
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Privacy-Enhanced Federated WiFi Sensing for
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Abstract—The development of the Internet of Things (IoT) has
led to the widespread use of WiFi-enabled consumer electronic
devices, which are now common in everyday life. These advance-
ments in IoT have greatly improved data collection and analysis
capabilities, especially for health monitoring applications. How-
ever, traditional centralized machine learning methods often fall
short, raising significant privacy concerns and requiring extensive
data collection, which is inefficient. To address these limitations
within the distributed IoT environment, this paper presents a fed-
erated learning-based WiFi sensing system specifically designed
for health monitoring. By enabling local model training, our
system prevents the sharing of sensitive data, thus reducing the
risk of privacy breaches. We further enhance our system with a
secret sharing mechanism coupled with model sparsification to
significantly improve privacy. Additionally, our improved Top-k
model sparsification algorithm, equipped with adaptive residuals,
reduces communication overhead while ensuring high accuracy.
Extensive testing across various datasets and models confirms
that our system outperforms existing benchmarks in terms of
privacy protection and communication efficiency, marking a
substantial advancement in health monitoring within the IoT.

Index Terms—WiFi sensing, consumer internet of things,
health monitoring, federated learning, secret sharing, model
sparsification

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized the way we
interact with the world around us. The Consumer Internet of
Things (CIoT) represents a significant evolution of IoT, specif-
ically focusing on the integration of smart consumer devices
into everyday life. With the rapid growth of CIoT devices
and increased demand for Internet access, WiFi technology
has become ubiquitous [1]. It has enabled the connection of
consumer electronic devices, to the internet, leading to the
development of many intelligent systems, including device-
free sensing.
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WiFi sensing refers to the process of capturing and ana-
lyzing the signals emitted by WiFi networks in the vicinity,
with the objective of comprehending the underlying physical
attributes of a specific setting. The utilization of WiFi sensing
has witnessed a surge in novel applications due to its ability
to enable cost-effective monitoring (by leveraging existing
WiFi infrastructure), as well as device-free and nonintrusive
detection of human presence and physical movements [2]–[4].
This starkly contrasts with traditional sensor-based systems
that necessitate dedicated devices to be physically attached
to the human body. These systems utilize WiFi channel state
information (CSI) to detect and analyze human presence and
activities, thus enabling real-time health assessments without
direct physical contact. The precise sensing of environmental
dynamics through CSI is crucial for monitoring patient move-
ments and vital signs across various healthcare settings.

Despite their advantages, the deployment of WiFi sensing
for health monitoring introduces significant privacy concerns.
The sensitivity of WiFi-sensed data, inherently containing per-
sonal and behavioral patterns, could potentially be exploited
by malicious actors to track users’ activities and habits [5].
This vulnerability poses significant challenges to traditional
AI methods, which typically involve the central collection of
data on servers for model training [6], [7]. In response to these
privacy risks, we propose a federated learning approach where
data is locally gathered and used for machine learning training
within environments such as individual patient rooms, hospital
treatment areas, or broader medical center facilities. This
approach aligns with federated learning principles, allowing
local training of models without requiring data transmission
to a centralized server. By implementing local training, we
enhance both individual and communal healthcare data pri-
vacy, ensuring robust protection against unauthorized access
while effectively supporting health monitoring systems.

While applying federated learning to health monitoring
enhances local data privacy, it still faces common privacy
threats inherent in federated learning, such as model inference
attacks and model inversion attacks [8]–[10]. These attacks, by
analyzing model outputs or intermediate states, can potentially
expose sensitive data. To counter these threats and enhance
the robustness of our system, we have integrated advanced
privacy-preserving technologies. By combining secret sharing
and an optimized model sparsification strategy, our approach
not only protects model privacy during the federated learning
process but also significantly reduces communication costs as-
sociated with model transmission. These enhancements ensure
that our federated WiFi sensing-based health monitoring sys-
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tem delivers strong performance while meeting high standards
of privacy and efficiency.

