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Abstract

When an accurate representation of multivariate data is required across both the body

(described by non-extreme observations) and the tail (defined by the extreme obser-

vations) regions, it is crucial to have a model that is able to characterise the joint

behaviour across both regions. In this thesis, we focus on developing dependence mo-

dels that represent the entire distribution without the need to explicitly define each

region.

We propose two dependence models that fit the body and tail regions. For the

first model, we construct the copula from a mixture of two copulas that are defined on

the whole support of the data, and blended through a dynamic increasing weighting

function. In this way, we give more weight to a copula tailored to the body for lower

values, and more weight to a copula tailored to the tail for larger values. This ensures

that there is a smooth transition between the two regions. For the second model, we

construct a copula model based on a standard mixture of Gaussian distributions. As

opposed to the first model, we avoid choosing a priori which copula families to include

in the model, and are only required to determine the number of mixture components

in the model. Moreover, we show that it scales relatively well to dimensions beyond

the bivariate case. For both models, we derive (sub-)asymptotic dependence properties

for specific model configurations, and show that they are flexible in capturing a broad

range of extremal dependence structures through simulation studies.

Motivated by the computational resources required to evaluate the likelihood func-
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tion of the proposed models, we also explore likelihood-free approaches that use neural

networks to perform inference. In particular, we assess the performance of neural Bayes

estimators in estimating the model parameters, both for one of the models introduced

for the joint body and tail, and further complex extremal dependence models. We also

propose using neural networks as classifiers for model selection. In this way, we pro-

vide a toolbox for simple fitting and model selection of complex extremal dependence

models.

Methods to estimate extremal probabilities of complex environmental phenomena

are presented; these result from participation in a challenge at the 2023 EVA conference.

We propose using generalised additive models as well as a conditional extremes approach

to estimate such quantities.
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Chapter 1

Introduction

1.1 Motivation

Extreme events impact most people at some point in their lives. Consider for example

the recent floods in Valencia in Spain, the wildfires in Pedrógrão Grande in Portugal in

2017, or even the 2008 financial crisis. Such events have undeniably led to significant

humanitarian disasters and financial losses, from property destruction to the loss of life.

Understanding such phenomena is crucial to mitigate their effects and to prevent their

recurrence. Furthermore, when these rare observations are triggered by other events,

whether extreme or not, joint modelling is essential to fully comprehend such processes.

Extreme value theory offers powerful statistical tools to model these impactful events

– individually or jointly – and help in their prevention.

The typical approach to modelling extreme observations involves defining an ex-

tremal region, which usually requires the choice of a threshold value, or vector, above

which observations are considered extreme. In a multivariate setting, however, defining

such a region is more complex than in the univariate case, as there are various ways of

classifying observations as extreme. In addition, the choice of threshold is often arbi-

trary and may sometimes be too simplistic. These limitations can be concerning as they

1
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might lead to an inaccurate representation of the extremal structure, or introduce extra

sensitivity to the results, with small changes in the value of the threshold(s) potentially

leading to different outcomes.

These issues can be overcome by considering models that are flexible in bridging

between the non-extremal (i.e., ‘body’) and extremal (i.e., ‘tail’) regions. Additionally,

in some situations, having an accurate fit of the body can be as important as repre-

senting the tail correctly. For instance, understanding the effect of one pollutant on

another can be as essential as analysing their individual effect, especially when harm-

ful levels of one subset of pollutants occur within the body of the data. Similarly, in

financial applications, the most severe losses typically happen in the tail but may be

dependent on liabilities that are not extreme. Since modelling the extreme observations

requires asymptotically justified models, and empirically estimating the non-extremal

region might not be sufficient, having an accurate representation of both regions is not

straightforward. Several models that can fit the body and tail regions simultaneously

have been proposed in the univariate framework, but relatively scarce work has been

done when moving to a multivariate setting. The primary aim of this thesis is to develop

dependence models that jointly fit these two regions, while avoiding strong assumptions

such as choosing a threshold vector, or the need to define an extremal region.

Owing to their flexibility, we adopt a copula-based framework throughout this the-

sis (see e.g, Sklar, 1959). To do so, we construct copula models based on different

mixture model densities. This process requires inversion of distribution functions, and

numerical integration of density functions, both marginal and joint. Such operations

result in likelihood functions that are computationally expensive to evaluate, leading to

dimensionality restrictions, and potential barriers in the use of these models in practice.

The secondary aim of this thesis is to therefore explore alternative methods to perform

inference for complex models, enabling their wider application.

It is often the case that generating data from the model is straightforward and com-
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putationally efficient, even when evaluating its likelihood is burdensome. Likelihood-

free approaches (also known as simulation-based methods) exploit this advantage to

estimate the model parameters. In this thesis, we focus on approaches that levera-

ge neural networks. In particular, we explore the utility of neural Bayes estimators

(Sainsbury-Dale et al., 2024a) for inferring the parameters of one of the proposed mix-

ture models, as well as of copula models from the bivariate extremes literature, which

can interpolate between two regimes of extremal dependence (asymptotic independence

and dependence, defined in Section 2.2.4 of Chapter 2).

1.2 Overview of thesis

As stated, our primary aim is to develop dependence models that can accurately rep-

resent the body and tail regions jointly. While there is a rich body of literature on uni-

variate models which achieve this, there remains significant potential for multivariate

models. Given the computational intensity to fit such models, we then focus on aiding

their inference process by leveraging neural network-based likelihood-free approaches.

This thesis is organised as follows:

Chapter 2 gives an overview of the key modelling strategies used in extreme value

theory. We begin by briefly introducing the standard approaches to univariate extremes,

followed by an extensive review of univariate mixture models that consider both the

body and tail regions. We then introduce the key concepts when moving to the multi-

variate extremes framework, including the basic concepts of copula theory. Similarly to

the univariate case, we provide a review of multivariate mixture models which concern

the modelling of the full distribution. We finish by exploring likelihood-free approaches,

especially those that leverage neural networks, to perform inference when the evaluation

of the likelihood is computationally burdensome.

In Chapter 3, we propose a dependence model that is able to represent the body
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and tail regions of bivariate data accurately. The proposed model blends two copulas

with different characteristics over the whole range of the data support. In particular,

one copula is tailored to the body and the other to the tail, with a dynamic weighting

function employed to smoothly transition from one region to the other. The tail depen-

dence properties of the model are investigated numerically, and derived analytically for

two particular cases. Through simulation studies we show that the model is identifiable

and is sufficiently flexible to capture a wide variety of structures. Finally, we apply the

model to study the dependence between ozone concentration and temperature at two

sites in the UK, showing that the model is capable of capturing complex dependence

structures.

In Chapter 4, we introduce a different copula model, which is based on a mixture of

Gaussian distributions. This copula also avoids the need to define an extremal region,

and is scalable to dimensions beyond the bivariate case. We derive sub-asymptotic

dependence measures for a simplified model specification, and through simulations, we

show that the model is identifiable up to dimension d = 5, and that it is able to capture

a range of extremal dependence structures. Finally, we apply the proposed model to a

5-dimensional seasonal air pollution data set, previously analysed in the multivariate

extremes literature. Through pairwise, trivariate and 5-dimensional analyses, we show

the flexibility of the Gaussian mixture copula in capturing different joint distributional

behaviours and its ability to identify potential graphical structure features, both of

which can vary across the body and tail regions.

In Chapter 5, we provide an amortised likelihood-free model selection and inference

toolkit which leverages neural networks, whereby the best model is selected for a given

data set and its parameters subsequently estimated using neural point estimation. To

do so, we start by exploring the properties of neural Bayes estimation (Sainsbury-Dale

et al., 2024a) for parameter inference for several flexible bivariate extremal dependence

models, with a view to aiding their routine implementation. We focus specifically on the
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model proposed in Chapter 3 and on models that are able to interpolate between the

two regimes of extremal dependence at an interior point of the parameter space. Owing

to the absence of likelihood evaluation in the inference procedure, classical information

criteria such as the Bayesian information criterion (BIC) cannot be used to select the

most appropriate model. Instead, we propose using neural networks as classifiers for

model selection, and examine their performance for model selection comparing with

BIC, when such criterion is available. We apply our classifiers and estimators to analyse

the pairwise extremal behaviour of changes in horizontal geomagnetic field fluctuations

at three different locations. We show that we are able to obtain fast and reliable

estimates of the extremal dependence structure for each pair.

