelerometery to assess nutritional and physical activity outcomes. Additionally, they 356 included the Physical Activity Questionnaire-Short form and Physical Activity Assessment Inventory to measure 357 patient-reported physical activity and self-efficacy levels respectively. Whilst the PG-SGA is used as part of the 358 tailored nutritional intervention in Prehab4Cancer, the secondary outcome measures in RadBone centre around longitudinal changes including incidence of radiotherapy related insufficiency fractures measured by Magnetic 359 Resonance Imaging (MRI); bone mineral density measured by Dual-Energy X-ray Absorptiometry (DEXA); biochemical 360 markers of bone turnover; and fracture risk using the FRAX[®] assessment tool [28]. Alongside the EQ-5D-5L, 361 362 Grigoriadou et al. [28] are using the Patient-Reported Outcome Version of the Common Terminology Criteria for 363 Adverse Events (PRO- CTCAE) and the Short Form Musculoskeletal Function Assessment to assess quality of life. Both Kaliamurthi et al. [27] and Andring et al. [26] measured treatment related morbidity taking into consideration factors 364 365 such as patient reported toxicity, hospital admissions and/or length of stay.

366 The distinct subgroups within the physical/exercise studies resulted in some shared outcomes. The studies

367 evaluating prophylactic physiotherapy [34,39] both utilise patient-reported symptoms from the Gynecologic Cancer

368 Lymphedema Questionnaire to identify risk and incidence of lower extremity lymphoedema. Pelvic floor strength

369 was a primary outcome for the pelvic floor exercise studies, with Sacomori *et al.* [35] opting to measure pelvic floor

370 strength using vaginal bidigital evaluation grading with the modified Oxford scale by a physical therapist and Jagdish

et al. [38] using a perineometer. Both studies also used the International Consultation on Incontinence

372 Questionnaire-Urinary Incontinence Short Form to assess urinary incontinence. The CTCAE was chosen by Tórtola-

373 Navarro et al. [37] and Hauth et al. [36] to assess patient reported toxicity and adverse events. In the Tórtola-

374 Navarro et al. [37] case study, the main outcome measure was feasibility of the programme determined by patient

375 compliance but they were also interested in functional and exercise capacity changes using the Karnofsky index and

376 both the Six Minute Walk Test and Five Times Sit to Stand Test.

377 In studies evaluating psychological interventions, common outcome measures included levels of psychological

distress, anxiety and/or depression using tools such as: the Distress Thermometer (n=1) [58]; Patient Reported

379 Outcome Measurement Information System (PROMIS) Emotional-Distress Anxiety Short Form 4a (n=1) [73]; the

Hospital Anxiety and Depression Scale (n=8) [43,46,53,58–60,68,72]; State-Trait Anxiety Inventory (n=3) [56,62,67]; 380 Six-item Spielberger State Anxiety Scale (n=1) [43]; the Self-rating Anxiety Scale (n=2) [63,65]; an 11-point anxiety 381 numeric rating scale (n=1) [71]; the Self-rating Depression scale (n=1) [63]; the Beck Depression inventory (n=1) [65]; 382 383 and the Center for Epidemiological Studies Depression Scale (n=1) [54]. Other outcomes included level of fatigue, 384 assessed with the Chalder (n=1) [61] Piper (n=1) [63], or visual analogue (n=1) [72] fatigue scales and pain levels using a numeric (n=3) [61,62,71] or visual (n=3) [43,56,72] rating scale. In addition to secondary outcomes of interest 385 such as fatigue and pain levels, Texier and Meignant [72] are utilising a 10-item to perceived stress score to evaluate 386 the impact of an educational physiotherapy yoga on perceived stress in cervical cancer patients undergoing 387 388 brachytherapy. In the ongoing SISTER study, the primary outcome of interest is treatment completion rate measured 389 by relative dose (expected vs actual dose received at six month follow-up) [73]. As a secondary measure, Oluloro et 390 al. [73] are also evaluating the impact of the virtual support interventions on patient-reported social isolation using the Social Provisions Scale-24 and the PROMIS Short Form Social Isolation 4a. 391

392

393 For nutritional studies, incidence and severity of gastrointestinal toxicities were generally measured by versions of the CTCAE (n=11) [82,83,86,88,91,93,96,99,100,103,112] and the Radiation Therapy Oncology Group (RTOG) criteria 394 (n=4) [84,95,99,105]. Additionally, some studies included the Bristol stool chart to monitor change in consistency or 395 396 incidence of watery stools (n=5) [80,81,85,86,88] and monitored the administration of intestinal regulators and/or 397 anti-diarrhoeal agents during interventions (n=7) [81.82.84.88.90.93.97]. A subset of studies (n=4) [85.86.105.112] 398 monitored faecal calprotectin levels as an indicator of intestinal inflammation whereas others monitored inflammation using markers such as c-reactive protein (n=2) [80,105]. Body mass loss (n=2) [100,110], body mass 399 400 change (n=4) [82,84,97,112] and change in body composition (n=2) [95,103] were also frequently used to evaluate 401 the impact of nutritional interventions. Like the ENABLE study, Aredes et al. [103] used the PG-SGA to assess 402 nutritional status. However, they also utilised computed tomography (CT) images to evaluate changes body 403 composition including skeletal muscle quantity and quality. Similarly, in an ongoing trial evaluating an 404 immunonutrition intervention for individuals with nutritional risk, prevalence of malnutrition and sarcopenia are 405 being assessed using a modified Global Leadership Initiative on Malnutrition criteria and the Skeletal Muscle Index 406 respectively [108]. Other outcome measures for this study focus on survival including dose-limiting toxicity-free 407 survival, two-year overall survival, and two-year progression free survival [108].

408 Discussion

409 This scoping review identified 56 studies, spanning 66 years, evaluating unimodal or multimodal prehabilitation interventions for patients with gynaecological malignancies treated with radiotherapy. It is not entirely unexpected 410 that cervical cancer was the most highly represented gynaecological cancer type across studies considering it is the 411 412 8th most common cancer globally [116] and is more often treated with techniques such as brachytherapy than other 413 tumour sites. Our findings indicate there are fewer studies focusing on multimodal prehabilitation programmes. Although, it is encouraging that ongoing trials like RadBone [28] are able to utilise established prehabilitation services 414 415 and integrate them into a package tailored to radiotherapy patients. Despite many studies evaluating unimodal interventions, there is a clear imbalance between the categories, with physical exercise interventions being 416 417 comparatively underrepresented.

418

419 The heterogeneity of studies in respect to intervention components, initiation, duration, delivery, outcome measures; 420 and the tools used to assess these outcomes, complicates future work in the form of a systematic review or metaanalysis to build on our findings. As the scope of this review is very broad including a wide range of records from 421 various countries spanning six decades some variation was anticipated. Similar issues were identified by Saggu et al. 422 423 in their scoping review of prehabilitation interventions for gynaecological cancer patients receiving surgery. This 424 rther compounded by inconsistent and incomplete reporting of interventions. Study heterogeneity and 425 ambiguous reporting are frequently cited limitations of systematic reviews and meta-analyses in similar populations 426 [1,15,117–120]. Promisingly, tools such as the TIDieR checklist are being used in more recent studies [25] which has 427 improved the completeness of reporting and replicability of interventions. This is particularly important when considering the rationale of a complex intervention. Despite many authors expressing the need for an intervention to 428 429 address the burden patients experience, few provided clear theory or rationale underpinning design and delivery. 430 Prehabilitation is understudied in this population therefore comprehensive and transparent reporting is essential to 431 facilitate future intervention development and inform changes in practice [121].

