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Abstract

As individuals age, the risk of neurodegenerative disorders such as Alzheimer’s

disease increases, largely due to changes in the brain and vasculature. The brain,

which consumes about 20% of the body’s energy, relies on the cardiovascular system

for nutrient transport. This dependence is represented by the neurovascular unit

(NVU). Understanding how the functioning of the NVU changes with healthy ageing

and neurodegenerative diseases remains insufficiently explored, particularly through

in vivo measurements in humans. With an ageing population, the prevalence of

dementia is expected to rise, highlighting the urgent need for accessible, non-invasive,

and cost-effective diagnostic and monitoring tools.

Here, data were collected from younger and older participants, as well as

from patients with Alzheimer’s and Huntington’s diseases, using non-invasive

monitoring techniques. Brain oxygenation was measured via functional near-

infrared spectroscopy, brain electrical activity via the electroencephalogram, and

cardiorespiratory function via the electrocardiogram and a respiration belt. We treat

the brain and cardiovascular system as interacting oscillators operating far-from-

equilibrium. To analyse their functioning, we apply methods suited to multiscale,

time-varying and non-stationary dynamics. The wavelet transform was used to

calculate the power of oscillations with logarithmic frequency resolution, and wavelet

phase coherence was used to calculate the coordination of oscillations. The efficiency

of the NVU was quantified as the wavelet phase coherence between brain electrical

activity and oxygenation.
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Our findings indicate that NVU efficiency declines with age and is further reduced

in patients with Alzheimer’s and Huntington’s diseases compared to age-matched

controls. Specific changes in power and coherence associated with ageing and these

neurodegenerative diseases were identified. Previous research on cardiovascular and

brain oscillations allows us to link these findings to physiological changes. Thus,

the methods presented offer a novel approach for quantitative evaluation of the

neurovascular efficiency in ageing and dementia.
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Introduction
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Chapter 1

The brain is the most complex part of the human body. Neurons are considered

the fundamental units of the brain, and their number approaches that of the stars

in the Milky way. How the brain functions and what leads to its dysfunctions are

still captivating questions for a broad range of scientists including psychologists,

neuroscientists and physicists. This might be driven by the brain’s role in cognition,

making the study of the brain synonymous with exploring what makes humans

human.

Beyond neurons, the brain comprises vascular cells and glial cells. In fact,

combined there is a similar amount of these cells as neurons. Their critical

contribution to brain function is starting to be appreciated, which is reflected

in concepts such as the neurovascular unit. There is a close link between

the cardiovascular system and the brain: the brain, which spends around 20%

of the body’s energy consumption is naturally dependent on a well-functioning

cardiovascular system to transport nutrients and oxygen to the brain cells. Impaired

neurovascular interactions might be one path leading to brain dysfunction, and has

been linked to several neurodegenerative diseases.

It has proved challenging to uncover how the brain works, both on a microscopic

and macroscopic level. Research that would be unethical on humans might be

conducted on animals, but there are of course clear differences between human

and animal brains (in addition to similarities). In vitro studies of human brains

give limited information on the dynamic nature of the brain. Fortunately, non-

invasive measurement techniques exist that allow scientists to measure in vivo

brain activity in humans, such as the electroencephalogram (EEG), functional near-

infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI).

Measurements of brain activity can be in the form of a time-series, i.e. a variable

(such as voltage from EEG) that is measured at discrete time points. Soon after the

EEG was applied in humans, it was clear that brain activity was rhythmic. A clear

oscillation with a frequency of around 10 Hz was the first rhythm observed, and

was named the alpha rhythm [5]. The study of brain oscillations, or brain waves,
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Chapter 1

is now fundamental in neuroscience and oscillations are thought to underpin many

cognitive processes. Changes in these oscillations are observed in numerous diseases.

The aim of this thesis is to utilise non-invasive techniques to measure brain and

cardiovascular activity in humans, with the goal of assessing neurovascular dynamics

with age and two neurodegenerative disorders: Alzheimer’s disease and Huntington’s

disease. Age is the biggest risk factor for Alzheimer’s disease and the number of

people with neurodegenerative diseases rises globally. As such, there is a need for

relatively cheap, non-invasive methods to diagnose and monitor disease progression.

The measurement techniques used in this work are good candidates for this.

The analysis methods applied are strongly motivated by dynamical systems

theory and properties of living systems, emphasising the occurrence of oscillations,

time-variability, activity across several time scales and interactions between systems.

Due to interactions with the environment, physicists would refer to living systems as

being thermodynamically open and operating far from equilibrium. Wavelet analysis

offers resolution in time and frequency, with logarithmic frequency resolution, which

is ideal for the analysis of time-series from the brain and cardiovascular system.

The structure of this thesis is as follows: given the strong link between the

brain and cardiovascular system, the next section of chapter 1 introduces the

physiology of these systems. This is followed by a discussion on the “physics of

living systems” from a dynamical systems theory perspective. Then, data-driven

approaches to dynamical systems will be explored, with an evaluation of time-series

analysis techniques to conclude chapter 1. Throughout the chapter, there will be an

emphasis on oscillatory processes. Chapter 2 provides an introduction to coherence

and examines the benefits of wavelet phase coherence. Chapters 3, 4 and 5 present

analyses of real data from participants with ageing, Alzheimer’s and Huntington’s

disease, along with the findings and insights obtained. Chapter 6 will summarise

the overall findings and propose future research directions.
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1.1 The cardiovascular system

The cardiovascular system is responsible for the transport of nutrients, hormones

and immune cells, in addition to the removal of metabolic waste products and

temperature regulation [6]. In this work, we are mostly interested in the transport of

nutrients, especially to the brain. To better understand the cardiovascular system,

let us begin by considering its structure and function.

1.1.1 Structure

The cardiovascular system consists of the heart, the lungs and blood vessels. The

circulatory system is broadly divided into two: from the heart to the lungs and back

to the heart (pulmonary circulation), and from the heart to the rest of the body and

back to the heart (systemic circulation) [6]. The pulmonary circulation ensures the

crucial exchange of oxygen and CO2.

The blood is led to the rest of the body via large vessels, which become smaller

as they reach their target destinations. Then, vessels known as venules and veins

lead the blood back to the heart. Anatomically, vessels can be classified into elastic

arteries, muscular arteries, arterioles, capillaries, post-capillary venules, muscular

venules and veins [6]. Capillaries are the smallest vessels and also the type of vessel

with by far the largest surface area. Due to the small size red blood cells are

deformed when they pass through, and they release oxygen which can then pass

into tissue.

Vessel walls are varied in size and composition, as they serve different purposes.

Most consist of three main layers: a layer of endothelial cells formed on a basement

membrane, a layer of elastic tissue and smooth muscle cells, and a layer of connective

tissue (e.g. collagen) where nerves from the autonomic nervous system innervating

smooth muscle cells can also be found. Capillaries consist only of the first layer [6].
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1.1.2 Function

The heart is the main pump of the cardiovascular system, pumping blood around

the circulatory system. The pressure is highest after the blood is ejected from the

heart, i.e. in the aorta. The various vessels influence the flow, so that the blood flows

through vessels at different speeds and pressures. The elastic and muscular arteries

let the blood pass through with low resistance so that it can reach areas of the body

far from the heart. Small muscular arteries and arterioles both have many smooth

muscle cells, which means they can control the amount of flow to subsequent, smaller

vessels through vasodilation or vasoconstriction. This local control of blood flow is

therefore due to changes in the resistance to flow. The capillary flow is dependent

on the pressure gradient between the arterioles and postcapillary venules, hence the

control of arterioles is essential. Before reaching the capillaries, the blood flows

through precapillary sphincters that ensure the blood pressure in the capillaries is

not too high. These sphincters are found where arterioles split into capillaries. After

the blood passes through the capillaries, releasing oxygen and collecting CO2, the

venules and veins lead the blood back to the heart [6]. To ensure the blood flows in

the right direction there are valves in the veins.

The vessel sizes are not constant, but rather changing in time due to several

different physiological processes. This means that blood flow is dynamic, and the

dynamics can tell us much about the cardiovascular system in health and disease.

The dynamics stems from systemic influences (the heart and respiration), and local

control from the vessels mediated through various means. Previous research based

on in vivo blood flow recordings has shown that these processes are oscillatory, and

manifest in specific frequency bands [7, 8]. We now discuss these processes and

frequency ranges, known as the cardiovascular frequency bands.
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1.1.2.1 Cardiac

Frequency range 0.6–2 Hz. The heart beats approximately once a second at rest,

which corresponds to 1 Hz. However, the heart is not a metronome and the exact

timing between each beat varies in time, known as heart rate variability. In some

studies the limit of the cardiac frequency range is set below 2 Hz, as healthy, resting

humans often have a heart rate well below 2 Hz. However, if one is investigating

conditions where the heart rate is expected to be higher one should take this into

account.

1.1.2.2 Respiration

Frequency range 0.145–0.6 Hz. Healthy humans at rest breathe at a rate of

approximately 0.3 Hz. This oscillation has been observed in recordings of blood

flow, as blood flow depends on pressure differences generated by both the heart

and lungs [9]. One respiration cycle consists of inhalation and exhalation. During

inhalation, oxygen-rich air from the environment enters the lungs, where oxygen

diffuses into the bloodstream. Since there is more CO2 in the blood than in the air,

CO2 diffuses from the bloodstream into the air in the lungs. During exhalation, we

breathe out air that is rich in CO2.

1.1.2.3 Myogenic

Frequency range 0.052–0.145 Hz. The activity of the smooth muscle cells reacting

to intravascular pressure is known as myogenic activity. The myogenic hypothesis

was first proposed by William Bayliss in 1902 [10]. Performing experiments on

dogs, cats, and rabbits he found that smooth muscle cells lining arteries reacted to a

stretching force (caused by increased pressure), by contraction. Likewise, when there

was a decrease in tension they relaxed. These experiments were performed with cut

nerves to be independent of the central nervous system, and so he concluded that

the effects detected were myogenic in nature (i.e. initiated by the muscle cell itself,

rather than by an outside influence such as a nerve). These reactions, located not
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centrally but in the peripheral of the cardiovascular system, could help maintain

a constant blood flow through the surrounding tissue as long as they were not

overruled by other factors such as the central nervous system. Bayliss’ arguments

did not gain wide popularity at this point [11], and others argued metabolic factors

or nervous mechanisms could cause the changes. It took almost 50 years before

the myogenic hypothesis was studied by Björn Folkow who argued in its favour

[12–14]. In a study mainly on cats, where effects from vasodilator metabolites and

nervous mechanisms were excluded, he still observed vasodilation, which could then

be attributed to mechanical factors from changes in blood pressure [12]. This study

provided strong support for Baliss’ myogenic hypothesis. By the late 20th century

the myogenic response was recognized as important for autoregulation, and research

into the mechanisms behind the response had started [11, 15]. Exactly which stretch-

activated ion channels initiate the response is still not clear [16].

In humans, myogenic oscillations tend to manifest between 0.052−0.145 Hz [7–9,

17, 18]. These oscillations persist in the presence of neural blockers, which further

suggests that the origin is in fact (at least partially) from myogenic activity [9, 19].

Already in 1902, Bayliss pointed out, after reading the work of Hill [20], that

the myogenic response was especially interesting in the case of the brain, due to

the restriction of the rigid skull. If the arteries were to expand in size they would

do so at the expense of capillaries and veins. Due to this many researchers in the

19th century argued that the cerebral blood flow could not be regulated locally, but

through systemic blood pressure or cardiac output [21]. However, Bayliss suggested

that the myogenic response could instead make vessels more or less rigid, thereby

increasing or decreasing blood flow velocity as a means to provide more blood to the

active cerebral tissue [10]. That the cerebral blood flow could, in fact, be controlled

regionally was shown by Seymour S. Kety and Carl F. Schmidt in 1948 [22]. It

has since been observed in vivo in human participants [23, 24]. Rayshubskiy et al.

[23] utilised multi-spectral optical intrinsic signal imaging (MS-OISI) in an awake

participant undergoing brain surgery. Like fNIRS which is used in the research
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presented in this thesis, MS-OISI uses light at specific wavelengths and absorption to

measure changes in oxygenated and deoxygenated hemoglobin concentration. They

observed sinusoidal-like slow oscillations around 0.1 Hz, which was regionally specific

and associated with pial arterioles. As the oscillations were localised, it is unlikely

they stem from systemic reasons. Noordmans et al. [24] also utilised MS-OISI, in 4

anaesthetised participants undergoing brain surgery. In 3 of the participants, they

observed localised slow oscillations ∼0.1 Hz, while for 1 participant the oscillation

occurred at a lower frequency.

1.1.2.4 Neurogenic

Frequency range 0.021–0.052 Hz. Nerves from the autonomic nervous system

innervate smooth muscle cells, and can therefore influence their activity through

discharging. This neurogenic activity from the sympathetic nervous system was

shown to manifest in the frequency interval 0.021–0.052 Hz by Soderstrom et al.

[9] after measuring skin blood perfusion on skin with and without sympathetic

nerve activity. They showed that the normalised power was greatly reduced in this

frequency range in the nerve-less skin, which was not the case in higher frequency

ranges. A similar finding was obtained by Landsverk et al. [18] when evaluating skin

blood perfusion before and after brachial plexus block. Brachial plexus block impairs

sympathetic activity, and might also impair endothelial activity. The authors show

a decrease in relative power in the 0.0095-0.021 Hz and 0.021-0.052 Hz frequency

ranges. The 0.021–0.052 Hz range was associated with sympathetic nervous activity

as the lower range has earlier been associated with endothelial activity. The

neurogenic activity mostly leads to vasoconstriction, rather than vasodilation.

1.1.2.5 Endothelial

Frequency range 0.005–0.021 Hz. The endothelial cells lining all blood vessels

can also influence the vessel tone, through the release of various substances that

affect the smooth muscle cells [25]. Hypothesising that the endothelium-dependent
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vasomotion might manifest at around 0.01 Hz, Kvernmo et al. [26] assessed

skin perfusion by applying an endothelium-dependent vasodilator (acetylcholine

(ACh)) and an endothlium-independent vasodilator (sodium nitroprusside (SNP)).

The relative power in the 0.0095–0.02 Hz frequency range was significantly higher

when using ACh, indicating a contribution of the endothelium in this range.

The endothelium releases different molecules, and to investigate which pathway

is responsible for the 0.01 Hz oscillation, Kvandal et al. [27] inhibited nitric oxide

(NO) and prostaglandins (PGs) synthesis in two different groups. Inhibiting NO

resulted in reduced skin perfusion, while inhibiting PGs did not alter the perfusion.

Importantly, the difference in the 0.01 Hz oscillation when comparing ACh and SNP

reported by Kvernmo et al. was not found when NO was inhibited [27], but still

seen when PGs were inhibited. When inhibition of NO was reversed, the difference

was seen again. As such, the oscillation around 0.01 Hz is at least to some extent

affected by NO, a conclusion that was also reached by Stewart et al. [28].

An oscillation within the 0.005–0.0095 Hz frequency range has also been observed

[29–32]. This oscillation is also affected to a greater extent by ACh than SNP,

indicating the role of the endothelium. Inhibiting NO did not affect this frequency

range [30, 31], but did affect the 0.0095–0.02 Hz frequency range [27, 31]. Inhibiting

PGs did not affect either interval. It was therefore concluded that the lowest

interval is related to endothelial mechanisms different from NO and PGs, potentially

endothelium-derived hyperpolarizing factor (EDHF).

1.1.3 Summary

This section provided an overview of the cardiovascular system, with a key focus on

the cardiovascular frequency bands, which define the frequency ranges associated

with various physiological processes involved in blood flow regulation. In the

following chapters, these frequency bands are used to categorise activity, playing

a crucial role in interpreting the results.
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Chapter 1

1.2 The brain

Together with the spinal cord, the brain makes up the central nervous system. The

brain is responsible for cognitive function, movement and also several regulatory

processes within the body such as temperature regulation.

1.2.1 Structure

The human brain weighs ∼1100-1700g, or about 2% of the body weight, in adults

[33]. It consists of three main parts: the cerebellum, cerebrum and brain stem (figure

1.1A). There are two cerebral hemispheres, which are divided by the interhemispheric

fissure (figure 1.1A). The two hemispheres are fairly symmetrical, but there are some

asymmetries that are thought to be important for consciousness, speech, language

and memory [34]. Fissures are deep sulci, which are grooves between ridges known

as gyri (figure 1.1B). Combined, the gyri and sulci give the brain the characteristic

walnut-like surface, and this folding gives the brain a large surface area. The

pattern of the folding varies between individuals, but larger features tend to be

more consistent [33]. White matter is white as it contains many myelinated axons,

as opposed to grey matter which contains more cell bodies (figure 1.1B). Axons

are fibres along which electrical impulses travel and are important for neuronal

communication. Myelin forms around the axons and increases the speed at which

electrical impulses can travel.

The cerebral hemispheres can be divided into lobes, based on four major sulci.

These lobes are the frontal lobe, temporal lobe, parietal lobe and occipital lobe

(figure 1.1C). These lobes are more anatomical than functional, but each lobe can

still be associated with certain specific functions. For example, the motor cortex is

in the frontal lobe and is responsible for the movement of the body.

The brain consists of brain cells known as neurons, many other cell types known

as glial cells and also vascular cells. The cerebellum consists mostly of neurons (∼69

billion neurons, ∼16 billion non-neuronal cells), while the cerebral cortex and white

10
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Figure 1.1: Views of the brain. (A) Front view, with the interhemispheric fissure,
cerebrum, brain stem and cerebellum indicated. (B) A cross-sectional view of the
cerebrum, with grey matter and white matter indicated, as well as sulci and gyri. (C)
Side view, with the four main lobes indicated. (D) A cross-sectional view, with the
internal carotid artery and vertebral artery indicated. Created with BioRender.com.

matter (part of the cerebrum, figure 1.1B) consist of more non-neuronal cells than

neurons (∼16 billion neurons, ∼61 billion non-neuronal cells) [33]. This abundance

of non-neuronal cells alludes to their importance, and their function is a major topic

of this thesis as we try to uncover the functioning of the neurovascular unit (more

details in section 1.3).

There are∼ 100 billion neurons in the brain, and they are connected via synapses.

It is estimated to be ∼ 200 trillion connections. The number of connections is a lot

fewer than the number of possible connections, but despite being sparsely connected
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most neurons are not more than a few steps from any other neuron. This is because

the brain is thought to be connected in a small-world manner. This means most

connections are local and regular, but long-distance connections also occur [35].

1.2.2 Function

The functioning of the brain relies on chemical and electrical signals. The brain

activity does not cease unless death occurs. Hence, even without specific stimuli

or input from the environment brain activity is ongoing. In fact, compared to the

energy usage of the brain ’at rest’, the energy usage when engaging in a task is

only around 5% higher [36]. For example, in 1955 Sokoloff et al. [37] found that

cerebral oxygen consumption was not different when participants were engaging in

mental arithmetic compared to during the resting state. Such observations have led

to the view that brain function is mostly intrinsic and that the brain process and

interprets information so that it can both respond to and predict external demands

[35, 36]. This is known as top-down processing, where previous experiences are

used to predict situations. The alternative to top-down processing is bottom-up

processing, where a stimulus is first detected and then the processing follows.

Exactly how the brain processes and stores information is of great interest. In

1949 Donald Hebb published his book, The organization of behavior [38], attempting

to link behaviour to physiology. His theory on cell assemblies states that persistent

or repetitive activity will lead to cellular changes, and as such groups of neurons

can become interconnected. In other words, “neurons wire together if they fire

together” [39]. Buzsáki has hypothesised that neural syntax [40] is used by the

brain. In this case, neuronal assemblies are the fundamental unit of the syntax, and

various mechanisms will decide how the assembly activity is organised in time. Both

Hebb and Buzsáki’s ideas postulate the importance of spatiotemporal patterns of

neuronal activity.

On a macroscopic scale, the spatiotemporal patterns of neuronal activity lead

to oscillations and neuronal networks [41]. Neuronal oscillations are transient and
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time-varying which can make them challenging to study. Macroscopic neuronal

oscillations measured by EEG (discussed in section 1.5.2), have frequencies from

around 0.05 to 500 Hz [42]. The oscillations are traditionally divided into frequency

bands, that are thought to represent independent oscillations. The exact frequency

limits are not fully consistent between studies [43]. In the chapters of this thesis we

use the frequency limits as specified in [44–46]. Note that beta is then defined up

to 22 Hz.

Slower oscillations can recruit larger cortical areas, while quick oscillations

are more local in nature [42]. While it can be a simplification to draw a one-

to-one association between a certain oscillation and function, there is empirical

evidence suggesting the importance of different oscillations in certain tasks and

states (discussed in the next subsections). Oscillations of different frequencies can

influence each other, by modulating either the amplitude or phase of the other

oscillation. An example is theta-gamma coupling, where the amplitude of gamma

oscillations depends on the phase of the theta oscillation [47].

1.2.2.1 Infraslow and slow oscillations

Frequency range <0.5 Hz. Oscillations below the delta band are often left out in

EEG research due to high pass filters, but there is evidence of slow rhythms both

from animal and human studies [48, 49]. The origin and physiological function

are still debated. There might be several distinct oscillations below 0.5 Hz, with

distinct functions. While EEG is said to measure neuronal activity, electrical activity

measured by the electrodes might also stem from non-neuronal sources, which can

contribute to these slow oscillations. For example, a potential difference across

the blood-brain barrier, or neuron-glial interactions [50–53]. The slow oscillations

are associated with cortical excitability and arousal [54–58] and might impact

performance [59].
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1.2.2.2 Delta δ

Frequency range 0.5–4 Hz. Generators of delta oscillations are found in the

hippocampus and a part of the prefrontal cortex [60]. Delta oscillations are

associated with sleep, anaesthesia and rest. There is some evidence that delta

oscillations are also important during various cognitive processes [61].

1.2.2.3 Theta θ

Frequency range 4–8 Hz. Theta oscillations are observed in the hippocampi of

rodents, where they are linked to voluntary, exploratory and orienting movement

[62]. As discussed in the previous subsubsection, delta oscillations are observed in

the human hippocampus, but an oscillation at∼8 Hz is also seen in the posterior part

of the hippocampus [60]. Theta generators are also found in the cortex [60]. Theta

are strong during REM sleep and are linked to working memory and demanding

cognitive tasks [60].

1.2.2.4 Alpha α

Frequency range 8–13 Hz. Alpha was the first identified rhythm in EEG recordings,

observed by Hans Berger himself [5]. In the resting state, sensory and motor systems

tend to generate alpha oscillations. For example, when the eyes are closed the alpha

rhythm is dominant over the occipital and parietal areas. Capilla et al. [60] observed

alpha oscillations generated in the precuneus, which is thought to be the source of

posterior alpha oscillations. They also observed alpha generators in the visual,

auditory and somatosensory cortices. The different alpha rhythms have different

peak frequencies, and the oscillation from the sensorimotor system has been named

mu µ, while the oscillation from the auditory system has been named tau τ . One

hypothesis on the function of alpha oscillations is that they are a result of inhibition,

so they are dominant when an area of the brain is not in use (i.e. the visual cortex

when the eyes are closed). However, this hypothesis is based on amplitude measures,
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and there is some evidence that the phase of alpha oscillations is important in

neuronal processing [63].

1.2.2.5 Beta β

Frequency range 13–30 Hz. Beta oscillations were also identified by Hans Berger, as

a quicker oscillation that he observed when participants opened their eyes and the

alpha oscillation was no longer dominant. Beta oscillations have been associated

with motor control and motor control in response to sensory input, and are

observed in the motor and premotor cortexes, the basal ganglia and the cerebellum.

Specifically, beta power decreases before and during voluntary movements, and

increases in periods without movement and when movement has to be avoided

due to a task. Even when participants imagine movement (motor imagery) beta

power decreases. It has been suggested that the beta oscillations help maintain the

current motor set, or the ‘status quo’ [64]. Further, stimulating the brain with beta

oscillation slows down movement [65].

Beta oscillation generators have been found in the lateral occipito-parietal regions

(low beta ∼16 Hz), prefrontal cortex (high beta ∼25 Hz) and motor cortex (high

beta ∼20 Hz) [60], and there is evidence of beta oscillations having a role also outside

of motor control. In various cognitive processes beta oscillations are stronger if top-

down control is required, and can sometimes be observed as transient beta bursts

[66].

1.2.2.6 Gamma γ

Frequency range >30 Hz. Gamma oscillations were named by Jasper and Andrews

in 1938 [67]. They have since been associated with attention, as stimuli are better

detected when gamma is high [68]. It is also hypothesised that gamma is important

for unifying perception that is processed in different parts of the brain [41].
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1.2.3 Summary

This section provided an overview of the brain, highlighting key concepts such as

the abundance of glial and vascular cells, neuronal networks, and the large-scale

oscillatory behavior of neuronal populations. These oscillations are split into specific

frequency bands, which are utilised in the subsequent chapters for analysis and

interpretation.

1.3 The neurovascular unit

To support its ongoing activity, the brain requires around 20% of the body’s energy

consumption. As the energy demand in the brain varies across space and time,

regulation of blood flow is crucial. However, historically many scientists have

considered brain cells or cerebral blood vessels separately, not appreciating the close

link between them in healthy brains. It was not until 2001 that the Stroke Progress

Review Group meeting of the National Institute of Neurological Disorders and Stroke

of the NIH popularised the concept of the neurovascular unit (NVU) [69].

Neurons, the microvasculature and various cells known as glial cells make up the

NVU. As we remember from section 1.2.1, the cerebral cortex consists of many more

non-neuronal cells than neurons. The vascular cells in the NVU are endothelial cells,

vascular smooth muscle cells and pericytes. Examples of glial cells in the NVU are

astrocytes and microglia.

The endothelial cells play an important role in restricting what molecules can

enter the brain from the bloodstream as they are the main component of the blood-

brain barrier, and depending on their location they are specialised. The pericytes

and vascular smooth muscle cells give structural support to the blood vessels, and

as described in section 1.1.2 smooth muscle cells are important for vasomotion.

Astrocytes link the neurons to the blood vessels, as their endfeet cover the surface

of the blood vessels. As the most numerous glial cell type in the brain, they play an

important role in controlling neurotransmitters and the diameter of blood vessels.
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Microglia are the primary immune cells of the cerebral nervous system [70].

The vascular response to increased neuronal activity (neurovascular coupling) is

initiated by the neurons themselves, and astrocytes act to transmit the message to

the local vasculature. It is not just the local vasculature that must respond to the

increased neuronal activity. In fact, the response often occurs in the arteries, and

the signal can propagate there due to electrical coupling between endothelial cells

[69]. Smooth muscle cells act on the signal and alter vasomotion accordingly. The

role of pericytes in vasomotion is not clear [69].

In addition to to neurovascular coupling, cerebral blood flow is controlled through

autoregulation (response to perfusion pressure), vascular reactivity (response to

vasoactive stimuli such as CO2) and endtohelium dependent responses [71].

1.4 Neurovascular changes with ageing, Alzheimer’s

disease and Huntington’s disease

Dysfunction of the NVU is increasingly considered important in neurodegenerative

diseases such as Alzheimer’s disease (AD) [72]. However, even healthy ageing affects

the various components of the NVU. The endothelial cells release less NO and

EDHF with age, which reduces the capacity to initiate vasodilation. Decline in

mitochondrial function, and therefore (ATP) availability, might underlie decreased

endothelial functioning with age [73]. The blood-brain barrier becomes more

permeable with healthy ageing [74], which can be detrimental to brain health.

Smooth muscle cells’ ability to constrict and dilate vessels reduces with age, further

decreasing vasomotion. With age, astrocytes have decreased function in various

domains which impacts their ability to support neurons. Both astrocytes and

microglia tend to become more proinflammatory with age. In addition to changes

in the microvasculature and glial cells, neurons themselves undergo changes, such as

mitochondrial dysfunction [73].

Alzheimer’s disease and Huntington’s disease (HD) have in common that they
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involve protein dysfunction. In HD a genetic mutation leads to the production of

a mutant huntingtin protein, which has been found in several NVU cells [75]. In

AD the protein tau misfolds and can be found inside neurons. In addition, the

protein amyloid-beta forms plaques which build up between brain cells. While HD

is the result of a genetic mutation, the risk of AD increases with certain genes

(such as APOE4). Both of these neurodegenerative diseases have a presymtomatic

stage where changes in the brain have developed, but symptoms have yet to appear.

Lifestyle factors can influence the onset and development of both diseases [76, 77].

Several risk factors for AD are associated with cardiovascular health [72, 77]. Resting

cerebral blood flow is reduced during the presymptomatic stages of AD and the

vascular response is not as responsive to increased neuronal demand as for age-

matched controls [69]. Vascular changes are not well explored in the presymptomatic

stages of Huntington’s disease, but there is evidence that reduced blood flow to the

striatum is present [78]. In addition, Garcia et al. demonstrated molecular changes

in vascular and glial cells in HD [79].

1.4.1 Summary

The previous sections (1.3 and 1.4) introduced the NVU and its role, as well as the

neurovascular changes associated with aging, Alzheimer’s disease, and Huntington’s

disease. The key takeaway is the critical importance of the NVU in maintaining

a healthy brain. Furthermore, the widespread neurovascular changes highlighted

underscore the motivation for studying the cardiovascular system and brain in the

mentioned conditions, as explored in the subsequent chapters.
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1.5 Non-invasive measurements of the cardiovas-

cular system and the brain

Hemodynamics and neuronal dynamics are closely linked, and so measuring only

one does not capture the whole picture. Hemodynamics is usually measured using

fMRI or fNIRS, while neuronal dynamics is measured using EEG or magnetoen-

cephalography (MEG). All of these methods have strengths and weaknesses. Due to

the portability, non-invasiveness, price and temporal resolution we have combined

fNIRS and EEG. In addition, cardiorespiratory function is captured with ECG and

a respiration belt. As such, the following subsections introduce the measurement

techniques that were used to obtain data that were analysed for chapters 3, 4 and

5.

1.5.1 Functional near-infrared spectroscopy (fNIRS)

1.5.1.1 Technical aspects

fNIRS is a non-invasive, relatively cheap measurement technique that can monitor

brain oxygenation. It uses light that is transmitted by a source probe (emitter), often

a light-emitting diode (LED). The light propagates through the matter below the

probe and is scattered or absorbed depending on this matter. A detector measures

the reflected light (figure 1.2). The light is in the near-infrared range (wavelength

∼ 690-900nm), as this allows for measuring changes in hemoglobin concentration.

Different chromophores (molecules that absorb light at specific wavelengths and then

emit light lacking this wavelength) absorb different wavelengths, which is essential

for fNIRS. Near-infrared light travels relatively unhindered through skin, tissue

and bone, while oxygenated hemoglobin and deoxygenated hemoglobin absorb it.

The result is an ‘optical window’ ∼ 690-900nm for monitoring hemoglobin. At

wavelengths of 800nm, the absorption is equal for oxygenated and deoxygenated

hemoglobin (figure 1.3, isosbestic point). As such, fNIRS devices utilise two
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wavelengths within the optical window, but on different sides of the isobestic point

to quantify changes in both oxygenated and deoxygenated hemoglobin [80]. For

example, the NIRScout from NIRx, the device used in the research presented in this

thesis, uses wavelengths of 760nm and 850nm.

Figure 1.2: Illustration of an emitter and a detector, placed on a head. The light
travels from the emitter, reaching the upper parts of the cortex before being reflected
and subsequently measured by the detector. Created with BioRender.com.

Figure 1.3: Absorption spectra for oxygenated hemoglobin (red) and deoxygenated
hemoglobin (blue). The molar extinction coefficient tells how strongly light at
a given wavelength is absorbed by a medium per molar concentration. Figure
reproduced with changes [81].
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Continuous wave fNIRS is most commonly used, meaning that emitted and

reflected light intensity is measured. From these measurements the relative

concentration changes in oxygenated and deoxygenated hemoglobin are calculated,

usually using the modified Beer-Lambert law [82]. As the scattering and absorption

coefficients of the tissue are unknown, only relative and not absolute concentration

changes can be calculated.

The sampling frequency of fNIRS can be much higher than the sampling

frequency of fMRI (often sampled around 0.5-1 Hz [83]). For example, the fNIRS

system used for the research presented in this thesis has a sampling frequency

of 31.25 Hz. This avoids any aliasing from the heart and respiration activities

(see figure 1.4 for illustration of aliasing). These physiological processes are often

considered ‘physiological noise’ if the goal of a study is to measure neuronal activity

in response to a task/stimulus. Such studies are based on neurovascular coupling,

where increased neuronal activity leads to increased blood flow to the activated area

[80]. Other studies are interested in the spontaneous oxygenation dynamics, and

so the heart and respiration activities, in addition to other vascular activities, are

considered sources of information rather than noise [84].

Figure 1.4: A sine wave with frequency 1.5 Hz (blue). The black dots illustrate
measurements with a sampling rate of 20 Hz, which is clearly sufficient to capture
the sine wave. The red dots illustrate measurements with a sampling rate of 2 Hz.
This low sampling rate is not sufficient, and the dynamics might be misinterpreted
to represent a sine wave with a frequency of 0.5 Hz (gold).
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1.5.1.2 Strengths and weaknesses

As both fNIRS and fMRI measure brain oxygenation, it is natural to compare the

two methods. fNIRS has several benefits over fMRI such as reduced costs (3 Tesla

MRI scanners can cost 2-3 million US dollars [85], compared to approximately

10000-200000 US dollars for fNIRS), portability and non-invasiveness. As fNIRS

is portable, patients might not need to travel for a measurement, and it can also be

used for bedside monitoring. fNIRS is suitable for participants with metal implants

and is relatively robust against movement artifacts. As it is relatively inexpensive

and also easy to use, fNIRS does not have to be in specialist centres only and

therefore could be widely applicable [86]. As mentioned above, the high sampling

frequency of fNIRS is a benefit. However, fNIRS can only measure oxygenation in

the upper parts of the brain with relatively low spatial resolution.

1.5.1.3 Application in research

Since Frans Jöbsis showed that one could monitor concentrations of oxygenated

and deoxygenated hemoglobin in the brain non-invasively in 1977, fNIRS has been

developed into a popular neuroimaging tool. It has been applied both in studies of

healthy ageing [84] and of diseases such as dementia, including Alzheimer’s disease

[86, 87]. It has also been applied to study brain activity in infants [88]. Further, it

has been extensively used in hyperscanning studies [89], i.e. studies that measure

the brain activity of two or more participants simultaneously.

As the incidence of Alzheimer’s disease is increasing there is a need for low-cost

neuroimaging tools to monitor disease progression and to aid in diagnosis. fNIRS

is a good candidate for Alzheimer’s disease research [90] and was first used for this

purpose in 1996 [91]. Since then, the number of articles has increased rapidly [86,

87]. Both resting state studies and task activation are common. Some studies also

employ a challenge, like changes to CO2 concentration in the air the participants

were inhaling [92].

Several resting state studies are summarised in table 1.1. Much of the analysis is
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done in the time-domain, like calculating the tissue oxygenation index, the standard

deviation or average of the time-series, or the Pearson correlation [93–98]. In ageing

studies, frequency and time-frequency domain analysis have yielded interesting

results, showing the benefit of considering oscillations in the cardiovascular frequency

bands [84]. One study considering spectral entropy (entropy of the power spectrum)

showed differences between AD and control participants [99].

Most, but not all, studies do find a significant difference between the groups

considered. In a recent review paper, it was found that ∼ 86% of the 88 published

papers (both resting state and task activation) found a significant difference between

dementia or mild cognitive impairment (MCI) and controls [86]. This illustrates that

fNIRS can be a valuable tool for dementia monitoring and/or diagnosis.

Despite the first fNIRS study on AD having been published in 1996, the field

really started to grow in the last decade [86]. As such, clear standards for data

collection and analysis methods have yet to be established, and disease-specific

markers that can distinguish different dementias are needed.

Table 1.1: Functional near-infrared spectroscopy studies on Alzheimer’s disease in
the resting state. The methods tell the main analysis method and the length of
resting state recording. N = number of participants, AD = Alzheimer’s disease, aAD
= asymptomatic AD, pAD = prodromal AD C = controls, MCI = mild cognitve
impairment, aMCI = amnesic MCI, tissue oxygenation index (TOI) = [Hbo2]/[HbT],
Hbo2 = oxygenated hemoglobin, total hemoglobin (Hbt) = oxygenated hemoglobin
+ deoxygenated hemoglobin, sd = standard deviation.

Paper N Methods Findings

[100]

1997

10 AD

10 C

Baseline values

27s

AD lower oxy-Hb baseline values,

and higher deoxy-Hb values.

[93]

2013

21 aMCI

10 C

TOI

NA

TOI lower in aMCI in frontal

and parietal channels.

[94]

2014

32 aMCI

32 C

TOI

20min

TOI not different

between groups

Continued on next page
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Table 1.1 – continued from previous page

Paper N Method Findings

[101]

2018

27 aMCI

24 AD

21 C

Multiscale entropy

(MSE)

11min

Reduced MSE across all scales in

AD patients in the frontoparietal,

default, dorsal attention

and ventral attention networks

compared to C

[102]

2019

26 MCI

28 C

Dynamical Bayesian

inference coupling

(DBIC)

15min

Reduced DBIC in MCI

compared to C

[97]

2019

42 MCI

53 C

Pearson correlation

60s

Higher deoxy-Hb correlation in MCI

compared to controls

[98]

2019

25 aMCI

23 AD

30 C

Windowed

Pearson correlation

functional

connectivity (FC)

11min

AD and MCI higher variability

in FC compared to C.

[103]

2019

51 MCI

64 C

Power spectral

density (PSD)

with FFT

5min

Mean PSD (0.07-0.11 Hz)

reduced in MCI compared

to C in parietal areas

[96]

2021

17 AD

18 C

Standard deviation

of oxy-Hb

5min

No significant difference

in sd, but tendency for lower sd

in AD compared to C

Continued on next page
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Table 1.1 – continued from previous page

Paper N Method Findings

[104]

2022

53 C

28 aAD

50 pAD

9 AD

Baseline

30s intervals

No difference in oxy-Hb

concentrations between

C, aAD, pAD and AD

[95]

2022

21 AD

18 C

Standard deviation

of oxy-Hb

5min

lower sd in AD compared to C

[99]

2023

8 AD

14 C

Spectral entropy (SE)

5min

Controls higher SE in 0.6-5 Hz

range compared to AD.

AD higher SE in 0.008-0.1 Hz

and 0.1-0.6 Hz ranges

compared to C

1.5.2 Electroencephalogram (EEG)

1.5.2.1 Technical aspects

Similarly to fNIRS, EEG is also a non-invasive, relatively cheap measurement

technique, but rather than oxygenation it measures brain electrical activity.

Electrodes placed on the scalp are usually used for the measurement, but it is

possible to use intracranial electrodes too (which would make the recording invasive).

Brain electrical activity can refer to Na+ and Ca2+ action potentials, synaptic

potentials, oscillatory membrane fluctuations, neuron-glial interactions via gap

junctions and glial membrane potentials [105]. However, EEG can only measure

electrical fields on the scalp, meaning that for example, action potentials will not

contribute to the EEG signal [105]. In fact, the electrical field that can be measured

on the scalp is mostly generated by postsynaptic potentials in pyramidal neurons in
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the cortex [106]. This is due to the fact that pyramidal neurons are perpendicular

to the surface of the cortex [106]. Additionally, EEG does not measure the electrical

activity of one neuron, but rather the synchronized activity of neuronal populations.

The soma (main body) of the neuron has synaptic connections. These

synapses can be excitatory or inhibitory, leading to excitatory postsynaptic potential

(EPSP) (membrane potential increases) or inhibitory postsynaptic potentials (IPSP)

(membrane potential decreases). These postsynaptic membrane potentials last

longer than the action potentials, which is why they are thought to contribute to the

EEG signal [107]. When an EPSP occurs, positive ions enter the cell, meaning the

extracellular environment will be relatively negatively charged. At another portion

of the cell, current flows out of the cell to complete the closed circuit, resulting in a

relatively positively charged extracellular space. The opposite charges occur with an

IPSP (figure 1.5). The result is that the pyramidal neuron will appear as a dipole,

with a potential field around it. When enough pyramidal cells are synchronized

their potential fields will combine to a potential field strong enough to be measured

by an EEG electrode on the scalp [106].

Due to the dipoles, extracellular currents will propagate through the brain as a

wave, as positive charge repels positive charge and negative charge repels negative

charge. This volume conduction is complex because the brain is not homogeneous

[108]. When the wave reaches the electrode the electrons in the electrode will be

pushed or pulled by the charge. Due to the complex volume conduction, it is hard to

pinpoint exactly what location is responsible for the EEG signal, which contributes

to a relatively low spatial resolution [108].

Specifically, EEG measures voltage fluctuations. Hence, at least two electrodes

are needed as voltage is the difference in electric potential between two points. This

means that artifacts affecting all electrodes will be suppressed. There are different

methods to define how this difference should be found, and the shape of the EEG

signal will vary depending on the choice of method. In the sequential montage,

the difference between two adjacent electrodes is used, in the referential montage a
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Figure 1.5: Pyramidal neurons where the extracellular space around the soma is
positively charged, and around the top of the neuron it is negatively charged. This
means that the pyramidal neurons are dipoles. The current wave travels through
the brain tissue via volume conduction and can be measured via a scalp electrode.
The postsynaptic potentials of pyramidal cells are the strongest contributor to the
EEG signal, as pyramidal cells are perpendicular to the cortex surface. Created
with BioRender.com.

reference electrode is used and, in the average reference montage, an average signal

is used as a common reference [109].

The placement of EEG electrodes is standardised to the international 10-20

system (figure 1.6) [110], so researchers can more easily compare findings. The

electrode placement names start with one or two letters, describing which brain

region they are placed above: Fp for frontal-polar, F for frontal, C for central

sulcus, P for parietal, T for temporal and O for occipital. Electrodes placed on the

midline also have a z, such as the electrode Pz [110].
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Figure 1.6: The EEG 10 20 international system [111].

1.5.2.2 Strengths and weaknesses

Another method to measure brain electrical activity is MEG. Compared to MEG,

EEG is cheaper (around 60000 US dollars compared to a few million US dollars

for MEG [85]) and portable, imposes fewer physical constraints on the participants

and can therefore be experienced as less stressful. In addition, EEG has excellent

temporal resolution and can, like in the work presented in this thesis, be measured

at for example 1000 Hz. A weakness of EEG is the poor spatial resolution due to

volume conduction, and that it does not only measure electrical signals from the

brain. This means that electrical signals generated by muscle and eye movements,

and heart activity can also be picked up by the EEG electrodes.

1.5.2.3 Application in research

Hans Berger is considered the inventor of human EEG [85] and since the 1920s

EEG research has become very popular. EEG is used in the diagnosis of epilepsy

[110] and has been widely used in research on neurodegenerative diseases such as

Alzheimer’s disease [112] and Huntington’s disease [113]. It has also been applied to

schizophrenia research [114], ageing research [115] and research on depression [116].
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1.5.3 Concurrent fNIRS-EEG studies

As EEG and fNIRS can offer complementary information, combining the methods

can yield more information than using only one of the techniques. By August 2021

around 100 studies combining fNIRS and EEG had been published. Most of these

studies (∼80) aimed to analyse both fNIRS and EEG in parallel, rather than using

one method to inform the analysis of the other [117].

Several studies have employed fNIRS and EEG to quantify neurovascular

coupling (NC). For example, in healthy adults at rest, Keles et al. 2016 [118]

calculated the delayed cross-correlation between the EEG power time-series and the

oxy- and deoxy-hemoglobin time-series. In a study on newborns, Govindan et al.

[119] calculated the standard deviation of EEG time-series and the average value of

the difference between oxy- and deoxy-hemoglobin time-series in 1 s epochs. The

spectral coherence of these new time-series was taken as a measure of NC. Also in a

study on newborns, Chalak et al. [120] used fNIRS to measure cerebral tissue oxygen

saturation and found the wavelet coherence between this and EEG as a measure of

NC. fNIRS and EEG have also been employed to study anaesthesia [121]. Nair et al.

calculated NC as the cross-correlation between time-series consisting of the standard

deviation of windowed fNIRS and EEG time-series.

NC has also been assessed for patients with Alzheimer’s disease. Researching

working memory, Perpetuini et al. 2020 [122] calculated conditional entropy between

EEG and fNIRS time-series, which was evaluated as indicative of NC. Depending

on the task, the entropy was found to be both higher and lower in the AD group.

In the resting state, Chiarelli et al. 2021 [96] calculated global NC with a general

linear model framework by regressing whole-head EEG power envelopes in three

frequency bands (theta, alpha and beta) with average fNIRS oxy- and deoxy-

hemoglobin concentration changes in the frontal and prefrontal cortices. They found

significantly lower NC in AD patients. Babiloni et al. [123] induced hypercapnia

(build-up of CO2 in the blood) in older participants with and without MCI, by

having participants breathe in a relatively high CO2 concentration. They calculated
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NC as the correlation between the change in oxy- or deoxy-hemoglobin before and

after CO2 inhalation, with total EEG coherence during CO2 inhalation. The MCI

and older participants had similar changes in oxy- or deoxy-hemoglobin before and

after CO2 inhalation, which was taken as a measure of vasomotor reactivity.

From the aforementioned studies, and additional ones summarised by Li et al.

[117], it is clear that there is not one agreed-upon method to calculate NC using

fNIRS and EEG. However, many studies find a relationship between time-series de-

rived from the two methods. Additional research on the physiological underpinnings

of the fNIRS-EEG relationships could further improve our understanding of NC.

Aside from NC, Cicalese et al. [124] aimed to classify healthy controls, MCI

and, mild and moderate AD patient groups. They found that using both fNIRS

and EEG features achieved higher classification accuracy compared to when using

only features from one of the methods. Li et al. [125] also combined fNIRS and

EEG when researching AD, and used the fNIRS findings as constraints for the EEG

source localisation.

1.5.4 Electrocardiogram (ECG)

An electrocardiogram (ECG) measures the electrical activity of the heart over time.

As the heart contracts when electrically stimulated, measuring the electrical activity

allows one to gather important information across the cardiac cycle. Specifically,

electrodes placed on the body measure the voltage, which is the potential difference

between two points. The voltage will vary according to the electrical activity of all

the cardiac cells. Naturally, where you place the electrodes will impact the measured

voltage [126]. A standard clinical ECG is measured using 10 electrodes, while the

ECG obtained for the research presented in this thesis used 3 electrodes.

A standard ECG has a characteristic shape (see figure 1.7), with a P wave, QRS

complex and a T-wave. The R peak is the most prominent feature of the ECG and

is present in each cardiac cycle, meaning it can be used to track the heart rate. The

P wave results from atrial depolarization, the QRS complex results from ventricular
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depolarization and the T wave results from ventricular repolarization [126]. Various

heart problems will cause the ECG trace to have a different appearance. In a research

setting, it is common to use the R peak to track the heart rate in time, and then to

quantify heart rate variability.

Figure 1.7: Example ECG trace from a healthy participant.

