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A B S T R A C T

Deep neural networks have achieved amazing performance in many tasks. However, they are easily
fooled by small perturbations added to the input. Such small perturbations to image data are
usually imperceptible to humans. The uninterpretable nature of deep learning systems is considered
to be one of the reasons why they are vulnerable to adversarial attacks. For enhanced trust and
confidence, it is crucial for artificial intelligence systems to ensure transparency, reliability, and
human comprehensibility in their decision-making processes as they gain wider acceptance among
the general public. In this paper, we propose an approach for defending against adversarial attacks
based on conceptually interpretable techniques. Our approach to model interpretation is on high-level
concepts rather than low-level pixel features. Our key finding is that adding small perturbations leads
to large changes in the model concept vector tests. Based on this, we design a single image concept
vector testing method for detecting adversarial examples. Our experiments on the Imagenet dataset
show that our method can achieve an average accuracy of over 95%. We provide source code in the
supplementary material.

1. Introduction
Deep neural networks have been highly successful in a

variety of fields, demonstrating remarkable achievements.
They have achieved breakthrough success in fields as di-
verse as image classification, object detection, etc. Their
broad application and remarkable capabilities not only ac-
celerate progress, but also pave the way for exciting break-
throughs in fields such as finance, healthcare, criminal
justice, and transportation. However, deep learning is vul-
nerable to adversarial attacks (Goodfellow et al., 2015).
While deep learning has achieved many remarkable results,
it also faces an important challenge of being vulnerable to
adversarial attacks. Adversarial attacks refer to the loop-
holes of the deep learning model. By deliberately designing
small disturbances that are difficult for humans to detect,
the model can produce wrong prediction results. These
perturbations can be additions, modifications, or deletions
to the input data, which may not matter to us, but can
greatly mislead the output of the model. The successful
implementation of such attacks (Goodfellow et al., 2015;
Jang et al., 2017; Moosavi-Dezfooli et al., 2016; Rony
et al., 2019; Xu et al., 2020; Wang et al., 2021, 2020; Gao
et al., 2019) not only poses a threat to the security of the
model, but may also lead to serious consequences in the
real world, such as misleading the automatic driving system,
tampering with medical image diagnosis, and deceiving
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speech recognition systems. Many researchers believe that
deep learning systems do not yet have cognitive process-
ing methods similar to human concepts, which is one of
the reasons why deep learning systems are susceptible to
adversarial attacks.

A body of existing work focuses on developing methods
to detect adversarial examples (Liang et al., 2021; Yang
et al., 2020, 2022; Cintas et al., 2021; Liu et al., 2018;
Madry et al., 2018a; Sutanto and Lee, 2021; Guo et al.,
2019; Zheng et al., 2023). The generation of adversarial
examples is a very complex optimization problem, so it is
particularly important to find efficient detection methods.
The detection method needs to reduce the probability of
misjudgment of adversarial examples as much as possible
while maintaining high accuracy, and avoid falsely labeling
normal samples as adversarial examples. To address these
challenges, researchers have proposed various techniques
for detecting adversarial examples. Some methods perform
detection based on the characteristics of adversarial ex-
amples, trying to find the distinction between adversarial
examples and clean examples, such as using statistical
properties, gradient information, or spectral analysis, etc.

Besides, interest in developing tools (Chattopadhay
et al., 2018; Ghorbani et al., 2019a; Ignatiev et al., 2019;
Selvaraju et al., 2017; Chattopadhay et al., 2018; Fidel et al.,
2020) that address the black-box nature of neural networks
is growing. The Testing with Concept Activation Vectors
(TCAV) (Kim et al., 2018; Ghorbani et al., 2019b) method
is one in which model interpretation will be carried out in a
high-level concept space. In the TCAV method, directional
derivatives are used to quantify how important user-defined
concepts are to classification results. Subsequent work
(Ghorbani et al., 2019b) has also expanded the method of
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automatically acquiring concepts. Can developing cognitive
processing similar to human concepts help deep learning
systems defend against adversarial attacks? No research has
yet provided an answer.

We explore the use of concept activation vectors to
detect adversarial examples. We find that concept activation
vectors test differently for adversarial examples than for
normal examples. We design simple but effective methods
to detect adversarial examples. The foundation of our work
is the idea that small perturbations to the input can lead
to considerable differences in testing concept activation
vectors. Our contributions are summarized as follows:

• Introduction of a novel single-sample CAV testing
method for detecting adversarial examples, a tech-
nique that is more computationally efficient than
traditional batch testing methods.

• Application of CAVs to pre-trained deep learning
models (GoogLeNet, ResNet34, Inception-v3), demon-
strating their capability to detect adversarial perturba-
tions across different architectures.

• Comparative evaluation showing that our method
achieves competitive performance against state-of-
the-art adversarial detection techniques.

2. Related Works
In this section, we discuss related works on adversarial

attacks, adversarial defenses, and adversarial example de-
tection. concept activation vector testing.

2.1. Adversarial examples
Deep learning systems, including convolutional neural

networks, such as Googlenet and Resnet, are vulnerable to
adversarial attacks. The endless emergence of adversarial
attack methods severely limits the application of neural
networks. Adversarial attacks attempt to alter the output
predictions of deep learning models. Usually adversarial
attacks add tiny malicious perturbations to the input. The
original normal samples are added with tiny malicious
disturbances to make the deep learning model output wrong
predictions. Such samples with malicious perturbations are
adversarial examples. According to whether the wrong pre-
diction output by the deep learning model after the adversar-
ial attack is specified, the adversarial attack can be classified
as targeted or untargeted. Targeted adversarial attack means
that the attacker’s goal is to make the wrong prediction
of the deep learning model for the adversarial examples
fall into the specified category. The untargeted adversarial
attack is to make the deep learning model misclassify, and
the wrong prediction can fall into any category except the
correct category.