Aiming to address these concerns, we have developed a
novel federated WiFi sensing system for health monitoring that
enhances both privacy and communication efficiency. We have
integrated a secret sharing mechanism to safeguard the privacy
and security of models within the federated learning process.
This mechanism securely aggregates model parameters, al-
lowing updates from multiple devices to be combined while
preserving the confidentiality of each individual update. This
effectively shields sensitive information and guards against
threats such as model inference attacks. Furthermore, we have
developed a model sparsification method with adaptive resid-
uals to minimize the system’s communication overhead. This
method selectively transmits only essential data during the
federated learning cycles, significantly reducing the volume
of data exchanged while maintaining high model accuracy
and system efficiency. The contributions of our work can be
summarized as follows:

• We have designed a federated WiFi sensing system
specifically tailored for health monitoring. This system
utilizes federated learning to collaboratively train a global
model, keeping sensitive health data localized and en-
hancing patient privacy.

• To further enhance model privacy, our system integrates a
secret sharing mechanism that securely aggregates model
parameters during the federated learning process. This
approach safeguards against the potential exposure of
sensitive health data that could result from attacks on
the model updates.

• We have refined a residual-based model sparsification
algorithm to lessen the communication overhead during
the secret-sharing stages of federated learning. This en-
hancement not only sustains high model performance but
also makes the federated learning process more efficient.

• Comprehensive experiments conducted across multiple
sensing datasets and models validate the effectiveness
of our system. The results confirm superior performance
in terms of privacy protection, communication efficiency,
and model utility in AI-based health monitoring contexts.

The paper structure is as follows: Section II introduces
AI-based health monitoring and federated learning. Section
III presents the system design, including the workflow and
implementation strategies for model sparsification and se-
cret sharing. Section IV conducts simulation experiments to
evaluate the system’s effectiveness, sparsification methods’
performance, and communication overhead variations. Section
V provides a comparison with related studies. Finally, section
VI summarizes the paper.

II. PRELIMINARIES

A. WiFi Sensing in the Consumer Internet of Things

With continued improvements in accuracy, range, and ap-
plication diversity, WiFi sensing has become more prevalent
in Internet of Things [11]. In the Consumer Internet of Things
(CIoT), WiFi sensing leverages WiFi signals to detect and
interpret environmental changes, enabling applications that

enhance convenience and efficiency in smart homes and other
consumer settings. Emerging applications include detailed
health monitoring, advanced home automation, and enhanced
user interaction experiences. Commercial interest in WiFi
sensing has grown, with companies integrating these capabili-
ties into consumer products, particularly for health monitoring
[12]. Devices equipped with WiFi sensing capabilities transmit
and receive signals that are reflected, absorbed, or scattered
by objects and people in the environment. These signals are
then analyzed to detect falls [13], monitor respiratory rates,
and track daily activities for elderly care [14]. The COVID-19
pandemic further accelerated interest in non-contact sensing
technologies [15], with WiFi sensing gaining attention for
remote health monitoring applications .

B. Efficient and Secure Federated Learning

Unlike cameras or microphones, WiFi sensing does not
capture visual or audio raw data, thereby reducing potential
privacy compromises. However, it inherently involves col-
lecting personal and behavioral pattern data, which can be
highly sensitive. Federated Learning (FL) is a distributed
machine learning technique that allows multiple parties to
collaboratively train a model while maintaining data privacy
[16]. In FL, the model is trained on decentralized data sources,
and updates are sent to a central server for aggregation to
update the global model [17]. FL is especially beneficial
when data is stored on personal devices like smartphones,
IoT devices, or edge computing nodes. The global objective
function of FL can be expressed as follows:

argmin
ω

C∑
i=1

piFi(ωi), (1)

In Equation (1), ω represents the global model, C denotes
the number of participated clients, Fi(ω

i
t) corresponds to the

local objective function for the i-th client, and pi specifies
the proportion of the i-th client. At the beginning of each
communication round, the server transmits the current global
model state to these clients. Upon receiving the global model
or initial parameters, the clients proceed to iterate their models
and compute gradients using their local datasets. When the
clients complete the t-th round of training, the local model
updates are then uploaded to the server. Afterward, the server
aggregated a new global average model from local updates.
The update for the e + 1-th communication round of global
model parameters is then computed as:

ωe+1 ← ωe − η
m∑
i=1

pi∇Fi(ω
i
e), (2)

In Equation (2),∇Fi(ω
i
e) represents the gradient of the local

objective function for the i-th client in the e-th round, and
η denotes the learning rate. This communication process is
repeated iteratively until the global model reaches the desired
state.