Chapter 6 was written following entry of the Lancopula Utopiversity team to tackle

the data challenge of the 2023 Extreme Value Analysis conference. The aim of the

challenge was to estimate extremal probabilities (or quantiles) of complex environmental

phenomena, and it was split into 4 challenges: C1 - C4. Challenges C1 and C2 concern

univariate estimation, whereas challenges C3 and C4 comprise of multivariate problems.

For C1 and C2, we propose a flexible modelling approach, which relies on generalised

additive models, to estimate extreme quantiles of a non-stationary time series. For

challenge C3, we propose an extension of the modelling approach of Wadsworth and

Tawn (2013) to estimate joint probabilities with non-stationary extremal dependence.

Finally, for challenge C4, we identify sub-groups of the data by employing a dimension

reduction technique based on exploratory analysis of the pairwise extremal dependence

across 50 locations. By assuming that these sub-groups are independent of each other we

estimate joint probabilities by applying the conditional extremes approach of Heffernan

and Tawn (2004) within each cluster.

In Chapter 7, we summarise the contributions of this thesis as well as discuss some

possible avenues for further work.



Chapter 2

Literature review

2.1 Univariate extreme value theory

In many applications, where we are concerned about the large (extreme) values, we

are interested in methodology for modelling the tails of a distribution. In a univariate

framework, there are a range of methods available to achieve this goal; these are re-

viewed in Coles (2001) for instance. We introduce the two most common approaches:

the generalised extreme value (GEV) distribution in Section 2.1.1 and the generalised

Pareto (GP) distribution in Section 2.1.2. Finally, in Section 2.1.3 we give an overview

of available methods (herein referred to as ‘extreme value mixture models’ or EVMMs)

able to model non-extreme as well as extreme values simultaneously; these models are

important when the aim is to represent these two regions correctly.

2.1.1 Generalised extreme value distribution

Let X1, . . . , Xn be a series of independent and identically distributed (i.i.d.) random

variables with common distribution function F. The upper tail behaviour of F can be

characterised by considering the maximum of this series,Mn = max{X1, . . . , Xn}. Simi-

larly, the lower tail can be modelled by noting that min{X1, . . . , Xn} = −max{−X1, . . . ,

6
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−Xn}. The distribution of Mn is then given by

Pr(Mn ≤ z) =Pr(X1 ≤ z, . . . , Xn ≤ z)

=Pr(X1 ≤ z) . . .Pr(Xn ≤ z) = F n(z).

However, for any z < xF , where xF is the upper end-point of F, the distribution of

Mn is degenerate to a point mass on xF , since F n(z) → 0 as n → ∞. This degeneracy

problem can be overcome by considering the extremal types theorem of Leadbetter

et al. (1983). This states that if there exist sequences of constants {an > 0} and {bn}

such that

Pr

(
Mn − bn
an

≤ z

)
→ G(z) as n→ ∞,

where G is a non-degenerate distribution function, then G belongs to the family of gene-

ralised extreme value (GEV) distributions. In this situation, the distribution function

F of each variable Xi (i = 1, . . . , n) is said to lie in the domain of attraction of G. The

distribution function of the GEV distribution is defined as follows

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ

+

}
, (2.1.1)

where x+ = max{x, 0}, and µ ∈ R, σ > 0 and ξ ∈ R are the location, scale and

shape parameters, respectively. The shape parameter ξ determines which GEV family

G belongs to: when ξ > 0, the GEV corresponds to a Fréchet distribution, whereas if

ξ < 0, then G is a Weibull distribution. In the limit case ξ → 0, the GEV distribution

becomes a Gumbel distribution.

Although the normalising constants {an > 0} and {bn} are unknown in practice,

assuming that equation (2.1.1) holds for large n yields that

Pr(Mn ≤ z) ≈ G

(
z − bn
an

)
= G∗(z),
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where G∗ is a member of the GEV family with different location and scale parameters µ∗

and σ∗. In this way, the normalising constants are absorbed into µ∗ and σ∗, allowing us

to use the GEV distribution to model block maxima data. Such data are derived by first

being split into m blocks of sequences of observations of size n, and then by taking the

maximum for each block, obtaining in this way the sequence Mn,1, . . . ,Mn,m. Choosing

the size of the blocks constitutes, however, a trade-off between bias and variance as a

value of n too small can lead to biased results, whilst choosing a large n, will mean

fewer blocks m, causing higher variability. This approach is usually known as the block

maxima approach and is illustrated in the left plot of Figure 2.1.1.

2.1.2 Generalised Pareto distribution

A major drawback of just considering the maximum within a block is that it can lead

to some extreme observations being disregarded during the inference procedure. This

may be the case when several large values occur in the same block for example. A

common alternative is to treat the observations of a sequence that exceed some high

threshold u as extreme events.

Consider the series of i.i.d. random variables X1, . . . , Xn with common distribution

function F with upper end-point xF , and let X be an arbitrary element of this sequence.

Pickands (1975) states that, if F is in the domain of attraction of the GEV, then there

exists a continuous function g(u) > 0 such that, as u→ xF

Pr

(
X − u

g(u)
≤ z

∣∣ X > u

)
→ H(z),

for all z > 0. In this case, H is the cumulative distribution function of a generalised
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Pareto (GP) distribution, and takes the form

H(z) =


1−

(
1 + ξ

z

φ

)−1/ξ

+

, if ξ ̸= 0,

1− exp

{
− z

φ

}
, if ξ → 0,

(2.1.2)

where x+ = max{x, 0}, φ > 0 and ξ ∈ R are the scale and shape parameters, res-

pectively. In addition, parameter ξ is the same as the GEV shape parameter from

equation (2.1.1). As with the normalising constants in the GEV framework, the function

g is unknown in practice. However, assuming that (2.1.2) holds for some large threshold

u, the threshold exceedances can be modelled as

Pr(X − u ≤ z | X > u) ≈ H

(
z

g(u)

)
= H∗(z),

where H∗ is a GP distribution with different scale and shape parameters, allowing us

to use the GP distribution to model the exceedances above u.

Similarly to the GEV case, choosing the threshold u represents a bias-variance trade-

off: a value too low for the threshold may result in bias, whereas a high value for u may

lead to high variability in the parameter estimates. Overall, the threshold u should

be small enough that there is sufficient data to model, but large enough to ensure a

valid asymptotic approximation of the results. There are several methods available

to select the threshold; see Coles (2001), Scarrott and MacDonald (2012), Wadsworth

(2016), Northrop et al. (2017) and Murphy et al. (2024) for instance. This approach is

usually known as the peaks over threshold approach and is illustrated in the right plot

of Figure 2.1.1.

Extended generalised Pareto distribution

Papastathopoulos and Tawn (2013) propose an extension of the GP distribution given

in equation (2.1.2) that reduces the sensitivity to the threshold choice by allowing a
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Figure 2.1.1: Block maxima approach (left) and Peaks over threshold approach (right)
in simulated data. The red points indicate the data used to fit the GEV and GP
distributions, respectively. The vertical lines in the left plot indicate the block length
used, and the horizontal line in the right plot indicates the threshold used.

lower threshold to be selected. Thus, they construct parametric models for X − u |

X > u which are more flexible than the GP distribution, and can be fitted at lower

thresholds while ensuring the tails are asymptotically equivalent to the GP distribution.