1.5.5 Respiration

Respiration can be measured by a respiratory belt, which measures changes in the

circumference of the chest. When inhaling the chest expands, and when exhaling

the chest contracts. The belt contains an element that can sense the change in

circumference, usually by sensing stretch. A transducer converts the stretch into

voltage, which will vary linearly with the stretch. The result is a characteristic

inverted U shape per cycle, as seen in figure 1.8, where the peak corresponds to the

end of inhalation.
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Figure 1.8: Example respiration trace from a healthy participant, showing three
cycles of respiration.

1.5.6 Summary

This section introduced the measurement techniques used to obtain data analysed

in chapters 3, 4, and 5. The key takeaway is that fNIRS and EEG can be

effectively combined to study neurovascular interactions. The techniques are

relatively inexpensive, portable, and non-invasive. Additionally, an ECG and a

respiration belt can be used simultaneously to measure cardiorespiratory function,

enhancing the breadth of physiological data collected.

1.6 Physics of living systems

While the history of biophysics has roots in animal physiology, the field was mostly

concerned with the nanoscale and structure (e.g. DNA, proteins) in the twentieth

century ([127]). However, understanding the structure of life is not sufficient to

understand the function, as “the whole is greater than the sum of its parts”

(Aristotle).

Living systems can be described at micro to macro scales, and across multiple

time scales: from brain activity on the order of miliseconds to the circadian rhythm

(∼ 24 hours) which arises as a consequence of Earth’s rotation. From the level

of single cells to the level of an entire organism. Understanding how the different
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scales work and impact eachother, and understanding the link between structure

and function are important questions for the field.

Better understanding living systems and how they behave in time can be attained

within the framework of dynamical systems theory, which is discussed in subsection

1.6.2.

1.6.1 Systems far from equilibrium

When physics meets biology it is important to carefully consider how to best

apply methods from physics to living systems. Physicists learn to classify systems

into thermodynamically isolated, closed and open systems. Isolated systems are

completely separated from the environment, in that they cannot exchange matter

or energy with the surroundings. Closed systems can exchange energy with the

environment, such as dissipation of heat. Lastly, open systems can exchange both

energy and matter with the environment. It is clear from these definitions that

living systems are open systems. They exchange matter and energy with the

environment, an exchange that is vital for life. Plants need light from the sun for

photosynthesis, humans need food to survive. Interactions between living systems

and the environment result in varied and complex dynamics that are characteristics

for life on earth. Potentially due to the great complexity of biological systems,

biophysics, or the physics of living systems, is now a large field spanning many

research interests.

The concept of equilibrium is also often discussed in physics, and often a physicist

assumes a system is in equilibrium to simplify a problem. To achieve thermodynamic

equilibrium a system must have no macroscopic change in matter or energy, or

change in macroscopic properties such as temperature and pressure. A system in

equilibrium can not do work, which is essential for living organisms. A steady-state

system has an equal flow of energy or matter in and out of the system, which also

does not (in most cases) describe a living system. Rather than assuming unchanging

macroscopic variables, out-of-equilibrium approaches can track variables and how
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they change in time. These changes can come from interactions between the system

and the environment. This topic will be further explored in section 1.7.

1.6.2 Dynamical systems theory

Dynamical systems are systems that evolve with time. The study of such systems

was initiated by Isaac Newton, when he studied planetary motion [128]. With

differential equations he was able to calculate the position of Earth around the sun.

However, adding a third object to the calculation proved very difficult, and is known

as the three-body problem. Obtaining the exact motion for the three objects was

simply not doable. However, moving from a quantitative to a qualitative approach,

Poincaré has left a lasting impact on the field of dynamics. Instead of worrying

about the exact position of a planet, one might rather question if the orbit of the

planet is stable. Such questions regarding stability and evolution of a system can

in many cases be answered, and is considered a geometric approach [128]. Later,

Winfree applied dynamical systems theory to biological systems, using nonlinear

phase oscillators [129], a direction of thinking that was also pursued by Kuramoto

[130]. In the next subsections we will explore dynamical systems and how they

might be applied to study living systems.

Dynamical systems are often described using differential equations, for example

in the form:

dx1

dt
= f1(x1, ..., xn, t)

...

dxn

dt
= fn(x1, ..., xn, t).

(1.1)

The change of a variable xi with time t is thus governed by a function fi whose

exact form will depend on the system one is dealing with. The variable xi can

for example be the position of a planet or the concentration of a molecule in a
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chemical reaction. Note that the change in xi with time can depend on xi itself.

As f is explicitly dependent on time the equation 1.1 describes a nonautonomous

dynamical system [131]. In contrast, an autonomous dynamical system does not

depend explicitly on time. Equation 1.1 also describes a deterministic dynamical

system, as opposed to a random dynamical system who’s state is associated with a

probability. Hence, a deterministic dynamical system will always evolve to the same

state from a set of initial conditions, while in a random dynamical system this is not

the case. If we add randomness in the form of noise to the deterministic equation

we have a stochastic dynamical system.

The dynamical system is considered linear if the form of f is such that all terms

are to the first power only, e.g.:

dxi

dt
= Axi +B, (1.2)

where A and B are constants. For nonlinear systems, the form of f can have

nonlinear terms, such as products, powers and functions such as sine and cosine.

Nonlinear systems are harder to deal with mathematically, as one cannot simply

divide the problem into parts and assume the solution equals the sum of the parts.

However, as living systems, and indeed many other systems, are nonlinear we must

find methods that that can tackle this.

The geometric approach often employs a phase space to gauge the dynamics,

also of nonlinear systems. A phase space consists of all possible states of a system.

Starting from an initial condition x0 and seeing how f(x) evolves in time, a trajectory

can be drawn in the phase space. If all qualitatively different trajectories are shown

we have a phase portrait. Beginning with a very simple, autonomous system of the

form [128]:

dxi

dt
= sin(x), (1.3)

figure 1.9A shows an example of the evolution of x(t) from one initial condition.

35



Chapter 1

Figure 1.9: (A) Time evolution of x(t), given by equation 1.3. Initial condition
x(0) = sin(π/8), time step is 0.01 s, and the integration scheme is the forth order
Runge-Kutta method. (B) Phase space for the dynamical system given by equation
1.3. Fixed points, corresponding to constant x(t), are indicated by black circles
(stable) or cyan circles (unstable). ẋ = dx

dt
. The arrows indicate the velocity vector

(towards a smaller value of x(t) if ẋ < 0, and towards a greater value of x(t) if
ẋ > 0.)

Figure 1.9B shows the phase space for this system. From different initial conditions

of x, one can reason about the evolution of the system by considering this plot, but

first we must understand how to read such a plot.

Fixed points are indicated by circles. These are found when ẋ = 0, as

these solutions corresponds to a constant x(t). Fixed points are important when

considering how a system will evolve, and they can be stable or unstable. A stable

fixed point x∗ (also called an attractor) is attracting, as solutions in the vicinity go

towards it. Mathematically this can be written as x(t) → x∗ as t → ∞. An unstable

fixed point is repellent, as solutions in the vicinity move away from the fixed point.

The arrows indicates the velocity of x(t), in this case if the value of x(t) is

increasing or decreasing. Hence, when ẋ < 0 the arrows points to the left, and then

ẋ > 0 the arrows points to the right.

Consider the initial condition x = sin(π/8). In figure 1.9B we can see that x(t)

will be increasing faster and faster, until x = π/2, where the acceleration dx
dt

starts

slowing down (x(t) is still increasing, but at a slower rate). When x(t) = π the

acceleration is zero, and the value of x(t) will stay constant for the rest of time.

This is indeed what is depicted in figure 1.9A.

This is an example of a first-order system, and the possible dynamics for such
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systems are limited. Solutions go towards a fixed point or head towards infinity.

Such solutions do not describe many biological processes sufficiently, and they cannot

capture oscillations.

1.6.2.1 Limit cycles

Self-sustained oscillations are common in biological systems, such as the beating of

the heart. An oscillation that is self-sustained is not dependent on external periodic

forces for sustenance. Self-sustained oscillations can be described by limit cycles.

In the phase space, a limit cycle is an isolated, closed trajectory meaning that

solutions around the limit cycle either spiral towards or away from it (figure 1.10)

[128]. If the surrounding trajectories spiral towards the limit cycle it is stable. Limit

cycles describe autonomous self-sustained oscillatory systems, but do not capture

nonautonomous oscillations [132]. Oscillations described by limit cycles are easily

affected by external perturbations.

Figure 1.10: Stable limit cycle in phase space [133].

1.6.2.2 Chronotaxic systems

Many oscillators can have time-varying amplitudes and frequencies, that are

resistant to perturbations. Again, take for example the human heart. It is well

known that heart rate changes throughout time, even at rest. However, there is

clearly stability in the heart rate, and the range of frequencies the heart can beat at is

narrow. The traditional limit cycle does not describe such dynamics well, as only the

amplitude dynamics is stable. The frequencies of oscillations can be easily perturbed.
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Therefore, to describe such systems Suprunenko et al. [134] introduced chronotaxic

systems, named as such because chronos means time and taxis means order in

Greek. Mathematically, a chronotaxic system, and a nonautonomous systems, can

be defined as:

ṗ = f(p) ẋ = g(x,p), (1.4)

where bold indicates that p and x are vectors. f and g are functions. This is called

a drive and response system, where p is the driver and x is the responder [135]. x

is nonautonomous as it depends on p which is changing in time.

The dynamics of a chronotaxic system is described by a point attractor xA(t)

which changes position along a nonautonomous limit cycle Γ̃0, hence xA(t) ∈ Γ̃0

[132]. Any initial point on the limit cycle is attracted to the point attractor, and

it is not sufficient that the attraction is defined in the infinite time limit. Rather

than defining attraction in the limit t → ∞, a pullback attractor is defined in the

limit t → −∞. Any trajectory starting at time t0 is attracted to xA(t) in this limit.

Hence, the chronotaxic system satisfies:

lim
t→−∞

|x(t, t0,x0)− xA(t)| = 0. (1.5)

In addition, it satisfies:

x(t, t0,x
A
0 ) = xA(t). (1.6)

Combined, this means that x(t) approaches the point attractor and then moves

along with it. Chronotaxic systems are resistant to external perturbations which

can be added to the equation 1.4 as, for example, noise. They are also not sensitive

to initial conditions. Hence, chronotaxic systems are deterministic and non-chaotic

[132]. It is clear that many biological processes, in addition to the heart rate,

are stable and nonautonomous and that they therefore are good candidates for
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chronotaxic systems.

1.6.3 Are oscillations beneficial for living systems?

Biological oscillations are abundant in nature [136]. One might ask if such

fluctuations serve an intentional purpose, or if they are simply by-products of

different mechanisms [137]. An example of such a by-product is the vibration

in a bridge due to resonance, which is not a beneficial effect. However, the

abundance and persistence of biological oscillators might hint at their importance

[136]. For example, vasomotion, which is oscillatory as discussed in subsection 1.1.2,

is hypothesised to ensure an efficient delivery of oxygen to the tissue [138]. In the

following subsubsections we will explore various benefits of oscillations in living

systems.

1.6.3.1 Environment

Living systems are subjected to cycles from the environment, such as the day-night

cycle and yearly cycle. This means that living systems can anticipate regular changes

in the environment, and adapt their own cycles accordingly. For example, humans

tend to sleep during the night, as it is beneficial to be awake when it is light. In

fact, the circadian cycle is present in most organisms on earth, so ingrained that

there are specific clock genes responsible for maintaining the circadian rhytmn in

mammals [139].

1.6.3.2 Time compartmentalization

Two processes might be conflicting, and therefore needing to be separated. One

option is to separate them in time, so called time compartmentalization [139].

This allows two incompatible processes to coexist in the same space, and therefore

avoids spatial compartmentalization. For example, expiration and inspiration have

different purpose (dispose off CO2 vs resupply oxygen), but the respiratory system

is responsible for both. Temporal compartmentalization is also applicable for
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metabolic processes [140], and is relevant in the context of the sleep-wake-cycle.

The brain is thought to need sleep as a period to “clear out” by-products of the

high metabolic activity during the day [140].

1.6.3.3 Regulation and information transfer

Physiological sensors can become de-sensitised when subjected to constant stimuli.

Oscillations might therefore be necessary for self-calibration within an organism,

with two such examples being heart rate variability and blood pressure [139].

Oscillations can also be preferable for information transfer in the presence of noise.

For example, frequency modulation (FM) radio has better sound quality compared

to amplitude modulation (AM) radio, as it is less susceptible to interference by noise.

The brain appears to use oscillations to consolidate information [41].

1.6.3.4 Interactions

By having time-varying processes, rather than constant ones, processes can interact

and synchronize. There are many examples of coupled processes in the human

body, such as respiratory sinus arrhythmia; the heart rate varies in synchrony

with respiration. During inspiration the heart rate tends to be quicker, and during

expiration it tends to be slower. This is thought to save energy for the organism.

Interactions might vary depending on states, like the strength of respiratory sinus

arrhythmia depends on sleep states [141]. Interactions are also plentiful within brain

networks [41, 142].

1.6.4 Homoestasis vs. homeodynamics

Having established that oscillations can be beneficial for living systems, one might

assume that oscillations have different properties in health and disease. As an

example, a disrupted circadian rhythm is often observed in Alzheimer’s disease

patients, and sleep disturbances are predictive of the development of the disease

[143]. With this in mind, it might be needed to move from homoestasis as a measure
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of health to homeodynamics [137]. Rather than assessing constant values, one might

assess disease by asking questions about the strength and timings of oscillations,

and if different oscillations are synchronized or coherent to the expected level. In

chapters 3, 4 and 5 we investigate ageing, Alzheimer’s disease and Huntington’s

disease through the lens of homeodynamics.

1.6.5 Summary

This section established that living systems are thermodynamically open systems

and introduced dynamical systems theory as a valuable framework for studying their

behavior. Chronotaxic systems were highlighted as effective models for describing

time-varying yet stable oscillations, commonly observed in biological systems such

as the cardiovascular system and brain. The inherent time variability of these

oscillations must be accounted for when analysing data in subsequent chapters.

The section concluded with a discussion on the potential benefits of oscillations,

particularly their capacity for interactions. In the following chapters, we aim to

quantify interactions using wavelet phase coherence.

1.7 Data-driven approach to studying dynamical

systems

Dynamical systems can be investigated using modelling, or through measurements

of real life dynamical systems. This latter approach means researchers learn directly

from the data measured from the system under investigation. Such measurements

can be in the form of a “time-series”, i.e. measurements of a variable over time.

From time-series many properties of a dynamical system can be determined. Here

we will discuss methods for investigating the existence and strength of oscillations,

as well as the coordination of oscillations. A time-series has a sampling frequency

fs, describing the interval between each measurement. We will assume a constant
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sampling frequency. A time-series also has a length L, which describes how long the

recordings were conducted for. The sampling frequency and length of the time-series

limit what oscillations we can observe. Therefore, both the length of recording and

the sampling frequency should be determined based on knowledge of the dynamical

system under observation.

1.7.1 Presence and strength of oscillations

Time-series from real systems contain the dynamics of the system and measurement

noise. The dynamics might consist of several oscillations, with time-varying

properties. Hence, when looking at a time-series it can be hard to see the oscillations

with the naked eye. Therefore, quantitative measures of oscillations are needed.

In this section we will introduce the autocorrelation function, Fourier transform,

short-time Fourier transform and wavelet transform, and discuss their strengths

and limitations.

1.7.1.1 Autocorrelation

The autocorrelation function is the correlation between a time-series and the same

time-series shifted in time [144]. It can be plotted as a function of this time shift. If

a time-series contains an oscillation of a certain frequency one would expect a peak

in the autocorrelation spectrum at the time shift corresponding to N periods of

the oscillation. The autocorrelation function is therefore well suited if a time-series

has one dominant oscillation. However, if a time-series contain noise, numerous

oscillations, or time-varying oscillations the interpretation of the autocorrelation

spectrum is not straight forward. The autocorrelation is calculated as [145]:

Cτ = 1/T

∫ T

0

f(t)f(t+ τ)dt, (1.7)

where τ is the time shift. In figure 1.11B the auto-correlation for a time-series is

plotted. There are peaks at 1s, 2s and 4s, so it is not clear that there are two modes.

42



Chapter 1

In addition, there is no information on the time-variability of these modes.

1.7.1.2 Fourier transform

The Fourier transform can be used to investigate the frequency content of a time-

series, via the power spectrum. The transform is named after Joseph Fourier, who

laid the foundation on which the transform was developed [146]. The raw time-

series is presented in the time domain, while the Fourier transform converts it to

the frequency domain. For a function f(t) the Fourier transform is given by [147]:

Ak = 1/T

∫ T

0

f(t)e−
2πikt

T dt, (1.8)

where k is an integer, and the amplitude at each k equals

Amplitudek = |Ak| . (1.9)

You can convert from k to frequency like fk = k/T .

The Fourier transform is not limited by the number of oscillations, but they

must have sufficiently different frequencies to be separated in the power spectrum.

However, the Fourier transform loses all time localisation, and is therefore not

suitable for time-series containing time-varying or transient oscillations (i.e. it is

only suitable for stationary time-series). In figure 1.11C the Fourier transform for

a time-series is plotted. There are peaks around 0.5 Hz and 1 Hz as expected.

However, there are several spectral lines around 1 Hz and it would be difficult to

tell if this is due to several modes without also having time resolution.

1.7.1.3 Short-time Fourier transform

We can achieve time resolution by performing the Fourier transform on sections

of the time-series. This is known as a short-time Fourier transform (STFT) or a

windowed Fourier transform. The STFT can be thought of as a Fourier transform of

the signal multiplied by the window function. The window function can for example
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be rectangular or Gaussian. A STFT with a Gaussian window is also known as the

Gabor transform, after Dennis Gabor who first introduced the STFT [148]. However,

this windowing greatly impacts the time-frequency resolution. For quick oscillations

a shorter window will provide better time resolution. However, this comes as a

cost for the slower oscillations, as at least one full oscillation is needed within a

window to reason about this oscillation. Hence, if a time-series contain multiscale

oscillations (i.e. several oscillations at various frequencies) it is hard to choose an

optimal window size. The STFT is calculated as:

f̃(k, t) =

∫ T

0

g(u− t)f(u)e−
2πiku

L du, (1.10)

where L is the length of the window, and g(u− t) is the window function, which is

centred at time t. Similarly to the Fourier transform, the amplitude can be found

by taking the absolute value of the transform, and power can be found by squaring

the amplitude. In figure 1.11D the short-time Fourier transform for a time-series is

plotted. Here we can clearly see two modes around 0.5 Hz and 1 Hz. There is high

amplitude from 0.005 Hz to 0.5 Hz, as the resolution is poor for such low frequencies.

1.7.1.4 Wavelet transform

The wavelet transform (WT) has an adaptable window size, depending on the

frequency of the oscillation under investigation. In contrast to the sinusoidal waves

used in the Fourier transform, wavelets decay quickly and therefore provide time-

localisation. In the process of computing the wavelet transform, a wavelet is

stretched (to investigate slower oscillations) and squeezed (to investigate quicker

oscillations) and slid across the time-series (to investigate different times) [149].

Hence, for slower oscillations a long window is used which results in a good frequency

resolution, and for quick oscillations a small window is used resulting in good

temporal resolution. The wavelet transform is therefore a good choice for time-

series with multiscale oscillations with time-varying properties. The WT is given

by:
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WT (s, t) =

∫ T

0

Φ(s, u− t)f(u)du, (1.11)

where Φ is the wavelet function, for example the Morlet wavelet (named after Jean

Morlet, who was one of the inventors of the wavelet transform [150]):

Φ(s, u) =
1
4
√
π
(e

2πiω0u
s − e−

2πω0
2 )e

u2

2s2 , (1.12)

where s is the scale of the wavelet, which is related to frequency like fs = ω0/s.

Again, amplitude and power can be found from the absolute values. In figure

1.11E the wavelet transform for a time-series is plotted. Both oscillatory modes

are clearly resolved, and we can see that they have time-varying frequencies. Due

to the logarithmic frequency resolution the lower frequencies do not appear noisy,

as in the short-time Fourier transform. However, there is still a limit to the time-

frequency resolution, known as the Gabor uncertainty principle. This is further

discussed in chapter 2.

The WT has been shown to capture the dynamics of chronotaxic systems [134].

Further, the WT fits within the framework of time-dependent finite-time-dynamics

[151]. Rowland-Adams et al. [151] illustrated that this framework is needed

to resolve the deterministic dynamics of nonautonomous systems, which can be

misinterpreted as noise when using methods such as the autocorrelation function or

the Fourier transform. As such, we will apply the wavelet transform when analysing

time-series in the future chapters. Due to the amount of data the time-averaged

power will be used to compare the different groups. It is calculated as the mean

of the power over the length of the time-series, for each frequency. The length was

25 minutes in chapters 3 and 4, and 20 minutes in chapter 5. In chapter 2 time-

averaged phase coherence is discussed in detail. In chapters 3, 4 and 5 the coherence

is calculated over the whole duration of the signal, shown in the equation of section

2.5 in chapter 3.
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Figure 1.11: (A) Time-series of Poincaré oscillators, defined in chapter 2, with noise.
The time-series have two oscillatory modes with time-varying frequencies. The plot
shows 20s of the 400s time-series. (B) The auto-correlation of the time-series in (A).
Peaks can be seen at time lags 1s, 2s and 4s. (C) The Fourier transform amplitude of
the time-series. Peaks can be seen around 0.5 Hz and 1 Hz. (D) Short-time Fourier
transform. Two modes can be seen around 0.5 Hz and 1 Hz, in addition to higher
amplitude between 0 and 0.5 Hz. (D) The wavelet transform of the time-series in
(A). Two modes around 0.5 Hz and 1 Hz can easily be seen.

1.7.2 Phase of oscillations

An oscillation can be characterised by its amplitude and phase. When the phase

is estimated it can be used to calculate the phase coherence, phase locking index

and other measures based on phase, and so this is an important step for further

investigations. There are different ways to estimate the phase of an oscillation when

starting from a time-series. If a time-series has only one oscillatory mode, marked

events can be used. An example is marking R-peaks (the event) in the ECG time-

46



Chapter 1

series. If assuming that the phase grows uniformly from 0 to 2π in the time between

two R-peaks, linear interpolation can be used. This method effectively reduces the

sampling frequency to the frequency of event occurrence, and it does not contain

any information on the dynamics in-between events. Kluger et al. [152] obtained

respiratory phase by identifying peaks and troughs. Linear interpolation was used

from troughs to peaks (−π to 0), and from peaks to troughs (0 to π). Still, this

method has similar limitations as when only considering one marked event per cycle.

Another method is to use the Hilbert Transform (HT) [153]. It can estimate the

instantaneous phase of a time-series if the time-series has one narrow-band mode

with slowly varying amplitude and frequency [154]. While you can perform the

HT on any time-series, the results can only be expected to be sensible if the above

is true. If the time-series contain multiple modes then it is possible to first filter

or decompose the time-series, for example using a Butterworth filter [155]. It is

important that the filtering does not distort the phases of the modes.

Another option is to estimate the phase from the WT, using ridge extraction

[156]. From the wavelet coefficients, which are complex numbers on the form Xs,t =

as,t + ibs,t, the phase can be estimated as

φs,t = arctan(
bs,t
as,t

).

In this case the phase can be estimated for time-series with multiscale dynamics.

Nonlinear mode decomposition can also be used to extract instantaneous phases of

physically meaningful oscillations [157].

1.7.3 Interactions

In neuroscience, the terms functional and effective connectivity is used to describe

dependencies or interactions between brain regions, while structural connectivity

refers to the anatomical connections (nerve fibers, synapses) between brain regions

[158, 159]. Functional connectivity refers to the statistical dependencies of brain
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activity from different locations. Effective connectivity refers to the influence one

neural system has on another, so-called causal model interactions.

Functional connectivity can be quantified using different measures of coordina-

tion between time-series of brain activity. For example, the Pearson correlation

coefficient can capture a linear relationship between two variables [160]. Several

information theoretical approaches such as mutual information are based on entropy

and aim to measure shared information [161]. However, if focusing specifically

on oscillations, there are several ways oscillations can be coordinated: the phase

difference between oscillations of the same frequency can stay constant (phase

coherence), cross-frequency coherence with a mutual adjustment of phases, cross-

frequency coherence where the amplitude of one oscillation depends on the phase of

another, or the amplitude of one oscillation can depend on the amplitude of another

oscillation. These are all functional connectivity measures, meaning that the wavelet

phase coherence applied in the subsequent chapters is a functional connectivity

measure. Chapter 2 explores how coherence as a concept emerged in physics and

how it is used today.

Examples of effective connectivity are dynamical inference methods used to infer

parameters of models that describe interactions, for example coupling functions [44].

Granger causality evaluates if a time-series Y can help predict the evolution of

another time-series X, and if this prediction is better than if using only past values

of X [162]. Granger causality can be considered as a lagged functional connectivity

measure [159], despite the focus on causality.

1.7.4 Summary

This section explored how properties of a dynamical system can be inferred from

data measured directly from the system. It discussed methods for quantifying the

amplitude of oscillations and argued that the wavelet transform is particularly well-

suited for capturing time-varying oscillations. Details on the application of this

method in the subsequent chapters were provided. Beyond amplitude, oscillations
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are also characterised by their phase, and the section explained how to extract phase

information from a time-series. Additionally, the concepts of functional, effective,

and structural connectivity were introduced, along with methods for calculating

functional and effective connectivity. Notably, wavelet phase coherence, a functional

connectivity measure, is used in the analyses presented in the subsequent chapters.

1.8 Summary and thesis outline

This chapter has provided an introduction to the cardiovascular system and the

brain, with particular focus on the oscillatory processes associated with these

systems. Further, the cooperation between these two systems was highlighted

and the neurovascular unit was presented. This strong link is why including both

systems in the methodology is so important, as done in this work. The effects of

age, Alzheimer’s disease and Huntington’s disease on the neurovascular unit were

discussed, to motivate the study of the neurovascular unit with both age and these

diseases. To do so in vivo in human participants, non-invasive measurements of brain

electrical activity, brain oxygenation, heart rate and respiration can be utilised. The

measurement techniques used to do this, which provides the data on which the work

in this thesis is based, were presented: the electroencephalogram, function near-

infrared spectroscopy, electrocardiogram and the respiration belt. These methods

are relatively inexpensive and also portable, making them suitable for repeated

measurements and therefore valuable in a clinical setting.

This chapter also provided a brief introduction to the physics of living systems

and dynamical systems theory. Here we highlighted properties of living systems

that are essential to consider when analysing data from living systems, such as time-

variability. The potential benefits of oscillations in living systems was addressed.

Then, based on these considerations we discussed data-driven approaches for the

study of dynamical systems, focusing on identifying oscillations in time-series. The

wavelet transform was highlighted as a suitable method when analysing multiscale,
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time-varying dynamics, due to the resolution in both time and frequency in addition

to logarithmic frequency resolution.

The next chapter will build on the content of this latter part of the introduction.

Focusing on coordination between oscillations, which can give an indication of

interactions, chapter 2 will introduce coherence as a concept, and discuss both

amplitude-weighted phase coherence and phase coherence. The chapter highlights

the need for time-localisation when analysing non-stationary time-series, such as

time-series from living systems. Practical considerations of applying coherence to

real data where noise is present are also covered.

The remaining chapters, chapters 3, 4 and 5, apply the knowledge from chapter

2 to real data from participants of different ages, and participants with Alzheimer’s

disease and Huntington’s disease. First, in chapter 3, the effect of ageing on the

neurovascular unit, the cardiovascular system and the brain are explored. Then,

in chapter 4, these parameters are assessed in people with Alzheimer’s disease.

Lastly, in chapter 5, they are considered in Huntington’s disease. Both Alzheimer’s

disease and Huntington’s disease are neurodegenerative diseases, but with different

underlying causes. The last chapter of the thesis will summarise the findings and

discuss future directions of this work.
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Phase coherence – A time-localised approach to studying interactions

This research is published in Chaos: An Interdisciplinary Journal of Nonlinear
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ABSTRACT

Coherence measures the similarity of progression of phases between oscillations or waves. When applied to multi-scale, nonstationary dynam-
ics with time-varying amplitudes and frequencies, high values of coherence provide a useful indication of interactions, which might otherwise
go unnoticed. However, the choice of analyzing coherence based on phases and amplitudes (amplitude-weighted phase coherence) vs only
phases (phase coherence) has long been seen as arbitrary. Here, we review the concept of coherence and focus on time-localized methods
of analysis, considering both phase coherence and amplitude-weighted phase coherence. We discuss the importance of using time-localized
analysis and illustrate the methods and their practicalities on both numerically modeled and real time-series. The results show that phase
coherence is more robust than amplitude-weighted phase coherence to both noise perturbations and movement artifacts. The results also
have wider implications for the analysis of real data and the interpretation of physical systems.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0202865

Coherence is a universal principle of interactions between oscilla-
tions and waves. We explain how coherence has been introduced
in physics and review procedures to measure coherence numeri-
cally. We expand the current knowledge by establishing the uni-
versal importance of measuring coherence not only as a static
property but as a property evaluated locally in time. We also com-
pare coherence defined to involve amplitude (the peak-to-peak
height) vs purely the phase (the position in the cycle) by apply-
ing these different approaches to numerically modeled data. We
argue that phase coherence is more robust and less susceptible to
noise, particularly in cases where measurements are influenced by
movement relative to the sensors. We provide an in-depth guide
to the application of methods to measure coherence in data and
demonstrate these points using real-world examples, including
the interaction between the heart and lungs, noisy measurements
of the brain, and the movement of electrons on the surface of
liquid helium.

I. INTRODUCTION
Oscillations and waves are ubiquitous in nature. They occur in

mechanical and dynamical systems in virtually all areas of science:

many physiological processes are oscillatory, such as the beating of
the heart, breathing, or neuronal oscillations in the brain; the ecol-
ogy abounds with seasonal cycles; most dynamical phenomena in
astrophysics and space science are oscillatory, as are geological and
hydrodynamics phenomena, such as ocean waves or earthquakes;
there are business cycles in economy; strings in musical instruments
produce vibrations, as do many man-made devices. Most electronic
devices, the Internet, TV signals, communication systems, and med-
ical imaging, use electromagnetic waves. The study of oscillations
and waves is, therefore, essential for understanding the universe, as
stated by Tesla in the quote: “If you want to find the hidden secrets
of the universe, you must think in terms of energy, frequency, and
vibration.”

While the underlying dynamical system may be very different
in distinct cases, oscillatory processes share two key time-dependent
features: amplitude (associated with the energy of the oscillation)
and phase (associated with the time evolution of the oscillation).
To identify interactions between different parts of a system, we can
calculate the similarity of these features using the physical property
known as coherence.

In this paper, we provide a review of coherence, beginning
in its conceptualization in physics and subsequently evaluating
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relevant numerical methods used to measure coherence. In partic-
ular, we improve current understanding by both establishing the
fundamental importance of taking a time-localized approach to
coherence and comparing a method based on amplitude and phase
to one only using phase information.

In Sec. II, we provide an overview of the development of
coherence in physics and its adoption in time-series analysis. We
also provide a definition of coherence based on the Fourier trans-
form and explain the differences between coherence and the related
concept of synchronization.

In Sec. III, we provide a model for a dynamical system, which is
used to numerically illustrate the differences between the phase-only
and amplitude-weighted methods of measuring coherence when the
system is perturbed by different forms of noise.

In Sec. IV, we introduce wavelet-based coherence and explain
the consequences of moving to the time–frequency domain that
arise from the uncertainty principle. In this section, we also specify
the alternate definitions of coherence in amplitude and phase and,
based on results found using the illustrative model, argue that phase
coherence is more resistant to the effects of noise and particularly
movement artifacts.

In Sec. V, we provide an in-depth guide to the application of
coherence in time-series analysis, including how to identify signifi-
cant coherence.

In Sec. VI, we apply this knowledge and evaluate the two meth-
ods considered by considering four real-world problems, includ-
ing the cardio-respiratory interaction, noisy electroencephalography
(EEG) and functional near infrared spectroscopy (fNIRS) data, and
electron dynamics on the surface of liquid helium.

We conclude in Sec. VII with a discussion of the time-localized
approach to coherence and the impact of using methods based on
only phase to those that rely also on amplitude information.

II. BACKGROUND

A. Physics of coherence
The theory of waves was initially developed by Young, Huy-

gens, and Fresnel.1 Along with providing explanations for phe-
nomena, such as diffraction and refraction, they also studied wave
interference. In this latter case, multiple waves combine to produce
a characteristic pattern of spatially and time-localized maxima and
minima. However, this effect is only seen clearly when the change in
the phase of the waves is the same. It is this property of the waves
that we term coherence.

The study of interference and wave coherence has already led to
many well-known discoveries. These include the Michelson–Morley
experiment, which disproved the existence of the luminiferous
ether.2 Variations of Young’s double-slit experiment have also
played an important role in the understanding of wave–particle
duality.3–5 In addition, the drive to develop a coherent source of
light led to the invention of the laser.6 Subsequent to the devel-
opment of lasers, larger-scale interference experiments have been
possible, which resulted in the discovery of gravitational waves.7

Coherence is now studied across a broad spectrum of domains.
This includes solid state and quantum physics,8–11 remote sensing,12

electrophysiology,13–15 communications,16 and space science.17

B. Coherence in time-series analysis

With the advent of computers, the study of coherence is no
longer restricted to physical experiments. Numerical methods allow
for the analysis of oscillations in recorded data. Using this recorded
data, coherence can be investigated.18 Coherence between different
parts of a dynamical system can result from either synchronization
or from modulation by a common process. While one can sepa-
rately analyze two variables and qualitatively assess the common
features present in each, interactions are often nonlinear in nature
and, hence, difficult to discern. Coherence, therefore, provides a
useful quantitative measure to identify these interactions.

An important aspect of coherence is that it is a time-localized
phenomenon. This makes it particularly useful for analyzing dynam-
ics comprised of oscillations with time-dependent quantitative char-
acteristics. Such dynamics has been modeled using chaotic, stochas-
tic, and non-autonomous systems.19,20 Time-series analysis methods
that give a non-time-dependent representation of a time-series,
such as its histogram or Fourier transform, may yield some insight
into the amplitudes of oscillations present. However, these meth-
ods will generally provide little understanding of phase dynamics if
the quantitative characteristics of the oscillations, or of their inter-
actions with each other, are being modulated over time. In contrast
to this, the time evolution of phases carries a great wealth of infor-
mation about the underlying system when such time modulation
exists.21

Time-evolving time-localized analysis is typically performed
in the time–frequency domain. This type of analysis was originally
developed in quantum mechanics, with the distribution proposed
by Wigner providing the highest possible frequency resolution that
is mathematically possible within the limitations of the uncer-
tainty principle.22 Ville later applied this function in the context
of time–frequency analysis more generally.23 At the same time,
the windowed Fourier transform was also developed,24 and the
field has since been advanced with the introduction of the con-
tinuous wavelet transform.25,26 Time–frequency analysis has been
applied most commonly to deal with simple forms of nonstation-
ary data, with applications in communications, radar, sonar, and
acoustics.27 Recently, it has also been invaluable in the analysis prob-
lems, such as turbulence,28 brain signals,29 blood flow,30 and excited
electron oscillations on liquid helium.31 These systems involve mul-
tiple potentially mutually interacting oscillatory processes that take
place simultaneously across a range of timescales; we refer to such
systems as multi-scale systems.

One specific advantage of the time–frequency methods is that
they, to various degrees, allow for the time-localized extraction of
instantaneous phases over time (see, e.g., Ref. 32). These phases can
be studied further to give insight into the system. This can be seen in
phase synchronization methods, which have been applied to the car-
diorespiratory system.33 Phase differences can also be observed and
point to delays in coupled networks of oscillators, such as those seen
in biology.34 Beyond this, we can estimate coupling functions and
infer the directionality of coupling (see Ref. 35 and the references
therein). In the case of weakly coupled oscillator networks, connec-
tivity can be inferred directly from the phases.36 There are also phase
stability methods, which have been used to find stable oscillations in
the heart rate variability.37
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In the case of coherence represented in the time–frequency
domain, the initial development of the methods was motivated by
applications to biomedical data. Specifically, it has been of great
importance to the mapping of functional connectivity and study of
synchronization in the brain.38–45 At the same time, the develop-
ment of time–frequency coherence has spearheaded investigations
into microvasculature dynamics.46–51 It has since been used in other
biomedical studies and found use as a marker for ageing of the car-
diorespiratory system,52 as well as revealing the relation between
the width of the subarachnoid space and blood pressure.53 More-
over, the generality of time–frequency coherence means that it has
found applicability elsewhere. In particular, these methods have
also been used extensively in the analysis of solar, geophysical, and
meteorological time-series to determine the Earth–Sun dynamical
relationship.54–57 Coherence has also found use in the analysis of eco-
nomic time-series, where it has been used to identify instability and
risk in specific markets as well as the relation between the mon-
etary policy and the macroeconomic activity.58–62 It has also been
applied in the case of cyclo-nonstationarity, where it has been used
to analyze mechanical systems, such as engines and wind turbines.63

Further examples include the evaluation of electron dynamics,31

behavioral rhythms in mice,64 and social networks.65

C. Definition of coherence
The original formulation of coherence was within the field of

optics, where it is used to quantify the degree to which two sources
of light can interfere. It was developed from a similar measure of the
intensity of the interference pattern, or visibility,

v = Imax − Imin

Imax + Imin
, (1)

where Imax is the intensity of the light at the peaks and Imin is the
intensity at the troughs. The value of v is 1 when the interference
is maximized and 0 is the case of no interference (i.e., the intensity
curve of the light is smooth). While this definition is useful from an
empirical standpoint, it is more difficult to use for the mathematical
analysis of waves of arbitrary phase and amplitude. Coherence was,
therefore, developed as a similar measure of the degree of interfer-
ence, but using the phase and amplitude of the interfering waves as
parameters.66

It is worth noting that while interference was originally inves-
tigated in optics, the phenomenon prevails throughout all types of
waves. As such, coherence can also be defined for any type of wave.
A general analytic framework for the study of waves is provided by
the Fourier transform. In this context, we can find a measure of the
similarity between the waves in two data series by computing the
Fourier cross spectrum,

Sab(f) = Fa(f)× Fb(f), (2)

where Fa and Fb are the corresponding Fourier transforms of the
two series and denotes the complex conjugate. However, this sim-
ilarity measure is still proportional to the amplitude of the Fourier
components. This means that if a dominant oscillation appears in
one data series but only background fluctuations are present in the
other, then the cross spectrum will still have a peak at the frequency
of that oscillation as long as there is some amplitude at that frequency

in the other data series. With this in mind, it is clear that we need to
normalize the cross spectrum so that it is not biased by this effect.
The way this is achieved is by defining Fourier coherence as

C(f) =
∣

∣〈Sab(f)〉
∣

∣

[

〈Saa(f)〉 × 〈Sbb(f)〉
]1/2 , (3)

where the angle brackets 〈 〉 denote taking an average value of the
Fourier spectra Sab(f), Saa(f), Sbb(f) computed for different time-
segments of the time-series.66 This defines coherence on a scale
between 0 and 1, making it directly comparable with the interference
visibility shown in (1).

D. Coherence and synchronization
It is worth noting that coherence should not be confused

with synchronization. In terms of dimensionality, synchronization
is defined specifically in the time dimension and, therefore, applies
to the dynamics of oscillations in time. In contrast, coherence refers
to a more general phenomenon, which extends to waves that are
defined across space as well as time.

There are also important differences in the context of time-
series generated by dynamical systems. While many types of syn-
chronization exist, they all result from an interaction between two
or more oscillations.33,67 As such, synchronization refers to a process
of adjustment of rhythms caused by interactions. In contrast, coher-
ence implies that two oscillations are observed to have the same
frequency and frequency modulation, but this does not necessarily
imply that they are coupled.

As examples, consider two linear oscillators with the same fre-
quencies or two autonomous nonlinear oscillators with the same
parameters and initial conditions. In both of these cases, the oscilla-
tions produced by the two systems will be coherent. However, since
the state of one oscillator does not depend on the state of the other,
they are not coupled.

Despite this difference, there is still a strong connection
between coherence and specific types of synchronization. The states
of complete 1:1 synchronization or 1:1 phase synchronization are
more or less the same as coherence as the strength of the interac-
tion reduces to a small value when two oscillators are completely
synchronized. One can also consider indirect synchronization, such
as two non-autonomous oscillators becoming synchronized via the
same time-dependent modulation. In each of these cases, the effect
can be measured directly using coherence.39

III. ILLUSTRATIVE MODEL

A. Poincaré oscillators
In order to illustrate the factors affecting the measurement of

coherence, we consider a pair of time-series, which contain common
oscillations generated by non-autonomous systems with indepen-
dent perturbations. To ensure that we are not biased toward pertur-
bations in amplitude or phase, we consider a system with a separable
amplitude and phase dynamics.
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The Poincaré oscillator is a two-dimensional limit cycle oscilla-
tor, which can be defined in polar coordinates as

dr

dt
= −αr(r − a),

dθ

dt
= ω, (4)

where r is the amplitude and θ is the phase of the oscillator. A stable
limit cycle is defined in state space with radius r = a, with α param-
eterizing the rate at which the trajectory converges to this amplitude.
The phase is neutrally stable and changes with a rate defined by the
frequencyω. A time-series x(t) of the oscillation can be generated by
transforming from polar coordinates by using x(t) = r(t) cos(θ(t)).

The important feature of this system is that r and θ vary inde-
pendently. This means that the amplitude of the oscillator can be
perturbed without affecting the phase and vice versa. However, com-
paring the effect of amplitude and phase perturbations this way
using the current system would not be a fair comparison since r has
a stable point attractor while θ does not. This leads to the perturba-
tions to r being suppressed over time, while perturbations to θ are
integrated over time.37

To resolve this issue, we modify the Poincaré oscillator so that
the form of stability is the same in both amplitude and phase. Unfor-
tunately, we cannot simply copy the function used for dr

dt
to dθ

dt
since

θ will converge to a. For persistent oscillations, θ needs to change
on average monotonically, which is provided by the parameter ω
in the current form. However, we cannot use dθ

dt
= ω − αθ(θ − a)

either as θ is unbounded and limt→∞ [ω − αθ(θ − a)] = −αθ 2,
which results in an unstable trajectory. Instead, we use the following
modification:

dr

dt
= −α(r − a)3 + ξrηr,

dθ

dt
= ω − α(θ − φ)3 + ξθηθ ,

dφ

dt
= ω,

(5)

where φ is an auxiliary dimension, which is left unperturbed and
provides a stable point in phase moving at the same rateω. The cubic
function was chosen because it gives similar scaling of the strength
of attraction to the stable point relative to the distance, but is sym-
metric around the stable point. The terms ξiηi are white Gaussian
noise with a standard deviation specified by ξi.

To generate each time-series, the amplitudes {r1, r2} and phases
{θ1, θ2} of two modified Poincaré oscillators were numerically mod-
eled and summed together in a time-series X(t) = r1(t) cos(θ1(t))+
r2(t) cos(θ2(t)). However, even with perturbations, this time-series
would appear as two noisy sinusoids with approximately station-
ary dynamics. To simulate more realistic nonstationary time-series,
the system was made non-autonomous by modulating the oscillator
frequencies with ω(t) = 2πω0 + A sin(2πωmt). To investigate the
effect of phase differences, the phase offset of the oscillations was
also adjusted by changing the initial value of φ.

In the numerically modeled examples used in Sec. IV, we con-
sidered a high-frequency mode with ω0 = 1, ωm = 0.008, A = 0.8
and a low-frequency mode with ω0 = 0.5, ωm = 0.0055, A = 0.2.
For the other oscillator parameters, we used a = 1 and α = 5 in each
case.

B. Noise
Noise plays a significant role in the evaluation of coher-

ence. Consider two time-series with a single, identical sinusoidal
oscillation with frequency fsin. By analyzing Eq. (3), we can see
that Sab(fsin) ≡ Saa(fsin) and Saa(fsin) ≡ Sbb(fsin), which results in the
expected value C(fsin) = 1. However, since the time-series contain
no other oscillations, this relation holds true not just for fsin but for
all values of f. This means that we might mistakenly believe that
coherent oscillations exist at all frequencies.

Similar behavior is apparent whenever dominant oscillations
are present in both time-series. Without independent fluctuations at
adjacent frequencies, significant coherence will be observed at values
far from the frequencies of the corresponding oscillations.

In most real data, this is not an issue as they are usually influ-
enced by both system noise and measurement noise. We must,
therefore, take care to approximate real-world examples in our
analysis by including noise in the numerical model.

To investigate the effect of both amplitude and phase per-
turbations, two cases were considered. In the first case, each of
the modes was perturbed only by amplitude noise with ξr = 0.5,
ξθ = 0, while in the second case, they were perturbed only by phase
noise with ξr = 0, ξθ = 0.5. We also considered a case with additive
noise to simulate measurement noise and common artifacts in the
time-series. These were generated by adding the same dichotomous
noise, with random abrupt transitions between two states, to both
time-series. This was defined using the time-dependent transition
probabilities,

p0→d(t) = λ1

3
− λ1

3
e−3t,

pd→0(t) = λ2

3
− λ2

3
e−3t,

(6)

where t is the time since the last transition from one state to
another and 3 = λ1 + λ2. The transition rates were chosen as
λ1 = 0.000 01 Hz and λ2 = 0.000 19 Hz, causing a series of spike-
like features with rare 0 → d transitions followed by quicker d → 0
transitions. The amplitude of the spikes was chosen as d = 10. In
addition to these spikes, independent 1/f noise series were added to
each time-series to simulate background fluctuations.

IV. WAVELET COHERENCE

A. Time–frequency analysis
For the analysis of coherence of phases of oscillations in time-

series, the Fourier-based definition of coherence is perfectly valid
when the time-series are stationary. However, for multi-scale, non-
stationary time-series, the dynamics cannot be approximated by
assuming a constant time-averaged phase and amplitude, as is
assumed in the Fourier transform. As discussed in Rowland Adams
et al.,21 such time-series must not be analyzed from the infinite-time,
non-time-evolving framework of analysis that is designed for sta-
tionary time-series—which is precisely the framework within which
Fourier coherence exists—but rather, such time-series need to be
analyzed from within the framework of time-evolving time-localized
analysis of oscillatory characteristics.
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Accordingly, it is natural to seek a way to compute coher-
ence from time–frequency representations of the data. As already
mentioned, we can compute a time–frequency representation using
an ordinary Fourier transform with a moving window, which is
also known as a short-time Fourier transform. However, as soon
as we do this, we must ask what size of window? A large window
gives us excellent frequency resolution, but then it is more diffi-
cult to determine the time at which oscillation frequencies change.
Similarly, while a small window enables us to track the change in
frequency more precisely, the frequency resolution is lower and
makes it difficult to determine the exact frequencies of oscillations.
These characteristics of the measurement of waves are well known
in quantum mechanics and famously summarized in the Heisenberg
uncertainty principle.

