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Heterogeneous Edge Devices
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Abstract—With the increasing popularity of heterogeneous
computing systems in Artificial Intelligence (AI) applications,
ensuring the confidentiality and integrity of sensitive data trans-
ferred between different elements has become a critical challenge.
In this paper, we propose an enhanced security framework called
SecureComm to protect data transfer between ARM CPU and
FPGA through DDR on CPU-FPGA heterogeneous platforms.
SecureComm extends the SM4 crypto module by incorporating
a proposed Message Authentication Code (MAC) to ensure data
confidentiality and integrity. It also constructs smart queues in
the shared memory of DDR, which work in conjunction with
the designed protocols to help schedule data flow and facilitate
flexible adaptation to various AI tasks with different data scales.
Furthermore, some of the hardware modules of SecureComm
are improved and encapsulated as independent IPs to increase
their versatility beyond the scope of this paper. We implemented
several ARM CPU-FPGA collaborative AI applications to justify
the security and evaluate the timing overhead of SecureComm,
and we also deploy SecureComm to non-AI tasks to demonstrate
its versatility, ultimately offering suggestions for its use in tasks
of varying data scales.

Index Terms—Heterogeneous system, Edge devices, Data trans-
fer, DDR, SM4, Message Authentication Code (MAC)

I. INTRODUCTION

THE heterogeneous system, which integrates various pro-
cessing elements such as CPUs, GPUs, DSPs, and FP-

GAs, plays a critical role in AI applications. The use of
heterogeneous computing systems allows for efficient uti-
lization of computational resources, improved performance,
and flexibility to adapt to specific AI workloads, including
real-time Neural Network (NN) inference. In heterogeneous
systems, CPU-FPGA is one of the most popular architectures

Tian Chen is with the School of Cyberspace Science and Technol-
ogy, Beijing Institute of Technology, Beijing, 100081, China (email: chen-
tian20@bit.edu.cn).

Yu-an Tan is with the School of Cyberspace Science and Technol-
ogy, Beijing Institute of Technology, Beijing, 100081, China (email:
tan2008@bit.edu.cn).

Chunying Li is with the School of Computer Science and Guangdong
Provincial Key Laboratory of Intellectual Property & Big Data, Guangdong
Polytechnic Normal University, Guangzhou, 510665, China (email: Chuny-
ingL@gpnu.edu.cn).

Zheng Zhang is with the School of Computer Science and Tech-
nology, Beijing Institute of Technology, Beijing, 100081, China (email:
zhangzheng@bit.edu.cn).

Weizhi Meng is with the Department of Applied Mathematics and Computer
Science, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
(email: weme@dtu.dk).

Yuanzhang Li is with the School of Computer Science and Technol-
ogy, Beijing Institute of Technology, Beijing, 100081, China (email: popu-
lar@bit.edu.cn).

of edge devices. Xilinx and Intel have released various CPU-
FPGA systems, such as Xilinx MPSoC [1] and Intel Cyclone
V SoCs [2]. Also, FPGAs have been deployed in commercial
cloud computing systems such as Microsoft Azure [3] and
Amazon AWS [4] to accelerate computation-intensive tasks.

Although the CPU-FPGA architecture offers performance
benefits for AI workloads, it faces significant security chal-
lenges. Much sensitive and secret data such as user biometric
information are stored, manipulated, and exchanged between
CPU and FPGA, which suffers from malicious attacks [5],
[6]. The CPU, as the controlling center,has access to the
physical resources of the system, allowing running illegitimate
processes to generate malicious requests [7]–[9]. Sensitive
information can be extracted from the memory, leading to
risks such as leakage of user privacy data. [10]–[12]. On the
FPGA side, previous work [13], [14] shows that a hardware
trojan implemented in FPGA can compromise the Advanced
eXtensible Interface (AXI) bus communication, even the entire
system, since all data goes through the AXI bus and IP cores.
Therefore, it is crucial to monitor and protect communications
between CPU and FPGA to safeguard sensitive data, prevent
unauthorized tampering, and defend against attacks before
system corruption.

Trusted Execution Environments (TEEs), such as ARM
TrustZone, have been developed to enable hardware-based
enclaves for protecting trusted applications and sensitive data
[15]. However, these TEEs cannot be directly applied to het-
erogeneous systems to safeguard data communication among
different computing units. Recently, some researchers have
been aiming to extend TEEs to protect commnunication be-
tween CPU and FPGA [16], [17] and constructing extended
TEE. However, TEE-based solutions need to rely on the secu-
rity features provided by the hardware and the firmware [18].
Moreover, lots of TEE-based solutions entail sophisticated
modifications of hardware and have not been evaluated on
real hardware.

Apart from constructing extended TEEs, some other re-
searchers have concentrated on securing bus communication
among different modules. [19], [20] have focused on detecting
malicious components of the hardware to secure bus com-
munication. The research in [21] checks and monitors the
bus with specific security rules. Encrypting the bus com-
munications of microprocessors [22]–[25], peripheral [26]–
[28] using lightweight stream ciphers are also a strategy to
secure systems. Most solutions focused only on encryption
and decryption of the bus data, without considering data
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transmission protocols and performance optimization for tasks
with different data scales. In real-time NN inference, the
time overhead brought by security measures is critical, mak-
ing performance optimization essential. Additionally, some
solutions do not consider data integrity, which limits their
comprehensiveness and requires further improvement.

In this paper, we proposed an flexible, efficient and en-
hanced security framework, SecureComm on the CPU-FPGA
heterogeneous devices for NN inference to protect the sensi-
tive data communication between the ARM CPU and FPGA
through DDR. The main contributions of this work are sum-
marized as follows.

• We proposed a transmission protocol to schedule data
flow and established smart queues in the shared buffers of
SecureComm, where elements can be of variable length
and non-continuous. This enables flexible adaptation to
various AI tasks with different data scales, depending
on the type of data transferred to and from the neural
networks.

• We fully optimized an SM4 stream cipher core as the
crypto module on the FPGA side, collaborating with the
SM4 crypto function provided by OpenSSL to protect
data flows between the CPU and FPGA through DDR.
Additionally, we proposed and incorporated a MAC with
SM4 to ensure data integrity and detect replay attacks.
The SM4 crypto is encapsulated as an independent,
fully functional crypto IP, making it suitable for various
scenarios beyond this paper.

