
Shifting melt composition linked to volcanic tremor at Cumbre Vieja volcano 
 
Marc-Antoine Longpré1,2,*, Samantha Tramontano2,1,3, Matthew J. Pankhurst4,5, Diana C. Roman6, Miriam 
C. Reiss7, Franco Cortese2,1, Mike R. James8, Laura Spina9, Fátima Rodríguez4, Beverley Coldwell4,10, 
Alba Martín-Lorenzo4,10, Olivia Barbee4, Luca D'Auria4,10, Katy J. Chamberlain11, Jane H. Scarrow12 
 
1School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, USA  
2Earth and Environmental Sciences, The Graduate Center, City University of New York, New York, USA 
3Department of Earth and Planetary Sciences, American Museum of Natural History, New York, USA 
4Instituto Volcanológico de Canarias, Puerto de la Cruz, Spain 
5Gaiaxiom, Copenhagen, Denmark 
6Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA 
7Department of Geosciences, Gutenberg University of Mainz, Mainz, Germany 
8Lancaster Environment Centre, Lancaster University, Lancaster, UK 
9Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy 
10Instituto Tecnológico y de Energías Renovables, Granadilla de Abona, Spain  

11School of Environmental Sciences, University of Liverpool, Liverpool, UK 
12Departamento de Mineralogía y Petrología, Universidad de Granada, Granada, Spain 
 
*correspondence: mlongpre@qc.cuny.edu 
 

Forecasting the onset, evolution, and end of volcanic eruptions relies on interpretation of 
monitoring data — particularly seismic signals, such as persistent volcanic tremor — in relation to 
causative magmatic processes. Petrology helps establish such links retrospectively but typically 
lacks the required temporal resolution to directly relate to geophysical data. Here we report major 
and volatile element compositions of glass from volcanic ash continuously sampled throughout the 
2021 Tajogaite eruption of Cumbre Vieja volcano, La Palma, Canary Islands. The data reveal the 
evolving chemistry of melts supplied from depth at a daily temporal resolution. Erupted melt 
compositions become progressively more primitive until the tenth week of activity, but a sharp 
reversal of this trend then marks the decline of mantle magma supply and a precursory signal to 
the eruption end. We find that melt SiO2 content is positively correlated with the amplitude of 
narrow-band volcanic tremor. Tremor characteristics, inferences from simulations, and model 
calculations point to melt viscosity-controlled degassing dynamics generating variations in tremor 
amplitude. Our results show promise for a monitoring and forecasting tool capable of quickly 
identifying rejuvenated and waning phases of volcanic eruptions and illustrate how subtle changes 
in melt composition may translate to large shifts in geophysical signals.  
 

Progress in volcano monitoring and 
forecasting the onset, style, and duration of 
volcanic eruptions depends on the improved 
integration and interpretation of multi-disciplinary 
datasets1,2. It remains challenging, however, to 
directly relate geophysical and geochemical 
signals observed at the surface to causative 
processes occurring in inaccessible magmatic 
systems. For instance, volcanic tremor — an 
umbrella term for different subclasses of 
persistent seismic and/or acoustic signals that 
accompany most volcanic eruptions — is an 
important parameter in volcano monitoring, yet its 
source mechanisms have long been unclear3–6. 
Volcanic tremor is typically attributed to 
interactions between magmatic fluids and the 
conduit walls at depths ranging from the surface 
to 40 km3–9. At several basaltic volcanoes, the 
temporal association between eruption and 
tremor10–12, tremor source locations13, and gas 
data9 indicate that the dynamics of shallow 

magma degassing may drive tremor. 
Nevertheless, due to the signal complexity, an 
exact source mechanism for volcanic tremor at 
mafic systems remains elusive, and multi-
disciplinary observations are required to yield 
novel insight13. 

Petrology, based on the textural and 
chemical characterization of solid volcanic 
products, provides key information on the nature 
and timescales of magmatic processes leading to 
eruptions14–16 and on the configuration and 
dynamics of sub-volcanic magmatic systems17–19. 
Yet petrological approaches have traditionally 
been too slow and have lacked the temporal 
resolution required to inform syn-eruptive 
monitoring or make robust causative links to 
physical processes. However, thanks to recent 
technological, methodological, and procedural 
advances, petrological monitoring can now yield 
detailed time-series and, rarely, near-real-time 
data, directly contributing to eruption forecasting, 



hazard assessment, and decision making during 
volcanic episodes20–23. Linking temporally-
resolved petrological data with real-time 
geophysical and observational data is likely to 
contribute future advances in volcano monitoring. 

After 50 years of repose and four years 
of unrest, Cumbre Vieja volcano — a shield 
volcano featuring a single rift zone and forming 
the southern half of La Palma, Canary Islands —  
erupted from 19 September to 13 December 
202124,25 (Fig. 1a). The eruption occurred upslope 
of densely populated areas, forcing the 
evacuation of thousands of residents. Over 85 
days, lava flows covered 12.4 km2 of land, 
destroying ~3000 buildings, vast plantations, and 
92 km of road26. Early clinopyroxene–amphibole 
tephrite lavas with comparatively high viscosities 
quickly gave way to low-viscosity clinopyroxene–
olivine basanites22,27–30. The new monogenetic 
vent system formed a 200-m-high cinder cone, 
Volcán de Tajogaite, producing near-continuous 
violent Strombolian explosive activity31,32. Ash 
plumes, averaging ~3 km height and reaching up 
to ~8 km, blanketed the area with thick tephra33,34. 
The eruption was well-monitored through a 
variety of ground-based and remote-sensing 
techniques31,35–41, and a combination of the 
nature of the activity and good site accessibility 
allowed extensive sampling of volcanic products, 
presenting an exceptional opportunity to integrate 
geophysical and petrological monitoring22,28,30,42–

44. 
 