The main limiting factor in the choice of window size is the
lowest-frequency oscillation that we wish to observe. It is necessary
to choose a window that contains enough cycles of this oscillation
to determine its frequency to reasonable precision. However, this
window size is larger than the window needed to have the same
frequency resolution for higher-frequency oscillations. For higher-
frequency oscillations, this window size will represent a slower
timescale than the timescale of these oscillations, making the anal-
ysis effectively equivalent to the kind of long-time-averaging asso-
ciated with the classical non-time-evolving, long-time-asymptotic-
statistics framework designed for stationary time-series described
above.

Therefore, to achieve a time-localized analysis of multi-scale
time-series, we would need to use an adaptive window size to
increase the time resolution at high frequencies while maintaining
an optimal frequency resolution overall.

The difference between this time-localized approach and the
slow-timescale averaging that takes place in the fixed-window-size
approach is illustrated in Fig. 1. Here, time–frequency analysis is
performed on a time-series from the illustrative Poincaré oscilla-
tor model. In this case, the oscillators were not perturbed with
phase noise, and only minimal amplitude noise, ξr = 0.005, was
introduced. In addition, background fluctuations were numerically
modeled by adding independent 1/f noise to each time-series. In
Fig. 1(a), depicting the fixed-window approach, the idea is to char-
acterize all aspects of the dynamics at a given time using the data
in a given window. This means that all of the analysis for every fre-
quency is performed within the same window (note that this window
is shown as rectangular for illustrative purposes only—a Gaussian
window was used in the short-time Fourier transform to enable a
fairer comparison of the two approaches).

By contrast, as depicted in Fig. 1(b), the time-localized
approach uses a variable-sized window depending on which fre-
quency is being analyzed. For the former approach, where at each
time a full-frequency-spectrum Fourier transform is performed
inside a pre-specified window, the result is that the time–frequency
analysis can be optimized around one frequency only. However, in
the time-localized approach, the analysis is centered around each
frequency under analysis, much like adjusting an optical focus. This
means that the time–frequency plots for this latter approach pro-
vide much greater detail across time at high frequencies, as well as
much greater detail across frequency at low frequencies. An alterna-
tive version, with a Fourier transform presented with a logarithmic

scale, is provided in Fig. 1 of the supplementary material. When
comparing the two figures, it is obvious that a logarithmic scale is
disadvantageous for the Fourier transform, which is calculated with
linear frequency resolution.

The time-localized, adaptive window approach is realized by
the continuous wavelet transform26 (which we shall sometimes just
call the wavelet transform, abbreviated WT). This is defined by

W(s, t) = 1

s

∫ T

0
9

(

u − t

s

)

x(u) du, (7)

where x(t) is a time-series of length T; the variable s > 0, called the
“scale,” controls the width of the windowing function, enabling it
to be adapted to the frequency under investigation (as described
shortly); and 9 is a complex-valued function called the mother
wavelet. Using the convolution theorem (or, equivalently, Fourier
isometry), the wavelet transform can be computed in the Fourier
domain by

W(s, t) = 1

2π

∫ ∞

−∞
9̂(sw)x̂(w)eiwt dw,

where

9̂(ω) =
∫ ∞

−∞
9(τ)e−iωτ dτ ,

x̂(w) =
∫ T

0
x(t)e−iwtdt.

An example of a mother wavelet is the Morlet wavelet, which
is approximately a complex exponential function multiplied by a
Gaussian envelope, such that the resulting wavelet transform is
approximately the adaptive-window-width version of the Gaussian-
windowed Fourier transform. Specifically, the Morlet wavelet is
given by

9(τ) = 1√
2π

(

e2π if0τ − e− (2π f0)
2

2

)

e− τ2
2 , (8)

where f0 is a free parameter called the frequency resolution: it can
be changed to adjust the resolution toward greater frequency pre-
cision (higher f0) or time precision (lower f0). The Fourier-domain
representation of the Morlet wavelet9 is given by

9̂(ω) = e− (ω−2π f0)
2

2
(

1 − e−2π f0ω
)

.

Note that 9̂ is a real-valued function; i.e., the Morlet wavelet 9 is a
Hermitian function.

In the wavelet transform, one can adapt the scale s to the fre-
quency f under investigation in such a manner as to give logarithmic
frequency resolution by taking s to be inversely proportional to f.
Specifically, when working with the Morlet wavelet, we take

s = ωmax

2π f
,

where ωmax is the value at which the real-valued function 9̂ is max-
imized. Provided f0 is not too small (larger than about 0.5), ωmax is
almost exactly equal to 2π f0, i.e., s ≈ f0

f
.
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It is worth noting an issue that arises from the fact that the inte-
gral in Eq. (7) is bounded between 0 and T. This means that when t
is close to one end of x(t), a significant part of the amplitude of the
wavelet function extends beyond the bounds of the integral. This
bounded integral is also equivalent to an unbounded integral where
the ends of x(t) are padded with infinite zeros. This problem is com-
mon among methods using a moving window and other strategies
include using reflected data or predicted data equal to half the length
of the window. However, each of these methods causes boundary
effects that result in errors in the time–frequency representation.68

The other alternative is to not include these regions in the plot.
This results in a cone of influence, which is larger in size at lower

frequencies due to the larger-sized wavelets reaching the ends sooner
than smaller wavelets.

From the wavelet transform, one can extract an instantaneous
amplitude and phase associated to each frequency f at each time
t by expressing W(s, t) = |W(s, t)|eiθ(s,t) and taking |W(s, t)| as the
amplitude and θ(s, t) as the phase.

B. Definition of wavelet coherence
With an optimal time–frequency representation of the time-

series, we can proceed to define the coherence between them.
Following from the original definition in Eq. (3), time–frequency

FIG. 1. Time–frequency analysis illustrated for time-localized vs fixed-window approaches. (a) Generated time-series of Poincaré oscillators as defined by Eq. (5), with
additive 1/f noise and ξr = 0.005. A window of size 12.6s centered at 120s is drawn above the time-series. The arrows above the window illustrate that the window slides
across the time-series when the short-time Fourier transform (STFT) is applied. (b) The same time-series as in (a), with three wavelets with frequency resolution f0 = 2 at
different frequencies (0.5, 1, and 1.7 Hz) drawn above the time-series. The wavelets slide across the time-series when the WT is applied. The dots between the wavelets
illustrate that there is one wavelet for each frequency, in our case 288 wavelets. (c) The STFT amplitude found at 120s. (d) The STFT phase found at 120s projected onto
the frequency-phase plane. (e) The WT amplitude found at 120s. The orange dots correspond to the frequencies of the three wavelets in (b). Note the logarithmic frequency
resolution of the WT. (f) The WT phase found at 120s projected onto the frequency-phase plane. (g) The STFT amplitude for the whole 400s time-series. A line is drawn at
120s. (h) The STFT phase for 10s of the time-series. (i) The WT amplitude for the whole 400s time-series. (j) The WT phase for 10s of the time-series.
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domain coherence between two time-series x(t) and y(t) was orig-
inally popularized by Torrence and Webster69 and then again by
Lachaux et al.38 where it was defined as

CW(f, t) =
∣

∣SWab(f, t)
∣

∣

[

SWaa(f, t) · SWbb(f, t)
]1/2 , (9)

where SWab are the wavelet cross spectra as defined by

SWab(f, t) =
∫ t+ δ

2

t− δ
2

Wa(f, τ) · W∗
b(f, τ)dτ . (10)

Here and in the rest of the text * denotes complex conjugate. δ
defines the length of a moving window in the time domain over
which the cross spectra are averaged. Like wavelets, δ is chosen to
be adaptive in order to maintain an optimal resolution over fre-
quency such that δ = ncy/f, where ncy is the number of cycles at
any given frequency. Values between 6 and 10 for ncy were originally
recommended in the context of data recorded by brain electrodes.38

However, in other applications of time–frequency analysis, ncy = 5
has been used.70

The application of a wavelet-based approach vs a Fourier-based
approach has a significant effect on the information provided by
coherence analysis. This can be seen by comparing the studies of
Karavaev et al.71 and Mizeva et al.,72 both of which consider cardio-
vascular time-series recorded over similar timescales (15 and 20 min,
respectively). In the former study, the macroscopic autonomic con-
trol is characterized by dividing the Fourier coherence into a “high-
frequency” (0.15–0.4 Hz) and “low-frequency” (0.05–0.15 Hz) band.
In the latter study, the wavelet coherence is divided into five sep-
arate frequency bands with ranges 0.6–2, 0.145–0.6, 0.052–0.145,
0.021–0.052, and 0.0095–0.021 Hz, which allows for the character-
ization of both the macroscopic and microscopic dynamics. The
logarithmic scale provided by the wavelet coherence, therefore, acts
much like a telescope or microscope, allowing us to zoom in and out
of all frequencies of interest at every moment in time.

C. Phase coherence
If we use a complex wavelet, such as the Morlet wavelet defined

in Eq. (8), then the cross spectrum in the numerator of Eq. (9) can
be separated into phase and amplitude, with

SWab(f, t) =
∫ t+ δ

2

t− δ
2

|Wa(f, τ)| · |Wb(f, τ)|ei(θa(f,τ)−θb(f,τ))dτ . (11)

Doing the same for the denominator terms, we find

SWaa(f, t) =
∫ t+ δ

2

t− δ
2

|Wa(f, τ)| · |Wa(f, τ)|ei(θa(f,τ)−θa(f,τ))dτ

=
∫ t+ δ

2

t− δ
2

|Wa(f, τ)|2dτ . (12)

Written this way, the coherence defined in Eq. (9) is expressed
as a phasor of the phase difference, ei(θa(f,τ)−θb(f,τ)), multiplied by
the normalized amplitudes. We, therefore, term this definition as
amplitude-weighted phase coherence (AWPC).

However, we can actually remove the influence of the wavelet
amplitude altogether. We can define phase coherence (PC) as

Cθ (f, t) = 1

δ

∣

∣

∣

∣

∣

∫ t+ δ
2

t− δ
2

ei(θa(f,τ)−θb(f,τ))dτ

∣

∣

∣

∣

∣

. (13)

This definition of coherence was developed independently by
Lachaux et al.38 (where it was termed single-trial phase coherence)
and Bandrivskyy et al.46 While Eq. (13) defines PC for a pair of time-
series, it has since been extended to groups of three or more time-
series.73,74

Like Fourier coherence, both PC and AWPC take values
between 0 and 1. Note, however, that for oscillations with time-
dependent characteristics, strong coherence will not typically man-
ifest as a coherence value of 1, but often as distinctly less
than 1.

In the examples shown in this paper, PC was calculated using
MODA—an interactive MATLAB toolbox.75 We also encourage
readers to consult the MODA user guide, which contains prac-
tical information for performing PC and other time–frequency
analyses.76

The differences between PC and AWPC are shown in Figs. 2–4
using the previously defined illustrative Poincaré model. In each
case, the two time-series, their corresponding WT, and the PC and
AWPC plots are shown. The methods were applied using three dif-
ferent time–frequency resolutions by changing the central frequency
f0 of the Morlet wavelet. The effect of adjusting f0 can be seen in the
WT, where the frequency width of the bands corresponding to the
oscillatory modes is decreased with increasing f0. This effect is also
seen for the coherence plots. Here, the darker bands of coherence
reveal the common frequency modulation of the two modes, which
becomes more localized in frequency as f0 is increased.

An additional effect seen when increasing the frequency res-
olution is that the background coherence between the modes also
increases. The reason for this effect is due to the fact that larger
wavelets average over more cycles, leading to extracted wavelet com-
ponents that are more stationary in frequency. These components,
therefore, appear coherent, but only because the rate of change in
frequency converges to the same value (i.e., 0) for all oscillations as
f0 is increased.

Figure 2 shows the effect of amplitude perturbations on the
modes following the two coherence measures. The coherence bands
associated with the modes are lighter and less well-defined in the
case of AWPC, with the effect being greatest for the lowest frequency
resolution. The explanation for this can be found in the indepen-
dent fluctuations seen in the amplitude of the WT. As highlighted
in Eq. (11), AWPC is dependent on the wavelet amplitude, which
means that the amplitude perturbations result in lower coherence.
In contrast, PC is not dependent on the wavelet amplitude and is,
therefore, resistant to such perturbations.

As one might expect, the effect is similar for both approaches
when the perturbations are instead applied to the phase of oscilla-
tions. Figure 3 illustrates the effect of phase perturbations, where PC
and AWPC are affected similarly by the noise due to both methods
being dependent on the phase of the wavelet components.
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FIG. 2. Comparison between PC and AWPC applied using wavelets of different frequency resolution to modes generated by amplitude-perturbed Poincaré oscillators as
defined by Eq. (5). (a) and (b) Ten-second segments of the two time-series containing modes with independent perturbations. The second row (c)–(h) presents the WT plots
of the two time-series at different frequency resolutions: f0 = 1 (c) and (d), f0 = 2 (e) and (f), and f0 = 5 (g) and (h). The time-series in (a) was the input for the transforms (c),
(e), and (g), while (b) provided the input for (d), (f), and (h). The final row (i)–(n) indicates the time-localized coherence for the PC and AWPC methods using the transforms
shown in (c)–(h). For example, (i) and (j) were both generated using the WT plots indicated by (c) and (d).

A significant difference between PC and AWPC can be seen in
the additive noise case shown in Fig. 4. Here, the common dichoto-
mous noise results in time-localized spikes in the time domain.
These can be seen as large cones of amplitude permeating into the

lower frequencies in the WT. In the coherence plots, this effect
has the most significant impact on the low frequencies, as larger
wavelets have a lower time resolution and span across a greater
period. Furthermore, it can be seen that the case for f0 = 5 is most

FIG. 3. Comparison between PC and AWPC applied using wavelets of different frequency resolution to modes generated by phase-perturbed Poincaré oscillators as defined
by Eq. (5). (a) and (b) Ten-second segments of the two time-series containing modes with independent perturbations. The second row (c)–(h) presents the WT plots of the
two time-series at different frequency resolutions: f0 = 1 (c) and (d), f0 = 2 (e) and (f) and f0 = 5 (g) and (h). The time-series in A was the input for the transforms (c),(e) and
(g), while (b) provided the input for (d),(f) and (h). The final row (i)–(n) indicates the time-localized coherence for the PC and AWPC approaches using the transforms shown
in (c)–(h). For example, (i) and (j) were both generated using the WT plots indicated by (c) and (d).
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FIG. 4. Comparison between PC and AWPC applied using wavelets of different frequency resolution to modes generated by phase-perturbed Poincaré oscillators as defined
by Eq. (5), with the same dichotomous noise and independent realizations of 1/f noise added to both time-series. (a) and (b) The independently generated time-series. The
second row (c)–(h) presents the WT plots of the two time-series at different frequency resolutions: f0 = 1 (c) and (d), f0 = 2 (e) and (f), and f0 = 5 (g) and (h). The time-series
in (a) was the input for the transforms (c), (e), and (g), while (b) provided the input for (d), (f), and (h). The final row (i)–(n) indicates the time-localized coherence for the PC
and AWPC approaches using the transforms shown in (c)–(h). For example, (i) and (j) were both generated using the WT plots indicated by (c) and (d).

affected by the amplitude perturbations due to the increased tem-
poral width of the wavelets. Generally speaking, therefore, smaller
values of f0 should be used in cases where extremely time-localized
noise features are present, such as movement artifacts in biomedical
measurements.

Also worth noting in the additive noise example is that even
though the added dichotomous and 1/f noise affect both the phase
and amplitude of the wavelet components, the coherence bands of
the modes are more strongly defined in the PC plots and the low-
frequency coherence is reduced. This is caused by the time-localized
properties of the dichotomous noise, which only affect a relatively
small number of cycles at each wavelet scale. Since the window used
to calculate the coherence averages the phase difference over a rela-
tively large number of cycles, the effect on PC is reduced. In contrast,
as shown in Eq. (11), the phase difference in AWPC is weighted by
the amplitude. This means that even though the noise spikes last
only a small number of cycles, the relative weight to the calculation
of the coherence is increased due to the large associated amplitude.

D. Phase difference
Beyond coherence, it is often useful to extract the instanta-

neous wavelet phase difference (θa(f, t)− θb(f, t)) and analyze this
directly. This has been done in many studies to investigate deter-
ministic phase differences in oscillations from two time-series.77–80

While phase is technically a time-independent measure, the direc-
tion and magnitude of the phase difference are still a valuable
measure that can be used to determine time lags, which provide
weight to statements of causality.

In the studies cited above, analysis of the phase difference
involves extracting individual pairs of instantaneous phases and
examining the change in the phase difference over time. However,
in time-series containing many modes, it is often useful to analyze
the phase differences in the frequency domain. Doing this reveals
the phase relationships present across different timescales of the
dynamics.

To define the time-averaged phase difference, we use

ψ(f) = arg

[∫ T

0
ei(θa(f,t)−θb(f,t))dt

]

. (14)

To be able to take the integral in Eq. (14) over the whole duration
[0, T] of the signal, it would be necessary to add padding to the signal
before time 0 and after time T before computing the WT. If, instead,
one just computes the WT within the cone of influence, then the
time-interval over which the integral in Eq. (14) is taken is the f-
section of the cone of influence—that is, the set of times t over which
W(f, t) has been computed; this is a subinterval of [0, T] that depends
on f: as f decreases, this subinterval becomes narrower.

Note that while this definition of the time-averaged phase dif-
ference correctly identifies the phase differences of the coherent
modes, it does not necessarily provide a meaningful value for areas
of zero coherence. This is because the result will be the argument of
the sum of random phasors. While the amplitude of this sum cor-
rectly gives a value of the time-averaged PC at the background level,
the argument will be a random angle between 0 and 2π . It is, there-
fore, important to assess such a measure of the phase difference in
conjunction with the actual coherence and only to evaluate its values
where the coherence is significant.
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In analogy to the difference between PC and AWPC, it is also
possible to define an overall phase difference using not the time-
averaged phase difference as in (14), but rather the energy-averaged
phase difference,

ψE(f) = arg

[∫ T

0
Wa(f, t) · W∗

b(f, t)dt

]

= arg

[∫ T

0
|Wa(f, t)| · |Wb(f, t)|ei(θa(f,t)−θb(f,t))dt

]

.

In this paper, we use the time-averaged phase difference.

E. Time-averaged coherence
We have defined PC and AWPC as functions of time and fre-

quency since they represent information about the time-localized
frequency content of the pair of signals. When we want an overall
measure of the coherence at each frequency-value, taken over the
whole duration of the signal, there are two approaches that one can
take:

One is simply to take the time-average of the time-localized PC or
AWPC as already defined in Secs. IV B and IV C.
The other is to compute PC or AWPC not over small time-
windows (t − δ

2 , t + δ

2 ) as in Eqs. (10)–(13), but rather over the
whole duration of the signal.

Under the former approach, we have a time-averaged PC given by

C
average
θ (f) = 1

T − δ

∫ T− δ
2

δ
2

Cθ (f, t) dt (15)

and a time-averaged AWPC given by

C
average
W (f) = 1

T − δ

∫ T− δ
2

δ
2

CW(f, t) dt. (16)

Let us recall here that δ itself depends on f, as described in
Sec. IV B. Under the latter approach, we have an over-all-time PC
given by

Coverall
θ (f) = 1

T

∣

∣

∣

∣

∫ T

0
ei(θa(f,τ)−θb(f,τ))dτ

∣

∣

∣

∣

and an over-all-time AWPC given by

Coverall
W (f) =

∣

∣SWtotal
ab (f)

∣

∣

[

SWtotal
aa (f) · SWtotal

bb (f)
]1/2 ,

where SWtotal
ab are the over-all-time wavelet cross spectra as defined

by

SWtotal
ab (f) =

∫ T

0
Wa(f, t) · W∗

b(f, t)dt

=
∫ T

0
|Wa(f, t)| · |Wb(f, t)|ei(θa(f,t)−θb(f,t))dt.

In all four cases, we have given formulas according to the
assumption that the WT is defined over the whole of [0, T]. Once
again, this requires that padding has been added to the signal before

time 0 and after time T; if, instead, the WT has been computed only

over the cone of influence, then the integrals
∫ T

0 or averages 1
T

∫ T

0
taken over the time-interval [0, T] in the above formulas need to be
taken instead over the f-section of the cone of influence.

In this paper, we work with the former of the two approaches,
namely, Eqs. (15) and (16).

V. PRACTICAL ASPECTS
Coherence analysis is restricted by the properties of the mea-

sured data. Each dataset is likely to contain idiosyncrasies that
require specific attention to avoid false representation of the results.
By unlocking the temporal dimension with time-resolved analysis
methods, one may properly view and assess the type of data under
investigation, and once this step is completed, choose and perform
the appropriate analysis. The multi-scale nature of the present anal-
ysis also enables simultaneous observation of the behavior across a
number of frequencies, which in many cases are representative of
various independent behaviors in the system. A review of the sta-
tistical properties of wavelet coherence is provided in Cohen and
Walden.81 However, here, we focus on the practical implementation
and application of these methods.

To demonstrate the nuance required when selecting parame-
ters for analysis, we consider two sets of time-series containing two
common modes. As before, the modes are generated using the mod-
ified Poincaré system and have independent perturbations. The key
difference is that the first set of time-series has modes with frequen-
cies ω0 = 1 and ω0 = 0.2 that are stationary in time, with ωm = 0
(the leftmost set of Fig. 5). In contrast, in the second set of time-
series, the frequency of the modes varies with ωm = 0.016π for the
high-frequency mode andωm = 0.010π for the low-frequency mode
(the rightmost set of Fig. 5).

Importantly, when considering coherence between simultane-
ously measured time-series, one may use two sets of apparatus
with varying sampling frequencies, fs. For the calculation of coher-
ence, a common fs must be established. While it is theoretically
possible to up-sample the data series with the smaller sampling
frequency, this is not recommended as it will not recover informa-
tion regarding higher-frequency oscillations. Instead, the solution
is to downsample the larger time-series so that a common fs is
established.

The value of fs determines the maximum observable frequency,
fmax, because we need at least two points in each cycle to capture an
oscillation. Consequently, the upper-frequency limit, or the Nyquist
frequency, is defined as fN = fs/2. A low value of fmax can introduce
problems when assessing data, as seen in Fig. 5(j). In this case, the
system was simulated with fs = 4 Hz, which means that fmax = 2 Hz is
selected. The coherent mode seemingly passes above fmax, illustrating
the need for a higher fs.

The lowest attainable frequency, fmin, is determined by the
length of the time-series. In the examples demonstrated in this work,
AWPC and PC are evaluated across ten cycles of oscillation at a
given frequency. It follows that the length of the time-series restricts
fmin and that the length must be at least ten times the length of the
minimum frequency of interest. If the interaction is time-varying,
then more cycles are needed to account for the modulation present,
dependent upon the frequency of the modulation. The time-varying
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FIG. 5. Practical aspects to consider when applying phase coherence. Time-series generated from a pair of Poincaré oscillators, as defined by Eq. (5). The time-series
were obtained numerically with fs= 4 Hz and minimal amplitude modulation (ξr = 0.005, ξθ = 0). The frequencies of these modes are unchanging in time for (a) and (b)
and time-varying in (c) and (d). Their corresponding WT (e)–(h) demonstrate these differences. The time-localized phase coherence plots (i) and (j) are generated from the
wavelet transforms (e)–(h). (k) and (l) Time-average values are shown as solid black lines and mismatch surrogate thresholds as dashed lines.

example shown in Figs. 5(c), 5(d), 5(g), 5(h), 5(j), and 5(l) demon-
strates a situation where the simulated mode may be interpreted as
being centered upon a greater frequency (0.25 Hz) than it really is.
Specifically, the mode should be centered upon 0.2 Hz. Due to the
shortness of the recording, the cone of influence contains only the
upper half of the modulation cycle, resulting in an apparently higher
value. In the non-time-varying frequency case, there is no issue, and
the peak coherence is centered around 0.2 Hz.

The presence of oscillatory dynamics can be confirmed by first
considering the time–frequency representation of the data. In addi-
tion, this step will provide information on the frequency range of
interest if this is not known beforehand. Limiting the coherence
analysis to this range will reduce the burden on computational
capacity and save time. The WT will guide the choice of the reso-
lution parameter. However, one must consider that this is always a
trade-off, as discussed in Sec. IV C and seen in Figs. 2–4.

A. Testing for significance
The considerations outlined above will help to reduce false con-

clusions regarding the data. However, to further reduce the chance
of falsely representing spurious coherence as significant, a further
step must be performed.

Even with the existence of independent fluctuations in both
time-series, the interpretation of coherence is not straightforward,
as illustrated by Holm.82 This is because even two completely

independent noise time-series will contain fluctuations that appear
at the same time and frequency, resulting in a non-zero value of
coherence.

We must, therefore, determine whether observed coherence
is significant. This is necessary both for being able to make phys-
ical inferences from the observation of coherence values and for
being able to make physical inferences from phase-shift values ψ(f)
associated with high coherence. Consideration of significance of
coherence values can be divided into two aspects: First, the coher-
ence values themselves need to be statistically significant in terms
of exceeding some critical threshold, i.e., some baseline coherence
value. Second, when one computes the time-averaged phase differ-
ence ψ(f) as a function of f, where there is significant coherence,
one should observe a plateau—i.e., an approximately constant phase
difference—over the frequency range in which the phase-coherent
oscillations manifest in the time–frequency representation. One
should only regard coherence as significant if it is found to satisfy
both of these aspects of testing for significance.

In regard to the first aspect, defining the baseline coherence
value for significance is not trivial, as it is dependent on the nature of
the background dynamics generated by the system under investiga-
tion. For example, in the system described above, the independent
fluctuations generated from perturbations to the phase and ampli-
tude will result in a different level of background coherence to
the case of independent 1/f additive noise. Furthermore, in real
systems, the deterministic dynamics cannot be separated from the
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FIG. 6. (a) Time-localized effective phase coherence generated using the Poincaré oscillator example with amplitude noise and a frequency resolution parameter of f0 = 2.
The 75th percentile of 99 mismatch surrogates was considered as a zero threshold and was subtracted from the original time-localized coherence. Resulting negative values
were set to zero. (b) The time-average of the raw coherence (solid line) and the surrogate threshold (dashed line). (c) The average phase difference across frequency.

noise perturbations, which increases the difficulty of defining a
coherence baseline.

A more formulaic approach is to use a hypothesis test. Specif-
ically, we would like to test a null hypothesis that two time-series
are not coherent at a specific frequency. Such a hypothesis can be
tested through the use of surrogate data.83 Surrogate data are numer-
ically modeled time-series that are designed to preserve all features
of the measured time-series apart from the feature under investiga-
tion. In this method, a set of surrogate time-series is first randomly
generated. The same analysis that is performed on the real time-
series is then performed on the surrogates, with the end result being
the discriminating statistic corresponding to the factor of interest.
This results in a distribution of values for these statistics, which can
then be used to define a specific confidence interval (i.e., the value
of a percentile) for discerning significance and rejection of the null
hypothesis.

The optimal percentile to use in the test varies from case
to case. This can be due to a number of factors. For example, a
high intensity of the difference between the noises affecting the
two time-series will decrease the coherence between the two time-
series to a greater extent than it would decrease the coherence
between surrogates, making a lower percentile for the surrogate
threshold more appropriate. In this paper, we will adopt a 95th per-
centile threshold for most cases. However, in some cases, due to
factors like the one we have just mentioned, we will use a lower
threshold.

One of the most common uses of surrogate data is to test
for nonlinearity, where it is possible to apply methods, such as
amplitude-adjusted Fourier transform surrogates, that preserve only
the linear statistical properties of the time-series (see Ref. 84 for a
review of surrogate data methods). However, in testing for signif-
icant coherence, we must also preserve the effects of nonlinearity
in the surrogate data. Otherwise, even if the surrogates preserve the
linear statistical properties, such as the amplitude probability dis-
tribution and the frequency spectrum, the null hypothesis may still
be spuriously rejected due to increased coherence resulting from
nonlinearity.

Mismatched surrogates, also known as intersubject surrogates
in the context of biomedical data, are one of the simplest ways to

preserve potential nonlinearity in the surrogate data. With this
method, pairs of real measurements of the same system (such as
the human body, measured across different subjects) are separated
and then re-paired with the corresponding time-series from an inde-
pendent measurement (i.e., another subject). This has the advantage
of preserving all properties of the time-series apart from the time-
specific information. However, coherence is not preserved as the
oscillations are no longer ordered in time.

While mismatched surrogates usually apply only to measured
data from real systems, it is still possible to generate time-series
approximating mismatched surrogates with the illustrative model
defined in Sec. III. In this case, we can simply modify the frequency
modulation of the two modes, ω(t) = 2πω0 + A sin(2πωmt + ψ),
where ψ is a phase offset of the modulation. Each pair of surrogate
time-series is then generated using different values of ψ for each
mode, which are uniformly sampled on the interval [0, 2π].

It is also worth noting that surrogate testing is not the only
method for determining significance thresholds for coherence val-
ues. The method proposed by Sheppard et al.85 provide analyti-
cally derived significance thresholds based on higher-order statis-
tics, which was shown to give better performance than amplitude-
adjusted Fourier transform surrogates.

The effect of time-averaged surrogates is illustrated in Figs. 5(k)
and 5(l), which show the 95th percentile of 99 mismatch surro-
gates. These surrogate thresholds give a much clearer indication of
the coherence values that are present in the system vs the spuri-
ous coherence. One may also choose to illustrate the time-localized
effective coherence. This is demonstrated in Fig. 6, with parameters
identical to those in Figs. 2(e), 2(f), 2(k), and 2(l). The threshold
here was chosen as the 75th percentile of 99 mismatch surro-
gates. One can now discriminate the coherence due to the modes
vs the background fluctuations in the time-averaged coherence.
However, many areas of significant coherence still remain in the
time-localized plot distributed away from the modes. This illustrates
the fact that it is easier for spurious significant coherence to occur
in the time–frequency domain, where the testing area is essentially
squared.

The other effect of surrogates can be seen on the effective
coherence of the low-frequency mode, which is much reduced
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compared to the high-frequency mode. This is due to the fact that
spurious coherence between random fluctuations is more likely to
be found since the average coherence is calculated over fewer cycles.
This essentially reduces the observable frequency range, adding to
the effects already caused by the size of the wavelets (parameter-
ized by f0) and the window size used for the coherence calcula-
tion (parameterized by ncy). Taking into account these cumulative
effects, we generally recommend that effective coherence can only
be assessed if a minimum of 30 cycles can be observed, giving the
lowest observable frequency of 30/T.

Now, to illustrate the second aspect of considering signifi-
cance of coherence: In the two frequency bands where Fig. 6(b)
shows coherence values exceeding the surrogate threshold, Fig. 6(c)
shows the phase difference plateauing at about 0.75π . These
plateaus in conjunction with the statistical significance of the
coherence values suggest that the coherence in these two fre-
quency bands is significant. Moreover, as a consequence, we
can conclude that the value 0.75π around which the phase dif-
ference plateaus is the amount by which the first time-series
leads the second, consistent with the numerically modeled input
values.

Therefore, we have seen that the surrogate threshold and the
phase difference are invaluable tools when interpreting coherence;
this will be demonstrated in Sec. VI via a series of examples.

VI. APPLICATIONS

A. Cardio-respiratory coherence
The heart rate is modulated through several processes, with

respiration being an important factor. During inhalation, the heart
tends to beat quicker, and during exhalation, it tends to slow down.
This interaction is known as respiratory sinus arrhythmia.86 Cardio-
respiratory interactions are perhaps one of the most widely studied
interactions. Several methods have been employed,87,88 including
coherence analysis based on the Fourier and wavelet transforms.89,90

Utilizing PC to study cardio-respiratory interactions has also proven
valuable,50 for example, in the context of ageing,52 malaria,91 and
hypoxia.92

In this example, we evaluate cardio-respiratory interactions
based on the simultaneously recorded respiratory effort and the elec-
tric activity of the heart. The 1400 s recordings are taken from a
28-year healthy male participating in the study of ageing,93 where
the sensor/electrode placements are described. A time-insert of res-
piration is shown in Fig. 7(a) and the ECG in Fig. 7(b). The instan-
taneous frequencies of respiration [IRR, Fig. 7(c)] and beating of
the heart [IHR, Fig. 7(d)] are extracted by ridge extraction32 after
the WT was obtained. Two types of interactions are investigated:
(a) between the original respiratory time-series and the IHR and (b)
between both instantaneous rates, IRR and IHR. The PC and AWPC
for both cases are shown in Figs. 7(e), 7(f), 7(i), and 7(j). The sur-
rogate threshold was set to the 95th percentage of 140 intersubject
surrogates, as used in the original study.93 The time-averaged values
of PC and AWPC from the entire 1400 s recordings are shown in
Figs. 7(g) and 7(k) for the cases (a) and (b), respectively. The phase
differences, as a function of frequency, obtained for case (a) and (b),
are shown in Figs. 7(h) and 7(l).

It is clear that both PC and AWPC are much higher for the
respiration-IHR case, compared to IRR-IHR case, and that the high-
est values of coherence are at the frequency of respiration (around
0.2–0.3 Hz), consistent with earlier studies. This indicates that, in the
resting state, the heart rate is strongly modulated by the amplitude
of respiration and to a much lesser extent by the frequency of respi-
ration. In Fig. 7(g), one can see that the PC and AWPC are similar.
The phase difference at the respiration frequency is around 0 rad.

B. Phase coherence and movement artifacts
Coherence analysis is often applied to find common oscilla-

tory behavior between brain signals from different locations. This
can elucidate the functional connectivity of the brain, which is
known to change in various conditions.94,95 Spontaneous activity in
the brain can be measured noninvasively at a relatively low cost
using EEG or fNIRS with minimal discomfort to the subjects. How-
ever, both methods are susceptible to movement artifacts.96 Several
approaches exist to remove these artifacts from the data, although
they often compromise the quality of the data and may additionally
remove information of interest.97,98 As seen in Secs. IV, phase-
based approaches may be more resilient against movement artifacts
and noise and, as such, can circumvent some of the more draco-
nian preprocessing requirements. In this section, we investigate two
examples of movement artifacts, one using EEG and the second
using fNIRS.

1. Autism spectrum disorder
Non-invasive brain activity measurements in children are

fraught with artifacts due to difficulties in keeping younger sub-
jects still for extended periods. Analysis of signals derived from
younger cohorts, therefore, necessitates methods that are robust to
movement artifacts. In addition, when considering the presence of
interactions between time-series, it can be important to assess how
the nature of these interactions changes over time. Time-localized
methods can reveal temporal dependencies in this mutual behavior.
In a wide array of neurological conditions, it is not only the intensity
of interaction between brain regions but the duration of interaction
that is altered.99,100 By observing the time-localized coherence, one
may deduce the regularity and strength of time-varying interactions.

We consider a resting-state measurement with eyes open of
two simultaneously recorded EEG time-series. These data were
measured in a cohort of male children aged 3–5 years old with a
diagnosis of autism spectrum disorder (ASD). The time-series were
captured using a Nicolet cEEG instrument (Viasys Healthcare, USA)
at a sampling rate of 256 Hz. A 20-min recording period was used
to collect the data, and a 180-second interval was analyzed, with
the central 60 s illustrated in Fig. 8 as it contained a clear artifact.
Measurement sites corresponding to F3 and F4 in the international
10–20 system were chosen, as the initial objective of the investiga-
tion was to assess reports of reduced frontal connectivity in children
with ASD.101–104

The effect of the movement artifact is clearly seen in both the
time domain, Figs. 8(a) and 8(b), and the WT, Figs. 8(c) and 8(d),
where at the instance of the movement, all frequencies are present
(around 93 s) in the spectrum. The effect on the coherence is much
stronger and can be seen in Figs. 8(e)–8(g) for the AWPC compared
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FIG. 7. (a) and (b) Time-series of respiration and ECG from a 28-year-old healthy man, shown for 50 out of the 1400 s of recordings. (c) The WT of the time-series in (a).
The solid line is the extracted ridge, giving the instantaneous respiration rate (IRR). (d) The WT of the time-series in (b). The solid line is the extracted ridge, giving the
instantaneous heart rate (IHR). (e) The PC between the respiration and IHR. (f) The AWPC between the respiration and IHR. (g) The time-averaged PC (solid black line) and
AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged phase difference at each frequency. A positive value means
that the time-series in (a) is leading. (i) The PC between IHR and IRR. (j) The AWPC between IHR and IRR. (k) The time-averaged PC (solid black line) and AWPC (solid
orange line), with the corresponding surrogate thresholds (dashed lines) for IHR and IRR. (l) The time-averaged phase difference at each frequency. A positive value means
that the IRR is leading. The time-averaged coherence and the phase difference in (g), (h), (k), and (l) is calculated using the whole time-series (1400 s).

to the PC. A threshold of the 75th percentile of 156 intersubject
surrogates was used, leaving only the significant coherence. The
time-localized coherence [Fig. 8(e)] shows that the magnitude and
presence of the interactions vary over time. Both the time-localized,
Figs. 8(e) and 8(f), and the time-average, Fig. 8(g), coherence are
elevated for the AWPC compared to the PC.

2. Chorea in Huntington’s disease
Now, we consider two time-series recorded from the tem-

poral brain areas, in a study that investigated coherence between
neuronal and vascular function.105 These locations often have

artifacts due to movement of the jaw. The data are from a partic-
ipant with a positive genetic test for Huntington’s disease (HD),
who has not yet developed the movement disorder known as
chorea. Still, as chorea is a hallmark of the disease, HD research
would benefit from methods that are resistant to movement
artifacts.

We compared PC and AWPC of two resting-state oxygenated
hemoglobin (oxyHb) time-series measured using a fNIRS device
(NIRScout, NIRx, Germany) with a sampling frequency of 31.25 Hz
over 20 min (for further details on measurements, see Ref. 93). The
measurement sites correspond to T7 and T8 in the international
10–20 system (left and right temporal locations). The resolution
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FIG. 8. Movement artifact represented as a downward spike in the time-series recorded simultaneously at two probes: F3 (a) and F4 (b). Their corresponding WTs [(c) and
(d), respectively], indicate the amplitude perturbation at around 93 s. The effective phase coherence (e) is resilient against this perturbation, while the amplitude-weighted
phase coherence (f) exhibits spurious coherence. In both cases, the surrogate threshold is taken as the 75th percentile of 156 intersubject surrogates. (g) The time-averaged
PC (solid black line) and AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged phase difference across frequency.

parameter f0, Eq. (8), was set to 1, as to minimize the spread of an
artifact.

The results are shown in Fig. 9. The time-series contain two
movement artifacts, which appear as high-amplitude cones in the
WT and have the greatest impact at low frequencies. The artifacts
have a very significant impact on the AWPC plot and affect an even
wider area of time and frequency than is visible in the WT plots. This
is a consequence of the moving window used to calculate wavelet
coherence. In the plot of PC. the effect of the artifacts is not obvious.
This illustrates how any simultaneous increase in amplitude, even
if not phase coherent, results in AWPC appearing significant over
large areas of the time–frequency domain. This can also be seen in
the time-averaged coherence plot, where the AWPC (orange line) is

much higher than the PC (black line). The two dashed lines show
the 95th percentile of the 136 intersubject surrogates.

This example illustrates that PC is relatively resistant to arti-
facts, which is beneficial when analyzing time-series from various
non-invasive measurement techniques.

C. Electron dynamics on the surface of liquid helium
Time–frequency and coherence analysis can provide valuable

information about the dynamics of a system. In addition, the phase
difference between oscillations can give information about the direc-
tion of influence. We consider the movement of electrons on the sur-
face of liquid helium at very low temperatures, as discussed in Siddiq
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FIG. 9. (a) and (b) Two fNIRS time-series measured from a participant with Huntington’s disease. The locations of two artifacts are marked on the time-series using red
triangles. (c) The WT of the time-series in (a). (d) The WT of the time-series in (b). (e) The PC of the two time-series. (f) The AWPC plots of the two time-series. (g) The
time-averaged PC (solid black line) and AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged phase difference at
each frequency. A positive value means that the time-series in (a) is leading.

et al.31 At very low temperatures, the helium will be a superfluid.
Since such a system can be used for constructing the qubits that are
needed for quantum computers, increasing the understanding of its
dynamics is important.

In the experiments, the electrons were just above the liquid
helium, trapped between the helium and a vacuum. They were in a
perpendicular magnetic field and subjected to microwave radiation
and varying pressing voltage. Current oscillations were recorded
from five electrodes for 60 s at 100 kHz. The full experimental setup
is described in Ref. 31. We chose an example with low electron den-
sity and 4.18 V pressing voltage. Currents measured from electrodes
E4 and C in the time-interval 30–31.4 s were selected for analysis,
and high coherence was obtained as in the original paper.31

Figure 10 shows the PC and AWPC between current oscilla-
tions at the two electrodes. The current signals were first down-
sampled to 20 kHz, as in this example, we will focus on oscillations
around 0.5 kHz. The resolution parameter was set to 3, in line
with the original paper.31 100 iterated amplitude-adjusted Fourier
transform (IAAFT) surrogates were used to calculate the surrogate
thresholds.84

Both PC and AWPC methods pick up a time-varying
coherence following the dominant mode in the WT plots, which
resembles a non-autonomous influence on the system. The time-
averaged PC (black line) and AWPC (orange lines) are similar, with

the AWPC having a slightly higher value at the higher frequencies.
This could indicate that there is some amplitude covariance. The
surrogate thresholds are very similar for both methods. The time-
averaged phase difference is positive, meaning that the oscillation at
E4 is preceding that at C.

The existence of coherence indicates that the electrons are
moving, and the phase difference suggests that they are moving
toward the C electrode from the E4 electrode. This is consistent
with the microwave radiation being applied closer to E4. Further-
more, by studying the time–frequency representations, we see a clear
mode with a time-varying frequency. Using ridge extraction,32 which
essentially tracks the maximum amplitude within a frequency range,
we can extract a time-series of the instantaneous frequency. The WT
of this time-series shows a clear amplitude peak at around 5.2 Hz,
indicating modulation of the electron movement at this frequency.
This was shown to be caused by slow gravity waves on the liquid
helium.31 It is important to note that in the WT of the original cur-
rent data, there is also a peak at around 5.2 Hz. However, this peak is
relatively weak compared to the rest of the spectrum, and, in partic-
ular, compared with the dominant oscillatory component, making
it challenging to observe and identify directly from the frequency
spectrum. This illustrates that time-localized, time–frequency
methods can uncover a great deal of physically meaningful infor-
mation.
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FIG. 10. (a) and (b) Time-series of current oscillations caused by the movement of electrons on the surface of liquid helium. The two electrodes are labeled E4 and C. (c)
and (d) The WT of the time-series in (a) and (b), respectively, with the extracted ridge shown by the solid black line. (e) The PC of the two time-series. (f) The AWPC of the two
time-series. (g) The time-averaged PC (solid black line) and AWPC (solid orange line), with the corresponding surrogate thresholds (dashed lines). (h) The time-averaged
phase difference at each frequency. A positive value means that the time-series in (a) is leading. (i) The WT of the ridge time-series plotted in (c). (j) The WT of the ridge
time-series plotted in (d).

VII. DISCUSSION AND SUMMARY
The study of coherence has its foundations in physics, where

methods were first developed to measure the coherence between the
phases of waves. It has then been extended to considering coherence
between the phases of more general oscillatory processes occurring
in a wide variety of scientific disciplines; for this, one of the most
fundamental issues is the quantification of such coherence from
measured data. Accordingly, it is a subject particularly treated by
harmonic analysis in mathematics and by signal-processing theory.
We have approached this same question again from a physics per-
spective, but still with this greater generality than the kinds of setup

that initiated the study of coherence—namely, from the perspective
of multi-scale time-dependent oscillatory dynamics.

We have seen that for time-series data recorded from sys-
tems involving interacting oscillations, key information about the
interactions is contained in the time evolution of the phases of
the oscillations. Moreover, we have seen that for the analysis of
systems involving oscillations with temporally modulated quanti-
tative characteristics, such as frequency and amplitude, time-series
analysis methods that are fundamentally designed for time-series
with stationary statistics are inappropriate. For example, the mea-
sure of coherence of phases intended to be revealed by Fourier
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coherence will have little meaning for systems with frequency-
modulated oscillations. Rather, tools designed to extract time-
evolving, time-localized information about systems exhibiting time-
dependent far-from-equilibrium dynamics are needed. In particular,
phase information needs to be extracted in a suitably time-localized
manner.

Such time-localization inherently needs to be understood rel-
ative to the timescale of the dynamical process under investigation,
and therefore, for multi-scale time-series involving oscillations of a
range of frequencies, this time-localization needs to be adaptive to
the range of timescales involved. This has been illustrated in Fig. 1.

In the setting of time–frequency analysis, where the Heisen-
berg uncertainty principle requires a trade-off between precision
in measurements of frequency and precision in location in time,
this multi-scale adaptivity corresponds to a logarithmic frequency
resolution. This is achieved by the continuous wavelet transform,
where the scale variable is taken as inversely proportional to the
frequency under investigation. Accordingly, we have seen that the
wavelet transform is the appropriate tool for extracting phase infor-
mation from multi-scale nonstationary time-series, and in partic-
ular, WT-based coherence analysis is the appropriate approach to
investigating coherence of phases manifesting in such time-series.

In this paper, we have provided an introduction to wavelet-
based coherence analysis and evaluated several related issues—some
already established and others that had not previously been
addressed.

Existing discussions of different approaches to quantify-
ing coherence, and more generally of different approaches
to time–frequency analysis, have mainly treated the different
approaches as if on essentially equal footing, and practical choices,
such as the use of WT over STFT, or of PC over AWPC, are often
treated merely as a matter of quantitative optimization, without the-
oretically reasoned or experimentally explored consideration of the
qualitative impact of such choices on the resulting analysis.

To address this issue, we have provided a systematic explana-
tion of the practicalities and pitfalls of how to carry out wavelet
coherence analysis in practice. In particular, we have provided a
detailed review of the methodology for reliably testing for and
detecting significant phase coherence from measured data.

Since the wavelet transform provides extractable phases and
amplitudes, one can calculate38,46 a measure of coherence indepen-
dent of changes in the amplitude, namely, PC, as well as a measure
of coherence that is weighted in time by amplitude, namely, AWPC.
Prior to this work, an in-depth comparison between AWPC and
PC had not been performed. Perhaps counterintuitively, we found
a consistent difference in the performance of the two definitions of
coherence when applied to noisy time-series. PC is, in general, more
robust to noise and particularly to time-localized perturbations,
meaning that it is affected to a much lesser degree by phenomena,
such as movement artifacts.