According to the measurement method for small pertur-
bations, adversarial attacks can also be divided into several
categories. For example, 𝐿0 and 𝐿1, 𝐿𝑝 distance is the most
commonly used distance metric. The Fast Gradient Sign

Method (FGSM) proposed by (Goodfellow et al., 2015)
is one of the classic adversarial attack algorithms. The
Projected Gradient Descent (PGD) (Madry et al., 2018b)
algorithm, which was proposed subsequently, is an im-
proved attack algorithm based on the FGSM algorithm. The
adverantages of the PGD algorithm lie in less perturbation
and higher attack success rate. The DeepFool (Moosavi-
Dezfooli et al., 2016) algorithm focuses on minimizing
the 𝐿2 distance to generate adversarial examples. PGD
and DeepFool both involve an iterative process. (Carlini
and Wagner, 2017) proposed a more refined attack method
that can control the confidence level. Moreover, this attack
method can derive variants of various attack distances.
DDN (Rony et al., 2019) employs Decoupled Direction and
Norm 𝐿2 to create adversarial examples. Based on gradient,
DDNattack generates adversarial examples with minimal
𝐿2 norm misclassifications. The work involves differenti-
ating the image’s adversarial disturbance’s direction and
norm. (Brendel et al., 2018) introduce a black-box approach
that relies solely on model decisions without the need of
gradient information. Experiments show that our method
can effectively identify adversarial samples regardless of
distance or whether gradient information is used.

2.2. Adversarial defense and detection
Deep learning models are often unstable in the face of

adversarial attacks and may be misled by malicious attack-
ers through carefully constructed adversarial examples. To
address this issue, researchers have proposed many defenses
against adversarial attacks, including several major ones.
Adversarial Training (Madry et al., 2018b) is one of the
most commonly used methods for defending against adver-
sarial attacks. The basic idea is to inject some adversarial
examples into the training data during the process of training
the deep learning model, so that the model can identify and
defend against these adversarial examples during training,
thereby improving the robustness of the model. Randomiza-
tion Defense (Sheikholeslami et al., 2020) is a method of
adding random noise or random perturbation to the input
data to increase the robustness of the model to adversarial
examples.

In contrast, another line of research (Yang et al., 2020,
2022; Cintas et al., 2021; Liu et al., 2018; Madry et al.,
2018a; Sutanto and Lee, 2021; Liang et al., 2021) expects to
detect adversarial examples directly at the model inference
stage. Some research on adversarial detection has applied
data transformations such as PCA to extract features from
the input and layers of neural networks (Li and Li, 2017;
Bhagoji et al., 2018). Many works use separate detection
neural networks (Cintas et al., 2021; Ko and Lim, 2021) to
detect adversarial examples. Another approach is to modify
existing networks to detect adversarial examples. Some of
these methods lead to a loss of accuracy for the model
to classify normal samples. There are also works (Yang
et al., 2020) that use the output of the middle layer as
feature attribution to detect adversarial samples. Defense

Jiaxing Li et al.: Preprint submitted to Elsevier Page 2 of 15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Interpretable Adversarial Example Detection via High-Level Concept Activation Vector

methods for other feature spaces are vulnerable to delib-
erate manipulation attacks against adversarial attacks. For
example, adversarial examples that conform to statistical
normal characteristics. Similar to our work, there are works
(Ko and Lim, 2021) using model interpretation methods
to detect adversarial examples. They propose unsupervised
detection of adversarial examples using a reconstruction
network trained exclusively on model interpretations of
clean examples. However, their approach depends on addi-
tional neural networks that are susceptible when an attacker
scrambles the images to fool both the original model and the
new neural network. As we will show in experiments, our
method achieves promising performance without requiring
additional neural networks.

2.3. Testing with concept activation vector
Recently, a series of studies have been devoted to pro-

viding explanations from the perspective of human "con-
cepts". The output of the method reveals important con-
cepts, rather than assigning importance to individual fea-
tures or pixels (Chattopadhay et al., 2018; Muhammad and
Yeasin, 2020; Selvaraju et al., 2017). For instance, when
detecting police cars, wheels and police signs are important
concepts. Testing with Concept Activation Vectors (TCAV)
(Kim et al., 2018) determines the importance of a given
concept for predicting that class. The original TCAV method
needs to manually define the concept set. The first step in
the TCAV approach is to define concepts. Just choose a
collection of examples that illustrate the concept or locate
a distinct dataset labeled with that concept.

The ACE (Ghorbani et al., 2019b) method extends
TCAV to automatically generate concept sets. ACE is a
explanation method that elucidates the entire class in a
trained classifier without needing human supervision. The
TCAV score aims to estimate the average positive influence
that concepts have on the predicted class, commonly used
for deep neural network classifiers. Given an example of a
concept, the TCAV score is the score of class images. If the
representations of these images in the activation space are
perturbed in the general direction of the concept example
representation in the same activation space, the prediction
score increases (using directional derivatives). Details are
described in the original article. The goal of this series of
work is to give a model interpretation of the concept space of
the dataset, which cannot be directly used to detect whether
a single picture is an adversarial example. Our adversarial
example detection method is a method for testing single
image samples based on Concept Activation Vector Testing.

3. Methods
In this part, we demonstrate our method, interpretable

adversarial example detection based on Concept Activation
Vector Testing. First, we introduce the threat model. Then
we detail the method we proposed. Our method can be
used for TCAV detection on a single sample. Finally, we
use simple and effective linear models for detecting mixed
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Adversarial 
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Input 
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Input 
Image

Model 
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Figure 1: A summary of the detection method we proposed.

adversarial examples. Figure 1 provides an overview of our
approach.

3.1. Adversarial model
We refer to the model that has been trained for inference

as the target model. We take into account a neural network
model that includes inputs 𝒙 ∈ ℝ𝑛 and an intermediate feed-
forward layer with 𝑚 neurons, like input inference and its
intermediate layer activations can be viewed as a function
𝑓 ∶ ℝ𝑛 → ℝ𝑚. The neural network from the middle layer to
the final output layer is regarded as a function ℎ ∶ ℝ𝑚 → ℝ.
The target model ℎ(𝑓 (𝒙)) is a neural network with input 𝒙
and output 𝑘 classes.

The attacker will use the adversarial examples 𝒙′ to
attack the victim model. In our assumption, the attacker
will use various state-of-the-art attack methods to generate
adversarial examples. Adversarial examples make the target
model ℎ(𝑓 (𝒙′)) wrongly output class 𝑘′.