• We implemented several ARM CPU-FPGA collaborative
AI applications, such as VGG, ResNet, MobileNet, and
YOLO, to justify the security of SecureComm and mea-
sure the timing overhead. We also deploy SecureComm to
non-AI tasks to demonstrate its versatility. Finally, based
on the experimental results, we provided suggestions for
applying SecureComm to tasks with different data scales.

The rest of the paper is organized as follows. Section II
introduces the related work and provides the preliminary of
SM4 algorithm. Section III gives a detailed introduction to
our proposed framework, including the threat model, data ex-
change framework SecureComm, the corresponding protocols,
and the optimizations in the framework. Section IV shows
the security analysis and the performance of our framework.
Section V concludes this paper.

II. BACKGROUND

A. Related Work

Several research works have focused on protecting data
confidentiality and integrity on heterogeneous systems.

(1) Encryption. Fangyong Hou et al. [24] applied AES-
GCM to make data encryption and authentication for both
the shared bus and the shared memory of a multi-processor
system. Thomas Hiscock et al. [23] achieved instruction-
level encryption using Trivium stream ciphers to protect data
confidentiality on a SoC system. Jesús Lázaro et al. [29]
proposed a novel electronic core using Trivium stream cipher
to encrypt and decrypt traffic between two digital modules
through an AXI connection. Lopez et al. [30] secured internal

communication of a heterogeneous SoC by implementing two
lightweight stream ciphers without excessive overheads. Com-
pared to the above schemes, SecureComm not only focuses
on encryption for data confidentiality but also extends the
SM4 method with verification, cooperating with protocols to
schedule data flow between CPU and FPGA, and fend off data
tampering and replay attacks on CPU-FPGA platforms.

(2) TEEs. Besides applying encryption, some researchers
constructed or extended TEEs to enhance protection. On
heterogeneous accelerators, [31]–[33] extended the CPU TEE
to develop GPU TEEs. J. Zhu et al. [34] and R. Bahmani et al.
proposed HETEE and CURE [35] TEE frameworks to protect
various heterogeneous components and their communications.
Ke Xia et al. [16] proposed SGX-FPGA, a trusted hardware
isolation path by bridging SGX enclaves and FPGAs in the
heterogeneous CPU-FPGA architecture. Different from the
mentioned TEEs work, SecureComm does not rely on or ex-
tend the security features provided by TEEs to the framework
or construct a new TEE, which is easy to deploy on the CPU-
FPGA platforms.

B. SM4 Block Cipher

The SM4 block cipher is one of the lightweight symmetric
block ciphers widely used in wireless sensor networks in
China. It was released by the Chinese National Cryptography
Administration (CNCA) in 2012 and became an ISO/IEC
international standard in 2021. This paper implements and
optimizes the SM4 block cipher as the crypto engine in
SecureComm.

The SM4 block cipher mainly involves three computations:
round function F , nonlinear transformation τ , and linear
transformation L.

Round function F
SM4 consists of 32 rounds of non-linear iterations with both

block size and key size in 128 bits. The 32 round keys are
expanded from the key accordingly, each of which has 32
bits: (rk0, rk1, ..., rk31), rki ∈ ZZZ32

2 , i is the nature number,
whose range can be denoted as 0 ≤ i ≤ 32. For round i, let
input data is (Xi

0, X
i
1, X

i
2, X

i
3) ∈ (ZZZ32

2 )4, and the round key
is rki ∈ ZZZ32

2 , then the round function is:

F (Xi
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1, X
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i
3) = Xi

0⊕L(τ(Xi
1⊕Xi

2⊕Xi
3⊕ rki)) (1)

where τ is a non-linear transformation and L is a linear
transformation.

Nonlinear transformation τ
Nonlinear transformation τ is an S-box lookup operation.

Let the input of τ is

Xi
k = (a0, a1, a2, a3), ai ∈ ZZZ8

2 (2)

where Xi
k is the kth 32-bit number of the input, Xi

k ∈
ZZZ32

2 , k ∈ (0, 1, 2, 3), then

τ(Xi
k) = (Sbox(a0), Sbox(a1), Sbox(a2), Sbox(a3)) (3)

where Sbox transforms the 8 bits input to an 8 bits output
value based on the S-Box table.

Linear transformation L
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Linear transformation mainly performs rotation operations.
Let the input of L and is B = τ(Xi

k) = (b0, b1, b2, b3), bi ∈
ZZZ8

2, then

L(B) = B⊕(B << 2)⊕(B << 10)⊕(B << 18)⊕(B << 24)
(4)

where << is left rotation.
To summarize, the encryption of SM4 block cipher is

demonstrated in Algorithm 1. And decryption is similar to
encryption, the only difference is using the round keys and
round functions in the opposite order.

Algorithm 1: Encryption for the SM4 block cipher
Input: rk = (rk31, rk30, ..., rk0); X =

(X3, X2, X1, X0)
Output: (X32, X33, X34, X35)
for i← 0 to 31 do

Xi+4 ← Xi ⊕ L(τ(Xi
1 ⊕Xi

2 ⊕Xi
3 ⊕ rki);

end
return (X32, X33, X34, X35);

For SM4 block cipher, a set of round keys are generated
with round key expansion from the original secret key.

Round key expansion
As shown in Algorithm 2, round key expansion also involves

S-Box lookup linear and non-linear transformations, where
(MK3,MK2,MK1,MK0) is the key, (rk31, rk30, ..., rk0)
are the expanded keys for Round Function F , L′(B) =
B ⊕ (B << 13) ⊕ (B << 23), and CKi, FKi are constant
system parameters.

Algorithm 2: Round key expansion for the SM4 block
cipher

Input: (MK3,MK2,MK1,MK0), MKk ∈ ZZZ32
2

Output: (rk0, rk1, ..., rk31), rki ∈ ZZZ32
2

(K3,K2,K1,K0)← (MK3 ⊕ FK3,MK2 ⊕
FK2,MK1 ⊕ FK1,MK0 ⊕ FK0)

for i← 0 to 31 do
rki ← Ki+4 =
Ki ⊕ L′(τ(Ki+1 ⊕Ki+2 ⊕Ki+3 ⊕ CKi));

end
return (X32, X33, X34, X35);

In SecureComm, we use SM4 in fixed key mode, thus the
round keys can be pre-calculated and stored in memory to
eliminate the time of expanding.