In federated learning-based health monitoring, a major chal-
lenge is the communication overhead when transmitting model
parameters between health devices and medical institutions,
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especially for large models with many parameters. Sparsi-
fication, a technique from deep learning, addresses this by
compressing model transmissions [18]. It involves sending se-
lected indexes and values instead of the entire model, reducing
the amount of data transmitted [19]. Two main sparsification
schemes are Random-k and Top-k, which randomly choose
parameters or select the highest-ranked values, respectively
[20]–[23].

Privacy and security are also critical challenges in federated
learning. Secret sharing techniques, like Shamir secret sharing
[24], enhance privacy and security by dividing local model
updates into shares, aggregated by a central server. This
method prevents the direct exposure of individual contributions
during transmission, ensuring robust client aggregation, even
with a few dropouts [25].

III. SYSTEM DESIGN

A. Threat Model

In the health monitoring data collection and analysis task,
the user’s monitoring device transmits sensitive medical in-
formation to the server. In this process, the monitoring de-
vice monitors the user’s health information in a trustworthy
manner, but there are still threats. For example, malicious
adversaries trying to access individual medical data for their
profit, unreliable servers trying to infer users’ real data, and
degradation of service due to corruption in the network or
hardware. Therefore, there are three main threats in federated
WiFi sensing for health monitoring as follows:

1) Adversaries: Stealing local updates from health moni-
toring devices to capture user private information.

2) Offline/asynchronous monitoring Devices: Some
health monitoring devices fail to send or receive data
due to hardware or network problems, compromising
service quality.

3) Honest but curious parameter server: Parameter
server may infer raw data based on updates from health
monitoring devices when performing aggregation oper-
ations.

Within our federated WiFi sensing system, the parameter
server is presumed to be honest but curious [26], as it follows
the federated learning framework for aggregating parameters.
However, it exhibits curiosity toward participants’ private data
and attempts to infer the training data from the received local
updates in each round, thereby posing a significant threat to
data privacy.

To effectively counter these threats, it is crucial to enforce
stringent security measures. We employ the secret sharing
method to guarantee encryption support for clients. This cryp-
tographic measure serves the paramount purpose of preclud-
ing the server from accessing specific user updates, thereby
fortifying the confidentiality of individual user data. Conse-
quently, the server is restricted to accessing only aggregated
results, safeguarding the privacy of user-specific information.
In tandem with this encryption strategy, we have devised an
adaptive sparsification update algorithm tailored to optimize
communication efficiency within our system.

Fig. 1: System Design

B. System Workflow

Our WiFi sensing system consists of a centralized server
and multiple health monitoring devices communicating wire-
lessly. Following the federated learning framework, the server
orchestrates global aggregation while the devices conduct local
training and send model updates. To improve performance
and security, we proposed the Communication-efficient and
Privacy-enhanced Federated Learning system. The system’s
architecture is illustrated in Figure 1. Below, we summarize
the key steps in our system’s workflow.

1) Server sending: The centralized server gets a global
model we and the mask matrix M , and distributes it
to all monitoring devices. Adaptive model sparsification
will be performed at every interval of a fixed number of
t rounds to obtain a new mask matrix.

2) Local Training: Each device performs local training
on its dataset using the current global model we and
generates a local model update wi

e.
3) Adaptive Model sparsification: To reduce the commu-

nication overhead, we introduce model sparsification by
pruning the local model updates. Specifically, we retain
only the Top-k percentage of the absolute values of
the model parameters, incorporating adaptive residuals.
The hyperparameter k can be fine-tuned to optimize the
utilization of the available communication bandwidth.

4) Secret sharing and aggregation: To enhance the pri-
vacy of the local models, we use secret sharing to split
each local model update wi

e into multiple shares. The
shares are then sent to the centralized server for aggre-
gation. The server performs sparse model aggregation
on the shares to obtain the global model update we+1,
which is sent back to the devices for the next round of
training.