In formal terms, for given parameters 𝜖 and 𝜃 of the
model, the most classic method for generating adversarial
samples is as follows:

𝑥′ = 𝑥 + 𝜖 ⋅ sign
[

∇𝑥ℎ(𝑓 (𝜃; 𝑥, 𝑦))
]

. (1)

For example, FGSM (Goodfellow et al., 2015), PGD
(Madry et al., 2018b), Deepfool (Moosavi-Dezfooli et al.,
2016), CW (Carlini and Wagner, 2017), DDN (Rony et al.,
2019), Newtonfool (Jang et al., 2017) and BoundaryAttack
(Brendel et al., 2018), Salt&pepper (Rauber et al., 2017)
methods. These attackers have access to the model parame-
ters as well as training and testing datasets, and the attackers
have all the permissions on the parameters required for these
attacks. We want to build a detection model that can detect
whether the input to a given model is an adversarial example
maliciously designed to misclassify the target model. We
will introduce methods for adversarial example detection
based on concept activation vectors.

3.2. Automated concept-based explanations of
normal samples

Our method is based on testing the concept activation
vectors of adversarial examples in a different manner than
normal examples. The black-box nature of deep neural
networks has been criticized for a long time. Researchers
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Figure 2: An example of the top 3 concept sets for two Imagenet classes and their adversarial examples. Here, we present
three randomly chosen examples of each class and its adversarial examples of top-3 important concepts (each concept patch
is displayed above its original image separated by a yellow line). For example, for this result, we can see that the three
most important concepts for Banana are concepts 1, 5, and 3, whereas the most important concepts for Banana adversarial
examples are concepts 9, 10, and 2.

have proposed a model interpretation method for outputting
heat maps like Grad-CAM (Selvaraju et al., 2017). But
recently there are also many studies (Adebayo et al., 2018;
Zhou et al., 2022) questioning this method of model inter-
pretation. We focus on the method for model interpretation
of Concept Activation Vectors (CAV) proposed by (Kim
et al., 2018). Subsequent work (Ghorbani et al., 2019b;
Yeh et al., 2020) has extended the method for automatic
concept generation (ACE). CAV provide a human-friendly
conceptual interpretation of intermediate states of neural
networks.

The key point of this approach to model interpretation is
to use the high-dimensional intermediate state of the neural
network as a support. The testing with concept activation
vector method provides a quantification of how important
a concept is to the classification result. We adopted this
method of directional derivatives to compute concept acti-
vation vectors testing. A concept activation vector is charac-
terized as the direction of activation values for that concept
set. We train a linear classifier between a set of concepts
and random counter-examples, then the value orthogonal
to the decision boundary is the concept activation vector.
We divide the picture into different patches through the
image segmentation algorithm. These patches make up the
set of concepts we need. For each concept, a corresponding
concept activation vector can be trained. First for normal
samples, we employ an automatic method to classify images

of each class starting from a given segmentation. Similar
segments are then grouped as instances of the same concept.
To assess segment similarity, this approach uses a spatially
efficient perceptual similarity measure for the activations
of the final layer within a convolutional neural network
(CNN). The final step is to return important concepts from
the extracted set.

By employing the method of linear interpretability, with
a set of examples that represents a concept of human inter-
est, we find a vector representing that concept in the activa-
tion space of intermediate layers of the neural network. We
consider activations in intermediate layers resulting from
input examples versus random examples from the concept
set. Then, we define the "concept activation vector" as
the normal to the hyperplane that distinguishes examples
according to the presence or absence of the concepts. For
example, when we collect a set of positive input samples
(e.g., the set of concepts produced by the ACE method
above) and a set of negative sample inputs (e.g., a selection
of random pictures). Then, we can train a binary linear clas-
sifier to differentiate the two sets of layer activations. This
classifier 𝒗𝐶 is the linear CAV of concept 𝐶 . Using CAV
and directional derivatives, we measure the responsiveness
of model output to input changes at neural activation layers
to elicit the direction of concepts.

If 𝒗𝐶 is the unit CAV vector of concept 𝐶 in the inter-
mediate layer, and 𝑓 (𝒙) is the neural network intermediate
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layer with input 𝒙, the "concept sensitivity" of the 𝑘 classes
output by the model to concept 𝐶 could be calculated as the
directional derivative 𝑆𝐶,𝑘(𝒙).

𝑆𝐶,𝑘(𝒙) = lim
𝜖→0

ℎ𝑘(𝑓 (𝒙) + 𝜖𝒗𝐶 ) − ℎ𝑘(𝑓 (𝒙))
𝜖

= ∇ℎ𝑘(𝑓 (𝒙)) ⋅ 𝒗𝐶 , (2)

Where ℎ𝑘 ∶ ℝ𝑚 → ℝ. The 𝑆𝐶,𝑘(𝒙) is a quantitative measure
of the responsiveness of model outputs to concepts at the
intermediate layer of the model. Note that it is not a metric
evaluated per feature (e.g., in contrast to per-pixel saliency
maps), but a scalar computed per concept over the entire
input or set of inputs.

3.3. Concept activation vector testing on a single
adversarial example

We wanted to explore whether TCAV for adversarial
examples differ from normal examples. But the original
TCAV is applicable to a set of samples. It cannot be directly
used for the detection of a single suspicious sample. For
adversarial examples we design a adversarial concept acti-
vation vector testing method for detecting single adversarial
examples.

Our method is different from the original TCAV in that
it can detect a single unknown sample image. Our approach
is based on a model interpretation of the model at the
concept level for normal samples. Therefore, we use the
generated concept set and CAV during the normal sample
classification process as known conditions.

Adversarial attacks attempt to disrupt the prediction of
the model with minimal sample perturbation, then peo-
ple can’t distinguish between an original image 𝒙 and its
adversarial example 𝒙′ based on the difference between
them. However, we observe that TCAV is affected by small
differences between 𝒙 and 𝒙′.

Figure 2 illustrates the important conceptual ordering of
the original image 𝒙 and its adversarial example version 𝒙′
subjected to FGSM attack. As shown in the figure we show
three randomly selected examples of the top 3 important
concepts of two classes and their adversarial examples. For
example, for this result, we can see that the three most
important concepts of Banana are the banana itself, whereas
the most important concept for the adversarial examples of
Banana is the background.

This classifier 𝒗𝐶 is a linear version of the normal sam-
ple concept 𝐶 . Through CAV and directional derivatives,
we assess the sensitivity of the model’s prediction 𝑘′ class
to input changes at neural intermediate activation layers to
elicit the numerical gap between adversarial examples and
normal examples.