III. PROPOSED FRAMEWORK: SECURECOMM

A. Threat Model and Assumptions

Assume that users implement an FPGA-accelerated NN
inference application consisting of an program run on an
ARM CPU and an FPGA kernel. The application on ARM
CPU switches data along DDR with the FPGA kernel, i.e.
CPU puts the ingredients into DDR and notifies FPGA, then
the FPGA fetches the data through the AXI bus and invokes
the computation with logic circuits. When it finishes, it puts

buffer-A (CPU→FPGA) buffer-B (CPU←FPGA)

User APP

Crypto
MAC

Verifier

CommCPU

DDR

LITE channel

FULL channel

SecureCPU

Kernel

Crypto
MAC

Verifier

ARM CPU FPGA

SecureFPGA

CommFPGA

Attackers

Fig. 1. The overview of SecureComm, where the thick arrow represents the
data stream of large data that needs to be written into DDR or read from
DDR through the FULL Channel, while the thin arrow represents the data
stream of small data such as parameters that need to be transmitted through
the LITE Channels

the results back into DDR through the AXI bus and informs
the CPU to get the results. In this situation, protecting the
integrity and confidentiality of the data transferred between
CPU and FPGA is necessary. To achieve this goal, as shown
in Figure 1, we design an enhanced data transfer framework
SecureComm. In this paper, we only take the attacks on the
AXI bus and the shared memory of DDR into consideration.
We assume that both SecureComm and the accelerated kernel
are immune to attacks; therefore, the AXI communications
within SecureComm and between SecureComm and the ac-
celerator kernel are considered secure. On the CPU side, we
consider strong adversaries who can dump and tamper with
the shared memory of CPU and FPGA on DDR. However, it
cannot compromise the modules of SecureComm and the user
APP, thus the normal communications will not be affected.
On the FPGA side, we postulate that adversaries can plant
malicious IPs to eavesdrop the AXI channels between CPU
and SecureComm. But it cannot tamper with the contents on
the channels. Moreover, it can perform arbitrary reads and
writes on DDR through a self-established AXI channel out of
SecureComm to manipulate the contents of the memory.

B. Architecture

Figure 1 shows the block diagram of our proposed frame-
work SecureComm. SecureComm consists of three main com-
ponents, ARM CPU, FPGA, and communication channels.
On the ARM side, there are a SecureCPU module and a
CommCPU module. In the SecureCPU module, the MAC
verifier is responsible for MAC calculation and integrity
verification, and the Crypto module takes charge of encrypting
and decrypting data which sends to and received from FPGA
through DDR. The CommCPU module includes drivers for
transferring data directly or indirectly (through DDR) between
CPU and FPGA. It can follow the parameters sent from
FPGA and schedule the data flow of a task through the
communication channels. On the FPGA side, similarly, the
hardware SecureFPGA module is responsible for data integrity
verification and data encryption/decryption. In our designs, we
pick the SM4 algorithm as the crypto algorithm for demonstra-
tion and implementation. Noted that it can be replaced with
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other cryptographic algorithms such as AES-GCM in practice.
The hardware CommFPGA module is designed to generate
AXI bus signals for accessing DDR memory and handles
the data on the LITE channels between CPU and FPGA in
collaboration with the driver in CommCPU.

As for data transferring, SecureComm provides two kinds
of communication channels. One is the FULL channel for
transferring large-scale data between CPU and DDR, DDR
and FPGA. Compared to FIFO and BRAM, DDR provides a
large amount of memory with high data transfer rates. Also,
it is more flexible for users to design data flow. The other
channels are the LITE channels, which are for transmitting
address, nonce, and some other small-size configurations and
parameters between CPU and FPGA directly without DDR.
As the data exchange center, the shared memory of DDR is
divided into two parts, involving deposit data from CPU to
FPGA and FPGA to CPU respectively. When a host APP
needs to communicate with an FPGA kernel, it needs to
store the data in DDR through the FULL channel and notify
FPGA of the configurations and parameters of the transfer
through the LITE channels. Then the kernel loads the data from
DDR through the FULL channel based on the parameters and
executes the computation. After finishing, it stores the result
back to DDR and informs CPU. In SecureComm, we allocate
two shared buffers in DDR, one is for storing data from CPU
to FPGA, and the other is for storing data from FPGA to
CPU. Before writing data frames to these two buffers, the
parameters of the data frames, including the starting address
and length, are first sent to the receiver. Therefore, the two
buffers can be considered as two circular queues, where the
elements, i.e., the data frames, do not need to be contiguous
or of the same size. Both the sender and receiver use the rear
and front to determine the status of elements in the queue.
Users can adjust the storage address of the data according
to their needs, making it highly flexible. The head and tail
of the queue are updated through LITE channels. To ensure
the interoperability between different hardware and software
components of SecureComm, we propose protocols to define a
standardized way of communication, which will be introduced
in detail in the next part.

C. Protocols

Based on the above architecture, we proposed protocols
that defend confidentiality, integrity and also offer protection
against replay attacks on transfers between CPU and DDR as
well as DDR and FPGA. The proposed protocols can mainly
be divided into the following two procedures according to the
directions of the data flow.

1) CPU → DDR → FPGA: Figure 2 illustrates the pro-
tected transfer from CPU to FPGA through DDR that executes
in three phases. 1. Construct and encrypt a data frame.
SecureCPU first generates a nonce and computes the MAC
of the data from a user APP in the MAC verifier according
to Equation 6-9. Then it constructs a data frame, whose
data structure is shown in Figure 3, and encrypts the data
frame with the Crypto module. 2. Data transfer. CommCPU
first checks the value of the front index to determine if the

ARM CPU DDR FPGA

Construct and encrypt 

a data frame

6. decrypt (nonce)，
decrypt(data_frame)

Data transfer

5. read_from_ddr (base_addr, length)

Read data and 

verify data integrity

1. generate a nonce, compute 

MAC, construct and encrypt a 

data frame

2. write_to_ddr 

(base_addr, data_frame)

3. send_to_FPGA 

(base_addr, length, noncelite)

4. update (bufferA_rear)