Along with the definition of PC, one can also analyze phase
differences in the oscillations present in the pair of time-series
under investigation. This is first needed as one of the aspects of
determining significance of coherence, along with statistical sig-
nificance of the coherence values themselves: the time-averaged
phase difference as a function of frequency needs to have a plateau
in the frequency band where coherent oscillations manifest in

time–frequency representation. Second, where there is significant
coherence, the phase difference can provide indications of which
oscillation is leading.106 However, it is important to note that causal-
ity (i.e., which process is the origin of the common oscillations) is
not always possible to infer from the phase shift. This can be because
the phase shift is wrapped on the interval [−π ,π] or because of the
existence of higher degree interactions, such as node triples.107

This investigation of coherence has revealed the wealth of
information provided by the phase. Part of the utility of phase over
amplitude comes from the fact that phase dynamics is constrained
by the frequency interval within which an oscillation lies. For exam-
ple, each wavelet has a defined frequency response, which limits
the rate at which the phase can change. However, in contrast to
the phase, the amplitude is not bounded to frequency in such a
manner, making the separation of amplitude dynamics from noise
harder to satisfactorily achieve. This is analogous to the advan-
tages of frequency modulation over amplitude modulation in radio
communications.108

The practical implications of the main points highlighted by
our work are effectively illustrated in our analyses of real data
in Sec. VI. In the examples shown in Sec. VI B, the presence of
movement artifacts has a significant effect on the results of any anal-
ysis. Such artifacts usually need to be removed prior to analysis,
which often requires subjective identification. The techniques used
to remove identified artifacts may also introduce artificial manip-
ulations in the data.109 The resistance of amplitude-independent
phase-based methods to these sorts of artifacts allows for the analysis
of noisy data without the need for preprocessing or constraints on
the measurement setup, leading to better research into conditions,
such as HD and ASD.

In the example of electron dynamics on the surface of liquid
helium, using phase coherence analysis, we identified the existence
of gravity waves. Without the time-localized approach, these waves
might not have been detected. This illustrates how the application
of coherence methods and time–frequency analysis can be used to
identify specific properties of a physical system. Thus, we see the
importance of using a time-localized approach instead of an asymp-
totic approach, i.e., infinite-time, non-time-evolving approach. The
wider adoption of explicitly finite-time and time-localized meth-
ods should, therefore, lead to similar discoveries in systems char-
acterized by non-autonomous dynamics involving nonstationary
amplitudes and frequencies.

VIII. CONCLUSION
We review the current understanding of coherence, a universal

phenomenon that can appear between oscillations or waves, irre-
spective of their origin. We start from its definition in physics and
review numerical methods for analyzing coherence from modeled
or real data. We focus particularly on coherence between non-
autonomous oscillatory processes whose oscillations have deter-
ministically time-varying frequencies. For this reason, we apply
wavelet-based, time-resolved coherence analysis. We discuss dif-
ferences between amplitude-weighted phase coherence and phase
coherence. In the former case, time-resolved information includes
both the amplitude and the phase; in the latter case, only the infor-
mation about phase is considered. We illustrate that the amplitudes
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are more readily perturbed than phases by noise or movement arti-
facts, and consequently, that phase coherence provides more robust
information about interacting oscillatory systems. We illustrate this
in relation to several real-world examples.

SUPPLEMENTARY MATERIAL
An alternative to Fig. 1 in the main paper is presented in the

supplementary material. It shows the Fourier transform in a loga-
rithmic scale. By comparing Figs. 1(c), 1(d), 1(g), and 1(h) in the
main text and supplementary Figs. 1(c), 1(d), 1(g), and 1(h), it is
clear that the logarithmic scale is disadvantageous to the short-
time Fourier transform, which is obtained with linear frequency
resolution.
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Bjerkan, J., Lancaster, G., Meglič, B., Kobal, J., Crawford, T. J., McClintock,

P. V. E. & Stefanovska, A. Aging affects the phase coherence between spontaneous

oscillations in brain oxygenation and neural activity. Brain Res. Bull. 201, 110704

(2023)

73



Brain Research Bulletin 201 (2023) 110704

Available online 13 July 2023
0361-9230/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research report 

Aging affects the phase coherence between spontaneous oscillations in 
brain oxygenation and neural activity 

Juliane Bjerkan a, Gemma Lancaster a, Bernard Meglič b, Jan Kobal b, Trevor J. Crawford c, 
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A B S T R A C T   

The risk of neurodegenerative disorders increases with age, due to reduced vascular nutrition and impaired 
neural function. However, the interactions between cardiovascular dynamics and neural activity, and how these 
interactions evolve in healthy aging, are not well understood. Here, the interactions are studied by assessment of 
the phase coherence between spontaneous oscillations in cerebral oxygenation measured by fNIRS, the electrical 
activity of the brain measured by EEG, and cardiovascular functions extracted from ECG and respiration effort, 
all simultaneously recorded. Signals measured at rest in 21 younger participants (31.1 ± 6.9 years) and 24 older 
participants (64.9 ± 6.9 years) were analysed by wavelet transform, wavelet phase coherence and ridge 
extraction for frequencies between 0.007 and 4 Hz. Coherence between the neural and oxygenation oscillations 
at ~ 0.1 Hz is significantly reduced in the older adults in 46/176 fNIRS-EEG probe combinations. This reduction 
in coherence cannot be accounted for in terms of reduced power, thus indicating that neurovascular interactions 
change with age. The approach presented promises a noninvasive means of evaluating the efficiency of the 
neurovascular unit in aging and disease.   

1. Introduction 

A healthy brain requires sufficient supplies of glucose and oxygen to 
function properly, and any impairment of the vasculature will affect 
their delivery to the target cells. The brain and cardiovascular system 
work closely together in a common endeavour to match energy supply to 
demand. Their intimate relationship is reflected in the concept of the 
neurovascular unit (NVU) (Iadecola, 2017), corresponding to consider
ation of the neurons, astrocytes, microglia, pericytes, endothelial cells 
and basement membrane as a single functioning entity. In the process of 
aging, the brain undergoes structural (Cox et al., 2016; Fjell and Wal
hovd, 2010) and functional changes, and so also does the cardiovascular 
system. Knowledge of healthy aging can aid understanding of the 
mechanisms of pathological aging, as age is the biggest risk factor in the 
etiology of neurodegenerative diseases, such as Alzheimer’s disease 
which appears to include accelerated aging of the brain (Gonneaud 
et al., 2021). 

The neurophysiological changes in the aging brain have been well 

documented through measures of its electrical and magnetic activities 
using electroencephalogram (EEG) and magnetoencephalogram (MEG) 
recordings, respectively (Hashemi et al., 2016; Al Zoubi et al., 2018; 
Hoshi and Shigihara, 2020; Babiloni et al., 2006; Dustman et al., 1999; 
Vysata et al., 2014; Scally et al., 2018). Both the power of brain waves, 
and the functional connectivity patterns in the brain, have been shown 
to change with age. 

The cardiovascular system is a closed system of vessels, where blood 
circulates, cyclically pumped by the heart and oxygenated by the lungs. 
It is well known that heart rate variability (Agelink et al., 2001) de
creases with aging, whereas the blood pressure (Pinto, 2007; Peters 
et al., 2015) increases. This has been linked to altered cognition in 
healthy people below 70 years old (Veldsman et al., 2020), thereby 
indicating the importance of a well-functioning cardiovascular system 
for brain health. More local to the brain, changes in cerebral blood 
oxygenation can be measured non-invasively using functional 
Near-Infrared Spectroscopy (fNIRS). Several investigations have found 
differences in oxygenation dynamics between younger and older 
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subjects, both in the resting state and during task activation (Yeung and 
Chan, 2021). In elderly subjects, the power and connectivity in the 
0.052–0.145 Hz range are reduced compared to younger ones (Li et al., 
2013; Wang et al., 2016). This frequency range is associated with vas
omotion, the mechanism through which smooth muscle cells modulate 
the blood flow, by altering the diameter of the blood vessels (Intaglietta, 
1990; Salerud et al., 1983; Stefanovska, 2007). However, despite gen
eral awareness that all components of the NVU are individually affected 
by aging (Li et al., 2019), no quantitative method is available for 
non-invasive assessment of the function of the NVU as a whole. Nor has 
any study to date investigated directly whether changes with aging 
occur in the interactions between the dynamics of blood oxygenation 
and neural activity. 

The purpose of the present study is to evaluate the efficiency of 
interaction between the vascular and neural systems within the brain. 
We aim to investigate, on a macroscopic scale, the dynamics of oxygen 
supply and the dynamics of the neurons including the signalling of their 
needs. We do so by determination of the coherence between sponta
neous oscillations in blood oxygenation (measured using fNIRS) and 
electrical activity (measured simultaneously using EEG). Their coher
ence quantifies their strength of interaction, which can be taken as a 
proxy for the efficiency of the NVU. We hypothesise that it will be 
altered in the aging population due to the structural and functional 
changes in the brain. Because resting-state networks spanning several 
brain regions have been observed in both EEG and fNIRS studies (Yeung 
and Chan, 2021; Mesquita et al., 2010; Custo et al., 2017), and because 
fNIRS and EEG have previously been found to exhibit long range cor
relations (Nikulin et al., 2014), we determine the coherence between all 
signal pairs. As the cerebrovascular system depends on the systemic 
support of the cardio-respiratory system, we also recorded heart rate and 
respiration. This allows us to consider the physiological origin of the 
much-discussed ~ 0.1 Hz oscillations (Nita et al., 2004; Voipio et al., 
2003; Nikulin et al., 2014; Watson, 2018; Rayshubskiy et al., 2014; 
Noordmans et al., 2018). 

To follow the non-linear and time-variable dynamics over many 
time-scales and to allow for resolution in both time and frequency, we 
have employed wavelet phase coherence (WPC) (Bandrivskyy et al., 
2004) and a novel method of tracing the instantaneous phases of oscil
lations by ridge extraction (Iatsenko et al., 2016). WPC is more resilient 
against artifacts than amplitude-based coherence measures and, in 
addition, provides for logarithmic frequency resolution. Given that fre
quency and time are inversely related, this makes the method more 
suitable than those with linear resolution, such as the Fourier transform, 
and is particularly advantageous when studying low frequency 
oscillations. 

By comparing the analyses of measurements on groups of younger 
and older participants in the resting state, we seek evidence for changes 
in the phase interactions between their neural and cardiovascular sys
tems, and thus for age-related changes in the efficiency and health of the 
NVU. 

2. Methods 

2.1. Participants 

All participants provided written informed consent, and the study 
was conducted in accordance with the Declaration of Helsinki. The study 

protocols were approved by the Commission of the Republic of Slovenia 
for Medical Ethics and/or by the Faculty of Science and Technology 
Research Ethics Committee (FSTREC) at Lancaster University. The study 
involved the recording and analysis of data from 45 participants. The 
younger group consisted of 21 participants between 20 and 39 years. 
The older group consisted of 24 participants between 56 and 77 years. 
Participant details are provided in Table 1. The exclusion criteria were 
neurodegenerative disorders, clinically diagnosed neurological disor
ders, psychiatric disease and/or diabetes. Three participants were 
excluded because they fell asleep during the measurements, and one 
participant was excluded on account of poor probe contact resulting in 
noisy data. 

Based on two groups with 21 and 24 participants, a statistical power 
of 0.8 and a significance level of 0.05 we expected, at minimum, to 
reliably detect effects of size 0.92, which were considered large effects 
(Faul et al., 2007). Effect size was calculated using Cohen’s d (Cohen, 
1988). Further details are reported in the Supplementary Material (SM) 
Sec. 2. 

2.2. Data acquisition 

Data were recorded in quiet rooms at the Neurological Clinic, 
Ljubljana, Slovenia or in the Nonlinear and Biomedical Physics Lab, 
Physics Department, Lancaster University, Lancaster, UK (see SM, Sec. 
5). The same system was used in both locations. Each participant was 
seated in a comfortable chair and had their eyes open during the 
approximately 30 min of measurement. No fixation points were used. An 
electroencephalogram (EEG) was recorded at 1 kHz using a 16-channel 
system (V-Amp, Brain Products, Germany). Simultaneously, functional 
Near-Infrared Spectroscopy (fNIRS) measurements detected changes in 
oxygenated hemoglobin. Note that we refer to these measurements as 
“brain oxygenation” although, strictly speaking, we investigate brain 
oxygenation dynamics, because fNIRS does not measure absolute he
moglobin concentrations. An 8-source/8-detector LED system (NIRSc
out, NIRx, Germany) was used and the recordings were made at 31.25 
Hz. The probe layout is shown in Fig. 1B. 

The heart rate was evaluated from an electrocardiogram (ECG), ob
tained with a bipolar precordial lead similar to the standard D2 lead. To 
maximize R-peak sharpness, electrodes were positioned on the right and 
left shoulders and over the lower left rib. The respiration rate was 
evaluated from the respiratory effort recorded using a belt wrapped 
around the participant’s chest, fitted with a Biopac TSD201 Respiratory 
Effort Transducer (Biopac Systems Inc., CA, USA). Both were sampled at 
1.2 kHz using a signal conditioning system (Cardiosignals, Institute 
Jožef Stefan, Slovenia). Fig. 1A depicts signals from a participant in the 
younger group. 

2.3. Data preparation and preprocessing 

Signal processing was done in MATLAB, and the analysis was 
completed using the toolbox MODA (Newman et al., 2018) to implement 
the methods illustrated by Clemson et al. (2016). A continuous 25-min
ute signal, mostly free of movement artifacts, was extracted for each 
participant. The data were detrended by subtracting a best-fit third-
order polynomial, and bandpass filtered in the range 0.007–4 Hz. The 
preprocessing procedures were as described by Iatsenko et al. (2015a). 
To reduce computational load, the EEG, ECG and respiration signals 

Table 1 
Participants’ data. Age, body mass index (BMI), systolic blood pressure (sBP) and diastolic blood pressure (dBP) are given as means ± standard deviations. p is obtained 
from the Wilcoxon rank-sum test between the two groups.   

N Age (yrs) Sex BMI (kg m− 2) sBP (mmHg) dBP (mmHg) 

Younger 21 31.1 ± 6.9 11 F/10 M 23.6 ± 3.6 122 ± 18 79 ± 9.8 
Older 24 64.9 ± 6.9 15 F/9 M 26.9 ± 3.0 136 ± 17 83 ± 11 
p – 1.02 × 10− 8 – 0.002 0.004 0.067  
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were each downsampled using a moving average. The resultant fre
quencies are listed in Table 2. The artefact in the EEG signals due to 
cross-talk between brain electrical activity and the electrical activity of 
the heart was extracted using nonlinear mode decomposition (Iatsenko 
et al., 2015b). 

As we do not have individual 3D head geometry data, such as MRI 
scans, and as we use a relatively low-density EEG set-up, we chose to do 
the analysis on the sensor level rather than the source level. This is 
because a lack of geometrical data coupled with a low-density of EEG 
sensors is known to result in a low accuracy of source localisation 
(Brodbeck et al., 2011; Michel and Brunet, 2019). Increasing the number 
of electrodes would have improved spatial localisation to some extent, 
but would also have increased the set-up time for the experiment, 
constituting a limiting factor in clinical applications. 

2.4. Time-frequency analysis 

Time-frequency analysis provides information on how the frequency 
of an oscillation changes through time. We used the continuous wavelet 
transform (WT) and, at each discrete time tn and frequency ωk, obtained 
a complex number Xk,n = ak,n + ibk,n. From this a phase Φ and amplitude 
A were found: 

Φk,n = arctan
(

bk,n

ak,n

)

,

Ak,n =
⃒
⃒Xk,n

⃒
⃒.

Power was found by squaring the amplitude. The WT has a logarithmic 
frequency scale. When analysing low frequency oscillations, the WT 
therefore provides better frequency resolution than, for example, the 
windowed Fourier transform. After taking the transforms, the time- 
averaged WT power spectra were calculated for each of the 11 fNIRS 
signals, and for the instantaneous heart/respiration rates. The Morlet 
wavelet was used for the WT. An overview of the parameters used, 
including the frequency resolution and sampling frequencies, is pro
vided in Table 2. 

2.5. Wavelet phase coherence 

Wavelet phase coherence (WPC), introduced by Bandrivskyy et al. 
(2004), is used to evaluate how consistent the phase difference between 
two oscillations remains over time. The phase coherence is evaluated at 

Fig. 1. A) The cardiovascular system and brain, illustrated schematically with a zoom to show the neurovascular unit (NVU), and examples of recorded signals: fNIRS 
to capture brain oxygenation, EEG to capture the electrical activity of the brain, and respiration and ECG to capture systemic effect of the blood circulation. The 
vertical arrows show the combinations for the phase coherences investigated. B) Sketch illustrating the 16 EEG electrode (black) and 11 fNIRS probe (light blue) 
placements. Note that 8 EEG and fNIRS probes (indicated with blue open circles) are co-located. Created using BioRender.com. 

Table 2 
Summary of the methods and parameters used in the analyses. IHR and IRR – 
instantaneous heart and respiratory rates (frequencies) respectively; γIF – 
instantaneous frequency of oscillations in gamma band; γIP – instantaneous 
power of oscillations in gamma band; WT – wavelet transform; WFT – windowed 
Fourier transform; f0 – frequency resolution fs – sampling frequency.  

Analysis Method Parameters 

Heart rate Peak detection and 
ridge extraction 

WT: f0 = 2 
f ∈ [0.6,1.7] 
fs = 100 Hz 

Respiration rate Peak detection and 
ridge extraction 

WT: f0 = 1 
f ∈ [0.1,0.6] 
fs = 100 Hz 

γ instantaneous frequency Ridge extraction WT: f0 = 5 
f ∈ [20,30] 
fs = 142 Hz 

γ instantaneous power Ridge extraction WT: f0 = 5 
f ∈ [20,30] 
fs = 142 Hz 

IHR and IRR power Time-averaged WT WT: f0 = 1 
f ∈ [0.007,2] 
fs = 20 Hz 

EEG wavelet power Time-averaged WT WT: f0 = 1 
f ∈ [0.007,4] 
fs = 31.25 Hz 

fNIRS wavelet power Time-averaged WT WT: f0 = 1 
f ∈ [0.007,4] 
fs = 31.25 Hz 

Power of γ instantaneous frequency and 
power 

Time-averaged WT WT: f0 = 1 
f ∈ [0.007,4] 
fs = 142 Hz 

fNIRS-EEG coherence Wavelet phase 
coherence 

WT: f0 = 1 
f ∈ [0.007,4] 
fs = 31.25 Hz 

fNIRS-fNIRS coherence Wavelet phase 
coherence 

WT: f0 = 1 
f ∈ [0.007,4] 
fs = 31.25 Hz 

EEG-EEG coherence Wavelet phase 
coherence 

WT: f0 = 1 
f ∈ [0.007,4] 
fs = 20 Hz 
WFT:f ∈
[4,48] 
fs = 142 Hz 

IHR-fNIRS, IRR-fNIRS, Respiration-fNIRS, 
IHR-EEG, IRR-EEG and Respiration-EEG 
coherence 

Wavelet phase 
coherence 

WT: f0 = 1 
f ∈ [0.007,2] 
fs = 20 Hz 

γIF-fNIRS and γIP-fNIRS coherence Wavelet phase 
coherence 

WT: f0 = 1 
f ∈ [0.007,4] 
fs = 31.25 Hz  
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each frequency, and the values of coherence and phase difference are 
originally evaluated at each time. 

The WPC does not assume stationarity of the time-series and is 
particularly suitable when the non-stationarity comes from a time- 
variation of the characteristic frequencies. The logarithmic frequency 
resolution of WPC is particularly suitable for signals with a large span of 
characteristic frequencies. It provides a model-free approach that does 
not assume the existence of an underlying stochastic process. Taken 
together with wavelet analysis, it provides information about potential 
oscillatory modes contributing to the measured signal, and their degree 
of coordination and interaction. However, it does not provide informa
tion about direction of interaction, nor about couplings between oscil
latory modes. For the evaluation of directional couplings one may use 
dynamical Bayesian inference, Granger causality, or similar informa
tion- or permutation-based methods Clemson et al. (2016), Stankovski 
et al. (2017, 2019). 

The phase coherence is evaluated at each frequency and takes a value 
between 0 and 1. If the phase difference remained constant throughout 
the whole length of the signals at a certain frequency, the phase 
coherence value would be 1 at that frequency. As the measure only 
depends on the phase difference, it is independent of the amplitudes of 
the oscillations. The phase difference between signals 1 and 2 at time tn 
and frequency ωk is 

ΔΦk,n = Φ(2)
k,n − Φ(1)

k,n .

The wavelet phase coherence is then defined as 

CΦ(ωk) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

〈cosΔΦk,n〉2
+ 〈sinΔΦk,n〉2

√

,

where 〈cosΔΦk,n〉 and 〈sinΔΦk,n〉 are averaged in time. 
We assessed the fNIRS–fNIRS pairwise coherence (for all permuta

tions of the 11 fNIRS probes), as well as the EEG–fNIRS, instantaneous 
heart rate (IHR)–respiration, IHR–EEG, IHR–fNIRS, respiration–fNIRS, 
respiration–EEG, instantaneous respiration rate (IRR)–fNIRS, and 
IRR–EEG coherences. 

2.6. Frequency bands 

The sampling frequency of the fNIRS is 31.25 Hz, and so the Nyquist 
frequency would be ~ 15 Hz. If the oscillations had constant fre
quencies, and there were no harmonics, then 15 Hz would have been the 
upper limit for investigation of oscillatory modes and their interactions 
in the fNIRS signal. Furthermore, fNIRS is known not to contain oscil
lations faster than the cardiac oscillation ( ~ 1 Hz). Consistent with this, 
we did not see any significant power above the cardiac frequency. So, we 
selected the upper frequency limit to be 4 Hz for the fNIRS and fNIRS- 
EEG interactions. The EEG signal was sampled at 1000 Hz, but we 
analysed it only up to 48 Hz, which allowed for investigation of the slow 
γ oscillatory modes. The other reason for our 48 Hz limit was to avoid 
the effect of the 50 Hz notch filter used by the monitoring system. For 

both the EEG and fNIRS, the lower frequency limit was set to 0.007 Hz. 
The power and coherence values were divided into the conventional 

frequency bands (Table 3) (Stefanovska, 2007), within each of which an 
average value was calculated. The first five bands, representing the 
characteristic frequency intervals of the cardiovascular system (Stefa
novska, 2007), strongly overlap the slow oscillations in EEG (Buzsáki 
and Draguhn, 2004). The last five bands are the traditional EEG fre
quency bands. After obtaining single power/coherence values in each 
band for each subject, the two groups were compared. 

In previous studies of cardiovascular dynamics, the cardiac band was 
defined as 0.6–2 Hz (Stefanovska, 2007). In the present case, however, 
we also need to take account of EEG dynamics which potentially overlap 
the cardiac band. To separate the cardiac and δ bands, we therefore 
defined the cardiac band as 0.6–1.7 Hz and the δ band as 1.7–4 Hz. With 
the upper limit set to 1.7 Hz, the variation in heart rate is still 
accommodated. 

The respiratory oscillations are manifested in the frequency interval 
0.145–0.6 Hz. They can be detected even in the smaller vessels such as 
capillaries, as they generate pressure waves that propagate throughout 
the entire cardiovascular system (Stefanovska and Hožič, 2000). 

The 0.052–0.145 Hz frequency interval is referred to as myogenic, 
and the neurogenic band is defined as 0.021–0.052 Hz. The origins of 
these two bands are still debated, with perceptions depending on 
whether interest is being focused on the vascular or cardiac regulation 
mechanisms (see discussion section). The neurogenic response is similar 
to the myogenic response in that it also depends on pressure changes, 
but additionally involves neuronal pathways. 

The frequency intervals 0.007–0.021 Hz is called the NO-dependent 
endothelial frequency band, in view of evidence that NO-dependent 
endothelial activity manifests itself within this range (Kvandal et al., 
2006; Stefanovska, 2007; Shiogai et al., 2010). 

2.7. Heart and respiration rates 

Time-series of instantaneous heart and respiration rates were ob
tained in two ways: by peak detection and by the ridge extraction 
method. Peak detection was performed in the time domain with a cus
tomised program in MATLAB that searched for R-peaks in the ECG sig
nals or maxima in the respiration signal. The instantaneous frequencies 
were extracted in the time-frequency domain by the ridge extraction 
method (Iatsenko et al., 2016) using the toolbox MODA (Newman et al., 
2018). Note that “instantaneous heart rate” (IHR) is a time-series of 
heart frequency values. It is traditionally referred to as heart rate vari
ability when derived in the time domain from the intervals between 
heart beats. Similarly, “instantaneous respiration rate” (IRR) is a 
time-series of respiration frequency values, and is usually called respi
ration rate variability when derived from the time intervals between 
maxima. The instantaneous heart and respiration rate time series were 
in close agreement whether obtained either by the peak detection 
method or by the ridge extraction method, as shown in Fig. 2 for the IHR. 
The average heart and respiration rates were obtained from their 
respective time-series. 

Because the time-series obtained with the ridge extraction method 
Table 3 
Frequency ranges used in the analysis (Stefanovska, 2007). The 
cardiac and δ ranges are slightly changed from past studies (see 
text).  

Name Frequency range (Hz) 

Endothelial (V) 0.007–0.021 
Neurogenic (IV) 0.021–0.052 
Myogenic (III) 0.052–0.145 
Respiratory (II) 0.145–0.6 
Cardiac (I) 0.6–1.7 
Delta (δ) 1.7–4 
Theta (θ) 4–7.5 
Alpha (α) 7.5–14 
Beta (β) 14–22 
Gamma (γ) 22–48  

Fig. 2. Comparison of the IHR found by R-R peak detection with that found by 
ridge extraction. We use the lognormal wavelet (Iatsenko et al., 2015a) with a 
frequency resolution of 2 Hz. It has a better trade-off between time and fre
quency resolution than the Morlet wavelet. 
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are smooth functions, ready to use in time-series analysis, they were 
used in the wavelet and phase coherence analyses. Furthermore, the 
ridge extraction method is more appropriate for extracting IHR than the 
peak-detection method, as ridge extraction takes into account the whole 
ECG signal and not just the R-peaks, thus also capturing the effect of T- 
waves. 

For the IHR, ridge extraction was applied to the WTs of ECG signals 
in the 0.6–1.7 Hz frequency range. The lognormal wavelet and a fre
quency resolution of 2 Hz were used for the WT. The sampling frequency 
of the IHR was the same as that of the ECG, and no interpolation was 
needed (Iatsenko et al., 2013). For the IRR, ridge extraction was applied 
to the WTs of respiration signals in the 0.1–0.6 Hz frequency range and 
with a frequency resolution of 1 Hz. 

The standard deviation of the instantaneous rates (sd IHR and sd 
IRR), resulting in a single number in each case, was used to obtain a 
measure of their variability. 

2.8. Frequency and amplitude modulation of the γ–band by low- 
frequency oscillations 

From the EEG signals, the instantaneous frequency and power in the 
20–30 Hz interval were obtained by ridge extraction (Iatsenko et al., 
2016), and are referred to as a γ–instantaneous frequency and 
γ–instantaneous power time-series. Fig. 3 illustrates the procedure. The 
frequency resolution parameter was 5 Hz. 

For the 8 locations where fNIRS and EEG sensors are co-located, the 
WPC was calculated between the γ–instantaneous frequency time-series 
and the fNIRS signal, to evaluate the effect of low frequency modulation 
on the oscillations in the γ–band. The WPC was also calculated between 
the γ–instantaneous power time-series and the fNIRS signal to evaluate 
the effect of low frequency modulation on the γ–band amplitude and the 
corresponding power. 

2.9. Intersubject surrogates 

To ensure that apparent coherence is statistically significant, we used 
intersubject surrogates (Lancaster et al., 2018). In addition to calcu
lating coherence between the signals from one person, we calculated the 
apparent coherence between signals from different participants. This 
measure of coherence could not signify any underlying link between the 
signals, and was thus random. Inter-subject surrogates have previously 
been found suitable in the context of cardiorespiratory interactions 
Iatsenko et al. (2013). They are model-free and do not require stationary 
data. 

Based on 154 intersubject surrogates a surrogate threshold was set as 
the 95th percentile of all these coherences at each frequency. In the plots 
throughout the paper, only the effective coherence (i.e. coherence after 
subtracting the surrogate threshold) is shown, and it was the effective 
coherence that we used in testing for differences between the groups. 
Each subject and signal pair had an individual significance threshold to 
account for different spectral biases in the signals. Due to the lower 
number of complete oscillations at low frequencies, the likelihood of 
apparent coherence is increased. Hence, the surrogate threshold is high 
for low frequencies and, correspondingly, the measurement time is not 
long enough for a reliable study of oscillations in the endothelial band in 
the case of fNIRS–EEG coherence. 

2.10. Group statistics 

To assess population differences, the non-parametric two-sided 
Wilcoxon rank-sum test was applied, and differences are considered 
significant for p < 0.05. The data are presented as median values and 
violin plots (Hintze and Nelson, 1998). Additionally, for the fNIRS, EEG 
and fNIRS-EEG analyses, a Monte-Carlo permutation test (Maris and 
Oostenveld, 2007) was applied to check the reliability of the signifi
cance. From the total of 45 participants, 21 were randomly placed in one 
group and 24 in the other. The Wilcoxon rank-sum test was applied to 
test for differences between the permutated groups. After 16587 per
mutations the original p-value was compared with the values obtained 
with permutation. If the initial p-value was smaller than 95 % of the 
p-values obtained by permutations its significance was considered 
confirmed. Additional details are provided in Sec. 7 of the SM. 

In time-frequency analysis, cluster-based permutation is a common 
method to correct for multiple comparisons (Maris and Oostenveld, 
2007). As we averaged in both time and frequency before applying 
statistical tests, we would only see differences in power/coherence that 
were present over many time-points and frequencies. For the spatial 
aspect of multiple comparisons, the expected false discovery rate, 
quantifying how many null-hypotheses would be incorrectly rejected 
with α = 0.05 assuming all null-hypotheses were true, was 0.8 for the EEG 
power analysis, 0.55 for the fNIRS power analysis, 6 for the EEG 
coherence analysis, 2.75 for the fNIRS coherence analysis and 8.8 for the 
fNIRS–EEG coherence analysis. From N trials, and assuming that there 
were no true differences, the probability of obtaining X or more positive 
findings was calculated from the binomial probability. This was used to 
assess the reliability of the results, keeping the multiple comparison 
problem in mind, as done in the literature (Montez et al., 2009; Nikulin 
et al., 2014). 

2.11. Correlations 

The correlations were found from the Spearman’s rank-order corre
lation, which is a non-parametric alternative to the Pearson linear cor
relation. It tests for a monotonic relationship between two variables. The 
p-value was found from permutation distributions. 

3. Results 

Here we present the results of the analyses summarised in Table 2. 
These include the central oscillations of the cardiovascular system 
(evaluated from the instantaneous heart and respiration frequencies), 
and the local vascular and neural oscillations in the brain (from fNIRS 
and EEG). The analyses relate to the transport of nutrients to the NVU, 
quantifying its efficiency and the impact of ageing. 

3.1. Central oscillations: heart and respiration rates 

We first present the cardio-respiratory characteristics. This enables a 
consistency check with earlier results, and provides insight into systemic 
changes relevant to neurovascular interactions, 

Fig. 3. γ–instantaneous frequency (projected onto the Frequency-Time plane) 
and γ–instantaneous power time-series (projected onto the Wavelet power-Time 
plane) as obtained by ridge extraction. 
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Heart rates (older: 1.04 ± 0.16 Hz; younger: 1.17 ± 0.15 Hz) and sd 
IHR (older: 0.052 ± 0.011 Hz; younger: 0.070 ± 0.022 Hz) are signifi
cantly different between the groups (p = 0.014, p = 0.005), as shown in  
Fig. 4A,B. No significant difference is seen in the respiration rate (older: 
0.23 ± 0.08 Hz; younger: 0.24 ± 0.05 Hz, p = 0.300), or sd IRR (older: 
0.039 ± 0.009 Hz; younger: 0.045 ± 0.019 Hz, p = 0.26). The corre
sponding plots are shown in the SM Sec. 3. 

IHR power is reduced in the older group in the 0.01–0.11 Hz range 
(see Fig. 4C). The IRR power is not significantly different between the 
groups (Fig. 4D). 

Each group has significant IHR–respiration coherence in the respi
ratory band (see Fig. 4E; for the frequency band ranges, see Table 3). The 
younger group has significantly higher coherence around 0.3 Hz, 
compared to the older group. For both groups the IHR power and 
IHR–respiration coherence were shown not to differ significantly be
tween males and females (see SM Sec. 6), consistent with earlier results 
(Iatsenko et al., 2013). 

3.2. Interactions between instantaneous heart/respiration rates and brain 
oxygenation 

The results presented here illustrate how the modulation of the heart 
and respiration rates is linked to the oxygenation of the brain. Fig. 5 
shows the wavelet phase coherence between IHR and oxygenation, be
tween IRR and oxygenation, and between the respiration signal and 
oxygenation, all at N5. For data from the other fNIRS probes see SM Sec. 
3. The SM also includes the IHR–EEG, respiration–EEG and IRR–EEG 
coherence. 

There are systematic differences in coherence, with the older group 
tending to have lower coherence. This difference is statistically signifi
cant for coherence between IHR and oxygenation (Fig. 5A), and is 
particularly pronounced in the myogenic and respiratory bands. The 
same significant reduction of coherence with age is observed in coher
ence between the IHR and all other oxygenation signals apart from the 
two temporal ones, where the coherence is reduced only in the respi
ratory band. Interestingly, the phase difference between oxygenation 
and IRR/respiration/IHR is found to be negative in the respiratory band, 
meaning that brain oxygenation is the leading signal. This result is 
consistent for both age groups. In contrast, the phase difference in the 
myogenic region is slightly positive, indicating that the brain oxygena
tion lags. 

3.3. Brain oxygenation oscillations 

Here we present the power calculated for all 11 fNIRS signals, and 
coherence between all possible signal combinations. The positions of the 
probes are shown in Fig. 1B. 

The myogenic power (0.052–0.145 Hz frequency interval) in 8 of the 
11 channels is significantly lower in the older group (Fig. 6A,B). A lower 
power is also found in the endothelial, neurogenic and respiratory bands 
(Fig. 6B), but the differences are statistically significant for fewer 
probes. In the endothelial band there are 3 fNIRS probes with a signif
icant difference between the groups, while this number is 4 in the res
piratory band, and 1 in the neurogenic and cardiac bands. The chance of 
obtaining 3 positive outcomes out of 11 is 1.5 % when there were no true 
differences, while the chance of obtaining 1 positive outcome out of 11 is 

Fig. 4. Violin plots for A) heart rate, and B) its variability as quantified by the standard deviation (sd) of the IHR for the older and younger groups. The black stars 
indicate significant differences, p < 0.05, between groups. The white circles indicate the group medians. C) Time-averaged wavelet transform power of the IHR. D) 
Time-averaged wavelet transform power of the IRR. E) IHR–respiration coherence. F) Average phase differences between IHR and respiration, given in radians. A 
negative phase difference indicates that respiration is the leading signal. The blue and black lines are the median group power/coherence/phase difference, while the 
shaded areas show the 25–75th percentiles. Significant differences (p < 0.05) between the groups at particular frequencies are indicated by blue stars on the x-axis 
(causing effective thickenings of the axis). 

Fig. 5. Coherence (upper panels) and phase difference (lower panels) between A) IHR and N5, B) respiration rate and N5, C) IRR and N5. Note that the y-axes differ. 
See Fig. 1 for the locations of the EEG electrodes and fNIRS probes. The blue and black lines represent the younger and older group medians, respectively, while the 
shaded areas show the 25–75th percentiles. Significant group differences at particular frequencies are indicated by blue stars on the x-axis. Phase differences are 
given in radians, and a negative value indicates that N5 is the leading signal. 
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43 % when there were no true differences. 
Significantly lower myogenic coherence in the older participants is 

found in 12 fNIRS signal combinations: across the frontal-parietal sig
nals, the frontal signals and the occipital signals (Fig. 6C,D). In the 
neurogenic band significantly higher coherence in 12 fNIRS combina
tions (mainly from the temporal probes) is observed in the older group. 
In the cardiac band in 50 of 55 combinations coherence is also signifi
cantly higher in the older group. The differences are found between the 
frontal-parietal, frontal-occipital and temporal signals. In the endothe
lial band coherence in 3 combinations is significantly higher in the older 
group, while in the respiratory band coherence in only one combination 
is significantly higher in the younger group. The chance of obtaining 12 
positive outcomes out of 55 is 0.0014 % when there were no true dif
ferences, while the chance of obtaining 3 positive outcomes out of 55 is 
52 %. 

Brain oxygenation for males and females is summarised in Sec. 6 of 
the SM. The older male group has higher myogenic power at probes 1 
and 9 compared to the older female group, while the older female group 
has higher myogenic coherence than the older male group in 7 signal 
combinations. 

3.4. Brain neuronal activity evaluated by EEG 

The EEG power and coherence are consistent with previous results 
(Meghdadi et al., 2021; Vysata et al., 2014; Scally et al., 2018; Moezzi 
et al., 2019; Richard Clark et al., 2004), and are summarised in the SM 
Sec. 4. 

Fig. 6. fNIRS power and coherence. A) Time-averaged power spectra for N3. B) p-values indicating significant group differences between the powers in the frequency 
bands. Blue (yellow) indicates that the power is higher in the younger (older) group. C) Coherence between N11 and N7 (see Fig. 1 for locations). The blue and black 
lines are the median group coherences, while the shaded areas show the 25–75th percentiles. Significant differences between the groups at particular frequencies are 
indicated by blue stars on the x-axis. D) p-values indicating a significant group difference between the coherence in the frequency bands. Blue (yellow) indicates that 
the coherence is higher in the younger (older) group. For the frequency intervals see Table 3, and for the probe lay-out see Fig. 1. 
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Fig. 7. A) Group median fNIRS–EEG 
coherence averaged over the frequency 
band 0.021–1.7 Hz. The results for the 
younger group (left) are compared with 
those for older group (middle) and p- 
values indicating a significant differ
ence between the groups are shown on 
the right. Blue (yellow) coding indicate 
that coherence is higher in the younger 
(older) group. B) Same as for A but for 
the myogenic band. C) Same as for A 
but for the cardiac band. For the fre
quency intervals see Table 3, and for 
the probe lay-out see Fig. 1.   
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3.5. Coherence between neuronal activity and brain oxygenation 

The coherence between neuronal activity, as evaluated by EEG, and 
brain oxygenation, as evaluated by fNIRS, differs significantly between 
the groups, in both the myogenic and cardiac bands (Fig. 7B,C). In the 
myogenic band, the coherence is lower in the older group in 46/176 
probe combinations and the decrease does not seem confined to any 
specific areas. However, both groups have low myogenic coherence in 
the two temporal fNIRS probes (N8 and N9). In contrast, the coherence 
in the cardiac band is higher in the older group in 50/176 probe com
binations. The chance of having 46 or more positive findings out of 176 
is 1.2 × 10− 18 % assuming there were no true differences. Further in
formation is provided in the SM. It consists of neurogenic and respira
tory coherence (Fig. 23), the coherence plots of all 176 fNIRS-EEG 
combinations (Sec. 10), and the results divided by sex (Sec. 6). 

3.6. Frequency and amplitude modulation of the γ–band by low- 
frequency oscillations 

Here we show analysis of possible amplitude and phase modulation 
of γ–band oscillations by low-frequency oscillations. There is non-zero 
power for both the γ–instantaneous frequency and γ–instantaneous 
power time-series between 0.007 and 4 Hz (Fig. 8A, B) for both groups 
indicating the existence of modulation. The coherence between 
oxygenation and these time-series, and the phase shifts for both in
stances, are shown in Fig. 8C–F for the signals measured at location O1. 
For the remaining locations, see the SM Sec. 11. For the γ–instantaneous 
frequency time-series the coherence is zero for all frequencies in the 
interval 0.007–4 Hz. For the γ–instantaneous power time-series the 
median coherence is zero, but there is evidence of some significant 
effective coherence (Fig. 8D). For the oxygenation–power there is a 
negative phase shift for the older group around 0.06–0.08 Hz (Fig. 8F), 

Fig. 8. Comparisons between the older and younger groups related to frequency and amplitude modulation in the EEG γ-interval. Median power of the A) 
γ–instantaneous frequency time-series and B) γ–instantaneous power time-series. C) Median coherence between fNIRS and the γ–instantaneous frequency time-series. 
D) Median coherence between fNIRS and γ–instantaneous power time-series. E) Phase difference between fNIRS and the γ–instantaneous frequency time-series. F) 
Phase difference between fNIRS and the γ–instantaneous power time-series. The blue and black lines are the median group coherences, while the shaded areas show 
the 25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. The blue and black solid 
vertical lines indicate the average respiration rates for the younger and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG 
signals are from location O1. 

Fig. 9. Spearman correlations between A) BMI and fNIRS–EEG coherence in the myogenic band, B) BMI and IHR–respiration coherence in the myogenic band, and C) 
BMI and IHR–respiration coherence in the respiratory band. In A) the black circles show the coherence values between fNIRS–EEG combinations (176 combinations 
per participant), while the red crosses show the median coherence for each participant. The correlation is found between the median coherence values and BMI. 
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which is significantly different between the groups in 5/8 probe com
binations. A negative phase difference indicates that the oxygenation is 
lagging. 

3.7. Correlations 

BMI is negatively correlated with neurovascular coherence in the 
myogenic band, IHR–respiration coherence in the respiratory band and 
IHR–respiration coherence in the myogenic band (Fig. 9A,B,C). The 
systolic blood pressure is also negatively correlated with neurovascular 
coherence in the myogenic band (ρ = − 0.435, p = 0.004) and 
IHR–respiration coherence in the respiratory band (ρ = − 0.356, 
p = 0.022) (SM Sec. 8). 

As shown in Fig. 10 the neurovascular coherence in the myogenic 
band is correlated with the IHR–respiration coherence in the myogenic 
band (ρ = 0.397, p = 0.008), while this is not the case for the neuro
vascular coherence and the IHR–respiration coherence in the respiratory 
band (ρ = 0.103, p = 0.504). 

4. Discussion 

Based on 25-minutes signals recorded in participants in resting state 
and novel time-frequency analysis methods, our investigation of car
diovascular and neurovascular interactions reveals clear changes with 
aging. These are manifested through:  

• Weakened 0.052–0.145 Hz coherence between the neural activity 
and brain oxygenation, reflecting reduced neurovascular 
interactions;  

• Reduced coherence between instantaneous heart rate and brain 
oxygenation oscillations in the myogenic and respiratory frequency 
bands;  

• Changes in the heart and respiration rates, and their coordination 
through respiratory sinus arrhythmia; and  

• Altered brain oxygenation resting state networks in the brain. 

We now discuss these changes in more detail. 

4.1. Central oscillations: heart and respiration activity 

Consistent with previous studies (Iatsenko et al., 2013), we found a 
decrease in the variability of the cardiac frequency with age, as quan
tified by the sd IHR. Additionally, the average resting cardiac frequency 
(heart rate) is higher in the younger group. We did not find a significant 
reduction with age in the respiratory frequency band of the IHR (in 
studies with linear frequency resolution and shorter recordings often 
referred to as the high frequency band, 0.15–0.4 Hz, linked to para
sympathetic nervous activity (Agelink et al., 2001). The IHR power 

decreases with age in the myogenic frequency band, 0.052–0.145 Hz. 
We note here that when evaluated with linear frequency resolution, and 
based on shorter, usually 5-min recordings, this frequency interval is 
also referred to as the low frequency band, 0.04–0.15 Hz, and is linked 
to sympathetic nervous activity (Agelink et al., 2001). 

Note that the low/high frequency bands strongly overlap the 
myogenic/respiratory frequency bands. Low heart rate and insignifi
cantly different respiratory band power in elderly participants could 
reflect relatively preserved parasympathetic tone. However, the 
changed parasympathetic/sympathetic activity is not sufficient to ac
count for the variability in heart rate, which is generated by a complex 
interplay of nervous activity, respiration, smooth muscle cells and other 
factors (Billman, 2011; Clemson et al., 2022). Reduced variability with 
aging has previously been demonstrated (Agelink et al., 2001; Geovanini 
et al., 2020; Shiogai et al., 2010), also with wavelet-based methods 
(Iatsenko et al., 2013). 

A tendency for the IHR–respiration coherence to be lower in the 
older group reaches significance at around 0.3 Hz. We did not, however, 
find a significant change in the respiration rate or its variability, as 
evaluated by the sd IRR, so this is an unlikely explanation for the 
reduced coherence. The significant IHR–respiration coherence reflects 
respiratory sinus arrhythmia (RSA), which is modulation of the heart 
frequency by the amplitude of respiration (Yasuma and Hayano, 2004; 
Stefanovska and Bračič, 1999). Wavelet based methods have previously 
been applied to investigate RSA (Keissar et al., 2009; Iatsenko et al., 
2013), and Iatsenko et al. (2013) found the peak coherence in the res
piratory band to decrease with age, suggesting that RSA is more 
time-variable and weaker in elderly subjects. 

Consistent with the previous studies the present results show that the 
two central pumps of the cardiovascular system, heart and lungs, and 
their coordination, mainly through RSA, are affected by aging. 

4.2. Propagation of the central oscillations: instantaneous heart/ 
respiration rates and oxygenation 

Next we investigated the effect of aging on the propagation of car
diovascular oscillations to the brain. Systemic cardiovascular oscilla
tions naturally impact brain oxygenation (Katura et al., 2006), and their 
propagation may be affected by age-related structural changes in blood 
vessels. We investigated this latter possibility by evaluating the phase 
coherence between the cerebral blood oxygenation and the time-series 
of instantaneous heart or respiration rates. 

The IHR–oxygenation coherence is significantly reduced in the older 
group in the myogenic and the respiratory frequency bands, across all 
non-temporal sites (Fig. 5A). These changes in coherence are consistent 
across combinations, indicating that the changes are systemic. The 
elastic properties of the vessels are known to change with aging (Des
jardins et al., 2014), which could affect the propagation of pressure 

Fig. 10. Spearman correlations between A) IHR–respiration coherence in the myogenic band and fNIRS–EEG coherence in the myogenic band, B) IHR–respiration 
coherence in the respiratory band and fNIRS–EEG coherence in the respiratory band. The black circles show the coherence values between fNIRS–EEG combinations 
(176 combinations per participant), while the red crosses show the median coherence for each participant. The correlation is found between the median coherence 
values and IHR–respiration coherence. 
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waves and therefore impact the myogenic response, causing reduced 
IHR–oxygenation coherence. This reduced coherence is attributable to 
the way in which smooth muscle cells respond to pressure changes. In 
mice, the myogenic response to pulsatile pressure in the middle cerebral 
arteries has been shown to decrease with age (Springo et al., 2015). 

Systemic cardiovascular oscillations have been shown to affect the ~ 
0.1 Hz oscillations in cerebral oxygenation: Katura et al. (2006) esti
mated that such effects could only account for less than half of the 
observed changes. Note, however, that the study investigated heart rate 
and arterial blood pressure, but did not consider respiration. Further
more, it has been shown that the Granger causality from heart rate to 
oxyHb during head-up tilt (Song et al., 2015) at 45∘ decreased with age, 
which is in line with our findings of reduced coherence in the older 
group. 

In the myogenic frequency band the phase difference between the 
oscillations in the time-series of IHR and fNIRS is positive, implying that 
in this frequency interval the oscillations in the IHR are preceeding the 
oscillations recorded by the fNIRS signal. This furthermore confirms that 
the myogenic oscillations are propagating to the brain. The shift is 
significantly reduced with ageing, suggesting that the pulse propagates 
with less resistance to the small vasculature of the brain, as discussed in 
more detail below in Sec. 4.3. 