𝑆𝐶,𝑘′ (𝒙′) = ∇ℎ𝑘′ (𝑓 (𝒙′)) ⋅ 𝒗𝐶 , (3)

Note that 𝒗𝐶 is the unit CAV vector of concept 𝐶 in the
model’s intermediate layer computed on normal samples,

𝑓 (𝒙) is the model’s intermediate layer neural network for
input 𝒙, and 𝑘′ classes for the model output. The concept
activation vector test is a batch of pictures to give the results,
and we propose a new concept activation vector algorithm
for each picture. After calculating the CAV of normal
samples, TCAV of unknown samples can be calculated
individually. This TCAV method for adversarial examples
uses misjudged new output predictions to differentiate.

Let 𝑘′ be the misjudgment label of the output of the
adversarial example 𝒙′ such that a specified supervised
learning task, and let 𝑋′

𝑘′ represent all adversarial examples
with the given 𝑘′ label. The is defined as directional deriva-
tive set generated by Adv-TCAV as

𝑎𝑑𝑣𝑇𝐶𝐴𝑉𝐶,𝑘′ =
{

𝑆𝐶,𝑘′ (𝒙′) ∶ 𝒙′ ∈ 𝑋′
𝑘′
}

. (4)

The proportion of the activation vector of the 𝑘′ class
input that is positively affected by the concept 𝐶 . Note that
the Adv-TCAV score uses a alternative measure considering
the magnitude of concept sensitivity.

To reconcile scale differences between different sets of
concepts, we use a binary linear classifier to distinguish
between adversarial examples and original images using
concept vector testing with different neurons on the training
set. The algorithm we propose is outlined in Algorithm 1

Algorithm 1 Algorithm of our method

Input:
𝐴𝑑𝑣 : Various attack methods to be detected
ℎ(𝑓 (𝑥)): Target model with input 𝑥
𝑛c: Number of clean sample class

Output:
label of whether the sample is an adversarial example

1: Initialization:
2: Data processing generates the sample 𝑥′ to be tested by

various attack methods 𝐴𝑑𝑣
3: for 𝑛 = 1 to 𝑛c do
4: Segment clean image 𝑥 forms the linear representa-

tion 𝒗𝐶 of concept 𝐶
5: Calculate directional derivative:
6: 𝑆𝐶,𝑘(𝒙) = ∇ℎ𝑘(𝑓 (𝒙)) ⋅ 𝒗𝐶
7: Calculate directional derivative of image 𝑥′:
8: 𝑆𝐶,𝑘′ (𝒙′) = ∇ℎ𝑘′ (𝑓 (𝒙′)) ⋅ 𝒗𝐶
9: end for

10: Data processing forms directional derivative set:
𝑎𝑑𝑣𝑇𝐶𝐴𝑉𝐶,𝑘′

11: Train a binary linear classifier on directional derivative
set 𝑎𝑑𝑣𝑇𝐶𝐴𝑉𝐶,𝑘′

12: Return: Trained classifier outputs whether a sample is
an adversarial example

4. Experiments
This section focuses on evaluating the effectiveness

of the detection method we proposed. We experimentally
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Figure 3: Examples of the top 3 concept sets produced by the 3 Imagenet classes. We illustrate three randomly picked
instances of the top 3 significant concepts for each class, each positioned above its corresponding original image, divided by
a yellow line. For example, using this result, we can see that the network uses the Minibus car frame and tires to classify.

evaluate Adv-TCAV on the Imagenet dataset. We first in-
troduce several state-of-the-art adversarial example attack
methods that we use. We then evaluate three common neural
network models and show the resulting set of concepts. We
further exemplify the worst and best categories on which our
method performs on the target model.

4.1. Target model and threat model settings
The evaluation of our method is conducted using the

ILSVRC2012 dataset. (ImageNet 1K) (Russakovsky et al.,
2015). With the ImageNet dataset, we initially have the
target classifier, which is vulnerable to adversarial attacks.
In our evaluation, we use the Googlenet (Szegedy et al.,
2015), Resnet34 (He et al., 2016), Inception-v3 (Szegedy
et al., 2016) model weights pre-trained on the ImageNet 1K
dataset officially given by Pytorch (Paszke et al., 2019). The
Googlenet model’s Top-1 error on ImageNet 1K is 30.22%
and the Top-5 error is 10.47%. The Inception-v3 model’s
Top-1 error on ImageNet 1K is 22.55%, and the Top-5 error
is 6.44%. The Top-1 error on 1K is 26.70%, and the Top-
5 error is 8.58%. These three models are chosen as target
classifiers because they are representative and widely used
deep neural network models.

Given a target classifier and a clean sample dataset
as input, model interpretations are collected to generate

concept sets and concept activation vectors (CAV). In our
evaluation, we use model interpretation methods to auto-
matically generate concept sets and corresponding concept
activation vectors (CAV). For each class label, the sensitiv-
ity degree Adv-TCAV value to the concept activation vector
(CAV) of each image collected training data, paired with
the appropriate labels, is employed to train a binary linear
classifier to distinguish adversarial samples from original
images. A summary of our method architecture is shown
in Figure 1.

Eight adversarial attack methods are utilized (includ-
ing white-box attacks like FGSM, PGD, Deepfool, CW,
DDN, Newtonfool and black-box attacks BoundaryAttack,
Salt&Pepper) to attack three models and 100 classes in
the randomly selected ImageNet2012 dataset. All attack
methods are implemented using the foolbox open-source
framework. (Rauber et al., 2017).

The following attack methods are considered, all of
which are based on open-source framework Foolbox.

• FGSM, Fast Gradient Sign Method (FGSM) proposed
by Goodfellow et al. is regarded as one of the classic
algorithms in adversarial attacks. We use the 𝐿1
form of FGSM. Additionally, based on the foolbox
framework, other parameter is epsilon=0.8.

Jiaxing Li et al.: Preprint submitted to Elsevier Page 6 of 15

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Interpretable Adversarial Example Detection via High-Level Concept Activation Vector

• PGD, Projected Gradient Descent (PGD), which
was proposed subsequently, is an improved attack
algorithm based on FGSM. The adverantages of PGD
lie in less perturbation and higher attack success rate.
We use the 𝐿2 form of PGD. Additionally, based
on the foolbox framework, other parameters are ep-
silon=1.0, rel_stepsize=0.025, abs_stepsize=None,
steps=50, random_start=True.

• The DeepFool algorithm focuses on minimizing the
𝐿2 distance to generate adversarial examples. PGD
and DeepFool both involve an iterative process.We
use the 𝐿2 form of DeepFool. Based on the fool-
box framework, other parameters are epsilon=0.3,
steps=50, candidates=10, overshoot=0.02, loss=’logits’.