7. compute MAC’ and 

compare MAC’to MAC

if integrity fails
8. package dropped

9. raise alarm and 

wait for response

else integrity passes

10. update (bufferA_front) 

and notify CPU

Kernel computation

11. kernel computation

Fig. 2. Protected transfer from CPU to FPGA through DDR

FPGA has read the data frame. If the value of front changes,
it means that the corresponding space can be reclaimed.
Then, CommCPU searches for an available area in bufferA
and writes the data frame into it. Afterwards, it sends the
parameters, including base address, length, and the sliced
nonce to CommFPGA directly through the LITE channels,
and updates the rear index of bufferA with the formula
(rear = rear + 1)%MAX SIZE, where MAX SIZE
denotes the maximum number of data frames that can be stored
in the buffer. 3. Read data and verify data integrity. When
bufferA is not empty, CommFPGA first reads the data frame
from bufferA through the FULL channel according to the
parameters received in the previous step. Then the hardware
Crypto and MAC verifier of SecureFPGA decrypt the data
frame and compute the MAC. Finally, the verifier compares
the calculated MAC against the MAC value stored in the data
frame. If it is different, i.e., integrity fails, SecureFPGA drops
the frame, sets a fail flag, and raises an alarm to the User
APP through CommFPGA and CommCPU. If the integrity
passes, the front of bufferA will be updated by CommFPGA
with the formula (front = front+1)%MAX SIZE. Then
the decrypted data frame will be delivered to the kernel in
FPGA for further computation and the User APP will get the
notification of the success of verification.

2) FPGA → DDR → CPU: After the kernel finishes com-
putation, it needs to store the result back to DDR. As shown
in Figure 4, similar to Procedure 1, the protected transfer
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Nonce: noncefull

Data

MAC (Data, noncefull)

128bits

Reserved

Fig. 3. The data structure of a data frame

also executes in three phases. 1. Construct and encrypt a
data frame. Since the nonce is encrypted when transferring,
the attackers will not get the plaintext with eavesdropping.
Thus, SecureFPGA does not need to generate a new nonce
for data transfer. Before constructing a result data frame, the
MAC verifier of SecureComm needs to compute MAC with
Equation 6-9 and the nonce sent from CPU. After constructing
the frame, the Crypto module encrypts it and delivers to
CommFPGA. 2. Data transfer. CommFPGA first reclaims the
memory that CPU has read and generates the AXI bus signals
to write the data frame to bufferB of the shared memory. Then,
it updates the rear index of bufferB and sends the base address,
and the length of the data frame to CommCPU through the
LITE channel. 3. Read data and verify data integrity. When
bufferB is not empty, SecureCPU reads the data frame from
bufferB through CommCPU and decrypts it with the sealed
key. Then the MAC verifier verifies the integrity of the data
by comparing the MAC value calculated by the host against
the MAC value stored in the data frame. If the integrity passes,
the front of bufferB will be updated through CommCPU and
the LITE channels. If the integrity fails, the MAC verifier will
raise an alarm to the user and waits for the user’s response.

By following the aforementioned protocols, CPU and FPGA
can establish reliable and efficient communication and collab-
oration. Moreover, constructing queues on the shared buffers
and sending parameters including base address and length to
the receiver allows users to arrange data flow conveniently
and flexibly. Noted that, for a clear understanding of the data
flow, the above demonstration is serial. In our framework,
some phases of the procedure are paralleling and pipelining
to improve the efficiency and the latency of SecureComm.

In SecureComm, the modules of the ARM CPU and FPGA
are designed and implemented as software and hardware
respectively. Figure 7 demonstrates the hardware design and
data flow of SecureComm on the FPGA side. To decouple the
timing requirements of different IP blocks, we utilize FIFOs
in SecureComm to connect with modules with different clock
domains. The designs for each module and the optimizations
will be discussed below.

D. CommCPU and CommFPGA

In SecureComm, CommCPU and CommFPGA are designed
to intercommunicate through the LITE channels and access
DDR through the FULL channel.

1) Intercommunication: On the FPGA side, in CommF-
PGA, we use AXI-LITE bus to construct LITE channels to

ARM CPU DDR FPGA

Kernel computation
1. kernel 

computation

Construct and encrypt

 a data frame

2. compute MAC of the 

result, construct and encrypt 

a data frame

Data transfer

3. write_to_ddr 

(base_addr, data_frame)
4. send_to_ARM 

(base_addr, length)

5. update 

(bufferB_rear)

6. read_from_ddr

(base_addr, length)

7. decrypt, compute and 

compare the MAC of the data

8. package dropped

9. raise alarm and wait 

for response

11. …… (user defined)

Read data and 

verify data integrity

10. update (bufferB_front)
else integrity passeselse integrity passes

if integrity failsif integrity fails

Fig. 4. Protected transfer from FPGA to CPU through DDR

communicate with CommCPU. The data width of the channels
is configured to 32 bits. On the CPU side, an extended driver
for gpiochips to read and write multi-bit ports is implemented
in CommCPU to interact with AXI GPIOs of CommFPGA.
SecureComm provides four separate LITE channels for trans-
mitting different messages, which are shown in Table I. As
for Channel 1 and 2, FPGA or CPU parses data according to
the highest 3 bits and extracts the corresponding messages.
Channel 1 delivers the message from CPU to FPGA, while
Channel 2 transmits the message from FPGA to CPU. The
parameters delivered on Channel 1 are extracted and kept
temporarily in a FIFO of CommFPGA, while the parameters
sent from FPGA on Channel 2 are extracted and saved in
the allocated memory of CommCPU. As for Channel 3, the
rear (16 bits) of bufferA and the front (16 bits) of bufferB
are concatenated to a 32 bits number. To avoid data race,
these two variables are maintained by CPU, i.e., only CPU
can modify their values, while the FPGA can only read them.
As for Channel 4, similarly, the front (16 bits) of bufferA
and the rear(16 bits) of bufferB are concatenated to a 32 bits
number. Only FPGA can modify the value.

To detect replay attacks, we construct a nonce pair

(noncelite, noncefull) = (N [28 : 0], encrypt(N)) (5)

to involve in MAC calculation, where N is a nonce, noncelite
is the 0th bit to 28th bit of N which is transferred on Channel
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TABLE I
THE MESSAGE DELIVERED ON DIFFERENT LITE CHANNELS.