A daily time series of melt composition 
We conducted systematic sampling of 

tephra — mostly ash, with some lapilli — during 
the entirety of the 2021 eruption with the goal of 
comparing the composition of erupted products 
with monitoring data and eruptive parameters at 
a near-daily temporal resolution. A particularly 
well-located sampling station (AS3), situated 
directly downwind of the main plume dispersal 
axis, yielded most samples (Fig. 1, Methods). Our 
85 samples and four duplicates each span 28 
hours of eruptive activity on average and 
collectively capture 94% of the eruptive sequence 
(Table S1). For each sample, ten representative 
ash particles were picked under a 
stereomicroscope, mounted in epoxy, and 
polished.  

Two main ash types are observed. Type 
A ash clasts have fluidal shapes and a vitreous 
luster, with scanning electron microscopy 
revealing abundant and variably vesicular glass 
containing dispersed microcrysts of plagioclase, 
clinopyroxene, olivine, and Fe-Ti oxides (Fig. 

2a,c). In comparison, Type B ash fragments show 
a similar mineralogy but have a dull to submetallic 
luster and a nearly glass-free, microcrystalline 
groundmass with little pore space (Fig. 2b,c). We 
interpret Type A ash to be of primary juvenile 
origin, i.e., deriving directly from erupting 
magma45. Conversely, features of Type B ash 
suggest these clasts underwent high-
temperature modifications after initial 
fragmentation and constitute recycled juvenile 
particles, consistent with field observations31, 
experimental results46, and textural data at other 
mafic volcanoes47. Therefore, in addition to 
lacking sufficient glass for direct quantification of 
quenched melt composition, Type B ash may 
represent eruptive phases preceding its 
sampling; we thus focused chemical analysis on 
Type A ash.   

The major and volatile (S, Cl) element 
compositions of tephra glasses were measured 
via electron probe micro-analysis on 3–13 spots 
on at least two distinct Type A ash clasts per 
sample, totaling 510 data points. After a 
standard-based correction and averaging for 
each sample (Methods, Tables S2–S4), the 
Tajogaite glasses show tephritic to phonotephritic 
compositions, with 44.8–49.0 wt.% SiO2, 6.3–9.1 
wt.% total alkalis (Na2O + K2O), and 3.2–4.7 wt.% 
MgO, which are generally more silicic, more 
alkaline, and less magnesian than bulk rocks28,30 
(Fig. 2d,f). Three main features characterize the 
temporal evolution of glass chemistry during the 
2021 eruption (Fig. 2e,g,i). Firstly, a sharp 
increase in SiO2 concentrations, coupled to a 
decrease in CaO and FeOt, occurs on 21 
September, within two days of eruption onset. 
Secondly, from 21 September until 29 November, 
SiO2 progressively decreases, while CaO and 
FeOt increase. Thirdly, on 30 November, an 
inflection point marks the reversal of these trends 
until the eruption end. In detail, the silica content 
displays more subtle variations, with six apparent 
inflection points (Fig. 2e). Other elements (Al2O3, 
Na2O, K2O, S, and Cl) generally track SiO2, or 
follow CaO and FeOt (MgO and TiO2) (Extended 
Data Figs. 1, 2). Notably, tephra glasses show 
much wider compositional ranges than bulk lavas 
for most elements, and temporal trends in tephra 
glass and bulk lava compositions are strongly 
decoupled for some (e.g., SiO2 and FeOt)28,30. 

The observed glass composition 
variations may reflect changes in supplied melt 
composition, different extents of late-stage 
crystallization, or both. To assess this, we 
conducted quantitative textural analysis on 19 
ash clasts spanning most of the temporal–



compositional range (Methods, Extended Data 
Fig. 3, Table S5). Crystallinity ranges from 19 to 
43 vol.%, dominated by plagioclase and 
clinopyroxene, with smaller amounts of Fe-Ti 
oxide and olivine. Yet, glass composition lacks 
correlation with the vesicle-free volume fraction of 
microcrysts (Fig. 2h). Furthermore, mass balance 
calculations, starting from the most mafic glass 
and simulating up to 10% crystallization of major 
mineral phases, demonstrate that the 
compositional range cannot be produced by 
crystallization of the observed microcryst 
assemblage (Fig. 2d,f). This indicates that 
changes in glass composition relate to actual 
variations in the composition of melt supplied 
from depth to the surface over time, consistent 
with data on lava matrix42.  

These distinct melts may have originated 
from discrete sources and/or be related through 
magmatic processes, particularly fractional 
crystallization22,28,30 and melt mixing19,42. Based 
on the occurrence of two distinct groups of lavas 
(Fig. 2d,f and Extended Data Fig. 1)28,30 and the 
ubiquitous presence of reversely zoned 
phenocrysts42,43,48, we envisage a magma 
plumbing model similar to those presented 
elsewhere22,28,30,42,43. Rising primitive basanite 
magma, crystallizing olivine and clinopyroxene, 
intersected a more evolved clinopyroxene–
amphibole-bearing magma body22 at lower 
crustal or Moho depths, mobilizing it to erupt. 
Initially, more silicic melts from the evolved 
magma body dominated. Subsequently, gradual 
evacuation of a zoned magma reservoir at mantle 
depth — established during volcanic unrest 
through both mixing and fractional crystallization 
— yielded the eruption of increasingly primitive 
melts until 30 November. Finally, we interpret the 
sharp inflection point on 30 November to record 
the cessation of mantle magma supply; 
increasingly silicic melts tapped thereafter may 
represent residual melts temporarily stored in the 
mid to upper parts of the plumbing system. In 
hindsight, we contend that this composition trend 
reversal — subdued in the bulk rock28,30 and lava 
matrix42 data (Fig. 2, Extended Data Fig. 1) — 
forewarned of the approaching eruption end, as 
suggested by Ubide et al.42. 
 
Linkages between melt composition and 
seismic signals 

The high temporal resolution of our 
dataset enables direct comparison with 
geophysical monitoring data, such as volcanic 
earthquakes36,38 (Methods), which serve as a 
proxy for magma mobilization at depth49,50 (Fig. 