The phase difference between the same signals in the respiratory 
band is negative (see Fig. 5A), suggesting that oxygenation is the leading 
signal. The reduction in phase coherence might, therefore, reflect 
decreasing efficacy of brain oxygenation with age. However, the phase 
difference between the two signals in the respiratory band is not altered 
by ageing. 

There is a tendency for the respiration–oxygenation coherence to 
decrease with age in the respiratory band (at location N5 ~ 0.3 Hz 
p < 0.1, in several locations p < 0.05): see Fig. 5B and Fig. 6 in the SM). 
The phase difference is negative and similar for both groups, suggesting 
that oxygenation is the leading signal. The high coherence between 
respiration and each of the oxygenation signals implies a systemic 
orchestration of cortical oxygenation in rhythm with breathing, an effect 
that is reduced in the older group. The phase difference, indicating 
which signal leads or lags the other, can be explained as follows:  

1. The oxygenation signal is leading. Respiration is controlled by the brain 
stem, and voluntary respiration can also be controlled by the motor 
cortex. The brain then controls the respiration signal.  

2. The respiration signal is leading. The period of an oscillation at 0.2 Hz 
is 5 s, and the period of an oscillation at 0.3 Hz is 3.3 s. This means 
that if the lag is longer than these times the phase difference might 
appear to be negative when, in reality, it is not. Zhang et al. (2019) 
found in mice that breathing rate is a key modulator of cerebral 
oxygenation, and that oxygenation was correlated with both the 
respiration rate and the phase of the respiration cycle, which was 
true across the brain. They found a time lag of around 1–3 s between 
respiration and PtO2 consistent with the transit time of blood from 
the lungs to the brain, which was similar for blood oxygenation too. 
What a similar lag would be in humans is not known, and the cor
responding phase difference is therefore also not known. However, it 
might be the case that, although the respiration is actually leading 
the oxygenation, the latter is delayed by more than the time for one 
complete respiration cycle. 

4.3. Brain oxygenation oscillations and their spatial coherence 

The reduced myogenic power and reduced myogenic coherence be
tween the frontal probes, between the frontal-parietal probes and be
tween the occipital probes seen in the older participants (see Fig. 6A,B, 
C) indicate altered vascular resting state networks. 

There is increased coherence in the cardiac band in the older group, 
in 50/55 fNIRS combinations (see Fig. 6C), and between fNIRS and EEG 
signals (see Fig. 7C). This could be explained by several factors, such as 

the increased radii of vessels in the microvasculature of older partici
pants (Cox et al., 2016) and decreased microvascular density in older 
participants (Desjardins et al., 2014). While the total cerebral blood flow 
decreases with age, the pulsatile flow increases (Xu et al., 2017). It 
propagates through vessels that are fewer and larger, with reduced 
surface area per unit volume, resulting in less oxygenation. The older 
group also has decreased vessel elasticity (Desjardins et al., 2014) and 
increased blood pressure (Table 1), and we note that if the cardiac pulse 
is stronger throughout the smaller vessels, this can cause increased 
cardiac coherence. These findings are consistent with earlier fNIRS 
studies as reported in the review by Yeung and Chan (2021). 

These results illustrate that, in the brain vasculature, both the os
cillations, and their coordination are altered in the older group, sug
gesting decreased oxygenation of the brain with aging. The myogenic 
vascular resting state network is weaker in the older group. We note that 
our definition of resting state networks is mainly operational in nature, 
as participants were recorded while not performing any task. However, 
it is interesting to note that, in addition to low coherence for the lateral 
sensors, we observe strong frontal-parietal coherence. This is consistent 
with earlier work (e.g. Sadaghiani et al., 2012), and shows that our re
sults also relate to the placement of the sensors. 

4.4. Neurovascular coherence 

Our key findings are: that there is significant neurovascular phase 
coherence in the 0.052–0.145 Hz (myogenic) frequency range; that this 
coherence is greatly reduced in older participants, as compared to the 
younger group; and that there is higher neurovascular coherence in the 
cardiac band in the older group (Fig. 7). As can be seen by comparing 
Figs. 6B,C and 7B, the coherence is also reduced in some locations 
without a decrease in power, so that the reduction in coherence cannot 
be accounted for by reduced power. To our knowledge, this is the first 
report of such effects. 

In both the myogenic and cardiac bands there was widely distributed 
coherence across the cortex, as seen in Fig. 7B,C. In comparison, the 
neurogenic and respiratory bands showed little or no significant 
coherence in either age group, so that little change in coherence with 
age could be detected (see SM Fig. 23). The altered neurovascular 
coherence in the older group reflects less effective neurovascular 
interaction. Magnitude squared coherence (which has linear frequency 
resolution) between fNIRS and EEG signals near 0.1 Hz was found in a 
previous study of healthy participants aged around 30 years (Nikulin 
et al., 2014). This is in agreement with the coherence found in the 
younger group of the present study. 

Grooms et al. (2017) studied slow oscillations in EEG and blood 
oxygen level dependent (BOLD) signals in the default mode network. 
The authors concluded that there was evidence of a relationship be
tween infra-slow ( < 0.1 Hz) EEG and BOLD oscillations at the same 
frequencies, which was also found by Hiltunen et al. (2014) and 
Keinänen et al. (2018). These correlations were shown to span several 
brain regions and to be time-varying. Both fNIRS and BOLD signals 
reflect changes in oxygenation, and the BOLD signal has been shown to 
correlate with both oxyHb and deoxyHb (Strangman et al., 2002; 
Schroeter et al., 2006). These studies investigated linear correlation 
between BOLD signals and infraslow EEG time-series, whereas the 
wavelet phase coherence used in our present study has logarithmic 
frequency resolution and evaluates coherence at each frequency step. 
The earlier studies did not consider frequencies above 0.1 Hz, while our 
present results show coherence centred around approximately 0.1 Hz. 
Although the studies are not directly comparable, they all provide evi
dence of a significant relationship between electrical neural activity and 
oxygenation oscillations in the brain at low frequencies. Mitra et al. 
(2018) found a similar relationship in mice, using laminar electro
physiology and hemoglobin imaging. Such invasive recordings have the 
advantage of measuring activity that is more local but, given that our 
goal was in-vivo, non-invasive measurements in humans, we chose to 
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use EEG and fNIRS. 
In fMRI studies it is found that typically, only 10 % of the variability 

in the hemodynamic signal can be explained by neural activity (Drew 
et al., 2020). Similarly, we show low, but significant, coherence between 
the EEG and fNIRS signals. BOLD signals are often thought of as a 
convolution of the neural activity with what is known as the hemody
namic response function (HRF) (Rangaprakash et al., 2018). The HRF 
contains vascular factors, such as vasomotion, which is also present in 
the fNIRS signals. The difference in coherence between the younger and 
older groups illustrates that care should be taken in studies estimating 
the HRF, as the response is age-dependent. 

4.5. Neurovascular coupling 

In the awake resting state the brain consumes around 11 % of the 
cardiac output and 20 % of the body’s total metabolic energy, despite 
only making up about 2 % of the body’s weight (Gusnard et al., 2001). 
Resting state functional networks are consistently observed both with 
fMRI (Biswal et al., 1995; Hiltunen et al., 2014) and fNIRS (Sasai et al., 
2012), in addition to EEG (Babiloni et al., 2006), indicating that the 
resting state activity is not random. Neurovascular coupling, mediating 
the adjustment of local cerebral blood flow to match the energy demand 
of neurons, is maintained continuously by the diverse cells constituting 
the NVU (Iadecola, 2017). 

Studies of neurovascular coupling usually consider information flow 
from neurons to the vasculature. However, Kim et al. (2016) introduced 
the term vasculo-neuronal coupling to describe information flow from 
vessel to astrocyte to neuron. From experiments on mice, both in vivo 
and in vitro, the authors concluded that neurons adjust their resting 
state activity based on brain perfusion changes in flow and pressure 
(Kim et al., 2015, 2016), probably to match the energy supply and de
mand. Changes in the blood flow and perfusion are characterised by 
oscillatory processes, and so is energy metabolism (Iotti et al., 2010). 
Hence, the energy exchange to the brain is also likely to occur in an 
oscillatory manner. To be efficient, this is coordinated between the 
cardiovascular system and the brain, leading to coherent oscillations. It 
therefore seems likely that the degree of myogenic phase coherence is a 
proxy for neurovascular efficiency, and that the neurovascular interac
tion can be considered as arising through the cardiovascular system and 
brain behaving as interacting oscillators. 

Myogenic coherence is reduced in the older group of participants, 
indicating that the interaction between the oscillators has decreased. 
From the current results we cannot be certain of the direction of the 
interaction, but it could be bi-directional. The neurovascular coherence 
in the myogenic frequency band is negatively correlated with BMI 
(Fig. 9), an observation that could be further investigated in future 
studies. 

In the present work we focused on quantifying the functioning of the 
neurovascular unit. Our reasoning is that the efficiency of coordination 
between neuronal and vascular activities can be evaluated by their 
phase coherence. It provides a measure of neurovascular coupling. 
Establishment of the directionality and strength of the coupling between 
the vascular and neuronal oscillatory modes, as identified in this work, 
will be the next step in the investigation. The efficiency of the neuro
vascular unit, and the neurovascular coupling, are of particular interest 
in relation to the older population, as decreased neurovascular coupling 
has been linked to cognitive decline and dementia (Tarantini et al., 
2017; Csipo et al., 2019). Especially promising is the recent report of a 
treatment that can improve neurovascular coupling in mice (Tarantini 
et al., 2019). Evaluation of neurovascular phase coherence therefore has 
potential as a biomarker for the efficiency of the NVU, and could be used 
to evaluate the effects of treatment and lifestyle changes in humans. 

4.6. Origins of 0.1 Hz oscillations 

Having established that oxygenation and neural activity are coherent 

around 0.1 Hz, reflecting neurovascular interactions, the next question 
is: what are the mechanisms underlying the coherence? There are 
several possible origins of 0.1 Hz oscillations in the brain and cardio
vascular system, which we now consider. 

Systemic cardiovascular fluctuations. IHR is coherent with oxygenation 
at ~ 0.1 Hz (see Sec. 3.2), and, to a much lesser degree respiration is also 
coherent with oxygenation at ~ 0.1 Hz. However, the systemic cardio
vascular fluctuations cannot fully explain the oscillations in oxygenation 
(Katura et al., 2006), indicating that the 0.1 Hz oscillations could have 
additional origins. Most EEG probes have low but non-zero coherence 
with the ~ 0.1 Hz IHR signal, but the IHR–EEG coherence is generally 
lower than the neurovascular coherence evaluated from the EEG and 
fNIRS time-series: see SM Fig. 5 and SM Sec. 10. 

Vascular origin. In 1902 Bayliss (1902) considered how smooth 
muscle cells respond to changes in intravascular pressure. This 
myogenic hypothesis was later studied by Folkow (1949) who found it 
was important for blood autoregulation. Myogenic oscillations tend to 
manifest between 0.052 and 0.145 Hz (Mayhew et al., 1996; Stefa
novska, 2007; Söderström et al., 2003; Landsverk et al., 2007). Local 
0.1 Hz oscillations consistent with myogenic activity have been 
observed in vivo in the human cortex (Rayshubskiy et al., 2014; 
Noordmans et al., 2018). These oscillations are believed to contribute to 
the clearance of substances like amyloid-beta proteins from the brain 
(Aldea et al., 2019). 

Vascular neural origin. The hemodynamic bases of Meyer waves are 
oscillations of the sympathetic vasomotor tone of arterial blood vessels 
(Julien, 2006). Note that this would contribute to systemic cardiovas
cular fluctuations by impacting the heart rate and arterial blood pres
sure. In studies on blood flow with neural blockers, however, it was 
shown that 0.1 Hz activity continues, suggesting at least a contribution 
from the myogenic activity (Kastrup et al., 1989; Söderström et al., 
2003). Rayshubskiy et al. (2014) found that 0.1 Hz oscillations in the 
human cortex were spatially localised, and correlated with the diameter 
of local vessels, suggesting that the 0.1 Hz hemodynamic oscillation in 
the human cortex are primarily myogenic in nature. 

Electrophysiological origin in the brain. Oscillations around or below 
0.1 Hz detected with EEG in the brain are not traditionally referred to as 
myogenic, but rather as infra-slow (<0.1 Hz) or slow oscillations 
(Buzsáki and Draguhn, 2004). Such studies usually do not include 
measurements of cardiovascular activity, and rather focus on metabolic 
processes. The origin of these oscillations is still debated (Nita et al., 
2004; Voipio et al., 2003; Nikulin et al., 2014; Watson, 2018; Kropotov, 
2022). Mitra et al. (2018) have shown that, in mice, the infra-slow os
cillations have unique dynamics when compared to higher frequencies, 
and should be considered as a separate physiological process. There is 
evidence for both a neuronal and a non-neuronal generator of these 
oscillations, and possibly both of them contribute. 

One feature of the infra-slow oscillations is that their phases were 
found to be correlated with the amplitude of faster oscillations and with 
performance (Monto et al., 2008; De Goede and Van Putten, 2019). It 
has been suggested that infra-slow oscillations are related to gross 
cortical excitability (Palva and Palva, 2012) and to arousal (Raut et al., 
2021; Sihn and Kim, 2022). Changes in arousal level would be reflected 
in the heart rate, which could explain why we observe IHR–EEG 
coherence. Non-neuronal infra-slow oscillations in EEG could stem from 
a potential difference across the blood-brain barrier (BBB) (Nita et al., 
2004; Voipio et al., 2003; Revest et al., 1993; Tschirgi and Taylor, 1958; 
Vanhatalo et al., 2003). This difference is sensitive to pH (Tschirgi and 
Taylor, 1958), and can be manipulated by hypoventilation, hyperven
tilation (Voipio et al., 2003) or postural changes that affect intracranial 
hemodynamics (Vanhatalo et al., 2003). The BBB, consisting of endo
thelial cells, is known to be affected by aging (Shiogai et al., 2010), 
Further, electrical coupling through the endothelium is a mechanism for 
neurons to modulate smooth muscle cell activity and therefore arteriole 
diameter (Drew et al., 2020). At the molecular level, another component 
that could affect the slow EEG oscillations might be neural 
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mitochondrial calcium signalling, which is known to be altered in aging 
(Sanganahalli et al., 2013). Neuron-glia interactions are also thought to 
contribute to the slow oscillations (Lőrincz et al., 2009; Buzsáki et al., 
2012), as are extracellular ion fluxes which have been shown to 
contribute to the coupling of brain activity and blood flow (Mathiesen 
et al., 1998). 

Other origins. Another potential origin of infra-slow fluctuations is 
movement artifacts from fidgeting, which has been observed in both 
animal and human studies. It has been shown in mice that both flow in 
arterioles and also brain electrical activity can be impacted by these 
artifacts (Drew et al., 2020), however in humans it is hardly likely that 
such movement artefacts would be oscillatory. 

We find widely-distributed ~ 0.1 Hz coherence across the cortex, 
which does not in itself represent evidence of a single generator. Neu
rovascular coherence in the myogenic band is correlated with the 
IHR–respiration coherence in the myogenic band, while the neuro
vascular coherence in the respiratory band is not correlated with the 
IHR–respiration coherence in the respiratory band. This result suggests 
that the myogenic frequency band and the 0.1 Hz oscillation are key to 
understanding aging from both the neural and vascular perspectives. 

4.7. Frequency and amplitude modulation of the γ–band by low- 
frequency oscillations 

An interesting question to explore is whether the amplitude and/or 
frequency of γ oscillations in the EEG is modulated by the slower 
oxygenation/vascular oscillations. Murta et al. (2015) have reported 
evidence for amplitude modulation from combined fMRI and EEG 
studies. There is also some evidence from previous fNIRS studies that β 
oscillations are modulated by brain oxygenation (Pfurtscheller et al., 
2012). The ~ 0.1 Hz variations in the oxygenation level of brain blood 
are generally used as an fMRI-based surrogate of “resting-state” 
neuronal activity, implying that it is the γ band which is most closely 
correlated with BOLD signals (Drew et al., 2020). 

To investigate possible amplitude and frequency modulation of 
neuronal activity by low-frequency oxygenation oscillations, we focused 
on the higher β / lower γ band (20–30 Hz). Our results revealed that the 
spatial coherence between EEG signals has a peak in this frequency 
range. They also showed non-zero power for γ–instantaneous frequency 
and γ–instantaneous power time-series between 0.007 and 4 Hz, as 
shown in Fig. 8A, B). 

We therefore calculated the WPC of the γ–instantaneous frequency 
time-series with fNIRS (frequency modulation), and of the 
γ–instantaneous power time-series with fNIRS (amplitude modulation) 
for the 8 locations where the fNIRS and EEG are co-located. However, 
we found little to no coherence in the frequency band considered here 
(Fig. 8C) indicating that there was no significant frequency modulation. 
We comment however, that a single γ instantaneous frequency provides 
only a rough measure of the collective neuronal activity in the γ band. 

On the other hand, a non-zero coherence was observed for amplitude 
modulation, as shown in Fig. 8D), though not for all participants. What is 
more interesting is that we observed a negative phase shift for the older 
group around 0.06–0.08 Hz. This frequency range is often linked to 
periodic breathing, which appears in hypoxia (Lancaster et al., 2020). 
This may indicate that some effects of hypoxia appear with aging, even 
in the resting state. These results suggest an exciting direction for future 
research through more detailed investigations of how fast neural activity 
measured by EEG is modulated by slow hemodynamic oscillations 
measured by fNIRS. Further investigation of the coherence between the 
band power and oxygenation should also include a broader γ frequency 
band, and could explore other frequency bands too. This may elucidate 
additional information about neurovascular interactions. 

In addition, neuro–respiratory interactions with the γ-band may be 
investigated using the IRR and respiration signals. Our results show that 
both the instantaneous γ–frequency and instantaneous γ–power are 
modulated by respiration (Fig. 8A and B). Earlier studies in both humans 

and animals (Chang and Glover, 2009; Tu and Zhang, 2022; Folsch
weiller and Sauer, 2022) have provided evidence of respiration-related 
oscillations in several brain regions. Distinct from respiration-related 
artefacts in fMRI, respiration-related networks have been shown to be 
linked with the γ-band power (Tu and Zhang, 2022). Respiration-related 
oscillations might aid coordination between different brain regions 
(Folschweiller and Sauer, 2022). In humans, the phase of respiration has 
an impact on memory encoding and perception, further indicating the 
importance of respiration for cognitive function. The close relationship 
of neural activity to both hemodynamics and respiration illustrates the 
importance of simultaneous measurements to investigate interactions 
between the underlying systems, e.g. as done in systemic physiology 
augmented fNIRS (Scholkmann et al., 2022). 

4.8. Effect of increased BMI and BP 

The two age groups differ in BMI and sBP (Table 3). From Fig. 9A it is 
clear that BMI is correlated with neurovascular coherence in the 
myogenic band. 

To separate these effects, we created a smaller data-set, matching the 
BMI and BP values between the younger and older groups. This modified 
data-sets consisted of 13 younger and 13 older participants with com
parable BMI (p = 0.80,) and sBP (p = 0.86). We then compared the 
subgroups’ power/coherence values. The results and subgroup details 
are shown in the SM Sec. 9. We conclude that, while it is difficult to 
disentangle the influence of aging from that of the increased BMI/BP, 
there is evidence for an effect of ageing on the parameters considered, 
independent of the BMI/BP differences. 

It is likely that BMI/BP differences also contribute, but some of the 
loss of significance can be attributed to loss of statistical power due to 
having smaller groups. 

Further investigation of the impact of increased BP and BMI could be 
useful given that raised BMI is associated with increased risk of car
diovascular diseases such as coronary heart disease (Lassale et al., 
2018), and increased mid-life BMI is associated with the development of 
dementia in later life (Pedditzi et al., 2016). 

5. Conclusions 

We have investigated the function of the neurovascular unit at 
macroscopic level, evaluating the coherence between the oscillations in 
the cardiovascular system (simultaneously monitored centrally via ECG 
and respiration effort, and locally by whole-brain fNIRS) and oscillations 
in neuronal activity (monitored locally by EEG), thereby gaining insight 
into the mechanisms of ageing in the NVU. 

Most notably, the neurovascular coherence near 0.1 Hz is signifi
cantly reduced by ageing. This presumably reflects progressively 
impaired control of cerebral blood flow. The changes in cardio- 
respiratory coherence with blood oxygenation confirm that age affects 
significantly brain vascular function and oxygenation. It seems that this 
then impacts neuronal activity. 

The methods described here, combined with state-of-the-art time- 
frequency analysis focusing on phase dynamics, have yielded new in
sights into the neurovascular dynamics of the aging brain. In particular, 
they have provided a quantitative measure of the neurovascular effi
ciency and health of the NVU, information that cannot be obtained in 
other ways. The approach could thus be used for non-invasive evalua
tion of the decline of neurovascular function in normal aging, as well as 
for monitoring the efficacy of treatment or lifestyle changes in a wide 
range of neurodegenerative disorders. 
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Neurovascular phase coherence is altered 
in Alzheimer’s disease
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Alzheimer’s disease is the commonest form of dementia, but its cause still remains elusive. It is characterized by neurodegeneration, 
with amyloid-beta and tau aggregation. Recently, however, the roles of the vasculature and the neurovascular unit are being high
lighted as important for disease progression. In particular, there is reduced microvascular density, and altered gene expression in vas
cular and glial cells. Structural changes naturally impact the functioning of the neurovascular unit, and the goal of the study was to 
quantify the corresponding changes in vivo, non-invasively. Our assessment is based on recordings of brain oxygenation, neuronal and 
cardiorespiratory activities, captured by functional near-infrared spectroscopy, electroencephalogram, electrocardiogram and respir
ation effort, respectively. Two groups were compared: an Alzheimer’s disease group (N = 19) and a control group (N = 20) of similar 
age. The time-series were analysed using methods that can capture multi-scale and time-varying oscillations such as the wavelet trans
form power and wavelet phase coherence. The Alzheimer’s disease group shows a significant decrease in the power of brain oxygen
ation oscillations compared to the control group. There is also a significant global reduction in the phase coherence between brain 
oxygenation time-series. The neurovascular phase coherence around 0.1 Hz is also significantly reduced in the Alzheimer’s disease 
group. In addition, the average respiration rate is increased in the Alzheimer’s disease group compared to the control group. We 
show that the phase coherence between vascular and neuronal activities is reduced in Alzheimer’s disease compared to the control 
group, indicating altered functioning of the neurovascular unit. The brain oxygenation dynamics reveals reduced power and coord
ination of oscillations, especially in frequency ranges that are associated with vasomotion. This could lead to reduced oxygen delivery 
to the brain, which could affect ATP production, and potentially reduce amyloid-beta clearance. These changes in neurovascular dy
namics have potential for early diagnosis, as a marker of disease progression, and for evaluating the effect of interventions.
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Graphical Abstract

Introduction
Alzheimer’s disease is a neurodegenerative disease leading to 
memory problems and a decline in cognitive function. It is 
the commonest form of dementia, and is especially prevalent 
in the older population. The mechanisms leading to 
Alzheimer’s disease are not fully elucidated, but 
Alzheimer’s disease is associated with amyloid-beta depos
its,1,2 tau protein tangles,3 brain atrophy4 and vascular 
changes.5 Vascular and neurovascular pathways to neurode
generation are increasingly being recognized as important 
for both the onset and progression of the disease.6,7 The two- 
hit vascular hypothesis singles out vascular factors, such as 
hypertension and diabetes, and genetic factors, such as 
APOE4, to initiate vascular damage (hit one).8 This then 

leads to reduced amyloid-beta clearance leading to amyloid- 
beta accumulation (hit two). According to the hypothesis the 
two hits, both independently and synergistically, cause syn
aptic dysfunction and neurodegeneration, which can be 
seen as disrupted structural and functional connectivity in 
the brain. This has a major effect on brain function, and leads 
to the symptoms of dementia.8

The brain consumes around 20% of the body’s energy 
usage, and works together with the cardiovascular system 
to maintain a balance between local energy demand and sup
ply. This is ensured through neurovascular coupling, con
trolled by the neurovascular unit (NVU).9 The NVU 
consists of many cell types, such as astrocytes, vascular 
smooth muscle cells (VSMC), neurons and endothelial 
cells. There is evidence of neurovascular de-coupling in 
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Alzheimer’s disease, such as dysregulation of cerebral blood 
flow, potentially caused by alterations in VSMCs and astro
cytes.8,10 Interestingly, neurovascular de-coupling is impli
cated in cognitive decline in both ageing and Alzheimer’s 
disease,11 and several vascular and glial cells have genes 
that are expressed differently in Alzheimer’s disease com
pared to healthy controls.12 Hence, evaluating neurovascu
lar interactions non-invasively in Alzheimer’s disease 
participants could provide useful insights into the disease 
progression and mechanisms, potentially aiding in diagnosis 
and the assessment of future treatments.

Earlier research found that electrical activity (measured by 
electroencephalography (EEG) or neuropixels probes) is cor
related with hemodynamic activity (measured with function
al near-infrared spectroscopy (fNIRS) or fMRI) at the same 
slow frequencies (around 0.1 Hz), both in the healthy human 
and mouse brains.13-17 We have reported previously that this 
correlation decreases with ageing,17 but no study has yet in
vestigated such a relationship in participants with 
Alzheimer’s disease. We hypothesise that, due to neurovas
cular de-coupling, the neurovascular coherence will be re
duced. To test this, we employed fNIRS and EEG. Both 
techniques have good temporal resolution,18-20 and are 
therefore well-suited to studies of time-varying phase dy
namics. In addition, the methods are non-invasive and rela
tively inexpensive, making them an attractive option 
compared to methods such as fMRI and positron emission 
tomography (PET).

We treat the cardiovascular system and the brain as sys
tems of interacting oscillators,21 recognizing that living 
systems, being thermodynamically open systems and far- 
from-equilibrium, exhibit oscillations with time-varying fre
quencies.22,23 In view of the latter, methods able to capture 
multi-scale time-localized dynamics with logarithmic fre
quency resolution need to be used.24 Time-frequency ana
lysis methods such as the wavelet transform (WT) and 
wavelet phase coherence (WPC)25-27 were accordingly ap
plied to the measured time-series as illustrated in Fig. 1.

The brain does not work in isolation from the cardiovas
cular and respiratory systems, and hence we also recorded 
simultaneously the heart rate (from ECG) and respiration 
effort (from a respiration belt). Systemic cardiovascular 
oscillations naturally impact brain oxygenation, and so it 
is especially important to understand the oscillations in 
fNIRS.

The overall aim of the study was to evaluate quantitatively, 
we believe for the first time, how the cardiovascular and 
neurovascular phase interactions change in participants 
with Alzheimer’s disease. According to the two-hit vascular 
hypothesis either or both could play a role in the develop
ment of the disease. There is growing recognition that 
Alzheimer’s disease is a multi-system disorder and should 
be regarded as a non-linear dynamical disorder.28

Consideration of dynamics in health and disease calls for 
studies of oscillations.29 We therefore combine non- 
invasive measurements of cardiovascular and neurovascu
lar dynamics, with state-of-the-art time-frequency analysis 

methods, in order to obtain a more integrated picture of 
Alzheimer’s disease.

Materials and methods
Participants
The study was conducted according to the Declaration 
of Helsinki. Study protocols were approved by the 
Commission of the Republic of Slovenia for Medical Ethics 
or by the Faculty of Science and Technology Research 
Ethics Committee (FSTREC) at Lancaster University. 
Written informed consent was given by all participants.

Measurements were conducted on 29 Alzheimer’s disease 
participants (18 F, 11 M). Out of these, six were excluded as 
they were older than the control participants, and therefore it 
was not possible to match the groups; two were excluded due 
to not completing the full recordings; one was excluded due 
to the participant touching the wires and cap multiple times, 
causing poor signal quality; one was excluded due to being 
an outlier (a combination of tachypnoea, atrial fibrillation 
and obesity). Data of included Alzheimer’s disease patients 
can be found in Table 1.

Alzheimer’s disease was diagnosed by clinical evaluation, 
and the presence of abnormal tau and/or amyloid-beta 
1–42 concentrations in the cerebrospinal fluid30,31 (CSF) 
(Table 1). Four people in the Alzheimer’s disease group 
were mild cognitive impairment (MCI) patients, and had 
CSF amyloid-beta or tau levels which strongly suggested 
Alzheimer’s disease.

Twenty control participants of similar ages to the 
Alzheimer’s disease participants were also included. 
Exclusion criteria for the control group were not completing 
the full recordings, movement artefacts causing poor signal 
quality or having a BMI ≥ 40. Participants with Class 3 obes
ity were excluded to better align the BMI of the control and 
Alzheimer’s disease groups.

Data were analysed from a total of 39 participants: an 
Alzheimer’s disease group (N = 19) and a control group 
(N = 20). All participants were from Slovenia, apart from se
ven of the control participants who were from England.

In analyses involving respiration, six control participants 
were excluded. For five of them, the respiration belt had 
not been placed correctly, and therefore failed to measure 
the respiration. For the sixth participant, respiration was 
not measured.

In analyses involving instantaneous heart rate (IHR), six 
participants (two control and four Alzheimer’s disease) 
were excluded. Four participants (one control and three 
Alzheimer’s disease) were excluded due to abnormal ECGs, 
and one further Alzheimer’s disease participant was ex
cluded due to a noisy ECG signal. For the sixth participant, 
ECG was not measured. The four abnormal ECGs are shown 
in the Supplementary Material section 2.

Based on the group sizes, a power of 0.8 and an alpha of 
0.05, the effect size sensitivity analysis performed in 
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G*Power reveal that an effect size of 1.0 or more can reliably 
be detected in this study.

Data acquisition
During the measurement, each participant was sitting in a 
comfortable chair in a quiet room at the Neurology Clinic, 

University Medical Center Ljubljana, Ljubljana, Slovenia 
or in the Nonlinear and Biomedical Physics Lab, Lancaster 
University, Lancaster, UK. The same measurement system 
and procedure were used in both locations. During the 
measurement intervals, which lasted ∼30 min, the partici
pants were asked to keep their eyes open, without a fixation 
point.

A B

C D

E F

G H

Figure 1 Overview figure. (A) Diagram of the brain, heart and lungs. Notice that the right side of the brain illustrates the atrophy associated 
with Alzheimer’s disease. The arrows indicate interactions between the systems. (B) Illustration of the NVU, showing how astrocytes link the 
blood vessels and neurons. Alzheimer’s disease is associated with a leaky blood–brain-barrier, inflammation, neurodegeneration, amyloid-beta 
plaques and tau tangles. (C) The probe layout for fNIRS and electroencephalogram (EEG). The open black circles indicate EEG probes, the open 
red circles indicate both an EEG and a fNIRS probe, while the small red circles indicate only fNIRS probes. (D) Example time-series measured from 
a control participant, shown for 30 s. IHR, instantaneous heart rate; Resp, respiration. (E) The WT of the fNIRS time-series from one participant. 
(F) The WT of the IHR time-series from the same participant. The y-axis is the same as in (E). (G) The WPC between the fNIRS and IHR 
time-series. (H) The phase difference between the fNIRS and IHR time-series. Rad, radians. Created in BioRender. Bjerkan, J. (2025) https:// 
BioRender.com/z13u692.

4 | BRAIN COMMUNICATIONS 2025, fcaf007                                                                                                                      J. Bjerkan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/7/1/fcaf007/7994547 by The W

ork Foundation user on 03 February 2025



A 16-channel system (V-Amp, Brain Products, Germany) 
was used to record the EEG at 1 kHz. An 8 source/8 detector 
LED system (NIRScout, NIRx, Germany) was used to record 
the fNIRS at 31.25 Hz. Locations of the resulting 16 EEG 
electrodes and 11 fNIRS sensors are shown in Fig. 1C. In 
addition, the EEG reference electrode was placed at FCz 
and the ground electrode at AFz. fNIRS measured relative 
changes in both oxygenated haemoglobin (oxyHb) and 
deoxygenated haemoglobin (deoxyHb) concentrations, and 
the oxyHb signal was used for this analysis: for the rest of 
the paper, it is the oxyHb signal that we are referring to 
when saying fNIRS signal or brain oxygenation time-series. 
Hence, oxygenation power refers to the power of the 
fNIRS time-series. An electrocardiogram (ECG) recorded 
the heart rate with bipolar precordial lead and a sampling 
frequency of 1.2 kHz, enabling sharp R-peaks to be reliably 
detected. The electrodes were placed on each shoulder and 
over the lower left rib, in a similar position as the D2 lead 
electrodes. A respiration belt wrapped around the partici
pant’s chest measured the respiration effort (Biopac 
TSD201 Respiratory Effort Transducer, Biopac Systems 
Inc., CA, USA), also with a sampling frequency of 1.2 kHz. 
Both ECG and respiration effort were measured with a 

signal conditioning system with 24-bit A/D conversion 
(CardioSignal, Institute Jožef Stefan, Slovenia). Figure 1D
shows examples of time-series measured from a member of 
the control group.

Data preparation
All analysis was done using MATLAB, and the toolbox 
MODA was employed for the time-frequency analysis.32

First, continuous 25 min time-series were extracted from 
the data. For each participant, the same 25 min interval 
was used for the different types of time-series, as simultan
eous recordings were needed for the coherence analysis. 
For the different time-series, before power and coherence 
analysis, the data were detrended by subtracting a best-fit 
third-order polynomial. The data were also bandpass filtered 
between 0.005 and 2 Hz with a zero-phase Butterworth 
bandpass filter. Respiration and ECG time-series were 
resampled to 100 Hz for peak detection analysis. The 
EEG was resampled to 31.25 Hz to match the fNIRS sam
pling frequency for fNIRS-EEG coherence analysis. The 
IHR, instantaneous respiration rate (IRR) and fNIRS time- 
series were resampled to 20 Hz for coherence analysis. 

Table 1 Participant data and patient data

Participant data

N Age (years) Sex BMI (kgm−2) sBP (mmHg) dBP (mmHg) MMSE

AD 19 70.9 ± 6.7 12F/7M 25.2 ± 3.9 135 ± 23 79 ± 12 21.8 ± 4.9
C 20 67.8 ± 6.9 11F/9M 27.5 ± 3.0 139 ± 16 85 ± 11
P 0.125 0.0543 0.173 0.140

Patient data

CSF

NN
Age 

(years) Sex P tau (pg/ml)
Tau  

(pg/ml) Amyloid-beta 1–42 (pg/ml) MMSE Stage

1 56 F 107 704 580 24 1
2 68 M 63 398 417 NA 1
3 73 F 203 1568 397 19 1
4 77 F 382 67 557 24 1
5 68 M 146 29 431 28 0
6 60 F 1150 130 512 15 2
7 60 M 520 63 531 11 1
8 77 M 862 152 442 22 1
9 78 M 1403 134 545 18 2
10 76 F 885 108 572 17 2
11 69 F 2068 200 494 20 2
12 77 F 328 46 314 18 2
13 73 F 500 68 533 28 0
14 73 M 1347 221 373 25 1
15 63 F 1080 133 735 20 1
16 73 F 315 55 455 29 0
17 76 F 464 63 536 27 0
18 75 F 647 93 526 24 1
19 76 M 530 77 515 23 2

AD, Alzheimer’s disease group; C, control group; N, number (of participants); P, P-value from the Wilcoxon rank-sum test comparing the groups; BMI, body mass index; sBP, systolic 
blood pressure; dBP, diastolic blood pressure; NN, participant number; CSF, cerebral spinal fluid; M, male; F, female; P tau, phosphorylated tau; MMSE, mini mental state exam. All 
MMSE scores were obtained within 1.5 months of the recording, apart from the scores of Patients 3, 4, 7 and 15 (obtained within 3 months). Stage 0 corresponds to MCI, Stage 1 to mild 
disease and Stage 2 to moderate disease. The cut-off for normal levels are approximately30,31: P tau <400 pg/ml, tau <60 pg/ml and amyloid 1–42 > 570 pg/ml.
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An overview of the analysis methods and parameters can 
be found in Table 2. Non-linear mode decomposition was 
used to remove the cardiac artefact in EEG caused by cross- 
talk between brain electrical activity and heart electrical 
activity.33

Peak detection
To detect the IHR and IRR, peak detection was used and 
then checked using ridge extraction.34 A custom MATLAB 
script identified the R-peaks in the ECG or the maxima in 
the respiration effort signal. At the mid-point between two 
peaks the IHR or IRR was set to the inverse of the time be
tween the peaks. Linear interpolation was then used to find 
the values between each of these points and produce equidis
tantly sampled time-series. The resulting time-series of IRR 
or IHR had a sampling frequency of 100 Hz. However, by 
construction, these time-series cannot contain information 
on frequencies higher than half of the heart rate or respir
ation rate frequencies. Hence, they were downsampled to 
20 Hz before further analysis. The average heart/respiration 
rate was found as the average of the IHR/IRR. To measure 
the variability in the heart and respiration rates, the standard 

deviations (SDs) of the IHR and IRR were found. When we 
refer to the respiration signal throughout the manuscript, we 
refer to the respiration effort, i.e. the raw respiration time- 
series as seen in Fig. 1D.

Physiological oscillations: frequency 
bands
Previous time-frequency analysis of time-series such as blood 
flow and cardiac function has shown that cardiovascular os
cillations are manifested in specific frequency intervals, cor
responding to different physiological processes.21 These 
frequency intervals and their physiological origins are sum
marized in Table 3, and range from 0.005 to 2 Hz. The car
diovascular oscillations overlap with slow oscillations in the 
EEG,35 whose origin is still debated.

The lowest frequency of interest was therefore 0.005 Hz. 
We analysed fNIRS and EEG up to 4 Hz to include the δ 
band in EEG. fNIRS is not thought to contain oscillatory 
modes faster than the cardiac activity.

Power and coherence, which are explained below, were 
averaged within the frequency bands to obtain a single value 
per person per probe or probe combination.

Table 2 Summary of analysis methods and parameters

Analysis Method Parameter N

Heart rate Peak detection and ridge extraction WT: f0 = 2 
f ∈ [0.6,2] 
fs = 100 Hz

15 AD, 18 C

Respiration rate Peak detection and ridge extraction WT: f0 = 1 
f ∈ [0.1,0.6] 
fs = 100 Hz

19 AD, 14 C

IHR power Time-averaged WT WT: f0 = 1 
f ∈ [0.005,2] 
fs = 20 Hz

15 AD, 18 C

IRR power Time-averaged WT WT: f0 = 1 
f ∈ [0.005,2] 
fs = 20 Hz

19 AD, 14 C

fNIRS power and coherence Time-averaged WT and WPC WT: f0 = 1 
f ∈ [0.005,4] 
fs = 31.25 Hz

19 AD, 20 C

IHR-respiration coherence WPC WT: f0 = 1 
f ∈ [0.005,2] 
fs = 20 Hz

15 AD, 14 C

IHR-fNIRS coherence WPC WT: f0 = 1 
f ∈ [0.005,4] 
fs = 20 Hz

15 AD, 18 C

Respiration-fNIRS coherence WPC WT: f0 = 1 
f ∈ [0.005,4] 
fs = 20 Hz

19 AD, 14 C

fNIRS-EEG coherence WPC WT: f0 = 1 
f ∈ [0.005,4] 
fs = 31.25 Hz

19 AD, 20 C

EEG power and coherence Time-averaged WT and WPC WT: f0 = 1 
f ∈ [0.005,4] 
fs = 31.25 Hz 

WFT: 
f ∈ [4,48] 
fs = 142 Hz

19 AD, 20 C

N, number (of participants); AD, Alzheimer’s disease group; C, control group; WT, wavelet transform; WFT, windowed Fourier transform; WPC, wavelet phase coherence; IHR, 
instantaneous heart rate; IRR, instantaneous respiration rate; fs, sampling frequency; f0, frequency resolution parameter.
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Strength of oscillations: wavelet 
transform
We are interested in the presence and strength of the cardio
vascular oscillations, and in whether there are differences be
tween the Alzheimer’s disease and control groups. Previous 
time-frequency analysis of cardiovascular oscillations has 
shown that these oscillations are time-varying.21 This is like
ly due to biological systems being open systems, with inter
acting sub-systems (e.g. cardiorespiratory interactions) that 
are also interacting with the environment (e.g. through 
breathing, the body inhales oxygen from the environment 
and exhales carbon dioxide). This time-variability is why 
time-frequency analysis can be more appropriate than 
frequency-domain analysis when studying cardiovascular 
oscillations. In addition, cardiovascular oscillations are man
ifested in the frequency interval 0.005–2 Hz, meaning that 
the oscillations have periods from around 0.5 to 200 s. To 
capture such multi-scale dynamics, a logarithmic frequency 
resolution is desirable. The WT is therefore an excellent 
choice for the analysis,36 and can be thought of as a convo
lution of the time-series with a mother wavelet. The wavelet 
is finite and centred on one time, so to achieve time resolution 
the wavelet is moved across the time-series. In order to inves
tigate various frequencies, the wavelet is stretched and 
squeezed. The Morlet wavelet was used in this analysis, 
with a frequency resolution parameter of 1.

From the transform, an instantaneous amplitude and an 
instantaneous phase for each frequency are obtained. We 
average the amplitude over time, and square it, to find the 
time-averaged WT power. This is similar to the use of a 
Fourier spectrum, but has the advantages discussed above.

Coordination of oscillations: wavelet 
phase coherence
In order to quantify potential interactions between sub- 
systems of the body, we treat the cardiovascular system 
and the brain as interacting phase oscillators.21 If the phase 
difference between two oscillations is constant throughout 
time, it indicates an underlying interaction, and we quantify 
the consistency of the phase difference using WPC.25-27 The 
instantaneous phase obtained from the WT, at a time t and 
frequency k for oscillator 1 is θ1

t, k The phase difference be
tween oscillator 1 and 2 is given by:

Δθt,k = θ1
t,k − θ2

t,k.

The time-averaged WPC is then found as:

WPCk =
����������������������������

cos(Δθk)
􏼊 􏼋2 + sin(Δθk)

􏼊 􏼋2
􏽱

.

The brackets indicate that the cosine and sine terms are aver
aged over all times. WPCk takes values from 0 to 1, where 1 in
dicates a constant phase difference throughout the length of the 
time-series. There is one coherence value per frequency and, due 
to the properties of the WT discussed above, the WPC is suitable 
to investigate coherence in time-series that contain several oscil
lations of different frequencies. It is model-free, and completely 
independent of amplitude information. The WPC was calcu
lated between fNIRS-fNIRS, fNIRS-IHR, fNIRS-respiration, 
fNIRS-EEG and IHR-respiration time-series.

We define the global coherence as the average coherence of 
all unique probe combinations in a frequency band, because 
the WPC between oscillator 1 and 2 is the same as the WPC 
between oscillator 2 and 1. For example, oxyHb global myo
genic coherence is the average coherence in the myogenic 
band of 55 fNIRS probe combinations.

Effect size
Effect size was calculated to quantify how different the 
groups are, when a significant difference was found. The ef
fect size was calculated post hoc with a non-parametric ad
justment to the Cohen’s d.37,38 Starting with the standard 
score z, found from ranks, r was calculated as

r = z
N

, 

where N was the total sample size.39 Cohen’s d was then cal
culated as:

d = 2r
�������
1 − r2
√ .

An effect size between 0.5 and 0.8 is considered medium, 
while above 0.8 is considered large.

Statistical analysis
The WPC computed between two randomly generated time- 
series is not necessarily 0, and so a method is needed for the 

Table 3 Frequency bands

Frequency (Hz) Period (s) Physiological process

Endothelial 0.005–0.0095 105–200 Endothelial activity that modulates the activity of SMCs by the release of substances other than NO.
Endothelial NO 0.0095–0.021 48–105 Endothelial activity that modulates the activity of SMCs by the release of NO.
Neurogenic 0.021–0.052 19–48 Neurogenic activity by the autonomous nervous system that modulates the activity of SMCs  

by the release of substances.
Myogenic 0.052–0.145 7–19 SMCs alter their activity in response to intravascular pressure changes, and thus contract or relax.
Respiration 0.145–0.6 1.7–7 Respiration activity.
Cardiac 0.6–1.7 1.7–0.6 Heart activity.

Cardiovascular frequency bands with frequency ranges, the corresponding periods in seconds and the underlying physiological process.21
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detection of significant coherence. For this, inter-subject sur
rogates were used.40 This tests what coherence level can be 
obtained when calculating WPC between time-series from 
two different participants. This coherence can only be ran
dom, and cannot signify a coupling or interaction between 
the oscillations. So, for each participant, the significance 
threshold was chosen as the 95th percentile of the 166 inter- 
subject coherences at each frequency. The effective coher
ence was then found by subtracting this threshold from the 
original coherence, and only effective coherence is shown 
throughout the paper.

When testing for significant differences in power or effect
ive coherence between the two groups the non-parametric 
two-sided Wilcoxon rank-sum test was used. P-values below 
0.05 were considered as significant. Performing many signifi
cance tests increases the chance of false positives, known as 
the multiple comparison problem. In this analysis, coherence 
and power were averaged in time and frequency, and so only 
the number of sensor combinations contributes to the 

multiple comparison problem. Assuming all null-hypotheses 
were true (i.e. no difference between the groups), and α =  
0.05, the number of expected null-hypotheses being incor
rectly rejected was 2.75 for the fNIRS coherence analysis 
and 8.8 for the fNIRS-EEG coherence analysis. The prob
ability of obtaining X or more positive findings from a total 
of N tries can be found from the binomial probability.41 The 
probability of a positive finding was set to 0.05, and the total 
number of tries was 55 for the NIRS coherence analysis and 
176 for the NIRS-EEG coherence analysis. If the binomial 
probability of obtaining X positive findings was over 5%, 
the results were corrected for multiple comparison using 
the Benjamini–Hochberg (BH) correction.42

Results
Here, we present results that were obtained from 25 min 
continuous recordings of fNIRS, EEG, ECG and respiration 

Figure 2 Cardiorespiratory oscillations. (A) Violin plots showing the average heart rate, SD IHR (N = 18 for controls, N = 15 for AD), 
average respiration rate and the SD IRR (N = 14 for controls, N = 19 for AD). Each point in the plots corresponds to one participant’s data. 
(B) The IHR WT power (N = 18 for controls, N = 15 for AD). (C) The WPC between the IHR and respiration time-series (N = 14 for controls, 
N = 15 for AD). (D) The IRR WT power (N = 14 for controls, N = 19 for AD). (E) The phase difference between the IHR and respiration 
time-series (N = 14 for controls, N = 19 for AD). A negative value indicates that respiration was preceding the IHR. The black and blue solid lines 
show the group medians, while the shaded areas show the 25–75th percentiles. A blue star on the x-axis indicates a significant difference (P ≤ 0.05) 
between the groups at that frequency. All P-values were calculated using the Wilcoxon rank-sum test. AD, Alzheimer’s disease; C, controls.
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effort from the 39 participants (19 Alzheimer’s disease parti
cipants and 20 control participants), whose details are pro
vided in Table 1. As reported in the previous section on 
participants, in some cases, the signals were not of sufficient 
quality for inclusion. The number of participants in each 
comparison is indicated in Table 2.