The probability density functions (pdfs) of the three proposed extended GP (EGP)

distributions are defined below as

EGPD1: f(z) =


|ξ|

Be(κ, |ξ|−1)

[
1−

(
1 + ξ

z

σu

)− |ξ|
ξ

+

]κ−1

h(z), ξ ̸= 0,

xκ−1

Γ(κ)
h(z), ξ → 0,

(2.1.3)

EGPD2: f(z) =


1

Γ(κ)

[
1

ξ
log

(
1 + ξ

z

σu

)
+

]κ−1

h(z), ξ ̸= 0,

xκ−1

Γ(κ)
h(z), ξ → 0,

(2.1.4)

EGPD3: f(z) =


κ

[
1−

(
1 + ξ

z

σu

)− 1
ξ

+

]κ−1

h(z), ξ ̸= 0,

κ

(
1− exp

{
− z

σu

})κ−1

h(z), ξ → 0,

(2.1.5)

where Be is the Beta function, Γ is the Gamma function and h is the density function
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of the GP distribution given in equation (2.1.2). Through the parameter κ > 0, more

flexibility is added to the body of the distribution whilst the behaviour of the tails

remains unchanged. The three EGP distributions reduce to the GP distribution when

κ = 1. More recently, Gamet and Jalbert (2022) propose three complementary models

to the EGP distributions whose density at the threshold is positive and finite, which

might not always be the case with the EGP distributions proposed by Papastathopoulos

and Tawn (2013). Further details can be found in Papastathopoulos and Tawn (2013)

and Gamet and Jalbert (2022).

2.1.3 Extreme value mixture models

As mentioned in Section 2.1.2, the choice of threshold u not only represents a bias-

variance trade-off, but can also be a subjective choice. Furthermore, once the choice

is made, the inherent uncertainty in subsequent inferences is often ignored. A way

of overcoming these issues is by considering models that choose a distribution for the

non-extreme observations (known as the ‘bulk’) along with an appropriate fit for the

tail region of a data set; by implicitly or explicitly estimating u, these models aim at

accounting for the uncertainty in the choice of threshold. A review of several of these

approaches, herein referred to as ‘extreme value mixture models’ (EVMMs), is given in

Scarrott and MacDonald (2012).

In general, it is standard practice for EVMMs to model the extreme region using

a GP distribution, whilst the modelling of the bulk is implemented in a parametric,

semi-parametric or non-parametric way. Furthermore, care is needed to guarantee that

neither the bulk nor tail have a big influence on one another. In spite of that, the two

regions cannot be fully disjoint as information is shared between them. Depending on

the construction of each model, defining a threshold u above which the GP distribution

is fitted to the data is still necessary; however, this threshold is often treated as a

parameter to be estimated.
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There exist several EVMMs available in the literature. For instance, Frigessi et al.

(2002) propose fitting two distributions (one of which being the GP distribution) to

the whole data, avoiding the need for estimating a threshold u. Through a dynamic

weighting function p that lies in (0, 1], more weight is given to the bulk distribution at

low ranges of the data, and more weight is given to the GP distribution in the upper

tail. The density of the proposed model is defined as below

f(x) =
[1− p(x)]d(x) + p(x)h(x)

K
, x ≥ 0, (2.1.6)

where d is the density of a distribution with light tail, h is the density of the GP

distribution, p is increasing in x, and

K =

∫ ∞

0

[1− p(x)]d(x) + p(x)h(x)dx

is a normalising constant. In general, a smooth transition between the bulk and tail

models is achieved with model (2.1.6); however, this does not always happen as choosing

the unit step function as the weighting function p leads to discontinuity between the

two regions. Therefore, care is needed when choosing p if a smooth transition is the

goal.

In turn, de Mendes and Lopes (2004) propose a data driven approach where both

tails are modelled using a GP distribution, and the bulk is modelled using a left

and right truncated Gaussian. To do so, the authors first standardise the data using

Yi := (Xi −median(X))/ | Xi −median(X) | for i = 1, . . . , n. The proposed density is

then given as follows

f(y) = plhl(y − ul) + (1− pl − pu)d(y − uu) + puhu(y),

where pl and pu represent the proportions of the data in the lower and upper tails, hl
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and hu are densities of a GP distribution fitted to the lower and upper tails, respectively,

with hl(y) = −hu(y), d is the density of a standard Gaussian distribution truncated at

ul and uu, and ul < 0 and uu > 0 are the thresholds for the GP distribution fit to the

lower and upper tails, respectively. More details can be found in de Mendes and Lopes

(2004).

The model proposed by Behrens et al. (2004) assumes a distributionD below thresh-

old u, that needs to be estimated, and a GP distribution above. The density of the

model is given as

f(x) =


d(x), if x < u,

φuh(x− u), if x ≥ u,

(2.1.7)

where h is the density of a GP distribution as defined in equation (2.1.2) and

φu = 1−D(u) is the probability of exceedances. This model exhibits a discontinuity at

threshold u and performs poorly when there is a smooth transition at u. Furthermore,

a poor fit in the bulk region will affect the location of the threshold, which in turn will

impact the GP fit to the tail; see Behrens et al. (2004) for more details.

Tancredi et al. (2006) propose modelling the bulk distribution as a mixture of uni-

form distributions. In addition, the authors consider two different thresholds, the usual

threshold u used to fit the GP distribution, which is estimated through the inference

procedure, and a threshold u0 < u, which is known to be too low, and acts as the start-

ing point for the modelling procedure. More specifically, the density of the proposed

model is defined as follows

f(x) =


(1− φu)

k∑
j=1

ωi1[aj ,aj+1)(x), if u0 < x < u,

φuh(x− u), if x ≥ u,

where
∑k

j=1wj(aj+1 − aj) = 1, and aj < aj+1 with a1 = u0 and ak = u, wj ∈ [aj, aj+1),

j = 1, . . . , k, are the unknown parameters of the model. As before, h is the density of
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a GP distribution and φu is the probability of exceedances.

The discontinuity at the threshold present in model (2.1.7) is avoided in the model

proposed by Carreau and Bengio (2009) by forcing continuity up to the first derivative

of the density function. Additionally, the distribution fitted below threshold u is taken

as the Gaussian distribution. The probability density function of the proposed model

is given as

f(x) =


γ−1d(x), if x < u,

γ−1h(x− u), if x ≥ u,

where γ is a re-weighting parameter that ensures that function f integrates to one, d

is the pdf of a Gaussian distribution and h is the pdf of the GP distribution. Due to

the continuity constraints enforced, the threshold u and the GP scale parameter σ are

computed implicitly as a function of the remaining model parameters. More details can

be found in Carreau and Bengio (2009).

The model introduced in Cabras and Castellanos (2010) builds upon the model of

Behrens et al. (2004). However, a distribution D is not assumed for the bulk; instead,

the non-extreme observations are first binned into equally spaced counts, and then

modelled by a Poisson generalised linear model with a smoother polynomial assumed

for the mean parameter. In this way, a more flexible fit to the bulk is achieved. The

model proposed by do Nascimento et al. (2012) is built similarly to the model in equation

(2.1.7), where the bulk is now modelled using a weighted mixture of Gamma densities.

In particular, the authors take D and d to be the distribution and density functions of

a mixture of k Gamma distributions given by

d(x) =
k∑
j=1

ωjπj(x), (2.1.8)

where ωj are the mixture weights, and πj are the probability density functions of a
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Gamma distribution, j = 1, . . . , k.

A kernel density estimator is used to model the bulk in the model proposed by

MacDonald et al. (2011), which is taken as a mean zero Gaussian probability density

function. The proposed density is given by

f(x) =


(1− φu)

d(x)

D(u)
, if x ≤ u,

φuh(x− u), if x > u,

where h is the density of a GP distribution, φu represents the probability of being

above threshold u as before, and d and D are non-parametric density and distribution

functions. In particular, d is approximated by d̂, given as

d̂(x) =
1

n

n∑
i=1

Kλ(x− xi),

where Kλ is a zero mean Gaussian density function with standard deviation λ, and n

is the sample size.