Channel Data(32bit) Message

1
(CPU→FPGA)

001

XXXX...XXXX

base addr H
010 base addr L
011 data len
100 nonce[28:0]
. . . reserved

2
(FPGA→CPU)

001
XXXX...XXXX

base addr H
010 base addr L
011 data len

111 0000. . . 0000 integrity passed
0000. . . 0001 integrity failed

. . . XXXX...XXXX reserved

3 XXXX...XXXX
(bufferA rear)

XXXX...XXXX
(bufferB front) CPU maintains

4 XXXX...XXXX
(bufferA front)

XXXX...XXXX
(bufferB rear) FPGA maintains

1, and noncefull is the 128 bits encrypted N which is packed
in the data frame. When SecureFPGA received a data frame,
it encrypts and extracts the complete 128 bits nonce N , and
compares it to noncelite. If it is matched, the MAC verifier
of SecureFPGA continues to verify MAC.

2) Accessing the Shared Memory of DDR: On the FPGA
side, the parameters through the LITE Channel 1 from CPU
are extracted in the CommFPGA. As shown in Figure 7, to
access the shared memory of DDR based on the parameters,
we design and encapsulate an IP named FDMA integrated into
CommFPGA to generate AXI bus signals. FDMA encapsulates
the AXI-FULL bus interface and defines a simple APP inter-
face for users to use the AXI4 bus for data transfer flexibly
and conveniently.

On the CPU side, since DDR is managed by the kernel
through its memory management subsystem, to release the
control of the shared buffer of DDR, we set up a device tree
to define the reserved memory area of DDR. Meanwhile, we
design and implement a memory driver integrated into Comm-
CPU to manage the shared buffer in the user applications,
offering APIs for reading and writing to the shared memory.

E. High-performance Crypto

SecureFPGA and SecureCPU are the most significant mod-
ules of SecureComm designed to protect the confidentiality
and integrity of the transferred data. On the FPGA side,
we design and implement a high-performance SM4 Crypto
module. Compared to the SM4 implementations in [36], [37],
and [38], we not only implement an encryption module for
encryption, but we also develop a specific module for key
inversion to invert the round key and reuse the encryption
module for decryption. In addition to the above two modules,
we design a top module to schedule data flow for encryption
or decryption. The Crypto in SecureFPGA works in fixed-
key mode, and the fixed encryption round keys are sealed in
the top module and passed directly to the encryption module
for both encryption and decryption. The installation and the
protection of the key are out of the scope of this paper. In the
case of decryption, the round key needs to be put into the key

inversion module first to obtain the inverted key, which is then
passed to the encryption module for data decryption.

The core of the SM4 is 32 rounds of nonlinear iterations. As
shown in Figure 5, in the encryption module, we use registers
to divide critical paths and store the results of each iteration for
the next iteration. All combined logic blocks work in parallel
within a clock cycle and construct a pipeline for encryption
and decryption. Therefore, one number can be encrypted or
decrypted for each clock cycle.

in reg0 round0 reg1 roundi ... reg32 Rotate out

reg i ⊕ Sbox
Liner 

Transform

⊕

Concat reg i+1

RK i

RKi _ready

...

Fig. 5. The 32 rounds of nonlinear iterations of SM4

As for the key inversion module, which is involved in
decryption, we use upper triangular registers to store and
inverse the round keys efficiently. As shown in Figure 6, for
each clock cycle, the key inversion module gets the undermost
round key of a column, outputs to the decryption module in
the right order, and move to the next column in the next cycle.

In our SM4 implementation, we adopt a speed-first fine-
grained parallel pipeline optimization within and between
modules, trading FPGA area for performance, which reduces
encryption and decryption latency and improves throughput,
ensuring that it will not become performance bottlenecks for
SecureComm. In practical applications, the resource consump-
tion of the FPGA can be reduced by decreasing the number
of pipeline stages. However, this comes at the cost of slower
encryption/decryption speed. Therefore, it is crucial to find a
balance between performance and resource consumption, tak-
ing into account the specific requirements of the application.
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Fig. 6. Key inversion module

Although the framework uses fixed-key mode to encrypt
and decrypt data, we still extend the crypto module and
implement a key expansion module to support the rolling-key
mode to fit in more scenarios outside this paper. Similar to
the encryption module, to enable the handling of key changes
without causing pipeline stalls, the key expansion module
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uses additional registers to store the first four encryption
round keys required for the next round of iteration for each
key, then pipelines the nonlinear iterations to improve the
performance. Thus 32 different round keys from different
keys for encryption will be generated in each clock cycle.
The rolling-key mode requires passing the key to the key
expansion module to get the round key, and then sending it
to the encryption module for encryption. On FPGA side, we
instantiate one Crypto module for encryption and decryption.
The Encryptor and Decryptor in Figure 7 are the same module,
which is described separately for better distinguishing between
encryption and decryption. On CPU side, we make use of the
SM4 engine of OpenSSL, which uses ARM’s SM4 instruction
set to accelerate the SM4 crypto algorithm.

We also encapsulate our SM4 crypto as an independent and
full-function crypto IP to fit in more scenarios outside this
paper, including secure communication between different IPs
using AXI protocols in FPGA. In situations where designers
lack control over IPs that could intercept AXI communication,
such as the AXI Interconnect, utilizing SM4 cryptography
can safeguard the communication between the user’s trusted
AXI master and slave. This can be achieved by inserting
an SM4 cryptographic pair between the Master and AXI
Interconnect, as well as between the AXI Interconnect and
Slave for encrypting and decrypting data. Even if the AXI
Interconnect acts maliciously, it will be unable to access the
actual message being transmitted along the bus.
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Fig. 7. The architecture and dataflow of SecureComm on the FPGA side,
where Decryptor and Encryptor are the same module. The separate description
is only for better distinguishing between encryption and decryption

F. MAC Verifier

In SecureComm, SM4 provides confidentiality for the data
being encrypted, but it does not provide any integrity or
authenticity guarantees. To ensure data integrity and authen-
ticity, a separate MAC is proposed in conjunction with SM4.
Moreover, to detect replay attacks, a nonce is introduced in
the generation of MAC.

