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A B S T R A C T

The combination of mobile crowdsensing (MCS) and IoT-based healthcare introduces innovative
solutions for collecting health data. The considerable accumulation of health data through MCS
expedites advancements in medical research and disease prediction, giving rise to privacy consid-
erations. Data aggregation emerges as a salient solution that facilitates the provision of aggregated
statistics while obfuscating raw personal data. However, prevailing aggregation schemes primarily
pivot around single-task or multi-dimensional data aggregation, rarely contemplating the multi-task
aggregation scenarios. Furthermore, in some schemes that implement multi-tasking, protection of task
contents and verifiability of aggregation results are not achieved. Therefore, we propose a specialized
data aggregation scheme for multi-task scenarios on fog computing. Initially, we employ a symmetric
cryptographic algorithm to encrypt task contents and distribute the corresponding symmetric keys
through a key management scheme based on the Chinese Remainder Theorem (CRT). Subsequently,
we utilize blinding techniques to encrypt the raw data of users, ensuring efficient data aggregation.
To enhance resilience against adversarial tampering with aggregated data, we employ the Pedersen
commitment scheme to achieve the verifiability of task aggregation results. Finally, theoretical
analyses and experimental evaluations collectively demonstrate the security and effectiveness of our
proposed scheme.

1. Introduction
Mobile Crowdsensing (MCS) is a novel paradigm that

harnesses the capabilities of myriad mobile devices to sense
and collect data for broad social engagement and is currently
used in the healthcare industry [1], e.g., CrowdMed [2] and
ABCrowdMed [3]. In IoT-based healthcare, MCS assumes a
crucial role by providing substantial support to government
authorities and healthcare organizations in collecting vast
volumes of public health data [4]. These health data have
the potential to significantly contribute to the progression of
medical research and the refinement of disease prediction
methodologies. Nevertheless, the collection of health data
still encounters substantial challenges.

Primarily, medical devices or sensors connected to the
IoT generate massive data traffic, imposing considerable
strain on the cloud server. To alleviate the pressure, re-
searchers have introduced fog computing. Fog computing
is a new type of computing architecture with significant
characteristics [5], which has been widely used in healthcare
[6, 7]. A typical fog computing framework is illustrated
in Fig. 1. Fog nodes, distributed near user terminals and
interfaced with multiple users, constitute indispensable el-
ements within the architectural framework. These fog nodes
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can collect users’ data, preprocess it, and upload it to the
cloud servers, significantly reducing server pressure.

Secondly, health data is sensitive, and its leakage threat-
ens individual privacy and identity security and could trigger
legal issues and a crisis of trust. This paper contemplates a
scenario in which data consumers, such as official authori-
ties or healthcare organizations, initiate data collection tasks
aligned with medical requisites. Subsequently, users au-
tonomously select tasks, uploading health data to the health-
care system. The healthcare system, in turn, furnishes medi-
cal statistics to the data consumers. These medical statistics
aid public authorities in understanding diseases, formulating
health policies, and enabling medical researchers to explore
new treatments and prevention measures [8]. Evidently, in
most real-world applications, statistical values derived from
health data prove adequate for meeting specified require-
ments. For example, an elevated average body temperature
or blood pressure may predict the emergence and spread
of an epidemic [9, 10]. Consequently, for sensitive health
data, the statistical value can be made available to data
consumers, but the raw personal data must remain confiden-
tial and inaccessible to the public. Privacy-preserving data
aggregation is a popular solution, which involves concealing
individual raw data by aggregating information from a
cohort of users.

Researchers have proposed many privacy-preserving
data aggregation schemes [11–17]. However, in most ex-
isting schemes, one round of data aggregation can only
accomplish one task, which can not be efficiently applied
to multi-task aggregation scenarios. Multi-task in this paper

X. Zhang et al: Preprint submitted to Elsevier Page 1 of 12

Manuscript File Click here to view linked References

https://www2.cloud.editorialmanager.com/jisas/viewRCResults.aspx?pdf=1&docID=14344&rev=1&fileID=249922&msid=7bf5d0f1-bce1-46c4-9f75-fd4289943cc2
https://www2.cloud.editorialmanager.com/jisas/viewRCResults.aspx?pdf=1&docID=14344&rev=1&fileID=249922&msid=7bf5d0f1-bce1-46c4-9f75-fd4289943cc2


Privacy-Preserving and Verifiable Multi-task Data Aggregation for IoT-based Healthcare

Figure 1: The framework of fog computing.

involves performing data aggregation for several different
tasks in a single round. Notably, aggregating multiple tasks
in a single round may raise new privacy concerns. For
instance: 1) The user may selectively accept aggregated
tasks based on considerations such as device limitations or
privacy concerns. This choice information, referred to as the
user’s decision, likewise contains personal privacy, which
can lead to inference attacks if leaked. 2) It is imperative to
acknowledge that task publishers represent distinct bodies
that may compete with each other. Therefore, safeguarding
the content of each task becomes essential. Additionally,
aggregators are usually untrustworthy in the real world,
e.g., returning incorrect aggregation results or tampering
with aggregated data. How to ensure the verifiability of task
aggregation results is also a point of interest.

To address the above problems, we propose a new
multi-task data aggregation scheme for healthcare. Our
scheme leverages a CRT-based key management scheme to
distribute the decryption key of task contents to the user.
Furthermore, we employ Pedersen commitment to ensure
the verifiability of aggregation results. The contributions of
this paper are summarized as follows.

• We propose a new data aggregation framework for
healthcare, which provides privacy-preserving for
user’s data, user’s decision, and task aggregation
results. Additionally, our scheme achieves multi-task
data aggregation, enabling the simultaneous comple-
tion of multiple tasks within a single aggregation
round.

• The privacy of task contents is achieved based on a
CRT-based key management scheme, ensuring that
only the user and the task publisher are aware of
them. Utilizing the group key instead of individual
key negotiation between the user and task publisher
reduces the overhead.

• We guarantee the verifiability of the aggregation re-
sults by employing Pedersen commitment scheme,
which prevents the adversary or aggregator from tam-
pering with user data during the intermediate process.

• We analyze the proposed scheme and prove its
security under the defined security model. We have
conducted simulation experiments on the proposed
scheme, which is practicable compared to other
schemes.

The remainder of this paper is organized as follows. We
discuss some related works in Section 2. Then, we review
our preliminaries in Section 3. After that, we introduce our
system model, threat model, and design goal in Section 4
and present our proposed scheme in Section 5, followed by
security analysis and performance evaluation in Section 6
and Section 7, respectively. Finally, we conclude this paper
in Section 8.

2. Related Works
Data privacy protection through data aggregation has

become an attractive research topic. It is extensively applied
in healthcare, smart grids, and crowd sensing. Here, we
review our previous work.

In 2016, Han et al. [18] employed differential privacy
techniques to facilitate the aggregation of various functions,
such as mean and variance. However, the incorporation of
noise in the process diminishes the utility and accuracy of
the resultant data. Subsequently, Liu et al. [19] propose a
scheme that eliminates the need for trusted third parties
by creating virtual aggregation regions. Nevertheless, this
scheme necessitates users to establish a foundation of trust,
thereby constraining its applicability. In a different vein,
Wu et al. [20] implemented a versatile data aggregation
mechanism based on homomorphic two-trapdoor public key
cryptography. However, this scheme requires multiple en-
cryption and decryption operations, leading to a substantial
computational overhead. To alleviate this burden, Su et al.
[21] introduced a lightweight data aggregation scheme for
smart grids, affording smart meters the flexibility to form
aggregation zones autonomously. Regrettably, the afore-
mentioned schemes are tailored for single-task scenarios
and do not extend to the domain of multi-task aggregation.