An extension to the EGP distributions given in equations (2.1.3), (2.1.4) and (2.1.5)

was proposed by Naveau et al. (2016) in which the authors aim at modelling the low,

moderate and large values of a data set jointly. For that, Naveau et al. (2016) cons-

truct a model that resembles a GP distribution in the lower and upper tails while

avoiding the threshold choice, since this threshold brings discontinuities between low

and moderate observations, and between moderate and extreme observations. Let U be

a uniform random variable defined on [0, 1] and let D represent a continuous cumulative

distribution function (cdf) on [0, 1]. Naveau et al. (2016) construct a family of random

variables defined by X := H−1 (D−1(U)) , whose density is given as

f(x) = d[H(x)]h(x),
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for all x > 0. In this equation, H is the GP distribution with scale parameter σ, h is

its density, and d is the probability density function corresponding to distribution D.

Additionally, distribution D satisfies some constraints such that the upper tail is equiv-

alent to a Pareto tail, and it resembles a GP distribution with negative shape and finite

upper-end point. Lastly, the lower and upper tails are bridged together with the bulk

via function D; see Naveau et al. (2016) for further details.

In the approach proposed by Huang et al. (2019), the full density is modelled using a

cubic spline in the histogram of the data. Furthermore, while not imposing a parametric

form to fit the bulk of the data, the proposed model still guarantees that the upper tail

behaves like a GP distribution. More specifically, the authors consider X to be a heavy-

tailed continuous random variable with distribution function F , and are interested in

modelling the logarithm of the random variable, i.e. log(X), whose distribution function

is D. Thus, Huang et al. (2019) propose modelling the density of X as

f(x) =
1

x
exp{d(log(x))}, x > 0,

where d is assumed to belong to the family of natural cubic splines. In this way, the tail

is in compliance with a GP distribution and the bulk is modelled in a flexible manner.

See Huang et al. (2019) for more details.

In turn, Tencaliec et al. (2020) present an extension to the model of Naveau et al.

(2016). Instead of assuming a parametric form for D, the authors propose approxi-

mating this function using Bernstein polynomials. The density of the model is then as

follows

f(x) = d̂m,n[H(x)]h(x),

where H and h are the distribution and density functions of a GP distribution, respec-
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tively, and d̂m,n is given as

d̂m,n(t) =
m∑
k=1

ωk,mβk,m−k+1(t), t ∈ [0, 1],

with m > 0 denoting the degree of the Bernstein estimator, n denoting the sample size

of the data set, ωk,m = Dn(k/m)−Dn((k−1)/m), and βa,b(t) is the probability density

function of a Beta distribution with parameters (k,m−k+1), k = 1, . . . ,m. In addition,

the authors show that the cdf D̂m,n associated with d̂m,n satisfies the constraints imposed

in Naveau et al. (2016). More details can be found in Tencaliec et al. (2020).

Similarly to the model proposed by Naveau et al. (2016), a family of models that

rely on composition of functions is introduced by Stein (2021). Let (ϕi, τi, κi) denote

the location, shape and scale parameters for the lower (i = 1) and upper (i = 2) tails,

and let ψ = log(1 + exp{x}). The density of the proposed models is defined as follows

f(x) = tν(D(x))D′(x),

where tν is the density of a t distribution with ν degrees of freedom, and

D(x) =

[
1 + κ2ψ

(
x− ϕ2

τ2

)]1/κ2
−
[
1 + κ1ψ

(
x− ϕ1

τ1

)]1/κ1
.

This family of distributions has support in (a, b) ⊂ R, with a and b depending on

the values of κi: if κ2 < 0, then b = ϕ2 + τ2ψ
−1(−1/κ2), whilst b = ∞ if κ2 ≥ 0,

and, similarly, if κ1 < 0, then a = ϕ1 − τ1ψ
−1(−1/κ1), whereas a = −∞ if κ1 ≥ 0.

Furthermore, the proposed models satisfy some constraints; in particular, for any value

of ν > 0, the distribution function F behaves like a GP distribution in the lower and

upper tails. This work is extended to the non-stationary case by Krock et al. (2022)

by allowing the scale and location parameters, τi and ϕi (i = 1, 2) respectively, to vary

with season and any long-term trends present in the data. More details can be found
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in Stein (2021) and Krock et al. (2022).

Finally, Castro-Camilo et al. (2019) and Yadav et al. (2021) propose modelling the

bulk and tail regions jointly through a hierarchical model. Similarly to the work of

Opitz et al. (2018), Castro-Camilo et al. (2019) propose fitting the data in three stages.

In the first step, a Gamma distribution is used to model the non-extreme region; this

stage will aid the estimation of the threshold above which the GP distribution is fitted

as well. The second step concerns obtaining the probability of excesses above the

estimated threshold; this is achieved using a Bernoulli distribution. The last stage then

corrects the tail by fitting a GP distribution to the exceedances data. Whilst Opitz

et al. (2018) assume a generalised additive modelling framework, Castro-Camilo et al.

(2019) assume a latent Gaussian random field that is not only able to describe the

trends in the data, but also its underlying dependence structure; see Castro-Camilo

et al. (2019) for more details.

In turn Yadav et al. (2021) extend the characterisation of the GP distribution as

an exponential mixture (see, e.g., Bopp and Shaby, 2017) to account for more general

distribution families. Let Λ ≥ 0 denote a latent random variable with rate parameter

λ ≥ 0 such that X | Λ ∼ FX|Λ(·). The authors propose a Gamma-Gamma hierarchical

model in which both random variables X | Λ and Λ follow a Gamma distribution with

parameters (λ, β1) and (α, β2), respectively, for α, β1, β2 > 0. The GP distribution case

then arises when β1 = 1. Since this model is suitable for data with heavy tails, Yadav

et al. (2021) also propose an extension for when the GP shape parameter ξ is close

to 0. In this case, X1/k | Λ follows a Gamma distribution with parameters (λ, β1),

whilst the latent variable Λ now follows a generalised inverse Gaussian distribution

with parameters (α/2, b, β2). Lastly, when b = 0, k = 1 and β2 > 0, this construction

generalises to the Gamma-Gamma hierarchical model; see Yadav et al. (2021) for more

details.
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2.2 Multivariate extreme value theory

In a multivariate setting, defining extreme events is not as straightforward as in the

univariate framework. For instance, due to the lack of ordering between two vectors,

there is no clear way of determining which is largest. Barnett (1976) suggests different

ways to define an extreme event, with the best approach depending on the context of

the application. One of the most common approaches is to consider componentwise

maxima, where the maximum of each variable over a block is taken as an extreme

value for that variable; this can be seen as an extension to the multivariate setting of

the block maxima approach introduced in Section 2.1.1. Alternative definitions include

constructing a convex hull around the data, in which the points are deemed extreme

if lie on this region or beyond; considering as extreme events the observations which

contain the block maximum of at least one variable; or defining a one-dimensional

structure variable that allows the problem to be reduced to a univariate framework as

considered by Coles and Tawn (1994).

We introduce copulas, which are models able to capture the overall dependence se-

parately from the marginal distributions, in Section 2.2.1. We then define in more detail

two approaches to define extreme events: componentwise maxima in Section 2.2.2 and

structure variables in Section 2.2.3. Modelling strategies for asymptotic dependence

and asymptotic independence are presented in Sections 2.2.4 and 2.2.5, respectively. In

Sections 2.2.6 and 2.2.7 two approaches suitable for both regimes of extremal depen-

dence are introduced. Finally, existing approaches to extend EVVMs to a multivariate

setting are given in Section 2.2.8.

2.2.1 Copula theory

When moving to the multivariate framework, not only is the marginal modelling im-

portant, but also capturing the dependence between the variables, since the behaviour
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of one variable can have an influence on another variable. A way of capturing this

dependence is by means of copulas, which allow the modelling of the dependence to

be independent of the marginal specification. This is not the situation when the de-

pendence is measured through the Pearson’s correlation coefficient, for example, since

the association here relies on the choice of margins. Furthermore, instead of giving an

overall idea of the dependence structure, with copulas it is possible to know where in

the support of the data the association between the variables is the weakest/strongest.