To calculate MAC, the verifier (1) pads the message to a
multiple of the block size (128 bits) and divides the padded
message into blocks, denoted as M = (M0,M1, ...,Mn−1),
where Mk ∈ ZZZ128

2 , k ∈ [0, n− 1].

(2) computes the bitwise XOR of all blocks:

T = M0 ⊕M1 ⊕ ...⊕Mn−1 (6)

(3) computes the bitwise XOR of T and nonce:

T ′ = T ⊕ nonce (7)

where nonce is a random 128 bits number generated on the
ARM side.

(4) encrypts T ′ with SM4:

C = encrypt(T ′), C ∈ ZZZ128
2 (8)

(5) expands C in 4 bits a unit. Converting each 4 bits
corresponding hexadecimal to a character, then saving the
corresponding hexadecimal value to complete the expansion.
For example, suppose a unit is 4’b1010, which is 4’hA. The
ASCII value of the character A is 65, which is 8’h41, thus
the expansion of 4’b1010 is 8’h41. With the expansion, C is
transformed to C ′ = (C0, C1), Ck ∈ ZZZ128

2 .
(6) does a bitwise exclusive OR operation on C0 and C1,

encrypts and outputs the result as MAC:

MAC = encrypt(C0 ⊕ C1) (9)

To verify the integrity of the transferred data and detect
replay attacks, the framework introduces nonce pairs and
adapts to the calculation of MAC. On both sides, we use
Encrypt-and-MAC, E&M mode to encrypt data and calculate
MAC, i.e., the encryption and MAC calculation can be paral-
lelized to accelerate. For verification, the ciphertext needs to
be decrypted first before calculating the corresponding MAC.
These two operations are also pipelined in SecureFPGA to
reduce the calculation latency. Both encryption/decryption and
verification share the same fixed key in SecureComm. The
recipient can decrypt the data frame, extract the nonce and
plaintext, and compare the calculated MAC with the one stored
in the frame. If the values vary, it suggests that the frame
has been tampered with by attackers. The nonce introduced
in MAC generation provides randomness, thereby effectively
detecting replay attacks.

On the FPGA side of SecureComm, we utilize FIFOs to
enable asynchronous operation of different IPs and simplify
the design by isolating them from each other. FIFO1 in Fig-
ure 7 is used to accumulate the decrypted input of the kernel,
FIFO2 is used to store the encrypted output of the kernel.
As for the encryption steps within the verifier, we schedule
and reuse the SM4 Crypto to reduce hardware resources. We
also parallelize and pipeline steps on the FPGA size to reduce
latency. For example, the output of the kernel will be sent
to the verifier and the encryptor at the same time for MAC
calculation and data encryption. In SecureComm, we choose
a balance between resource consumption and performance.
In practice, we can use more hardware resources and finer-
grained parallel pipelining optimizations to further improve
the performance of SecureComm.
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IV. EXPERIMENT

We implemented a prototype system for SecureComm on
the ALINX AXU5EV-P development board with a XAZU5EV-
SFVC784-1-i chip, i.e., Xilinx Zynq UltraScale+ MPSoC,
which is a highly integrated and versatile platform that com-
bines programmable logic (FPGA) with processing subsys-
tems based on ARM Cortex-A53 and Cortex-R5 cores. The
FPGA and the processing subsystems are connected with the
AXI buses. Based on the prototype system, we conducted
three types of experiments to analyze the effectiveness and
performance of SecureComm: (1) Security analysis, in which
we analyzed the resistance of SecureComm against the threat
models demonstrated in Section III. (2) Performance analysis,
in which we evaluated the performance of the SM4 crypto
in SecureComm with other implementations on FPGA. More-
over, we explored the impact of data size and the kernel’s
computational intensity on the performance of SecureComm.
In addition, we evaluated the timing overhead caused by
SecureComm by comparing it with the framework that dis-
ables all security protection on three benchmark applications.
(3) Resource overhead, in which we evaluated the resource
overhead on the FPGA side caused by the hardware modules
of SecureComm.

A. Security Analysis

In this section, we evaluated the resistance against two types
of attacks mentioned in Section III that come from malicious
IPs on the FPGA side and malicious applications on the ARM
CPU side respectively.

1) The Attacks from Malicious IPs: Because the data stored
in and retrieve from DDR are encrypted within SecureComm,
and the encryption key is sealed in the CPU controller and the
crypto module on FPGA, only the crypto module of FPGA can
decrypt data, and transfer it to the FPGA kernel on the FPGA
side. Therefore, there is no clear data on the AXI-FULL buses.
Even if an attacker plants a malicious AXI Interconnect IP (or
any other malicious AXI infrastructure elements) to intercept
the data on the AXI bus between SecureComm and the CPU,
they would be unable to access the sensitive data without
the encryption key. If a malicious IP overwrites the data in
the shared memory via a self-established channel outside of
SecureComm, it will be unable to decrypt and access the
nonce contained in the data frame necessary to compute the
corresponding MAC for the tampered data. Consequently,
this leads to a failure in the integrity verification process of
SecureComm.

2) The Attacks from Malicious Applications: Given that
the data stored in the shared memory is securely encrypted,
any information extracted by malicious applications will only
appear as ciphertext. These malicious applications lack the
decryption key, rendering them unable to decipher the sensitive
data. In the event that a malicious application endeavors to
manipulate the sensitive data within the shared memory, it will
face obstacles in decrypting the data to access the nonce nec-
essary for falsifying the corresponding MAC. Consequently,
any alterations made to the shared memory will be identified
by the MAC verifier on the FPGA. Moreover, in cases where a

TABLE II
RESOURCE USAGE AND PERFORMANCE OF OUR SM4 IMPLEMENTATION.

Reports SM4 Crypto of SecureFPGA

Resources Usage
LUTs 7171

FFs 8643

Max Frequency (MHz) 462

Throughput (Gb/s) 59.14

malicious application tries a replay attack, any tampering with
the nonce transmitted through the LITE channel will result in
discrepancies in the nonce pair elements, prompting the MAC
verifier to reject the transmission.

To validate our claim, we simulated two test cases, where
we compromised the OS to perform replay attacks and planted
a malicious hardware module on the FPGA to use random
numbers to overwrite the data in the shared memory. In
both scenarios, we observed that SecureComm successfully
detected the tampering of data and denied the transmission,
which proves that it can defend the attacks from malicious
IPs and malicious applications, protecting the integrity and
confidentiality of the sensitive data stored in the shared mem-
ory.