3a). During the eruption’s first week, earthquakes 
were subdued and shallow (<10 km), but from 1 
October onward, hypocenters show a bimodal 
depth distribution, with clusters at mantle (23 ± 2 
km, 1s) and crustal (9 ± 2 km) depths. While the 
number of earthquakes and melt composition are 
not linearly correlated (Fig. 3c), peaks in crustal 
seismicity often align with breaks in slope in melt 
composition evolution (Fig. 3a). This is 
particularly evident on 30 November, where the 
inflection in melt chemistry coincides with both a 
spike in crustal seismicity and structural changes 
at the eruptive vents40,51.  

The mantle and crustal earthquake 
clusters display a similar but offset sequence of 
peaks with matching relative amplitudes, 
suggesting a connection and a time lag between 
mantle and crustal earthquake swarms, as 
proposed by Zanon et al.44. Assuming this time 
lag — 13.7–14.8 days in October and 5.7–8.0 
days in November and December (Fig. 3a) — 
reflects magma ascent over the vertical distance 
between earthquake clusters (13.9 ± 2.6 km), we 
calculate mantle–crust magma ascent rates of 
~0.01 m/s in October and 0.02–0.03 m/s 
subsequently (Fig. 3d, Methods) (cf. ref. 44). We 
thus propose, based on these observations and 
our glass data, that peaks in earthquakes at 9 ± 2 
km depth reflect the arrival, in the crust, of distinct 
melt pulses42 supplied from the mantle. The lack 
of lag between crustal earthquake swarms and 
melt composition shifts (Fig. 3a) may indicate that 
magma ascent in the crust occurred within the 
temporal resolution of our sampling, i.e., in ~1 day 
(~0.10 m/s, over 9 km), consistent with expected 
magma acceleration at shallow levels. 
 We next compare the temporal evolution 
of melt composition with the amplitude of volcanic 
tremor (Methods, Fig. 3a, Table S6), a proxy for 
magma flow and degassing in the shallow 
conduit9,13. The tremor, confined to a narrow 1–3 
Hz frequency band at our reference seismic 
station (PLPI, Fig. 1, Extended Data Fig. 4), 
surges from hundreds to >10,000 counts at the 
eruption onset. Unlike discrete earthquakes, the 
tremor peaks in the first week of activity, then 
sharply declines on 27 September during a 10-
hour eruption lull. Amplitudes gradually rise 
through October, decline in early November, and 
show two brief increases on 16–21 November 
and 27 November–5 December, simultaneous 
with crustal earthquake swarms (Fig. 3a). The 
tremor displays a final short-lived surge on 12–13 
December, concomitant with a last, powerful 
eruptive burst, before subsiding with the eruption 
end. 



Intriguingly, the general form of the 
volcanic tremor closely parallels that of melt SiO2 
content over time (Figs. 3a, 4). To examine this 
further, we averaged tremor amplitudes for 
intervals corresponding to each tephra sampling 
time spans, confirming a broad positive linear 
correlation between mean narrow-band tremor 
amplitude and melt composition (Fig. 3b, Table 
S7). Regression analysis, with both variables 
resampled to daily averages and normalized from 
0 to 1, yields a correlation coefficient of 0.64 and 
a p-value below 0.001 (Fig. 4, Extended Data Fig. 
5, Table S8), indicating that the null hypothesis — 
that melt SiO2 content and tremor amplitude are 
unrelated — is unlikely. Mismatches between the 
two time series are mainly associated with crustal 
earthquake swarms in late October, mid-
November, and early December (Figs. 3a, 4), 
which may be related to tremor bursts.  
 Our results thus reveal an enigmatic 
relationship between melt composition and 
volcanic tremor at Tajogaite. Several tremor 
generation mechanisms may be invoked, 
including resonance of a fluid-filled crack and 
bubble nucleation, coalescence, oscillation, and 
bursting4–6,52,53, though none may be a priori 
directly tied to melt composition. However, signal 
locations performed using open-source data from 
the Instituto Geográfico Nacional network54 
indicate a stable and shallow tremor source, most 
likely within the uppermost kilometer of the 
conduit (Methods, Extended Data Figs. 6–9). 
Therefore, large amplitude shifts at near-constant 
frequency throughout the eruptive sequence (Fig. 
3a, Extended Data Fig. 4) may reflect pressure 
variations in this dominant tremor source3,55.  
 
A melt viscosity control on volcanic tremor 

To explore the possible origins of the 
melt composition–tremor relationship, we turn to 
laboratory experiments specifically scaled to test 
the effects of gas flow rate, magma viscosity, and 
conduit geometry on the degassing behavior and 
related seismo-acoustic signals at mafic 
volcanoes56–58. These analogue models show 
that increasing gas flow rate and liquid viscosity 
drive transitions in gas–liquid flow from bubbly to 
slug to annular regimes (Fig. 5a), which are 
typically interpreted as resulting in eruptive styles 
(e.g., passive degassing, Strombolian, and lava 
fountaining, respectively)56 observed at 
Tajogaite31,32. Notably, the models illustrate the 
positive relationship between gas flow rate and 
the amplitude of tremor-like pressure signals 
within and above the gas–liquid mixture (Fig. 5a, 
Extended Data Fig. 10). Liquid viscosity also 

appears to affect the amplitude of analogue 
tremor; i.e., at high gas flow rate and for a given 
flow regime, higher liquid viscosity (>102 Pa s) is 
associated with greater signal amplitudes (Fig. 
5a). Moreover, in slug flow, increased viscosity 
reduces slug ascent velocity and the recurrence 
rate of slug bursts and associated discrete 
seismo-acoustic events56 (Extended Data Fig. 
10). Thus, analogue models point to volume flux 
— particularly of gas — and melt viscosity as key 
factors controlling tremor amplitude in mafic 
systems.  