432

The total number of outcomes measured across studies and tools used to assess these was extensive, and 433 434 incomplete reporting further impeded data charting. Despite the variation in outcome measures, there were a small number of validated instruments favoured by researchers. The EORTC QLQ-C30 is designed to measure health-related 435 436 quality of life specifically in individuals with cancer [122]. The frequent use of this instrument is not surprising due to 437 its length of circulation and availability in multiple languages. However, only a small proportion of studies used it 438 alongside the recommended disease or symptom-specific modules. Similarly, the CTCAE provides an internationally recognised standard criteria for the reporting of adverse events in cancer therapy and clinical trials. Although more 439 recently it has been acknowledged that additional use of PRO-CTCAE can provide greater insight into patient's 440 441 perception of toxicities which is beneficial to establishing tolerability of an intervention [123]. Several patient-442 reported outcome measures were also used across studies which highlights growing recognition of the importance of 443 patient experience when developing and evaluating interventions [124]. The agreement of a core outcome set (COS) 444 that are consistently measured by widely-accepted, validated tools will facilitate greater comparison between studies 445 to inform future decisions regarding prehabilitation and this has also been recently acknowledged in surgical 446 populations [125]. A project to agree standardised outcome measures for prehabilitation in cancer is currently being 447 undertaken as part of the Core Outcome Measures in Effectiveness Trials (COMET) initiative [126]. However, it is 448 important that consideration is given to how outcomes of interest and measures of efficacy may vary between 449 different treatment populations [127].

450

Nutritional interventions in this population currently aim to address malnutrition and/or minimise GI toxicities. 451 Despite advances in radiotherapy resulting in reduced morbidity and mortality, pelvic radiotherapy patients still 452 453 experience acute and chronic GI toxicities which can impact quality of life and treatment tolerability [1]. Interruptions 454 in treatment due toxicities and increase in overall treatment time impacts radiotherapy efficacy [1,128]. Therefore, 455 nutritional support for gynaecological patients receiving radiotherapy is an important element of prehabilitation. 456 Minimising the impact of radiation-induced dysbiosis and intestinal injury through the introduction of pre- and probiotics was a recurring concept in the literature, yet it is acknowledged more evidence is required to gauge the 457 effectiveness of these interventions [1]. Additionally, malnutrition may occur due to changes in gastrointestinal 458 459 absorption and digestive functioning. Nutritional interventions such as dietary changes are a proactive approach to

addressing GI toxicity and improving nutritional status. However, the observed variation across studies highlights that
there is not yet a clear approach for these interventions. Globally, differences in radiotherapy techniques, resources
and cultural differences, including dietary preferences, may account for some of the observed variation in nutritional
interventions.

464 The physical exercise interventions discussed in this review differ from those frequently used in prehabilitation for cancer surgery. Both the studies evaluating prophylactic physiotherapy for lymphoedema [34,39] and pelvic floor 465 466 strengthening [35,38] exercises, highlight how prehabilitation can be adapted to address the unique challenges of a 467 target population. There are several factors which may explain the comparative lack of studies evaluating physical 468 exercise interventions. Prior to radiotherapy, patients have a CT scan to develop a highly conformal plan for 469 treatment delivery. As such, subsequent changes in body mass are avoided as they can alter the planned dose to the 470 target volumes and organs at risk [129]. Acute side effects such as vaginal mucositis, nausea; faecal and urinary 471 urgency; and fatigue can present during radiotherapy treatment [1,2] which may influence patients' desire and ability 472 to exercise. Moreover, travelling to a radiotherapy department multiple times a week for several weeks restricts patients time to participate in additional activities, frequently cited as one of the major barriers to exercise [130]. In 473 474 their case study, Tórtola-Navarro et al. [37] were able to deliver a highly tailored physical activity programme with 475 consideration for factors such as delivery of chemotherapy which impacts patients' general wellbeing and energy 476 levels. In the pilot randomised controlled trial, ENABLE [25], healthcare professionals worked with participants to 477 develop a home-based physical activity programme with patient-centred nutritional and activity goals, yet some 478 patients still expressed challenges engaging with the programme whilst navigating the side-effects of treatment.

479

It is well-established that gynaecological cancer and its subsequent treatment has a profound impact on
psychological well-being [3,6,8]. The risk of traumatisation during brachytherapy further strengthens the need for
psychological support in prehabilitation for these patients [6,7]. Studies have shown that gynaecological cancer
survivors have unmet informational needs exacerbating existing psychological distress including increased anxiety
and feelings of embarrassment [131–134]. Tailored information, provided in a timely manner, including involvement
from both healthcare professionals and peers with lived experience can contribute to engagement, patient
satisfaction and feelings of preparedness [135]. It is promising that a several studies identified this as an issue and

incorporated elements of patient education, in diverse formats, to address this. The psychological interventions in
 this review ranged from brief interventions for relaxation during brachytherapy to more complex psychoeducational
 interventions addressing psychosexual concerns and providing social support. The multifactorial nature of
 psychological distress in gynaecological cancer patients necessitates a multifaceted approach, providing patients with
 relevant support at an appropriate time to minimise the impact of treatment-related burden.

492 Prehabilitation interventions are generally considered to be those delivered between diagnosis and the beginning of 493 acute treatment [136]. This review included studies that introduce interventions both before and during the delivery 494 of radiotherapy, with some spanning the pre-, intra- and post-treatment periods. Prehabilitation is an evolving 495 concept and consideration must be given to each population's unique needs [127]. As acknowledged by Flores et al. 496 [22], the timing of intervention delivery is influenced by the nature of radiotherapy including its role within 497 multimodal cancer care and delayed development of acute side effects. Therefore, including interventions 498 implemented during radiotherapy is key to understanding prehabilitation in the context of radiotherapy, particularly 499 if multiphasic prehabilitation becomes more prevalent in the future. In the multiphasic framework, prehabilitation is viewed as a health optimising strategy initiated at multiple time points after diagnosis [127]. Prehabilitation 500 501 interventions are tailored to current and anticipated experiences throughout multimodal cancer care to minimise 502 adverse effects and reduce treatment delay [127]. Prehabilitation for a gynaecological cancer patient prior to surgery 503 may include aerobic exercise, resistance training, psychological support and pre-operative carbohydrate loading 504 [137]. This patient may then go on to receive prehabilitation tailored for adjuvant radiotherapy such as prophylactic complex physiotherapy, nutritional interventions to reduce GI toxicity, pelvic floor strengthening, and psychosexual 505 support including radiotherapy-specific education. If the patient is then scheduled for brachytherapy, they will 506 receive further targeted interventions. As prehabilitation for non-surgical therapies continues to develop, we must 507 508 examine the boundaries between prehabilitation and rehabilitation. If the end of prehabilitation continues to be 509 defined by the beginning of treatment, there may be a gap for interventions during the treatment period that align with the principles of prehabilitation and go beyond standard supportive care. 510