Simultaneously, some scholars focus on multidimen-
sional data scenarios. Li et al. [22] proposed a multi-
subset aggregation scheme by aggregating different ranges
of users’ electricity consumption data using two super-
growth sequences. Zuo et al. [23] introduced a distributed
decryption scheme for multi-dimensional data aggregation
without trusted privileges. They utilized the ElGamal homo-
morphic cryptosystem to resist the joint attack of gateways
and control centers. Shen et al. [24] constructed the user’s
multi-dimensional data into a polynomial based on Horner’s
rule and devised a privacy-preserving aggregation scheme
using the Paillier cryptosystem. However, it is essential to
note that these schemes entail substantial computational
and communication costs. To reduce the cost, Merad et al.
[25] structured the multi-dimensional data and encrypted
it into a single Paillier ciphertext. Peng et al. [26] used
the CRT to encrypt a multi-dimensional vector of small
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integers into a single ciphertext, preserving the linear homo-
morphism property in each dimension. Liu et al. [27] used
the CRT to pack the multi-dimensional data and encrypt
it using a key generated by the user in consultation with
the control center. In a parallel vein, Cong et al. [28]
developed a transformation method with counters that can
encode multi-dimensional data into large integers. Building
upon this foundation, they designed a multi-functional data
aggregation scheme that supports linear, polynomial, and
continuous functions.

While these schemes demonstrate efficacy in aggregat-
ing multi-dimensional data, their focus is predominantly on
addressing the needs of a singular requester. Multi-tasking
aggregation for multiple requesters remains challenging.
Yan et al. [29] endeavored to address the issue by proposing
a multi-task data aggregation scheme tailored for mobile
crowdsensing. Unfortunately, their proposed scheme lacks
consideration of the privacy protection of task contents and
fails to achieve the verifiability of the aggregation results.

For the verifiability of aggregation results, Zhuo et al.
[30] employed ring signatures to verify user identity and
formalized verifiability as a computationally outsourced
problem for result verification. Li et al. [31] proposed a
publicly verifiable scheme enabling a public verifier to test
an aggregation result. Guo et al. [32] realized authentication
based on the password authenticated key exchange (PAKE)
protocol, which can detect whether the data is uploaded
and aggregated by legitimate. Zhang et al. [33] designed a
verifiable aggregation scheme with key leakage resilience.
After receiving user data, the fog node generates secondary
verifiable encrypted data to ensure data integrity. They also
proposed a verifiable privacy-preserving data aggregation
scheme for smart grids [34]. They used the Boneh-Lynn-
Shacham signature to generate an authenticator for each
ciphertext. The control center can flexibly check encrypted
data integrity without interaction with the aggregator gate-
way. Ding et al. [35] constructed an identity-based metering
data aggregation scheme supporting batch verification by
the collector. Despite their merits, these schemes are based
on expensive operations such as bilinear pairing, leading to
inefficient verification.

Therefore, we propose a new multi-task data aggrega-
tion scheme for healthcare. While protecting the privacy of
health data and aggregation results, we ensure the confiden-
tiality of task contents. In addition, we realize the verifia-
bility of the aggregation results, mitigating the potential for
unauthorized tampering by fog nodes and cloud servers.

3. PRELIMINARIES
3.1. Multi-task Data Aggregation

Our scheme considers the multi-task aggregation sce-
nario, i.e., there are multiple task publishers in the system
and the user needs to aggregate multiple different tasks in
one round. Here, task publishers want their task contents to
be known only by users. Users can retain the discretion to
decide whether to accept tasks and which tasks to accept

based on the task contents. This creates new privacy, i.e.,
task contents and user’s decision privacy. Task contents can
reflect the needs of the task publisher, and there is a potential
loss of benefits if disclosed to competitors. The decision
involves the user’s preferences, privacy needs, medical con-
ditions, etc. If it is leaked, an adversary can guess the
user’s health condition, which can violate personal privacy.
Therefore, achieving confidentiality of task contents and
user’s decision is imperative.

Definition 1 (The Privacy of The User’s Decision). [29]
Given 𝑥 ∈ {0, 1} and a task 𝑇 , if the user accepts the task
then 𝑥 = 1; otherwise 𝑥 = 0. The adversary  wants to
determine the user’s decision, in other words,  wants to
know the value of 𝑥. Suppose that the guess of  is denoted
as 𝑥′ ∈ {0, 1} if it is satisfied:

𝑝𝑟[𝑥′ = 𝑥] ≤ 1
2 + 𝑛𝑒𝑔𝑙(),

where 𝑛𝑒𝑔𝑙() is a negligible function, then we say that the
privacy of the user’s decision is protected.

Definition 2 (The Privacy of The Task Contents). If the
task contents of task publishers are known only to them-
selves and users, cannot be accessed by other entities and
adversaries. Then, we say that the privacy of task contents
is guaranteed.

3.2. Paillier Homomorphic Cryptosystem
The Paillier encryption [36] is a cryptosystem with

additive homomorphism. It is described as the following
three algorithms.

1) KeyGen: Choose two large prime numbers 𝑝, 𝑞. Let
𝑛 = 𝑝 ⋅ 𝑞, and 𝜆 = (𝑝 − 1)(𝑞 − 1). Let a function
𝐿(𝑢) = (𝑢 − 1)∕𝑛 and randomly choose a generator 𝑔 ∈
ℤ∗
𝑛2

, which satisfies gcd(𝐿(𝑔𝜆 mod 𝑛2), 𝑛) = 1, where gcd()
is the greatest common divisor function. Compute 𝜇 =
(𝐿(𝑔𝜆 mod 𝑛2))−1, and set public-private key pair (𝑝𝑘 =
(𝑛, 𝑔), 𝑠𝑘 = (𝜆, 𝜇)).

2) Enc: For any plaintext 𝑚 ∈ ℤ𝑛, choose a random
number 𝑟 ∈ ℤ∗

𝑛 and compute the ciphertext 𝑐 = 𝐸𝑛𝑐(𝑚) =
𝑔𝑚𝑟𝑛 mod 𝑛2.

3) Dec: Give a ciphertext 𝑐 ∈ ℤ𝑛2 , plaintext 𝑚 =
𝐷𝑒𝑐(𝑐) = 𝐿(𝑐𝜆 mod 𝑛2)𝜇 mod 𝑛.

Paillier cryptosystems satisfy additive homomorphisms
such as 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑚1) ⋅ 𝐸𝑛𝑐(𝑚2)) = 𝑚1 + 𝑚2 , which is
widely used in various privacy-preserving scenarios.

3.3. Pedersen Commitment
Pedersen commitment scheme [37] is a mechanism

for ensuring data integrity and verifiability. It allows the
promisor to prove the existence of a value to the receiver.
Moreover, it satisfies perfectly hiding and computationally
binding. Its construction is divided into three phases:

1) Initialization: Choose a multiplicative group 𝔾 of
order prime 𝑞. 𝑔, ℎ are the generators of 𝔾.

2) Commitment: Assume that the promisor has a mes-
sage 𝑚 ∈ ℤ𝑞 . He chooses a random number 𝑟 ∈ ℤ𝑞 as a
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Figure 2: System model.

blind factor, calculates 𝑐𝑜𝑚(𝑚, 𝑟) = 𝑔𝑚ℎ𝑟, and sends it to
the receiver.

3) Verification: The promisor transmits (𝑚, 𝑟) to the

receiver, who can verify the message by computing 𝑔𝑚ℎ𝑟
?
=

𝑐𝑜𝑚(𝑚, 𝑟).
In addition, Pedersen commitment scheme has homo-

morphism, such as 𝑐𝑜𝑚(𝑚1, 𝑟1) ⋅ 𝑐𝑜𝑚(𝑚2, 𝑟2) = 𝑐𝑜𝑚(𝑚1 +
𝑚2, 𝑟1 + 𝑟2), for all 𝑚1, 𝑚1, 𝑟1, 𝑟2 ∈ ℤ𝑞 .