5) Repeat: Processes 2-4 are repeated for a fixed number
of rounds or until convergence is achieved.
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Algorithm 1 Server-side Adaptive Model Sparsification

1: Input: Global model w(e) and w(e − 1), sparsification
number k, current epoch e, total epochs T

2: Output: Mask matrix M(e)
3: Global update ∆w = we − we−1

4: Flatten ∆w into one dimension.
5: Initial residual storage Res = 0
6: Diff = ∆w + Res
7: Select matrix inside: index = Top-k(Diff, k)
8: Determine mask matrix M(e) by changing the corre-

sponding element value to 1
9: ∆w[index] = 0

10: Set the residuals to the parameter values that are not
selected at each layer: Res = ∆w

11: Flatten Res into one dimension
12: return M(e)

C. Adaptive Model Sparsification

Top-k sparsification is a technique in machine learning and
data compression that reduces model size and complexity.
Discarding less important parameter values helps reduce com-
munication overhead and computational burden during model
aggregation. The retained top-k parameters are sent to the
central server for aggregation, improving federated learning
efficiency and easing the load on resource-constrained devices.
In Top-k sparsification, parameter selection is guided by
sorting values based on magnitudes, ensuring the preservation
of critical model characteristics. A key advantage is the ability
to balance communication overhead reduction with maintain-
ing acceptable accuracy. The value of k can be adjusted
to fine-tune the sparsification process for federated learning
requirements. Hence, we propose using Top-k sparsification
to selectively compress the model by eliminating parameters
with minimal impact on convergence.

Utilizing historical residual methods in Top-k sparsification
has shown promise in addressing convergence issues [22].
However, in federated learning, storing and accumulating
residuals for each round consumes significant storage space,
a concern for WiFi sensing systems. Therefore, we developed
an innovative sparsification technique incorporating adaptive
residual storage. Our approach dynamically adjusts residuals
based on factors like model layers and training progression, en-
hancing flexibility and performance. To further reduce storage
space, we avoid storing residuals for each round, considering
their relatively large overhead. Our method overcomes the lim-
itations of cumulative historical residuals, providing a rational
approach to leveraging update differences without introducing
additional parameters. In subsequent sections, we detail our
improved sparsification method.

To ensure consistent mask vectors for model sparsification
in secure sparse model aggregation, the server generates the
mask vector for each round and transmits it, along with
aggregated results, to participants. The algorithm comprises
server-side and user-side components.

On the server side (Algorithm 1), the global model change,
∆w, is flattened into a one-dimensional matrix. This matrix

Algorithm 2 Client-side Adaptive Model Sparsification

1: Input: Mask matrix M(e), local model wi

2: Output: Sparsified model ŵi

3: Mi = M(e)
4: ŵi = Mi ◦ wi

5: return ŵi

is then accumulated with the previous round’s residual to
compute Diff. Top-k parameters are selected based on Diff,
generating the mask matrix M(e). Model parameter values
corresponding to Top-k indices are set to zero, forming the
residual Res. The server retains Res and transmits M(e)
to clients. Clients receive aggregated results and the mask
vector, performing local training and multiplying results with
the mask vector (Algorithm 2). Each participant undergoes the
same sparsification process, enabling additional compression
by transmitting only selected element values. This reduces
communication costs. Updating residual storage in each round
enhances mask vector generation efficiency, eliminating the
need for accumulated residuals. Adaptive residual updates on
a round-by-round basis optimize overall efficiency.

D. Secret Sharing and Aggregation

In AI-based health monitoring scenarios, bandwidth lim-
itations pose challenges for federated learning, exacerbating
communication consumption. Our proposed approach involves
determining a sparsified mask matrix on the server side be-
fore secret sharing gradient updates corresponding to specific
locations on the client side. This method diverges from con-
ventional practices by sharing gradient updates individually,
enhancing security and efficiency in WiFi-aware environments.
The steps for secret sharing in our method are as follows.

Step 1: The server obtains the mask matrix of the pre-trained
model by adaptive model sparsification and sends the pre-
trained model and the mask matrix to all clients. Meanwhile,
the server sends secret sharing parameters to the client such
as the Shamir threshold t and the large modulus p.
Step 2: Each client generates Shamir polynomials to send to
the server.
Step 3: The server collects at least t shares from each client
and uses these shares to perform polynomial interpolation to
reconstruct the model updates.
Step 4: The server aggregates these updates to obtain a new
global model and sends it to the clients. After interval of a
fixed number of rounds, a new mask matrix is generated using
Top-k based adaptive model sparsification, and then the global
model and the new mask matrix are sent to the clients.
Step 5: Repeat the above steps until the federated learning
training reaches the specified number of rounds.