511

512 There are only a handful of studies evaluating multimodal prehabilitation in this population and these are limited to
513 small single-arm studies and feasibility trials. Whilst such studies provide valuable insight, larger randomised

514 controlled trials are required in the future to strengthen the evidence base for prehabilitation in individuals with 515 gynaecological malignancies undergoing radiotherapy. Future studies should prioritise complete and transparent reporting of interventions and adoption of a COS informed by multiple-stakeholders to be reported as a minimum 516 517 across all cancer prehabilitation trials. This will reduce ambiguity and observed heterogeneity in the literature and 518 facilitate data synthesis to establish efficacy and inform changes in practice and policy. Physical exercise interventions remain relatively unexplored, a mixed-methods approaches, as was used in ENABLE [29], can provide valuable insight 519 as to how we can adapt interventions to overcome perceived barriers to exercise in prehabilitation for patients 520 undergoing (chemo)radiotherapy. Involving individuals with lived experience in the intervention development 521 process, such as in the HAPPY [56], SISTER [71] and PeNTAGOn [66] trials, is an important element for ongoing 522 523 research to ensure patients' needs are being addressed in a way that is acceptable to them.

524

525 Limitations

Despite an extensive literature search, it is possible that some studies may have been missed particularly as the term 526 527 "prehabilitation" is not consistently used across the literature and only English language studies could be included due to limited resources. However, a significant amount of time was spent developing the search strategies and 528 529 inclusion criteria, including extensive search terms, broad publication date ranges and information sources, to 530 maximise the inclusion of relevant studies. It is outside the scope of this review to comment on the effectiveness of interventions and, as a risk of bias for studies was not performed, the results of this review are limited in terms of 531 informing clinical guidance or policy. Nonetheless, this review captures the current landscape of prehabilitation in 532 533 this population and highlights the gaps in current research.

534 Conclusion

535 This review highlights the diverse research relating to prehabilitation for gynaecological cancer patients undergoing

- radiotherapy. Interventions to reduce functional impairment and address adverse patient experiences are not
- 537 necessarily a new concept but there is growing consideration for the complexities of managing treatment and
- 538 disease-related burden, with increased involvement of those with lived experiences during study development.
- 539 Studies evaluating unimodal interventions are more prevalent and there remains gaps in knowledge and literature

540	that need to be addressed. Physical exercise interventions are still relatively unexplored in this patient population
541	and consideration must be given to the barriers to physical activity experienced by this patient group. The physical
542	and psychological impacts of cancer diagnosis and treatment are closely entwined, therefore, further development of
543	multimodal prehabilitation interventions to cohesively address these is an important area for future research. Larger,
544	randomised controlled trials will be useful for establishing efficacy of prehabilitation for gynaecological cancer
545	patients undergoing radiotherapy although researchers must recognise that a nuanced approach is required.
546	Complete and transparent reporting of interventions with greater consistency in outcome measures will allow for a
547	more cohesive approach to prehabilitation for this patient population and facilitate change in both practice and
548	policy.
549	

550 Data statement

- **551** The authors confirm that the data supporting the findings of this study are available within the article and its
- 552 supplementary materials. Any further queries should be directed to the corresponding author (EM).

553 Acknowledgements

- 554 The authors would like to thank Eva Thackery and the research librarians at Lancashire Teaching Hospitals for their
- **555** assistance informing the search strategy and peer review.

556 **References**

- Lawrie TA, Green JT, Beresford M, Wedlake L, Burden S, Davidson SE, et al. Interventions to reduce
 acute and late adverse gastrointestinal effects of pelvic radiotherapy for primary pelvic cancers.
 Cochrane Database Syst Rev. 2018 Jan 23;
- Viswanathan AN, Lee LJ, Eswara JR, Horowitz NS, Konstantinopoulos PA, Mirabeau-Beale KL, et al.
 Complications of pelvic radiation in patients treated for gynecologic malignancies. Cancer. 2014
 Dec 15;120(24):3870–83.
- 5643.Biran A, Dobson C, Rees C, Brooks-Pearson R, Cunliffe A, Durrant L, et al. From pelvic radiation to565social isolation: a qualitative study of survivors' experiences of chronic bowel symptoms after566pelvic radiotherapy. J Cancer Surviv. 2024 Jan 6;
- Lind H, Waldenström AC, Dunberger G, al-Abany M, Alevronta E, Johansson KA, et al. Late
 symptoms in long-term gynaecological cancer survivors after radiation therapy: a population based cohort study. Br J Cancer. 2011 Sep 16;105(6):737–45.
- 570 5. Smet S, Spampinato S, Pötter R, Jürgenliemk-Schulz IM, Nout RA, Chargari C, et al. Risk Factors for

571 Late Persistent Fatigue After Chemoradiotherapy in Patients With Locally Advanced Cervical Cancer: An Analysis From the EMBRACE-I Study. Int J Radiat Oncol. 2022 Apr;112(5):1177-89. 572 Humphrey P, Dures E, Hoskin P, Cramp F. Patient Experiences of Brachytherapy for Locally 573 6. Advanced Cervical Cancer: Hearing the Patient Voice Through Qualitative Interviews. Int J Radiat 574 Oncol. 2024 Jul;119(3):902-11. 575 Kirchheiner K, Czajka-Pepl A, Ponocny-Seliger E, Scharbert G, Wetzel L, Nout RA, et al. 576 7. Posttraumatic Stress Disorder After High-Dose-Rate Brachytherapy for Cervical Cancer With 2 577 Fractions in 1 Application Under Spinal/Epidural Anesthesia: Incidence and Risk Factors. Int J 578 579 Radiat Oncol. 2014 Jun;89(2):260-7. Stewart H, Ashmore L, Kragh-Furbo M, Singleton V, Hutton D. Ghosts in the machinery: Living with 580 8. 581 and beyond radiotherapy treatment for gynaecological cancer. Heal An Interdiscip J Soc Study 582 Heal Illn Med. 2024 Jan 28;28(1):90-107. 583 9. Lukez A, Baima J. The Role and Scope of Prehabilitation in Cancer Care. Semin Oncol Nurs. 2020 Feb;36(1):150976. 584 585 10. Lambert J, Subar D, Gaffney C. Prehabilitation for Gastrointestinal Cancer Surgery. In: Faintuch J, 586 Faintuch S, editors. Recent Strategies in High Risk Surgery. Cham: Springer Nature Switzerland; 587 2024. p. 69-80. de Klerk M, van Dalen DH, Nahar-van Venrooij LMW, Meijerink WJHJ, Verdaasdonk EGG. A 588 11. multimodal prehabilitation program in high-risk patients undergoing elective resection for 589 590 colorectal cancer: A retrospective cohort study. Eur J Surg Oncol. 2021 Nov;47(11):2849-56. 591 Molenaar CJL, Minnella EM, Coca-Martinez M, ten Cate DWG, Regis M, Awasthi R, et al. Effect of 12. 592 Multimodal Prehabilitation on Reducing Postoperative Complications and Enhancing Functional Capacity Following Colorectal Cancer Surgery. JAMA Surg. 2023 Jun 1;158(6):572. 593 Lambert JE, Hayes LD, Keegan TJ, Subar DA, Gaffney CJ. The Impact of Prehabilitation on Patient 594 13. Outcomes in Hepatobiliary, Colorectal, and Upper Gastrointestinal Cancer Surgery. Ann Surg. 2021 595 Jul;274(1):70-7. 596 597 14. Saggu RK, Barlow P, Butler J, Ghaem-Maghami S, Hughes C, Lagergren P, et al. Considerations for multimodal prehabilitation in women with gynaecological cancers: a scoping review using realist 598 599 principles. BMC Womens Health. 2022 Jul 19;22(1):300. 600 15. Dhanis J, Keidan N, Blake D, Rundle S, Strijker D, van Ham M, et al. Prehabilitation to Improve Outcomes of Patients with Gynaecological Cancer: A New Window of Opportunity? Cancers 601 602 (Basel). 2022 Jul 15;14(14):3448. Macmillan Cancer Support. Principles and guidance for prehabilitation within the management 603 16. and support of people with cancer [Internet]. 2020. Available from: 604 https://www.macmillan.org.uk/healthcare-professionals/news-and-resources/guides/principles-605 and-guidance-for-prehabilitation 606 Galica J, Saunders S, Romkey-Sinasac C, Silva A, Ethier JL, Giroux J, et al. The needs of 607 17. 608 gynecological cancer survivors at the end of primary treatment: A scoping review and proposed model to guide clinical discussions. Patient Educ Couns. 2022 Jul;105(7):1761-82. 609 Munn Z, Pollock D, Khalil H, Alexander L, McInerney P, Godfrey CM, et al. What are scoping 610 18. reviews? Providing a formal definition of scoping reviews as a type of evidence synthesis. JBI Evid 611 Synth. 2022 Apr;20(4):950-2. 612

19. Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping 613 review? Guidance for authors when choosing between a systematic or scoping review approach. 614 BMC Med Res Methodol. 2018 Dec 19;18(1):143. 615 Peters M, Godfrey C, McInerey P, Munn Z, Tricco A, Khalil H. Chapter 11: Scoping reviews. In: 20. 616 Aromataris E, Munn Z, editors. JBI Manual for Evidence Synthesis [Internet]. JBI; 2020 [cited 2023 617 Dec 14]. p. 406–51. Available from: https://synthesismanual.jbi.global 618 Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping 619 21. Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018 Oct 2;169(7):467-73. 620 22. Flores LE, Westmark D, Katz NB, Hunter TL, Silver EM, Bryan KM, et al. Prehabilitation in radiation 621 therapy: a scoping review. Support Care Cancer [Internet]. 2024 Jan 5;32(1):83. Available from: 622 623 https://link.springer.com/10.1007/s00520-023-08262-9 624 Pollock D, Peters MDJ, Khalil H, McInerney P, Alexander L, Tricco AC, et al. Recommendations for 23. the extraction, analysis, and presentation of results in scoping reviews. JBI Evid Synth. 2023 625 Mar;21(3):520-32. 626 627 24. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of 628 interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014 Mar 7;348(mar07 3):g1687-g1687. 629 630 25. Edbrooke L, Khaw P, Freimund A, Carpenter D, McNally O, Joubert L, et al. ENhAncing Lifestyle Behaviors in EndometriaL CancEr (ENABLE): A Pilot Randomized Controlled Trial. Integr Cancer 631 Ther. 2022 Jan 19;21:153473542110698. 632 Andring LM, Kelsey C, Weng J, Manzar GS, Bailard N, Fellman B, et al. Baseline Characteristics of 633 26. Patients Undergoing Brachytherapy for Gynecologic Cancer (GYN-BT) and the Role for an 634 Enhanced Recovery Pathway (ERP). Int J Radiat Oncol. 2022 Nov;114(3):e449-50. 635 27. Kaliamurthi P, Karunya J, Sathyamurthy A, John NO, Ram TS, Babu A, et al. Prehabilitation in 636 Locally Advanced Cervical Cancer Patients Receiving Radiotherapy. Int J Radiat Oncol. 2022 Nov 637 1;114(3):e258. 638 639 28. Chatzimavridou Grigoriadou V, Barraclough LH, Baricevic-Jones I, Bristow RG, Eden M, Haslett K, et al. RadBone: bone toxicity following pelvic radiotherapy – a prospective randomised controlled 640 feasibility study evaluating a musculoskeletal health package in women with gynaecological 641 cancers undergoing pelvic radiotherapy. BMJ Open. 2022 Jun 14;12(6):e056600. 642 29. Edbrooke L, Khaw P, Freimund A, Carpenter D, McNally O, Joubert L, et al. ENABLE: ENhAncing 643 lifestyle Behaviours in endometriaL cancEr: A pilot randomised controlled trial. Asia Pac J Clin 644 Oncol. 2020;16(S8):108-207. 645 Edbrooke L. Australian New Zealand Clinical Trials Registry. 2019. (ACTRN12619000631101) 646 30. 647 ENABLE: ENhAncing lifestyle Behaviours in endometriaL cancEr. 648 31. Andring L., Corrigan K, Manzar G, Bailard N, Fellman B, Domingo M, et al. Enhanced Recovery Pathway (ERP) in Patients Undergoing Brachytherapy for Gynecologic Cancer (GYN-BT). 649 650 Brachytherapy. 2022;21(6):S19. 651 32. Andring L, Corrigan K, Bailard N, Rooney M, Domingo M, Varkey J, et al. ERAS pathway for gynecologic cancer patients receiving brachytherapy: A prospective clinical trial. Radiother Oncol. 652 2023 May;182:S314-5. 653 The Christie NHS Foundation Trust (Sponsor). ClinicalTrials.gov. 2020. (NCT04555317) Bone 654 33.