3.4. CRT-based Key Management Scheme
Min-Ho Park et al. [38] devised a key management

scheme based on the Chinese remainder theorem (CRT).
Assume that there are 𝑚 pairs of large prime numbers
𝑝𝑖, 𝑞𝑖, 𝑖 ∈ [1, 𝑚]. According to the RSA algorithm, we
can obtain the public-private key 𝑒𝑖, 𝑑𝑖, 𝑖 ∈ [1, 𝑚], which
satisfies 𝑒𝑖 ⋅ 𝑑𝑖 ≡ 1 mod 𝜑(𝑝𝑖𝑞𝑖). Here, 𝜑() is Euler’s totient
function. If 𝑒𝑀 and 𝑑𝑀 are the master keys, used for
the encryption and decryption, the following congruence
equations are established:

𝑃 𝑒𝑀 ≡ 𝑃 𝑒𝑖 ( mod 𝑝𝑖𝑞𝑖), 𝐶𝑑𝑀 ≡ 𝐶𝑑𝑖 ( mod 𝑝𝑖𝑞𝑖).

The sufficient condition for the above congruence equation
are:

𝑒𝑀 ≡ 𝑒𝑖( mod 𝜑(𝑝𝑖𝑞𝑖)), 𝑑𝑀 ≡ 𝑑𝑖( mod 𝜑(𝑝𝑖𝑞𝑖)).

If we let 𝑥𝑖 = (𝑝𝑖 − 1)∕2, 𝑦𝑖 = (𝑞𝑖 − 1)∕2, then the master
key can be calculated as:

𝑒𝑀 ≡
∑𝑚

𝑖=1 𝑒𝑖𝑀𝑖𝑁𝑖( mod 4𝑥1𝑦1𝑥2𝑦2⋯ 𝑥𝑚𝑦𝑚),

where 𝑀𝑖 =
𝑥1𝑦1𝑥2𝑦2⋯𝑥𝑚𝑦𝑚

𝑥𝑖𝑦𝑖
, 𝑀𝑖𝑁𝑖 ≡ 1( mod 4𝑥𝑖𝑦𝑖).

An advantage of this scheme is that when one of the
slave keys 𝑒𝑗 is modified to 𝑒′𝑗 , only the master key needs
to be modified to 𝑒′𝑀 = 𝑒𝑀 − 𝑒𝑗𝑀𝑗𝑁𝑗 + 𝑒′𝑗𝑀𝑗𝑁𝑗 , while
the other slave keys remain unchanged, which can reduce
the cost of updating the group key due to the user joining or
exiting.

4. MODELS AND DESIGN GOAL
4.1. System Model

As shown in Fig. 2, our system model consists of five
parts: key generation center, task publishers, medical service
platform, fog nodes, and users.

• Key Generation Center (KGC): It constitutes a trusted
entity endowed with the responsibility of generating
system parameters, initializing the system, ascertain-
ing the identity of entities, and generating keys.

• Task Publishers (TPs): They represent official author-
ities or medical organizations seeking to analyze the
health status of the populace or investigate specific
disease characteristics. They generate a task 𝑇 based
on the requirements (e.g., what body data is needed,
etc.) and send it to the medical service platform.

• Medical Service Platform (MSP): It constitutes a
platform endowed with substantial storage and com-
putational resources, responsible for sorting the tasks
from TPs and publishing the task sequences to the fog
nodes. When receiving the data uploaded by the fog
nodes, it performs the final aggregation and sends the
results to the TPs.

• Fog Nodes (FNs): Distributed in proximity to users,
this infrastructure interfaces with multiple users, un-
dertaking responsibilities that encompass the trans-
mission of task sequences, collection of users’ data,
and uploading data to the MSP.

• Users: After receiving the task sequence, the user de-
crypts the task to obtain the task contents. Flexibility
to accept the task according to their situation, collect
data, and generate user’s decision.

4.2. Threat Model
In our proposed scheme, for the internal part of the sys-

tem, we consider KGC to be trusted since it is responsible
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for the registration of the entities and generating system
parameters and keys. The TPs, MSP, and FNs are honest but
curious. That is, they will honestly follow the computations
and steps specified in the protocol, but at the same time, they
will try to record and analyze the information transmitted
during the execution of the protocol to obtain additional
private information related to other entities. Furthermore,
we suppose the user is honest, will generate health data
and decision vector correctly, and will not leak out the
task contents. At the same time, we consider that there
will be no collusion between the entities. It is reasonable
since the different entities may have conflicts of interest,
and they wish to maintain their reputations. For external
threats, assuming an external adversary , can eavesdrop
on communication and attempt to tamper with aggregated
data to influence task results. Other active attacks, such as
Dos, are out of the scope of this paper.

4.3. Design Goals
Our design goal is to propose a privacy-preserving data

aggregation scheme for healthcare systems. Based on our
system model and threat model, the following goals will be
achieved:

• Privacy of aggregated data: Each user’s raw health
data can only be known by himself/herself and is not
available to any other entity. The final aggregated re-
sults of the task can only be decrypted by its publisher
and cannot be deciphered by any other entity.

• Privacy of user’s decision: A user’s personal choices
regarding which tasks to choose can only be known
to the user, and other entities are unaware of this
decision.

• Privacy of task contents: The content of a task is
explicitly known only to its publisher and users, while
other entities can only know information such as the
deadline.

• Verifiability: After receiving the final task results, the
task publisher can verify that the results have not been
tampered with by an adversary.

• Efficiency: The scheme should strive to achieve effi-
cient computation and low communication overhead
for situations where computational resources at the
user’s side are not sufficient.

5. OUR PROPOSED SCHEME
In this section, we will specifically describe our con-

struction and detailed steps, which are organized into four
phases: 1) system initialization; 2) task distribution and
data collection; 3) data aggregation; and 4) decryption and
verification. Table 1 lists the meanings of the symbols used
in this paper.

Table 1
Notations and descriptions.

Notation Description

𝑝, 𝑞 Large prime numbers
𝔾 multiplicative group
𝑔, ℎ The generator of 𝔾
𝑆𝑖𝑔𝑛 Signature algorithms such as Schnorr
𝐻1 Hash functions
𝐼𝐷, 𝑃 𝐼𝐷 The true identity, pseudonym of the entity
𝐸𝑘𝑠 (∗) AES encryption algorithm with key 𝑘𝑠
𝑘𝑠 AES key generated by 𝑇𝑃𝑠
𝐸𝑛𝑐(∗), 𝐷𝑒𝑐(∗) The algorithm of Paillier encryption, decryption
𝐷∗

𝑖𝑗 , 𝐶
∗
𝑖𝑗 Raw health data and decision vector for 𝑢𝑖𝑗

𝐷𝑖𝑗 , 𝐶𝑖𝑗 Blinded health data and decision vector for 𝑢𝑖𝑗
𝐶𝑜𝑚𝑖𝑗 Pedersen Commitment of 𝑢𝑖𝑗
𝐷𝐹𝑁𝑖 , 𝐶𝐹𝑁𝑖 The aggregation results of 𝐹𝑁𝑖
𝐷𝑠𝑢𝑚, 𝐶𝑠𝑢𝑚 The aggregation results of MSP
𝑛 Number of users managed by each FNs
𝑚, 𝑠 Number of FNs, TPs

5.1. Overview
An overview of our proposed scheme is presented in

Fig. 3. The system initialization phase is initiated by the
KGC, which generates system parameters and keys and
conducts authentication and registration of entities. During
the task distribution and data collection phase, each task
publisher generates the task and encrypts the task contents
using a symmetric encryption algorithm. Then, the task
publisher employs the CRT-based key management scheme
to securely distribute the symmetric key to users. Upon
receiving task requests, the MSP sorts and distributes them
to the FNs, which are further distributed to the users.
Following the reception of the task sequence, the user
can compute the symmetric key and decrypt the task to
obtain the task contents. After this, the user can generate
the decision vector and health data based on his/her cir-
cumstances. Finally, the user blinds the data, computes the
commitment and signature, and uploads these messages to
the FNs. In the data aggregation phases, the FNs aggregate
the data of the users, and the MSP aggregates the data of the
FNs. Eventually, after the task publisher receives the final
aggregation results, it can obtain the task results and the
number of participants according to the decryption rules.

