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1 Introduction

A general presumption in dealing with financial time series is that the continuous evo-

lution of asset prices is driven by Brownian motion processes (Bachelier, 1900). However,

that presumption is undermined by the failure of Brownian increments to explain heavy-

tails observed in the distribution of returns. With an alternative approach, Merton (1976)

proposes a finite-jump diffusion process, which successfully mimics empirical continuous

and jump components. As small jumps eliminate the need of a Brownian component, the

attraction of pure jump processes lies with their versatility and flexibility.1

The abundance of reliable high-frequency data has enabled the financial economet-

rics literature to shift from parametric to non-parametric approaches. As such, several

non-parametric procedures to test for the presence of jumps (e.g., Aı̈t-Sahalia and Jacod,

2009, Barndorff-Nielsen and Shephard, 2006, Jiang and Oomen, 2008, Lee and Mykland,

2008, Podolskij and Ziggel, 2010), Brownian motion (e.g., Aı̈t-Sahalia and Jacod, 2010,

Cont and Mancini, 2011, Jing et al., 2012a, Kong et al., 2015), and jump activity (e.g.,

Aı̈t-Sahalia and Jacod, 2011) were proposed. As these procedures rely on in-fill asymp-

totics, the general assumption is that the observed price is the true price; i.e., market

microstructure noise and price staleness are absent.2

While several studies have assessed the finite sample properties of price jump tests

under more realistic scenarios (e.g., Dumitru and Urga, 2012, Huang and Tauchen, 2005,

Maneesoonthorn et al., 2020), the existing literature is extremely limited regarding the

finite sample properties of tests that identify the presence of a Brownian motion or jump

activity. The latter tests play a crucial role in modelling financial data as they identify

their different underlying components, and therefore provide useful information for risk

1Some infinite jump models are the variance gamma model (Madan and Seneta, 1990), the hyperbolic
model of (Eberlein and Keller, 1995), the CGMY Carr et al. (2002), the COGARCH model (Klüppelberg
et al., 2004), the non Gaussian Ornstein-Uhlenbeck-based models Barndorff-Nielsen and Shephard (2001),
the CARMA model (Brockwell, 2001), the normal inverse Gaussian Barndorff-Nielsen (1997), among
others.

2The few exceptions, considering the existence of microstructure noise to identify price jumps, are
Podolskij and Ziggel (2010), Aı̈t-Sahalia et al. (2012), and Lee and Mykland (2012). Recently, Kolokolov
and Renò (2024) propose a staleness-adjustment that mitigate the impact of zero returns on well-known
jump test statistics. However, as noted by the authors, the tests proposed by Podolskij and Ziggel (2010)
afford similar performance than their adjustment.
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management, portfolio allocation, and derivative pricing.

The contribution of this paper is twofold. First, we provide a comprehensive Monte

Carlo simulation to assess the finite sample properties of four tests statistics developed

to identify the different underlying components of high-frequency financial data in terms

of a Brownian component and infinite vs. finite activity jumps. We consider the pure

jump test of Kong et al. (2015) (KLJ hereafter), which evaluates the Brownian motion

hypothesis, and the Aı̈t-Sahalia and Jacod (2011) (ASJ hereafter) test able to detect

the presence of finite and infinite jumps.3 Second, as finite and infinite jumps have very

different features,4 we disentangle these jumps using the intersection between the ASJ

and a price jump test at the optimal sampling frequency. This allows us to quantify

the contribution of both finite and infinite jumps to the total quadratic variation. In

addition, we also investigate whether the rejection rates are time-varying.

Although, in principle, any price jump test can be employed, we consider the proce-

dure of Podolskij and Ziggel (2010) (PZ hereafter), as this test is capable of detecting

jumps both of finite and infinite activity, and because it also has a noise-robust version.

Evidently, in presence of microstructure noise and at very high frequencies, the perfor-

mance of the noise-robust PZ test should dominate its noise-free counterpart. However,

very little is known about the power and size of the noise-robust PZ test across vari-

ous sampling frequencies and types of market microstructure noise. Neither Dumitru

and Urga (2012) nor Maneesoonthorn et al. (2020) consider the noise-robust version of

the PZ test. Thus, we also assess the finite properties of both tests as previous studies

have documented that noise-robust price jump tests, such as that of Aı̈t-Sahalia et al.

(2012) and Lee and Mykland (2012), are less powerful at relatively low frequencies (e.g.,

Maneesoonthorn et al., 2020).

3Note that the tests proposed by Aı̈t-Sahalia and Jacod (2010) and Jing et al. (2012a) are also
developed to test for the presence of a Brownian motion. However, in unreported results, we confirm
the findings of Kong et al. (2015) that, in a noise-free environment, their test improves upon the results
of the aforementioned procedures. Thus, in this paper, we only assess the finite sample properties of
the best-performing model. Further, Aı̈t-Sahalia and Jacod (2011) also propose a test that has a null of
finite jumps instead of infinite jumps; however, one version of the test is the complement of the other
version, and thus their sample properties and conclusion are qualitatively similar. For brevity, in this
paper, we consider the test for infinite jump activity. The unreported results are available upon request.

4As discussed in Aı̈t-Sahalia et al. (2020) and Bu et al. (2023), infinite (finite) jumps are normally
related to idiosyncratic (systematic) events, such as earning disappointments (FOMC meetings).
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Our comprehensive simulation exercise focuses on two main features associated with

market frictions: market microstructure noise and price staleness, as both these features

become relevant considerations as ∆n → 0. While sparse sampling provides a simple

remedy (e.g., Ait-Sahalia et al., 2005), sampling too sparsely reduces the power of the

tests. Thus, it is vital to find a trade-off between achieving sufficient statistical power

and avoiding distortions that could arise from microstructure noise and price staleness,

as inference about the appropriate model depends on the sampling frequency and testing

technique (see, for instance, Todorov and Tauchen, 2010).

The main results of our Monte Carlo experiments can be summarized as follows. In the

absence of microstructure noise, all tests exhibit very good finite sample properties, which

deviate slowly from the theoretical size and power as the sampling frequency increases.

Conversely, the presence of microstructure noise biases the distributions of all the tests,

except for the robust PZ test, which is derived under the assumption of noisy prices.

The distributions of the tests exhibit bias only at very high frequencies when Gaussian

noise is present. However, in the presence of t-distributed and Gaussian-T mixture noise,

the performance of all tests is severely adversely affected. Sampling sparsely decreases

the bias of the tests. Under Gaussian noise, the tests display good performance when

returns are sampled every 30 seconds. When microstructure noise is t-distributed or

Gaussian-T mixture, sampling every 60 seconds give satisfactory results. However, in the

presence of non-Gaussian noise and degrees of freedom equal to 2.5, the standard PZ test

shows severe upward bias even when returns are sampled every 90 seconds. On the other

hand, contaminating the efficient price with price staleness moderately distorts the tests

at higher-frequencies, although sampling returns every 1 minute seems to eliminate most

of these distortions.

In our empirical illustration, we consider 100 individual stocks and the SPY (S&P 500

ETF) from January 2000 to December 2022. Guided by our Monte Carlo experiment, we

sample returns every 1 minute as this sampling frequency shows sufficient statistical power

with minimal distortions from microstructure noise and price staleness. Our findings

provide strong evidence for both Brownian and jump components. On average, jumps
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occur 19% of days across sectors and 13% of days for the SPY, with the lower SPY

proportion resulting from aggregation effects. In reducing idiosyncratic risk, aggregation

causes stock specific jumps to be ‘lost’. While both finite and infinite jumps characterize

the jump component, finite jumps contribute more to the total jump part. The estimated

jump activity index, β̂, oscillates around 1.0, confirming the presence of jump types.

Finally, we document significant time variation in the rejection rates, with variations

ranging between 5–20%. This aligns with recent findings on time-varying jump intensity,

which explain variations in news-induced realized volatility (e.g., Erdemlioglu and Yang,

2022). This suggests that the data generating process should allow for time variation,

with increases in the rejection of no jumps generally accompanied by decreases in the

rejection of infinite jumps. These results remain consistent even with more conservative

jump detection threshold in the PZ test.

Our paper is related to the vast literature advocated to answer one of the most

central empirical issues in modelling financial data: what distributional assumptions are

consistent with observed stock prices. Although the practical importance and relevance

of jumps in financial data are universally recognized, the relative appropriateness of large

and/or small jumps, and the extent to which Brownian motion is necessary, are still

open to debate. For instance, in comparing several diffusion and finite-jump diffusion

models, Andersen et al. (2002) conclude that a finite-jump diffusion model is capable of

catching the characteristics of the S&P 500 returns. However, using the same index, Carr

et al. (2002) find that a pure jump process is the most appropriate model. The source

of such discrepancies may be associated with that parametric approaches run the risk of

incorrect specification for functionals in their chosen models. This is not the case with

the non-parametric approaches employed in this paper.

The remainder of the paper is structured as follows. Section 2 reviews both the

theoretical background and the test statistics which are respectively categorized as pure

jump test (Kong et al., 2015), infinite activity jump (Aı̈t-Sahalia and Jacod, 2011), and

jump test (Podolskij and Ziggel, 2010). Section 3 describes the Monte Carlo setup, reports

the simulated results. The empirical illustration including a time-variation exercise for
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the rejection rates are reported in Section 4. Section 5 concludes.

2 Theoretical Background

In this section, we briefly review the test statistics considered, together with a brief

description of (truncated) power variation methods which are the building blocks of most

of the procedures.

2.1 Background

Let the log-price Xt follow a semimartingale defined on some filtered probability space

(Ω,F , (Ft)t≥0,P):

Xt = x0 +

∫ t

0

bsds+

∫ t

0

σsdWs +Xd
t , (1)

where x0 is the initial value, bs is the continuous and locally bounded drift term, σs is

a strictly positive and càdlàg stochastic volatility process, Ws is a standard Brownian

motion, and Xd
t is a pure-jump component. The Blumenthal-Getoor (BG) index of Xd

t

measures the degree of activity of small jumps and is defined as:

β := inf

{
r;
∑
0≤s≤t

|∆Xs|r < ∞

}
, (2)

where ∆Xs = Xs −Xs− ̸= 0 if jumps are present. β serves as an indicator of the activity

of jumps contained in Xd. The larger the β, the more active the jumps. A finite activity

jump process such as a compound Poisson process has β = 0, whereas a β-stable process

has an index equal to β ∈ (0, 2). Finite variation corresponds to 0 < β < 1 and infinite

variation to 1 < β < 2.

To construct the tests, we define power and truncated power variations (see, Jacod,

2008, Mancini, 2001, 2009), as well as an estimator of the continuous part that is robust

to infinite jump variation (see, Jacod and Todorov, 2014, JT hereafter).
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Let denote the power variation estimator as B(p,∞,∆n)t, which is outline as:

B(p,∞,∆n)t = np/2−1

⌊t/∆n⌋∑
i=1

|∆n
i X|p P−→


µp

∫ t

0
|σs|pds, (No Jumps),

∞, (With Jumps),

(3)

when p > 2, and µp ≡ E[|U |p] = 2p/2√
π
Γ
(
p+1
2

)
, where U ∼ N (0, 1). ∆n

i X = Xi∆n −

X(i−1)∆n , with ∆n = 1/n for 0 ≤ i ≤ n. It is well-known that:

B(2,∞,∆n)t =

⌊t/∆n⌋∑
i=1

|∆n
i X|2 P−→

∫ t

0

σ2
sds︸ ︷︷ ︸

Integrated Variation (IVt)

+
∑
0<s≤t

(∆sX)2︸ ︷︷ ︸
Jump Variation

. (4)

We denote the truncated power variation as B(p, νn,∆n)t:

B(p, νn,∆n)t = np/2−1

⌊t/∆n⌋∑
i=1

|∆n
i X|p1{|∆n

i X|≤νn}
P−→
∫ t

0

µp|σs|pds (5)

where νn = α∆ϖ
n is the truncation threshold and α > 0 is expressed in units of the

standard deviation of the continuous part of the process for a constant ϖ ∈ (0, 1/2).