- 655 Toxicity Following Pelvic Radiotherapy (RadBone).
- Baggez M, Koyuncu EG, Kocabaş R, Yener C. Prophylactic complex physiotherapy in gynecologic
 cancer survivors: patient-reported outcomes based on a lymphedema questionnaire. Int J Gynecol
 Cancer. 2023 Dec;33(12):1928–33.
- Sacomori C, Araya-Castro P, Diaz-Guerrero P, Ferrada IA, Martínez-Varas AC, Zomkowski K. Pre rehabilitation of the pelvic floor before radiation therapy for cervical cancer: a pilot study. Int
 Urogynecol J. 2020 Nov 29;31(11):2411–8.
- 662 36. Hauth F, Gehler B, Nieß AM, Fischer K, Toepell A, Heinrich V, et al. An Activity Tracker–Guided
 663 Physical Activity Program for Patients Undergoing Radiotherapy: Protocol for a Prospective Phase
 664 III Trial (OnkoFit I and II Trials). JMIR Res Protoc. 2021 Sep 22;10(9):e28524.
- 66537.Tórtola-Navarro A, Martínez-García J, Cano-Martínez A, Serradilla A. Exercise during treatment for666advanced cervical cancer. BMJ Support Palliat Care. 2023 Dec;13(e3):e960–3.
- 38. Jagdish P, Bhosale SS, Gurram L, Chopra S, Daptardar A. 2022-RA-729-ESGO Strengthening of
 pelvic floor muscles for incontinence in cervical cancer. In: Cervical cancer. BMJ Publishing Group
 Ltd; 2022. p. A24.1-A24.
- 67039.Zou D. ClinicalTrial.gov. 2022. NCT05793749 Early Intervention to Prevent Lower Limb671Lymphedema of Gynecological Malignancy.
- 40. Araya-Castro P, Sacomori C, Diaz-Guerrero P, Gayán P, Román D, Sperandio FF. Vaginal Dilator and
 Pelvic Floor Exercises for Vaginal Stenosis, Sexual Health and Quality of Life among Cervical Cancer
 Patients Treated with Radiation: Clinical Report. J Sex Marital Ther. 2020 Aug 17;46(6):513–27.
- 675 41. Gani C. ClinicalTrials.gov. 2020. (NCT04517019) Randomised Trial Evaluating the Benefit of a
 676 Fitness Tracker Based Workout During Radiotherapy (OnkoFit II).
- 42. Jagdish P, Daptadar A. A Study to Assess the Effect of Pelvic Floor Muscle Strengthening Exercises
 on Urinary Incontinence in Patients With Cervical Cancer Undergoing Radiation Therapy at a
 Tertiary Cancer Center [Preprint V2]. Qeios. 2024 Mar;
- Burt L. ClinicalTrials.gov. 2023. NCT05979610 Using Reiki Therapy to Improve Symptoms
 Associated With Brachytherapy in Patients With Gynecological Malignancies (Reiki-Brachy).
- 44. Jeffries SA. Sexuality and Gynaecological Cancer: A Randomised Control Trial to Evaluate the
 Effectiveness of a Group Psychoeducational Intervention in Improving the Sexual Health of
 Women with Gynaecological Cancer Treated with Radiotherapy. [Calgary]: University of Calgary;
 2002.
- 686 45. de Oliveira Santana E. (RBR-7ssvytb) Relaxation with Guided Image for patients in treatment of 687 radiotherapy combined to chemotherapy randomized clinical trial. Regist Bras Ensaios Clin. 2021;
- Schofield P. ClinicalTrials.gov. 2009. (ACTRN12609000312246) A nurse led psychosocial
 intervention with peer support to reduce psychosocial needs in women with gynaecological
 cancer.
- 47. Gough K, Pascoe MC, Bergin R, Drosdowsky A, Schofield P. Differential adherence to peer and
 692 nurse components of a supportive care package—The appeal of peer support may be related to
 693 women's health and psychological status. Patient Educ Couns. 2022 Mar;105(3):762–8.
- 69448.Schofield P. Australian New Zealand Clinical Trials Registry. 2011. (ACTRN12611000744954)695PeNTAGOn: Peer & Nurse support Trial to Assist women in Gynaecological Oncology.

- Schofield P, Juraskova I, Bergin R, Gough K, Mileshkin L, Krishnasamy M, et al. A nurse- and peer led support program to assist women in gynaecological oncology receiving curative radiotherapy,
 the PeNTAGOn study (Peer and nurse support trial to assist women in gynaecological oncology):
 study protocol for a randomised controlled trial. Trials. 2013;14(1):39.
- 50. Lancellotta V, De Sanctis V, Cornacchione P, Barbera F, Fusco V, Vidali C, et al. HAPPY Humanity
 Assurance Protocol in interventional radiotheraPY (brachytherapy) an AIRO Interventional
 Radiotherapy Study Group project. J Contemp Brachytherapy. 2019;11(6):510–5.
- 703 51. Ramondetta LM. ClinicalTrials.gov. 2020. NCT04622670 Yoga Therapy During Chemotherapy and
 704 Radiation Treatment for the Improvement of Physical and Emotional Well-Being in Patients With
 705 Stage IB2-IIIB Cervical Cancer.
- Jeffries SA, Robinson JW, Craighead PS, Keats MR. An effective group psychoeducational
 intervention for improving compliance with vaginal dilation: A randomized controlled trial. Int J
 Radiat Oncol. 2006 Jun;65(2):404–11.
- Varre P, Jacobsen AM, Flovik AM, Skovlund E, Fosså SD. Regular counselling by an oncology nurse
 increases coping with side effects during outpatients radiotherapy of gynecological malignancies.
 Eur J Cancer. 1999 Sep;35:S10.
- 54. Lutgendorf SK, Mullen-Houser E, Russell D, DeGeest K, Jacobson G, Hart L, et al. Preservation of
 immune function in cervical cancer patients during chemoradiation using a novel integrative
 approach. Brain Behav Immun. 2010 Nov;24(8):1231–40.
- 71555.Hart LK, Freel MI, Haylock PJ, Lutgendorf SK. The Use of Healing Touch in Integrative Oncology.716Clin J Oncol Nurs. 2011 Oct 1;15(5):519–25.
- 56. Chi GC, Young A, McFarlane J, Watson M, Coleman RL, Eifel PJ, et al. Effects of music relaxation
 video on pain and anxiety for women with gynaecological cancer receiving intracavitary
 brachytherapy: a randomised controlled trial. J Res Nurs. 2015 Mar 28;20(2):129–44.
- 72057.Dey T, Mukerjee A, Rai B, Arora M, Kumar D, Srinivasa G, et al. Early integration of palliative care721in cervical cancer: Experiences from a pilot study. J Fam Med Prim Care. 2023;12(2):366–70.
- Tagliaferri L, Mancini S, Lancellotta V, Dinapoli L, Capocchiano N, Cornacchione P, et al. The Impact
 of HAPPY (Humanity Assurance Protocol in Interventional Radiotherapy) on the Psychological
 Well-being of Gynecological Cancer Patients. Curr Radiopharm. 2024 Jun;17(2):168–73.
- 59. Nuzhath FJ, Patil NJ, Sheela SR, Manjunath GN. A Randomized Controlled Trial on Pranayama and
 Yoga Nidra for Anxiety and Depression in Patients With Cervical Cancer Undergoing Standard of
 Care. Cureus. 2024 Mar 9;16(3):e55871.
- León-Pizarro C, Gich I, Barthe E, Rovirosa A, Farrús B, Casas F, et al. A randomized trial of the effect
 of training in relaxation and guided imagery techniques in improving psychological and quality-of life indices for gynecologic and breast brachytherapy patients. Psychooncology. 2007 Nov
 20;16(11):971–9.
- Thakur A, Agnihotri M, Kaur S, Rai B. Effectiveness of support group approach on the level of
 fatigue and pain in patients with cervical cancer: A quasi-experimental study. Nurs Midwifery Res
 J. 2021;17(2):83–91.
- Blackburn L, Hill C, Lindsey A, Sinnott L, Thompson K, Quick A. Effect of Foot Reflexology and
 Aromatherapy on Anxiety and Pain During Brachytherapy for Cervical Cancer. Oncol Nurs Forum.
 2021 May 1;48(3):265–76.