5.2. System Initialization
System initialization is performed by KGC, which

generates system parameters and provides registration ser-
vices for entities. Here, for descriptive convenience, we
assume the system has 𝑣 task publishers, 𝑚 fog nodes,
and each fog node connecting 𝑛 users, such as TPs=
{𝑇𝑃1, 𝑇 𝑃2,⋯ , 𝑇 𝑃𝑣}, FNs = {𝐹𝑁1, 𝐹𝑁2,⋯ , 𝐹𝑁𝑚}, and
𝑈𝐹𝑁𝑖

= {𝑢𝑖𝑗|𝑖 ∈ [1, 𝑚], 𝑗 ∈ [1, 𝑛]}.

5.2.1. Parameter generation
First, KGC selects 𝑚 pairs of secure large prime num-

bers 𝑝𝑖, 𝑞𝑖, 𝑖 ∈ [1, 𝑚], generates the corresponding public-
private key pairs 𝑒𝑖, 𝑑𝑖, and calculates the master key 𝑒𝑀 as
described in Section 3.4. Second, KGC additionally chooses
two secure large primes 𝑝, 𝑞, a multiplicative group 𝔾 of
order 𝑞 whose generators are 𝑔, ℎ. Then, the KGC generates
the Paillier public-private key pairs (𝑝𝑘𝐸𝑛𝑐 = (𝑛, 𝑔), 𝑠𝑘𝐷𝑒𝑐 =
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Figure 3: Overview of our scheme.

(𝜆, 𝜇)), chooses a master private key 𝑘𝑚𝑎𝑠 ∈ ℤ∗
𝑞 , a sym-

metric encryption algorithm (e.g., 𝐴𝐸𝑆), a signature algo-
rithm (e.g., Schnorr signature), and a secure one-way hash
function 𝐻1 ∶ {0, 1}∗ → ℤ∗

𝑞 . Finally, KGC announces the
system parameters {𝑔, ℎ,𝔾,𝐻1, 𝑝𝑘𝐸𝑛𝑐 , 𝐴𝐸𝑆, 𝑆𝑖𝑔𝑛}.

5.2.2. Entity registration
The entities in the system are TPs, MSP, FNs, and

users. They have to register with KGC using their respec-
tive unique identifier 𝐼𝐷. Upon receiving the 𝐼𝐷 of the
entities, KGC first verifies their real identities. Upon suc-
cessful authentication, the KGC calculates their pseudonym
𝑃𝐼𝐷 = 𝑘𝑚𝑎𝑠 ⋅ 𝐻1(𝐼𝐷) and generates the public-private
key pairs of Schnorr signature, such as (𝑠𝑘𝑀𝑆𝑃 , 𝑝𝑘𝑀𝑆𝑃 ),
(𝑠𝑘𝐹𝑁𝑖

, 𝑝𝑘𝐹𝑁𝑖
), (𝑠𝑘𝑇𝑃𝑠 , 𝑝𝑘𝑇𝑃𝑠 ), and (𝑠𝑘𝑢𝑖𝑗 , 𝑝𝑘𝑢𝑖𝑗 ). Once the

the entities receive the 𝑃𝐼𝐷 and signature public-private
key pairs, they publicize the 𝑃𝐼𝐷 and signature public
key. Then, the KGC transmits the private key 𝑠𝑘𝐷𝑒𝑐 of
Paillier cryptographic algorithm, the master key 𝑒𝑀 , and
𝑁 = 𝑝1𝑞1𝑝2𝑞2⋯ 𝑝𝑚𝑞𝑚 to the successfully registered TPs
individually through a secure channel. In addition, the KGC
also needs to send the slave key (𝑒𝑖, 𝑑𝑖, 𝑝𝑖𝑞𝑖) to the 𝑢𝑖𝑗 .

5.3. Task Distribution and Data Collection
5.3.1. Task distribution

In this phase, the task publisher can generate task re-
quests and publish them to users. The execution steps for
the task publisher are as follows.

• Step 1: The task publisher 𝑇𝑃𝑠, 𝑠 ∈ [1, 𝑣] generates
the task content 𝑇𝑠 (e.g., physiological data needed)
and task requirements 𝑅𝑞𝑠 (e.g., data types, dead-
lines) according to his requirements.

• Step 2: 𝑇𝑃𝑠 chooses the key 𝑘𝑠 of the 𝐴𝐸𝑆 algo-
rithm and compute the ciphertext 𝐶𝑠 = 𝑘𝑠𝑒𝑀 mod 𝑁

and 𝐸𝑘𝑠 (𝑇𝑠). Subsequently, 𝑇𝑃𝑠 constructs the task
request 𝑄𝑠 = 𝑃𝐼𝐷𝑇𝑃𝑠 ||𝐶𝑠||𝐸𝑘𝑠 (𝑇𝑠)||𝑅𝑞𝑠, where
||, 𝑃𝐼𝐷𝑇𝑃𝑠 , 𝐶𝑠, and 𝐸𝑘𝑠 (𝑇𝑠) are the concatenation
operator, the pseudonym of 𝑇𝑃𝑠, the ciphertext of
the key 𝑘𝑠, and the ciphertext of the task content 𝑇𝑠,
respectively.

• Step 3: 𝑇𝑃𝑠 signs the task request, e.g., 𝑆𝑖𝑔𝑛(𝑄𝑠),
to confirm identity and ensure the integrity of the
information. Then, 𝑇𝑃𝑠 sends 𝑄𝑠||𝑆𝑖𝑔𝑛(𝑄𝑠)||𝑇𝑡𝑖𝑚𝑒 to
the MSP, where 𝑇𝑡𝑖𝑚𝑒 is the timestamp.

When the MSP receives the message from 𝑇𝑃𝑠, it
verifies the signature 𝑆𝑖𝑔𝑛(𝑄𝑠), and after successful verifi-
cation, it can receive 𝑄𝑠; otherwise, it discards the message.
Assume that the MSP can obtain a set of task requests
𝑄 = {𝑄𝑠|𝑠 ∈ [1, 𝑣]}. Then, the MSP can categorize and
sort the task requests based on 𝑅𝑞𝑠, e.g., prioritize tasks
with imminent deadlines. Note that the appropriate sorting
method can be utilized here to improve efficiency. Since
it is not part of our research, we do not expand on it.
Assume that the sequence of tasks after MSP ordering is
(𝑄1, 𝑄2,⋯ , 𝑄𝑠). Eventually, the MSP distributes the task
sequence to the FNs. FNs transmits it to users.

5.3.2. Data collection
In this phase, the user needs to decrypt the task contents,

select the task, and generate health data and other informa-
tion as required. When user 𝑢𝑖𝑗 receives (𝑄1, 𝑄2,⋯ , 𝑄𝑠), he
can extract (𝐶1, 𝐶2,⋯ , 𝐶𝑠) and obtain the key 𝑘𝑠 through
Eq. (1).

(𝐶𝑠)𝑑𝑖 mod 𝑝𝑖𝑞𝑖
= ((𝑘𝑠)𝑒𝑀 )𝑑𝑖 ) mod 𝑝𝑖𝑞𝑖
= ((𝑘𝑠)1 mod 𝜑(𝑝𝑖𝑞𝑖)) mod 𝑝𝑖𝑞𝑖
= 𝑘𝑠

(1)

X. Zhang et al: Preprint submitted to Elsevier Page 6 of 12



Privacy-Preserving and Verifiable Multi-task Data Aggregation for IoT-based Healthcare

After getting the key 𝑘𝑠, 𝑢𝑖𝑗 can execute the 𝐴𝐸𝑆 decryption
algorithm to obtain the task contents 𝑇𝑠. Subsequently, 𝑢𝑖𝑗
can be tasked to generate health data and decision vector
based on the task requirements and his situation.