A detailed description of copula modelling can be found in Joe (1997), Nelsen (2006)

or Joe (2014).

Consider the vector of random variables X = (X1, . . . , Xd) with distribution func-

tion F and let Xi ∼ FXi
for i = 1, . . . , d and d ≥ 2. According to Sklar’s theorem (Sklar,

1959), the joint distribution of X can be written as the composition of the marginal

distributions FXi
and a copula C : [0, 1]d → [0, 1]. In particular, we have

F (x1, . . . , xd) = C (FX1(x1), . . . , FXd
(xd)) . (2.2.1)

If the margins are continuous, then Sklar’s theorem states that copula C is unique.

Furthermore, when it exists, the copula density c (FX1(x1), . . . , FXd
(xd)) can be obtained

by taking the dth order derivative with respect to the variables FX1(x1), . . . , FXd
(xd).

Given that Ui = FXi
(xi) ∼ Unif(0, 1), by the probability integral transform (PIT), it

can be seen from equation (2.2.1) that the copula C is a multivariate distribution with

standard uniform margins. Additionally, the dependence structure can be captured by

a copula on any standardised margins, since due to the PIT, we have F−1
Xi

(Ui) ∼ FXi
,

where F−1
Xi

is the inverse cdf of margin Xi, i = 1, . . . , d. This result allows for an

arbitrary choice of margins, depending on the context of each problem. In particular,

some margins might highlight some features of the extreme values that others are

not able to. Figure 2.2.1 highlights this difference in simulated data from a bivariate

logistic distribution with dependence parameter α = 1/2 in standard uniform, Fréchet
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and exponential margins, respectively, from left to right.
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Figure 2.2.1: Example of draws from a copula C in standard uniform (left), standard
Fréchet (middle) and standard exponential (right) margins.

2.2.2 Componentwise maxima

As mentioned in the introduction of this section, one way of ordering multivariate data is

considering componentwise maxima. Let X1, . . . ,Xn be n independent d-dimensional

random vectors, i.e., Xj = (Xj
1 , . . . , X

j
d) for j = 1, . . . , n, with common distribu-

tion F. The vector of componentwise maxima Mn is defined as the vector derived by

taking the maximum over the n repetitions of each i = 1, . . . , d variables. That is,

Mn = (M1,n, . . . ,Md,n), with Mi,n = max1≤j≤n(X
j
i ) for i = 1, . . . , d. Similarly to the

block maxima approach introduced in Section 2.1.1, if there exists sequences {an > 0}

and {bn} with an = (a1,n, . . . , ad,n) and bn = (b1,n, . . . , bd,n), such that, as n → ∞, the

distribution function of the normalised componentwise maxima

Pr

(
M1,n − b1,n

a1,n
≤ z1, . . . ,

Md,n − bd,n
ad,n

≤ zd

)
→ G(z1, . . . , zd), (2.2.2)

where G is a distribution function, that is non-degenerate in each margin, then G is

known as the multivariate extreme value distribution. The margins of G are GEV

distributions (as defined in equation (2.1.1)). However, unlike the univariate setting,
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there is not a single parametric form for G. The componentwise maxima approach is

illustrated in the left panel of Figure 2.2.2; the red point shows that componentwise

maximum does not always corresponds to an actual observation.

Although not necessary, the usual practice is to set common margins for

Xi, i = 1, . . . , d. In particular, if we consider standard Fréchet margins, i.e.,

FXi
(xi) = exp{−1/xi} for xi > 0 and i = 1, . . . , d, and set an = n and bn = 0,

then the distribution function G of X takes the form

G(x1, . . . , xd) = exp{−V (x1, . . . , xd)}, (2.2.3)

where V is known as the exponent measure and is a homogeneous function of order

−1, that is V (ax) = a−1x with a > 0. Furthermore, the exponent measure V can be

expressed as

V (x1, . . . , xd) = d

∫
Sd−1

max

{
w1

x1
, . . . ,

wd
xd

}
dH(w), (2.2.4)

where Sd−1 = {w ∈ [0, 1]d :
∑d

i=1wi = 1} denotes the d-dimensional unit simplex, and

H is a distribution function on Sd−1 known as the spectral measure. For i = 1, . . . , d,

this measure satisfies a moment constraint, specifically

∫
Sd−1

widH(w) =
1

d
.

The spectral measure H gives information about the extremal dependence structure.

Consider the bivariate framework; in the case of independence between X1 and X2,

H({0}) = H({1}) = 1/2, and V (x1, x2) = x−1
1 +x−1

2 . On the other hand, H({1/2}) = 1

if X1 and X2 are perfectly dependent; in this case, V (x1, x2) = max{x−1
1 , x−1

2 }.

Several parametric forms for G have been proposed in the literature; for instance

the logistic distribution proposed by Gumbel (1960) has V (x) =
(∑d

i=1 x
−1/α
i

)α
for

α ∈ (0, 1]. This distribution may also be known as the Gumbel copula with parameter
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δ = 1/α ≥ 1. The cases of independence and perfect dependence occur at the boundary

of the parameter set; specifically, the variables are independent if α = 1 (δ = 1),

and complete dependent when α → 0 (δ → ∞). Alternative forms for the exponent

measure lead to other known distributions such as the asymmetric logistic (Tawn, 1988),

the negative logistic (Galambos, 1975), the Hüsler-Reiss (Hüsler and Reiss, 1989), and

the Dirichlet, which may also be known as Coles-Tawn or Coles-Tawn-Dirichlet (Coles

and Tawn, 1991) distributions.

2.2.3 Regular variation

Consider again that vector X = (X1, . . . , Xd) has common standard Fréchet margins.

The tail of X can alternatively be represented in terms of pseudo-polar coordinates

(R,W ), defined as follows

R =
d∑
i=1

Xi and W =
X∑d
i=1Xi

,

where R > 0 and W ∈ Sd−1 = {w ∈ [0, 1]d :
∑d

i=1wi = 1} are known as the radial

and angular components of X. In a similar way to how the componentwise maxima

can be seen as an extension of the block maxima approach, defining the tail in this

way can be viewed as an extension of the peaks over threshold approach introduced in

Section 2.1.2.

The vector X = (X1, . . . , Xd) is said to be multivariate regularly varying if

lim
t→∞

Pr(W ∈ B,R > tr | R > t) = r−1H(B), (2.2.5)

where r ≥ 1, B is a measurable subset of Sd−1, for which H(∂B) = 0 with ∂B de-

noting the boundary of B, and H is the spectral measure defined in equation (2.2.4).

Under limit (2.2.5), and for large values of the radial component, variables R and W
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are approximately independent. Similarly to the componentwise maxima approach,

the extremal dependence of X in a multivariate regular variation framework is char-

acterised through the spectral measure H. Additionally, the distribution of X satisfies

limit (2.2.2) if X is multivariate regularly varying. The middle and right panels of

Figure 2.2.2 illustrate the regular variation assumption in the original scale and in

pseudo-polar coordinates, respectively.
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Figure 2.2.2: Componentwise maxima (left), regular variation (middle) and radial-
angular decomposition (right) in simulated data. The red values represent the extreme
values and the dashed lines indicate the marginal maxima and the radial threshold u,
respectively for the left and middle and right plots. The right plot shows the indepen-
dence of R and W given the large threshold value u of R.