When the jump of Xt is a Lèvy process with the Blumenthal-Getoor index β ∈ [0, 2), as

outlined in equation (2), then the required condition is given by ϖ ≥ p−2
2(p−β)

, for p > 2.

The JT bias-corrected estimator, C(un)
n
j , is given by:

C0(un)
n
j = 2kn∆n

⌊t/kn∆n⌋−1∑
j=0

(
c0(un)

n
j −

1

u2
nkn

(sinh(u2
nc0(u)

n
j ))

2

)
P−→
∫ t

0

σ2
sds (6)

where

c0(un)
n
j = − 1

u2
n

log

(
L(un)

n
j ∨

1√
kn

)
L(un)

n
j =

1

kn

kn−1∑
l=0

cos
(
un(∆

n
2jkn+1+2lX −∆n

2jkn+2+2lX)/
√
∆n

)

where the following conditions must satisfy kn∆
1/2
n → 0, un → 0, supn

kn∆
1/2
n

u4
n

< ∞.

Possible choice for kn and un are kn ≍ 1/
√
∆n(log(1/∆n))

x and un ≍ 1/(log(1/∆n))
x′
for
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0 < x′ ≤ x/4, where x ∈ (0, 1], and x ≍ y means that 1/A ≤ x/y ≤ A, for a constant

A ∈ (1,∞) (for more details, see Jacod and Todorov, 2014).

2.2 Test Statistics

In what follows, we offer a short overview of the test statistics used to identify the

presence of Brownian component, infinite/finite jumps, as well as testing for the presence

of price jumps.

Pure Jump Test

The pure-jump test of Kong et al. (2015, KLJ hereafter) is based on the realized char-

acteristic function and checks whether the underlying process of a high-frequency data

set can be modelled as a pure-jump process 5. The pure jump test is of the following

hypotheses:

H0 :

∫ t

0

σ2
sds > 0 v.s. H1 :

∫ t

0

σ2
sds = 0.

The test, under the null, limit distribution takes the following form:

Tt =
C0(un)

n
j − C1(un)

n
j − γn∆

1/2

2I
1/2
n ∆

1/2
n

Ls−→ N (0, 1), (7)

where

In ≡ 1

2
(In,0 + In,1)

In,k = 2kn∆n

⌊t/kn∆n⌋−1∑
j=0

(
ck(un)

n
j −

sinh(u2
nck(un)

n
j )

u2
n(kn − 1)

)2

, k = 0, 1

where γn is some chosen constant satisfying γn → 0, and can be estimated as γn =

c∗/ log(u2
n/∆n), where c∗ = 0.2, when the number of observations is moderate. C0(un)

n
j

is estimated as in equation (6), whereas C1(un)
n
j can be defined as the C0(un)

n
j , where

∆n
2jkn+2l+1X −∆n

2jkn+2lX is replaced by ∆n
2jkn+2lX −∆n

2jkn+2l−1X, for l = 1, . . . , kn − 1.

5In finite sample terms, this test is superior to the Brownian test of Aı̈t-Sahalia and Jacod (2010)
and the modified version of the latter proposed by Jing et al. (2012a)
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Finally, H0 can be rejected if Tt < −zθ where P(N (0, 1) > zθ) = θ for θ ∈ (0, 1).

As KLJ do not provide analytical results for cases that include microstructure noise,

our prior is that, in the presence of microstructure noise, the test would be unable to

recognize whether the small and frequent movements are Brownian or pure jump incre-

ments.

Infinite Activity Jump Test

The infinite activity jump test proposed by (Aı̈t-Sahalia and Jacod, 2011, ASJ here-

after) evaluates the following hypothesis:

H0 : Ω
iβ
T v.s. H1 : Ω

f
T ∩ Ωc

T ,

where Ωiβ
T and Ωf

T respectively refer to infinite and finite jump activity, and Ωc
T is the

diffusive part. The ASJ test is outlined as:6

SIA
t =

B(p′, φνn,∆n)tB(p, νn,∆n)t
B(p′, νn,∆n)tB(p, φνn,∆n)t

P−→ φp′−p. (8)

The CLT of this test, under the null, takes the following form:7

(SIA
t − φp′−p)

/√
σ̂2
t

Ls−→ N (0, 1), (9)

where

σ̂2
t = φ2p′−2p

(
B(2p, νn,∆n)t
(B(p, νn,∆n)t)2

+ (1− 2φ−p)
B(2p, φνn,∆n)t
(B(p, φνn,∆n)t)2

+
B(2p′, νn,∆n)t
(B(p′, νn,∆n)t)2

+ (1− 2φ−p′)
B(2p′, φνn,∆n)t
(B(p′, φνn,∆n)t)2

− 2
B(p+ p′, νn,∆n)t

B(p, νn,∆n)tB(p′, νn,∆n)t

− 2(1− φ−p − φ−p′)
B(p+ p′, φνn,∆n)t

B(p, φνn,∆n)tB(p′, φνn,∆n)t

)
.

6The convergence in probability holds only under the stated null hypothesis.
7The convergence in law holds only under the stated null hypothesis.
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We set p = 3, p′ = 4, φ = 2, ϖ = 0.2, and α = 8. As shown by ASJ, this test converges

to φp′−p (1) when the underlying process has infinitely (finitely) many jumps. When

microstructure noise dominates, the test also converges to φp′−p. The implication is that

in the presence of microstructure noise, the test cannot distinguish whether jumps have

finite or infinite activity. zθ denotes the upper θ-quantile of N (0, 1), that is, P(N (0, 1) >

zθ) = θ, for θ ∈ (0, 1), the test rejects H0 when SIA
t < φp′−p − zθ

√
σ̂2
t .

Jump Test

As the difference between the two capture the contribution of jumps, Podolskij and

Ziggel (2010) use the difference between power and truncated power variations to con-

struct their test statistics.8 The test is of the following hypotheses:

H0 : Ω
c
T v.s. H1 : Ω

j
T ,

where Ωc
T and Ωj

T are respectively the set of a continuous and a discontinuous price path.

We outline the test as:

SJ
t =

T (∆n
i X, p)t
ρt

Ls−→ N (0, 1), (10)

where

T (∆n
i X, p)t = n(p−1)/2

⌊t/∆n⌋∑
i=1

|∆n
i X|p

(
1− ηi1{|∆n

i X|≤νn}
)
, p ≥ 2, (11)

ρ2t = Var∗(ηi)B(2p, νn,∆n)t. (12)

ηi is a positive i.i.d. random variables with E[ηi] = 1 and E[|ηi|2] < ∞. PZ suggest that

ηi can be sampled from the distribution:

P η =
1

2
(δ1−τ + δ1+τ ) ,

8The limit distribution of the standard and noise-robust versions are all the null limit distributions.

10



where δ is the Dirac measure, and τ = 0.1 or 0.05. ϖ is chosen such that it satisfies

ϖ ≥ p−2
2(p−β)

, for p > 2.

PZ are amongst the few that account for microstructure noise.9 Robust jump tests

were generally ignored by subsequent research (e.g Dumitru and Urga, 2012), although

more recently Maneesoonthorn et al. (2020) have shown evidence that both the Aı̈t-

Sahalia et al. (2012) and Lee and Mykland (2012) tests lose power very rapidly. Given

the evidence that jump tests are very sensitive to microstructure noise, in this paper, we

also examine the finite sample properties of the noise-robust PZ test.

Let Yt = Xt+ut be a contaminated price, and ut an additive i.i.d. process. We assume

that ut has E[ut] = 0 and E[u2
t ] = ω2

t , and Xt ⊥ ut (⊥ means stochastic independence).

We pre-filter the data using the pre-averaging method of Jacod et al. (2009), so that the

additive component is eliminated. The pre-averaging returns are defined as:

∆n
i Ȳ =

Kn−1∑
j=0

g

(
j

Kn

)
∆n

i+jY,

where Kn/
√
n = Θ + o

(
n−1/4

)
, for some Θ > 0, and a nonzero real-valued function

g(x) = (x ∧ 1− x). The test is outlined as:

SJnoise

t =
T noise

(
∆n

i Ȳ
)
t√

Γt

Ls−→ N (0, 1), (13)

T noise
(
∆n

i Ȳ , p
)
t
= n(p−2)/4

⌊1/∆n⌋−Kn+1∑
i=0

|∆n
i Ȳ |p

(
1− ηi1{|∆n

i Ȳ |≤νn}

)
, p ≥ 2, (14)

Γt = Var∗ (ηi)n
(p−2)/2

⌊1/∆n⌋−Kn+1∑
i=1

|∆n
i Ȳ |2p1{|∆n

i Ȳ |≤νn}, (15)

where α > 0, ϖ ∈ (0, 1/4) and ηi is estimated as described above.10 Both versions of

the test reject H0 when SJ
t (S

Jnoise

t ) > zθ where P(N (0, 1) > zθ) = θ for θ ∈ (0, 1).

Throughout the paper we set τ = 0.05, α = 3, and ϖ = 0.40 for the standard PZ test

9Other noise-robust tests are Aı̈t-Sahalia et al. (2012), Jiang and Oomen (2008), and Lee and Mykland
(2012).

10For more details on the pre-averaging methods used, see (Podolskij and Ziggel, 2010, Section 4)
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and to ϖ = 0.20 for the noise-robust version.11

3 Monte Carlo Study

In general, most of the test statistics are derived under the assumption of frictionless

markets. Under this assumption the observed price is the efficient price, and there-

fore one could implement these statistics at the highest possible frequency. However, in

practice there exists market frictions that give rise to market microstructure noise (e.g.,

Ait-Sahalia and Yu, 2009, O’Hara, 2015) and price staleness (e.g., Bandi et al., 2020,

2017), which are very likely to impact the performance of these procedures in finite sam-

ples. In this section, we evaluate the performance of these tests under different types

of microstructure noise and price staleness, the main aim being the identification of an

optimal trade-off between performance and bias.

3.1 Monte Carlo design

In following Aı̈t-Sahalia and Jacod (2010, 2011) and Jing et al. (2012a), we use a

Heston stochastic volatility model that allows for both finite and infinite jumps, while for

the pure-jump process νt ≡ 0, i.e. dXt = dLt. The model is described as:

dXt = ν
1/2
t dW

(1)
t + dLt

dνt = k(η − νt)dt+ γν
1/2
t dW

(2)
t ,

(16)

with E[dW (1)
t dW

(2)
t ] = ρdt, η = 0.252, γ = 0.5, k = 5, ρ = −0.5, and the pure jump

process is either a finite activity compound Poisson process or a symmetric tempered

β-Stable process.12 The compound Poisson has intensity λ = {0.1, 0.2, 1.0} and jumps

that are uniformly distributed on ν
1/2
t

√
m([−2,−1] ∪ [1, 2]), where m = 0.7. We set the

11Podolskij and Ziggel (2010) suggest setting α = 2.3. However, in unreported simulation studies,
employing this value results in an increased Type I error rate compared to more conservative values, i.e.,
α ≥ 3.