We denote the health data of 𝑢𝑖𝑗 as 𝐷∗
𝑖𝑗 = (𝑑∗1,𝑖𝑗 , 𝑑

∗
2,𝑖𝑗 ,⋯ ,

𝑑∗𝑠,𝑖𝑗), and 𝑑∗𝑠,𝑖𝑗 = 0 if and only if 𝑢𝑖𝑗 does not accept the
task 𝑄𝑠. Since 𝑠 is a variable, which makes the length
of the user’s health data and decision vector are not
fixed. Therefore, our scheme uses random value blinding
to mask these data instead of using Paillier encryption
to ensure the confidentiality of the data. 𝑢𝑖𝑗 chooses a
random number 𝑟𝑖𝑗,1 that masks 𝑑∗𝑠,𝑖𝑗 by computing 𝑑𝑠,𝑖𝑗 =
𝑑∗𝑠,𝑖𝑗 + 𝑟𝑖𝑗,1 + 𝑘𝑠. Then, 𝑢𝑖𝑗 generates a decision vector
𝐶∗
𝑖𝑗 = (𝑐∗1,𝑖𝑗 , 𝑐

∗
2,𝑖𝑗 ,⋯ , 𝑐∗𝑠,𝑖𝑗). Here, if 𝑢𝑖𝑗 accepts the task 𝑄𝑠,

𝑐∗𝑠,𝑖𝑗 = 1; otherwise, 𝑐∗𝑠,𝑖𝑗 = 0. 𝑢𝑖𝑗 chooses another random
number 𝑟𝑖𝑗,2 to generate the masking decision vector, such
that 𝑐𝑠,𝑖𝑗 = 𝑐∗𝑠,𝑖𝑗+𝑟𝑖𝑗,2+𝑘𝑠. Here, 𝑟𝑖𝑗,1 and 𝑟𝑖𝑗,2 are sufficiently
uniform random integers independently chosen by the user,
which can be generated using the pseudo random number
generator.

To prevent an adversary from tampering with the data,
𝑢𝑖𝑗 computes the commitment 𝐶𝑜𝑚𝑖𝑗 = 𝑔𝐷𝑖𝑗ℎ𝑟𝑖𝑗,1 , where
𝐷𝑖𝑗 = (𝑑1,𝑖𝑗 , 𝑑2,𝑖𝑗 ,⋯ , 𝑑𝑠,𝑖𝑗). Ultimately, 𝑢𝑖𝑗 sends (𝑃𝐼𝐷𝑢𝑖𝑗 ||

𝐶𝑖𝑗||𝐷𝑖𝑗||𝐸𝑛𝑐(𝑟𝑖𝑗,1)||𝐸𝑛𝑐(𝑟𝑖𝑗,2)||𝐶𝑜𝑚𝑖𝑗) to 𝐹𝑁𝑖, where 𝐸𝑛𝑐
(𝑟𝑖𝑗,1) and 𝐸𝑛𝑐(𝑟𝑖𝑗,2) are the Paillier ciphertext of 𝑟𝑖𝑗,1 and
𝑟𝑖𝑗,2, respectively. Note that the calculation and verification
of the signature is essential during data transfer. The
remainder of this paper will default to the entity that will
compute and verify the signature.

5.4. Data Aggregation
In this phase, data aggregation is performed by FNs and

MSP.

5.4.1. FNs Aggregating
When 𝐹𝑁𝑖 receives the message from 𝑢𝑖𝑗 , it first checks

whether the 𝑃𝐼𝐷𝑢𝑖𝑗 is legitimate and verifies the identity
of the 𝑢𝑖𝑗 . Then, 𝐹𝑁𝑖 stores all users who have passed the
authentication in a new set, denoted as 𝑈𝑖 = {𝑢𝑖1, 𝑢𝑖2,⋯}.
We use |𝑈𝑖| to represent the number of elements in the set
𝑈𝑖. Subsequently, 𝐹𝑁𝑖 aggregates the data of 𝑈𝑖 as follows.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐷𝐹𝑁𝑖
=

|𝑈𝑖|
∑

𝑗=1
𝐷𝑖𝑗

𝐶𝐹𝑁𝑖
=

|𝑈𝑖|
∑

𝑗=1
𝐶𝑖𝑗

𝐶𝑜𝑚𝐹𝑁𝑖
=

|𝑈𝑖|
∏

𝑗=1
𝐶𝑜𝑚𝑖𝑗

𝐸𝑛𝑐𝐹𝑁𝑖,1
=

|𝑈𝑖|
∏

𝑗=1
𝐸𝑛𝑐(𝑟𝑖𝑗,1)

𝐸𝑛𝑐𝐹𝑁𝑖,2
=

|𝑈𝑖|
∏

𝑗=1
𝐸𝑛𝑐(𝑟𝑖𝑗,2)

(2)

Then, 𝐹𝑁𝑖 transmits (𝑃𝐼𝐷𝐹𝑁𝑖
, 𝐷𝐹𝑁𝑖

, 𝐶𝐹𝑁𝑖
, 𝐸𝑛𝑐𝐹𝑁𝑖,1

,
𝐸𝑛𝑐𝐹𝑁𝑖,2

, 𝐶𝑜𝑚𝐹𝑁𝑖
, |𝑈𝑖|) to the MSP.

5.4.2. MSP Aggregating
After receiving the data from all FNs, the MSP first

counts the number of all participating, e.g., 𝑈𝑠𝑢𝑚 =
∑𝑚

𝑖=1 |𝑈𝑖|.
Then, the MSP performs the final data aggregation, e.g.,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐷𝑠𝑢𝑚 =
𝑚
∑

𝑖=1
𝐷𝐹𝑁𝑖

𝐶𝑠𝑢𝑚 =
𝑚
∑

𝑖=1
𝐶𝐹𝑁𝑖

𝐶𝑜𝑚𝑠𝑢𝑚 =
𝑚
∏

𝑖=1
𝐶𝑜𝑚𝐹𝑁𝑖

𝐸𝑛𝑐𝑠𝑢𝑚,1 =
𝑚
∏

𝑖=1
𝐸𝑛𝑐𝐹𝑁𝑖,1

𝐸𝑛𝑐𝑠𝑢𝑚,2 =
𝑚
∏

𝑖=1
𝐸𝑛𝑐𝐹𝑁𝑖,2

(3)

At this point, we can learn that the aggregation results of 𝑄𝑠
is

𝐷𝑠𝑢𝑚,𝑠 =
∑

𝑈𝑠𝑢𝑚

𝐷𝑠,𝑖𝑗

=
∑

𝑈𝑠𝑢𝑚

(𝑑∗𝑠,𝑖𝑗 + 𝑟𝑖𝑗,1 + 𝑘𝑠)

=
∑

𝑈𝑠𝑢𝑚

𝑑∗𝑠,𝑖𝑗 +
∑

𝑈𝑠𝑢𝑚

𝑟𝑖𝑗,1 + 𝑈𝑠𝑢𝑚 ⋅ 𝑘𝑠.

The final decision vector of 𝑄𝑠 is

𝐶𝑠𝑢𝑚,𝑠 =
∑

𝑈𝑠𝑢𝑚

𝐶𝑠,𝑖𝑗

=
∑

𝑈𝑠𝑢𝑚

(𝑐∗𝑠,𝑖𝑗 + 𝑟𝑖𝑗,2 + 𝑘𝑠)

=
∑

𝑈𝑠𝑢𝑚

𝑐∗𝑠,𝑖𝑗 +
∑

𝑈𝑠𝑢𝑚

𝑟𝑖𝑗,2 + 𝑈𝑠𝑢𝑚 ⋅ 𝑘𝑠.