Cardiorespiratory oscillations
There are no significant differences in the average heart rate 
(P = 0.21) or SD of the IHR (P = 0.34) between the two 
groups (Fig. 2A). The average respiration rate is significantly 
different between the groups (P = 0.001), with an effect size 
of 1.45 (Table 4). The median rate is 0.21 Hz (∼13 breaths/ 
min) for the control group, and 0.28 Hz (∼17 breaths/min) 
for the Alzheimer’s disease group (Fig. 2). The SD IRR is 
not significantly different (P = 0.76), see Fig. 2A. The control 
group has higher IHR power in the range 0.05–0.2 Hz 
(Fig. 2B), while the Alzheimer’s disease group has higher 
IRR power in the range 0.06–1 Hz (Fig. 2D).

The IHR-respiration effective phase coherence is signifi
cantly different between the two groups in the range 0.06– 
0.07 and ∼1.4 Hz (Fig. 2C), and the control group has higher 
coherence. In both groups, the phase difference is negative 
in the 0.145–0.5 Hz range, indicating that respiration is 
leading. The Supplementary Material section 2 contains 
additional IHR results. Analysis of 25 min-recordings for 
all participants for which ECG was recorded (19 
Alzheimer’s disease and 18 control) and 5 min-recordings 
from the originally included participants (15 Alzheimer’s 
disease and 18 control), where artefacts were avoided, 
show that the length of recording does not weaken the sig
nificant findings, but including the participants with abnor
mal ECGs does.

Brain oxygenation oscillations
Next, phase coherence between respiration/IHR and fNIRS 
signals was found. In Fig. 3A and B, this is shown at location 
N11 (see Fig. 1C for sensor locations). The coherence with 
the remaining fNIRS sensors is shown in the Supplementary 
Material, sections 3 and 4. For both groups, IHR-fNIRS ef
fective phase coherence was seen in the 0.052–0.6 Hz fre
quency range. Respiration-fNIRS effective phase coherence 
is mostly found in the 0.145–0.6 Hz range. The phase differ
ence increases steadily from ∼0.06 to ∼0.3 Hz, suggesting a 
consistent time lag between the two oscillators of around 
2.5 s. In Fig. 3A, one can see that the IHR-fNIRS coherence 
is reduced in the Alzheimer’s disease group, which is consist
ent across all fNIRS channels. The phase difference is also 
significantly different between the two groups around 
0.2 Hz, a result that is consistent in 9/11 fNIRS channels. 
The respiration-fNIRS coherence is lower in the control 
group in the 0.3–0.4 Hz range, which is consistent in 4/11 
fNIRS channels. On the other hand, the coherence is lower 
in the Alzheimer’s disease group around 0.145 Hz, which 
is consistent in 7/11 fNIRS channels.

The Alzheimer’s disease group has reduced brain oxygen
ation power compared to the control group in the neurogenic 
and myogenic frequency bands, both at N10 and N11 
(Fig. 3C). In the myogenic band reduced power is also seen 
at N1 and N7. In addition, the Alzheimer’s disease group 
has reduced power at N11 in the endothelial band. The prob
ability of 1 or more positive findings, assuming all null hy
pothesis are true, is 45%, while for 2 or more it is 10%, 
and for 4 or more findings the probability is 0.16%. 
Further multiple comparison corrections are therefore not 
needed for the myogenic band, but have been applied to 
the neurogenic and endothelial bands. The significant differ
ence in the endothelial band does not survive BH correction 
(original P-value 0.029, corrected P-value 0.21). The signifi
cant differences in the neurogenic band survive BH correc
tion (original P-values 0.0035 and 0.0042, corrected 
P-values 0.0139 and 0.0139).

The global coherence in all frequency bands is significantly 
reduced in the Alzheimer’s disease group (Fig. 3D). Effect 
size calculations are shown in Table 4, and generally show 
large differences between the groups.

Neuronal oscillations
For completeness, the results and discussion on neuronal os
cillations extracted from the EEG are presented in the 
Supplementary Material, section 6.

Neurovascular oscillations
In the cardiac, myogenic and neurogenic frequency bands the 
Alzheimer’s disease group has reduced neurovascular coher
ence in 14/176, 18/176 and 18/178 of the fNIRS-EEG com
binations, respectively (Fig. 4A–C). In the control group, the 
coherence in the myogenic frequency band is highest in the 
parietal and central electrodes, while in the Alzheimer’s dis
ease group, it has more or less vanished (Fig. 4B). Coherence 
in the neurogenic band is generally low in both groups, but 
the control group has higher median values in the Fp1, Fp2 
and central electrodes (Fig. 4C). The surrogate threshold at 
low frequencies is so high that the endothelial frequency 
band was not considered for the fNIRS-EEG coherence ana
lysis. The probability of 14 or more positive findings, assum
ing all null hypothesis are true, is 5.9%, and therefore further 
multiple comparison corrections were needed in the cardiac 
band. None of the 14 combinations survives BH correction. 
The average effect size of the 18 significant combinations in 
the myogenic band is 0.76, while the average effect size in the 
neurogenic band is 0.84 (Table 4).

Discussion
We analysed time-series of cardiovascular and neural origin, 
from Alzheimer’s disease patients and control participants in 
the resting-state, in an attempt to develop a non-invasive 
methodology for assessing the functioning of the NVU 
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in vivo. We find that data from Alzheimer’s disease patients 
exhibit the following three main features: 
• Decreased oxygenation power and decreased global oxy

genation phase coherence compared to controls,
• Increased respiration rate compared to controls,
• Decreased neurovascular phase coherence compared to 

controls.

The following sections will discuss these findings and their 
implications.

Vascular and neurovascular 
alterations in Alzheimer’s disease
We find stark changes in the oxygenation dynamics in the 
Alzheimer’s disease group compared to the control group, 
when considering either the power or the coordination of os
cillations (Fig. 3C and D). The Alzheimer’s disease group has 
reduced fNIRS power at N10 and N11 in the myogenic and 
neurogenic frequency bands. The myogenic frequency band 
is linked to vasomotion caused by myogenic activity (i.e. 
SMCs activity),21,43-45 which has also been observed in 
vivo in the human cortex.46 The neurogenic frequency 
band is associated with vasomotion caused by nervous 
activity.44,45

The production of ATP requires oxygen, and so the brain 
relies on a sufficient supply of oxygen to meet its metabolic 
demand. ATP is essential for maintaining cellular pumps, 
which, in turn, facilitate vasomotion, thereby controlling 
blood flow and oxygen supply.47 Dysfunction in vasomotion 
is implicated in Alzheimer’s disease,47 such as hypercontrac
tility.48 Disrupted vasomotion might contribute to cerebral 
hypoperfusion, which is observed in Alzheimer’s disease.8

Mild cerebral hypoperfusion can negatively affect neuronal 
function, through disrupted neuronal protein synthesis, 
which is important for synaptic plasticity.49 Hypoperfusion 
can also disrupt the ability of neurons to generate action po
tentials through decreased ATP production.

Another aspect of vasomotion especially relevant to 
Alzheimer’s disease is that vasomotion is thought to 

contribute to clearance of amyloid-beta from the brain.50

The reduced power might be a sign of reduced vasomotion 
and therefore reduced clearance in the Alzheimer’s disease 
brain. The reduced clearance might further affect the vaso
motion, as amyloid-beta has a negative effect on endothelial 
cells.51 The need for additional energy in response to in
creased neuronal activity is signalled to the local microvascu
lature by neurons and astrocytes. This signal propagates 
further up the vascular tree, to the arteries, due to the elec
trical coupling between endothelial cells.9 The endothelial 
cells are also in electrical contact with SMCs52 and therefore 
reduced functioning of endothelial cells can impact vasomo
tion causing a vicious circle. The control of cerebral blood 
flow is orchestrated by the NVU.9 Information flow is needed 
between the various cell types, such as neurons, astrocytes, 
pericytes, SMCs and endothelial cells. By calculating the 
phase coherence between oxygenation and neural signals, 
we aim to quantify this information flow, and thereby find 
a marker of the efficiency of the NVU.17 We found previous
ly that neurovascular phase coherence decreases with age 
and with Huntington’s disease,17,53 and we now show that 
this coherence is also reduced in Alzheimer’s disease. This in
dicates reduced cooperation between cells in the NVU or, 
correspondingly, reduced neurovascular coupling.

Patients with Alzheimer’s disease have reduced micro
vascular density compared to controls.6 Further, morpho
logical changes like kinking and focal constriction of the 
microvasculature have been seen in the Alzheimer’s disease 
brain,51 as well as a thickening of the basement membrane 
in Alzheimer’s disease participants.51 The morphological 
changes and thickening of the basement membrane could in
dicate that the cardiac pulse is not propagated to the micro
vasculature as efficiently as in control participants. These 
differences might explain why the cardiac coherence, and 
the coherence in the other frequency bands, are lower in 
the Alzheimer’s disease group. In addition, loss of neurons 
and altered functional connectivity could also cause the 
brain oxygenation to be less coherent.

Altered oxygen dynamics in the brain might also be linked 
to systemic cardiovascular oscillations,54 as the blood is oxy
genated in the lungs and pumped by the heart. We find that 
the Alzheimer’s disease group has a higher average respir
ation rate compared to the control group. Respiratory dys
function is observed in Alzheimer’s disease, such as 
decreased respiratory muscle strength compared to healthy 
controls.55 A previous study found that a higher respiration 
rate was linked to cognitive impairment.56 Another study 
found that both Alzheimer’s disease and controls had similar 
breathing rates of around 18 breaths/min.57 Further investi
gations are needed to confirm whether or not a higher respir
ation rate is common in Alzheimer’s disease patients.

The reduced IHR-oxygenation coherence in the lower re
spiratory band (∼0.145–0.2 Hz) seen in the Alzheimer’s dis
ease group (Fig. 3; Supplementary Material section 3) is 
likely due to their increased respiration rate. Across frontal, 
parietal and occipital locations the Alzheimer’s disease group 
has reduced coherence in the myogenic frequency range, 

Table 4 Effect size

Cohen’s d

Average respiration rate 1.45
fNIRS power in neurogenic band N10: 1.13, N11: 1.11
fNIRS power in myogenic band N1: 0.89, N7: 0.85,  

N10: 1.16, N11: 1.19
fNIRS coherence in endothelial band 0.85
fNIRS coherence in neurogenic band 1.12
fNIRS coherence in myogenic band 1.22
fNIRS coherence in respiration band 0.88
fNIRS coherence in cardiac band 0.87
fNIRS-EEG coherence in myogenic band 0.76 ± 0.05
fNIRS-EEG coherence in neurogenic band 0.84 ± 0.16

The effect size calculations for various significant differences between the groups. The 
fNIRS power effect size is shown for each probe where a significant difference was 
found. For the fNIRS-EEG coherence in the myogenic band, the effect size is shown as 
mean ± SD of the 18 combinations with a significant difference.
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indicating a systemic origin. The reduction could be linked to 
disrupted vasomotion and the non-efficient propagation of 
the cardiac pulse discussed above. In both the control and 
Alzheimer’s disease groups the IHR is leading the respiration 
oscillation in the myogenic band, indicating that the myo
genic oscillation is propagated to the brain, as the SMCs re
sponds to pressure changes caused by the cardiac pulse.

Concurrent EEG, fNIRS, ECG and 
respiration combined with 
state-of-the-art time-frequency 
analysis as a potential biomarker
In addition to contributing to the understanding of physio
logical changes in Alzheimer’s disease, a secondary goal of 

the analysis was to consider the potential of these methods 
to create a biomarker. In the research setting, Alzheimer’s dis
ease can be defined using the National Institute on Aging and 
Alzheimer’s Association Research framework.58 This is a 
purely biological definition (i.e. not dependent on clinical 
symptoms), in which Alzheimer’s disease is identified through 
Amyloid-beta, Tau and Neurodegeneration (A, T and N). 
These can be assessed by employing CSF, PET and MRI.58

Functional MRI resting-state networks and blood-based tests 
also have potential as biomarkers.59 Most of the mentioned 
biomarkers are expensive and some are invasive. As 
Alzheimer’s disease is a global disease, having access to 
less-expensive, non-invasive and also portable techniques is 
desirable. In this respect, EEG and fNIRS are potential candi
dates.60,61 If either EEG or fNIRS is taken in isolation, one ob
tains only an incomplete picture as neuronal activity and 

Figure 3 Brain oxygenation oscillations. (A) The WPC and phase difference between the IHR and brain oxygenation time-series at N11. 
N = 18 controls, N = 15 AD. (B) The WPC and phase difference between respiration and brain oxygenation time-series at N11. N = 14 controls, 
N = 19 AD. The black and blue solid lines show the group medians, while the shaded areas show the 25–75th percentiles. A blue star on the x-axis 
indicates a significant difference (P ≤ 0.05) between the groups at that frequency. (C) Significant differences (P ≤ 0.05) between the two groups in 
brain oxygenation power at specific probes, and in specific frequency bands, are indicated in blue. N = 20 controls, N = 19 AD. (D) Violin plots 
showing the brain oxygenation global coherence in the five cardiovascular frequency bands. N = 20 controls, N = 19 AD. All P-values were 
calculated using the Wilcoxon rank-sum test. AD, Alzheimer’s disease; C, controls. Each point in the plots corresponds to one participant’s data.
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Figure 4 Neurovascular oscillations. (A) The WPC in the cardiac frequency band between fNIRS and electroencephalogram time-series, for 
all possible combinations. The left column shows the control group median, while the middle column shows the Alzheimer’s disease group median. 
The right column shows significant differences (P ≤ 0.05) between the groups. The square plots and head plots depict the same information. (B) As 
in (A), but for the myogenic band. (C) As in (A), but for the neurogenic band. All P-values were calculated using the Wilcoxon rank-sum test. AD, 
Alzheimer’s disease; C, controls. N = 20 controls, N = 19 AD.
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oxygenation are interlinked, and dependent on cardiorespira
tory function. Fortunately, as is done in the present study and 
many others,62 EEG and fNIRS can be combined in a single 
scan. Previous work related to Alzheimer’s disease has been 
performed by Perpetuini et al.63 and Chiarelli et al.,64 where 
differences between the Alzheimer’s disease group and con
trol group were found in both studies. We now show that 
the inclusion of simultaneous measurements of ECG and res
piration enables metabolic aspects to be taken into account.

Previous studies employing fNIRS to study oxygenation 
dynamics in dementia have generally focused on absolute va
lues, Pearson correlation and entropy.61,65 In contrast, in the 
present work, we have used a non-autonomous oscillatory 
dynamics approach.66 Combining non-invasive measure
ments of neurovascular function with time-frequency ana
lysis methods—specifically selected to study oscillations 
with time-varying frequencies—we have revealed clear differ
ences between the Alzheimer’s disease and control groups. 
Also focusing on time-dependence, Cruzat et al.67 showed 
that the temporal irreversibility of brain activity measured 
by fMRI and EEG is reduced in Alzheimer’s disease patients. 
They argue that this indicates that the unhealthy brain has ac
tivity closer to equilibrium dynamics. This might mean that 
the brain is less able to respond to environmental demands, 
or that intrinsic couplings are reduced. Non-autonomous dy
namical systems68 (i.e. systems with explicit time-dependence 
of their characteristic frequencies and couplings) have inher
ent time-irreversibility. While both approaches consider 
time-dependence, a strength of focusing specifically on oscil
lations is the clearer link to physiology.69,70 Thus, our finding 
of reduced myogenic neurovascular coherence can be linked 
to decreased efficiency of the NVU. As such, our results pro
vide a potential avenue for in vivo assessment of the efficiency 
of the NVU in the human brain.

Limitations and strengths
This study has several limitations, such as a relatively small 
sample size. A strength of the study is that the Alzheimer’s dis
ease patients were confirmed by standard biomarkers. The long 
recordings contain more information than shorter recordings 
and mean that sporadic or random changes in the investigated 
parameters would average out over time, making the significant 
differences between groups robust. However, it can be challen
ging for the participants to remain still during the recording. 
While some fidgeting can have impacted the measurements, it 
is very unlikely that this behaviour was oscillatory or that 
it can explain the group differences. This is illustrated by 
considering shorter time-series to repeat the analysis in 
Supplementary Figs. S3 and S6. To maintain alertness, the par
ticipants were asked to keep their eyes open during the meas
urement. However, we did not record electrooculography 
(EOG) signals or use EOG artefact rejection for the EEG time- 
series. Such an approach would not in fact have been feasible 
because time-series must be continuous for the coherence ana
lysis of slow oscillations. This artefact affects only the EEG 
time-series by introducing large amplitude changes. As the 

WPC is independent of amplitude information, the artefact is 
unlikely to have affected the fNIRS-EEG coherence.

fNIRS measures only the relative changes in oxygenated 
and deoxygenated haemoglobin concentrations, and the ex
act locations of these changes are often unclear. This uncer
tainty complicates the quantification of absolute changes in 
these concentrations.71 We use wavelengths of 760 and 
850 nm, thus avoiding wavelengths in the 770–800 nm 
range previously discussed as giving less accurate measure
ments.71 Haemodynamic changes in the scalp likely affect 
the amplitude of the signal more than the phase. However, 
amplitude-based measures are prone to cross-talk, move
ment artefacts, and other noise sources. For this reason, 
our approach emphasizes phase, as phase coherence has 
been shown to be more resilient to various types of noise.27

Additionally, fNIRS is a relatively inexpensive, portable 
and non-invasive method,72 making it a promising tool for 
monitoring haemodynamics in dementia.

Nested data is common in neuroscience and requires par
ticular attention in their statistical evaluation.73 Here, we ag
gregate data so that for each statistical test only one value per 
participant is considered. We check for group differences at 
the probe level for spectral power and at the global level for 
fNIRS coherence. We also apply inter-subject surrogates to 
ensure that coherence is statistically significant.

Concluding remarks
This work shows clear evidence of changes in brain oxygen
ation dynamics in Alzheimer’s disease, thereby supporting 
suggestions that vascular changes contribute to neurodegen
eration. We detected reduced oxygenation power in the 
neurogenic and myogenic frequency bands, which are both 
associated with vasomotion. Reduced vasomotion can con
tribute to insufficient delivery of oxygen and nutrients and 
to reduced clearance of amyloid-beta which is known to ag
gregate in Alzheimer’s disease. Not surprisingly, we see direct 
evidence of reduced efficiency of the NVU in Alzheimer’s dis
ease, investigated by phase coherence between EEG and 
fNIRS. Another important discovery is the significant in
crease in the frequency of respiration in participants with 
Alzheimer’s disease, suggesting the presence of inflammation.

The present work stands on two pillars. First, we consider 
both the neuronal and the cardiovascular aspects of brain 
function to understand changes in Alzheimer’s disease. 
Second, we apply multi-scale oscillatory dynamics analysis 
to gain neurophysiological insight into these changes.

After further validation, such a method could be used for 
the evaluation of treatments and routine follow-ups. With 
disappointing results from protein-focused drug trials, the 
vasculature and NVU are promising targets for future treat
ments of Alzheimer’s disease.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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Chapter 5

The phase coherence of the neurovascular unit is reduced in

Huntington’s disease
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The phase coherence of the neurovascular 
unit is reduced in Huntington’s disease
Juliane Bjerkan,1 Jan Kobal,2 Gemma Lancaster,1 Sanja Šešok,2 Bernard Meglič,2

Peter V. E. McClintock,1 Karol P. Budohoski,3 Peter J. Kirkpatrick3 and Aneta Stefanovska1

Huntington’s disease is a neurodegenerative disorder in which neuronal death leads to chorea and cognitive decline. Individuals with 
≥40 cytosine–adenine–guanine repeats on the interesting transcript 15 gene develop Huntington’s disease due to a mutated huntingtin 
protein. While the associated structural and molecular changes are well characterized, the alterations in neurovascular function that 
lead to the symptoms are not yet fully understood. Recently, the neurovascular unit has gained attention as a key player in neurode
generative diseases. The mutant huntingtin protein is known to be present in the major parts of the neurovascular unit in individuals 
with Huntington’s disease. However, a non-invasive assessment of neurovascular unit function in Huntington’s disease has not yet 
been performed. Here, we investigate neurovascular interactions in presymptomatic (N = 13) and symptomatic (N = 15) 
Huntington’s disease participants compared to healthy controls (N = 36). To assess the dynamics of oxygen transport to the brain, 
functional near-infrared spectroscopy, ECG and respiration effort were recorded. Simultaneously, neuronal activity was assessed 
using EEG. The resultant time series were analysed using methods for discerning time-resolved multiscale dynamics, such as wavelet 
transform power and wavelet phase coherence. Neurovascular phase coherence in the interval around 0.1 Hz is significantly reduced 
in both Huntington’s disease groups. The presymptomatic Huntington’s disease group has a lower power of oxygenation oscillations 
compared to controls. The spatial coherence of the oxygenation oscillations is lower in the symptomatic Huntington’s disease group 
compared to the controls. The EEG phase coherence, especially in the α band, is reduced in both Huntington’s disease groups and, to a 
significantly greater extent, in the symptomatic group. Our results show a reduced efficiency of the neurovascular unit in Huntington’s 
disease both in the presymptomatic and symptomatic stages of the disease. The vasculature is already significantly impaired in the 
presymptomatic stage of the disease, resulting in reduced cerebral blood flow control. The results indicate vascular remodelling, which 
is most likely a compensatory mechanism. In contrast, the declines in α and γ coherence indicate a gradual deterioration of neuronal 
activity. The results raise the question of whether functional changes in the vasculature precede the functional changes in neuronal 
activity, which requires further investigation. The observation of altered dynamics paves the way for a simple method to monitor 
the progression of Huntington’s disease non-invasively and evaluate the efficacy of treatments.
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Graphical Abstract

Introduction
Huntington’s disease is a genetic neurodegenerative disease, 
causing disordered movement, altered cognition and behav
ioural changes. The disease is linked to a mutation in the in
teresting transcript 15 gene on chromosome 4, which codes 
for the protein huntingtin. The mutation involves additional 
cytosine–adenine–guanine (CAG) repeats compared to the 
normal (17–30). Possession of 40 or more CAG repeats al
most guarantees development of Huntington’s disease, while 
36–39 repeats may lead to Huntington’s disease (reduced 
penetrance).1 The abnormal huntingtin protein damages 
the brain cells and gives rise to neuronal death.2 By the 
time symptoms manifest, the striatum has decreased in vol
ume by around 50%.3 The corresponding structural and 
functional changes of the brain have been demonstrated 
using MRI and EEG.2,4

Recently, the role of vascular and neurovascular changes 
in neurodegenerative diseases has gained attention, often as 

a key early event important in disease progression.5,6 The 
vasculature is not a bystander in the brain but, rather, active
ly supplies the brain with the energy it needs to function 
properly. The supply is regulated by the cells making up 
the neurovascular unit (NVU), including endothelial cells, 
astrocytes, neurons and smooth muscle cells (see 
Fig. 1C).7,8 In people with Huntington’s disease, the mutant 
huntingtin protein is found in the major components of the 
NVU.9,10 Brain vascular changes observed post-mortem in 
human Huntington’s disease include an increased number 
of small vessels, increased vessel density and increased 
blood–brain barrier (BBB) permeability.9 Furthermore, 
Garcia et al.11 have recently reported molecular changes in 
vascular and glial cells in Huntington’s disease. They involve 
activation of immune signalling and a decrease in the levels 
of proteins important for BBB function. Based on the afore
mentioned changes to the vasculature and glial cells, we hy
pothesize that the functioning of the NVU is decreased in 
people with Huntington’s disease. However, the efficiency 
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of the NVU in vivo in humans with Huntington’s disease has 
not yet been assessed.

This study explores the hypothesis that simultaneous mea
surements of neuronal activity and haemodynamics in the 
resting state could be used to assess NVU efficiency12 and 
that it might show reduced efficiency in Huntington’s disease 
participants. Our study will thus provide functional corre
lates of the known structural9 and molecular changes11 in 
the vasculature and the NVU in people with Huntington’s 
disease. To measure the local vascular and electrical oscilla
tions, we use functional near-infrared spectroscopy (fNIRS) 
and EEG, respectively. Like fMRI, fNIRS is used to measure 
changes in oxygenation. However, fNIRS is simpler, is more 
portable and only requires probes placed on the scalp. fNIRS 
has been used in earlier studies of ageing and Alzheimer’s dis
ease,13,14 but this is the first time fNIRS has been applied in 
the study of Huntington’s disease. Blood is oxygenated in the 
lungs and transported by the pressure generated by the heart. 
Thus, the oxygenation of the brain is naturally affected by 
the rest of the cardiovascular system, including the 
properties of the vessels through which the oxygenated 
blood travels. We therefore measured the respiration and 

heart rates using respiration effort and ECG, respectively. 
Huntington’s disease is known to affect the autonomic ner
vous system and blood vessels,15,16 and the chosen measure
ment methods allow us to further investigate such effects.

The electrical activity measured using EEG is traditionally 
considered in terms of different frequency bands, which are 
attributed to particular functions and states of the brain.17

A similar approach can be taken with the cardiovascular sys
tem, with distinct oscillations of varying frequency observed 
in recordings of blood flow and oxygenation.18,19 Based on 
this, the cardiovascular system and the brain can naturally 
be considered as systems of oscillators acting on multiple 
time scales (i.e. multiple frequencies).19-21 The time-varying 
oscillations of different frequencies can readily be captured 
due to the good temporal resolution of EEG and 
fNIRS.22,23 Multiscale time–frequency analysis methods 
with logarithmic frequency resolution are employed to opti
mize resolution at lower frequencies.

The goal of this study was thus to investigate functional 
changes in the NVU related to Huntington’s disease progres
sion via application of non-invasive measurement techniques 
and powerful time–frequency analysis methods.

Figure 1 Overview figure. (A) A systemic view of the cardiovascular system and the brain. (B) Seven seconds of recorded time series from one 
participant. fNIRS captures brain oxygenation dynamics, EEG captures brain electrical activity, while the respiration and ECG time series capture 
cardio-respiratory dynamics. (C) Illustration of the NVU, consisting of smooth muscle cells, neurons, astrocytes, endothelial cells, pericytes and 
microglia. The mutant huntingtin protein has been found in all parts of the NVU. (D) Layout of fNIRS sensors and EEG electrodes. A black circle 
indicates that there is an EEG electrode at this position. A large unfilled red circle indicates that there are both an fNIRS sensor and an EEG 
electrode at this position. A small filled red circle indicates that there is an fNIRS sensor at this location. (E) The WT of an fNIRS time series 
showing the frequency content over time. (F) Same as E, but for an EEG time series. (G) The time-averaged WT power of the fNIRS time series as 
above. (H) Same as G, but for the EEG time series. (I) The black line is the WPC between the fNIRS and EEG time series, and the red line shows 
the surrogate threshold from the inter-subject surrogates. The green- and blue-shaded areas indicate the neurogenic and myogenic bands, 
respectively.
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Materials and methods
Participants
This study was conducted in accordance with the 
Declaration of Helsinki, and written informed consent was 
obtained from all participants. The study protocols were ap
proved by the Ethical Committee of the Slovenian National 
Ministry of Health (approval number 81-11-05).

Measurements were carried out on 47 [28 female (F), 19 
male (M)] participants with a positive genetic test (CAG re
peats ≥36) for Huntington’s disease, of whom 1 F was ex
cluded due to having particularly thick black hair, which 
resulted in fNIRS time series of poor quality. Of the other 
46 participants, 18 (9 F, 9 M) exhibited severe chorea and 
were excluded from the initial investigation in order to min
imize the effect of movement artefacts.

The remaining 28 (18 F, 10 M) Huntington’s disease partici
pants were split into 2 groups: 13 (10 F, 3 M) presymptomatic 
Huntington’s disease (P) participants and 15 (8 F, 7 M) symp
tomatic Huntington’s disease (S) participants. Symptomatic 
Huntington’s disease was indicated by a Unified Huntington’s 
Disease Rating Score–Total Motor Score (UHDRS–TMS) of 
4 or higher. Presymptomatic Huntington’s disease was defined 

by a UHDRS–TMS below 4. Two of the P participants had 39 
CAG repeats, implying a high likelihood of developing the 
Huntington’s disease phenotype.1

Measurements were also carried out on healthy controls 
of similar ages to the Huntington’s disease groups. 
Exclusion criteria were diastolic blood pressure >  
95 mmHg, body mass index (BMI) > 40 and having suffered 
a stroke in the past. The control group consisted of 36 (21 F, 
15 M) participants that were assigned to 2 groups to match 
the ages of the Huntington’s disease groups, as the P group 
were younger than the S group. These were denoted as con
trol group for P (PC; 29—16 F, 13 M) and control group for 
S (SC; 33—21 F, 12 M), respectively. Some of the healthy 
participants were members of both groups.

Data for the P and S participants and the corresponding 
control groups are shown in Table 1. The data for the severe 
chorea (CS) participants are also included. Of the 36 partici
pants in the control group, 5 (included in both PC and SC 
groups) have no data from the Pz electrode position, due to 
a faulty electrode. Calculations including the Pz electrode 
therefore have five fewer participants in both control groups.

Based on the sample sizes, a power of 0.8 and a signifi
cance level of 0.05, this study could reliably pick up differ
ences between groups with effect sizes of 1.03 (P versus 

Table 1 Participant details, shown as mean (minimum value–maximum value)

P PC P S SC P CS P S P SC

Participant details
N 13 29 15 33 18
Age  
(years)

40.6  
(30–57)

42.9  
(28–57)

0.45 52.1  
(33–69)

48.4  
(35–72)

0.26 56.7  
(36–79)

0.29 0.04

Sex 10 F/3 M 16 F/13 M 8 F/7 M 21 F/12 M 9 F/9 M
BMI  
(kg/m2)

24.5  
(17.3–41.0)

24.3  
(19.9–33.2)

0.51 25.3  
(19.1–37.1)

24.4  
(19.0–33.2)

0.37 23.1  
(18.4–29.1)

0.12 0.38

sBP  
(mmHg)

121  
(93–145)

119  
(88–158)

0.71 131  
(97–169)

121  
(88–158)

0.22 110  
(89–139)

0.01 0.12

dBP  
(mmHg)

85  
(70–101)

77  
(57–95)

0.055 86  
(64–109)

78  
(57–95)

0.057 71  
(61–84)

0.002 0.04

CAG  
repeats

41.5  
(39–46)

43.9  
(40–53)

44.9  
(36–52)

DBS 238  
(116–483)

414  
(275–683)

496  
(40–905)

UHDRS test scores and education
Education  
(years)

14.3  
(12–17)

12.4  
(8–16)

12.6  
(6–16)

0.78

Motor  
score

0.38  
(0–2)

25.4  
(4–63)

62.9  
(18–95)

2 × 10−4

Verbal  
fluency

30.2  
(12–58)

13.7  
(3–26)

12.1  
(5–22)

0.63

Stroop  
W

92.2  
(79–103)

49.5  
(8–86)

37.1  
(17–63)

0.12

Stroop  
C

73.1  
(61–80)

36.8  
(19–49)

27.6  
(17–43)

0.03

Stroop  
WC

39.7  
(20–50)

21  
(7–48)

10.9  
(5–21)

0.02

Luria 0.17  
(0–1)

1.47  
(0–3)

3.1  
(1–4)

5 × 10−5

BMI, body mass index; CS, symptomatic Huntington’s disease with severe chorea; dBP, diastolic blood pressure; DBS, disease burden score [age*(CAG-35.5)]; N, number  
(of participants); P, presymptomatic Huntington’s disease; P, P-value from the Wilcoxon rank-sum test comparing Huntington’s disease groups with their control groups; P S, P-value 
from the Wilcoxon rank-sum test when comparing S and CS groups; P CS, P-value from the Wilcoxon rank-sum test when comparing SC and CC groups; PC, control group for P; S, 
symptomatic Huntington’s disease; sBP, systolic blood pressure; SC, control group for S.
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PC) and 0.89 (S versus SC). These are considered large effect 
sizes24 (see Supplementary Fig. 2 for the calculations done in 
G*Power25 and Supplementary Figs. 5 and 6 for a discussion 
on reproducibility).

Data acquisition
Data were recorded for participants in a comfortable, seated 
position, with eyes open and no fixation point, in a quiet 
room at around 25°C at the Neurological Clinic, 
Ljubljana, Slovenia. The EEG was recorded at 1 kHz using 
a 16-channel system (V-Amp, Brain Products, Germany) 
and fNIRS at 31.25 Hz with an 8-source/8-detector LED sys
tem (NIRScout, NIRx, Germany). The same system and 
methodology were also used in our recent study of ageing.12

Analyses of oxygenated haemoglobin data are presented 
below. Note that while fNIRS measures relative changes in 
haemoglobin concentration, not absolute values, we refer 
to these measures as brain oxygenation. An ECG with bipo
lar precordial lead similar to the D2 lead electrodes placed on 
each shoulder and the lower left rib was recorded. A belt fit
ted with a Biopac TSD201 Respiratory Effort Transducer 
(Biopac Systems Inc., CA, USA) wrapped around the partici
pant’s chest recorded respiratory effort. Both ECG and respir
ation were sampled at 1.2 kHz using a signal conditioning 
system with 24-bit A/D conversion (CardioSignal, Institute 
Jožef Stefan, Slovenia). Figure 1B shows examples of re
corded time series, and the EEG/fNIRS probe layout is 
shown in Fig. 1D, and Supplementary Fig. 1. The EEG 
ground electrode was placed at AFz, and the reference elec
trode at FCz. The data were recorded simultaneously for 
∼30 min.

Time–frequency analysis
Preprocessing
MATLAB was used for all time series analyses. The time– 
frequency analyses were performed using algorithms in the 
MODA toolbox.26 Continuous 20-min time series were ex
tracted for all participants. To remove the effects of frequen
cies lower than those of interest, the time series were 
detrended by subtracting a best-fit third-order polynomial 
and bandpass filtered. The filtering range was 0.007–4 Hz, 
apart from for the EEG frequency bands above δ, when it 
was 4–48 Hz. Further details and discussion of the preproces
sing are provided in Iatsenko et al.27 To reduce the computa
tional load, the time series were down-sampled by using a 
moving average before analysis. ECG and respiration time ser
ies were down-sampled to 100 Hz during the extraction of in
stantaneous rates. fNIRS was originally sampled at 31.25 Hz, 
so, for the fNIRS–EEG coherence analysis, the EEG was 
down-sampled to the same frequency. For EEG–EEG co
herence in a frequency interval up to 4 Hz, fNIRS–instantan
eous respiration rate (IRR) coherence, fNIRS– instantaneous 
heart rate (IHR) coherence and fNIRS–respiration coherence, 
the corresponding time series were down-sampled to 20 Hz. 
For EEG analysis above the δ band, the EEG time series 

were down-sampled to 142 Hz. Nonlinear mode decom
position28 was used to remove the electrical signature of 
the heart beat when present in EEG.

Physiological meaning of the oscillations: frequency 
bands
Previous research on both the cardiovascular system and the 
brain has identified oscillations in specific frequency bands, 
corresponding to different physiological processes. The fre
quency bands, their names and processes generating the os
cillations are shown in Table 2. Cardiovascular oscillations 
have been identified for frequencies from 0.005 to 
2 Hz,18,19 which overlap with slow oscillations found in 
EEG time series,17 leading to the hypothesis that they may 
have a common origin.

Coherence and power values (explained below) were aver
aged over each frequency band. For example, we refer to the 
α band power, which is the time-averaged power in the 7.5– 
14 Hz frequency range.

We investigated frequencies up to 48 Hz in EEG, as this in
cludes slow γ oscillations but avoids phase distortions due to 
the 50-Hz notch filter applied by the monitoring system. For 
the fNIRS and fNIRS–EEG analyses, we investigated fre
quencies up to 4 Hz, as there is no evidence of fNIRS con
taining oscillatory modes with frequencies higher than the 
cardiac oscillation (∼1 Hz). In all cases, the minimum fre
quency was set to 0.007 Hz.

Determining the presence and strength of 
oscillations: the wavelet transform and windowed 
Fourier transform
We first investigated if the strength of the oscillations in oxy
genation and neuronal activity was similar in both the 
Huntington’s disease and the control participants. A natural 
way to investigate the presence and power of oscillations in 
a time series is to examine its frequency content, traditionally 
with the Fourier transform. However, biological oscillations 
are known to have time-varying frequencies. Therefore, to ob
serve the frequency content and how it changes with time, we 
used the wavelet transform (WT; Morlet mother wavelet with 
frequency resolution of 1) for frequencies below 4 Hz (Fig. 1E
for an example). The WT was used for this frequency interval 
on account on its logarithmic frequency resolution, as time 
and frequency are inversely related. For EEG power in the fre
quency range 4–48 Hz, the windowed Fourier transform 
(WFT) was used, as a linear frequency resolution is tradition
ally used for these frequency bands which make the results 
easily comparable. The time-averaged WT and WFT give 
power spectra similar to the Fourier power spectrum (see ex
amples in Fig. 1G and H), abbreviated to WP. Total power 
was calculated as the double integral of the transform squared 
with respect to time and frequency.47

Determining the instantaneous frequency of an 
oscillation: ridge extraction
As mentioned, the oscillations investigated are known to 
have time-varying frequencies. Extracting the instantaneous 
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frequency of an oscillation over time can be of interest, as in 
the case of the IHR. From the WT (lognormal mother wave
let, frequency resolution parameter of 2) of the ECG time ser
ies, we extracted a ridge largely following the highest 
amplitude in the 0.6–2-Hz frequency range.48 For one parti
cipant’s ECG, the frequency range was 0.8–3 Hz, as they 
were found to have an average heart rate of 2.2 Hz. The re
sult is then a time series of the heart rate over the length of the 
recording. When derived in the time domain from the inter
vals between R-peaks, the similar time series is often referred 
to as heart rate variability, and a comparison of the time ser
ies derived from ridge extraction and R-peaks is shown in 
Supplementary Figs. 7–10. The ridge extraction method 
has the advantage of resulting in a time series with the 
same sampling frequency as the original time series, and no 
interpolation is needed. It also considers the whole ECG 
time series rather than just the R-peaks.

Determining the presence of coordinated 
oscillations: wavelet phase coherence
To investigate systemic connectivity between cardiovascular 
oscillations and brain waves, we calculated the wavelet 
phase coherence (WPC).49 The WPC determines the presence 
or absence of coordination between different oscillations, 
which could indicate a form of interaction between their 
sources. The WPC is model free and is appropriate for time 
series containing several oscillations of different frequencies. 
The logarithmic frequency resolution of the WPC enables in
vestigations spanning a wide frequency interval.

The WPC takes values between 0 and 1 and is calculated 
between two recorded time series at discrete frequencies 
(see Fig. 1I for an example). It evaluates how constant the 

phase difference at each frequency is over time (see Fig. 2). 
A value of 1 would indicate that the phase difference is con
stant at all times. When oscillations have strictly constant 
frequency, the value of 1 can be achieved, while if the char
acteristic frequencies are varying (like the heart beat), then 
even perfect coherence will yield values slightly less than 1.

The WPC was calculated between the following pairs of time 
series: EEG–EEG, fNIRS–fNIRS, fNIRS–EEG, IHR–fNIRS, 
IRR–fNIRS, respiration–fNIRS and respiration–IHR. Add
itionally, the EEG–EEG, fNIRS–fNIRS and fNIRS–EEG coher
ences were calculated for all possible probe combinations.

Statistical analysis
Testing for significant coherence
Even two random time series of non-infinite length will have 
non-zero apparent coherence, especially at lower frequen
cies. Inter-subject surrogates were therefore used to provide 
significance thresholds.50 Coherence was calculated not only 
between time series from one participant but also between 
time series from different participants to provide examples 
of the level of apparent coherence in scenarios where there 
is no physical link between the time series. From the partici
pants in the study, 176 inter-subject surrogates were created 
for each pair of time series. The significance threshold was set 
to be the 95th percentile of the surrogate coherence obtained 
at each frequency (see Fig. 1I for illustration). The ‘effective 
coherence’ was then obtained by subtracting the surrogate 
threshold from the original coherence. Coherence refers to 
this effective coherence throughout the paper unless clearly 
stated otherwise and was used to test the hypothesis that dif
ferences exist between the groups.

Table 2 Frequency bands

Frequency range 
(Hz) Name Process

Cardiovascular frequency bands19

0.007–0.0095 Endothelial (V1) Nitric oxide (NO)-independent endothelial activity. Modulation of the activity of smooth muscle cells by 
endothelial cells, mediated through the release of substances other than NO.29,30

0.0095–0.021 Endothelial (V) NO-dependent endothelial activity. Modulation of the activity of smooth muscle cells by endothelial cells, 
mediated through the release of substances where NO is most important.31-34 The release of NO is 
dependent on metabolic substances.

0.021–0.052 Neurogenic (IV) Neurogenic activity. Modulation of vascular tone by nervous activity. Blood vessels are innervated by the 
autonomous nervous system, which can alter the vessel size by releasing substances that change the activity 
of smooth muscle cells.30,35-37

0.052–0.145 Myogenic (III) Myogenic response. Vascular smooth muscle cells respond to changes in intravascular pressure by contracting 
or relaxing.38,39

0.145–0.6 Respiratory (II) Respiration activity.18

0.6–2 Cardiac (I) Heart activity.18

Brain oscillation frequency bands17

0.025–1.5 Slow and 
ultraslow

The origin of these oscillations is still debated, and there is evidence for both neuronal and non-neuronal 
generators. Linked to excitability, the blood–brain barrier and neuron–glial interactions.40,41

0.5–4 Delta (δ) Linked to sleep42 but also observed during wakefulness.43 Increased delta power during rest has been detected 
in Huntington’s disease and Alzheimer’s disease.44,45

4–7.5 Theta (θ) Linked to REM sleep and to memory consolidation.42

7.5–14 Alpha (α) The dominant oscillation during wakeful resting, especially during eyes closed.46 Decreased alpha power is 
found in Huntington’s disease and Alzheimer’s disease.44,45

14–22 Beta (β) Linked to sensory processing and motor preparation.42

22–48 Gamma (γ) Linked to focused attention and efficient cognitive processing.42
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Testing for group differences
Once single values had been obtained, for example of the 
WPC between the time series from two probes averaged 
over a frequency band, the populations were compared using 
the Wilcoxon rank-sum test. This is a non-parametric pair
wise test and does not assume a normal distribution of the 
data. Differences were considered significant if P < 0.05.

The significances of the group differences in fNIRS, EEG 
and fNIRS–EEG power or coherence were further assessed 
using a Monte Carlo permutation test. Participants from 
the P and PC groups were randomly assigned to groups of 
size 13 and 29, and participants from the S and SC groups 
were randomly assigned to groups of size 15 and 33. The 
Wilcoxon rank-sum test tested for differences between these 
permuted groups. After ∼16 000 permutations, if a P-value 
had a value smaller than 95% of the new ones, its signifi
cance was considered confirmed. The results of the permuta
tion test are further discussed Supplementary Figs. 3 and 4.

In the case of comparisons between data from different 
spatial locations (for EEG and fNIRS), the issue of multiple 

comparisons should be considered. The binomial probability 
was calculated to assess the probability of obtaining X or 
more positive outcomes from a total of N combinations.51

The probability of a positive outcome was set to 0.05, and 
the total number of combinations was 55 for the fNIRS co
herence analysis, 120 for the EEG coherence analysis and 
176 for the fNIRS–EEG coherence analysis. If the probabil
ity was found to be <5%, the result is considered significant 
with respect to the multiple comparison problem.

Cognitive and motor tests
For the participants with Huntington’s disease, cognitive and 
motor tests were conducted according to the UHDRS.52 The 
results are summarized in Table 1. Three participants in the P 
group did not have cognitive scores. Only eight participants 
in the CS group had cognitive data, except in the case of the 
symbol digit test where the number was five. These data are 
not included in the calculations of the group mean, max
imum and minimum.

Figure 2 WPC. (A) IHR time series and examples of the Morlet wavelet at 0.3 and 0.1 Hz. The arrows indicate that the wavelet slides along the 
signal. (B) Respiration time series and examples of Morlet wavelets. (C) Sines of the instantaneous phases extracted from the WT of the IHR, at 
0.1 Hz (light blue) and 0.3 Hz (dark blue). (D) Same as C but for the respiration time series and with the colour red. (E) Sines of the instantaneous 
phases at 0.1 Hz for both time series. Note the inconsistency in the phase difference. (F) Sines of the instantaneous phases at 0.3 Hz for both time 
series. Note the consistency in the phase difference. (G) The WPC between the two time series, where each dot corresponds to one of 273 
different frequencies. 0.1 and 0.3 Hz are indicated by a light and dark red dots, respectively. au, arbitrary units.
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Results
The results are presented in three sections: cardiovascular os
cillations, neuronal oscillations and neurovascular oscilla
tions. As mentioned above, data from the four groups 
initially analysed, i.e. the S (N = 15) and P (N = 13) groups 
and the two control groups, SC (N = 33) and PC (N = 29), 
are summarized in Table 1.

Cardiovascular oscillations
Cardio-respiratory oscillations
We start the investigations with the two main oscillators of 
the cardiovascular system: the heart and lungs. Average 
heart rate and total power of the IHR are shown in 
Table 3. The S group has higher heart and respiration rates 
when compared to the SC group (P-value 0.023 for heart 
rate and 0.006 for respiration). The IHR total power is not 
significantly different (Table 3), but the P group has higher 
power in the respiratory band (Fig. 3).

The N3 (right occipital—co-located with EEG O2)–IHR 
coherence is significant in the myogenic and respiratory 
bands (Fig. 3). For all groups, the phase difference is positive 
in the myogenic range and negative in the respiration range. 
A positive phase difference means that IHR is the leading 
oscillation. This is consistent across most fNIRS probes, apart 
from N8 and N9 (temporal—T7/T8; see Supplementary Figs. 
11 and 12). The P group has significantly reduced coherence 
around 0.06–0.08 Hz between IHR and N3, N4, N5 and 
N6 in comparison to the PC group (see Supplementary Figs. 
13–16 for fNIRS coherence with respiration and IRR).

Brain oxygenation
We investigated oscillations in the brain oxygenation by cal
culating the WP of fNIRS time series and the coordination of 
the oscillations using the WPC between fNIRS time series. 
Results for oxygenated haemoglobin are shown in Fig. 3, 
with the myogenic total power shown in Table 3.

In Fig. 3I, only the significant P-values are shown, indicat
ing a difference in power between the Huntington’s disease 
and control groups. The results show that the P group has 
lower power in 5/11 fNIRS probes in the neurogenic and 
myogenic frequency bands, respectively. In contrast, the S 
group has higher power in 5/11 fNIRS probes in the respira
tory band. The probability of 5 or more positive findings if all 
11 null hypotheses are true is 0.16%.

In the cardiac frequency band, the coherence is relatively 
high between all probe combinations in all groups. 
However, the cardiac coherence is significantly lower in the 
S group compared to the SC group in 36 probe combinations 
(Fig. 3J). The probability of 36 or more positive findings if all 
55 null hypotheses are true is 1.58 × 10−31%. The coherence 
and power values for all frequency bands are summarized in 
Supplementary Fig. 17. In addition, effect size was calculated 
post hoc and is shown Supplementary Table 1. Most values 
of the effect size were medium to large.