12We specifically simulate the CGMY process of Carr et al. (2002), where the trajectories could be
approximately simulated by the time-changed-Brownian-motion algorithm, where the change of time is
via the β/2 stable subordinator which is also a Lévy process.
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following values for β = {1.00, 1.25, 1.50}.

We add the measurement error, so that we do not observe the true price Xt, but

observe instead the contaminated price as follows:

Yt = Xt + ut, (17)

where Yt and Xt are respectively the contaminated and true log-price processes, and ut

is the measurement error with E[ut] = 0, and E[u2
t ] = ω2

t . We follow Aı̈t-Sahalia et al.

(2012) and consider four settings:

ut =



0, (No noise)

2ν
1/2
t ∆

1/2
n uA

t , (Gaussian noise)

2ν
1/2
t ∆

1/2
n uB

t

/√
df

df−2
, (T-distributed noise)

2ν
1/2
t ∆

1/2
n

(
uA
t + uB

t

/√
df

df−2

)
, (Gaussian-T mixture noise),

(18)

where uA
t and uB

t are mutually independent i.i.d. drawn from anN (0, 1) distributed and a

t-distribution with degree of freedom df = {2.5, 3.5, 4.5}, respectively. The instantaneous

standard deviations of the Gaussian noise and the t-distributed noise are twice that of

the diffusive increment, i.e., (νt∆n)
1/2, and allow for temporal heteroskedasticity and

dependence in ut. The t-distributed noise captures the large bouncebacks commonly

observed in transaction data as shown in Figure 1.

Once the efficient price, Xt, is simulated and sampled to the required sampling fre-

quency, we construct the staleness-contaminated log-price process Zt following Kolokolov

et al. (2020): 
Z0 = X0,

Zj = (1− Bj)Xj + BjXj−1,

(19)

where Bj are i.i.d. Bernoulli random variables with constant expected value E[Bj] = pF .

To determine the probability of price staleness, we analyze the proportion of zero re-

turns in our dataset across the required sampling frequencies. We establish high and
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medium levels of price staleness, corresponding to the 95th and 50th percentiles, re-

spectively. For the high level, the probabilities are pF = {0.70, 0.35, 0.23 , 0.18} for

5-, 30-, 60-, and 90-second frequencies, respectively. The medium level probabilities are

pF = {0.54, 0.22, 0.13, 0.10} for the same frequencies. We generate data for 50 days and

use 3,000 replications, which encompass 150,000 simulated days.

Figure 2 plots the distribution of the tests using a diffusion process, Equation (16)),

contaminated with different types of microstructure noise. Of course, in the absence of

noise effects (Figure 2a) all procedures are well-behaved, so giving good finite sample

properties. When noise is added, there is a decrease in performance in all the tests,

but the noise-robust PZ test. Gaussian noise (Figure 2b), the most popular type of

noise in the literature, produces least distortions in all the test statistics. By contrast,

t-distributed (Figure 2c) and Gaussian-T mixture (Figure 2d) noise severely affect the

standard procedures.

By comparison, the standard PZ test is upward biased, which results in a high in-

cidence of Type I error. However, the bias induced by Gaussian noise is present only

at high sampling frequencies, while the bias from t-distributed and Gaussian-T mixture

noise distorts the distribution of the test even when returns are sampled every 90 seconds.

On the other hand, the distribution of the robust PZ test is largely unaffected whether or

not the underlying process is contaminated with microstructure noise. The KLJ and ASJ

tests are also more affected when the noise is non-Gaussian. Nevertheless, the distribu-

tion of both tests under the different types of microstructure noise suggest that sampling

sparsely, and not at very low frequencies, can solve this issue without losing much power.

Figure 3 shows the distribution of the tests when the model is an infinite-jump dif-

fusion process with β = 1.0. The distribution of both versions of the PZ test tends to

infinity in the presence of infinite jumps, which confirms the capacity of these tests to

identify jumps of infinite variation. The noise has little effect on the finite sample per-

formance of the PZ tests. This is mainly because the noise-robust version is not affected

by any type of noise as shown in Figure 2, and the standard PZ test is oversized in the

presence of noise, which does not affect the power of the test but increases the spurious
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detection of jumps. The distribution of the KLJ test shows similar behavior to the jump

diffusion case; that is, the test is downward biased in the presence of microstructure noise.

This means that the test fails to distinguish between the null and alternative hypothesis.

As expected, the ASJ test is centered around 2 in the absence of noise, while in the

presence of t-distributed and Gaussian-T mixture noise the distribution shifts to the left

of 2, thereby indicating a rise in Type II error.

In what follows, we focus on the finite sample properties of these procedures across dif-

ferent sampling frequencies using a significance level of θ = 0.01. We sample the simulated

data every 5, 30, 60, and 90 seconds, which corresponds to ⌊1/∆n⌋ = {4680, 780, 390, 260}

observations per day, respectively.

3.2 Monte Carlo Results

The full set of results of the Monte Carlo exercise is reported in Tables 1–6. In each

table, the first three rows report the KLJ and PZ tests, whereas the fourth row reports

the ASJ test. To facilitate a more structured analysis, we start by examining the results

influenced by market microstructure noise, subsequently progressing to the implications

of price staleness.

3.2.1 Finite Sample Performance under Microstructure Noise

Pure Jump Test

Tables 1, 2 and 3 report the empirical sizes of the KLJ test given the presence of a

diffusive component in all underlying processes. Irrespective of whether the underlying

model is a diffusion (Table 1) or a finite jump-diffusion process (Table 2),13 the KLJ

test performs well at higher frequencies when microstructure noise is absent, although it

tends to be slightly upwards bias as sampling frequency decreases. When noise is present,

the test is downward biased, and this bias is exacerbated when the noise is t-distributed

or Gaussian-T mixture. However, we note that as the degrees of freedom increase, the

13Results are qualitatively similar when the jump intensity is set to λ = 0.2 (Table A.1), λ = 0.1
(Table A.2), or when only 4 large random jumps are simulated (Table A.3).
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performance of the test also improves as these noises behave more like Gaussian noise.

Generally, the KLJ test approaches the theoretical size when sampling returns every 30

or 60 seconds, i.e., ⌊1/∆n⌋ = 780 and 390, respectively.

Table 3 presents the results using an infinite-jump diffusion process with jump activity

index equal to β = {1.00, 1.25, 1.50}. In the absence of microstructure noise, the KLJ

test is close to its theoretical size. However, when using a β = 1.50, the test is downward

biased. An explanation for this finding is that, as β → 2, the increments are closer to those

of a Brownian motion, which makes it difficult for the test to recognize true Brownian

increments. When microstructure noise contaminates the true underlying process, we

observe a decrease in the size of the test, which can be recovered by sampling more

sparsely, i.e. every 780 to 390 observations. The results are also robust to considering

the case of an infinite jump-diffusion process with residual finite jumps, as shown in

Table A.4.

Table 4 reports the power of the KLJ test using a pure jump process. We simulate

microstructure noise as described in equation (18), replacing νt with the JT estimator.

This approach ensures that noise variance remains constant intraday but varies across

days. In the absence of microstructure noise, the KLJ’s power closely approximates

its theoretical power. This power decreases as both the time interval increases and as

β → 2. However, the introduction of microstructure noise significantly impacts the test’s

performance at higher frequencies. For β = 1, sampling at 60-second intervals (every 390

observations) yields power values comparable to those in the noiseless scenario, regardless

of the microstructure noise type. Conversely, when β > 1.0, the test exhibits very low

power, improving only marginally with increased sampling intervals.

All in all, the KLJ test has high power in the absence of microstructure noise, improv-

ing further as ∆n → 0. When microstructure noise is added, the KLJ test is undersized

under the null and increases the Type II error under the alternative hypothesis. Al-

though this is observed for all types of microstructure noise, Gaussian noise produces

less severe distortions that are only observed at high sampling frequencies and as β → 2.

The distortions of t-distributed and Gaussian-T mixture noise are less obvious around
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⌊1/∆n⌋ = 390, which suggests that sampling returns every 1-min presents a good trade-off

between bias and performance.14

Infinite Activity Jump Test

Tables 1 and 2 report the power of the ASJ test for data generating processes follow-

ing a diffusion and a finite jump-diffusion, respectively. In the absence of microstructure

noise, the power of the test gradually decreases as the time interval increases. For ex-

ample, when the data generating process is a diffusion, the power of the test is 0.94, and

when it is a finite jump-diffusion, the power is 0.936, both using 1-minute returns (i.e.,

⌊1/∆n⌋ = 390). These results suggest that the loss of power due to more sparse sampling

in the absence of price noise is moderate.

As shown by Aı̈t-Sahalia and Jacod (2011) and illustrated in Figure 2, when mi-

crostructure noise dominates, the ASJ test converges to φp′−p. This convergence implies

that the test fails to distinguish between its null and alternative hypotheses. Furthermore,

regardless of whether the underlying process is a diffusion or a finite jump-diffusion, all

types of microstructure noise increase the Type II error of the test. While the effect of

Gaussian noise declines rapidly for sampling frequencies beyond ⌊1/∆n⌋ = 4680, the dis-

tortions caused by t-distributions and Gaussian-T mixture noise are more pronounced.

However, these distortions are considerably reduced when sampling at frequencies of

⌊1/∆n⌋ = 390 or lower.

Table 3 reports the size of the ASJ test, presenting results when the underlying model

follows an infinite jump-diffusion process. In the absence of microstructure noise effects,

the size of the ASJ test closely approximates its theoretical size. As β → 2 and the

number of intraday observations decreases, Type I error increases, reflecting the increased

difficulty in distinguishing between infinite jumps and Brownian increments. When the

underlying process is contaminated with Gaussian noise and β ∈ [1.0, 1.25], the results

show minimal deviation from the noiseless case. This deviation becomes more pronounced

14As a robustness-check, we also implement the test of Jing et al. (2012a), which shows being oversized
for time intervals lower than 4,680 (5-seconds). Note that this comparison is in line with what reported
in Kong et al. (2015). Thus, we do not report these results which are available upon request.
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when β = 1.5. In contrast, t-distributed and Gaussian-T mixture noise significantly

increase the number of spurious rejections in the ASJ test, regardless of the value of β.

As sampling decreases, for df = {3.5, 4.5}, the number of spurious rejections initially

falls, but then rises again at ⌊1/∆n⌋ = 260.

In summary, the ASJ test exhibits relatively robust performance in the presence

of Gaussian noise. Conversely, the Type I error increases when the noise follows a t-

distribution or Gaussian-T mixture. However, for values of β = 1.0, which are on average

the values observed in our empirical exercise, the test performs relatively well when re-

turns are sampled at 1-minute intervals. Furthermore, our results remain consistent under

various scenarios, including different levels of jump intensity (Tables A.1–A.3), infinite

jumps with residual finite jumps (Table A.4), and under variance-gamma type-jumps

(Table A.5). To conclude, sparse sampling at approximately 1-minute intervals provides

a simple mitigation strategy, as we observe that sampling at higher or lower frequencies

leads, on average, to an increase in spurious rejections.