At Tajogaite, magma and gas fluxes are 
best tracked by time-averaged discharge rate 
(TADR) estimates from satellite thermal 
imagery59 and SO2 emissions detected by the 
Sentinel-5P TROPOMI instrument60, respectively 
(Fig. 3a). However, while there may be some 
correspondence between TADR, SO2, and 
tremor amplitude32, we find little evidence for a 
primary control of magma and gas fluxes on 
tremor (Fig. 3a, Extended Data Fig. 5, Table S8). 
Moreover, magmatic volatile contents, though 
very high, appear to exhibit only slight variations 
throughout the eruption61,62 (Extended Data Fig. 
2). We also find no correlation between the ash-
laden plume height, a coarse proxy for eruptive 
style and explosivity33,63, and tremor (Extended 
Data Fig. 5, Table S8).  

In contrast, an influence of melt viscosity 
on tremor amplitude provides a direct link with our 
tephra glass data. Indeed, melt composition, 
particularly SiO2 and H2O contents, strongly 
controls melt viscosity64. Laboratory 
measurements27,29 yield generally low melt 
viscosities for the 2021 magmas and align well 
with values calculated with the model of Giordano 
et al.65, which thus appears reasonably accurate 
for mafic alkaline compositions. Applying this 
model along with a thermometer66 to our data, we 
obtain melt viscosities of 280–2250 Pa s and 10–
30 Pa s for anhydrous and hydrous (3 wt.% H2O) 
conditions, respectively (Fig. 5b,c) (Methods). 
We emphasize that these calculations best 
represent the viscosity of the melt phase, not that 
of the three-phase magma — although, at the 
observed range of crystallinities22,67 (Fig. 2h), the 
effective viscosity of a crystal–melt mixture is 
dominated by melt viscosity68. At the shallow 
depths relevant to tremor generation, where 
initially dissolved water has largely exsolved to a 
gas phase (Fig. 5b, Extended Data Fig. 2), near-
anhydrous melt viscosities are most 
appropriate67. Unsurprisingly, anhydrous 
viscosity logarithms positively correlate with SiO2 



contents (r = 0.92) and, hence, tremor amplitude 
(Fig. 5c,d).  

Although our data do not pinpoint the 
tremor generation mechanism, they indicate 
sensitivity to melt viscosity variations, offering 
new insights into its origin. We propose that melt 
composition exerted a first-order control on 
volcanic tremor at Tajogaite, via effects of melt 
viscosity on rising and bursting gas bubbles (Fig. 
6). Variations in magma and gas flux also likely 
influenced short-term tremor amplitude increases 
(Fig. 3a). In addition to being supported by 
analogue experiments56, this scenario is 
substantiated by analytical and numerical models 
simulating gas slug ascent during Strombolian 
activity69–71. For instance, James et al.69 showed 
that a modest increase in melt viscosity — from 
300 to 500 Pa s, a range considerably smaller 
than we calculate for the 2021 anhydrous melts 
— leads to greater overpressure in rising and 
bursting gas slugs. Although the complex natural 
system at Tajogaite — with multiple vents, 
variable eruptive styles, and a conduit of 
unknown, and possibly tilted, geometry31,61,72 — 
limits quantitative modelling here, the 
relationships between melt viscosity, bubble 
ascent speeds, and bubble overpressure are 
expected to hold true. Higher-SiO2, higher-
viscosity melts were characterized by slower 
bubble ascent and higher bubble overpressure 
(and thus lower magma compressibility), causing 
greater pressure variability in the shallow conduit 
and, consequently, higher tremor amplitudes.  
   
Frontiers in petrological monitoring 

Based on a systematic sampling 
campaign, our results unveil changes in melt 
composition during the 2021 Tajogaite eruption at 
Cumbre Vieja, contributing to an emerging picture 
of rapidly evolving magma supply during mafic 
eruptions20,21. We suggest the sharp reversal of 
compositional trends on 30 November marks the 
waning of mantle-derived magma supply and 
represents a precursory signal to the eruption’s 
end two weeks later. The daily resolution of our 
dataset unlocks precise comparison of 
petrological and geophysical records, revealing 
an intriguing correlation between melt 
composition and volcanic tremor amplitude. We 
propose that this correlation stems from melt 
viscosity-driven changes in rising and bursting 
gas bubbles and slugs, affecting overpressure 
and ascent speed, as supported by existing 
models56,69–71. Similar melt composition and 
viscosity controls on tremor amplitude may apply 
to other mafic volcanoes. Our analysis should 

provide inspiration for further field, laboratory, 
and theoretical work aimed at better 
understanding the source mechanisms of 
volcanic tremor and improve its forecasting 
power.  