Eventually, the MSP transmits the task aggregation
result (𝐷𝑠𝑢𝑚, 𝐶𝑠𝑢𝑚, 𝐸𝑛𝑐𝑠𝑢𝑚,1, 𝐸𝑛𝑐𝑠𝑢𝑚,2, 𝐶𝑜𝑚𝑠𝑢𝑚, 𝑈𝑠𝑢𝑚) to the
TPs.

5.5. Decryption and Verification
After receiving the aggregated results from the MSP,

𝑇𝑃𝑠 can calculate 𝑅1 and 𝑅2 according to Eq. (4).

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅1 = 𝐷𝑒𝑐(𝐸𝑛𝑐𝑠𝑢𝑚,1) =
𝑈𝑠𝑢𝑚
∑

𝑗=1
𝑟𝑖𝑗,1

𝑅2 = 𝐷𝑒𝑐(𝐸𝑛𝑐𝑠𝑢𝑚,2) =
𝑈𝑠𝑢𝑚
∑

𝑗=1
𝑟𝑖𝑗,2

(4)

Then, the 𝑇𝑃𝑠 can validate the received aggregation results
to prevent the adversary from tampering with the data
according to Eq. (5).

𝐶𝑜𝑚𝑠𝑢𝑚
?
= 𝑔𝐷𝑠𝑢𝑚ℎ𝑅1 (5)

After that, 𝑇𝑃𝑠 can obtain the task results and the number
of users participating in this task according to the following
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equation.

𝐷𝑎𝑔𝑔,𝑠 =
∑

𝑈𝑠𝑢𝑚

𝐷𝑠,𝑖𝑗 − 𝑅1 − 𝑈𝑠𝑢𝑚 ⋅ 𝑘𝑠 =
∑

𝑑∗𝑠,𝑖𝑗

𝐶𝑎𝑔𝑔,𝑠 =
∑

𝑈𝑠𝑢𝑚

𝐶𝑠,𝑖𝑗 − 𝑅2 − 𝑈𝑠𝑢𝑚 ⋅ 𝑘𝑠 =
∑

𝑐∗𝑠,𝑖𝑗

6. SECURITY ANALYSIS
In this section, we analyze the security of the scheme in

detail and give proofs.

Theorem 1. Under our threat model, the scheme enables
the privacy of the user’s decision.

Proof 1. The decision vector 𝐶∗
𝑖𝑗 = (𝑐∗1,𝑖𝑗 , 𝑐

∗
2,𝑖𝑗 ,⋯ , 𝑐∗𝑠,𝑖𝑗)

of user 𝑢𝑖𝑗 is masked by random number 𝑟𝑖𝑗,2 and the
symmetric key 𝑘𝑠, i.e.,

{

𝑐𝑠,𝑖𝑗 = 1 + 𝑟𝑖𝑗,2 + 𝑘𝑠, if 𝑢𝑖𝑗 accept 𝑄𝑠;
𝑐𝑠,𝑖𝑗 = 0 + 𝑟𝑖𝑗,2 + 𝑘𝑠, otherwise.

Adversary  can obtain (𝑃𝐼𝐷𝑢𝑖𝑗 ||𝐶𝑖𝑗||𝐷𝑖𝑗||𝐸𝑛𝑐(𝑟𝑖𝑗,1)||𝐸𝑛𝑐
(𝑟𝑖𝑗,2)||𝐶𝑜𝑚𝑖𝑗) by eavesdropping. Since 𝑘𝑠 is distributed to
the user through the CRT-based key management scheme
and 𝑟𝑖𝑗,2 is a random number chosen by the user. Therefore,
 is unable to obtain 𝑘𝑠 and 𝑟𝑖𝑗,2.

In the absence of 𝑟𝑖𝑗,2 and 𝑘𝑠, adversary  cannot
distinguish between 1 + 𝑟𝑖𝑗,2 + 𝑘𝑠 and 0 + 𝑟𝑖𝑗,2 + 𝑘𝑠, which
means that  can only guess whether 𝑢𝑖𝑗 receives task 𝑄𝑠.
According to Definition 1, for 𝑥′ ∈ {0, 1} and 𝑥 ∈ {0, 1},
there are only four possible scenarios, 𝑥′ = 0 ∧ 𝑥 = 0,
𝑥′ = 0 ∧ 𝑥 = 1, 𝑥′ = 1 ∧ 𝑥 = 0, and 𝑥′ = 1 ∧ 𝑥 = 1. Then,
the probability that  guesses correctly is shown below.

𝑝𝑟[𝑥′ = 𝑥]
= 𝑝𝑟[{𝑥′ = 1 ∧ 𝑥 = 1} ∨ {𝑥′ = 0 ∧ 𝑥 = 0}]
= 𝑝𝑟[𝑥′ = 1 ∧ 𝑥 = 1] + 𝑝𝑟[𝑥′ = 0 ∧ 𝑥 = 0]
= 1

4 +
1
4 = 1

2

Therefore, the adversary  cannot know the user’s decision.
Similarly, entities within the system also cannot obtain a
single user’s decision. The privacy of the user’s decision is
guaranteed.

Theorem 2. Under our threat model, the scheme enables
the privacy of the task contents.

Proof 2. After the task publisher 𝑇𝑃𝑠 generates the task
contents 𝑇𝑠, he encrypts it using the AES key 𝑘𝑠. Then,
𝑇𝑃𝑠 distributes the key 𝑘𝑠 to users through the CRT-based
key management scheme. From the security of the AES
algorithm, it is clear that no entity or adversary can decrypt
the AES ciphertext to get the task contents 𝑇𝑠 without the
key 𝑘𝑠. To get the key 𝑘𝑠, the adversary must decrypt the
ciphertext 𝐶𝑠 = 𝑘𝑠𝑒𝑀 mod 𝑁 . The security of the CRT-
based key management scheme has been proved in reference
[38]. Therefore, no entity or adversary can obtain the key 𝑘𝑠
without the slave key (𝑒𝑖, 𝑑𝑖, 𝑝𝑖𝑞𝑖).

According to the design of our scheme, the slave key is
generated by a trusted KGC and distributed through a secure
channel when users register. And the users are honest, they
will not disclose the slave key. Entities within the system
and external adversaries cannot access the slave key to
decrypt the ciphertext 𝐶𝑠. Therefore, they cannot decrypt the
AES ciphertext to obtain the task content 𝑇𝑠. The privacy of
the task contents is guaranteed.

Theorem 3. Under our threat model, the scheme enables
the privacy of the aggregated data.

Proof 3. The raw health data 𝐷∗
𝑖𝑗 = (𝑑∗1,𝑖𝑗 , 𝑑

∗
2,𝑖𝑗 ,⋯ , 𝑑∗𝑠,𝑖𝑗) of

user 𝑢𝑖𝑗 is masked by random number 𝑟𝑖𝑗,1 and a symmetric
key 𝑘𝑠, i.e.,

𝑑𝑠,𝑖𝑗 = 𝑑∗𝑠,𝑖𝑗 + 𝑟𝑖𝑗,1 + 𝑘𝑠, for 𝑠 = 1, 2,⋯ , 𝑣;

Without 𝑟𝑖𝑗,1 and 𝑘𝑠, adversary  and entities within the
system cannot capture the raw data of the user. The privacy
of the user’s raw aggregated data is guaranteed. During
the aggregation process, 𝑟𝑖𝑗,1 is encrypted into Paillier ci-
phertext. The security of the Paillier encryption ensures
that the adversary cannot decrypt the ciphertext without the
key, which makes it impossible for adversary  and FNs
to obtain intermediate aggregation results. Therefore, the
privacy of data during the aggregation process is guaranteed.
Similarly, adversary  and MSP cannot access the final
aggregation task results.