To mitigate client dropouts in federated learning, the server
employs a protocol where all clients contribute parts of their
local model updates as secret shares. This utilizes a modi-
fied Shamir’s Secret Sharing scheme, tailored for federated
learning, where the ’secret’ corresponds to each client’s sparse
model update ŵi(e). The scheme ensures the server can
reconstruct the global model update with at least t out of
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Algorithm 3 secret sharing and aggregation

1: Input: Communication rounds E
2: Output: e+ 1 round encrypted global model we+1

3: Server obtains mask matrix M using adaptive model
sparsification.

4: for each clients i in N do
5: Compute current round model sparsification ŵi(e).
6: Generate a random polynomial fi(xi).
7: Each share (xi, fi(xi)) is distributed to a different

client, and clients receive their respective shares.
8: end for
9: Wait to receive all clients’ shares.

10: The server uses polynomial interpolation with the col-
lected shares from at least t clients to reconstruct the
aggregated model update w(e+ 1).

11: return w(e+ 1).

n shares without accessing individual updates. Algorithm 3
adapts Shamir’s algorithm to distribute model masks as secret
shares, where the secret s corresponds to ŵi(e) for each client
i, and the shares are defined accordingly.

1) The server generates a random polynomial of degree
t− 1 for each client i, where t is the threshold number
of clients needed to reconstruct the global model update.
The polynomial for client i’s update is defined as:

fi(x) = ŵi(e)+ ai1x+ ai2x
2 + . . .+ ai(t−1)x

t−1, (3)

where ai1, ai2, . . . , ai(t−1) are coefficients randomly
chosen from a finite field Zp, ensuring the sparsity of
the polynomial in alignment with the sparsification of
the model update.

2) Each client i computes its share of the sparsified update
by evaluating the polynomial at a distinct point xi, which
is unique to each client and securely communicated to
them. The share for client i is given by:

si = fi(xi), (4)

where si represents the portion of the model mask that
client i will contribute to the server.

3) To reconstruct the sparsified global model update, the
server requires at least t clients to submit their shares.
If clients i1, i2, . . . , it represent the subset of clients that
remain, their shares are used in the reconstruction.

4) The server collects the shares si1 , si2 , . . . , sit , which
are the sparsified updates from the clients that have not
dropped out.

5) The sparsified global model update is reconstructed
using Lagrange interpolation, with the reconstruction
formula given by:

w(e+ 1) =
t∑

j=1

sij ·

 t∏
k=1
k ̸=j

xik

xik − xij

 (mod p) , (5)

where w(e + 1) is the sparsified update for the next
round, reconstructed from the shares of the clients who
have contributed.

This adaptation of Shamir’s Secret Sharing to federated
learning ensures that the server can only reconstruct the
sparsified global model update when a sufficient number of
clients have participated, thus maintaining the privacy of
individual client updates. It also aligns with the federated
learning process by incorporating the sparsity directly into the
secret sharing scheme, reducing communication overhead and
preserving the efficiency of the learning process.

E. Security Analysis

Theorem 1. Our scheme is robust and tolerates at most N−t
clients’ dropout or failness.

Proof. In our FL system, each client updates its local gradients
and uses secret sharing technique to distribute these updates to
other clients. Then, each client aggregates the shares locally,
and sends the aggregated result to the parameter server for
reconstruction of the global gradients. In the process of
gradient submission and global gradient update, a subset of n
clients may fail or drop out and influence the learning process.
However, the impact is limited by the inherent properties of
Shamir’s (t, n) secret sharing scheme. The semi-honest server
can reconstruct the global gradient with the aggregate shares
from t clients. Therefore, the scheme can tolerate at most N−t
clients’ dropout or failness and continue to update the correct
global gradients.

Theorem 2. Our scheme maintains confidentiality and collu-
sion resistance of at most t− 1 clients and the server.