2.2.4 Modelling asymptotic dependence

An important consideration when modelling multivariate extremes is accurately cha-

racterising the extremal dependence structure of the data. In particular, the interest

lies in determining if the largest values of a data set occur together, or not. Consider a

bivariate random vector (X1, X2) with Xi ∼ FXi
for i = 1, 2. A way of quantifying the

extremal dependence structure of (X1, X2) is through the measure χ (Joe, 1997, Coles

et al., 1999). This coefficient is defined via the limit χ := limu→1 χ(u) ∈ [0, 1], where it
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exists, with

χ(u) = Pr[FX2(X2) > u | FX1(X1) > u] =
Pr[FX1(X1) > u, FX2(X2) > u]

1− u
, (2.2.6)

where u ∈ (0, 1). If χ > 0, the variables X1 and X2 are said to be asymptotically

dependent (AD), whereas when χ = 0 they are asymptotically independent (AI). Fur-

thermore, equation (2.2.6) can be rewritten by means of copula C as

χ(u) =
1− 2u+ C(u, u)

1− u
,

where C is defined as in equation (2.2.1). In the specific case of bivariate extreme

value distributions, the coefficient χ can be derived as χ = 2− V (1, 1), where V is the

exponent measure introduced in equation (2.2.3).

In a multivariate setting, care is needed when defining these two regimes of extremal

dependence. Consider now a d-dimensional random vector X = (X1, . . . , Xd) with

Xi ∼ FXi
for i ∈ D = {1, . . . , d}; Wadsworth and Tawn (2013) define the d-dimensional

joint tail dependence through the limit

χ(D) := lim
u→1

Pr[FXi
(Xi) > u : ∀i ∈ D]

1− u
, u ∈ (0, 1),

where the limit exists. When χ(D) > 0, then all components of X can be large

simultaneously, and the variables X are asymptotically dependent. In the case of

χ(D) = 0, the variables cannot all take the largest values together; however, there

might exist lower dimensional subvectors XC = {Xi : i ∈ C}, where C ⊂ D, that

exhibit asymptotic dependence with χ(C) > 0 (Simpson et al., 2020).
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2.2.5 Modelling asymptotically independent data

Several of the available models in the (multivariate) literature are only suitable for one

extremal dependence regime. Recall that in the bivariate case the spectral measure

H places all mass on {0} and {1} when the maxima are independent; this is also the

case when (X1, X2) are asymptotically independent, resulting in H not being able to

distinguish between exact independence and asymptotic independence. Therefore, the

componentwise maxima and regular variation approaches introduced in Sections 2.2.2

and 2.2.3, respectively, are only designed for modelling asymptotic dependence. Fur-

thermore, since misspecifying the extremal structure leads to inaccurate representations

of the extremal region and, therefore, incorrect extrapolations, it is important to cate-

gorise data as belonging to the correct dependence class.

The first approach to modelling asymptotically independent data was introduced by

Ledford and Tawn (1996). Consider a bivariate random vector (X1, X2) with Xi ∼ FXi
,

i = 1, 2, as before. Given a function L that is slowly-varying at zero1, the joint tail is

assumed to behave as

Pr[FX2(X2) > u | FX1(X1) > u] = L(1− u)(1− u)1/η−1, (2.2.7)

as u → 1, and η ∈ (0, 1]. The extremal dependence structure can then be quanti-

fied through η, which is often denoted as the residual tail dependence coefficient. In

particular, if η = 1 and L(1 − u) ̸→ 0 as u → 1, then the variables X1 and X2 are

asymptotically dependent, and asymptotically independent otherwise. Moreover, the

coefficient η provides information about the strength of asymptotic independence of

a given vector; if η ∈ (0, 1/2), then the variables are negatively associated in the ex-

tremes, whilst if η ∈ (1/2, 1) they are positively associated in the extremes. Exact

independence is obtained if η = 1/2 and L(1−u) = 1, and near independence achieved

1For any c > 0, L(cx)/L(x) → 1 as x → 0.
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if η = 1/2 and L(1− u) ̸= 1.

Similarly to measure χ(u) given in equation (2.2.6), it is possible to quantify the

dependence at sub-asymptotic levels. Given a particular value u ∈ (0, 1), η(u) can be

obtained as

η(u) =
log(1− u)

log Pr[FX1(X1) > u, FX2(X2) > u]
,

with η = limu→1 η(u).

An extension of equation (2.2.7) is also possible to a d-dimensional setting. Consider

again a random vector X = (X1, . . . , Xd) where Xi ∼ FXi
for i ∈ D; Eastoe and Tawn

(2012) define the d-dimensional joint tail behaviour through

Pr[FXi
(Xi) > u : ∀i ∈ D] = L(1− u)(1− u)−1/η(D)−1,

as u → 1, and η(D) ∈ (0, 1]. The variables X exhibit asymptotic dependence if

η(D) = 1, and limu→1 L(1 − u) > 0. However, if η(D) = 1 and limu→1 L(1 − u) = 0,

or if η(D) < 1, then the variables cannot all be extreme together, but subvectors

XC = {Xi : i ∈ C}, where C ⊂ D, of lower dimension than d can still be asymptoti-

cally dependent as mentioned in Section 2.2.4 (Simpson et al., 2020).

These coefficients are only informative in regions where all variables are extreme,

which may not always be the case. For situations where the interest may be in regions

where just one variable is extreme, Wadsworth and Tawn (2013) propose an extension

of equation (2.2.7). Given standard exponentially distributed variables Xi, that is

FXi
(xi) = 1 − exp{−xi} for i ∈ D, the joint tail behaviour of X = (X1, . . . , Xd) is

captured through function λ(w) via the assumption

Pr(Xi > wiv : ∀i ∈ D) = L(exp{v};w) exp{−λ(w)v},

as v → ∞, where w ∈ Sd−1 = {w ∈ [0, 1]d :
∑d

i=1wi = 1}, the function L(·;w)
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is slowly-varying at infinity for each w, and λ(w) ≥ max{w} is known as the angu-

lar dependence function (ADF). When the variables X are asymptotically dependent,

then λ(w) = max{w} for all w ∈ Sd−1. Moreover, the residual tail dependence coef-

ficient η(D) can be obtained through the ADF by setting η(D) = [dλ(1/d)]−1 where

1/d = (1/d, . . . , 1/d) ∈ Rd.

2.2.6 Conditional extreme value model

An alternative method, suitable for studying the regions where only a subset of variables

is extreme, is the conditional approach of Heffernan and Tawn (2004). In this approach

the interest lies in studying the joint behaviour of random variables given that one of

them is large. Consider the random vector X = (X1, . . . , Xd) on standard Laplace

margins, that is Xi ∼ FXi
where

FXi
(x) =


1

2
exp{x}, if x ≤ 0,

1− 1

2
exp{−x}, if x ≥ 0,

for i = 1, . . . , d. Additionally, let us condition on variableXi being larger than some high

threshold ui, i.e. Xi > ui. Assuming that there exist parameter vectors α|i ∈ [−1, 1]d−1

and β|i ∈ (−∞, 1]d−1, Heffernan and Tawn (2004) and Keef et al. (2013a) show that,

for a wide variety of underlying dependence structures and all fixed z|i, we have

Pr(Z|i ≤ z|i, Xi − ui > x | Xi > ui) → G|i(z|i) exp{−x}, x > 0, (2.2.8)

as ui → ∞, for some non-degenerate function G|i and standardised residuals

Z|i =
X−i −α|iXi

X
β|i
i

,
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whereX−i denotes the random vectorX excluding its i
th
component, for i = 1, . . . , d. It

follows from equation (2.2.8) that variables Z|i and Xi−ui are independent for ui → ∞

and Xi > ui, and variable Xi − ui is standard exponentially distributed. Furthermore,

the conditional extremes approach is able to capture both extremal dependence regimes;

we have asymptotic dependence when α|i = 1 and β|i = 0, and the variables cannot

all be large together otherwise. Finally, negative dependence between the variables is

captured for α|i < 0 (Keef et al., 2013a).

2.2.7 Random scale constructions

The majority of statistical models available for modelling multivariate extremes usually

suit only one regime of extremal dependence, or both with asymptotic dependence as a

boundary case. Depending on the specification of each variable in the model, bivariate

dependence models using a random scale representation may be able to capture both

asymptotic dependence and independence, with the transition between the two depen-

dence regimes achieved smoothly at interior points of the parameter space. Examples of

such models include those proposed by Wadsworth et al. (2017), Huser and Wadsworth

(2019) and Engelke et al. (2019). A detailed overview of the dependence properties

of models constructed using a random scale representation is given in Engelke et al.