738 63. An F, Dan X, Yun A, Zhou L. Effects of mindfulness-based stress reduction on cervical cancer patients undergoing concurrent radiochemotherapy. Int J Clin Exp Med. 2020;13(7):5076-83. 739 D'cunha R, Pappachan B, D'souza O, Tonse R, Elroy Saldnha E, Baliga M. Effectiveness of Yoga 740 64. Nidra in Mitigating Stress in Women Undergoing Curative Radiotherapy for Cervical Cancer. 741 742 Middle East J Cancer. 2021;12(1):117–27. Kaur M, Agnihotri M, Das K, Rai B, Ghai S. Effectiveness of an Interventional Package on the Level 743 65. of Anxiety, Depression, and Fatigue among Patients with Cervical Cancer. Asia-Pacific J Oncol Nurs. 744 2018 Apr;5(2):195-200. 745 746 Chi G. Music Relaxation Video and Pain Control: A Randomised Controlled Trial for Women 66. Receiving Intracavitary Brachytherapy for Gynaecological Cancer. [Denton, Texas]: Texas Woman's 747 748 University; 2009. 749 de Oliveira Santana E, dos Santos Silva L, Alves da Silva LA, Lemos JL de A, Marcondes L, 67. Guimarães PRB, et al. Effect of guided imagery relaxation on anxiety in cervical cancer: 750 randomized clinical trial. Rev Bras Enferm. 2023;76(5):e20210874. 751 752 68. Schofield P, Gough K, Pascoe M, Bergin R, White K, Mileshkin L, et al. A nurse- and peer-led psycho-educational intervention to support women with gynaecological cancers receiving curative 753 radiotherapy: The PeNTAGOn randomised controlled trial – ANZGOG 1102. Gynecol Oncol. 2020 754 Dec;159(3):785-93. 755 Bergin RJ, Grogan SM, Bernshaw D, Juraskova I, Penberthy S, Mileshkin LR, et al. Developing an 756 69. 757 Evidence-Based, Nurse-Led Psychoeducational Intervention With Peer Support in Gynecologic Oncology. Cancer Nurs. 2016 Mar;39(2):E19–30. 758 Kpoghomou MA, Geneau M, Menard J, Stiti M, Almont T, Ghose B, et al. Assessment of an onco-70. 759 sexology support and follow-up program in cervical or vaginal cancer patients undergoing 760 brachytherapy. Support Care Cancer. 2021 Aug 7;29(8):4311-8. 761 762 Lim KH. Effects of Integrated Music-Video Therapy on Pain and Anxiety During High-Dose-Rate 71. Brachytherapy. Pain Manag Nurs. 2024 Jun;25(3):e223-9. 763 764 72. Texier E, Meignant L. ClinicalTrials.gov. 2024. (NCT06263283) Impact of an Educational Physiotherapy-Yoga Intervention on Perceived Stress in Women Treated With Brachytherapy for 765 766 Cervical Cancer (KYOCOL). 767 73. Oluloro A, Comstock B, Monsell SE, Gross M, Wolff EM, Sage L, et al. Study Protocol for the Social Interventions for Support During Treatment for Endometrial Cancer and Recurrence (SISTER) 768 769 study: a community engaged national randomized trial. J Comp Eff Res. 2024 Mar;13(3). Chi GC, Young A, McFarlane J, Watson M, Coleman RL, Eifel P, et al. Music Relaxation Video and 770 74. Pain Control: A Randomized Controlled Trial for Women Receiving Intracavitary Brachytherapy for 771 772 Gynecological Cancer. Int J Radiat Oncol. 2011 Oct;81(2):S189. Rai B. Clinical Trials Registry India. 2017. (CTRI/2017/05/008704) Impact of early institution of 773 75. Palliative care on Quality of Life of patients with locally advanced cancer of the uterine cervix- A 774 775 prospective randomized study. - EIPAQ-CX. 776 76. Lancellotta V, Dinapoli L, Mancini S, Salvati A, Cornacchione P, Colloca GF, et al. PO-1434 HAPPY protocol impact on psychological well-being in patients with gynecological cancer. Radiother 777 Oncol. 2023 May;182:S1160-1. 778 Patil N. Clinical Trials Registry India. 2022. (CTRI/2022/02/040423) Yoga for Cancer of the Cervix. 779 77.

78. Thakur A. Clinical Trials Registry India. 2019. (CTRI/2019/07/020057) A study to assess 780 effectiveness of social support group among cervical cancer patients and their caregivers. 781 Kaur M. (CTRI/2017/06/008732) Intervention on anxiety, depression, fatigue, treatment related 782 79. knowledge and practices in cervical cancer patients. Clin Trials Regist India. 2017; 783 80. Ahlin R, Bergmark K, Bull C, Devarakonda S, Landberg R, Sigvardsson I, et al. A Preparatory Study 784 for a Randomized Controlled Trial of Dietary Fiber Intake During Adult Pelvic Radiotherapy. Front 785 Nutr. 2021 Dec 7;8. 786 Ahrén IL, Bjurberg M, Steineck G, Bergmark K, Jeppsson B. Decreasing the Adverse Effects in Pelvic 787 81. Radiation Therapy: A Randomized Controlled Trial Evaluating the Use of Probiotics. Adv Radiat 788 Oncol. 2023 Jan;8(1):101089. 789 Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. 790 82. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifid 791 m in 792 prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. 2010 Dec 5;5(1):31. 793 794 83. Chitapanarux I, Traisathit P, Chitapanarux T, Jiratrachu R, Chottaweesak P, Chakrabandhu S, et al. 795 Arginine, glutamine, and fish oil supplementation in cancer patients treated with concurrent 796 chemoradiotherapy: A randomized control study. Curr Probl Cancer. 2020 Feb;44(1):100482. 797 84. Craighead PS, Young S. Phase II Study Assessing the Feasibility of Using Elemental Supplements to Reduce Acute Enteritis in Patients Receiving Radical Pelvic Radiotherapy. Am J Clin Oncol. 1998 798 799 Dec;21(6):573-8. De Loera Rodriguez LH, Ortiz GG, Rivero Moragrega P, Velázquez Brizuela IE, Santoscoy Gutiérrez 800 85. JF, Rincón Sánchez AR, et al. Effect of symbiotic supplementation on fecal calprotectin levels and 801 lactic acid bacteria, Bifidobacteria, Escherichia coli and Salmonella DNA in patients with cervical 802 cancer. Nutr Hosp. 2018 Oct 17;35(6):1394-400. 803 804 86. Garcia-Peris P, Velasco C, Hernandez M, Lozano MA, Paron L, de la Cuerda C, et al. Effect of inulin and fructo-oligosaccharide on the prevention of acute radiation enteritis in patients with 805 gynecological cancer and impact on quality-of-life: a randomized, double-blind, placebo-controlled 806 trial. Eur J Clin Nutr. 2016 Feb 25;70(2):170-4. 807 808 87. García-Peris P, Velasco C, Lozano MA, Moreno Y, Paron L, de la Cuerda C, et al. Effect of a mixture of inulin and fructo-oligosaccharide on Lactobacillus and Bifidobacterium intestinal microbiota of 809 patients receiving radiotherapy: a randomised, double-blind, placebo-controlled trial. Nutr Hosp. 810 811 2012;27(6):1908-15. 812 Giralt J, Regadera JP, Verges R, Romero J, de la Fuente I, Biete A, et al. Effects of Probiotic 88. Lactobacillus Casei DN-114 001 in Prevention of Radiation-Induced Diarrhea: Results From 813 Multicenter, Randomized, Placebo-Controlled Nutritional Trial. Int J Radiat Oncol. 2008 814 Jul;71(4):1213-9. 815 Huang C. Chinese Clinical Trial Registry. 2021. (ChiCTR2100043379) The effect of selenium 816 89. supplementation on the efficacy of concurrent radiotherapy for cervical cancer: a randomized, 817 double-blind, placebo-controlled phase II clinical trial. 818 819 90. Itoh Y, Mizuno M, Ikeda M, Nakahara R, Kubota S, Ito J, et al. A Randomized, Double-Blind Pilot Trial of Hydrolyzed Rice Bran versus Placebo for Radioprotective Effect on Acute Gastroenteritis 820 Secondary to Chemoradiotherapy in Patients with Cervical Cancer. Evidence-Based Complement 821 822 Altern Med. 2015;2015:1-6.