Jump Test

The null hypothesis H0 : Ωc
T holds when the underlying model follows a diffusion

process, and therefore Table 1 reports the size of the PZ tests. When prices have no noise,

both versions of the PZ tests produce sizes close to the theoretical size across all sampling

frequencies. While the noise-robust version of the test perform extremely well irrespective

of the type of noise employed, the standard PZ test is oversized under microstructure

effects. Nonetheless, the standard PZ test appears somewhat robust to Gaussian noise,

with a Type I error rate close to the theoretical size when returns are sampled at 30-

second intervals or longer. This demonstrates the sensitivity of the standard version to

microstructure noise, which increases the spurious detection of jumps, making it difficult

to identify true jump days.

Tables 2 and 3 report results when the underlying process follows a finite- and infinite-

jump diffusion, respectively. Given the previous findings for size, it is unsurprising that

the standard PZ test shows power values of 1 across most sampling frequencies. This is
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primarily because microstructure noise causes the test to explode to infinity, rendering it

unable to distinguish between the null and alternative hypotheses. To illustrate this, the

size of the test when ⌊1/∆n⌋ = 780 under t-distributed noise (df = 2.5) is 0.744. This

suggests that the test is likely to identify almost every day as a jump day, even when

the true process has no discontinuities. Conversely, the noise-robust PZ test, SJnoise

t , is

unaffected by microstructure noise, thereby achieving similar finite sample performance

relative to the no noise case. Additionally, our results remain qualitatively similar under

various levels of jump intensity (Tables A.1–A.3), infinite jumps with residual finite jumps

(Table A.4), and under variance-gamma type-jumps (Table A.5).

Despite the capacity of the PZ tests to detect jumps of finite and infinite activity,

it is surprising to find such high power levels when β = 1.50. As β → 2, the infinite

jumps are akin to Brownian increments, whereby one would expect the tests to struggle

in disentangling the small jumps from the Brownian increments. However, as shown in

Figure 3, the distribution of both tests is shifted to the right, confirming their ability to

detect small jumps.

To summarise, our analysis reveals that the standard PZ test encounters minimal

microstructure problems when dealing with Gaussian noise. However, t-distributed and

Gaussian-T mixture noise increase the spurious detection of jumps under this standard

test. In contrast, the noise-robust PZ test demonstrates consistent performance in de-

tecting jumps of both finite and infinite activity, regardless of the presence or type of

microstructure noise.15

3.2.2 Finite Sample Performance under Price Staleness

Pure Jump Test

Tables 5 and 6 present the empirical sizes of the KLJ test when the underlying process

is contaminated with price staleness. We initially focus on Table 5, which reports the

results for a diffusion process (λ = 0) and finite jump-diffusion processes (λ > 0). As

15As a robustness-check, we considered the tests of Aı̈t-Sahalia and Jacod (2009) and their noise-
robust version (Aı̈t-Sahalia et al., 2012). Consistent with the findings in Maneesoonthorn et al. (2020),
both tests show a sharp decrease in power after 5-seconds, with the standard test adversely affected by
all types of noise. Results are available upon request.
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can be seen, the presence of zero returns moderately increases the Type I error of test

at higher frequencies for both the high and medium level of price staleness. However, as

the sampling frequency decreases, the size of the test converges to its theoretical values.

This observation holds true irrespective of the presence or absence of finite jumps. When

price staleness is added to the infinite jump-diffusion process (Table 6), we observe very

little distortions with values that are slightly larger than the theoretical size.

Infinite Activity Jump Test

When the diffusion or finite jump-diffusion processes (Tables 5 and 6) are contami-

nated with zero returns, we observe a moderate downward bias in the performance of the

test. For instance, at the 5- and 60-second frequencies, the test exhibits a power of 0.999

and 0.940, respectively, under the diffusion process in Table 1. However. when a high

level of price staleness is added to the efficient price, the power of the test decreases to

0.988 and 0.902, respectively. This increase in Type II error, although moderate, suggests

that the ratio of power variations computed at different frequencies becomes slightly dis-

torted in the presence of price staleness when the alternative hypothesis is true. This

observation aligns with the findings reported by Kolokolov and Renò (2024) for a test

based on power variations estimated at different frequencies.16 By contrast, when the

infinite jump-diffusion process is contaminated with zero returns, the test is slightly over-

sized, although the values remain close to the theoretical size. One possible rationale

for this finding is that the heavy-tailed nature of the infinite jumps might dominate the

impact of zero returns on the test statistic. This suggests that the underestimation of

power variations induced by zero returns is less severe when jumps have infinite activity.

Jump Test

We start by analyzing the size of the test, specifically the scenario where λ = 0 in

Table 5. The findings indicate that both tests are oversized at very high frequencies.

However, as the sampling frequency decreases, the size of the tests converges towards

16Kolokolov and Renò (2024) study the jump activity index of Todorov and Tauchen (2010) under a
diffusion process.
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the theoretical values. Analogously, the power of the tests, as reported in Table 5 for

finite jumps (λ > 0) and in Table 6 for infinite jumps, is also very close to the theoretical

values, irrespective of whether finite or infinite jumps are considered. As expected, the

power of the robust PZ test diminishes more rapidly than that of the standard PZ as the

sampling frequency decreases. This is because the test loses efficiency as the sampling

interval increases. The robustness of the PZ tests against price staleness has also been

documented by Kolokolov and Renò (2024), who show that this test performs as good as

their staleness-robust correction. The good performance is due to the reliance on power

variations as opposed to multipower variations, which are known to be very sensitive to

price staleness.

3.2.3 Recommendations and Practical Guidance

The Monte Carlo study evaluates test performance under realistic market conditions,

focusing on microstructure noise and price staleness across sampling frequencies. With-

out market frictions, all tests show good finite sample properties, though performance

declines at lower frequencies. The introduction of microstructure noise has varying im-

pacts: Gaussian noise mainly affects tests at very high frequencies, while t-distributed

and Gaussian-T mixture noise substantially impair all tests except the noise-robust PZ

test. These effects can be mitigated by sampling less frequently – every 30-60 seconds

for Gaussian noise and every 60 seconds for non-Gaussian noise. The standard PZ test

shows particular sensitivity to non-Gaussian noise with low degrees of freedom. Price

staleness creates moderate distortions at higher frequencies, but these largely disappear

with 1-minute sampling, with results remaining robust across different jump intensities

and types.

While our Monte Carlo simulations suggest that 60-seconds sampling offers an ef-

fective compromise between statistical power and market friction effects, this frequency

represents an optimal choice under average market conditions. In practice, the optimal

sampling frequency likely varies both across assets and over time, depending on market

microstructure characteristics. During periods of high liquidity, characterized by tight
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bid-ask spreads and low price staleness, sampling frequencies higher than 60-seconds im-

prove the accuracy of the tests. Conversely, during periods of market stress or for less

liquid assets, where spreads widen and price staleness increases, lower sampling frequen-

cies may help controlling the Type I and II error of the tests. Regular monitoring of

liquidity metrics can help identify when sampling frequency adjustments are needed.

4 Empirical Study

4.1 Data

Our empirical application considers 100 individual stocks from the S&P 500 basket

and the SPDR S&P 500 ETF (SPY) for the period January 3, 2000 to December 30,

2022.17 Ten representative stocks taken from each sector, vary in terms of liquidity and

market capitalization, so ensuring a heterogeneous representation on each sector. Taking

direction from our simulations, we sample the data every 1-minute, i.e. ⌊1/∆n⌋ = 390.

The use of the noise-robust PZ test throughout our empirical analysis is motivated by

its excellent performance both in the absence and presence of microstructure noise, and

because the standard PZ test is sensitive to non-Gaussian noise even when the data

are sampled using 1-minute intervals. To mitigate spurious detection of jumps, which

is inherent to multiple testing, we identify rejection rates using FDR-adjusted p-values

in the spirit of Bajgrowicz et al. (2016). The subsequent analysis employs the same

parameters as those considered in the Monte Carlo section.

4.2 Empirical Rejections by Sector and Market Capitalization

Panel A of Table 7 reports proportion of rejection rates over our sample for the noise-

robust PZ test SJnoise

t , the ASJ test, SIA
t , and the KLJ test, Tt. For each sector, we

report the average across the 10 individual stocks. Panel B shows the contribution of the

17Our data is obtained from Refinitiv Tick History. We apply standard filtering procedures to elimi-
nate outliers, following the approach outlined by Barndorff-Nielsen et al. (2008). We then match our data
with the Center for Research in Security Prices (CRSP) database, which allows us to adjust for stock
split and dividends. Finally, we sample down to 1-minute intervals using the previous tick interpolation
method.
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continuous and discontinuous component to the total variance estimated as B (2,∞,∆n)t.

For completeness, we also report the index of jump activity, β̂, estimated as in Jing

et al. (2012b). We estimate the variables of Panel B as follows: Ct = B (2,∞,∆n)t ·

1(no jumps) + B (2, νn,∆n)t · 1(jumps). Therefore, Jt = B (2,∞,∆n)t − Ct. Finally,

CT =
∑

t∈(0,T ] Ct∑
t∈(0,T ] Ct+Jt

and JT =
∑

t∈(0,T ] Jt∑
t∈(0,T ] Ct+Jt

. The contribution of finite and infinite jumps

to the total jump component are obtained as FJt = Jt · 1(finite jumps) and IJt =

Jt · 1(infinite jumps). Thus, FJT =
∑

t∈(0,T ] FJt∑
t∈(0,T ] Jt

and IJT =
∑

t∈(0,T ] IJt∑
t∈(0,T ] Jt

.

Table 7 presents the main results that provide strong evidence for the presence of a

Brownian component, with less than 0.1% of days in our sample exhibiting a pure jump

process.18 This finding effectively rules out the hypothesis of a pure jump process and

confirms the relevance of the Brownian component for modelling the diffusive part of the

process. In addition to pronounce presence of the Brownian component, Panel A also

indicates a substantial jump component in both the SPY and individual stocks across

all sectors. Jumps are observed on an average of 19% of the days across the sectors,

with the Energy sector displaying the lowest proportion of jumps (16% of days) and the

Communication Services sector showing the highest proportion (22% of days). The SPY

exhibits jumps on only 13% of days within the sample period. The lower frequency of

jumps in the SPY can be attributed to the fact that aggregation reduces idiosyncratic

risk, thereby diversifying away stock specific jumps.

Having established the presence of a Brownian and a jump component, we now evalu-

ate whether the jump part exhibits finite and/or infinite activity. Table 7 (second column)

reports the rejection rates of the ASJ test for both the SPY and the individual stocks

classified by sector. The ASJ test provides evidence for the presence of both types of

jumps, with rejection rates of 97% for the SPY and an average of 83% across sectors.

The index of jump activity, β̂, oscillates around 1.0 for all the sectors and SPY. This

finding corroborates that both finite and infinite jumps activity characterize the jump

component of our 1-minute data.