Our work also demonstrates the value of 
tephra glass composition as a petrological 
monitoring tool23,73. Rapid sample preparation 
and analysis may be achieved on daily 
timescales, and results allow identifying subtle 
changes in melt composition that may be blurred 
in bulk rock data. Such compositional shifts can 
aid in interpreting changing geophysical 
parameters and recognizing rejuvenated or 
terminal eruption phases, enhancing forecasting 
efforts20. However, coordinating collaborative 
work and sample transfer during eruptive crises 
is a major challenge that requires careful pre-
planning23,74. The near-site deployment of 
portable X-ray fluorescence spectrometers20,75 
and benchtop scanning electron microscopes, 
with energy-dispersive X-ray detectors allowing 
quantitative glass analyses73, can accelerate 
workflow and open up new frontiers in 
petrological monitoring of volcanic eruptions. 
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Figure 1. Map of lava flows and vents of the 2021 Tajogaite eruption at Cumbre Vieja volcano. (a) 
Shaded relief map (source: www.grafcan.es) showing the lava flow field, the Tajogaite vents, and the 
location of continuous tephra collection stations. Inset: The island of La Palma and Cumbre Vieja volcano 
(CV), with the location of PLPI seismic station, just south of the area enlarged in (a). (b) Wind rose 
diagram indicating dominant wind directions and speeds (VV, in m/s) at an altitude of 3 km above sea 
level, close to average ash plume height during the eruption. Note AS3 (bolded), our main sampling 
station, situated directly downwind from the vent. (c) Photograph of the AS3 field site. 
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Figure 2. Temporal evolution of melt composition at Tajogaite. Representative backscattered 
electron images of Type A (glassy, juvenile origin) and Type B (microcrystalline, recycled juvenile origin) 
ash are shown in (a) and (b), respectively. (c) Type B clast attached to a Type A clast. Mineral 
abbreviations: Amph, amphibole; Cpx, clinopyroxene; Pl, plagioclase; Ol, olivine; Ox, Fe-Ti oxide. (d–i) 
Mean glass composition of dated Type A ash (circles) compared to bulk rock28 and mean lava matrix42 
compositions. (d) Total alkali vs. silica classification diagram. B, basalt; Ba, basanite; T, tephrite; T-B, 
trachybasalt; P-T , phonotephrite. (e, g, i) SiO2, CaO, and FeOt concentrations plotted over time 
(day/month of 2021, UTC). (f) CaO/Al2O3 vs. MgO. (h) Microcryst content (vol.%) vs. SiO2. Symbol color 
gradients refer to eruption date, as shown in (e, g, i). Gray error bars show one standard deviation based 
on 3–13 analyses on at least two ash clasts per sample, with horizontal bars in (e, g, i) indicating ash 
sampling timespan. Error bars smaller than symbol size are not shown. Thin black error bars labelled 1s 
represent the one standard deviation analytical precision based on repeated analyses (n=60) of the 
P1326-2 glass standard. Black error bars for lava matrix data are one standard deviation from 7–10 
analyses42. In (d, f), colored arrows represent melt composition shifts due to 10% crystallization of 
labelled minerals, starting from the most mafic glass. Mineral compositions are from Pankhurst et al.22, 
and crystallization vectors are displaced to the upper part of plots for clarity. 
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Figure 3. Comparison with monitoring data. (a) Time series of melt SiO2 content (error bars as in Fig. 
2) alongside the discrete seismicity rate (24-hr moving average, 1-hr window) in the mantle (23 ± 2 km, 
navy blue line) and crustal (9 ± 2 km, blue line) clusters, using data from D’Auria et al.36. Labels mi and ci 
denote presumably matching mantle and crustal earthquake swarms separated by time lags of 13.7–14.8 
days in October and 5.7–8.0 days in November and December. The volcanic tremor amplitude in the 1–3 
Hz band — real-time seismic amplitude measurement (RSAM) at station PLPI (Methods) — is shown as 
1-hr average (thin, light blue line) and 24-hr moving average with 1-hr window (thicker, pale blue line). 
Time-averaged discharge rate (TADR) estimates (with ±50% error bars)59 and Sentinel-5P TROPOMI 
SO2 emissions60 are also shown as proxies of magma and gas fluxes, respectively. Vertical gray dashed 
lines indicate weekly intervals. (b) Mean tremor amplitude and (c) seismicity rate (earthquakes per day) 
during each tephra collection period versus corresponding melt SiO2 content. (d) Estimated mantle–crust 
magma ascent rates (based on lags between the eight mantle–crust earthquake swarm pairs shown in 
(a)) versus melt SiO2 content at the time of corresponding peak crustal seismicity. Error bars for tremor 
amplitude and SiO2 in (b–d) show one standard deviation, while magma ascent rate error bars reflect the 
propagated uncertainty in the vertical distance between the two earthquake clusters.  
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Figure 4. Normalized time series. Resampled (daily averages) and normalized [0, 1] time series of melt 
SiO2 content and tremor amplitude in the 1–3 Hz and 0.35–1 Hz bands recorded at station PLPI. Both 
tremor time series show a statistically significant correlation with melt SiO2 content (Extended Data Fig. 5, 
Table S8). Vertical gray dashed lines indicate weekly intervals. 
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Figure 5. Effects of melt viscosity. (a) Amplitude of analogue tremor as a function of gas flux in 
laboratory experiments56. Symbols indicate the average 75th percentile values for three experiments 
(230–525 observations per experiment, over 46–105 s using a 0.2 s sliding window) conducted with 
different conduit roughness, with downward error bars representing the average interquartile range. 
Colors correspond to liquid viscosity (h) in the experiments, and symbol shapes denote the observed flow 
regime (bubbly, slug, or annular, illustrated in cartoons above where melt is orange and gas is white — 
modified after ref. 76). (b) Calculated melt viscosity versus dissolved H2O content for low- and high-SiO2 
melt endmembers (respectively, 44.9 and 49.0 wt.% SiO2) at Tajogaite. Symbols indicate calculated H2O 
solubility at pressures of 0.1, 3, 14, and 41 MPa, corresponding to depths of approximately 0, 100, 500, 
and 1500 m in the conduit (assuming a magma density of 2800 kg/m3). Uncertainty envelopes shown by 
dashed lines consider an error of ±10˚C on temperature66, plus a 5% error of the viscosity model65. (c) 
Anhydrous melt viscosity versus SiO2 content for all samples, and (d) tremor amplitude as a function of 
anhydrous melt viscosity. Viscosity error bars in (c) and (d) were calculated as in (b).  
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Figure 6. Conceptual model. Schematic illustration summarizing the proposed effect of melt viscosity on 
tremor amplitude. Comparatively high melt SiO2 translates into higher melt viscosity, slower bubble 
ascent velocity, and higher overpressure in rising gas bubbles and slugs, together yielding higher 
amplitude of shallow tremor.  
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Methods 

Samples 
Tephra was collected during the 85 days 

of eruption. The longest sampling gap is ~23 
hours on 7 October. In the first few days of 
eruptive activity, tephra collection was conducted 
onto plastic sheets and paper containers. 
However, this ad hoc method was rapidly 
superseded by systematic sampling using a 
network of plastic box collection stations, from 
which samples were retrieved (and stations reset 
for continuous collection) almost daily. These 

sampling stations were placed in open spaces 
and secured with straps, away from roads, and 
protected from aeolian remobilization. Most 
samples used in this work come from station AS3 
(UTM coordinates, 217550 Easting, 3167233 
Northing, zone 28 R, datum WGS84) which was 
installed on 26 September 2021. AS3 was 
chosen because: (1) it was located under the 
tephra plume for most of the eruption duration 
and thus provides a near-continuous sampling 
record; and (2) the grain size of its samples is 



optimal for selection of representative particles 
for analysis. Stations closer to the vent show 
coarser grain sizes that require breaking clasts 
into smaller pieces for analysis, while finer 
particles from more distal stations may be biased 
due to winnowing22. For the few days when the 
tephra plume was oriented away from AS3, we 
selected tephra from other stations to 
complement our sample set (Table S1). A total of 
85 distinct tephra samples, in addition to 4 
duplicate samples, were selected for analysis.  
 