(2019).

Let R > 0 follow a non-degenerate distribution and be independent of a random

vector (W1,W2) ⊆ R2. A random scale construction is defined as the bivariate random

vector (X1, X2) constructed as

(X1, X2) = R(W1,W2).

For the model proposed by Wadsworth et al. (2017), the variable R follows a GP

distribution with scale parameter 1 and shape parameter ξ ∈ R. In addition, the random
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vector (W1,W2) is constructed as follows

(W1,W2) =
(W, 1−W )

∥(W, 1−W )∥m
∈ Sm = {w ∈ R2

+ : ∥w∥m = 1},

where W is a random variable with cdf FW . Furthermore, the norm ∥ · ∥m and FW

are modelling choices. With ∥ · ∥m taken as the L∞ norm, that is ∥(W, 1 −W )∥∞ =

max(W, 1 −W ), this model is able to interpolate smoothly between asymptotic inde-

pendence and asymptotic dependence through the GP shape parameter ξ. In particular,

for ξ > 0, the random vector (X1, X2) exhibits asymptotic dependence with

χ = E

min

 W
1/ξ
1

E
(
W

1/ξ
1

) , W
1/ξ
2

E
(
W

1/ξ
2

)

 > 0, and η = 1.

When ξ ≤ 0, then the vector (X1, X2) is asymptotically independent with χ = 0.

Moreover, if ξ = 0, then η = ∥(1, 1)∥−1
∞ , and when ξ < 0, η = (1− ξ)−1.

In turn, Huser and Wadsworth (2019) assume that all variables are Pareto dis-

tributed with different shape parameters. More specifically, for δ ∈ (0, 1), the cdf of

variable R is given as FR(r) = 1 − r−1/δ, whilst we have FWi
(wi) = 1 − w

−1/(1−δ)
i for

variables Wi, i = 1, 2. Furthermore, (W1,W2) follows an an asymptotically independent

copula with residual tail dependence coefficient ηW < 1. Asymptotic dependence is

present when δ > 1/2 with

χ = E

min

 W
1/δ
1

E
(
W

1/δ
1

) , W
1/δ
2

E
(
W

1/δ
2

)

 > 0, and η = 1.

Asymptotic independence is present when δ ≤ 1/2, i.e., χ = 0, while η can take the
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following values

η =


1, if δ = 1/2,

δ/(1− δ), if ηW/(1 + ηW ) < δ < 1/2,

ηW , if δ ≤ ηW/(1 + ηW ).

Different bivariate copulas can be assumed for the random vector (W1,W2), with the

Gaussian copula being a natural choice used in Huser and Wadsworth (2019).

Two different models were proposed by Engelke et al. (2019); in both, the vari-

able W is assumed to follow a Beta distribution with shape parameter α > 0, i.e.

W ∼ Beta(α, α). For the first proposed model, the variable R is assumed to follow

a Weibull distribution with shape parameter β > 0 and scale parameter 1, that is

FR(r) = 1− exp{−rβ}. The random vector (W1,W2) is constructed in a similar way to

the approach of Wadsworth et al. (2017); more specifically, we have

(W1,W2) =
(W, 1−W )

ν(W, 1−W )
,

where ν(W, 1 −W ) = θmax(W, 1 −W ) + (1 − θ)min(W, 1 −W ) with θ ≥ 1/2. The

extremal dependence of this model is controlled by parameter θ; we have asymptotic

independence with χ = 0 and η = θβ when θ ≤ 1, and asymptotic dependence with

χ = 2(θ − 1)/(2θ − 1) and η = 1 when θ > 1.

For the second model proposed by Engelke et al. (2019), the variable R follows again

a GP distribution with scale parameter 1 and shape parameter ξ ∈ R. In addition, the

variables W1 and W2 are now independent of each other and follow a Beta distribution

with shape parameter α > 0. Like the model of Wadsworth et al. (2017), the GP shape

parameter ξ determines the extremal dependence class. If ξ > 0, then variables X1 and

X2 are asymptotically dependent with

χ =
E
(
min{W1,W2}1/ξ

)
E
(
W

1/ξ
1

) and η = 1.
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When ξ ≤ 0, variables X1 and X2 exhibit asymptotic independence, where χ = 0.

Moreover, η = 1 if ξ = 0, and η = (1− ξα)/(1− 2ξα) if ξ < 0.

In all of the above random scale models, the inference procedure is done by exploi-

ting the copula C of the models in order to uniquely capture the dependence structure

independently of the marginal distribution of each variable involved in the models. Fur-

thermore, the inference procedure is performed via censored likelihood-based methods;

given that the interest lies in capturing the tail behaviour of (X1, X2), non-extreme

contributions need to be excluded from the inference procedure to prevent bias.

2.2.8 Approaches to model the body and tail jointly

Similarly to the univariate setting, in the multivariate extremes literature it is usually

the case that a multivariate threshold is needed to define an extremal region in which an

asymptotically-motivated distribution (or copula) is assumed to hold. A way to avoid

such a choice is to consider models that are able to jointly represent the body and

tail regions. Additionally, such models are required when modelling the whole region

accurately is of interest.

Several methods to create models with more flexible dependence structures are

available in the copula literature, especially in financial applications. One such method

is known as transformation or distortions of copulas, in which known copulas are trans-

formed into a new copula by means of a bijection on the unit interval; such copulas pro-

vide a more accurate representation of the dependence structure that might be necessary

in certain scenarios (see e.g., Durrleman et al., 2000, Morillas, 2005, Klement et al., 2005,

Durante et al., 2010). In particular, given a bijection function γ : [0, 1] → [0, 1], a biva-

riate copula C : [0, 1]2 → [0, 1] can be transformed to a new copula Cγ : [0, 1]
2 → [0, 1]

as Cγ(x, y) = γ−1 (C(γ(x), γ(y))) . While these methods focus more on constructing

new copula families, and not on accurately representing both the body and tail regions

of a data set, Durrleman et al. (2000) and Durante et al. (2010) show that imposing
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specific conditions on the bijection function γ changes the dependence structure of the

new copula Cγ when compared to the original copula C.More specifically, in Durrleman

et al. (2000), Cγ preserves the same tail behaviour as C, while the overall dependence

captured with Kendall’s concordance coefficient (Kendall, 1938) of Cγ is different than

that of C. In contrast, with the bijection γ defined by Durante et al. (2010), the new

copula Cγ exhibits different extremal behaviour than the original copula C.

Similarly to the transformation of copulas approaches, methods based on piecewise

constructions (see for instance Hummel, 2009) or convex combinations (see e.g., Bacigál

et al., 2010, Shamiri et al., 2011) focus on creating new copula families, which might

be more flexible in certain applications than the standard copula families. By nesting

copulas in each other so that box copulas are constructed, Hummel (2009) is able to

control and, therefore modify, the extremal behaviour of a data set. On the other hand,

Bacigál et al. (2010) and Shamiri et al. (2011) propose convex combinations of known

copulas, especially belonging to the Archimedean family; the former considers additive

generators of binary copulas, whilst Shamiri et al. (2011) constructs a Clayton-Gumbel

copula, based on a standard mixture of these two copulas. In this way, Shamiri et al.

(2011) are able to represent any asymmetry that might be present in the data and

capture strong dependence in both tails.

An alternative way of defining new copulas that are able to capture more compli-

cated dependence structures is by considering patchwork copulas (Pfeifer and Ragulina,

2021); these include copulas based on ordinal sums (Alsina et al., 2006), gluing copulas

(Mesiar et al., 2008, Siburg and Stoimenov, 2008) and copulas based on rectangular

representations (Durante et al., 2009). In Durante et al. (2013) a generalised method

to construct such copulas is proposed; specifically, given a copula C, the probability

mass distribution of its patchwork copula only differs from that of copula C within a

d-dimensional box B ⊆ [0, 1]d. This modification aims to overcome the difficulty of re-

presenting the tail region when considering the full data set by allowing the patchwork
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copula to have different tail dependencies properties than copula C.