Given that the alternative hypothesis of the ASJ test could indicate either finite

18The proportion of rejection rates without employing the FDR-adjusted p-values ranges between
1.5% and 3.5%, further corroborating the strong presence of a Brownian component.
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jumps or Brownian motion, in Panel B (Table 7) we present the contribution of these

variables to total variance. The continuous part contributes to 97% and 92% of the total

variance for SPY and the sector average, respectively. Consequently, only 3% and 8%

of the total variance for SPY and the sector average, respectively, can be attributed to

jumps. Of these jumps components, 82% (for SPY) and 77% (for the sector average)

are contributions from finite jumps. Thus, evidence supporting both types of jumps is

observed. Finite jumps are typically associated with macroeconomic announcements and

stock-specific news, which are more likely to generate spillover effects. Conversely, infinite

jumps can be linked to continuously adjusting market microstructure dynamics, which

may be attributable, but not limited to, inventory allocation, price-contingent trading,

stop-loss and limit-profit orders, among other factors.

As shown by Jiang and Yao (2013), stocks with different size and liquidity levels

exhibit display different levels of jump returns, and exploiting these cross-sectional dif-

ferences in jumps fully account for the size and illiquidity effects. Motivated by their

findings, we present rejection rates and contribution to total variance classified by sector

and market capitalization. This analysis aim to shed light on the different underlying

components of stocks with varying size and liquidity within the same sector.19 We report

these results in Table 8. As expected, stocks with smaller market capitalization tend

to jump more frequently than those with larger size. Specifically, we find that stocks

with smaller size in our sample have, on average, 2% more jump days than their largest

counterparts. The most pronounced variation is observed in the Communication Services

sector, where 24% of days exhibit jumps for companies with small market capitalization,

compared to 19% for those with large market capitalization. This increase in the number

of days with jumps, directly translate into a higher contribution to the jump compo-

nent to the total variance. Again, using the Communication Services as an example, the

contribution of the jump component accounts for 8% of the total variance for large-cap

stocks, as opposed to the 13% observed for small-cap companies. The larger contribu-

19A company is classified as “Big Market Cap” if its average market capitalization exceeds the median
market capitalization, where the median is computed using the 10 stocks within each sector. Conversely,
companies with average market capitalization below this median are classified as “Small Market Cap”.
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tion of jumps to total variance has important implications for asset allocation and risk

management. For instance, a risk averse investor might be expected to avoid investments

with large unforeseeable movements.

Based on that the PZ test can be sensitive to the choice of the threshold, we repeat

our empirical exercise by setting α = 4. The increase of the threshold makes the test,

and therefore, the identification of jumps, more conservative. The results are reported in

Tables A.6 and A.7. As can be seen, increasing the threshold reduces the proportion of

days with jumps from 13% to 8% for SPY, and from 19% to 11% for the sector average.

While we observe a reduction in the proportion of days with jumps, the results remain

qualitatively similar and supportive of the presence of jumps of both finite and infinite

activity.

These findings complement those previously reported in the literature by Huang and

Tauchen (2005) and Dumitru and Urga (2012). For instance, Huang and Tauchen (2005)

document that approximately 10% of the days in the S&P 500 index contain jumps,

with the jump component contributing to 8% of the total variance. Similarly, Dumitru

and Urga (2012) find that jumps comprise between 10% to 14% of the total variance

for a small sample of individual stocks. Our study extends these finding by providing

evidence for the existence of both finite and infinite jumps. We document that finite

jumps contribute, on average, 77% to the total jump component, while infinite jumps

account for the remaining 23%. Moreover, we find that the jump component as a whole

comprises 8% of the total variance, aligning with previous studies.

4.3 Time-varying Rejections

Over the sample period, covering the years from 2000 to 2022, financial markets ex-

perienced several crises periods (dot-com, sub-prime, European sovereign debt, Covid-19

pandemic) as well as the Brexit referendum. These along with the development of effi-

cient trading systems, including electronic platforms and algorithmic trades, contributed

to more frequent and faster reactions to changes in the market, which could easily gen-

erate time variation in statistical properties. To further investigate this issue, we follow
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Erdemlioglu et al. (2015) and fit a probit model to the daily series of the rejection indica-

tors (0, 1) for the noise-robust PZ and ASJ test. We omit the KLJ test, as the rejection

rates are almost undistinguishable from zero. We use a sixth order polynomial of time in

a probit model, 20 where regressors are a constant, and time trends up to a sixth power.

We have orthogonalized and standardized them to have unit variance.

Figure 4 plots, for SPY, the fitted values of FDR-adjusted rejection rates for the

robust PZ and ASJ tests. We find significant time variation in the PZ and ASJ tests,

with at least 4 significant polynomial coefficients per regression. In general, there is a

negative correlation in the evolution of the time-varying rejections. This outcome implies

that an increase in the number of jump days usually results in an increase of infinite

jumps vis-à-vis finite jumps. The most notable feature of these series is the systematic

increase in the rejection of the null of no jumps around 2002, 2008, 2016 and 2020.

To illustrate, these periods experienced significant market events. The dot-com bubble

burst, with the NASDAQ falling by 78% in October 2002; the Global Financial Crisis

(GFC) in 2007–2009, during which the S&P 500 index fell by 9% in October, 2008; the

2016 US Presidential election, which triggered a fall in the S&P 500 index of more than

5%, creating a circuit breaker to halt trading activity; and the Covid-19 pandemic, which

created one of the most turbulent periods, with the S&P 500 index falling as much as

12% in March, 2020. These are examples of very large jumps. However, the increase in

rejection rates of the noise-robust PZ test and the decrease in rejection rates of the ASJ

test suggest that these periods are also accompanied by a large increment in small jumps,

associated to electronic price-contingent trading to control for losses during these periods

of high uncertainty.

To underscore the time variation and the negative relationship implying that an in-

crease in the number of days with jumps results in an increase of infinite jumps, Figure 5

plots the rejection rates for one representative stock from each sector. All stocks display

very strong time variation in rejection rates with a pronounced negative relation between

these rates. As a robustness exercise, we assess whether time-variation still persists in

20Although the sixth order polynomial provides the best fit for the data, other order polynomials
provide qualitatively similar conclusions.
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the rejection rates of the noise-robust PZ test when we increase the threshold parameter

α from 3 to 4. To facilitate comparison, we repeat the exercise by plotting the rejection

rates of both the noise-robust PZ (with α = 4) and the ASJ test. Figures A.1 and A.2

depict the time-varying rejection rates for SPY and one representative stock per sec-

tor, respectively. It is evident that both SPY and individual stocks exhibit strong time

variation in rejection rates with a pronounced negative relationship between them.

4.3.1 Optimal Sampling Frequency Under Time-Varying Market Frictions

Our Monte Carlo simulations demonstrate that 60-second return sampling achieves

an optimal balance between statistical power and market friction effects. However, these

market frictions, including liquidity levels and price staleness, generally exhibit temporal

variation (e.g., Zhu and Liu, 2024). Given this time-varying nature of market frictions, a

uniform sampling frequency may not be optimal across different assets and time periods.

We therefore recommend conducting pre-implementation analyses that focus on three key

metrics: the noise variance estimator, price staleness indicators, and liquidity measures.

When these analyses reveal moderate levels of noise variance and price staleness, sampling

frequencies between 30 and 60 seconds may be appropriate. Conversely, in periods char-

acterized by elevated noise and price staleness, longer sampling intervals ranging from 90

to 300 seconds may yield more reliable results. These findings suggest implementing an

adaptive sampling strategy that adjusts to varying levels of market microstructure noise

and price staleness, with our Monte Carlo simulations serving as calibration benchmarks.

5 Conclusions

In this paper, we studied the finite sample performance of high-frequency test statis-

tics developed to identify the different underlying components of high-frequency financial

data in terms of Brownian component (Kong et al., 2015), jump component (Podolskij

and Ziggel, 2010), and the activity of the jumps (i.e., finite vs infinite jumps) (Aı̈t-Sahalia

and Jacod, 2011), under the presence of various types of market microstructure noise,
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different levels of jump activity and price staleness. The performance is gauged under

the assumption of Gaussian, t-distributed, and Gaussian-T mixture noise for the mi-

crostructure component. For price staleness, we set a high and medium level of staleness,

selected empirically from our data. The exact knowledge of these features is crucial for

correct inference in modelling stock price data in the context of optimal option pricing,

risk management, and portfolio allocation.

The results of the Monte Carlo simulation exercise showed that the presence of mi-

crostructure noise generally skewed the distribution of all the test statistics, with the

exception of the noise-robust PZ test, as their asymptotic distributions are derived under

the assumption of noiseless prices. This skew increased the Type I or Type II errors.

Specifically, we found that Gaussian noise only affected the distribution of the tests at

very high frequencies, while t-distribution and Gaussian-T mixture noise completely bi-

ased the performance of the tests. These findings did not apply for the noise-robust PZ

test, which performed extremely well under any type of microstructure noise. Sampling

returns every 30 seconds when the noise is Gaussian, and every 60 seconds when the

noise is t-distributed or Gaussian-T mixture, considerably reduced the microstructure

noise effects. On the other hand, contaminating the efficient price with price staleness

moderately distorted the tests at higher-frequencies, although sampling sparsely seems

to eliminate most of these distortions.

We applied these tests to 100 individual stocks and SPY using 23 years of 1-minute

interval data. The results strongly support the presence of both Brownian motion and

jumps, rejecting the pure jump process hypothesis. Jumps occurred on 13% of days for

SPY and 19% across sectors. The continuous component accounted for 97% of total

variance in SPY and 92% in sector averages. Of the jump component, finite jumps com-

prised 97% of total variance in SPY and 92% in sector averages. From the total variance

attributed to jumps (3% for SPY, 8% for sector average), finite jumps contributed 82%

and 77%, respectively.

Our results also indicated significant time variation in rejection rates. These variations

range from 5% to 20%, where generally an increase in the rejection of the null of no jumps
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is associated with a decrease in the rejection of infinite jumps. These findings suggest

that the most appropriate specification for modelling stock price data should allow for a

Brownian motion, jumps of finite and infinite activity, with the jump component having

both time-varying activity and intensity.