• CW, Carlini and Wagner proposed a more refined
attack method that can control the confidence level.
Moreover, this attack method can derive variants
of various attack distances. We use the CW in the
form of 𝐿2. Based on the foolbox framework, other
parameters are epsilon=0.6, binary_search_steps=9,
steps=200, stepsize=0.01, confidence=0, abort early
= True, initial_const=0.001.

• Newtonfool, a simple gradient-descent-based algo-
rithm for finding adversarial samples, which performs
well in comparison to existing algorithms. Based
on the foolbox framework, other parameters are ep-
silon=0.8, steps=100, stepsize=0.01.

• DDN, DDNattack employs Decoupled Direction and
Norm 𝐿2 to create adversarial examples. Based
on gradient, DDNattack generates adversarial ex-
amples with minimal 𝐿2 norm misclassifications.
The work involves differentiating the image’s ad-
versarial disturbance’s direction and norm. Based
on the foolbox framework, other parameters are
epsilon=1200,init_epsilon =1.0, steps=100, gamma
= 0.05.

• Boundary attack, Brendel et al. proposed a black-box
method known as boundary attack, which relies solely
on model decisions without the need of gradient in-
formation. Based on the foolbox framework, other pa-
rameters are epsilon=1200, init_attack=None, steps=1000,
spherical_step=0.01, source_step=0.01 , step_adaptation
= 1.5, tensorboard = False, update_stats_every_k =
10, source_step_convergance = 1𝑒−07.

• Salt&Pepper, a non-iterative attack that does not rely
on gradients or involve any optimization process,
and their essence is the random insertion of white
(salt) and black (pepper) noise pixels in the image
that can be directly applied to the image. Based
on the foolbox framework, other parameters are ep-
silon=0.8, steps=100, across_channels=True, chan-
nel_axis=None.

In order to evaluate the performance of the method we
proposed, we made adversarial examples using images from
a subset of 100 classes randomly selected from the 1000
classes of the Imagenet dataset, and filtered out samples that
were misclassified by the model as well as failed attempts
(i.e., introducing a perturbation does not alter the original
class labels). Regarding (effective) adversarial examples,
Adv-TCAV values are obtained and combined with Adv-
TCAV values from the Imagenet test dataset (which is
benign) to create the evaluation dataset for our detection
method.

4.2. Evaluation on neural network models
We employ ACE to explain GoogLeNet, ResNet34, and

Inception-v3 models which have been pre-trained on the
ILSVRC 2012 dataset (ImageNet). To employ ACE, we se-
lect a subset consisting of 100 classes from the 1000 classes
in the dataset. Consistent with the results in the TCAV
paper, this importance score shows excellent performance
with small sample sizes (10 to 20) per concept. According
to our experiments on the ImageNet category, 60 images
were enough to extract a sufficient number of concept ex-
amples. Probably because these concepts appear frequently
in these images. The segmentation step is performed using
SLIC (Achanta et al., 2012), which uses 15, 50, and 80
superpixels per image for segmentation due to its speed and
performance. In our measurement of similarity, we checked
the Euclidean distance in the network layers in the ImageNet
training of the model, and for the three models Googlenet,
Resnet34, and Inception-v3 respectively selected the "in-
ception4c" layer, "layer3" layer, and "Mixed_6e" layer. As
shown in previous TCAV papers, earlier layers are better
for texture and color similarity, while later layers are better
for object similarity, and these layers have a better balance
between the two. We performed K-Means clustering and
removed outliers using Euclidean distance to the cluster
centers, and finally generated concept examples for each
class.

As shown in Figure 3, we show an example of the
top 3 concepts generated by the three classes of Minibus,
Tabby, and Stonewall after explaining Googlenet, where the
three concepts of each class are classified according to the
sensitivity of the model classification results to concepts
from above arranged to the bottom, the model classification
results are most sensitive to the top concepts. For each class,
we present the three most significant concepts using three
randomly selected examples (each example is displayed
above the original image, separated by a yellow line). The
figure shows that the approach takes into account concepts
of multiple levels of complexity. From the frame and wheels
of the Minibus to the skin textures of Tabby and the masonry
textures of Stonewall.

Each attack method corresponding to each class of each
model generates 100 adversarial samples (only samples
correctly identified by the model are used to generate adver-
sarial samples), and each class has a total of 800 adversarial
samples. Then, for each class, we select 800 clean samples
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Figure 4: The picture shows the ROC curve of the detection method under eight kinds of adversarial attacks, where the lines
of different colors represent 100 different classes; the model attacked in the first picture is Googlenet, the second picture is
Inception-v3, and the third picture is ResNet34.

(selected in ImageNet) and 800 corresponding adversarial
samples in the adversarial sample dataset, and we use Adv-
TCAV to extract the feature values of each sample about all
the concepts of the current class as all the features of this
sample, the feature dimension of each sample is 𝑁 ∗ 20,
where 𝑁 is the number of concepts previously generated for
each class. Finally, a dataset of 1600 samples is generated
for each class of each model.

We use the simple linear model SGDClassifier of the
Sklearn framework to train and test on the feature dataset.
The classifier fits up to 1000 times.True positive rate (TPR)
is defined as the proportion of adversarial images classified
as adversarial, and false positive rate (FPR) is defined as the
proportion of natural images classified as adversarial. The
ROC (Receiver Operating Characteristic) curve illustrates
the relationship between true positive rate (TPR) and false
positive rate (FPR). The ROC curves of ImageNet and
Googlenet, Inception-v3, and ResNet34 are shown in Figure
4, each of which contains 100 classes of ROC curves. The
results indicate that our method demonstrates excellent per-
formance on the ImageNet dataset. And as the complexity
of the model increases, our ROC curve still maintains a good
effect. Here are the definitions of the evaluation metrics we
used. In the experiment, we use the Acc, Recall and AUC as
evaluation metrics .

Acc: Describe the accuracy of the classification model,
ACC is obtained by dividing the number of correctly classi-
fied samples by the number of total samples. It shows how
well the model’s predictions correspond to the real labels in
the dataset. Acc=(TP+TN)/(TP+TN+FP+FN).

Recall: To calculate the recall rate of a classification
model, the ratio of correctly predicted positive samples to
the total number of actual positive samples is used. Recall
measures the model’s effectiveness in identifying positive
instances, with a higher recall indicating a greater ability to
correctly identify positive samples. Recall=TP/(TP+FN).