Neuronal oscillations
We investigated the electrical activity in the brain, obtaining 
both the WP and the WPC from the EEG time series. The 
WPC gives information on the coordination of neuronal ac
tivity from different brain regions, often referred to as func
tional connectivity.

The comparisons of EEG power with their respective con
trols for the P and S groups are shown in Fig. 4A, while total 
EEG power is shown in Table 3 and Supplementary Table 2. 
There are no statistically significant differences between the P 
and PC groups, although there is a tendency for the α band 
power to be reduced in the P group compared to the PC 
group in the occipital and parietal areas, with P-values of be
tween 0.05 and 0.12 (Fig. 4A). In the parietal and occipital 
areas, the P group’s α power lies in-between the S group 
and the control groups (Table 3). In the θ, α, β and γ bands, 
the S group has lower power than the SC group in many time 
series recorded from different electrodes. Most prominent is 
the α band, where the difference is statistically significant at 
all electrodes apart from Fp1 and Fp2. The probability of 6 
or more positive findings if all 16 null hypotheses are true 
is 0.008%, while the probability of 2 or more positive find
ings if all 16 null hypotheses are true is 19%.

Significant differences in the WPC for different electrode 
positions are shown in Fig. 4B (for all frequency bands, see 
Supplementary Fig. 18). The α band WPC is clearly reduced 
in both the S (18/120 combinations) and P (14/120 combina
tions) groups compared to their control groups. In the γ 
band, the S group has lower WPC in 28/120 combinations, 
while the P group has lower WPC in 9/120 probe combina
tions, compared to their respective control groups. The prob
ability of 14 or more positive findings if all 120 null hypotheses 
are true is 0.28% (significant), while the probability of 9 or 
more positive findings if all 120 null hypotheses are true is 
15% (not significant). Effect size calculations can be found 
in Supplementary Table 1 and generally show medium to 
large differences.

Here, the β band is defined as 14–22 Hz. A comparison of 
the β and γ results within this frequency range and when β is 
defined up to 30 Hz can be seen in Supplementary Fig. 19. 
Some γ WPC differences can be attributed to 22–30-Hz 
range, which is often assigned to β.

Neurovascular oscillations
To investigate the coordination of slow electrical and oxy
genation oscillations, the WPC was calculated between 
fNIRS and EEG time series. Figure 4C shows the group co
herence for all fNIRS–EEG combinations in the myogenic 
band. Figure 4D illustrates the significant differences be
tween the Huntington’s disease groups and their control 
groups for all fNIRS–EEG combinations in the neurogenic 
and myogenic bands (for the remaining frequency bands, 
see Supplementary Fig. 20). From Fig. 4D, one can see that 
there is a significant difference between S and SC at electrode 
O1 with the blood oxygenation time series measured from 
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the same location in the myogenic frequency range. There are 
also significant differences in other fNIRS–EEG combina
tions, including frontal to occipital probes and central (C3, 
Cz, and C4) to parietal probes. In the P group, the most sig
nificant differences are seen in the myogenic band and are as
sociated with the T7 electrode. In the S group, 23 
combinations decreased significantly in the myogenic band. 
In the P case, 21 and 19 combinations are decreased in the 
myogenic and neurogenic bands, respectively, while 1 com
bination is increased in the P group in the neurogenic band. 
In the neurogenic band, the S group has higher WPC than 
the P group 21 combinations. The S and P groups are signifi
cantly different in 14 combinations in the myogenic band. The 
probability of 14 or more positive findings if all 176 null hy
potheses are true is 5.9% (not significant). The probability of 
20 or more positive findings if all 176 null hypotheses are 
true is 0.06% (significant).

Neurovascular oscillations in 
choreatic participants
The fNIRS–EEG WPC was also investigated in the 18 severe
ly choreatic participants (56.7 ± 13.9 years, 9 F/9 M). This 
group is slightly older than the S group, but not significantly 
so (P = 0.29; see Table 1). They are significantly older than 
the SC group (P = 0.04). The neurovascular coherence in 
the myogenic band is decreased in 38/176 combinations 
for the CS group compared to the SC group (Fig. 5E), which 
is significant. The choreatic symptomatic group’s neurovas
cular coherence is not significantly different from the S group 
(differences in 5/176 combinations).

Discussion
In this study, the hypothesis of disrupted neurovascular dy
namics in Huntington’s disease was confirmed for the first 
time, suggesting reduced efficiency of the NVU. Our find
ings, supporting the hypothesis, are as follows: 

• Reduced neurovascular phase coherence indicating re
duced efficiency of the NVU.

• Decreased oxygenation power in the P group and de
creased coherence in the S group, indicating vascular 
changes in both the P and S groups.

Table 3 Averages and group median total power

P S PC SC

Heart rate (Hz) 1.21 1.23* 1.19 1.13
Respiration rate (Hz) 0.24 0.28* 0.24 0.23
TP IHR × 10-5 (Hz2) 5.71 5.07 3.29 2.94
TP IRR × 10-5 (Hz2) 7.88 7.81 8.83 9.24
TP EEG (µV2)

Fp1 62.4 34.8 35.7 38.3
Fp2 63.4 27.9 34.6 36.6
F3 9.80 6.13 9.79 9.87
F4 11.7 6.42 10.2 10.5
T7 26.7 18.4 32.6 35.3
C3 9.34 6.28 9.93 8.75
Cz 1.97 1.49* 2.75 2.75
C4 8.78 6.37 10.1 9.86
T8 29.8 18.2 30.2 30.2
P7 25.3 18.3* 31.6 33.5
P3 14.4 9.75* 18.9 18.9
Pz 12.1 6.95* 17.3 16.7
P4 16.8 8.89* 18.8 18.9
P8 26.2 19.7* 34.0 34.9
O1 28.2 22.1* 36.1 35.9
O2 36.6 20.3* 35.7 35.7

EEG α (µV2)
Fp1 6.73 4.73 5.27 7.54
Fp2 7.03 3.99 6.20 6.38
F3 1.78 0.83* 1.68 1.87
F4 1.76 0.89* 1.64 1.82
T7 6.13 4.45* 7.04 9.09
C3 2.22 0.96* 2.73 2.73
Cz 0.41 0.24* 0.82 0.83
C4 3.15 1.22* 3.51 3.22
T8 6.34 3.80* 6.29 7.29
P7 6.38 4.53* 9.81 11.3
P3 4.31 2.29* 7.73 7.93
Pz 3.53 1.55* 9.22 8.76
P4 6.20 2.17* 8.93 8.49
P8 8.70 4.03* 14.0 14.4
O1 7.93 3.66* 14.5 16.6
O2 8.53 3.50* 14.0 14.4

TP fNIRS  
× 10-8 ((µmol/mL)2)

N1 1.17 1.12 1.29 1.05
N2 0.10 0.16 0.18 0.15
N3 0.56 0.55 0.53 0.51
N4 0.17 0.19 0.18 0.18
N5 0.40 0.34 0.49 0.43
N6 0.13 0.13 0.14 0.14
N7 1.12 1.09 1.30 1.26
N8 1.01 1.18 1.25 1.17
N9 1.43 1.79* 1.07 1.07
N10 0.90 0.89 0.75 0.76
N11 1.11 1.21 1.20 1.11

fNIRS III  
× 10-10 ((µmol/mL)2)

N1 4.47* 6.23 9.76 8.67
N2 0.53 1.02 1.06 0.98
N3 2.40* 3.13 5.18 4.47
N4 0.76 1.34 1.73 1.46
N5 1.58* 2.78 4.10 3.31
N6 0.45* 0.76 0.96 0.85
N7 4.17* 5.98 10.3 8.77
N8 4.31 6.48 5.86 4.89
N9 4.53 12.4* 7.59 5.77

(continued) 

Table 3 (continued)  

P S PC SC

N10 2.99 2.65 5.07 3.22
N11 4.51 4.10 5.57 4.69

P = presymptomatic Huntington’s disease, S = symptomatic Huntington’s disease, 
PC = control group for P, SC = control group for S, TP = total power, IHR = instantaneous 
heart rate, IRR = instantaneous respiration rate, EEG = electroencephalogram, 
fNIRS = functional near infra-red spectroscopy, * = p<0.05 for the P vs PC, or S vs. 
SC comparison, using the Wilcoxon rank-sum test. The EEG θ,β,γ total power is 
summarised in SM, supplementary table 2.
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• Decreased EEG power in the S group and decreased coher
ence in the P and S groups, reflecting altered neuronal 
brain activity in both the P and S groups and its gradual 
deterioration.

• Increased IHR power in the respiratory band in the P and S 
groups, indicating early autonomic changes in Huntington’s 
disease.

The results obtained therefore confirm our initial hypoth
esis that neurovascular dynamics and the functioning of the 
NVU, in particular, are changed in Huntington’s disease.

Neurovascular, vascular, 
cardio-respiratory and neuronal 
oscillations in Huntington’s disease
Restructuring of the vasculature in symptomatic 
Huntington’s disease does not restore NVU 
efficiency
Here, we demonstrate neurovascular phase coherence in 
healthy adults (mean ages for the control groups were 40 
and 48 years old), and we show that it occurs to a 

significantly lesser degree in participants with Huntington’s 
disease (Fig. 4C and D). This reduction could mean a dys
function in neurovascular coupling in Huntington’s disease 
participants, noticeable already at the presymptomatic stage. 
We have previously demonstrated that neurovascular phase 
coherence decreases with age12 (for a thorough discussion 
about the origin of ∼0.1-Hz oscillations in brain electrical ac
tivity and oxygenation dynamics, please see Bjerkan et al.12). 
A possible explanation for the reduction in coherence relates 
to the compromised BBB, a key part of the NVU, in the 
Huntington’s disease participants.6 Evidence of BBB leakage 
in symptomatic Huntington’s disease participants has been 
detected, as well as evidence of mutant huntingtin in all ma
jor parts of the NVU, including in astrocytes,9,53,54 which are 
thought to be key for communication between neurons and 
vessels.55-57 This then results in a decrease in neurovascular 
coherence, as inferred in the case of ageing.

It is known that the mutant huntingtin disrupts the func
tion of mitochondria, decreasing ATP production.58 The 
neurogenic/myogenic oxygenation power reductions in P 
(Fig. 3I) could be in response to a change of metabolism in 
the cortex,59 with the vessels adapting to the altered meta
bolic state as the disease progresses. Altered neuronal 

Figure 3 Cardiovascular and brain oxygenation results. (A, B) Time-averaged WT power of the IHR. (C, D) WPC between N3 and IHR. 
(E, F) WPC between the IHR and respiration time series. (G, H) Phase difference in radians (rad) between N3 and IHR. For all plots, the Huntington’s 
disease groups are in orange, and the control groups are in black. The solid lines show the group median, and the shaded area shows the 25–75th 
percentiles. Significant differences (P < 0.05) are shown as green stars on the x-axis. (I) Significant P-values for oxygenated haemoglobin wavelet 
power. The first row is between the P and PC groups, while the second row is between the S and SC groups. Yellow/red (blue/purple) circles indicate 
that the power is higher in the controls (Huntington’s disease). (J) Significant P-values for fNIRS WPC in the cardiac band. Yellow/red (blue/purple) 
lines indicate that the WPC is higher in the controls (Huntington’s disease). All P-values calculated using the Wilcoxon rank-sum test. 
P, presymptomatic Huntington’s disease; S, symptomatic Huntington’s disease; PC, control group for P; SC, control group for S.
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activity could also result in a different metabolic state. The 
power reductions could also reflect a vascular pathology oc
curring before the onset of reduced metabolic demand, re
sulting in an insufficient energy supply to the brain cells. 
Both possibilities can be linked to NVU dysfunction.

The clear oxygenation power differences in the P group 
(Fig. 3I), and the lack of significant EEG power differences 
(Fig. 4A) could suggest that changes in oxygenation occur be
fore changes in neuronal activity and show that fNIRS can of
fer prognostic information additional to EEG in the 
presymptomatic stages of the disease. Evidence suggests 
that in Huntington’s disease, alterations in white matter are 
independent of alterations in grey matter, and possibly occur 
earlier,60 and that reduced blood flow to the striatum is an 
early event in Huntington’s disease,61 which is in line with 
our findings of reduced oxygenation power in the P group. 
Studies in mice show extensive changes to the vasculature 
early in Huntington’s disease without clear corresponding 
neuronal losses or detectable motor symptoms.9,62 The 

healthy elderly and the presymptomatic participants have 
in common that their arteries are stiffer,16,63 which could af
fect the myogenic response. However, smooth muscle cells in 
Huntington’s disease are not well characterized,64 and our 
results warrant further investigation.

The S group has lower cardiac coherence than the SC 
group (Fig. 3J). This might be explained by the increased 
microvascular density9,62 in Huntington’s disease leading 
to a reduced ability to participate in oscillations. This reshap
ing of the vasculature could be a compensatory reaction to 
inadequate oxygen delivery across a non-optimal vascular 
network, as more oxygen can be provided locally via capil
laries, but without restoration of appropriate timing. 
Increased microvascular density might explain why power 
at low frequencies is not reduced during the symptomatic 
stage. Another possible explanation could be that movement 
artefacts, caused by mild chorea, mask the myogenic and 
neurogenic power decreases in the S group. Still, the vascular 
reshaping did not restore neurovascular phase coherence and 

Figure 4 Neuronal and neurovascular results. (A) P-values for the EEG time-averaged wavelet power. Yellow/red (blue/purple) circles 
indicate that the power is significantly higher in the controls (Huntington’s disease). The first row is the P-values between the P and PC groups, 
while the second row is the P-values for the S and SC groups. In the α band, P > 0.05 but <0.1 are highlighted in green. (B) Significant differences in 
EEG WPC. The top row shows differences between the P and PC groups, while the bottom row is between S and SC. Yellow/red (blue/purple) lines 
indicate higher WPC in the controls (Huntington’s disease). (C) Median WPC between fNIRS and EEG pairs in the myogenic frequency band. The 
first row shows the P and PC groups, while the second row shows the S and SC groups. (D) Significant differences in fNIRS–EEG WPC. Yellow/red 
(blue/purple) lines indicate higher WPC in the controls (Huntington’s disease) or in P (Ss). All P-values calculated using the Wilcoxon rank-sum 
test. P, presymptomatic Huntington’s disease; S, symptomatic Huntington’s disease; PC, control group for P; SC, control group for S.
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therefore did not seem to improve the efficiency of the NVU. 
The results presented can be considered as functional corre
lates of the molecular mechanisms revealed by Garcia et al.11

They have shown that genes associated with the growth of 
vessels are expressed differently in Huntington’s disease 
compared to healthy controls, leading to the previously re
ported increased microvascular density.9,62 This can be 
linked to our finding of decreased coherence in blood oxy
genation in the cardiac frequency interval, probably caused 
by the increased microvascular density. Garcia et al. also 
show that genes associated with BBB permeability are ex
pressed differently. This likely manifests as functional 
changes in the NVU efficiency, as observed in our study.

Huntington’s disease leads to a gradual deterioration 
of neuronal function
We found reduced α power in the S group and a tendency for 
reduced α power in the P group (Table 3 and Fig. 4). This sug
gests that the occipital areas may have functional changes be
fore symptoms manifest, in addition to the known structural 
changes, such as cortical atrophy, found in presymptomatic 
patients.2 We note that we also found clear differences in 
oxygenation in the parietal and occipital areas. While it is 
well known that the mutant huntingtin can alter neural con
nections by impairing neurotransmitters and altering protein 
homeostasis,58 it is also worth considering that changes to 

the vasculature and neurovascular interactions could con
tribute to disrupted neuronal function by reducing nutrient 
availability. The current data cannot pinpoint whether the 
vascular or neuronal changes occurred first. However, the 
methods described, combined with longitudinal data, could 
potentially elucidate this. Reduced α power was found in sev
eral previous studies4,65-70 and is one of the characteristics of 
the EEG in Huntington’s disease. Oscillations with α fre
quencies are modulated by corticothalamic circuits and thal
amic nuclei which are affected by the disease.71 However, 
this reduction in power is not limited to Huntington’s dis
ease—several studies have found reduced α power in 
Alzheimer’s disease.72 In both diseases, a slowing of the 
EEG power is reported (decrease in higher-frequency bands, 
increase in lower-frequency bands).44

We also find that phase coherence between time series 
from different EEG electrodes is altered in both 
Huntington’s disease groups, especially in the α band. 
Decreased α coherence in P patients in the absence of a power 
decrease might be the first electrophysiological sign of 
changes in brain network interactions. The power and coher
ence changes in EEG are more pronounced in S (Table 3 and 
Fig. 4). An intermediate electrophysiological phenotype for 
presymptomatic Huntington’s disease has also been sug
gested by a previous study.73 This implies a gradual deterior
ation of neuronal activity, starting with the coordination of 

Figure 5 Neurovascular results for participants with severe chorea. (A) Recorded fNIRS time series from N5, from one participant with 
severe chorea. The mean is subtracted before plotting. (B) Recorded EEG time series from location O1 (co-located with N5), from the same 
participant. The mean is subtracted before plotting. (C) Time-localized WPC between the time series shown in A and B. (D) Time-averaged WPC 
for the time series shown in A and B. The shaded area shows the neurogenic and myogenic frequency bands. (E) Significant differences in the 
fNIRS–EEG WPC, between the SC group and the CS group. (F) Significant differences in the fNIRS–EEG WPC, between the S group and the CS 
group. Yellow/red (blue/purple) lines indicate higher WPC in the controls (Huntington’s disease) or in S (CSs). All P-values calculated using the 
Wilcoxon rank-sum test. S, symptomatic Huntington’s disease; SC, control group for S; CS, symptomatic Huntington’s disease with severe chorea.
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the oscillations and then with the power of the oscillations. 
We do not see a compensatory mechanism like vascular re
modelling. Our results indicate that EEG coherence could 
be used to evaluate and monitor the disease non-invasively, 
including in the presymptomatic phase.

Autonomic changes in presymptomatic and 
symptomatic Huntington’s disease
We show increased IHR power in the respiratory band, in 
both the P and S groups (Fig. 3A and B). The IHR power 
in the respiratory band likely reflects respiratory sinus ar
rhythmia, which is a modulation of cardiac frequency by 
the respiration cycle.74 However, despite the increase in 
power, the symptomatic group has lower coherence between 
IHR and respiration (Fig. 3F), indicating that respiratory si
nus arrhythmia is disrupted in symptomatic Huntington’s 
disease patients. These changes could be linked to neuronal 
degeneration or to changes in cardiovascular interactions 
or respiratory function.75 The changes in the P group are evi
dence of early autonomic dysfunction in Huntington’s dis
ease before symptoms manifest, in line with the previous 
studies.15,76 Simultaneous measurements of heart rate and 
respiration therefore offer a promising avenue for non- 
invasive testing of disease progression. Previous heart rate 
variability studies in Huntington’s disease have not recorded 
respiration,15,77-79 but the benefit of its inclusion is that re
spiratory sinus arrhythmia can be investigated directly and 
more thoroughly while adding minimal extra set-up time 
for the experiment.

Summary
Taken together, the results from our study show that the con
sequences of Huntington’s disease are complex: the vascula
ture, neuronal activity and autonomic nervous system are all 
affected. Particularly interestingly, our results show that 
changes to the vasculature occur in the presymptomatic 
stages of the disease. Thus, the vasculature and the NVU 
are potential therapeutic targets in Huntington’s disease,80

either with medication or through lifestyle changes.81

Biomarker
With this research, we aimed to get a better understanding of 
the neurovascular correlates of Huntington’s disease. A sec
ondary goal was to investigate if non-invasive measurement 
techniques in combination with our algorithms for time- 
resolved coherence have potential as biomarkers for 
Huntington’s disease. This would be advantageous, as other 
possible biomarkers such as MRI are much more expensive 
and mostly suitable for patients that can remain still—i.e. not 
choreatic. The clear differences between the Huntington’s dis
ease and control groups suggest that this is indeed the case. 
Future investigations may benefit from the following consid
erations. Many of the differences between the Huntington’s 
disease groups and controls are observed in the parietal and oc
cipital areas. Both areas are known to be affected by atrophy, 
even in the presymptomatic stages of the disease.2 This opens 

the possibility of conducting experiments with fewer electrodes 
and probes, which would reduce the set-up and analysis times. 
To explore the early changes in the disease and, potentially, to 
establish whether the vascular or the neuronal changes occur 
first, a longitudinal study of presymptomatic and early-stage 
Huntington’s disease is required, where imaging techniques 
could also be included.

Limitations and strengths
As we are interested in slow oscillations, it is necessary that the 
measurement time be sufficiently long. The 20–30 min of sit
ting still can be challenging, especially for participants with 
Huntington’s disease. The long measurement time means 
that movement artefacts in the time series are more likely to 
appear. We did not use a movement–artefact–removal algo
rithm. The mild chorea present in most of the S participants 
might have masked the power in low-frequency intervals in 
both fNIRS and EEG time series. Hence, the power in fre
quency intervals below the cardiac frequency should be inter
preted with caution for the S group. In addition, we did not 
record electrooculography (EOG) signals. As the time series 
must be continuous for the analysis, robust rejection of 
EOG artefacts would be challenging, but future studies might 
benefit from including an EOG recording. However, this arte
fact is only relevant for the EEG and therefore would not im
pact the EEG–fNIRS phase coherence. Furthermore, the EOG 
artefact has a large amplitude, but the phase coherence meas
ure applied here is independent of amplitude.

Another limitation is that coherence analysis does not im
ply causality or provide the direction of the interaction, if 
present. From the phase shift, it can be inferred which of 
the two physiological processes under study is leading. 
However, for the evaluation of directional couplings, 
one should perform additional investigations, using 
dynamical Bayesian inference, Granger causality or similar 
information- or permutation-based methods.82-84

The number of participants, especially those with 
Huntington’s disease after being divided into the P and S 
(with mild chorea only) groups, is relatively small, because 
recruiting participants with Huntington’s disease is problem
atic. Cognitive tests were not performed on the control parti
cipants which is also a limitation of the study. Further, some 
of the participants were obese (BMI ≥ 30). Obesity can im
pact neuronal and vascular functions. However, we found 
no correlation between BMI and the average myogenic neu
rovascular coherence across the brain (Supplementary Fig. 
21). As there are no significant differences in BMI between 
groups, the differences in neuronal and vascular functions 
presented here can be attributed to Huntington’s disease.

In this study, we focused on functional changes. However, 
the next step would be to combine such studies with imaging 
techniques to explore the correlation between structural and 
functional changes and to see if atrophy occurs before func
tional changes.

For the purpose of understanding the neurovascular corre
lates of Huntington’s disease, the initial analysis was with 
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data from participants with little to mild chorea. This was 
technically motivated, as EEG and fNIRS are known to be af
fected by movement artefacts. However, phase coherence 
evaluates the consistency in phase difference between two 
time series. We hypothesized that the phase consistency of 
two oscillations would not be severely impacted by move
ment artefacts (unlike their amplitudes), as the random 
movements caused by chorea would not affect the phases sig
nificantly. Therefore, we also calculated the fNIRS–EEG 
WPC in the group of participants with relatively severe cho
rea, who were initially excluded. Despite the severe chorea, 
we see evidence of significant phase coherence (Fig. 5D), con
firming that the phase-based methods are less affected by 
chorea than amplitude-based methods. The fNIRS–EEG 
WPC in the myogenic band is reduced in the chorea group 
when compared to the SC group, to a larger extent than 
was the case for the S group, which suggests that this func
tional test is also suitable for choreatic patients. This could 
be attributed to disease progression, as the CS group is 
more advanced than the S group. Some of the changes may 
also be attributed to the increased age in the CS group, as 
we have shown previously that age decreases WPC in the 
myogenic band.12 The neurovascular correlates of various 
intensities of chorea will be investigated separately.

Conclusion
Our results support the hypothesis that the functioning of the 
NVU is affected in Huntington’s disease, as we found altered 
neurovascular dynamics in patients with Huntington’s dis
ease compared to control participants. The simultaneous re
cordings of cardiovascular and neuronal activities, combined 
with algorithms for extracting time-localized dynamics, pro
vide a non-invasive evaluation of Huntington’s disease. We 
also add to the discussion about the neuron-centric view of 
neurodegenerative diseases,85 by highlighting the import
ance of the vasculature and NVU in Huntington’s disease.

A clear result of this study is that cerebral oxygenation is af
fected even in the P group, demonstrating an early disruption 
of normal vascular function in the disease. Blood flow oscilla
tions at low frequencies are likely influenced by local factors 
such as brain metabolism. The decrease in power of these os
cillations might reflect either disturbed brain cortical metabol
ism in the P group or decreased control of cerebral blood flow. 
In the S group, we see reduced coherence, which might be a 
consequence of the higher microvascular density in this group. 
Still, in both Huntington’s disease groups, coherence between 
neuronal activity and blood oxygenation around 0.1 Hz is re
duced. This could reflect reduced efficiency in the functioning 
of the NVU in participants with Huntington’s disease, where 
the mutant huntingtin protein has been found in all major 
parts. Whether this is part of the accelerating disease progres
sion is an important question, and it calls for research to ad
dress cerebral nutrient delivery in participants with a 
positive genetic test for Huntington’s disease. It is well known 
that the brain requires ∼20% of the body’s total energy usage. 

This leads to the question of whether incoherent delivery of 
nutrients to the brain cells could also contribute to neuronal 
death in Huntington’s disease, and whether reducing cardio
vascular risk factors may improve outcomes. Studies on exer
cise in Huntington’s disease patients have shown improved 
cardiovascular function,86 but longer studies with more parti
cipants are needed to draw stronger conclusions.

It is evident that the analysis of time-varying oscillatory 
dynamics in data acquired by non-invasive measurements, 
even in the presence of movement artefacts due to chorea, 
provides a promising method for evaluating the effects of 
Huntington’s disease treatment. It demonstrates clear links 
between physiology and parameters such as reduced α power 
and reduced neurovascular coherence around 0.1 Hz and 
helps to evaluate the physiological effect of the disease. 
The advantages of this approach should now be tested on lar
ger cohorts. It can readily be extended to include coherence 
and couplings between time series measured by other non- 
invasive methods, not just the particular time series included 
in this study.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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Chapter 6

6.1 Summary and conclusions

This thesis has presented a quantitative assessment of neurovascular function using

non-invasive measurements of brain oxygenation, brain electrical activity, and

cardiorespiratory function, combined with time-frequency analysis methods within

the time-dependent finite-time-dynamics framework. Neurovascular function was

evaluated in younger and older adults, as well as in patients with Alzheimer’s disease

and Huntington’s disease. By taking the phase coherence between brain oxygenation

and electrical activity as an indicator of neurovascular unit efficiency, it was found

that this efficiency decreases with age and further declines in Alzheimer’s disease.

Additionally, patients with pre-symptomatic and symptomatic Huntington’s disease

exhibited lower efficiency compared to age-matched controls. The changes in blood

oxygenation dynamics varied between the groups (see figure 6.1). The affordability

of these non-invasive measurement techniques makes them suitable for repeated use,

and ideal for disease monitoring. Further, this could be positive for patients, as other

techniques such as fMRI and MEG can be experienced as stressful or scary. As the

neurovascular unit is affected by several diseases it would be highly beneficial to

monitor its efficiency in a clinical setting.

Chapter 1 introduced the cardiovascular system, the brain, and the neurovas-

cular unit, summarising changes associated with ageing, Alzheimer’s disease, and

Huntington’s disease. The close collaboration between the cardiovascular system

and the brain was highlighted. Four non-invasive measurement techniques were

presented: the electroencephalogram, functional near-infrared spectroscopy, the

electrocardiogram, and the respiration belt. These methods form the basis for

the analyses in subsequent chapters. The chapter also covers the physics of living

systems to provide context for the data-driven approach to dynamical systems, with

an emphasis on oscillations and how to detect them. A strength of the thesis is

the focus on several systems and their interactions. For complex systems such

as living systems this approach can offer additional insights compared to when
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Figure 6.1: Summary of EEG and fNIRS power, fNIRS coherence and fNIRS–EEG
coherence results in the myogenic and cardiac bands for all groups considered in the
thesis. Blue/purple (yellow/red) indicates that the power or coherence was higher
in the younger/control (older/AD/P/S) group. The neurovascular phase coherence
was decreased for the older group and the disease groups compared to their control
groups. However, the changes in the blood oxygenation dynamics differ between the
groups.

only considering one aspect. This line of thinking could have a big impact on

research on living systems in general, and on research on the brain specifically.

For example, the field of systems biology aim to study interactions and emergent

behaviour within living systems [163]. Within this context, Ishii et al. [164]

measured the transcriptome, proteome and metabolome from Escherichia coli (E.

coli) cells in order to study the response to genetic and environmental perturbations.

They concluded E. coli cells maintained a stable metabolic network robust against

perturbations. In terms of brain research, both the gut-brain axis and brain-heart

interactions are gaining popularity. To consider several systems, by for example

measuring functional brain activity and heart rate, can elucidate how they influence
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Figure 6.2: Summary of EEG power and coherence in the theta, alpha,
beta and gamma bands for all groups considered in the thesis. Blue/purple
(yellow/red) indicates that the power or coherence was higher in the younger/control
(older/AD/P/S) group.

eachother [165].

In chapter 2 coherence was discussed in detail, and it was illustrated that using

phase-only phase coherence rather than amplitude-weighted phase coherence was

more robust to noise. The strengths of the wavelet transform were highlighted. For

the analysis of the measured data in chapters 3, 4 and 5, the methods must be

suitable for finite-time analysis from out-of-equilibrium, thermodynamically open

systems. As such, two lines of analysis were pursued: quantifying the presence and

strength of oscillations via the wavelet transform, and quantifying the coordination

of oscillations via wavelet phase coherence.

In chapter 3 we learnt that neurovascular phase coherence in the myogenic

frequency range decreased with age, reflecting reduced efficiency of the neurovascular

unit. Further, the phase coherence between the instantaneous heart rate and brain
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oxygenation was reduced in the myogenic and respiration frequency ranges. With

age, there was reduced power in the myogenic brain oxygenation oscillations and

reduced phase coherence. However, in the cardiac band, there was increased phase

coherence between brain oxygenation oscillation with age. This likely reflects the

increased radii of vessels and increased blood pressure in the older participants. The

results also indicate reduced function of the smooth muscle cells lining the blood

vessels.

In chapter 4 we discovered that the neurovascular phase coherence is reduced

in Alzheimer’s disease participants compared to age-matched controls. We also

found decreased power in oxygenation oscillations in the myogenic and neurogenic

bands, and decreased coherence in all the cardiovascular frequency bands in the

Alzheimer’s patients. Combined these results indicate reduced vasomotion and

thereby reduced local control of blood flow in Alzheimer’s disease, coupled with

reduced efficiency of the neurovascular unit. The decrease in vasomotion might

contribute to reduced clearance of amyloid-beta from the brain. Lastly, Alzheimer’s

patients have an increased respiration rate compared to controls, which warrants

further investigation.

In chapter 5 we found that the presymptomatic Huntington’s disease participants

have reduced power of oxygenation oscillations in the neurogenic and myogenic

frequency bands, indicating reduced vasomotion. On the other hand, the symp-

tomatic participants have reduced phase coherence in the cardiac band between

oxygenation oscillations. These results might be explained by vascular remodelling,

which has been observed in Huntington’s disease and might be a compensatory

response to reduced efficiency of the vascular network. However, in both groups, we

found decreased neurovascular phase coherence compared to controls, so vascular

remodelling does not restore the efficiency of the neurovascular unit. The results

from the brain electrical activity indicate a gradual deterioration of neuronal activity,

starting with the coherence and then the power of oscillations.

Considering the combined results from chapters 3, 4 and 5 (figure 6.1) it is clear
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that the methods can capture disease-specific changes. The figure shows EEG power,

fNIRS power, fNIRS coherence and fNIRS-EEG coherence in the myogenic and

cardiac frequency bands, for all groups considered. The EEG power differences are

not significant when considering the multiple comparisons in any of the comparisons.

The older group, the Alzheimer’s group and the presymptomatic Huntington’s group

all have decreased myogenic fNIRS power compared to the younger/control groups.

Unlike in symptomatic Huntington’s disease, we do not find evidence of vascular

remodelling in Alzheimer’s disease. The vascular remodelling is indicated by the

reduced fNIRS cardiac coherence in tandem with no power differences and no

decrease in myogenic fNIRS coherence. Interestingly, molecules that contribute to

vessel growth have been found in the vasculature of people with Alzheimer’s disease,

which might indicate that vascular repair and/or remodelling is unsuccessful rather

than non-existent [166]. The neurovascular phase coherence (fNIRS-EEG coherence)

is reduced in the older group and the disease groups in the myogenic frequency band,

indicating reduced efficiency of the neurovascular unit with age and disease.

For the sake of completeness, figure 6.2 shows the combined EEG results, in

the theta, alpha, beta and gamma bands. The younger group does not have

significant changes in EEG power when considering the multiple comparisons. The

Alzheimer’s group have increased theta power compared to their control group, while

the symptomatic Huntington’s group have decreased power in the theta, alpha and

beta bands compared to their control group. The older group, and both Huntington’s

groups have decreased alpha coherence. On the other hand, the Alzheimer’s group

has significantly higher alpha coherence in 21 EEG combinations (11 of which

includes the Cz electrode), while the control group has higher coherence in 8 EEG

combinations. In conclusion, the groups have different patterns of neuronal changes.

In conclusion, this work provides valuable physiological insights into ageing,

Alzheimer’s disease, and Huntington’s disease through non-invasive measurement

techniques combined with powerful finite-time analysis, focusing on oscillations and

their coordination.
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6.2 Original contributions

• Amplitude-weighted phase coherence and phase coherence were compared

using both numerically generated and real time-series, which provided insights

to how the two methods are affected by noise and phase perturbations and

movement artifacts.

• It was demonstrated that wavelet phase coherence can be used to calculate

neurovascular coherence based on EEG and fNIRS recordings, providing a

non-invasive method to quantify the efficiency of the neurovascular unit.

• Neurovascular coherence around 0.052–0.145 Hz was shown to decrease with

age, and further with Alzheimer’s disease. Patients with presymptomatic

and symptomatic Huntington’s disease have lower coherence than controls of

similar ages.

• fNIRS was used to study Huntington’s disease for the first time, showing a

decrease in the power of oscillations in the 0.021–0.052 Hz and 0.052–0.145 Hz

frequency ranges in the presymptomatic participants.

• Wavelet phase coherence was demonstrated between oxygenation and instan-

taneous heart rate signals, and shown to decrease with age and Alzheimer’s

disease.

6.3 Future work

• Validate the results obtained in chapters 3, 4 and 5 in larger groups.

• Evaluate the potential for classification of Alzheimer’s disease and Hunting-

ton’s disease using machine learning. For example, the datasets used in this

study could be used to train classification algorithms, such as decision trees

or K-nearest neighbours. Another similar dataset could be used as a testing
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dataset, to evaluate the model performance. Alternatively, leave-one-out cross

validation could be used if a new dataset cannot be obtained.

• Investigate other patient groups where changes in neurovascular function is

implicated: for examples, participants with vascular dementia, frontotemporal

dementia, dementia with Lewy bodies or Parkinson’s disease.

• Explore potential influences of sex and race on the results.

• Longitudinal research to examine if neurovascular coherence can be altered

by lifestyle changes or medication, and if this would correlate with disease

progression.

• Correlate neurovascular coherence and other parameters with behavioural

data.

• Develop a device and algorithm for non-invasive monitoring of the neurovas-

cular unit.

• Use effective connectivity measures, such as coupling functions [45], to reason

about the direction of influence of the interactions. This could help elucidate

the mechanisms of interaction within the NVU.
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Here we present an alternative to figure 1 in the main manuscript. Namely, to facilitate the comparison of
both representations, the Fourier transform is now shown in logarithmic scale in figures 1C,D,G,H. By comparing
figure 1 in the main text and supplementary figure 1, it is clear that the logarithmic scale is disadvantageous
to the short-time Fourier transform, which is obtained with linear frequency resolution.

Supplementary Figure 1: Time-frequency analysis illustrated for time-localised versus fixed-window approaches.
(A) Generated time-series of Poincaré oscillators as defined by Eq. (5) in the main manuscript, with additive
1/f noise and ξr = 0.005. A window of size 12.6 s centred at 120 s is drawn above the time-series. The arrows
above the window illustrate that the window slides across the time-series when the short-time Fourier transform
(STFT) is applied. (B) The same time-series as in A, with three wavelets with frequency resolution f0 = 2
at different frequencies (0.5 Hz, 1 Hz and 1.7 Hz) drawn above the time-series. The wavelets slide across the
time-series when the WT is applied. The dots between the wavelets illustrates that there is one wavelet for each
frequency, in our case 288 wavelets. (C) The STFT amplitude found at 120 s. Note the logarithmic frequency
scale. (D) The STFT phase found at 120s projected onto the frequency-phase plane. (E) The WT amplitude
found at 120s. The orange dots correspond to the frequencies of the three wavelets in B. Note the logarithmic
frequency resolution of the WT. (F) The WT phase found at 120s projected onto the frequency-phase plane. (G)
The STFT amplitude for the whole 400s time-series. A line is drawn at 120s. Note the logarithmic frequency
scale. (H) The STFT phase for 10s of the time-series. (I) the WT amplitude for the whole 400s time-series. (J)
The WT phase for 10s of the time-series.
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1 Introduction

This document contain material supplementary to the paper “Aging affects the phase coherence between spon-
taneous oscillations in brain oxygenation and neural activity”. In section 2, the effect size is calculated for the
main findings in the paper. In section 3, the average respiration rate and instantaneous respiration rate, and
their statistical evaluation for both groups, are presented. In addition, the coherence between instantaneous
heart/respiration rate with fNIRS and EEG signals are shown for all fNIRS and EEG locations. In section 4,
the EEG power and EEG inter-electrode coherence are shown. In section 5, the influence of sex on aging is
explored. In section 6 the permutation test is explained in more detail than in the main paper. In section 7 we
show the fNIRS–EEG coherence as a function of frequency, for all fNIRS–EEG combinations. Lastly, in section
8 we show correlations that were not included in the main paper.

Throughout this document black solid and blue dashed lines in graphs are median values, while shaded areas
show the 25–75th percentiles. Blue stars on the x-axis indicate a significant difference between the two groups
at that frequency.

Figure 1: Placement of EEG and fNIRS sensors. Note that in 8 locations there is both an EEG and an fNIRS
sensor.

2 Effect size

Cohen’s d was used for the effect size. It provides the number of standard deviations by which two groups differ
[1] and is calculated from

d =
m1 −m2

sd
, (1)

where m1 and m2 are the means of groups 1 and 2, and sd is the pooled standard deviation of the two groups,
which is given by
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sd =

√
(n1 − 1)SD2

1 + (n2 − 1)SD2
2

n1 + n2 − 2
. (2)

Here n1 and n2 are the numbers of people in groups 1 and 2, respectively, and SD1 and SD2 are the standard
deviations of the two groups.

2.1 Sensitivity of study

Based on a significance level of 0.05, a power of 0.8 and the sample sizes (21 younger subjects and 24 older
subjects) we tested what effect sizes could reliably be picked up by the study. The effect size found, using
G*Power [2], was 0.92, which means the study can reliably find large differences between the two groups. See
figure 2 for the calculation in G*Power.

Figure 2: Screenshot from G*Power.

2.2 oxyHb fNIRS myogenic effect sizes

8/11 fNIRS sensors are significantly different between the groups in the myogenic band, with the older group
having lower power. The Cohen’s d values are 1.027, 0.5966, 0.4535, 0.5962, 0.7412, 0.8774, 0.6635, 0.6239.
These are considered to be medium (d = 0.5) and large (d = 0.8) effect sizes. The mean effect size is therefore
0.697.

2.3 fNIRS–EEG coherence in the myogenic band effect sizes

Forty six fNIRS–EEG probe combinations are significantly different between the groups, with the older group
having lower coherence. The maximum, minimum and mean Cohen’s d values are 0.9636, 0.4349 and 0.6841,
respectively.

2.4 EEG coherence in the alpha band effect sizes

Thirty EEG-EEG electrode combinations are significantly different between the groups, with the older group
having lower coherence. The maximum, minimum and mean Cohen’s d values are 1.5038, 0.4594 and 0.9802,
respectively.
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3 Heart and respiration rates, coherence with EEG and fNIRS

The heart and lungs are the flow and pressure pumps of the cardiovascular system. In the main text average
heart rate, heart rate variability and instantaneous heart rate power is presented. Here, in figure 3 the average
respiration rate and respiration rate variability is shown. We calculated the wavelet phase coherence between
the instantaneous heart rate (IHR) and fNIRS/EEG, between the instantaneous respiration rate (IRR) and
fNIRS/EEG, and between the respiration signal and fNIRS/EEG.

The fNIRS signals are coherent with the IHR, IRR and respiration signals. For the IHR–oxygenation co-
herence, the older group has reduced coherence around 0.1Hz, and in the respiratory band in all fNIRS sensors
apart from 7 and 8. In these two sensors the coherence is still reduced in the respiration band. fNIRS is coher-
ent with respiration and, to a smaller extent, IRR in the respiratory band. The respiration–fNIRS coherence is
reduced in the older group compared to the younger group in the range around 0.3− 0.6Hz.

The EEG signals are coherent with IHR around 0.1Hz, but show little to no coherence with the respiration
and IRR signals (median 0, and low non-zero percentiles). The IHR–EEG coherence is especially high in elec-
trodes O1, O2, P3, P7, C4 and T7.

The plots. Solid lines show median values, and shaded areas show 25–75th percentiles. Blue stars on the
x-axis indicate a p-value below 0.05 at that frequency. A positive phase difference means that either IHR, or
IRR or respiration is the leading signal. The phase difference is given in radians.

3.1 Average respiration rate and instantaneous respiration rate

Figure 3: Average respiration rate (older: 0.23 ± 0.08 Hz; younger: 0.24 ± 0.05 Hz, p = 0.300), and standard
deviation of the IRR (sd IRR) (older: 0.039± 0.009 Hz; younger: 0.045± 0.019 Hz, p = 0.26).
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3.2 Instantaneous heart rate–fNIRS coherence

Figure 4: IHR–fNIRS coherence and phase difference for the 11 locations.
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3.3 Instantaneous heart rate–EEG coherence

Figure 5: IHR–EEG coherence and phase difference for the 16 locations.
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3.4 Respiration–fNIRS coherence

Figure 6: Resp–fNIRS coherence and phase difference for the 11 locations.
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3.5 Respiration–EEG coherence

Figure 7: Resp–EEG coherence and phase difference for the 16 locations.
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3.6 Instantaneous respiration rate–fNIRS coherence

Figure 8: IRR–fNIRS coherence and phase difference for the 11 locations.
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3.7 Instantaneous respiration rate–EEG coherence

Figure 9: IRR–EEG coherence and phase difference for the 16 locations.
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4 EEG results

The low frequency EEG analysis (0.007–4 Hz) were analysed using the Wavelet transform (WT) with the Morlet
wavelet and f0=1 Hz. For frequencies above 4 Hz (4–48 Hz) the windowed Fourier transform (WFT) was used,
with a Gaussian window and f0=1 Hz. Similarly to the WT, one can obtain a phase from the WFT which was
used for the wavelet phase coherence. The preprocessing for this was as described in the manuscripts, but the
filtering range was 4–48 Hz.

Across all frequency bands and electrodes, there are only 6 significant power differences. At electrode Fp1
the older group has higher myogenic and alpha power; at electrode T7 the older group has higher theta and
alpha power; at electrode T8 the younger group has higher gamma power; and, lastly, at electrode P4 the
younger group has higher beta power (figure 10A).

We identified the frequency within the alpha band which had the highest power for each individual, referred
to as the alpha peak frequency. Previous research has shown this peak frequency to be altered in aging. At
electrodes O1, O2, P7, P3, Pz, P4, P8, T8 and T7 the older group has a significantly lower peak frequency
compared to the younger group (see figure 11).

The largest coherence differences are in the theta and alpha bands, where the younger group has higher
coherence in the posterior leads (figure 10D). In addition there are significant differences in the beta band,
where the younger group has higher coherence in EEG pairs including Cz, and the older group has higher
coherence in some electrodes including electrodes T7 and T8. There are few differences in the myogenic and
cardiac bands. Across most electrodes there is a dip in coherence at around 31.25 Hz. This was the sampling
frequency of the fNIRS detector, and represented an artifact affecting all the signals. It stems from the fact
that active electrodes can pick up small amounts of signal from powered optodes if the wires from the LEDs or
detectors overlap the electrode.

Figure 10: EEG power and coherence. A) Colour-coded p-values indicate significant group differences between
the power in the frequency bands. Blue (yellow) indicates that the power is higher in the younger (older) group.
Significant coherence between B) F3 and F4 and C) P7 and T7 (see figure 1 in Methods for their locations).
The dashed blue and full black lines represent the median group coherence, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. D) p-values indicating significant group differences between the coherence in the various
frequency bands. Blue (yellow) indicates that the coherence is higher in the younger (older) group.

145



Figure 11: Violin plot showing alpha peak frequencies at electrode O1 for the older and younger groups. The
star signifies a significant difference (p < 0.05). The white circles indicate the group medians.

4.1 Relationship to previous results

Significant differences in power between groups are observed only in four EEG electrodes (Fp1, T7, P4 and T8),
with differences detected across the myogenic, theta, alpha, beta and gamma frequency bands. We observed
significantly reduced phase coherence in the older group in EEG pairs involving electrode Cz, and significantly
increased coherence in EEG pairs involving temporal electrodes (T7 and T8) across the same frequency bands.
The few differences in power suggest that phase coherence measures, especially in the alpha, theta and beta
bands, are either more sensitive to the effects of healthy aging or are a more appropriate method to detect the
effects. Several earlier studies have, as here, found coherence in the alpha band to decrease with age [3, 4, 5]. A
decrease in alpha power has also often been reported in aging [6], and is more apparent where there is a larger
difference in mean age between the groups [7]. A recent study found that alpha power decreased with age only
until around 40 years [8]. The age gap in our study was moderate, with several participants in the younger
group close to 40 years old, so our finding of little change in the alpha power is not surprising. However, we did
replicate the findings of reduced alpha peak frequency in the older group reported previously [9, 4], indicating
that this measure is also more sensitive to aging. Decreased theta connectivity in older participants has pre-
viously been reported [5, 10], with one study detecting increased coherence in the theta band until around 40
years and then a subsequent decrease after 60 years [8]. Our present findings are in line with these earlier results.