Finally, it is important to note that recent literature has identified the presence of

drift bursts (e.g., Christensen et al., 2022), pockets of extreme return persistence (e.g.,

Andersen et al., 2023), and time-varying price staleness (e.g., Zhu and Liu, 2024). These

phenomena may significantly impact the finite sample properties of test statistics. While

a detailed investigation of these effects is beyond the scope of this paper, it presents an

important avenue that we leave for future research.
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Tables and Figures

Figure 1: A Realization of the True and Contaminated Continuous Part of the log-price
Increments
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Note: The figures depicts a realization of the noisy continuous part of the log price
increments. From top to bottom, the continuous part is contaminated with no noise,
Gaussian noise, t-distributed noise, and Gaussian-T mixture noise.
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Figure 2: Distribution of the Tests Statistics using a Diffusion Process with Different
Types of Noise

(a) Xc
t (ut = 0)

(b) Xc
t + ut (Gaussian)

(c) Xc
t + ut (t-distributed, df = 2.5)

(d) Xc
t + ut (Gaussian-T Mixture)

Note: The figure plots the simulated distribution of the different tests under a diffusion
process (equation (16)) with (a) no noise, (b) Gaussian noise, (c) t-distributed noise
with 2.5 degrees of freedom, and (d) Gaussian-T mixture noise. Xc

t denotes the diffusive
component.
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Figure 3: Distribution of the Test Statistics using an Infinite Jump Diffusion Process
with Different Types of Noise

(a) Xc
t +Xd

t (ut = 0)

(b) Xc
t +Xd

t + ut (Gaussian)

(c) Xc
t +Xd

t + ut (t-distributed, df = 2.5)

(d) Xc
t +Xd

t + ut (Gaussian-T Mixture)

Note: The figure plots the simulated distribution of the different tests under a infinite
jump diffusion process (equation (16) and β = 1.0) with (a) no noise, (b) Gaussian noise,
(c) t-distributed noise with 2.5 degrees of freedom, and (d) Gaussian-T mixture noise.
Xc

t and Xd
t denote the diffusive and pure jump components.
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Figure 4: SPY – Time Variation in Rejection Rates
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Note: The figure depicts the time variation in rejection rates predicted by a probit model with a 6th
order polynomial in time. The left (right) y-axis denotes the probability of rejection over time for the
ASJ (noise-robust PZ test).
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Figure 5: Individual Stocks – Time Variation in Rejection Rates

Note: The figure depicts the time variation in rejection rates predicted by a probit model with
a 6th order polynomial in time. The left (right) y-axis of each subplot denotes the probability
of rejection over time for the ASJ (noise-robust PZ test).
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Table 1: Monte Carlo Rejection Rates under a Diffusion Process

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.012 0.015 0.018 0.021 0.003 0.017 0.025 0.030

SJ
t 0.012 0.014 0.016 0.015 0.204 0.023 0.019 0.019

SJnoise

t 0.010 0.009 0.007 0.008 0.010 0.008 0.007 0.009

SIA
t 0.999 0.971 0.940 0.922 0.850 0.977 0.947 0.926

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

Tt 0.001 0.003 0.006 0.014 0.000 0.004 0.008 0.012

SJ
t 1.000 0.744 0.307 0.163 1.000 0.878 0.388 0.204

SJnoise

t 0.010 0.009 0.007 0.009 0.009 0.008 0.007 0.009

SIA
t 0.285 0.687 0.912 0.925 0.662 0.817 0.917 0.927

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

Tt 0.002 0.008 0.012 0.017 0.003 0.010 0.014 0.018

SJ
t 1.000 0.235 0.071 0.041 1.000 0.502 0.137 0.071

SJnoise

t 0.010 0.009 0.009 0.009 0.010 0.009 0.009 0.009

SIA
t 0.435 0.866 0.936 0.923 0.683 0.921 0.944 0.930

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

Tt 0.006 0.009 0.018 0.021 0.003 0.010 0.019 0.025

SJ
t 0.999 0.080 0.031 0.024 1.000 0.331 0.084 0.050

SJnoise

t 0.010 0.010 0.009 0.009 0.010 0.009 0.009 0.009

SIA
t 0.578 0.946 0.962 0.924 0.769 0.928 0.964 0.935

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 2.2. Under a diffusion process the

KLJ (Tt) and PZ (SJnoise

t , SJ
t ) tests report their empirical size, while the

ASJ test (SSIA
t ) reports its empirical power. ⌊1/∆n⌋ represents the number

of intraday observations per day and the significance level is θ = 0.01.
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Table 2: Monte Carlo Rejection Rates under a Finite Jump-Diffusion Process, λ = 1.0

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.012 0.013 0.015 0.019 0.003 0.016 0.023 0.027

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.995 0.971 0.956 0.928 0.998 0.988 0.976 0.956

SIA
t 0.999 0.964 0.936 0.916 0.795 0.954 0.937 0.920

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

Tt 0.004 0.004 0.009 0.013 0.000 0.004 0.008 0.011

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.998 0.988 0.976 0.956 0.998 0.985 0.965 0.935

SIA
t 0.286 0.684 0.891 0.910 0.560 0.762 0.899 0.908

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

Tt 0.006 0.005 0.016 0.018 0.001 0.006 0.012 0.017

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.998 0.989 0.978 0.965 0.998 0.983 0.976 0.946

SIA
t 0.533 0.860 0.908 0.853 0.763 0.815 0.919 0.914

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

Tt 0.009 0.008 0.018 0.022 0.002 0.009 0.011 0.018

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.998 0.988 0.974 0.955 0.998 0.981 0.971 0.954

SIA
t 0.783 0.942 0.913 0.863 0.876 0.907 0.932 0.949

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 2.2. Under a finite-jump diffusion

process the KLJ test (Tt) reports its empirical size, while the PZ (SJnoise

t , SJ
t )

and the ASJ (SSIA
t ) tests report their empirical power. ⌊1/∆n⌋ represents

the number of intraday observations per day and the significance level is

θ = 0.01.
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Table 3: Monte Carlo Rejection Rates under an Infinite Jump-Diffusion Process

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

β = 1.00

Tt 0.016 0.017 0.016 0.020 0.006 0.011 0.012 0.013

SJ
t 0.999 0.993 0.993 0.990 1.000 1.000 1.000 1.000

SJnoise

t 0.996 0.993 0.991 0.979 0.996 0.992 0.990 0.978

SIA
t 0.010 0.008 0.014 0.020 0.039 0.024 0.026 0.031

β = 1.25

Tt 0.015 0.014 0.012 0.016 0.001 0.011 0.011 0.013

SJ
t 1.000 0.999 0.996 0.993 1.000 1.000 1.000 1.000

SJnoise

t 0.999 0.996 0.989 0.969 0.999 0.999 0.986 0.972

SIA
t 0.010 0.012 0.017 0.025 0.048 0.031 0.035 0.039

β = 1.50

Tt 0.001 0.002 0.002 0.002 0.000 0.001 0.001 0.001

SJ
t 0.999 0.993 0.993 0.991 1.000 1.000 1.000 1.000

SJnoise

t 0.997 0.954 0.954 0.909 0.997 0.993 0.956 0.908

SIA
t 0.024 0.031 0.037 0.045 0.105 0.047 0.041 0.044

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

β = 1.00

Tt 0.003 0.002 0.002 0.003 0.002 0.009 0.007 0.008

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 1.000 0.983 0.969 0.929 1.000 0.981 0.962 0.919

SIA
t 0.237 0.114 0.047 0.042 0.186 0.100 0.049 0.041

β = 1.25

Tt 0.003 0.002 0.002 0.002 0.002 0.006 0.006 0.009

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.997 0.958 0.926 0.908 0.997 0.957 0.926 0.904

SIA
t 0.336 0.144 0.064 0.048 0.299 0.128 0.069 0.052

β = 1.50

Tt 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.996 0.927 0.905 0.879 0.996 0.927 0.909 0.880

SIA
t 0.470 0.193 0.144 0.062 0.307 0.163 0.142 0.079

Note: The table reports rejection rates across sampling frequencies for the four test

statistics outlined in Section 2.2. Under an infinite-jump diffusion process the KLJ (Tt)

and ASJ (SSIA
t ) tests report their empirical size, while the PZ tests (SJnoise

t , SJ
t ) report

their empirical power. ⌊1/∆n⌋ represents the number of intraday observations per day,

β is the jump activity index, and the significance level is θ = 0.01.
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Table 3: Monte Carlo Rejection Rates under an Infinite Jump-Diffusion Process (Con-
tinued)

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

β = 1.00

Tt 0.002 0.002 0.006 0.008 0.002 0.008 0.010 0.014

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.999 0.989 0.970 0.940 0.999 0.989 0.967 0.939

SIA
t 0.229 0.085 0.043 0.052 0.174 0.096 0.039 0.047

β = 1.25

Tt 0.002 0.001 0.002 0.002 0.003 0.012 0.010 0.012

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.997 0.970 0.939 0.918 0.996 0.966 0.933 0.917

SIA
t 0.261 0.105 0.050 0.071 0.224 0.111 0.045 0.071

β = 1.50

Tt 0.000 0.001 0.001 0.002 0.003 0.001 0.009 0.005

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.996 0.959 0.918 0.897 0.995 0.960 0.919 0.891

SIA
t 0.397 0.123 0.076 0.092 0.296 0.138 0.065 0.085

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

β = 1.00

Tt 0.002 0.006 0.010 0.014 0.003 0.011 0.010 0.014

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.999 0.992 0.980 0.949 0.999 0.994 0.982 0.946

SIA
t 0.167 0.044 0.025 0.032 0.105 0.039 0.016 0.027

β = 1.25

Tt 0.002 0.007 0.009 0.011 0.003 0.011 0.009 0.013

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.997 0.989 0.948 0.928 0.997 0.982 0.942 0.922

SIA
t 0.229 0.050 0.031 0.054 0.142 0.054 0.028 0.039

β = 1.50

Tt 0.002 0.002 0.002 0.003 0.000 0.001 0.001 0.001

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.996 0.979 0.908 0.907 0.996 0.979 0.907 0.901

SIA
t 0.281 0.104 0.091 0.109 0.168 0.095 0.071 0.087

Note: The table reports rejection rates across sampling frequencies for the four test

statistics outlined in Section 2.2. Under an infinite-jump diffusion process the KLJ (Tt)

and ASJ (SSIA
t ) tests report their empirical size, while the PZ tests (SJnoise

t , SJ
t ) report

their empirical power. ⌊1/∆n⌋ represents the number of intraday observations per day,

β is the jump activity index, and the significance level is θ = 0.01.
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Table 4: Monte Carlo Rejection Rates under a Pure Jump Process

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

β = 1.00 0.999 0.978 0.942 0.941 0.987 0.974 0.939 0.937

β = 1.25 0.997 0.946 0.909 0.877 0.852 0.927 0.886 0.871

β = 1.50 0.954 0.903 0.798 0.810 0.307 0.836 0.762 0.794

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

β = 1.00 0.579 0.939 0.920 0.928 0.209 0.883 0.909 0.913

β = 1.25 0.284 0.824 0.813 0.852 0.037 0.647 0.745 0.815

β = 1.50 0.106 0.596 0.662 0.746 0.007 0.267 0.512 0.683

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

β = 1.00 0.843 0.968 0.930 0.935 0.260 0.924 0.919 0.922

β = 1.25 0.492 0.903 0.847 0.866 0.027 0.731 0.780 0.834

β = 1.50 0.125 0.751 0.728 0.775 0.003 0.344 0.567 0.709

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

β = 1.00 0.930 0.974 0.937 0.938 0.290 0.931 0.921 0.924

β = 1.25 0.644 0.915 0.854 0.868 0.027 0.749 0.785 0.834

β = 1.50 0.171 0.798 0.744 0.785 0.002 0.377 0.580 0.716

Note: The table reports rejection rates across sampling frequencies for the

KLJ test. Under a pure jump process the KLJ test reports its empirical power.