AUC: The axes of the ROC curve are false positive rate
(FPR) and true rate (TPR), AUC is the area under the ROC
curve. AUC is positively correlated with the performance of
the model.

Table 1
The performance of the detection method on different mod-
els, which contains the maximum, minimum and average
values of various evaluation metrics.

Model Googlenet Inception-v3 Resnet34

Acc(Max) 1.000 0.991 1.000
Acc(Min) 0.893 0.881 0.914
Acc(Average) 0.979 0.956 0.980
Recall(Max) 1.000 0.982 1.000
Recall(Min) 0.782 0.757 0.825
Recall(Average) 0.958 0.911 0.961
AUC(Max) 1.000 1.000 1.000
AUC(Min) 0.962 0.963 0.966
AUC(Average) 0.997 0.994 0.998

The evaluation results are presented in Table 1. It can
be seen that our method has a good classification effect
on the three models and the mixed data sets of normal
samples and adversarial sample data sets generated by eight
attack methods. The average values of the three evaluation
indicators are all more than 91%. In terms of accuracy, in
the results of 100 classes, the maximum value of the Acc
score of the three test models is above 99%, the minimum
value is above 88%, and the average value of 100 classes
is above 95%, which shows that our detection method is
strong. The accuracy is high and it can effectively detect
adversarial examples. In terms of recall rate, in the results
of 100 classes, the maximum Recall score of the three test
models is above 98%, the minimum value is above 75%, and
the average value of 100 classes is above 91%, which shows
that our detection method recognizes positive samples is
strong, and it is easier to detect normal samples. In terms of
AUC indicators, in the results of 100 classes, the maximum
AUC values of the three test models are all 1, the minimum
values are all above 0.96, and the average values of the
100 classes are all above 0.99, which demonstrates that the
performance of our detection method is competitive.
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Figure 5: Examples of the first five concept sets of two categories of normal samples and adversarial examples.

4.3. Differences in performance of detection
methods on different classes

Table 2
Defense Performance Comparison with four previous de-
fense methods on three models. The accuracy values of
the detection algorithm are shown below, with the maximum
value highlighted in bold.

Acc(Average) Googlenet Inception-v3 Resnet34

(Yang et al., 2022) 0.823 0.861 0.916
(Ko and Lim, 2021) 0.774 0.810 0.901
(Cintas et al., 2021) 0.926 0.891 0.851
(Yang et al., 2020) 0.768 0.812 0.883
Ours method 0.979 0.956 0.980

We illustrate the analysis with an example in figure
5. The figure below shows one of the best output results
of our detection model on Googlenet, the Siberian_husky
class. This class achieves an accuracy of 1. There is also
Googlenet’s worst numerical Stingray class for our detec-
tion model output results, and the accuracy rate of the test
set is 0.8937. We can observe that only the fourth concept
of the first five concepts of Stingray adversarial samples is
different from normal samples. And the top five concepts
of the Siberian_husky class adversarial examples are all
different from the normal examples. This is consistent with
our theory. The more sensitive an adversarial example is to a
set of concepts that differs from normal examples, the better
our method is.
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4.4. Comparison to previous approaches
Previous defense methods (Yang et al., 2020; Cintas

et al., 2021; Ko and Lim, 2021; Yang et al., 2022) against
adversarial attacks do not consider the concept of image
samples themselves. We study whether there is a difference
between unperturbed samples and adversarial examples
from the perspective of a higher-level concept of image
samples. So these previous methods are only for compari-
son. In Table 2, a comparison of these previous adversarial
sample defense methods is provided. Consistent with previ-
ous studies, we report the accuracy of detecting adversarial
samples generated by the attack methods. For comparative
experiments, we use the widely used Imagenet2012 dataset
for validation. We set the parameters of all attack algorithms
according to the default values in the foolbox. Obviously,
our method is effective in detecting adversarial samples.

5. Conclusion
In this paper, we have explored the use of concept acti-

vation vectors (CAVs) for detecting adversarial examples.
By designing a novel single-sample CAV testing method
and applying it to three pre-trained deep learning mod-
els (GoogLeNet, ResNet34, and Inception-v3), we demon-
strated that our approach effectively detects adversarial
examples, achieving competitive results compared to state-
of-the-art defense methods. Our key findings suggest that
CAVs can capture concept-level changes induced by ad-
versarial perturbations, providing a robust mechanism for
adversarial detection. However, we acknowledge the limi-
tations of our method in terms of computational efficiency
and model generalizability across various adversarial attack
scenarios. Future work could explore optimizing the CAV
detection process and extending it to more diverse datasets
and attack types.

A. Appendix
A.1. More detection method evaluation results in

details
We show our detection method on Googlenet, Incep-

tion_v3, and Resnet34 models on data of 100 Imagenet
classes each. The tabular data table 3, table 4 and table 5
includes the Accuracy rate, Recall value and AUC value
of the detection method on Googlenet, Inception_v3, and
Resnet34 respectively.
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Table 3
Performance of detection method on Googlenet on 100 class image data