Proof. In our FL scheme, every clients use Shamir’s (t, n)
secret sharing scheme to share their local gradients with other
clients. Hence, each client receives a secret share of other
clients’ local gradients. The secret sharing scheme is informa-
tion theoretically secure without at least t clients’ collusion,
so every client can not reveal the true local gradient of other
client. Besides, every client aggregates all received shares
locally, and then, sends the aggregated result to the server, so
the server can not deduce the local share of every client rather
than the final global gradients. Employing the (t, n) secret
sharing scheme, our scheme maintains the confidentiality of
the client’s local gradient with resistance aggainst at most t−1
collusion of clients and the server.

TABLE I: Simulation Parameters

Parameter Value
Number of Clients 20
Dataset UT-HAR, Widar
Model MLP, LeNet, and RNN
Global Epochs (UT-HAR) 200
Global Epochs (Widar) 100
Local Epochs 3
Number of Selected Clients 10
Batch Size 64
Learning Rate 0.001
Momentum 0.0001
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IV. EXPERIMENT

A. Experimental Setup

In our experimental setup, we utilized a 13th Gen Intel Core
i9-13900K processor coupled with an NVIDIA GeForce RTX
4090 graphics card, which boasts 24 GB of dedicated memory,
to handle computational demands efficiently. The experiments
were conducted using PyTorch version 1.5.1, supported by
CUDA version 10.1 (cu101), and torchvision version 0.4.2 for
vision-related tasks, all implemented in Python version 3.6.13.
Table I presents the key parameters used in the simulation of
our system. “Number of Clients” denotes the total number
of participants involved in the training, while “Number of
Selected Clients” indicates the subset of clients randomly
chosen for each training round.

B. Datasets and Models

To validate our sensing-based health monitoring approach,
we selected two public CSI datasets, UT-HAR [27] and Widar
[28], which are specifically related to human activity and
gesture recognition—key components of health monitoring.
The UT-HAR dataset, collected using Intel 5300 NIC, cap-
tures detailed movements across seven activity categories in
a controlled setting, ideal for assessing basic human motions
relevant to health applications. The Widar dataset, with its
extensive collection of 43,000 samples across 22 gesture
categories in diverse environments, provides a broad basis
for understanding complex patient behaviors. We employed
standardized preprocessing methods to both datasets to ensure
consistency and relevance to our study’s objectives.

To evaluate the reliability of our system, we selected three
representative models from the latest WiFi sensing benchmark:
MLP, LeNet, and RNN, as detailed in the work by [29].
The MLP model features three fully connected layers with
activation functions designed to capture complex nonlinear
relationships within the data. The LeNet model consists of
three convolutional layers followed by activation functions
and max-pooling layers, which enable it to learn hierarchical
features and extract meaningful representations from the input.
Meanwhile, the RNN model employs a one-layer structure
with a hidden dimension of 64, ideal for capturing temporal
dependencies and sequential patterns in the data, concluding
with a fully-connected layer for classification. For further de-
tails on the datasets and model architectures used in our study,
please refer to the open-source code repository available at
https://github.com/xyanchen/WiFi-CSI-Sensing-Benchmark.

C. Comparison with centralized learning and single-device
learning

In this subsection, we evaluate our federated sensing system
for health monitoring, incorporating sparse updates and secret
sharing. The sparsification parameter k is set at 0.1 to select
only 10% of the parameters for global aggregation. Our
setup involved 20 participants, with 10 chosen randomly for
each training round. “Epoch” refers to global model updates,
and “Acc” measures model precision. For centralized training
(CL), we used a centralized dataset; for single-device training

(a) MLP on UT-HAR (b) MLP on Widar

(c) LeNet on UT-HAR (d) LeNet on Widar

(e) RNN on UT-HAR (f) RNN on Widar

Fig. 2: Accuracy vs. Epoch across CL, FL, and SL.

(SL), each participant had 5% of the global dataset, aligning
with our federated scenario. Results depicted in Figure 2
demonstrates the contrasts in performance.