⌊1/∆n⌋ represents the number of intraday observations, β is the jump activity

index per day, and the significance level is θ = 0.01.
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Table 5: Monte Carlo Rejection Rates under (Finite Jump-)Diffusion Process and Price
Staleness

[1/∆n] 4680 780 390 260 4680 780 390 260

High Level Medium Level

λ = 0

Tt 0.067 0.042 0.029 0.018 0.061 0.035 0.020 0.013

SJ
t 0.085 0.030 0.018 0.015 0.099 0.022 0.013 0.012

SJnoise

t 0.075 0.021 0.014 0.011 0.075 0.021 0.014 0.011

SIA
t 0.988 0.941 0.902 0.890 0.990 0.939 0.911 0.912

λ = 1.0

Tt 0.059 0.037 0.027 0.017 0.053 0.032 0.018 0.014

SJ
t 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.999

SJnoise

t 0.998 0.988 0.975 0.955 0.998 0.988 0.975 0.955

SIA
t 0.988 0.936 0.901 0.849 0.989 0.934 0.913 0.865

λ = 0.2

Tt 0.065 0.041 0.029 0.016 0.059 0.036 0.017 0.013

SJ
t 1.000 1.000 0.999 0.999 1.000 1.000 0.999 0.999

SJnoise

t 0.997 0.983 0.965 0.934 0.997 0.983 0.965 0.934

SIA
t 0.988 0.941 0.918 0.899 0.990 0.942 0.926 0.909

Note: The table reports rejection rates, for the four test statistics outlined in Sec-

tion 2.2, across various levels of price staleness. Results are reported for three DGPs:

diffusion process (λ = 0), jump-diffusion processes with jump intensity of λ = 1.0 and

λ = 0.2, respectively. The probability of staleness is set to pF = {0.70, 0.35, 0.23, 0.18}

for the high level, and to pF = {0.54, 0.22, 0.13, 0.10} for the medium level. Under

a finite-jump diffusion process the KLJ test (Tt) reports its empirical size, while the

PZ (SJnoise

t , SJ
t ) and the ASJ (SSIA

t ) tests report their empirical power. ⌊1/∆n⌋

represents the number of intraday observations per day and the significance level is

θ = 0.01.
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Table 6: Monte Carlo Rejection Rates under Infinite Jump-Diffusion Process and Price
Staleness

[1/∆n] 4680 780 390 260 4680 780 390 260

High Level Medium Level

β = 1.00

Tt 0.016 0.017 0.019 0.030 0.014 0.020 0.022 0.034

SJ
t 0.999 0.993 0.982 0.966 0.999 0.993 0.982 0.966

SJnoise

t 0.999 0.978 0.953 0.905 0.999 0.978 0.952 0.913

SIA
t 0.013 0.011 0.016 0.022 0.014 0.010 0.015 0.021

β = 1.25

Tt 0.016 0.014 0.016 0.025 0.013 0.016 0.018 0.027

SJ
t 1.000 0.999 0.996 0.993 1.000 0.999 0.996 0.993

SJnoise

t 0.996 0.952 0.937 0.910 0.996 0.953 0.939 0.912

SIA
t 0.023 0.013 0.016 0.020 0.024 0.013 0.015 0.019

β = 1.50

Tt 0.015 0.016 0.021 0.030 0.012 0.022 0.026 0.035

SJ
t 0.999 0.993 0.986 0.978 0.999 0.993 0.986 0.978

SJnoise

t 0.995 0.929 0.902 0.864 0.995 0.929 0.907 0.872

SIA
t 0.056 0.042 0.012 0.027 0.055 0.046 0.012 0.023

Note: The table reports rejection rates, for the four test statistics outlined in Sec-

tion 2.2, across various levels of price staleness. The probability of staleness is set to

pF = {0.70, 0.35, 0.23, 0.18} for the high level, and to pF = {0.54, 0.22, 0.13, 0.10}

for the medium level. Under an infinite-jump diffusion process the KLJ (Tt) and ASJ

(SSIA
t ) tests report their empirical size, while the PZ tests (SJnoise

t , SJ
t ) report their

empirical power. ⌊1/∆n⌋ represents the number of intraday observations per day, β is

the jump activity index, and the significance level is θ = 0.01.
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Table 7: Empirical Test Rejections and Contribution to Total Variance by Sector

Panel A: Test Rejections Panel B: Components

SJnoise

t SIA
t Tt CT JT FJT IJT β̂

SPY 0.126 0.966 0.000 0.966 0.034 0.817 0.183 1.018

Consumer Discretionary 0.204 0.844 0.000 0.919 0.081 0.798 0.202 0.919

Consumer Staples 0.205 0.811 0.001 0.908 0.092 0.738 0.262 1.225

Energy 0.161 0.876 0.000 0.939 0.061 0.811 0.189 0.871

Financials 0.175 0.881 0.000 0.939 0.061 0.849 0.151 0.945

Healthcare 0.201 0.816 0.000 0.898 0.102 0.757 0.243 1.211

Industrials 0.190 0.848 0.000 0.919 0.081 0.765 0.235 1.072

Information Technology 0.168 0.873 0.000 0.950 0.050 0.789 0.211 0.872

Materials 0.217 0.800 0.000 0.898 0.102 0.754 0.246 0.898

Communication services 0.219 0.776 0.000 0.898 0.102 0.767 0.233 0.856

Utilities 0.201 0.793 0.000 0.915 0.085 0.697 0.303 1.161

Sector Average 0.194 0.832 0.000 0.918 0.082 0.773 0.227 1.003

Note: The table reports in two panels the rejection rates and the contribution of the continuous

and discontinuous part to total variance estimated as B (2,∞,∆n)t. The identify rejections rates

using FDR-adjusted p-value. Panel A presents the number of rejections for each test, which is

standardized by the total number of days in the sample data. The rejection rate is the average across

the 10 stocks of each sector. Panel B depicts the contribution of the continuous and discontinuous

part to total variance, as well as the contribution of finite and infinite activity jumps to the total

jump component, JT . β̂ is an estimate of the Blumenthal-Getoor index as in Jing et al. (2012b).

Ct = B (2,∞,∆n)t · 1(no jumps) + B (2, νn,∆n)t · 1(jumps). Jt = B (2,∞,∆n)t − Ct. Hence,

CT =
∑

t∈(0,T ] Ct∑
t∈(0,T ] Ct+Jt

and JT =
∑

t∈(0,T ] Jt∑
t∈(0,T ] Ct+Jt

. The contribution of finite and infinite jumps to the

total jump component are obtained as FJt = Jt ·1(finitejumps) and IJt = Jt ·1(infinitejumps).

Thus, FJT =
∑

t∈(0,T ] FJt∑
t∈(0,T ] Jt

and IJT =
∑

t∈(0,T ] IJt∑
t∈(0,T ] Jt
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Table 8: Empirical Rejection Rates and Contribution to Total Variance Classified by
Market Capitalization and Sector

Panel A: Rejections Panel B: Components

SJnoise

t SIA
t Tt CT JT FJT IJT

Big Market Cap Companies

Consumer Discretionary 0.190 0.864 0.000 0.927 0.073 0.786 0.214

Consumer Staples 0.184 0.831 0.001 0.917 0.083 0.764 0.236

Energy 0.146 0.890 0.000 0.952 0.048 0.776 0.224

Financials 0.165 0.907 0.000 0.945 0.055 0.868 0.132

Healthcare 0.193 0.832 0.000 0.903 0.097 0.777 0.223

Industrials 0.184 0.867 0.000 0.928 0.072 0.754 0.246

Information Technology 0.153 0.896 0.000 0.956 0.044 0.784 0.216

Materials 0.210 0.811 0.000 0.903 0.097 0.759 0.241

Communication services 0.194 0.811 0.000 0.921 0.079 0.760 0.240

Utilities 0.190 0.817 0.000 0.922 0.078 0.694 0.306

Sector Average 0.181 0.853 0.000 0.927 0.073 0.772 0.228

Small Market Cap Companies

Consumer Discretionary 0.218 0.824 0.000 0.911 0.089 0.811 0.189

Consumer Staples 0.225 0.792 0.001 0.899 0.101 0.712 0.288

Energy 0.175 0.862 0.000 0.925 0.075 0.846 0.154

Financials 0.185 0.854 0.000 0.933 0.067 0.830 0.170

Healthcare 0.209 0.799 0.000 0.893 0.107 0.738 0.262

Industrials 0.196 0.828 0.000 0.909 0.091 0.775 0.225

Information Technology 0.183 0.850 0.000 0.944 0.056 0.794 0.206

Materials 0.224 0.790 0.000 0.892 0.108 0.748 0.252

Communication Services 0.244 0.741 0.000 0.875 0.125 0.774 0.226

Utilities 0.211 0.770 0.000 0.908 0.092 0.701 0.299

Sector Average 0.207 0.811 0.000 0.909 0.091 0.773 0.227

Note: See Notes to Table 7. The top (bottom) panel reports the results for the biggest

(smallest) 5 companies of each sector selected by market capitalization.
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INTERNET APPENDIX

Identifying the Underlying Components of

High-Frequency Data: Pure vs Jump Diffusion

Processes

Abstract

This appendix collects additional simulation and empirical results supporting

the main paper.



Supplementary Tables and Figures

Figure A.1: SPY – Time Variation in Rejection Rates
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Note: The figure depicts the time variation in rejection rates predicted by a probit model with a 6th
order polynomial in time. The left (right) y-axis denotes the probability of rejection over time for the
ASJ (noise-robust PZ test). Rejection rates are computed using the FDR-adjusted p-values.
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Figure A.2: Individual Stocks – Time Variation in Rejection Rates

Note: The figure depicts the time variation in rejection rates predicted by a probit model with a 6th
order polynomial in time. The left (right) y-axis of each subplot denotes the probability of rejection over
time for the ASJ (noise-robust PZ test). Rejection rates are computed using the FDR-adjusted p-values.
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Table A.1: Monte Carlo Rejection Rates under a Finite Jump-Diffusion Process, λ = 0.2

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.013 0.014 0.015 0.018 0.001 0.009 0.013 0.023

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

SJnoise

t 0.995 0.972 0.942 0.919 0.997 0.983 0.965 0.935

SSIA
t 0.999 0.968 0.934 0.908 0.806 0.912 0.941 0.932

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

Tt 0.003 0.007 0.015 0.017 0.002 0.004 0.012 0.018

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.997 0.984 0.965 0.934 0.997 0.984 0.965 0.936

SSIA
t 0.284 0.584 0.840 0.886 0.759 0.870 0.913 0.929

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

Tt 0.002 0.008 0.013 0.024 0.002 0.009 0.011 0.017

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.997 0.984 0.963 0.937 0.997 0.983 0.961 0.927

SSIA
t 0.534 0.863 0.912 0.902 0.829 0.899 0.917 0.935

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

Tt 0.002 0.009 0.013 0.025 0.003 0.010 0.012 0.018

SJ
t 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.998 0.983 0.965 0.936 0.997 0.982 0.966 0.935

SSIA
t 0.784 0.945 0.935 0.911 0.895 0.913 0.944 0.948

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 2.2. Under a finite-jump diffusion

process the KLJ test (Tt) reports its empirical size, while the PZ (SJnoise

t , SJ
t )

and the ASJ (SSIA
t ) tests report their empirical power. ⌊1/∆n⌋ represents

the number of intraday observations per day and the significance level is

θ = 0.01.
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Table A.2: Monte Carlo Rejection Rates under a Finite Jump-Diffusion Process, λ = 0.1

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.011 0.015 0.012 0.017 0.003 0.007 0.011 0.015