Sample preparation and electron 
probe micro-analysis 

Representative ash clasts (10 for each 
sample, total ~890) were hand-picked under a 
stereomicroscope, mounted in 1-inch epoxy 
disks, and polished. Observations with reflected 
light and scanning electron microscopes allowed 
identification of the two broad types of ash 
particles and selection of Type A clasts (showing 
fluidal shapes and abundant glass), as 
representative juvenile particles. Electron probe 
micro-analysis of glass in Type A clasts was 
conducted by wavelength-dispersive X-ray 
spectroscopy on a Cameca SX5-Tactis 
instrument at the American Museum of Natural 
History in New York City, over four sessions. 
Analytical conditions were chosen to prevent 
migration of alkalis upon electron beam exposure 
and consisted of an acceleration voltage of 15 kV, 
a beam current of 10 nA, and a beam diameter of 
15 µm. Calibration of the instrument was 
performed using natural mineral and glass 
standards. Peak counting times were 10 s for Na 
and K, 20 s for Al, Mg, Si, P, Ti, Ca, Mn, and Fe, 
and 30 s for Cl and S. To estimate glass 
composition variability in each selected dated 
tephra, we acquired 3–13 data points on at least 
2 separate ash clasts per sample, yielding a total 
of 510 data points. 

Repeated analyses of glass standards 
P1326-2 (n=60)77, AGV-1 (n=16), and 
Macusanite (n=45)78 during our analytical 
sessions are reported in Table S2 and 
demonstrate the good precision and accuracy of 
the data. For instance, based on all P1326-2 
data, overall precision (at the one standard 
deviation level) and accuracy (relative error) are 
0.8% and 1.2% for Si and respectively better than 
2.3% and 2.7% for all elements present in 
concentrations exceeding 1 wt.%, except for Ti 
(precision 4.4%) and Na (accuracy 4.6%). For 
sulfur, P1326-2 data yield a mean of 1321 ± 74 
ppm, close to previously published values (e.g., 
1296 ± 26 ppm)79. For chlorine, we obtained a 

mean of 502 ± 123 ppm for Macusanite, in 
agreement with the GeoRem value of 501 ± 27 
ppm78. Nevertheless, to account for potential 
small differences in calibration of the instrument 
from session to session, we applied a correction 
factor for Si — the only element present in 
sufficient concentration for such a correction to be 
meaningful — based on standard data for each 
session. These correction factors 
(SiO2(reference)/SiO2(observed)) range from 1.000 to 
1.020 and are provided in Tables S2 and S4. 
Using raw or corrected values does not affect the 
trends observed in the data or the conclusions of 
the study. Values reported in the main text and 
figures are corrected sample averages, but 
individual analyses, as well as sample and daily 
averages — raw and corrected—are reported 
Tables S3 and S4.  
 

Image analysis 
 Backscattered electron (BSE) images 
and elemental X-ray maps of ash clasts were 
obtained on a Hitachi scanning electron 
microscope at Queens College, City University of 
New York. Then, for 19 representative sample 
spanning the full eruption sequence and range in 
SiO2 content, we used Adobe Illustrator to trace 
the different phases, which consist of vesicles 
and microcrysts of plagioclase, clinopyroxene, 
olivine, Fe-Ti oxides, and, rarely, amphibole, 
apatite, and sulfides. X-ray maps were used to 
distinguish phases with similar BSE intensity, 
particularly clinopyroxene and olivine. We 
subsequently used ImageJ to obtain the areal 
fraction of each phase present in ash clasts and 
calculate the vesicularity and vesicle-free 
crystallinity of the samples. A representative 
example is shown in Extended Data Figure 3 and 
numerical results are provided in Table S5. 
 

Volcanic earthquakes 
Two catalogues compile the pre- and 

syn-eruptive volcano-tectonic seismicity for the 
2021 eruption: the publicly available catalogue of 
the Instituto Geográfico Nacional (IGN) 
(www.ign.es/web/ign/portal/sis-catalogo-
terremotos) and that of the Instituto 
Volcanológico de Canarias (INVOLCAN)36. Both 
catalogues show a very similar number of events, 
but differ considerably in reported hypocenter 
depths36,38. Tests performed by Dayton et al.43 
(and outlined in their supplementary materials) 
indicate that locations of D’Auria et al.36 are more 
precise and accurate, mainly due to the choice of 
seismic velocity model and exclusion of picks 
from distant (>100 km) seismic stations. We thus 



use the earthquake catalogue of D’Auria et al.36 
in our analysis.  

Magma ascent rates from the mantle to 
the lower crust were calculated based on time 
lags between presumably corresponding mantle 
and crustal earthquake swarms and the depth 
difference between the swarms (Fig. 3a). We 
note that interpretation of hypocenter depths in 
terms of their spatial relationship with magma 
bodies is subject to substantial uncertainties80, as 
earthquake depths may be coincident with, 
underestimate, or overestimate the depth of 
magma. For the 2021 eruption, CO2 fluid 
inclusions in olivine suggest the last stages of 
magma storage were coincident with the depth of 
the mantle earthquake cluster43,44, and the crustal 
cluster may represent a transitory magma 
stagnation level identified for other eruptions in 
the Canary Islands19,81. For ascent rate 
calculations, we assumed that the hypocenter–
magma depth relationship — whatever it may be 
— is the same for both the mantle and crustal 
clusters. Ascent rate is thus obtained by dividing 
the vertical distance between the earthquake 
cluster locations (13.9 ± 2.6 km) by the time lag 
between corresponding mantle and crustal 
seismic swarms. This yields ascent rates of ~0.01 
m/s in October and 0.02–0.03 m/s in November 
and December (Fig. 3d) (these values increase to 
0.02–0.05 m/s when using the deeper 
hypocenters of the IGN catalogue38). Zanon et 
al.44 obtained similar results. In comparison, pre-
eruptive hypocenter migration yields magma 
ascent rates of 0.01 and 0.06 m/s at 5–10 and 0–
5 km depth, respectively82.  