91. Li Y. ClinicalTrials.gov. 2023. (NCT05722288) Time-Restricted Eating Versus Nutritional Counseling 823 for the Reduction of Radiation or Chemoradiation Tx Side Effects in Patients With Prostate, 824 Cervical, or Rectal Cancers. 825 Aredes MA, da Camara AO, de Paula NS, Chaves GV. MON-P088: Effects of Supplementation with 92. 826 Omega-3 on Body Composition and Functional Capacity in Patients with Cervical Cancer in 827 Chemoradiotherapy: Preliminary Results. Clin Nutr. 2017 Sep;36:S212. 828 Linn YH, Thu KK, Win NHH. Effect of Probiotics for the Prevention of Acute Radiation-Induced 829 93. Diarrhoea Among Cervical Cancer Patients: a Randomized Double-Blind Placebo-Controlled Study. 830 Probiotics Antimicrob Proteins. 2019 Jun 17;11(2):638–47. 831 Luvián-Morales J, Delgadillo-González M, Cetina-Pérez L, Castro-Eguiluz D. The effect of an anti-832 94. 833 inflammatory diet on cervical cancer patients. Clin Nutr ESPEN. 2023 Dec;58:504. 834 Medina-Jiménez AK, Monroy-Torres R. Repurposing Individualized Nutritional Intervention as a 95. Therapeutic Component to Prevent the Adverse Effects of Radiotherapy in Patients With Cervical 835 Cancer. Front Oncol. 2020 Dec 8;10. 836 837 96. Muecke R, Schomburg L, Glatzel M, Berndt-Skorka R, Baaske D, Reichl B, et al. Multicenter, Phase 838 3 Trial Comparing Selenium Supplementation With Observation in Gynecologic Radiation Oncology. Int J Radiat Oncol. 2010 Nov;78(3):828-35. 839 840 97. Salminen E, Elomaa I, Minkkinen J, Vapaatalo H, Salminen S. Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures. Clin Radiol. 1988 Jul;39(4):435-7. 841 98. Sasidharan BK, Viswanathan PN, Prasanna S, Ramadass B, Pugazhendhi S, Ramakrishna BS. PV-842 0124: Does daily intake of resistant starch reduce the acute bowel symptoms in pelvic 843 radiotherapy? RCT. Radiother Oncol. 2016 Apr;119:S56-7. 844 Sasidharan B, Ramadass B, Viswanathan P, Samuel P, Gowri M, Pugazhendhi S, et al. A phase 2 845 99. randomized controlled trial of oral resistant starch supplements in the prevention of acute 846 radiation proctitis in patients treated for cervical cancer. J Cancer Res Ther. 2019;15(6):1383-91. 847 Soto-Lugo JH, Souto-Del-Bosque MA, Vázquez Martínez CA. Effectiveness of a nutritional 848 100. 849 intervention in the reduction of gastrointestinal toxicity during teletherapy in women with gynaecological tumours. Rev Médica del Hosp Gen México. 2018 Jan;81(1):7-14. 850 Soto-Lugo JH, Souto-Del Bosque MÁ, Vázquez-Martínez CA. Effectiveness of Nutritional 851 101. 852 Intervention in Reduction of Gastrointestinal Toxicity during External Beam Radiotherapy in Women with Gynecological Tumors. Gac Mex Oncol. 2017;16(2):84-90. 853 Steineck G. ClinicalTrials.gov. 2020. NCT04534075 Dietary Fiber During Radiotherapy - a Placebo-854 102. controlled Randomized Trial (FIDURA). 855 Aredes MA, da Camara AO, de Paula NS, Fraga KYD, do Carmo M das GT, Chaves GV. Efficacy of ω-856 103. 3 supplementation on nutritional status, skeletal muscle, and chemoradiotherapy toxicity in 857 858 cervical cancer patients: A randomized, triple-blind, clinical trial conducted in a middle-income 859 country. Nutrition. 2019 Nov;67-68:110528. 860 Turner CN. DIETARY REGIME DURING RADIATION THERAPY FOR CARCINOMA OF THE UTERUS. 104. 861 Med J Aust. 1958 Aug;2(7):227-8. Vidal-Casariego A, Calleja-Fernández A, de Urbina-González JJO, Cano-Rodríguez I, Cordido F, 862 105. Ballesteros-Pomar MD. Efficacy of Glutamine in the Prevention of Acute Radiation Enteritis. J 863 Parenter Enter Nutr. 2014 Feb 7;38(2):205–13. 864