Our federated sensing system not only safeguarded data
privacy but also demonstrated competitive accuracy and ef-
ficiency compared to CL. As shown in Subfigures 2(b) and
2(c), while the convergence speed of FL was slightly slower
than CL, it ultimately achieved comparable accuracy levels.
In other subfigures, the performance gap was also minimal.
SL consistently showed the lowest effectiveness. For example,
FL achieved approximately 1.9 times and 1.4 times higher
accuracy than SL on the MLP and LeNet models, respectively,
as observed in Subfigures 2(a) and 2(c).

D. Comparison of Sparsification Methods

In this analysis, we evaluated three sparsification methods:
Random-k, Top-k, and our method with residual optimization,
referred to as “Ours” in Figure 3. These methods transmit a
selected fraction k of a model’s parameters, setting the rest to
zero. Our approach modifies Top-k by incorporating adaptive
residuals to improve the performance further.

At lower values of k (0.02 to 0.1), “Ours” significantly
outperforms the others, especially evident at “k=0.02” where
it leads Random-k and Top-k by 48% and 21%, respectively,
as shown in Subfigure 3(e). When k increases to 0.08 and
0.1, as seen in Subfigures 3(b) and 3(c), the performance of
all three methods becomes comparable. Even in such cases,
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(a) MLP on UT-HAR (b) MLP on Widar

(c) LeNet on UT-HAR (d) LeNet on Widar

(e) RNN on UT-HAR (f) RNN on Widar

Fig. 3: Accuracy vs. k across different sparsification methods.

our method remains competitive. Through experiments on the
UT-HAR and Widar datasets, we demonstrate the stability
and reliability of our sparsification method. Moreover, as k
decreases, the performance gains become more prominent.

E. Variations of Communication Overhead with k and n
through Secret Sharing

In this subsection, we visualized the communication over-
head as a function of the sparsification parameter k and
the number of training epochs. Figure 4 illustrates a three-
dimensional surface plot where the communication overhead
is represented on the z-axis. We focused on examining the
theoretical impact of sparsification on communication over-
head, disregarding factors such as storage file formats. This
assumption is reasonable because in our system, the mask vec-
tor is generated by the server and broadcast to users. Therefore,
the server can reconstruct the global update without requiring
participants to upload element position information (typically a
matrix recording the indices of non-zero elements). Moreover,
in the secret sharing period, the secret is divided into n
shares based on the number of clients, thereby influencing the
communication overhead. Consequently, the communication
overhead on the client’s side exhibits approximate linear
changes concerning both the sparsification parameter k and the
number of clients n. The depicted plot reveals a discernible
trend in which communication overhead increases with higher
values of k and an increased number of clients n.

Additionally, in our system, the server transmit the sparsi-
fied results of secure aggregation, as illustrated in Figure 1,
allowing the client to perform the reconstruction. The specific
choice depends on various factors such as client’s computa-
tional and communication capabilities, among others, which
need to be considered holistically. Regardless, our system
design provides the feasibility to address these considerations.

V. RELATED WORK

In prior works, [30] utilized CNN and AOA for Human Ac-
tivity Recognition but faced privacy challenges due to central-
ized training. Although [31] applied federated learning to WiFi
sensing and enhanced accuracy, they lacked comprehensive
security measures and communication optimization. Similarly,
[32] addressed limited labeled data in wireless human sensing,
while [33] focused on privacy in indoor sensing but did not
optimize communication. [34] introduced 2DFL with some
security measures but neglected communication optimization.
Unlike these, our improved model sparsification method can
significantly reduce communication overhead by over 90%
while maintaining model’s high performance. Moreover, our
approach enhances privacy by sparsification and secret sharing,
highlighting its superiority.

VI. CONLUSION

Our study introduces novel Federated WiFi Sensing tailored
for health monitoring in the IoT. Leveraging Federated Learn-
ing, our system allows model training on client devices without
compromising user privacy by sharing raw data with the
server. We addressed key challenges, including communication
overhead and privacy threats, by designing improved top-
k sparsification with adaptive residuals and implementing
secret-sharing techniques. Experimental evaluations on two
public datasets underscored that our system achieved superior
accuracy while notably reducing communication overhead and
enhancing privacy compared to state-of-the-art methods. These
findings highlight the practical relevance and efficacy of our
Federated WiFi Sensing system in the IoT, particularly in
safeguarding user privacy.
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