The other task publisher 𝑇𝑃𝑗(𝑗 ≠ 𝑠) can obtain 𝑅1 and
𝑅2 by Paillier decryption algorithm. Then, 𝑇𝑃𝑗 can compute

∑

𝑈𝑠𝑢𝑚

𝐷𝑠,𝑖𝑗 − 𝑅1 =
∑

𝑑∗𝑠,𝑖𝑗 + 𝑈𝑠𝑢𝑚 ⋅ 𝑘𝑠

∑

𝑈𝑠𝑢𝑚

𝐶𝑠,𝑖𝑗 − 𝑅2 =
∑

𝑐∗𝑠,𝑖𝑗 + 𝑈𝑠𝑢𝑚 ⋅ 𝑘𝑠

However, 𝑘𝑠 is kept secret by 𝑇𝑃𝑠 and the users. Therefore,
by the security of the CRT-based key management scheme,
𝑇𝑃𝑗 cannot obtain any information about 𝑘𝑠. The privacy
of the aggregation results is guaranteed. To summarize, our
scheme protects the privacy of aggregated data.

Theorem 4. If the Pedersen commitment scheme is per-
fectly hiding and computationally binding, adversary 
cannot tamper with the data and escape commitment ver-
ification.

Proof 4. To ensure the verifiability of the task results, user
𝑢𝑖𝑗 computes Pedersen commitment 𝐶𝑜𝑚𝑖𝑗 = 𝑔𝐷𝑖𝑗ℎ𝑟𝑖𝑗,1 after
generating 𝐷𝑖𝑗 . Assume that adversary  tampers the data
𝐷𝑖𝑗 of 𝑢𝑖𝑗 to 𝐷′

𝑖𝑗 . For  to pass the commitment verification,
he must successfully compute

𝐶𝑜𝑚′
𝑖𝑗 = 𝑔𝐷

′
𝑖𝑗ℎ𝑟𝑖𝑗,1 .

However, 𝑟𝑖𝑗,1 is kept secret by 𝑢𝑖𝑗 and is not known to
other entities. Therefore, adversary  cannot successfully
compute 𝐶𝑜𝑚′

𝑖𝑗 . Assuming that adversary  tampers with
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(a) Computational cost changes with 𝑣. (b) Computational cost changes with 𝑛. (c) Computational cost changes with 𝑚.

Figure 4: The variation of computation overhead with the number of tasks, users, and FNs.

data 𝐷𝑖𝑗 and submits the original commitment 𝐶𝑜𝑚𝑖𝑗 to the
system. If the commitment 𝐶𝑜𝑚𝑖𝑗 passes the commitment
validation of the task publisher. This means that there are
two different messages 𝐷𝑖𝑗 and 𝐷′

𝑖𝑗 with the same commit-
ment value, which violates the computationally binding of
the Pedersen commitment. Therefore, adversary  cannot
tamper with the user data and successfully pass the commit-
ment validation. Similarly, adversary  cannot successfully
tamper with the aggregation results of FNs and MSP.

Based on the homomorphic nature of Pedersen com-
mitment, it is known that TPs who possess 𝑅1 and 𝐷𝑠𝑢𝑚
can easily verify the commitment values of the aggregated
results. Therefore, our scheme prevents the adversary from
tampering with the data during the aggregation process and
achieves verifiability of the aggregation results.

7. PERFORMANCE EVALUATION
In this section, we evaluate the proposed scheme in

terms of theory and concrete experiments. Subsequently, we
compare our scheme with the schemes [24] and [34].

7.1. Theoretical Analysis
We regard the establishment of the system as a prepro-

cessing operation. Therefore, we concentrate on the phase
after the initialization of the system. First, the user can
receive a sequence of tasks (𝑄1, 𝑄2,⋯ , 𝑄𝑠) sorted by the
MSP. After this, the user needs to perform 𝑠 exponentiation
operations to obtain the 𝐴𝐸𝑆 key and perform 𝑠 AES
decryption algorithms to retrieve the task contents. After
obtaining the task contents, the user can choose the task
and generate the corresponding health data and decision
vector. To achieve data privacy, the user has to mask the
raw data before uploading it to the FNs. The user has to
execute four addition operations, two Paillier encryption
operation, one commitment computation, and one signature
computation. Therefore, the user’s computational overhead
is 𝑠(𝑇𝑒𝑥 + 𝑇𝐷𝑒𝐴𝐸𝑆 ) + 4𝑇𝐴𝑑𝑑 +2𝑇𝑃𝑎 + 𝑇𝐶𝑜 + 𝑇𝑆𝑖, where 𝑇𝑒𝑥,
𝑇𝐷𝑒𝐴𝐸𝑆 , 𝑇𝐴𝑑𝑑 , 𝑇𝑃𝑎, 𝑇𝐶𝑜, and 𝑇𝑆𝑖 denote the overhead of an
exponentiation operation, an 𝐴𝐸𝑆 decryption operation, an
addition operation, a Paillier encryption operation, a com-
mitment operation, and a signature operation, respectively.

The FNs authenticate the user’s identity and aggre-
gate the user’s data, which requires performing 𝑛 signature
verifications, 3𝑛 addition operations, and 2𝑛 multiplication
operations. Therefore, the computational overhead of FNs is
(𝑇𝑉 𝑒𝑠𝑖+3𝑇𝐴𝑑𝑑 +2𝑇𝑀𝑢𝑙)𝑛, where 𝑇𝑉 𝑒𝑠𝑖 and 𝑇𝑀𝑢𝑙 denote the
overhead of a signature verification operation and a multipli-
cation operation, respectively. Similarly, the computational
overhead of the MSP is approximately (𝑇𝑉 𝑒𝑠𝑖 + 3𝑇𝐴𝑑𝑑 +
2𝑇𝑀𝑢𝑙)𝑚, where 𝑚 is the number of FNs.

The TPs needs to generate the task requests, encrypt
the task contents, and share the encryption key with the
user through the key management scheme. TPs requires one
𝐴𝐸𝑆 encryption operation, one exponentiation operation,
and one signature computation. After receiving the results
returned by the MSP, the TPs must verify the commitments
and decrypt the ciphertexts to obtain the task aggregation
results. He needs to perform one commitment computa-
tion, two Paillier decryption operations, two multiplication
operations, and four subtraction operations. Therefore, the
computational overhead is 𝑇𝐴𝐸𝑆 + 𝑇𝑒𝑥 + 𝑇𝑆𝑖 + 2𝑇𝐷𝑒𝑃𝑎 +
2𝑇𝑀𝑢𝑙 + 4𝑇𝑠𝑢𝑏, where 𝑇𝐴𝐸𝑆 , 𝑇𝐷𝑒𝑃𝑎 and 𝑇𝑠𝑢𝑏 denote the
overhead of AES encryption algorithm, Paillier decryption
operation and subtraction operation, respectively.

7.2. Experimental Evaluation
We implement our scheme based on Python program-

ming language using cryptography library, hashlib library,
etc. The hash function we chose is SHA-256. We utilize the
elliptic curve SECP256K1 to construct the Pedersen com-
mitment scheme. We deploy the code on the virtual machine
Ubuntu 22.04.1 in VMware® Workstation 17 Pro (with 8G
RAM and Intel® Core™ i5-8300H CPU @ 2.30GHz × 8).

7.2.1. Computational overhead
We assume that the number of users 𝑛 varies from 100

to 500 with an interval of 100, the number of 𝐹𝑁𝑠 𝑚 varies
from 50 to 90 with an interval of 10, and the number of
tasks 𝑣 in a round of aggregation varies from 2 to 10 with an
interval of 2. We set the lengths of the user’s health data, the
task contents, the key of the 𝐴𝐸𝑆, and the prime number of
the Paillier cryptosystem to 128 bits, 256 bits, 256 bits, and
1024 bits, respectively.
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(a) Computational cost changes with 𝑣. (b) Computational cost changes with 𝑛. (c) The computational cost of user, FNs, and MSP.
keep 𝑣=10, 𝑛=100, and 𝑚=50.