Class Name Acc Recall AUC Class Name Acc Recall AUC
Minibus 0.992 0.983 1.000 Buckeye 0.963 0.923 0.996
Slug 0.979 0.957 1.000 Hummingbird 0.985 0.970 1.000
European Fire Salamander 0.963 0.923 0.986 Barracouta 0.998 0.996 1.000
Reflex Camera 0.985 0.970 1.000 Goose 0.988 0.974 1.000
Tabby 0.977 0.953 0.995 Chimpanzee 0.979 0.957 0.997
Siberian Husky 1.000 1.000 1.000 Trailer Truck 0.998 0.996 1.000
Komondor 0.994 0.987 1.000 Impala 0.983 0.966 0.999
Dowitcher 0.992 0.983 1.000 Ladle 0.902 0.800 0.962
Radio 0.996 0.991 1.000 White Wolf 0.994 0.987 1.000
Wallaby 0.956 0.911 0.992 Stopwatch 0.990 0.979 0.999
Packet 0.963 0.923 0.997 Alligator Lizard 0.988 0.974 0.997
Reel 0.996 0.991 1.000 Punching Bag 1.000 1.000 1.000
Wreck 0.952 0.902 0.998 Candle 0.990 0.979 1.000
Flute 0.971 0.940 1.000 Envelope 0.983 0.966 0.994
Sulphur-crested Cockatoo 0.983 0.966 0.999 White Stork 0.994 0.987 1.000
Hourglass 0.958 0.915 0.990 Lesser Panda 0.969 0.936 1.000
Bassoon 0.998 0.996 1.000 Black Grouse 1.000 1.000 1.000
Tailed Frog 0.998 0.996 1.000 Freight Car 0.992 0.983 1.000
Bullfrog 0.967 0.932 1.000 Tiger Beetle 0.996 0.991 1.000
Jacamar 0.998 0.996 1.000 Teapot 0.921 0.838 0.987
Schipperke 0.975 0.949 1.000 Mask 0.927 0.851 0.988
Greater Swiss Mountain Dog 0.967 0.932 0.997 Loupe 0.990 0.979 0.999
Crane 0.973 0.945 0.998 Windsor Tie 1.000 1.000 1.000
Knot 0.960 0.919 1.000 Vacuum 0.967 0.932 0.998
Eft 0.967 0.932 1.000 Guenon 0.998 0.996 1.000
Golf Ball 1.000 1.000 1.000 Handkerchief 0.946 0.889 0.998
West Highland White Terrier 0.988 0.974 1.000 Miniature Schnauzer 0.965 0.928 0.994
Pole 0.931 0.860 0.977 Pillow 0.917 0.830 0.994
Moped 0.988 0.974 1.000 Scorpion 0.981 0.962 0.993
Pier 0.992 0.983 1.000 Green Lizard 0.965 0.928 1.000
Yellow Lady’s Slipper 0.971 0.940 1.000 Nail 0.990 0.979 1.000
Baseball 0.996 0.991 1.000 Bouvier Des Flandres 0.981 0.962 1.000
Malinois 0.998 0.996 1.000 Shopping Cart 0.985 0.970 0.997
Brassiere 0.990 0.979 0.998 Ice Bear 0.975 0.949 0.995
Horse Cart 0.981 0.962 1.000 Ptarmigan 0.992 0.983 1.000
Siamese Cat 0.996 0.991 1.000 Trombone 0.969 0.936 0.994
Strainer 0.990 0.979 0.999 Seashore 0.996 0.991 1.000
Volleyball 0.998 0.996 1.000 Vestment 0.994 0.987 1.000
Stingray 0.894 0.783 0.975 Platypus 0.979 0.957 1.000
Scabbard 0.981 0.962 1.000 Mushroom 0.985 0.970 0.998
Stone Wall 0.979 0.957 1.000 Banana 0.965 0.928 0.996
Bloodhound 0.998 0.996 1.000 Buckle 0.971 0.940 1.000
Pick 0.981 0.962 1.000 Microphone 0.973 0.945 1.000
Scuba Diver 0.990 0.979 1.000 Theater Curtain 1.000 1.000 1.000
Ram 0.971 0.940 1.000 Macaque 0.979 0.957 0.999
Potpie 0.998 0.996 1.000 Walker Hound 0.992 0.983 1.000
Rhodesian Ridgeback 0.988 0.974 1.000 Howler Monkey 0.979 0.957 0.998
Sussex Spaniel 1.000 1.000 1.000 Armadillo 0.977 0.953 0.999
Scoreboard 0.992 0.983 1.000 Gordon Setter 0.994 0.987 1.000
Hippopotamus 0.963 0.923 0.996 Oil Filter 0.996 0.991 1.000
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Table 4
Performance of detection method on Inception_v3 on 100 class image data

Class Name Acc Recall AUC Class Name Acc Recall AUC
Minibus 0.963 0.923 0.997 Buckeye 0.968 0.934 0.996
Slug 0.913 0.821 0.995 Hummingbird 0.945 0.883 0.991
European Fire Salamander 0.949 0.892 0.989 Barracouta 0.988 0.974 0.998
Reflex Camera 0.992 0.983 1.000 Goose 0.937 0.873 0.985
Tabby 0.977 0.953 0.999 Chimpanzee 0.981 0.962 1.000
Siberian Husky 0.985 0.970 1.000 Trailer Truck 0.977 0.953 0.998
Komondor 0.975 0.947 1.000 Impala 0.952 0.902 0.991
Dowitcher 0.981 0.961 1.000 Ladle 0.881 0.757 0.977
Radio 0.952 0.902 0.988 White Wolf 0.990 0.979 1.000
Wallaby 0.927 0.849 0.994 Stopwatch 0.969 0.936 0.999
Packet 0.963 0.923 0.998 Alligator Lizard 0.938 0.872 0.988
Reel 0.967 0.932 0.996 Punching Bag 0.969 0.936 0.999
Wreck 0.981 0.962 0.999 Candle 0.948 0.894 0.993
Flute 0.925 0.847 0.993 Envelope 0.979 0.957 0.999
Sulphur-crested Cockatoo 0.957 0.909 0.998 White Stork 0.935 0.868 0.991
Hourglass 0.983 0.964 1.000 Lesser Panda 0.984 0.967 1.000
Bassoon 0.967 0.932 1.000 Black Grouse 0.958 0.915 0.997
Tailed Frog 0.977 0.953 0.997 Freight Car 0.956 0.911 0.997
Bullfrog 0.933 0.864 0.997 Tiger Beetle 0.928 0.847 0.989
Jacamar 0.985 0.968 1.000 Teapot 0.890 0.774 0.990
Schipperke 0.956 0.911 0.996 Mask 0.913 0.821 0.986
Greater Swiss Mountain Dog 0.965 0.928 0.995 Loupe 0.985 0.970 0.999
Crane 0.960 0.919 0.992 Windsor Tie 0.975 0.949 0.998
Knot 0.931 0.860 0.995 Vacuum 0.929 0.855 0.998
Eft 0.950 0.898 0.995 Guenon 0.992 0.983 1.000
Golf Ball 0.966 0.928 0.999 Handkerchief 0.960 0.919 0.996
West Highland White Terrier 0.935 0.868 0.979 Miniature Schnauzer 0.925 0.847 0.985
Pole 0.885 0.766 0.982 Pillow 0.956 0.911 0.994
Moped 0.985 0.970 1.000 Scorpion 0.975 0.948 0.997
Pier 0.948 0.894 0.993 Green Lizard 0.925 0.847 0.964
Yellow Lady’s Slipper 0.988 0.974 1.000 Nail 0.921 0.838 0.986
Baseball 0.981 0.962 1.000 Bouvier Des Flandres 0.981 0.962 0.999
Malinois 0.965 0.928 0.993 Shopping Cart 0.938 0.872 0.998
Brassiere 0.958 0.915 0.998 Ice Bear 0.985 0.970 0.997
Horse Cart 0.954 0.901 0.992 Ptarmigan 0.964 0.926 1.000
Siamese Cat 0.966 0.928 0.996 Trombone 0.929 0.855 0.995
Strainer 0.965 0.928 0.995 Seashore 0.946 0.889 0.993
Volleyball 0.967 0.932 0.999 Vestment 0.960 0.919 0.999
Stingray 0.929 0.855 0.987 Platypus 0.983 0.966 1.000
Scabbard 0.923 0.843 0.985 Mushroom 0.898 0.791 0.981
Stone Wall 0.950 0.898 0.987 Banana 0.929 0.855 0.999
Bloodhound 0.969 0.936 0.998 Buckle 0.923 0.843 0.993
Pick 0.985 0.970 1.000 Microphone 0.965 0.928 0.991
Scuba Diver 0.952 0.903 0.985 Theater Curtain 0.963 0.923 0.998
Ram 0.956 0.911 0.999 Macaque 0.985 0.970 0.998
Potpie 0.981 0.962 0.999 Walker Hound 0.985 0.970 1.000
Rhodesian Ridgeback 0.944 0.885 0.984 Howler Monkey 0.960 0.919 0.988
Sussex Spaniel 0.977 0.953 1.000 Armadillo 0.961 0.919 0.993
Scoreboard 0.962 0.922 1.000 Gordon Setter 0.985 0.970 0.996
Hippopotamus 0.949 0.892 0.992 Oil Filter 0.966 0.928 0.997
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Table 5
Performance of detection method on Resnet34 on 100 class image data