 
Volcanic tremor 
Tremor amplitude (real-time seismic 

amplitude measurement, RSAM) data presented 
in this paper were calculated using continuous 
seismic waveform data recorded at a triaxial 
broadband seismic station (PLPI, Llano del Pino) 
belonging to Red Sísmica Canaria, operated by 
INVOLCAN. The sampling rate is 100 Hz. This 
station was selected due to its location — only 3 
km south of the eruptive vent — and near-
continuous data coverage during the eruption, 
with gaps of 13, 61, 10, and 43 hours occurring 
on 14 October, 15–17 October, 2 December, and 
5–7 December 2021, respectively. To isolate the 
tremor contribution to RSAM from discrete 
earthquake contributions, the raw seismic data 
were first designaled using the algorithm 
bc_denoise83. The resulting ‘denoised’ 
continuous seismic data were then demeaned, 
detrended, and bandpass-filtered between 0.35–

1 Hz and 1–3 Hz, the latter being the most 
energetic frequency band at PLPI. Hourly RSAM 
values were then computed and are provided in 
Table S6. 

Tremor locations were calculated using 
seismic data from the IGN network, which are 
openly available through FDSN webservices54.  

Estimating the network covariance 
matrix: Based on refs.84–86, we applied a network 
covariance matrix approach to analyze volcanic 
tremor, using La Palma-based stations of the IGN 
network ES. We began by processing hour-long 
data files by detrending and removing the 
instrument response, then filtered the data 
between 0.01 and 20 Hz. These data were 
segmented into 10-minute intervals, referred to 
as averaging windows. Each averaging window 
was further divided into 48-second subwindows, 
within which spectral whitening was applied. 
Cross spectra were calculated for each 
subwindow and each possible station 
combination, creating a covariance matrix by 
stacking the resulting 50 subwindow covariance 
matrices for each averaging window. The 
covariance matrix was decomposed into complex 
eigenvalues and eigenvectors. We then 
calculated the spectral width per averaging 
window, which is a measure of the eigenvalue 
distribution and presents the number of 
independent sources, with high values indicating 
multiple sources (noise) and minimal values 
indicating a single source.  

Spectral width plots were generated 
using 10-minute averaging window for three key 
periods: 17–24 September, capturing the 
eruption onset and highest tremor amplitudes; 
15–21 October, representing intermediate tremor 
amplitudes mid-eruption; and 21–27 November, 
reflecting lower tremor amplitudes later in the 
eruption (see Fig. 3a). Additionally, spectral width 
plots for the entire eruptive period (using hourly 
averaging windows to decrease computational 
cost) as well as zooming in on the eruption onset 
(19 September) and end (13 December) are 
shown in Extended Data Figure 4. 
 

Automatic tremor localization: We 
visually inspected spectral width plots to select 
frequency bands indicative of tremor activity. The 
0.35–1 Hz range, which is the strongest and most 
stable band across the network over different 
time periods, provided the best-constrained 
tremor signal. Using the eigenvectors to the 
dominant eigenvalues, the wavefield was 
recreated as a cross-correlation function in time 
using the selected frequency band. This 



procedure denoises the data and enhances 
dominant sources. We used the waveform 
envelope derived from the Hilbert transform for 
further analysis and applied minimal Gaussian 
smoothing of 0.1 s length.  

We implemented a 3D grid with a 
horizontal resolution of 1.1 km and a vertical 
resolution of 1 km, spanning [28.4°N, -18.05°W to 
28.9°N, -17.65°W] and depths from -20 km to 3 
km above sea level. Using the 1-D velocity model 
of ref. 36, we calculated theoretical rays and travel 
times from each grid point to every station, 
assuming S-waves. For each grid point, we 
summed cross-correlation envelopes at 
differential travel times to generate a spatial 
likelihood function, normalized by grid volume 
and maximum likelihood.  

Solutions were computed for each time 
step (10 minutes), with three criteria to identify 
tremor signals based on: (1) the mean value of 
the spectral width, which had to be below 0.65, 
indicating a strong source; (2) the number of grid 
elements which contain 95% of the maximum 
likelihood had to be less than 1% of the number 
of grid elements; and (3) the location was not 
equal to the boundaries of the grid. A single 
solution example is shown in Extended Data Fig. 
6. Average location errors, based on the 95% 
threshold, are less than ~3 km horizontally and 
~7 km in depth. 
 

Tremor density: We report tremor 
locations for 515, 820, and 635 10-minute time 
windows for each respective time periods noted 
above. Of the 21 days considered, ~18.5 days 
show tremor, due to some data gaps; this results 
in ~73% coverage of usable tremor locations. 

Since locations cluster spatially, we present 
tremor density plots in Extended Data Figs. 7–9, 
showing the total count (n) of located events per 
grid point. The 0.35–1 Hz tremor almost 
exclusively locates at shallow depth, very close to 
the eruption site. Minor discrepancies between 
the exact position of the eruption site and tremor 
locations arise due to grid spacing, the nature of 
cross-correlation functions, and uncertainties in 
the velocity model. 

 
Viscosity and volatile solubility 

calculations 
Melt viscosities were calculated from 

matrix glass compositions with the model of 
Giordano et al.65, under anhydrous and variably 
hydrous (up to 3 wt.% H2O — close to expected 
values at depth)61,62 conditions. We used the 
thermometer of Beattie66 (see also ref.87) obtain 
input temperatures, which range from 1100 to 
1130 ˚C (Table S7). 