Figure 5: Comparison of the computational overhead of the schemes.

The computational overhead of the task publisher TPs is
essentially fixed. They encrypt the task contents, generate
the task request, and distribute the key of 𝐴𝐸𝑆 using
the key management scheme, which has an overhead of
about 0.2 ms for this whole process. After receiving the
aggregation results, TPs need to compute the commitment
to determine whether the data has been tampered with and
decrypt the task aggregation results. The total overhead of
this process is about 75 ms. We provide the variation of the
average time for the user to decrypt the task (AveDT), the
average time for blinding the data (AveBD), and the total
computational cost for each user (TotCost) in Fig. 4(a). To
conveniently demonstrate the overhead of FNs and MSP,
we set the number of tasks 𝑣 = 10. Specific experimental
results are shown in Fig. 4(b) and Fig. 4(c), including the
cost of verifying identity (CostVI), the cost of aggregating
data (CostAD), and the total cost (CostTot). Please note that
batch processing can be employed during the verification
of signatures to further minimize overhead and optimize
performance.

7.2.2. Communication overhead
Based on the experimental setup, we can know the

length of the pseudonym, promise, Paillier ciphertext, and
signature are 256 bits, 512 bits, 2048 bits, and 512 bits, re-
spectively. We commence the assessment of communication
overhead from the data collection phase. Since the length
of the health data is set to 128 bits, the communication
overhead of each entity is changed according to the number
of tasks. If we set the number of tasks 𝑣 = 10, the number
of users 𝑛 = 100, and the number of FNs 𝑚 = 50, then
the communication overhead of the users, FNs, and MSP
is approximately 1312 B, 108 KB, and 53 KB, respectively.

7.3. Comparison with Other Schemes
We compare our scheme with schemes [24] (denoted

as EPCDA) and [34] (denoted as VPMDA). These two
schemes are devised for the smart grid whose system frame-
work is quite similar to our scheme. Table 2 lists the
computation times for several basic operations.

Table 2
Calculation cost of basic cryptographic operations.

Symbol Meaning Times (ms)

𝑇𝐴𝐸𝑆 Encryption time of one AES algorithm 0.124055
𝑇𝐷𝐴𝐸𝑆 Decryption time of one AES algorithm 0.043410
𝑇𝑐𝑜𝑚 Time of commitment 1.028663
𝑇𝑠𝑖𝑔𝑛 Time of signature 0.049974
𝑇𝐷𝑠𝑖𝑔𝑛 Time of signature verification 0.082277
𝑇𝑒𝑥 Time of exponentiation in comparison scheme 0.771084
𝑇𝑏𝑝 Time of a bilinear pairing in comparison scheme 2.409638

7.3.1. Comparison of computational overhead
As FNs and MSP jointly bear the responsibility of

aggregating data, the factors influencing their computational
overhead exhibit notable similarities. Therefore, we concen-
trate our comparison on the user and FNs side. As shown
in Fig. 5(a), comparatively, our scheme incurs a marginally
higher computational overhead on the user side. This is be-
cause we protect the privacy of the task contents and achieve
verifiability of the aggregation results with some more
computational steps than the compared schemes. Turning
to the FNs side, Fig. 5(b) illustrates the computational
overhead for 𝑣 = 10, 𝑛 = 100, 200, 300, 400, and 500. It
can be seen that the computational overhead of FNs exhibits
a roughly linear correlation with the number of users. Anal-
ysis of experimental results substantiates the superiority of
our proposed scheme. For further demonstration, we set
𝑣=10, 𝑛=100, 𝑚=50 and show the computational overhead
of user, FNs, and MSP for each scheme in Fig. 5(c). In
EPCDA, the user side needs to first compress the collected
data. Next, the compressed data is encrypted with Paillier
encryption. Finally, the user generates the corresponding
signature. In VPMDA, the user needs to pack the data using
a superincreasing sequence and then compute the Paillier
ciphertext and signature. In contrast, our scheme not only
needs to encrypt the data, compute the Paillier ciphertext
and signature, but also compute the AES key, decrypt the
task contents and compute the commitment, which makes
the user-side overhead of this scheme slightly higher. At
the FNs and MSP side, the aggregation of our scheme
mainly performs the addition operation, while EPCDA and
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Figure 6: Comparison of communication overhead. Keep
𝑣=10, 𝑛 = 100, and 𝑚=50.

VPMDA contain extensive multiplication and pairing oper-
ations. As a result, the computational overhead at the FNs
and MSP side is lower than the comparison schemes.

7.3.2. Comparison of communication overhead
Next, we proceed to analyze and compare the communi-

cation overheads. In our scheme, users transmit pseudonyms,
masked user data, Paillier ciphertexts, Pedersen commit-
ment, and signatures to FNs. Therefore, the total communi-
cation overhead is 7936 bits. The user side of EPCDA needs
to send Paillier ciphertexts, identifiers, and signatures with
a communication overhead of 3104 bits. The user side of
VPMDA needs to send Paillier ciphertexts, signatures, and
timestamps with a communication overhead of 2624 bits.

At the FNs side, each scheme needs to receive data from
𝑛 users and aggregate the data into new data to deliver to the
MSP. The communication overhead of our scheme, EPCDA,
and VPMDA are approximately 7936𝑛 + 8064 bits, 3104𝑛 +
3104 bits, and 2624𝑛 + 2880 bits, respectively. Similarly, the
communication overhead of the MSP is about 8064𝑚 + 7880
bit, 3104𝑚 + 3104 bits, and 2880𝑚 bits, respectively. When
we set 𝑛 = 100 and 𝑚 = 50, the communication overhead
between the schemes is shown in Fig. 6. Our scheme has
a high communication overhead on each entity’s side. The
main factors are: 1) our scheme requires not only users’
data but also their decision vectors; 2) the encryption of
the data is in the form of a masking operation, which is
not a fixed value like the Paillier cipher. 3) our scheme
requires transmission commitment values to guarantee the
verifiability of the aggregation results.

From the experimental results, it is clear that our scheme
has less overhead on the aggregator side. While experi-
encing a marginal increase in overhead on the user side,
this expense is desirable and stems from our paramount
emphasis on the security of our scheme. Particularly con-
cerning task publishers, our approach meticulously safe-
guards the privacy of task aggregation results and ensures
the confidentiality of task content and the verifiability of
task outcomes. Sacrificing some performance for improved
security is inevitable. Considering the nuanced interplay
between security and efficiency, we are convinced that our
scheme is secure, practicable, and efficient.

8. CONCLUSION
In this paper, we propose an efficient and privacy-

preserving data aggregation scheme for healthcare. It can be
employed as a versatile scheme applicable to many scenar-
ios within the domain of mobile crowdsensing. This scheme
efficiently aggregates multiple tasks while protecting the
privacy of users and task publishers. We use a CRT-based
key management scheme to distribute encryption keys and
achieve protection of task contents. In addition, we ensure
data integrity using Schnorr signature and achieve verifiabil-
ity of task aggregation results using Pedersen commitment.
Finally, theoretical analysis and experimental evaluation
demonstrate that our scheme is secure and reliable.

In the future, our research will explore two prospec-
tive directions. For intricate application environments, we
contemplate the development of a multi-functional data
aggregation scheme, encompassing features such as vari-
ance, maxima, and other relevant metrics. Moreover, to
incentivize active user participation in aggregation tasks,
we will investigate the integration of data aggregation with
incentive mechanisms, formulating a comprehensive aggre-
gation scheme incorporating both rewards and penalties.
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