B. Performance Analysis

1) SM4 Crypto: We evaluated the resource usage, maxi-
mum operating frequency, and throughput of our SM4 crypto
implementation and compared it with other SM4 implemen-
tations on FPGA. As shown in Table II, our implementation
greatly optimizes timing by inserting a large number of regis-
ters and dividing critical paths, resulting in a higher frequency
of 462MHz and an improved throughput of 59.14Gb/s with
limited resource overhead. In our SM4 implementation, we
adopts a speed-first fine-grained parallelism to achieve high-
performance encryption and decryption. In scenarios with
limited resources, the parallelism can be reduced to decrease
resource consumption. In SecureComm, the crypto core oper-
ates in 150MHz to work efficiently with other modules.

2) Runtime Timing Evaluation:
1⃝ The exploration of the impact of data size and the kernel

computational intensity.
In SecureComm, the data size (both input and output) and

the computational intensity of the kernel are two decisive
factors in determining computation time. To evaluate the
influence of the data size, we implemented the calculation
of the square of a matrix as the kernel using High-level
Synthesis (HLS). We fixed the compute matrix size to 56x56
(int), and adjusted the input and output size to measure the
additional timing overhead of one loop (ARM CPU→FPGA
kernel→ARM CPU). If the input size was larger than 56x56,
we only took 56x56 of the input data and the rest was
discarded. As shown in Figure IV-B2, we observed that the
timing overhead posed by the framework increased approxi-
mately linearly with the input/output data size. That is because
data encryption, decryption, mac calculation, and data transfer
contribute significantly to the time, which highly depends on
the data size. On average, the framework incurred an overhead
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TABLE III
TIMING EVALUATION OF MAC GENERATION AND VERIFICATION, WHERE ENC DENOTES ENCRYPTION, ENC + MAC DENOTES ENCRYPTION AND MAC

GENERATION, DEC DENOTES DECRYPTION AND DEC + MAC DENOTES DECRYPTION AND MAC VERIFICATION.

CPU(ms) FPGA(*10-5 ms)
Size Enc Enc + MAC Dec Dec + MAC Enc Enc + MAC Dec Dec + MAC

16KB 0.641 0.677 0.564 0.595 0.705 0.733 0.727 1.461
32KB 0.660 0.697 0.568 0.597 1.388 1.416 1.410 2.826
48KB 1.769 1.856 1.695 1.777 2.071 2.099 2.093 4.191

TABLE IV
TIMING EVALUATION USING TWO AI APPLICATIONS AND TWO NON-AI APPLICATIONS (MS), WHERE SC. DENOTES THE CASE THAT APPLIES

SECURECOMM, AND BASELINE DENOTES THE CASE WITHOUT THE SECURITY PROTECTION

Apps 16KB 32KB 48KB 64KB 80KB
Baseline SC. Baseline SC. Baseline SC. Baseline SC. Baseline SC.

LeNet 12.7889 14.0909 26.5818 27.8449 37.9977 41.6418 50.5886 55.3897 63.2395 69.2046
VGG-5 63.1393 64.4194 127.2107 128.5017 188.9600 192.6031 251.9163 256.7474 314.9027 320.9078

K-means 1.9112 3.1842 4.6623 5.9624 4.7954 8.4005 6.4806 11.2547 7.9658 13.9429
Smith

Waterman 70.2251 71.4971 148.4983 149.7993 224.3924 228.0254 294.4725 299.2916 371.5896 377.5337

of 0.074ms with an increase of 1KB in data size for both input
and output. We also evaluate the impact of MAC generation
and verification in SecureComm. As shown in Table III, MAC
generation and verification do not significantly pose extra
time overhead compared to pure encryption and decryption.
The influence brought by MAC on system performance is
negligible.

To evaluate the influence of the computational intensity
of the kernel, we set the size of the input/output matrix to
16KB (56x56) and adjusted the computational intensity by
performing matrix power operations with different exponents.
Noted that no additional optimization was applied to the HLS
program, so the computational intensity increased approxi-
mately linearly with the exponent. As shown in Figure IV-B2,
the additional time overhead generated by SecureComm de-
creases inversely with the exponent, as a proportion of the
total time. In practice, it is necessary to adjust the data size
and kernel complexity based on the actual need to obtain better
performance.

15 20 25 30 35 40 45

size (KB)

1

1.5

2

2.5

3

3.5

ti
m

e
 o

v
e
rh

e
a
d
 (

m
s
)

(a) The additional time overhead
with different input/output size.

2 3 4 5 6 7 8 9

k
th

 power

0.2

0.3

0.4

0.5

0.6

0.7

ra
ti
o

 (
%

)

(b) The proportion of additional
time overhead to total time with dif-
ferent exponents.

Fig. 8. The impact of data size and the kernel computational intensity

2⃝ The evaluation of the runtime performance of Se-
cureComm.

To evaluate the overall performance of SecureComm, we
adopted two AI CPU-FPGA applications, LeNet [39] and
VGG-5 [40] with different input and output sizes. Also,
we implemented two non-AI applications, K-means [41] and
Smith Waterman [42], which demonstrate the versatility of
our framework. In the experiment, the kernel computed all
the input data in a loop. All cases are conducted 20 times
to reduce random errors, and the result of each case is the
average of the measurements. Table IV shows the results
comparing SecureComm with the baseline where there is no
security protection for the CPU-FPGA applications. As we
can see, for low-computation programs like K-means, the total
computation time after applying the SecureComm framework
is still short and acceptable. For computation-intensive applica-
tions like LeNet, VGG-5 and Smith Waterman, the additional
overhead is negligible.

To evaluate the runtime performance of SecureComm with
large size of input data, we employed SecureComm to protect
the data streams of YOLOv4, which is illustrated in Figure
9. Also, we implement three NNs, namely Inception-v1,
ResNet50 and MobileNet-v2, and compare their performance
with and without employing SecureComm. As shown in Table
V, we tested three YOLO tasks: vehicle recognition, pedestrian
recognition, and concrete crack detection. We compared the
average time for 50 frames and the frame rate before and
after applying SecureComm. It is evident that the inference
time significantly surpasses the additional time introduced
by SecureComm, leading to a slight decrease in frame rate.
Regrettably, due to the limited CPU performance and FPGA
resources of our development board, real-time inference can-
not be achieved, with a frame rate of approximately 3 fps
regardless of SecureComm deployment. In our experiments,
the large input image contributes to a predominant SM4 en-
cryption time on the CPU within SecureComm’s cryptographic
operations, averaging around 37 ms per image.