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

SJnoise

t 0.994 0.972 0.941 0.913 0.997 0.984 0.963 0.934

SSIA
t 0.999 0.969 0.938 0.916 0.817 0.919 0.944 0.938

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

Tt 0.001 0.007 0.013 0.018 0.002 0.006 0.012 0.017

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

SJnoise

t 0.997 0.982 0.966 0.936 0.997 0.983 0.957 0.935

SSIA
t 0.284 0.586 0.845 0.890 0.763 0.855 0.917 0.929

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

Tt 0.002 0.009 0.018 0.022 0.002 0.008 0.011 0.018

SJ
t 1.000 1.000 0.999 0.999 1.000 1.000 1.000 0.999

SJnoise

t 0.997 0.984 0.964 0.932 0.998 0.983 0.963 0.935

SSIA
t 0.534 0.864 0.914 0.907 0.860 0.892 0.925 0.937

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

Tt 0.002 0.009 0.012 0.022 0.003 0.010 0.012 0.019

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999

SJnoise

t 0.997 0.980 0.964 0.933 0.997 0.981 0.964 0.934

SSIA
t 0.785 0.946 0.937 0.917 0.901 0.923 0.958 0.956

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 2.2. Under a finite-jump diffusion

process the KLJ test (Tt) reports its empirical size, while the PZ (SJnoise

t , SJ
t )

and the ASJ (SSIA
t ) tests report their empirical power. ⌊1/∆n⌋ represents

the number of intraday observations per day and the significance level is

θ = 0.01.
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Table A.3: Monte Carlo Rejection Rates under a Finite Jump-Diffusion Process with 4
Large Jumps

⌊1/∆n⌋ 4,680 780 390 260 4,680 780 390 260

No Noise Gaussian Noise

Tt 0.013 0.014 0.015 0.017 0.002 0.009 0.013 0.015

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.998 0.990 0.979 0.907 0.993 0.978 0.948 0.908

SSIA
t 0.999 0.971 0.939 0.915 1.000 0.978 0.945 0.920

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

Tt 0.000 0.009 0.012 0.014 0.002 0.005 0.012 0.018

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.996 0.980 0.957 0.915 0.996 0.977 0.945 0.918

SSIA
t 0.283 0.684 0.891 0.848 0.665 0.865 0.887 0.863

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

Tt 0.002 0.008 0.013 0.020 0.002 0.009 0.011 0.019

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

SJnoise

t 0.995 0.981 0.953 0.907 0.996 0.983 0.952 0.909

SSIA
t 0.534 0.866 0.915 0.908 0.855 0.920 0.937 0.927

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

Tt 0.002 0.009 0.013 0.025 0.002 0.010 0.011 0.019

SJ
t 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.999

SJnoise

t 0.997 0.968 0.948 0.905 0.909 0.980 0.949 0.902

SSIA
t 0.785 0.946 0.937 0.920 0.873 0.938 0.957 0.936

Note: The table reports rejection rates across sampling frequencies for the

four test statistics outlined in Section 2.2. Under a finite-jump diffusion

process with only 4 large jumps, the KLJ test (Tt) reports its empirical size,

while the PZ (SJnoise

t , SJ
t ) and the ASJ (SSIA

t ) tests report their empirical

power. ⌊1/∆n⌋ represents the number of intraday observations per day and

the significance level is θ = 0.01. 5



Table A.4: Monte Carlo Rejection Rates under a Infinite Jump-Diffusion Process with
Residual Finite Jumps

[1/∆n] 4680 780 390 260

β = 1.00

Tt 0.010 0.012 0.016 0.024

SJ
t 1.000 1.000 1.000 1.000

SJnoise

t 1.000 0.998 0.989 0.981

SSIA
t 0.036 0.022 0.015 0.019

β = 1.25

Tt 0.013 0.017 0.018 0.027

SJ
t 1.000 1.000 1.000 1.000

SJnoise

t 1.000 0.998 0.989 0.979

SSIA
t 0.047 0.027 0.012 0.016

β = 1.50

Tt 0.003 0.003 0.005 0.007

SJ
t 1.000 1.000 1.000 1.000

SJnoise

t 1.000 0.996 0.985 0.968

SSIA
t 0.062 0.053 0.047 0.055

Note: The table reports rejection rates across sam-

pling frequencies for the four test statistics outlined in

Section 2.2. Under an infinite-jump diffusion process

with residual finite jumps the KLJ test (Tt) reports its

empirical size, while the PZ (SJnoise

t , SJ
t ) and the ASJ

(SSIA
t ) tests report their empirical power. ⌊1/∆n⌋ rep-

resents the number of intraday observations per day

and the significance level is θ = 0.01.
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Table A.5: Monte Carlo Rejection Rates under Infinite Jump-Diffusion with Variance-
Gamma Jumps

[1/∆n] 4680 780 390 260 4680 780 390 260

No Noise Gaussian Noise

Tt 0.017 0.021 0.023 0.030 0.001 0.008 0.012 0.021

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.998 0.986 0.980 0.963 0.999 0.991 0.988 0.966

SSIA
t 0.012 0.013 0.106 0.018 0.053 0.034 0.010 0.015

t-distributed Noise, df = 2.5 Mixture Noise, df = 2.5

Tt 0.029 0.018 0.018 0.023 0.003 0.015 0.014 0.015

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.991 0.980 0.972 0.923 0.993 0.988 0.979 0.920

SSIA
t 0.167 0.082 0.051 0.032 0.183 0.079 0.058 0.036

t-distributed Noise, df = 3.5 Mixture Noise, df = 3.5

Tt 0.020 0.013 0.017 0.023 0.002 0.012 0.013 0.014

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 0.999 0.990 0.979 0.964 0.999 0.992 0.981 0.962

SSIA
t 0.134 0.073 0.042 0.026 0.139 0.069 0.047 0.029

t-distributed Noise, df = 4.5 Mixture Noise, df = 4.5

Tt 0.015 0.013 0.019 0.023 0.002 0.013 0.012 0.014

SJ
t 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SJnoise

t 1.000 0.990 0.987 0.967 1.000 0.992 0.984 0.964

SSIA
t 0.107 0.062 0.033 0.017 0.119 0.051 0.032 0.020

Note: The table reports rejection rates across sampling frequencies for the four

test statistics outlined in Section 2.2. The variance-gamma jump process is

V G(t/η, ϕ, ν
1/2
t , 0), where η = 0.1 and ϕ = −0.05. Under an infinite-jump dif-

fusion process the KLJ (Tt) and ASJ (SSIA
t ) tests report their empirical size, while

the PZ tests (SJnoise

t , SJ
t ) report their empirical power. ⌊1/∆n⌋ represents the

number of intraday observations per day, β is the jump activity index, and the

significance level is θ = 0.01. 7



Table A.6: Empirical Test Rejections and Contribution to Total Variance by Sector

Panel A: Test Rejections Panel B: Components

SJnoise

t SIA
t Tt CT JT FJT IJT β̂

SPY 0.079 0.966 0.000 0.973 0.027 0.811 0.189 1.018

Consumer Discretionary 0.115 0.844 0.000 0.948 0.052 0.912 0.088 0.919

Consumer Staples 0.117 0.811 0.001 0.935 0.065 0.851 0.149 1.225

Energy 0.084 0.876 0.000 0.960 0.040 0.913 0.087 0.871

Financials 0.095 0.881 0.000 0.963 0.037 0.924 0.076 0.945

Healthcare 0.113 0.816 0.000 0.929 0.071 0.883 0.117 1.211

Industrials 0.103 0.848 0.000 0.945 0.055 0.892 0.108 1.072

Information Technology 0.089 0.873 0.000 0.970 0.030 0.890 0.110 0.872

Materials 0.124 0.800 0.000 0.932 0.068 0.899 0.101 0.898

Communication Services 0.129 0.776 0.000 0.930 0.070 0.897 0.103 0.856

Utilities 0.113 0.794 0.000 0.945 0.055 0.819 0.181 1.161

Sector Average 0.108 0.832 0.000 0.946 0.054 0.888 0.112 1.003

Note: The table reports in two panels the rejection rates and the contribution of the continuous

and discontinuous part to total variance estimated as B (2,∞,∆n)t. The identify rejections rates

using FDR-adjusted p-values. Panel A presents the number of rejections for each test, which is

standardized by the total number of days in the sample data. The rejection rate is the average across

the 10 stocks of each sector. Panel B depicts the contribution of the continuous and discontinuous

part to total variance, as well as the contribution of finite and infinite activity jumps to the total

jump component, JT . β̂ is an estimate of the Blumenthal-Getoor index as in Jing et al. (2012b).

Ct = B (2,∞,∆n)t · 1(no jumps) + B (2, νn,∆n)t · 1(jumps). Jt = B (2,∞,∆n)t − Ct. Hence,

CT =
∑

t∈(0,T ] Ct∑
t∈(0,T ] Ct+Jt

and JT =
∑

t∈(0,T ] Jt∑
t∈(0,T ] Ct+Jt

. The contribution of finite and infinite jumps to the

total jump component are obtained as FJt = Jt ·1(finite jumps) and IJt = Jt ·1(infinite jumps).

Thus, FJT =
∑

t∈(0,T ] FJt∑
t∈(0,T ] Jt

and IJT =
∑

t∈(0,T ] IJt∑
t∈(0,T ] Jt
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Table A.7: Empirical Rejection Rates and Contribution to Total Variance Classified by
Market Capitalization and Sector

Panel A: Rejections Panel B: Components

SJnoise

t SIA
t Tt CT JT FJT IJT

Big Market Cap Companies

Consumer Discretionary 0.106 0.864 0.000 0.953 0.047 0.900 0.100

Consumer Staples 0.104 0.831 0.001 0.939 0.061 0.854 0.146

Energy 0.074 0.890 0.000 0.970 0.030 0.869 0.131

Financials 0.086 0.907 0.000 0.968 0.032 0.931 0.069

Healthcare 0.106 0.832 0.000 0.930 0.070 0.881 0.119

Industrials 0.099 0.867 0.000 0.953 0.047 0.878 0.122

Information Technology 0.079 0.896 0.000 0.973 0.027 0.881 0.119

Materials 0.119 0.811 0.000 0.937 0.063 0.902 0.098

Communication Services 0.112 0.811 0.000 0.946 0.054 0.880 0.120

Utilities 0.105 0.817 0.000 0.951 0.049 0.817 0.183

Sector Average 0.099 0.853 0.000 0.952 0.048 0.879 0.121

Small Market Cap Companies

Consumer Discretionary 0.125 0.824 0.000 0.942 0.058 0.924 0.076

Consumer Staples 0.131 0.792 0.001 0.932 0.068 0.847 0.153

Energy 0.093 0.862 0.000 0.950 0.050 0.956 0.044

Financials 0.103 0.854 0.000 0.958 0.042 0.916 0.084

Healthcare 0.120 0.799 0.000 0.927 0.073 0.885 0.115

Industrials 0.107 0.828 0.000 0.938 0.062 0.907 0.093

Information Technology 0.099 0.850 0.000 0.966 0.034 0.899 0.101

Materials 0.129 0.790 0.000 0.927 0.073 0.897 0.103

Communication Services 0.146 0.742 0.000 0.915 0.085 0.914 0.086

Utilities 0.121 0.770 0.000 0.939 0.061 0.821 0.179

Sector Average 0.118 0.811 0.000 0.939 0.061 0.897 0.103

Note: See Notes to Table A.6. The top (bottom) panel reports the results for the

biggest (smallest) 5 companies of each sector selected by market capitalization.
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