5 Influence of site

The subjects were measured at two sites, Lancaster and Ljubljana, and there were no site effects that we can
detect; hence they were grouped together. As shown in Figure 12A, in the younger group there are 9 (4M/5F)
participants from Lancaster (age=24.8±4.6 years) and 12 (6M/6F) from Ljubljana (age=35.8±3.8 years), while
in the older group there are 14 (5M/9F) participants from Lancaster (age=67.7±6.5 years) and 10 (4M/6F) from
Ljubljana (age=61.0±5.5 years). The younger Lancaster participants tend to be younger than the Ljubljana
ones (p=0.0006), while the older Lancaster participants tend to be older than the Ljubljana ones (p=0.02). The
groups in Ljubljana and Lancaster were primarily collected to create control groups for different clinical studies,
whence the slight difference in average ages. Furthermore, the same equipment was used in both places, and
the measurements were done by the same researcher within the same year.

For example, the average heart rate (Fig. 12B,C) do not differ between the two sites; old: Lancaster
1.06±0.16 Hz, Ljubljana 1.03±0.15 Hz, p=0.6; young: Lancaster 1.11±0.15 Hz, Ljubljana 1.22±0.14 Hz, p=0.08.
Comparably, the average respiration rate (Fig. 12D,E) do not differ significantly between the two sites; old: Lan-
caster 0.23±0.05 Hz, Ljubljana 0.23±0.10 Hz, p=0.3; young: Lancaster 0.24±0.05 Hz, Ljubljana 0.25±0.06 Hz,
p=0.9. The p-values are calculated using the Wilcoxon rank-sum test.

Similarly, the BMI did not differ between the sites in either the younger (p = 0.97), or the older (p = 0.23)
pairs of groups (old: Lancaster 27.5±2.6, Ljubljana 26.2±3.5, young: Lancaster 23.7±4.0, Ljubljana 23.5±3.4).

6 Influence of sex

The two groups can be divided by sex into 4 groups: a younger female group, a younger male group, an older
female group and an older male group. The numbers of participants and their ages are summarised in table 1.
The two younger groups were not significantly different age-wise (p = 0.6), and nor were the two older groups
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Figure 12: Histograms, divided by site for A) ages, B) average heart rate in the younger groups, C) average
heart rate in the older groups, D) average respiration rate in the younger groups and E) average respiration
rate in the older groups. The outlier in the older Ljubljana group in E) has a BMI of 28.4, which might explain
why their respiration rate is high.

(p = 0.79). We found that there are often differences between the groups of similar age but different sex. For
example, fNIRS-EEG coherence in the myogenic band has 41/176 combinations differ between the two older
groups, with the female group having higher coherence than the male group. For fNIRS myogenic power, the
older male group had higher power in sensor 1 compared to the older female group. These findings suggest that
age is not the only factor influencing the measured parameters, but that sex also plays a role. Future studies
could explore this further.

Younger F Younger M Older F Older M

N 11 10 15 9

Age (yrs) 31.9 ± 7.1 30.2 ± 7.0 64.9 ± 6.3 65.0 ± 8.1

Table 1: Ages for the younger and older groups when divided by sex. F = female, M = male. Age is given as
mean ± standard deviation. The p-values from the Wilcoxon Rank sum test between the two younger(older)
groups are 0.60(0.79).

6.1 Heart rate variability

There are no differences in sd IHR between the groups of similar age but different sex. While the older male
group has reduced sd IHR compared to the younger male group (p = 0.0044), this difference did not reach
significance in the older female group compared to the younger female group (p = 0.11). The older female group
has a larger spread of values compared to the older male group.

6.2 IHR–respiration coherence

There is little difference between the sexes in terms of instantaneous heart rate (IHR)–respiration coherence,
apart from between the young groups ∼ 0.03Hz where both medians were zero, and ∼ 0.4Hz where the female
group has higher coherence. The IHR power has some significant differences between the older female and
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male groups, at low frequencies, with the male group having higher power. In the younger groups there was a
tendency for the male group to have higher power ∼ 0.1Hz, but this does not reach significance.

6.3 fNIRS myogenic power

• 2 sensor significantly different between the two older groups (sensor 1 and 9 - male higher power)

• 2 sensors significantly different between the two younger groups (sensor 8 and 9 - male higher power)

• 4 sensors significantly different between the two female groups (sensor 1,3,6,7 - younger higher power)

• 1 sensor significantly different between the two male groups (sensor 1 - younger higher power)

6.4 fNIRS coherence in the myogenic band

• 7 sensor combinations significantly different between the two older groups (1 to 9, 2 to 9, 5 to 9, 6 to 9, 7
to 9, 9 to 10, 9 to 11, female group higher coherence)

• 3 sensor combinations significantly different between the two younger groups (1 to 2, 1 to 3 and 2 to 3,
male group higher coherence)

• 1 sensor combination significantly different between the younger and older female group (10 to 11, younger
group higher coherence)

• 5 sensor combinations significantly different between the younger and older male group (5 to 1, 5 to 2, 5
to 11, 1 to 2, 1 to 10, younger group higher coherence)

6.5 fNIRS coherence in the cardiac band

• No differences between the two older groups.

• 3 sensors different between the younger groups, female group higher coherence

• 12 significant differences between younger and older female groups, older group higher coherence

• 44 sensor significantly different between the younger and older male groups, older group higher coherence

6.6 fNIRS–EEG coherence in the myogenic band

• 8 sensors significantly different between the younger and older female groups, younger group higher co-
herence in 3 sensors

• 52 sensors significantly different between younger and older male groups, younger group higher coherence

• No significant differences between the two younger groups.

• 41 significant differences between the two older groups, female group higher coherence

6.7 fNIRS–EEG coherence in the cardiac band

• 3 significant differences between the two older groups, female higher

• 2 significant differences between younger groups (female higher in one, male higher in one).

• 6 significant differences between male groups (T8 with various fNIRS signals, older group higher coherence)

• 36 significant differences between female groups (older group higher)
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Figure 13: Violin plots showing standard deviation of IHR (sd IHR). The younger groups are not significantly
different (p = 1), and nor are the older groups (p = 0.16). The male older group has reduced HRV compared
to the younger male group (p = 0.0044); for the females, sd IHR is not significantly reduced in the older group
(p = 0.11).

Figure 14: IHR–respiration coherence (top). Time-averaged wavelet transform power of the instantaneous heart
rate (IHR) (bottom). The blue and black lines are the median group power/coherence, while the shaded areas
show the 25–75th percentiles. Significant differences (p < 0.05) between the groups at particular frequencies
are indicated by blue stars on the x-axis.

Figure 15: Violin plots showing the fNIRS myogenic power at sensor 1 for the 4 groups. The younger groups
are not significantly different (p = 0605), but the older groups are significantly different (p = 0.049). Both older
groups have reduced myogenic power compared to the younger group of the same sex (p = 0.007 for female and
p = 0.022 for male).
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7 Permutation test

For the fNIRS power and coherence, EEG power and coherence and fNIRS–EEG coherence, when the Wilcoxon
Rank Sum test indicated a significant difference a permutation test was applied to test this significance. From
the total of 45 participants, 21 were randomly put into one group and 24 into another. The power/coherence
in the two random groups were compared with the Wilcoxon Rank Sum test. After 16587 permutations, the
original p-value was compared with the randomly obtained p-values. The original p-value was considered still
significant if it was smaller than 95% of the randomly found p-values. An example of this is shown in figure 16.
The original p-value was smaller than 99.1% of the randomly found p-values. Another example of this is shown
in figure 17. The original p-value was smaller than 99.95% of the randomly found p-values.

Figure 16: A) Histogram of the p-values obtained for fNIRS-EEG coherence in the cardiac band at EEG P7
and fNIRS 11. The red line is the original p-value. There are 1000 bins in the histogram. B) Zoom of A.

Figure 17: A) Histogram of the p-values obtained for fNIRS myogenic power at fNIRS 1. The red line is the
original p-value. There are 1000 bins in the histogram. B) Zoom of A.

8 Correlations

The correlations was found from the Spearman’s rank-order correlation, which is a non-parametric alternative
to the Pearson linear correlation. It tests for a monotonic relationship between two variables. The p-value was
found from permutation distributions.

Figure 18: Correlation between fNIRS-EEG coherence in the myogenic band and age, sBP and dBP.
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Figure 19: Correlation between IHR–respiration coherence in the myogenic band and age, sBP and dBP, and
correlation between IHR–respiration coherence in the respiration band and age, sBP and dBP.

9 BMI and sBP groups

We wanted to find the differences caused by aging, but the two age groups also differed in their BMI and blood
pressure. This was not unexpected as increased blood pressure and BMI are common in the older age group we
investigated. It is therefore difficult to distinguish between the effect of just aging and the effect of increased
blood pressure and BMI, as the variables are not independent. To investigate the effect of just aging we created
two smaller groups (Younger = 13, Older = 13) that had similar BMI and blood pressure (BMI p=0.80, sBP
p=0.86). Figure 20) shows the age, BMI and sBP violin plots.

Figure 20: Violin plots showing age, BMI and sBP for the smaller younger and older groups.

9.1 fNIRS power and coherence

The power in the endothelial band was significantly different in N8, N9 and N10 between the original groups,
but only in N8 and N9 when comparing the smaller groups at the 0.05 significance level. However, at the 0.1
signficance level N10 also differ between the smaller groups. Both the original groups and the smaller groups
differ only at N8 in the neurogenic band power. The original groups had significantly different power in the
myogenic band in 8/11 fNIRS probes, while the smaller groups only differ in 1 probes at the 0.05 significance
level. Many significant differences are also lost when considering fNIRS coherence in the smaller groups, but
when looking at the 0.1 significance level it is clear that the smaller groups follow similar trends to the original
groups. The statistical power is naturally reduced when comparing groups of 13, which might also explain the
loss of significant differences. It is of course possible that increased blood pressure and BMI contribute to the
differences observed, but the current results indicate that there is an effect from aging that is independent of
the BMI/BP.
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Figure 21: Significant differences between the two smaller age groups. The top rows only shows differences
where the p-value is smaller than 0.05, while the bottom rows shows differences where the p-value is smaller
than 0.1. A) fNIRS power, B) fNIRS coherence.

9.2 fNIRS-EEG coherence

The fNIRS–EEG myogenic coherence was significantly different in 46/176 probe combinations between the
original groups, while for the cardiac coherence it was significantly different in 50/176 probe combinations. The
smaller groups have significantly different myogenic coherence in 6/176 probe combinations and significantly
different cardiac coherence in 23/176 probe combinations. The numbers increase when considering the 0.1
significance level. This suggests that the smaller groups follow a similar trend to the original groups, but that
the smaller number reduces the statistical power. The results indicate that there is an effect on the coherence
that is independent to the BMI and blood pressure differences between the original groups.
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Figure 22: Group median fNIRS–EEG coherence for the younger group (left) and older group (middle); and
p-values indicating a significant difference between the groups (right), either at a level of 0.05 or 0.1. Blue
(yellow) values indicate that coherence is higher in the younger (older) group. The top row shows the total
coherence averaged over the whole frequency band (0.021–1.7 Hz), the middle row shows the myogenic frequency
band and the bottom row shows the cardiac frequency band.

10 oxyHb fNIRS–EEG coherence

We show phase coherence for all EEG fNIRS combinations. The sensor layout is shown in figure 1. There are
in total 16 × 11 = 176 combinations, as there are 16 EEG electrodes and 11 fNIRS sensors. The method for
obtaining the wavelet phase coherence, introduced by Bandrivskyy et al. (2004)[11], is described in detail in
the main paper.

Figure 23: The coloured lines represent the significant p-values for the group differences in coherence in the
frequency bands, while the circle is for co-located fNIRS and EEG probes. Blue (yellow) indicates that the
coherence is higher in the younger (older) group.
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Figure 24: fNIRS–EEG coherence and phase difference for electrode Fp1 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 25: fNIRS–EEG coherence and phase difference for electrode Fp1 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 26: fNIRS–EEG coherence and phase difference for electrode Fp2 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 27: fNIRS–EEG coherence and phase difference for electrode Fp2 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 28: fNIRS–EEG coherence and phase difference for electrode F3 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 29: fNIRS–EEG coherence and phase difference for electrode F3 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 30: fNIRS–EEG coherence and phase difference for electrode F4 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 31: fNIRS–EEG coherence and phase difference for electrode F4 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 32: fNIRS–EEG coherence and phase difference for electrode T7 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 33: fNIRS–EEG coherence and phase difference for electrode T7 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 34: fNIRS–EEG coherence and phase difference for electrode T8 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 35: fNIRS–EEG coherence and phase difference for electrode T8 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 36: fNIRS–EEG coherence and phase difference for electrode C3 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 37: fNIRS–EEG coherence and phase difference for electrode C3 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 38: fNIRS–EEG coherence and phase difference for electrode Cz and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 39: fNIRS–EEG coherence and phase difference for electrode Cz and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 40: fNIRS–EEG coherence and phase difference for electrode C4 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 41: fNIRS–EEG coherence and phase difference for electrode C4 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis.
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Figure 42: fNIRS–EEG coherence and phase difference for electrode P7 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 43: fNIRS–EEG coherence and phase difference for electrode P7 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 44: fNIRS–EEG coherence and phase difference for electrode P3 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 45: fNIRS–EEG coherence and phase difference for electrode P3 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 46: fNIRS–EEG coherence and phase difference for electrode Pz and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 47: fNIRS–EEG coherence and phase difference for electrode Pz and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 48: fNIRS–EEG coherence and phase difference for electrode P4 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 49: fNIRS–EEG coherence and phase difference for electrode P4 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 50: fNIRS–EEG coherence and phase difference for electrode P8 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 51: fNIRS–EEG coherence and phase difference for electrode P8 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 52: fNIRS–EEG coherence and phase difference for electrode O1 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 53: fNIRS–EEG coherence and phase difference for electrode O1 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 54: fNIRS–EEG coherence and phase difference for electrode O2 and 6 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis. A
negative phase difference means that fNIRS is the leading signal.
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Figure 55: fNIRS–EEG coherence and phase difference for electrode O2 and 5 fNIRS sensors. The dashed blue
and full black lines represent the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences between the groups at particular frequencies are indicated by blue stars on the x-axis.
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11 Frequency and amplitude modulation

Figure 56: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location F3.
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Figure 57: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location F4.
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Figure 58: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location T7.
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Figure 59: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location T8.
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Figure 60: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location P3.
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Figure 61: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location P4.
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Figure 62: Comparisons between the older and younger groups related to frequency and amplitude modulation
in the EEG γ-interval. Median power of the A) γ–instantaneous frequency time-series and B) γ–instantaneous
power time-series. C) Median coherence between fNIRS and the γ-instantaneous frequency time-series. D)
Median coherence between fNIRS and γ-instantaneous power time-series. E) Phase difference between fNIRS
and the γ–instantaneous frequency time-series. F) Phase difference between fNIRS and the γ–instantaneous
power time-series. The blue and black lines are the median group coherences, while the shaded areas show the
25–75th percentiles. Significant differences between the groups at particular frequencies are indicated by blue
stars on the x-axis. The blue and black solid vertical lines indicate the average respiration rates for the younger
and older group, while the dashed lines indicate the standard deviations. Both fNIRS and EEG signals are from
location O2.
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1 Introduction

This document contains supplementary material for the paper “Neurovascular phase coherence is altered in
Alzheimer’s disease”. Section 2 discusses how some apparently healthy subjects were excluded on the basis
of their abnormal ECG patterns. In sections 3 and 4 the coherence between instantaneous heart rate and
oxygenation, and between respiration and oxygenation are shown for all fNIRS probes. The reproducibility
of oxygenation power is discussed in Section 5. Section 6 contains additional information about the analysis,
results and discussion for the EEG data.

2 ECG analysis

Despite not being diagnosed with heart problems, 4 of the participants had abnormal ECG traces, as can
be seen in Supplementary Figure 1. The participants in Supplementary Figure 1A,B had many instances of
ectopic heart beats throughout the entirety of the ∼30 minutes recordings. The participant in Supplementary
Figure 1C might have persistent atrial fibrillation, and the participant in Supplementary Figure 1D might have
hyperkalemia. The instantaneous heart rates (IHRs) of all 4 participants were clearly atypical, with very large
variability. In all cases there was a problem with the conductance of the heart. These participants were therefore
excluded from IHR analysis as stated in the main manuscript.
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Supplementary Figure 1: Zoom-ins of the ECG recordings from (A) the control participant, and (B-D) AD
participants that were excluded from the analysis due to abnormal ECGs. The recordings in (A) and (B) show
ectopic heart beats, which were present throughout the length of the recordings. The recording in (C) does
not have the characteristic ECG shape, potentially due to persistent atrial fibrillation. The recording in (D)
have a large T-wave, in addition to a low S wave, potentially due to hyperkalemia. All 4 recordings resulted in
abnormal instantaneous heart rates.

The results for IHR power and IHR–respiration coherence when these participants are included are shown
in Supplementary Figures 2A and B respectively. The 75th percentile of IHR power is clearly affected by the
additional 3 AD participants, and some of the significance in the 0.052-0.145 Hz range is now gone. On the
other hand, the difference in IHR–respiration coherence is more significant, likely due to the increased statistical
power when more people are included.

Supplementary Figure 2: (A) Instantaneous heart rate (IHR) power and (B) IHR–respiration coherence, with
the excluded participants now included. The solid black and blue lines show the median group coherence,
while the shaded areas show the 25–75th percentiles. Significant differences (p≤0.05) between the groups at
particular frequencies, found using the Wilcoxon rank-sum test, are indicated by blue stars on the x-axis. AD
= Alzheimer’s disease, C = control group.) N = 19 for controls, N = 18 for AD.

Many studies of heart rate variability use 300 second recordings. We too calculated the IHR power for 300
seconds for the participants included in the main manuscript. Supplementary Figure 3 shows that the power
is significantly reduced in the 0.052–0.2 Hz range, which is consistent with the results from the full recording.
Shorter time-series limit the frequency interval which can be investigated at its lower end.
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Supplementary Figure 3: Instantaneous heart rate power, calculated from 300 seconds time-series. The red
vertical line shows the average respiration rate for the Alzheimer’s disease group, while the green vertical line
show the average respiration rate for the control group. The solid black and blue lines show the median group
coherence, while the shaded areas show the 25–75th percentiles. Significant differences (p≤0.05) between the
groups at particular frequencies, found using the Wilcoxon rank-sum test, are indicated by blue stars on the
x-axis. AD = Alzheimer’s disease, C = control group. N = 18 for controls, N = 15 for AD.
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3 Instantaneous heart rate and oxygenation coherence

Supplementary Figure 4 plots the IHR-fNIRS coherence and phase difference for all 11 fNIRS channels.

Supplementary Figure 4: Instantaneous heart rate (IHR)–fNIRS coherence and phase difference for all 11 fNIRS
channels. The solid black and blue lines show the median group coherence, while the shaded areas show the
25–75th percentiles. Significant differences (p≤0.05), found using the Wilcoxon rank-sum test, between the
groups at particular frequencies are indicated by blue stars on the x-axis. AD = Alzheimer’s disease, C =
control group. N = 18 for controls, N = 15 for AD.
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4 Respiration and oxygenation coherence

Supplementary Figure 5 plots the Respiration–fNIRS coherence and phase difference for all 11 fNIRS channels.

Supplementary Figure 5: Respiration–fNIRS coherence and phase difference for all 11 fNIRS channels. The solid
black and blue lines show the median group coherence, while the shaded areas show the 25–75th percentiles.
Significant differences (p≤0.05) between the groups at particular frequencies, found using the Wilcoxon rank-
sum test, are indicated by blue stars on the x-axis. AD = Alzheimer’s disease, C = control group. N = 14 for
controls, N = 19 for AD.
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5 Reproducibility of oxygenation power

To verify the reproducibility of our results, we have split the fNIRS time-series into two halves and calculated
the wavelet power. The significant differences in power between the two groups for the two segments are
shown in the figure below (Supplementary Figure 6). Combined with the IHR power calculated from 300 s
(Supplementary Figure 3), this shows that the power results are consistent across segments.

Supplementary Figure 6: Significant differences (p ≤ 0.05) in fNIRS power between the Alzheimer’s disease
(AD) and control (C) groups, for fNIRS power calculated for the first and last 12.5 minutes. The Wilcoxon
rank-sum test was used. It is evident that the results are consistent with those obtained from the whole-length
(25 min) time-series as shown in the main part of the manuscript, Fig. 3. At location N9 there is an additional
significant difference between the Alzheimer’s disease and control groups in the last half of the recordings. The
p-value is 0.35 for the first half and 0.07 for the whole-length. N = 20 for the C participants, N = 19 for AD
patients.

6 EEG analysis, results and discussion

6.1 Analysis

The data acquisition and preparation is described in the main manuscript, as is the wavelet transform power,
wavelet phase coherence and statistics. For frequencies up to the delta band the time-series were downsampled
to 31.25 Hz, while for frequencies up to the gamma band the time-series were downsampled to 142 Hz. The
wavelet transform was used to obtain power and phases for frequencies up to 4 Hz (delta band), while for
frequencies up to the gamma band the windowed Fourier transform was used. The frequency bands used are
myogenic (0.052-0.145 Hz), respiration (0.145-0.6 Hz), cardiac (0.6-1.7 Hz), delta (1.7-4 Hz), theta (4-7.5 Hz),
alpha (7.5-14 Hz), beta (14-22 Hz) and gamma (22-48 Hz).

6.2 Results

The EEG power and phase coherence results are shown in Supplementary Figure 7. The AD group has higher
power in the cardiac (2 channels), delta (3 channels), theta (9 channels) and gamma (5 channels) bands. The
probability of 3 or more positive findings is 4%, and so the delta, theta and gamma results are significant. The
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probability of 2 or more findings is 19%, and the cardiac result is therefore not significant.

For coherence significant differences are:

• AD group has significantly higher coherence in 11 combinations in the theta band, all of which includes
the Cz electrode.

• The AD group has significantly higher coherence in 21 combinations (11 of which includes the Cz electrode)
in the alpha band, while the control group has higher coherence in 8 combinations.

• The AD group has higher coherence in 15 combinations (8 of which includes the Cz electrode) in the beta,
while the control group has higher coherence in 8 combinations.

• The AD group has higher coherence in 8 combinations in the gamma band, and the control group also
has higher coherence in 7 combinations.

The probability of 11 significant findings is 3.8%, so the theta, alpha, beta and gamma results are significant.
The myogenic and respiration results are not significant.

Supplementary Figure 7: (A) Significant differences (p ≤ 0.05) in the EEG power in different frequency bands
between the AD and C groups, found using the Wilcoxon rank-sum test. Orange (blue) circles indicate that the
power was higher in the AD (control) group compared to the control (AD) group. Grey circles indicate there
are no significant differences between the groups. (B) Significant differences (p ≤ 0.05) in the EEG coherence
in different frequency bands between the AD and C groups, found using the Wilcoxon rank-sum test. Orange
(blue) lines indicate that the coherence was higher in the AD (control) group compared to the control (AD)
group. AD = Alzheimer’s disease, C = control. N = 20 for controls, N = 19 for AD.
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Supplementary Figure 8: Spearman’s Rho between alpha coherence for the Cz probe with temporal, central,
parietal and occipital probes (11 coherence values per person, shown as black dots) and the MMSE score, for
participants with Alzheimer’s disease. MMSE = mini mental state exam. The p-value is calculated from a
permutation test. The blue line is the best fit linear function based on all data points.

6.3 Discussion

We show that both the power and coherence of EEG time-series are altered in AD, indicating altered neuronal
activity. A slowing of the EEG is often found in AD, shown by increases in delta and theta power and decreases
in alpha and beta power [1]. We find increases in delta and theta, but not decreases in alpha and beta power.
However, our study was done with long, continuous recordings and eyes open, which is different to most EEG
studies in AD. Alpha power is known to decrease in the eyes open condition, which might explain why we do
not see a decrease [2, 3]. In addition, we see high variability in the alpha power in the AD group, which might
also impact our ability to pick up the differences. With the sample sizes we can reliably pick up large effect
sizes.

The increased alpha coherence in the central, temporal, parietal and occipital areas in the AD group is
negatively correlated with disease stage as evaluated by the mini mental state exam score (Supplementary
Figure 8). This could mean that increased coherence is associated with more atrophy, and that less synaptic
connections could cause increased coherence. It would also mean that the volume conduction is more severe in
the later stages of disease, and that causes increased coherence between EEG time-series from different probes.
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1 Introduction

This document contains supplementary material for the paper “The phase coherence of the neurovascular unit
is reduced in Huntington’s disease”. The lay-out of the fNIRS and EEG probes used to record data discussed
in the paper is shown in Supplementary Figure 1.

Supplementary Figure 1: EEG electrode and fNIRS channel placements. Note that in 8 locations EEG and
fNIRS probes are co-located.

2 Effect sizes

2.1 The effect size that can be reliably detected

The data for this study were collected in April and May 2018. The effect size sensitivity was calculated based
on a power of 0.8, a significance level of 0.05 and considering the existing sample sizes. We then found the effect
size that the study can reliably pick up. It is 1.03 for the pre-symptomatic HD and 0.96 for the symptomatic
HD, which means the study can reliably find large differences between the groups. The calculations were done
using G*Power [3], and an example is shown in Supplementary Figure 2.
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Supplementary Figure 2: Screenshot from G*Power, showing the calculation of the effect size that this study
can reliably detect in the case of the S vs. SC comparisons. S = symptomatic HD, SC = control group for S.

2.2 Evaluation of the effect size

The effect size was calculated post-hoc using Cohen’s d with a non-parametric adjustment [4, 5]. The z-value
is the standard score, calculated from the ranks when applying the Wilcoxon rank-sum test [6]. Based on the
z-value, r is calculated as

r =
z√
N

, (1)

where N is the number of participants [6]. Cohen’s d is found as

d =
2× r√
1− r2

. (2)

A Cohen’s d greater than 0.8 is considered large, while a value between 0.5 and 0.8 is considered medium.
The results are summarised in Supplementary Table 1. The effect size is calculated for cases where p ≤ 0.05
was obtained, so that the differences are statistically significant. For the coherence and alpha power, we show
the minimum, maximum and mean effect size of all significant combinations. The results are summarised in
Supplementary Table 1, and a large effect size obtained from the nonparametric Cohen’s d is indicated in red,
while a medium effect size is indicated in blue.
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Cohen’s d Nonparametric Cohen’s d r
Neurogenic fNIRS power 11: 0.7477 11: 0.9139 11: 0.4156

(P vs. PC) 10: 0.6159 10: 0.6832 10: 0.3233
6: 0.6295 6: 0.7031 6: 0.3317
5: 0.6462 5: 0.8917 5: 0.4072
1: 0.6852 1: 0.6552 1: 0.3113

Myogenic fNIRS power 7: 0.8727 7: 0.8664 7: 0.3975
(P vs. PC) 6: 0.7175 6: 0.8917 6: 0.4072

5: 0.5528 5: 0.8056 5: 0.3736
3: 0.6534 3: 0.7435 3: 0.3484
1: 0.5910 1: 0.8054 1:0.3736

Respiration fNIRS power 11: -0.8829 11: -0.8026 11: -0.3724
(S vs. SC) 10: -0.7625 10: -0.7628 10: -0.3564

9: -0.3611 9: -0.8695 9: -0.3987
3: -0.9170 3: -0.6014 3: -0.2879
1: -0.6217 1: -0.6840 1: -0.3082

Cardiac fNIRS coherence mean: 0.7472 mean: 0.7078 mean: 0.3331
(S vs. SC) min: 0.4294 min: 0.5963 min: 0.2857

max: 1.0601 max: 0.8932 max: 0.4078
Alpha EEGpower mean: 0.3929 mean: 1.0876 mean: 0.4755

(S vs. SC) min: 0.1631 min: 0.7945 min: 0.3692
max: 0.6060 max: 1.3436 max: 0.5576

Alpha EEG coherence mean: 0.4089 mean: 0.3502 mean: 0.1645
(P vs. PC) min: 0.0260 min: -0.1431 min: -0.0714

max: 1.2901 max: 1.1026 max: 0.4828
Alpha EEG coherence mean: 0.9125 mean: 0.8018 mean: 0.3680

(S vs. SC) min: 0.6276 min: 0.6036 min: 0.2889
max: 1.5763 max: 1.3697 max: 0.5650

Gamma EEG coherence mean: 0.5813 mean: 0.5933 mean: 0.2757
(S vs. SC) min: -0.1480 min: -0.1158 min: -0.0578

max: 1.0744 max: 1.0153 max: 0.4527
Neurogenic fNIRS-EEG coherence mean: 0.5312 mean: 0.7368 mean: 0.3331

(P vs. PC) min: -0.4892 min: -0.7535 min: -0.3526
max: 0.9318 max: 1.2932 max: 0.5430

Myogenic fNIRS-EEG coherence mean: 0.6225 mean: 0.8010 mean: 0.3698
(P vs. PC) min: 0.4273 min: 0.6352 min: 0.3027

max: 0.7684 max: 1.1704 max: 0.5051
Myogenic fNIRS-EEG coherence mean: 0.6491 mean: 0.7136 mean: 0.3350

(S vs. SC) min: 0.4668 min: 0.5900 min: 0.2830
max: 0.7548 max: 0.9560 max: 0.4313

Supplementary Table 1: Effect size for the significant parameters, using the parametric Cohen’s d (refered to
as Cohen’s d), nonparametric Cohen’s d, and r. For the fNIRS power the effect size is calculated for each probe
where a significant difference is found. The information is given as probe: effect size. For coherence and alpha
power the effect size is calculated for the significant combinations/electrodes, and we show the mean, minimum
and maximum values. Positive values mean that the control groups had higher values than the HD groups,
while negative values mean the opposite. For the nonparametric Cohen’s d, large effect sizes are indicated in
red and medium effect sizes in blue. S = symptomatic HD, SC = control group for S, P = presymptomatic HD,
PC = control group for P.
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3 Permutation test

For the fNIRS, EEG and fNIRS–EEG power/coherence calculations, significant differences were assessed also
using a Monte-Carlo permutation test. Participants from the P and CP groups were randomly placed into two
groups of size 13 and 29, while participants from the S and SC groups were randomly placed into two groups
of size 15 and 33. The Wilcoxon rank-sum test was then applied to test for differences between these groups.
After ∼ 16000 permutations of the groups, the original p-value was compared to the new ones. Supplementary
Figure 3 shows an example. 95.1% of the randomly found p-values were above 0.05, and the original p-value
was smaller than 98.7% of them. Another example is shown in Supplementary Figure 4. 95.2% of the randomly
found p-values were above 0.05, and the original p-value was smaller than 97.5% of them.

Supplementary Figure 3: (A) Histogram of the p-values obtained for fNIRS-EEG coherence in the myogenic
band at EEG P8 and fNIRS 10, for the S and SC groups. The red line is the original p-value. There are 1000
bins in the histogram. (B) Zoom of the smaller p-values in (A).
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Supplementary Figure 4: (A) Histogram of the p-values obtained for fNIRS myogenic power at probe 1 for the
P and PC groups. The red line is the original p-value. There are 1000 bins in the histogram. (B) A zoom of
the smaller p-values shown in (A),

4 Reproducibility

The number of participants is a limiting factor in our study, which raises the important question of the repro-
ducibility of the results obtained. Due to the intensive nature of the experimental protocol further measurements
are not possible at this time. We have therefore addressed reproducibility in the following ways:

• Where appropriate we have compared the first and last 10 minutes of recordings, to assess the consistency
of the differences between the groups throughout the session. We did this for the fNIRS and EEG power,
but not for the coherence calculations as the latter comparisons require longer recordings. The results of
the power comparisons can be seen in Supplementary Figures 5 and 6.

• When comparing the coherence between groups, only the effective coherence was considered. The effective
coherence is found by subtracting the 95th percentile of the surrogate coherences found at each frequency,
creating a high surrogate threshold [7, 8]. This ensures that the coherence is statistically significant.

• We have used long recordings (20 minutes). The properties analysed must be present over sufficient time
for significant differences between groups to be detected: sporadic, random changes would average out
over time in such long recordings.
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Supplementary Figure 5: Significant p-values, found using the Wilcoxon rank-sum test, for oxyHb power for
the first 10 minutes of the signals and the last 10 minutes of the signals. The first rows are between the P and
PC groups, while the second rows are between the S and SC groups. Yellow/red (blue/purple) circles indicate
that the power is higher in the controls (HDs). P = presymptomatic Huntington’s disease, S = symptomatic
Huntington’s disease, PC = control group for P, SC = control group for S.
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Supplementary Figure 6: Significant p-values, found using the Wilcoxon rank-sum test, for EEG power for the
first 10 minutes of the signals and the last 10 minutes of the signals. The first rows are between the P and
PC groups, while the second rows are between the S and SC groups. Yellow/red (blue/purple) circles indicate
that the power is higher in the controls (HDs). P = presymptomatic Huntington’s disease, S = symptomatic
Huntington’s disease, PC = control group for P, SC = control group for S.

209



5 Peak detection vs. ridge extraction

We compared the instantaneous heart rate (IHR) results obtained by ridge extraction to those obtained by peak
detection. Two examples in the time-domain are shown in Supplementary Figure 7.

Supplementary Figure 7: Examples of heart rate found from ridge extraction and peak detection, for (A) one
control participant and (B) one Huntington’s disease participant.

For the coherence results we obtain similar results with both methods: lower respiration-IHR coherence for
the S group (Supplementary Figure 8), lower fNIRS-IHR coherence between 0.052-0.1Hz in the P group for N2,
N3, N4, N5 and N6 (Supplementary Figures 9 and 11) and a smaller fNIRS-IHR phase shift around 0.1Hz for
the S group (Supplementary Figures 10 and 12). The phase difference is no longer negative in the respiration
range, likely due to the discontinuity in phase difference at ±π. The IHR power is increased, probably due to
difficultly in detecting an R-peak when there is a movement artifact. For the reasons outlined in the main text
the results in the paper are shown for the ridge extraction.
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Supplementary Figure 8: The top row shows the instantaneous heart rate power (found with peak detection), for
the P and PC groups (left), and for the S and SC groups (right). The instantaneous heart rate and respiration
coherence are shown in the bottom row. The solid lines show the median group coherence, while the shaded
areas show the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test,
between the groups at particular frequencies are indicated by green stars on the x-axis. P = presymptomatic
Huntington’s disease, S = symptomatic Huntington’s disease, PC = control group for P, SC = control group
for S.
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Supplementary Figure 9: Peak IHR–fNIRS coherence and phase difference for all 11 fNIRS channels (see
Supplementary Figure 1 for locations). The solid lines show the median group coherence, while the shaded
areas show the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test,
between the groups at particular frequencies are indicated by green stars on the x-axis. P = presymptomatic
Huntington’s disease, S = symptomatic Huntington’s disease, PC = control group for P, SC = control group
for S.
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Supplementary Figure 10: Peak IHR–fNIRS coherence and phase difference for all 11 fNIRS channels (see
Supplementary Figure 1 for locations). The solid lines show the median group coherence, while the shaded
areas show the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test,
between the groups at particular frequencies are indicated by green stars on the x-axis. P = presymptomatic
Huntington’s disease, S = symptomatic Huntington’s disease, PC = control group for P, SC = control group
for S.
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6 Heart and respiration rates, coherence with fNIRS

6.1 IHR–fNIRS coherence

Supplementary Figure 11: IHR–fNIRS coherence and phase difference for all 11 fNIRS channels (see Supple-
mentary Figure 1 for locations). The solid lines show the median group coherence, while the shaded areas show
the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test, between the
groups at particular frequencies are indicated by green stars on the x-axis. P = presymptomatic Huntington’s
disease, PC = control group for P.
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Supplementary Figure 12: IHR–fNIRS coherence and phase difference for all 11 fNIRS channels (see Supple-
mentary Figure 1 for locations). The solid lines show the median group coherence, while the shaded areas show
the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test, between the
groups at particular frequencies are indicated by green stars on the x-axis. S = symptomatic Huntington’s
disease, SC = control group for S.
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6.2 Respiration–fNIRS coherence

Supplementary Figure 13: Respiration–fNIRS coherence and phase difference for all 11 fNIRS channels (see
Supplementary Figure 1 for locations). The solid lines show the median group coherence, while the shaded
areas show the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test,
between the groups at particular frequencies are indicated by green stars on the x-axis. P = presymptomatic
Huntington’s disease, PC = control group for P.
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Supplementary Figure 14: Respiration–fNIRS coherence and phase difference for all 11 fNIRS channels (see
Supplementary Figure 1 for locations). The solid lines show the median group coherence, while the shaded
areas show the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test,
between the groups at particular frequencies are indicated by green stars on the x-axis. S = symptomatic
Huntington’s disease, SC = control group for S.
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6.3 IRR–fNIRS coherence

Supplementary Figure 15: IRR–fNIRS coherence and phase difference for all 11 fNIRS channels (see Supple-
mentary Figure 1 for locations). The solid lines show the median group coherence, while the shaded areas show
the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test, between the
groups at particular frequencies are indicated by green stars on the x-axis. P = presymptomatic Huntington’s
disease, PC = control group for P.
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Supplementary Figure 16: IRR–fNIRS coherence and phase difference for all 11 fNIRS channels (see Supple-
mentary Figure 1 for locations). The solid lines show the median group coherence, while the shaded areas show
the 25–75th percentiles. Significant differences (p<0.05), found using the Wilcoxon rank-sum test, between the
groups at particular frequencies are indicated by green stars on the x-axis. S = symptomatic Huntington’s
disease, SC = control group for S.
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7 fNIRS power and coherence

Supplementary Figure 17 shows the fNIRS power (A) and coherence (B) results for the five cardiovascular
frequency bands. Due to the high surrogate threshold we do not show the coherence in the endothelial band.

Supplementary Figure 17: (A) Significant p-values, found using the Wilcoxon rank-sum test, for oxyHb power.
The first row is between the P and PC groups, while the second row is between the S and SC groups. The
third row is between the S and the CS group. Yellow/red (blue/purple) circles indicate that the power is higher
in the controls (HDs). (B) Significant p-values, found using the Wilcoxon rank-sum test, for fNIRS WPC in
the cardiac band. Blue/purple lines indicate that the WPC was higher in the HD group compared to the
control group, or in the S group compared to the CS group. P = presymptomatic Huntington’s disease, S =
symptomatic Huntington’s disease, PC = control group for P, SC = control group for S, CS = symptomatic
Huntington’s disease with much chorea.
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8 EEG power and coherence

Supplementary Figure 18 shows the EEG power (A) and coherence (B) results for all frequency bands starting
from the myogenic range. Supplementary Table 2 shows the total power in the theta, beta and gamma bands.
The alpha band is shown in the main manuscript.

Supplementary Figure 19 shows the EEG power and coherence results for two different ranges of β and γ.
β is often defined up to 30 Hz, but in our study beta is defined as 14-22 Hz. The comparisons show that some
of the γ results might be attributed to the 22-30 Hz range.

Supplementary Figure 18: (A) Significant p-values, found using the Wilcoxon rank-sum test, for the EEG
time-averaged wavelet power. Yellow/red (blue/purple) circles indicate that the power is higher in the controls
(HDs). The first row is the p-values between the P and PC groups, while the second row is the p-values for the
S and SC groups (B) Significant differences, found using the Wilcoxon rank-sum test, in EEG WPC. The top
row shows differences between the P and PC groups, while the middle row is between S and SC. The bottom
row is between S and CS. Yellow/red (blue/purple) lines indicate higher WPC in the controls (HDs), or in the
S group compared to the CS group. P = presymptomatic Huntington’s disease, S = symptomatic Huntington’s
disease, PC = control group for P, SC = control group for S, CS = symptomatic Huntington’s disease with
much chorea.
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Supplementary Table 2: Group median total power in the θ, β and γ bands.
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Supplementary Figure 19: Comparison of EEG results for two difference frequency ranges of beta and gamma.
The left columns show EEG wavelet power, while the right columns show EEG wavelet phase coherence. P =
presymptomatic Huntington’s disease, S = symptomatic Huntington’s disease, PC = control group for P, SC =
control group for S.

223



9 fNIRS-EEG coherence

Supplementary Figure 20 shows the fNIRS–EEG coherence results for the cardiovascular frequency bands. Due
to the high surrogate threshold at low frequencies, the endothelial band is not shown.

Supplementary Figure 20: Significant p-values, found using the Wilcoxon rank-sum test, for fNIRS-EEG WPC
in the cardiac band. Blue/purple lines indicate that the WPC was higher in the HD group compared to the
control group, or in the S group compared to the CS group. P = presymptomatic Huntington’s disease, S =
symptomatic Huntington’s disease, PC = control group for P, SC = control group for S, CS = symptomatic
Huntington’s disease with much chorea.

10 BMI correlation

Supplementary Figure 21 shows the correlations between BMI and the average fNIRS-EEG myogenic coherence
across all channel combinations. There were no significant correlations either for the pooled participants or for
the different groups.
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Supplementary Figure 21: Correlation between the average fNIRS-EEG myogenic coherence across the brain
and BMI for (A) combined control, S and P groups, (B) only controls, (C) only S group and (D) only P group.
P = presymptomatic Huntington’s disease, S = symptomatic Huntington’s disease.
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Glossary & Abbreviations

AD Alzheimer’s disease. A neurodegenerative disease and the most common type

of dementia.

HD Huntington’s disease. A genetic neurodegenerative disease causing disordered

movement and cognitive changes.

MCI Mild cognitive impairment. Greater decline in cognitive ability than is

expected by normal ageing.

NVU Neurovascular unit. A functional unit consisting of neurons, microvascula-

ture and glial cells. Orchestrates the control blood flow in the brain.

ECG Electrocardiogram. A monitoring technique that measures the electrical

activity of the heart.

EEG Electroencephalogram. A monitoring technique that measures the electrical

activity of the brain.

fNIRS Function near-infrared spectroscopy. A monitoring technique that measures

the changes in oxygenated and deoxygenated hemoglobin concentrations in the

brain.

fMRI Functional magnetic resonance imaging. A monitoring technique that

measured blood flow associated changes in the brain.

MEG Magnetoencephalography. A monitoring technique that measures the

magnetic fields caused by the electrical activity of the brain.
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MS-OISI Multi-spectral optical intrinsic signal imaging. A monitoring technique

that measures changes in light absorption caused by brain activity.

in vivo Studies performed on whole, living biological systems..

In vitro Studies performed on components of biological systems without their

natural surroundings..

CO2 Carbon dioxide.

ACh Acetylcholine. An endothelium-dependent vasodilator.

NO Nitric oxide. A soluble gas that can endothelial cells can produce, which

modulate the activity of smooth muscle cells..

SNP Sodium nitroprusside. An endothelium-independent vasodilator.

PGs Prostaglandins. Can be produced by endothelial cells and contributes to

vasodilation and vasoconstriction.

EDHF Endothelium-derived hyperpolarizing factor. A substance produced by

endothelial cells contributing to vasodilation.

APOE4 An allele of the apolipoprotein E gene, which is a strong genetic risk factor

for Alzheimer’s disease.

EPSP Excitatory postsynaptic potentials.

IPSP Inhibitory postsynaptic potentials.

ATP Adenosine triphosphate. A molecule that provides energy to cells.

nonautonomous Explicitly dependent on time.

phase space A space where all possible states of a dynamical system are present,

and each unique state corresponds to a point.
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trajectory A path traced in phase space, showing which states a system occupies

when evolved from an initial condition.

Fixed points Points in phase space where the derivatives of the system equals

zero. Hence, a system will stay at the fixed point unless perturbed by external

influences.

attractor A set of states in phase space that the systems evolves towards. If the

trajectory is in the vicinity of the attractor it will converge to it or stay close

forever, unless perturbed by an external force. Attractors can therefore lead

to stable dynamics.

limit cycles Closed and isolated trajectories in phase space.

chronotaxic systems Dynamical systems described with nonautonomous point

attractors moving along nonautonomous limit cycles.
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154. Rosenblum, M., Pikovsky, A., Kühn, A. A. & Busch, J. L. Real-time

estimation of phase and amplitude with application to neural data. Sci. Rep.

11, 18037 (2021).

155. Butterworth, S. On the theory of filter amplifiers. Experimental Wireless &

the Wireless Engineer 7, 536–541 (1930).

156. Iatsenko, D., McClintock, P. V. E. & Stefanovska, A. Extraction of instan-

taneous frequencies from ridges in time–frequency representations of signals.

Signal Process. 125, 290–303 (2016).

157. Iatsenko, D., McClintock, P. V. E. & Stefanovska, A. Nonlinear mode

decomposition: A noise-robust, adaptive decomposition method. Phys. Rev.

E 92, 032916 (3 2015).

158. Horwitz, B. The elusive concept of brain connectivity. NeuroImage 19, 466–

470 (2003).

159. Friston, K. J. Functional and effective connectivity: a review. Brain Connect.

1, 13–36 (2011).

160. Rodgers, J. L. & Nicewander, W. A. Thirteen Ways to Look at the Correlation

Coefficient. The American Statistician 42, 59–66 (1988).

161. Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 85, 461–464

(2 2000).

162. Granger, C. W. J. Investigating causal relations by econometric models and

cross-spectral methods. Econometrica 37, 424–438 (1969).

163. Sauer, U., Heinemann, M. & Zamboni, N. Getting Closer to the Whole

Picture. Science 316, 550–551 (2007).

244



Chapter 6

164. Ishii, N. et al. Multiple High-Throughput Analyses Monitor the Response of

E. coli to Perturbations. Science 316, 593–597 (2007).

165. Taggart, P., Critchley, H. & Lambiase, P. D. Heart–brain interactions in

cardiac arrhythmia. Heart 97, 698–708 (2011).

166. Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s

disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

245


	Introduction
	The cardiovascular system
	Structure
	Function
	Cardiac
	Respiration
	Myogenic
	Neurogenic
	Endothelial

	Summary

	The brain
	Structure
	Function
	Infraslow and slow oscillations
	Delta 
	Theta 
	Alpha 
	Beta 
	Gamma 

	Summary

	The neurovascular unit
	Neurovascular changes with ageing, Alzheimer's disease and Huntington's disease
	Summary

	Non-invasive measurements of the cardiovascular system and the brain
	Functional near-infrared spectroscopy (fNIRS)
	Technical aspects
	Strengths and weaknesses
	Application in research

	Electroencephalogram (EEG)
	Technical aspects
	Strengths and weaknesses
	Application in research

	Concurrent fNIRS-EEG studies
	Electrocardiogram (ECG)
	Respiration
	Summary

	Physics of living systems
	Systems far from equilibrium
	Dynamical systems theory
	Limit cycles
	Chronotaxic systems

	Are oscillations beneficial for living systems?
	Environment
	Time compartmentalization
	Regulation and information transfer
	Interactions

	Homoestasis vs. homeodynamics
	Summary

	Data-driven approach to studying dynamical systems
	Presence and strength of oscillations
	Autocorrelation
	Fourier transform
	Short-time Fourier transform
	Wavelet transform

	Phase of oscillations
	Interactions
	Summary

	Summary and thesis outline

	Phase coherence – A time-localised approach to studying interactions
	Aging affects the phase coherence between spontaneous oscillations in brain oxygenation and neural activity
	Neurovascular phase coherence is altered in Alzheimer's disease
	The phase coherence of the neurovascular unit is reduced in Huntington’s disease
	Concluding remarks
	Summary and conclusions
	Original contributions
	Future work

	Appendix Appendices
	Glossary & Abbreviations
	References