865 866 867	106.	Yang M, Pei B, Hu Q, Li X, Fang X, Huang X, et al. Effects of selenium supplementation on concurrent chemoradiotherapy in patients with cervical cancer: A randomized, double-blind, placebo-parallel controlled phase II clinical trial. Front Nutr. 2023 Feb 2;10.
868 869 870	107.	Eustace NJ, Huang Z, Abuali T, Mercier B, Feng Q, Li C, et al. A Randomized, Phase II Clinical Trial of Time-Restricted Eating vs. Dietary Counseling to Improve Effect of Radiotherapy (TIDIER). Int J Radiat Oncol Biol Phys. 2024 Oct;120(2):e440.
871 872	108.	Shuang-zheng J. ClinicalTrials.gov. 2024. (NCT06349148) The Effects of Immunonutrition Therapy on Locally Advanced Cervical Cancer Patients.
873 874	109.	Bye A, Kaasa S, Ose T, Sundfør K, Tropé C. The influence of low fat, low lactose diet on diarrhoea during pelvic radiotherapy. Clin Nutr. 1992 Jun;11(3):147–53.
875 876	110.	Bye A, Ose T, Kaasa S. The effect of a low fat, low lactose diet on nutritional status during pelvic radiotherapy. Clin Nutr. 1993 Apr;12(2):89–95.
877 878	111.	Bye A, Ose T, Kaasa S. Quality of life during pelvic radiotherapy. Acta Obstet Gynecol Scand. 1995 Feb 7;74(2):147–52.
879 880	112.	Cetina L. ClinicalTrials.gov. 2019. (NCT03994055) Effect of an Anti-inflammatory Diet on Patients With Cervical Cancer.
881 882	113.	Chaves G. ClinicalTrials.gov. 2016. (NCT02779868) Omega-3 Supplementation in Cervix Cancer Patients Undergoing Chemoradiotherapy.
883 884 885	114.	Chen Y. Changes of immune response and side effects before and after nutritional intervention in cervical cancer patients with concurrent chemoradiotherapy. J Hainan Med Univ. 2018;24(13):70–3.
886 887	115.	Dessources K, Aviki E, Leitao Jr MM. Lower extremity lymphedema in patients with gynecologic malignancies. Int J Gynecol Cancer. 2020 Feb;30(2):252–60.
888 889	116.	Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, et al. International Agency for Research on Cancer. 2024. Global Cancer Observatory: Cancer Today - Cervix Uteri.
890 891 892	117.	Lin KY, Frawley HC, Denehy L, Feil D, Granger CL. Exercise interventions for patients with gynaecological cancer: a systematic review and meta-analysis. Physiotherapy. 2016 Dec;102(4):309–19.
893 894	118.	Arthur E, Wills C, Menon U. A Systematic Review of Interventions for Sexual Well-Being in Women With Gynecologic, Anal, or Rectal Cancer. Oncol Nurs Forum. 2018 Jul 2;45(4):469–82.
895 896 897	119.	Croisier E, Brown T, Bauer J. The Efficacy of Dietary Fiber in Managing Gastrointestinal Toxicity Symptoms in Patients with Gynecologic Cancers undergoing Pelvic Radiotherapy: A Systematic Review. J Acad Nutr Diet. 2021 Feb;121(2):261-277.e2.
898 899 900	120.	Allenby TH, Crenshaw ML, Mathis K, Champ CE, Simone NL, Schmitz KH, et al. A systematic review of home-based dietary interventions during radiation therapy for cancer. Tech Innov Patient Support Radiat Oncol. 2020 Dec;16:10–6.
901 902 903	121.	Duncan E, O'Cathain A, Rousseau N, Croot L, Sworn K, Turner KM, et al. Guidance for reporting intervention development studies in health research (GUIDED): an evidence-based consensus study. BMJ Open. 2020 Apr 8;10(4):e033516.
904 905	122.	Cocks K, Wells JR, Johnson C, Schmidt H, Koller M, Oerlemans S, et al. Content validity of the EORTC quality of life questionnaire QLQ-C30 for use in cancer. Eur J Cancer. 2023 Jan;178:128–38.

906 907 908	123.	Minasian LM, O'Mara A, Mitchell SA. Clinician and Patient Reporting of Symptomatic Adverse Events in Cancer Clinical Trials: Using CTCAE and PRO-CTCAE® to Provide Two Distinct and Complementary Perspectives. Patient Relat Outcome Meas. 2022 Dec;Volume 13:249–58.
909 910	124.	Hutton D, Ashmore L, Furbo MK, Stewart H, Singleton V. Patient voices: An essential piece in Radiotherapy's data jigsaw. Radiography. 2023 May;29:S8–10.
911 912 913	125.	Fleurent-Grégoire C, Burgess N, Denehy L, Edbrooke L, Engel D, Testa GD, et al. Outcomes reported in randomised trials of surgical prehabilitation: a scoping review. Br J Anaesth. 2024 Jul;133(1):42– 57.
914 915 916	126.	Parkington T, Myers A, Humphreys L, Moore J, Jhanji S. https://www.comet- initiative.org/Studies/Details/3098. 2023. Development of a core outcome set for cancer prehabilitation interventions.
917 918 919	127.	Santa Mina D, van Rooijen SJ, Minnella EM, Alibhai SMH, Brahmbhatt P, Dalton SO, et al. Multiphasic Prehabilitation Across the Cancer Continuum: A Narrative Review and Conceptual Framework. Front Oncol. 2021 Jan 11;10.
920 921 922 923	128.	Tanderup K, Fokdal LU, Sturdza A, Haie-Meder C, Mazeron R, van Limbergen E, et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016 Sep;120(3):441–6.
924 925 926	129.	Pair ML, Du W, Rojas HD, Kanke JE, McGuire SE, Lee AK, et al. Dosimetric effects of weight loss or gain during volumetric modulated arc therapy and intensity-modulated radiation therapy for prostate cancer. Med Dosim. 2013 Sep;38(3):251–4.
927 928	130.	Hoare E, Stavreski B, Jennings G, Kingwell B. Exploring Motivation and Barriers to Physical Activity among Active and Inactive Australian Adults. Sports. 2017 Jun 28;5(3):47.
929 930 931	131.	Morgan O, Schnur J, Caban-Martinez AJ, Duenas-Lopez M, Huang M, Portelance L, et al. A qualitative analysis of female patient perspectives on physician communication regarding sexual dysfunction associated with pelvic radiotherapy. J Sex Med. 2023 May 26;20(6):813–20.
932 933	132.	Long D, Friedrich-Nel HS, Joubert G. Patients' informational needs while undergoing brachytherapy for cervical cancer. Int J Qual Heal Care. 2016 Apr;28(2):200–8.
934 935 936	133.	Jennings A, O'Connor L, Durand H, Finnerty M. Women's psychosexual experiences following radical radiotherapy for gynaecological cancer: A qualitative exploration. J Psychosoc Oncol. 2023 May 4;41(3):355–71.
937 938 939	134.	Powlesland C, MacGregor F, Swainston K. Women's experiences of information, education and support when undergoing pelvic radiotherapy for gynaecological cancer: An exploratory qualitative study. Radiography. 2023 Jan;29(1):70–5.
940 941 942	135.	Corish S, Fulton BA, Galbraith L, Coltart K, Duffton A. Impact of patient information format on the experience of cancer patients treated with radiotherapy. Tech Innov Patient Support Radiat Oncol. 2024 Jun;30:100252.
943 944 945	136.	Fleurent-Grégoire C, Burgess N, McIsaac DI, Chevalier S, Fiore JF, Carli F, et al. Towards a common definition of surgical prehabilitation: a scoping review of randomised trials. Br J Anaesth. 2024 Aug;133(2):305–15.
946 947	137.	Miralpeix E, Mancebo G, Gayete S, Corcoy M, Solé-Sedeño JM. Role and impact of multimodal prehabilitation for gynecologic oncology patients in an Enhanced Recovery After Surgery (ERAS)

- 948 program. Int J Gynecol Cancer. 2019 Oct;29(8):1235–43.
- 949

950 Supporting Information

- 951 S1 Checklist. Completed PRISMA-ScR checklist.
- 952 S2 Table. Search strategies for all databases (February 2024)
- 953 S3 Table. Search strategies for all databases (October 2024)