Theoretically, employing a more powerful SoC, such as the
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TABLE V
PERFORMANCE EVALUATION OF THREE YOLOV4 TASKS AND THREE NNS, WHERE SC. DENOTES THE CASE WITH SECURECOMM, AND BASELINE

DENOTES THE CASE WITHOUT SECURITY PROTECTION.

Model
Input Size Time (ms) Speed (fps)

Time Overhead / Time (SC.)
(N, H, W, C) Baseline SC. Baseline SC.

YOLO v4

Vehicle

(1, 608, 608, 3)

274.8669 311.4089 3.45 3.06 0.1173

Pedestrian 306.6804 342.4513 3.26 2.92 0.1045

Concrete 289.8551 326.8880 3.45 3.06 0.1133

Inception-v1

(1, 224, 224, 3)

21.5998 26.5102 46.30 37.72 0.1852

ResNet50 52.5805 57.8929 19.02 17.27 0.0918

MobileNet-v2 13.6570 18.5909 73.22 53.79 0.2654

Xilinx Versal SoCs, along with further accelerating the infer-
ence process through fine-grained parallelism, could lead to a
greater reduction in the performance impact of SecureComm.
For neural networks like MobileNet and Inception, which have
short inference times, the deployment of SecureComm may
decrease system performance; however, this is still acceptable
and meets real-time requirements.

Overall, with small input and output data scales, Se-
cureComm does not cause significant performance loss. How-
ever, with large input and output data scales, SecureComm
may lead to an overall performance decrease due to the long
encryption and decryption times on the CPU side. This issue
can be mitigated through approaches such as and employing
a more powerful SoC or using encryption algorithms that
are faster or better supported by hardware/instruction set
acceleration.

C. Resources Overhead

We further evaluated the resource overhead of SecureComm
on FPGA, considering the Crypto, MAC verifier and CommF-
PGA modules as the three major components on the FPGA
side. Table VI demonstrates the resource consumption of the
Crypto, MAC verifier, and CommFPGA implementations in
terms of flip-flops (FFs), lookup tables (LUTs), block RAMs
(BRAMs) and lookup table RAMs (LUTRAMs) reported in
Vivado. The results indicate that SecureComm is lightweight,
from which the crypto module takes up most of the resources.
This is because we have optimized the SM4 module in a
very fine-grained way to maximize performance. In practice,
in some cases where performance requirements are not high,
the optimization can be appropriately adapted according to
specific needs, thereby reducing resource usage.

Additionally, the FPGAs used in commercial scenarios
typically have more hardware resources than the MPSoC
used in our experiments. Therefore, due to SecureComm’s
consistent resource consumption across different FPGAs, its
overall resource usage (as a percentage) is expected to be lower
and negligible.

V. CONCLUSIONS

In this paper, we proposed a security-enhanced framework
called SecureComm on the CPU-FPGA heterogeneous edge
devices for the protection of data confidentiality and integrity

TABLE VI
RESOURCE USAGE OF CRYPTO, MAC AND COMM ON AXU5EV-P.

Modules LUT FF BRAM LUTRAM

Crypto (SM4) 7171 8643 0 0
MAC verifier 399 665 0 0
CommFPGA 1320 2588 8 4
Total 9811 13819 8 4
Ratio 8.38% 5.90% 5.56% 0.01%

for NN inference. SecureComm uses DDR as a data transport
center between ARM CPU and FPGA, supporting a larger
size of data transferred compared to BRAM and FIFO. In
SecureComm, we established smart queues on the shared
buffer, which support elements of different sizes and non-
continuous placements.

To protect data flows between the ARM CPU and FPGA
through DDR, we implemented and optimized an SM4 crypto
to encrypt and decrypt data streams to ensure confidentiality.
Moreover, the SM4 crypto is encapsulated as an indepen-
dent and full-function crypto IP to fit in more scenarios
outside this paper, supporting high-performance encryption
and decryption. Collaborated with security-enhanced protocols
and a MAC verifier module, our framework can detect data
tampering and replay attacks, thus protecting data integrity.

Meanwhile, our evaluation of applying SecureComm to real-
world AI and non-AI applications shows that, with small
input and output data sizes, the performance impact of Se-
cureComm can be negligible. SecureComm does not rely on
any special security features and does not require extensive
modifications to the system, making it easy to deploy on
commodity hardware. Moreover, it can be referred to and
adapted for use in other heterogeneous systems such as Intel’s
Cyclone SoC FPGAs, to enhance the security of chip-to-
chip communication. When implementing SecureComm on
resource-constrained boards, reducing the number of pipeline
stages can mitigate resource consumption. In time-critical
situations, substituting SM4 with faster symmetric encryption
algorithms such as AES is advisable. In SecureComm, to
support non-uniform and non-contiguous data frames, both the
data sender and receiver need to monitor the status of the data
frames written to the shared memory. The data receiver needs
to read the data frames stored in the DDR, while the data
sender needs to reclaim the data frames that have been read by
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Fig. 9. Illustration of Securing YOLOv4 data flow with SecureComm

the receiver to allocate space for new data frames. In practice,
enforcing fixed-length and continuous frame writing can help
reduce code complexity and further improve efficiency.

In this paper, we restricted our attention to the data interac-
tion scenario involving a singular host application and kernel.
To broaden the generality and usability of SecureComm, we
intend to concentrate on the data interaction involving multiple
host applications and kernels in our forthcoming research.
Additionally, we envisage the adaptation of our framework to
a variety of heterogeneous platforms in future work. Currently,
the protection provided by SecureComm is limited since it is
lightweight, potentially inadequate for real-world deployments
with complex security needs. Therefore, as part of our future
work, we plan to explore the integration of a TEE to enhance
the overall security of SecureComm. This integration will
fortify protection and cater to the diverse security demands
of intricate scenarios.
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