The solubility of H2O and CO2 as a 
function of pressure and melt composition was 
calculated with MagmaSat88 via the VESIcal 
code89. Calculations were performed for melts 
with endmember SiO2 contents from 0.1 to 300 
MPa. We used the same temperature inputs as in 
the melt viscosity calculations and we set the 
mole fraction of H2O in the exsolved fluid to 0.4, 
based on measured gas compositions61. 
 
Data availability 
The datasets90 generated during this study are 
available in the EarthChem data repository, 
http://doi.org/10.60520/IEDA/113537, and in the 
Supplementary Information. 
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Extended Data Figure 1. Glass composition time series. (a) TiO2, (b) Al2O3, (c), MgO, (d) Na2O, (e) 
K2O, (f) P2O5, (g) S and (h) Cl concentrations as a function of time. Bulk rock data are from Day et al.28 
and lava matrix data are from Ubide et al.42. Note the strong decoupling of glass and bulk rock data for 
some elements (e.g., Ti, Mg, Na), particularly in the first week and last two weeks of the eruption. Vertical 
gray error bars show one standard deviation based on 3–13 analyses on at least two ash clasts per 
sample, whereas horizontal error bars indicate the ash sampling timespan. Error bars are not shown 
when smaller than symbol size. Black error bars for lava matrix data are one standard deviation from 7–
10 analyses42. 
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Extended Data Figure 2. Volatile elements. (a) Sulfur and (b) chlorine concentrations (ppm) vs. SiO2 in 
our tephra glass samples, compared with published data on melt inclusions, embayments, and tephra 
glasses61,62. Data from this work are presented as means of 3–13 analyses on at least two ash clasts per 
sample, with gray error bars displaying one standard deviation. Sulfur in tephra glasses (280–640 ppm S) 
is much lower than in melt inclusions due to extensive degassing, whereas chlorine (620–1290 ppm) 
shows incompatible behavior and little to no degassing. (c) H2O and (d) total (glass + bubble) CO2 
contents in melt inclusions and tephra glasses. Data from Dayton et al.62. A sample from the first few days 
of the eruption shows higher H2O (but similar CO2) than a late-stage sample approximately dated to 
December 2021. Solubility at 0.1 MPa (1 bar) is shown as a red line. (e) H2O and (f) CO2 solubility as a 
function of pressure for low- and high-SiO2 melt endmembers. All volatile solubility calculations were 
performed using MagmaSat88 via VESIcal89, assuming a mole fraction of H2O in the fluid of 0.4 (ref. 61) 
(Methods). 
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Extended Data Figure 3. Image analysis example for crystallinity and vesicularity estimates. (a) 
Backscattered electron image of a representative Type A ash clast from sample CAN-TLP-0212. (b–f) 
Traced amounts of vesicles, clinopyroxene, olivine, plagioclase, and Fe-Ti oxides used to calculate 
vesicularity and crystallinity. For this sample, we obtain a vesicularity of 11.0 vol.% and a vesicle-free 
crystallinity of 25.6 vol.% (Cpx: 11.2 vol.%; Plag: 9.5 vol.%; Ol: 2.9 vol.%; Ox: 2.0 vol.%). 
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Extended Data Figure 4. Spectral width for seismic stations from the IGN network. Panel (a) shows 
the whole eruption period, whereas (b) and (c) respectively focus on the onset and end of the tremor 
signal on 19 September and 13 December. 
  



 
 
Extended Data Figure 5. Regression analysis and supplementary monitoring data. Regression 
analysis for resampled (daily averages) and normalized time series of tremor amplitude at station PLPI in 
the (a) 1–3 Hz and (b) 0.35–1 Hz bands versus melt SiO2 content, and 1–3 Hz versus (c) number of 
discrete earthquakes in the crustal cluster36, (d) SO2 mass60, (e) TADR59, and (f) ash plume height63. 
Panels (g–i) respectively show SO2 mass, TADR, and ash plume height against SiO2 content. Solid black 
lines are linear best-fits through the data, with associated correlation coefficient (r) and p-value in black 
font. Data analysis is based on the two-sided t-test. Dashed gray lines are fits forced through the origin, 
with associated r in gray font. 
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Extended Data Figure 6. Single solution for a tremor location for the onset of the eruption on 19 
September 2021, 13:50. Blue triangles show seismic stations that were utilized. Colors denote the 
network response (white to dark red showing small to large values). The white diamond corresponds to 
the highest network response, which we infer is the location of the tremor, and the black star is the 
eruption site. 
 
  



 
 
Extended Data Figure 7. Tremor locations for 17–24 September 2021. Cyan circles indicate tremor 
density, where the size of the circle corresponds to the number of tremors (n) locating at that grid point. 
Yellow triangles show seismic stations and the black star shows the eruption site. 
 
  



 
Extended Data Figure 8. Tremor locations for 15–21 October 2021. Symbols as in Extended Data Fig. 
7. 
  



 
Extended Data Figure 9. Tremor locations for 21–27 November 2021. Symbols as in Extended Data 
Fig. 7. 
 
  



 
Extended Data Figure 10. Experimental evidence for the effects of liquid viscosity. (a) Amplitude of 
analogue acoustic signal as a function of gas flux in laboratory experiments56. Symbols mark the average 
75th percentile values for three experiments (230–525 observations per experiment, over 46–105 s using 
a 0.2 s sliding window) conducted with different conduit roughness, with downward error bars showing the 
average interquartile range. Symbols are color-coded according to liquid viscosity (h) of the experiments 
and symbol shape indicates the observed flow regime (bubbly, slug, or annular, see Fig. 5a). (b) 
Recurrence rate of gas slug burst events vs. gas flux. (c) Slug ascent velocity against liquid viscosity. 
Both (b) and (c) show experiments in the slug regime only, with data presented as means ± one standard 
deviation (not shown when smaller than symbol) of three experimental runs conducted with varying 
conduit roughness. 
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