Class Name Acc Recall AUC Class Name Acc Recall AUC
Minibus 0.979 0.957 1.000 Buckeye 0.990 0.978 1.000
Slug 0.955 0.905 0.999 Hummingbird 0.984 0.975 0.999
European Fire Salamander 0.981 0.960 0.999 Barracouta 0.985 0.970 1.000
Reflex Camera 0.991 0.982 1.000 Goose 0.964 0.924 0.998
Tabby 0.991 0.982 1.000 Chimpanzee 0.990 0.979 1.000
Siberian Husky 0.994 0.987 1.000 Trailer Truck 0.983 0.966 1.000
Komondor 1.000 1.000 1.000 Impala 1.000 1.000 1.000
Dowitcher 1.000 1.000 1.000 Ladle 0.921 0.851 0.987
Radio 0.960 0.919 0.995 White Wolf 0.996 0.991 1.000
Wallaby 0.954 0.900 0.999 Stopwatch 0.981 0.962 1.000
Packet 0.977 0.953 0.997 Alligator Lizard 0.950 0.900 0.998
Reel 0.949 0.892 0.993 Punching Bag 0.989 0.978 0.999
Wreck 0.975 0.949 0.999 Candle 0.963 0.923 0.998
Flute 0.973 0.945 0.997 Envelope 0.981 0.962 0.997
Sulphur-crested Cockatoo 1.000 1.000 1.000 White Stork 0.991 0.981 1.000
Hourglass 0.982 0.963 0.999 Lesser Panda 0.993 0.984 1.000
Bassoon 0.994 0.987 1.000 Black Grouse 1.000 1.000 1.000
Tailed Frog 0.990 0.979 1.000 Freight Car 0.992 0.983 1.000
Bullfrog 0.998 0.996 1.000 Tiger Beetle 0.989 0.975 1.000
Jacamar 1.000 1.000 1.000 Teapot 0.979 1.000 0.996
Schipperke 0.992 0.983 1.000 Mask 0.946 0.889 0.998
Greater Swiss Mountain Dog 1.000 1.000 1.000 Loupe 0.973 0.945 0.992
Crane 0.990 0.979 0.999 Windsor Tie 1.000 1.000 1.000
Knot 0.917 0.838 0.981 Vacuum 0.958 0.915 0.998
Eft 0.990 0.978 1.000 Guenon 1.000 1.000 1.000
Golf Ball 0.973 0.941 0.997 Handkerchief 0.981 0.962 0.999
West Highland White Terrier 0.979 0.957 0.998 Miniature Schnauzer 0.994 0.987 1.000
Pole 0.938 0.872 0.989 Pillow 0.954 0.936 0.997
Moped 0.985 0.970 0.999 Scorpion 0.975 0.946 0.998
Pier 0.979 0.957 1.000 Green Lizard 0.958 0.915 0.995
Yellow Lady’s Slipper 0.993 0.982 1.000 Nail 0.915 0.826 0.967
Baseball 0.988 0.974 1.000 Bouvier Des Flandres 0.996 0.992 1.000
Malinois 0.989 0.977 1.000 Shopping Cart 0.988 0.974 1.000
Brassiere 0.998 0.996 1.000 Ice Bear 0.988 0.975 1.000
Horse Cart 0.996 0.991 1.000 Ptarmigan 0.991 0.980 1.000
Siamese Cat 0.991 0.980 1.000 Trombone 0.977 0.953 0.998
Strainer 0.963 0.923 0.996 Seashore 0.977 0.953 1.000
Volleyball 0.998 0.996 1.000 Vestment 0.996 0.991 0.999
Stingray 0.954 0.906 0.997 Platypus 0.987 0.973 0.999
Scabbard 0.967 0.932 0.993 Mushroom 0.988 0.974 1.000
Stone Wall 0.955 0.904 0.999 Banana 0.949 0.896 0.997
Bloodhound 1.000 1.000 1.000 Buckle 0.925 0.848 0.994
Pick 0.985 0.970 0.999 Microphone 0.973 0.945 0.998
Scuba Diver 0.992 0.983 0.999 Theater Curtain 1.000 1.000 1.000
Ram 0.994 0.987 1.000 Macaque 0.990 0.979 1.000
Potpie 0.993 0.986 0.999 Walker Hound 1.000 1.000 1.000
Rhodesian Ridgeback 0.998 0.996 1.000 Howler Monkey 0.998 0.996 1.000
Sussex Spaniel 1.000 1.000 1.000 Armadillo 0.979 0.953 0.999
Scoreboard 1.000 1.000 1.000 Gordon Setter 1.000 1.000 1.000
Hippopotamus 0.976 0.945 1.000 Oil Filter 0.987 0.972 1.000
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