In turn, Pfeifer et al. (2016) propose generalised partition-of-unity copulas, which

were later formalised for the discrete and continuous cases by Pfeifer et al. (2017) and

Pfeifer et al. (2019), respectively. More specifically, by considering infinite, as opposed

to finite, partitions-of-unity, the proposed copulas are able to capture tail dependence

and asymmetry in the data. This is achieved by approximating the density of the

model by an infinite mixture of functions, and the modelling is done in a data driven

procedure.

In the approach of Hu and O’Hagan (2021), several different copula families are fit to

the full data set and, by averaging over these families, the authors aim to obtain a more

robust estimate of the tail dependence of a data set; this is achieved by using Bayesian

model averaging (BMA). Where the quantity of interest is the extremal dependence

measure χ, and Ci (i = 1, . . . , K) are K fitted copulas to the data set D, the posterior

distribution of χ given the data D is given by

Pr(χ | D) =
K∑
i=1

Pr(χ | Ci,D) Pr(Ci | D).

Assuming that all copulas are equally likely a priori, the weight for copula Ci, given by

WCi
, is approximated using the Bayesian Information Criterion (BIC) as follows

WCi
= Pr(Ci | D) ≈ exp{−BICi/2}∑K

j=1 exp{−BICj/2}
,

for i = 1, . . . , K. By using BMA, the authors aim at improving the estimation of the

tail behaviour; the use of BIC in the weight calculations, however, assigns the focus on

the body and not on the tail of the data.

The modelling of the full distribution when the focus is on the extreme events is

considered in the spatial literature by Gräler (2014), Krupskii et al. (2018) and Zhang

et al. (2022b), for instance. In particular, Gräler (2014) considers convex combinations
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of bivariate copulas when constructing a spatial vine copula. In this way, different

dependence properties between each location are captured, allowing for a better ex-

trapolation of the tail. In turn Krupskii et al. (2018) and Zhang et al. (2022b) propose

modelling the whole data set, not specifically aiming at an accurate representation of

both regions, but as a way of avoiding the computational burden inherent with censored

likelihoods for extremes. In spite of that, both methods show reasonable flexibility in

capturing the body and tail of the data set.

Methods which aim specifically at representing the body and tail regions of the data

set in an accurate manner are still scarce in the literature. For instance, Vrac et al.

(2007) propose a bivariate extension of the univariate model of Frigessi et al. (2002)

to jointly model precipitation intensities. Let X1 and X2 be two positive and heavy

tailed random variables, and consider the radial and angle variables R = X1 +X2 and

W = X2/R, respectively; a bivariate event is considered extreme when variable R is

large. Since an observed angle has support in the unit interval, i.e. w ∈ [0, 1], it is

assumed that W ∼ Beta(β1, β2) with β1, β2 > 0. Vrac et al. (2007) propose modelling

the bulk of the distribution with bivariate Gamma random vectors whilst the tail region

is modelled in the pseudo-polar coordinate system (R,W ). The authors bypass the

need for selecting a threshold when transitioning from the body region to the tail by

considering a weighting function, p, that varies only with R. The proposed model has

density given as follows

f(x1, x2;θ) = kθ [(1− p(r;µ)g(x1, x2;γ) + p(r;µ)h(r;φ, ξ)b(w; β1, β2)] ,

where kθ is a normalising constant, µ is the location parameter of the weighting function,

h is the density function of the GP distribution given in equation (2.1.2) with scale and

shape parameters φ and ξ, respectively, g is the density function of a bivariate Gamma

distribution with vector of parameters γ, b is the density function of a Beta distribution

with shape parameters β1 and β2, and θ is the vector of model parameters.
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In turn, Aulbach et al. (2012a) and Hu et al. (2024) propose two different extensions

to the multivariate setting of the model of Behrens et al. (2004). The former define a

new copula by joining two d-dimensional copulas; in particular, they fit one copula to

the data and substitute its upper tail region with a different copula. While in theory any

copula can be used for the upper tail region, they propose using a copula of a multivari-

ate GP distribution in their model, meaning that the proposed copula is only suitable

to capture asymptotic dependence. Let X = (X1, . . . , Xd) and Y = (Y1, . . . , Yd) be

two independent random vectors, and C1 and C2 be two copulas. Further, assume that

X ∼ C1 and Y ∼ C2, where C1 and C2 are two copulas with shifted support in [−1, 0]d,

and let t = (t1, . . . , td) denote a vector of appropriate threshold values. Aulbach et al.

(2012a) construct a random vector Q, whose ith element is given by

Qi := Yi1Yi≤ti − tiXi1Yi>ti ,

for i = 1, . . . , d. Then, the random vector Q follows a copula with support on [−1, 0]d.

Moreover, its copula coincides with C1 on the region (t1, 0]× . . .× (td, 0] and with C2 on

[−1, t1]× . . .× [−1, td]. In a later work of Aulbach et al. (2012b), an exact representation

of this copula is provided.

On the other hand, Hu et al. (2024) propose a mixture model where the body is mod-

elled with a parametric distribution in the max-domain of attraction (MDA) of a mul-

tivariate generalised extreme value (mGEV) distribution as given in equation (2.2.2),

and the tail is described by a multivariate generalised Pareto (mGP) distribution. Fur-

thermore, they define an extremal region where at least one of the components is larger

than a threshold vector t. Let Fb denote the distribution function fitted to the bulk

region; Hu et al. (2024) assume that Fb is a multivariate Gaussian distribution in their

work, although any distribution in the MDA of the mGEV is permitted. In a similar

manner to the univariate model of Behrens et al. (2004), the density function of the
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proposed model is given as follows

f(x;θ) =


fb(x;θb), if x ≤ t,

[1− Fb(t;θb]h(x− t;θt), otherwise,

where θ = (θb,θt, t) is the vector of model parameters, fb is the density function of

the distribution assumed for the bulk region, whose parameters are θb, and h is the

density function of the mGP distribution with parameters θt; see Hu et al. (2024) for

the specific characterisation of density h. In order to avoid choosing an appropriate

vector of threshold values, these are treated as parameters in the model, as opposed

to the approach of Aulbach et al. (2012a). However, given that the upper tail region

is described by a mGP distribution, this method is only suitable for asymptotically

dependent data.

Finally, Leonelli and Gamerman (2020) propose a semi-parametric approach suitable

for both asymptotic dependence and independence; they do so by using a copula-based

framework, allowing for the separation of the marginal modelling from the dependence

structure. More specifically, the authors model each variable using the EVMM proposed

by do Nascimento et al. (2012), and given in equation (2.1.8), while the dependence

structure is modelled by a mixture of copulas, which are assumed to belong to the ellip-

tical family. Although the model is suitable for both regimes of extremal dependence,

the model is only able to capture asymptotic independence if all the copula terms in

the mixture are suitable for AI data.

2.3 Neural likelihood-free inference

Several models available in the multivariate extremes literature, such as those from

Section 2.2.7, have likelihood functions that rely heavily on numerical integration,

inversion of functions, or a combination of the two; this results in computationally
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expensive likelihood-based inference, which may constitute a potential barrier to the

routine use of such models in practice. However, even when the likelihood function is

intractable, it is usually possible to simulate from the model. In such cases, simulation-

based techniques, which are often likelihood-free, are an appealing alternative avenue to

perform inference. The most commonly used simulation-based methods are mentioned

in Section 2.3.1, and we introduce simulation-based techniques which leverage neural

networks in Section 2.3.2.

2.3.1 Simulation-based approaches

As stated by Cranmer et al. (2020), in simulation-based methods, the statistical model

is often defined through the simulator function; such function takes the vector of model

parameters as inputs, and outputs data observations generated from the model. There

are several simulation-based procedures available in the literature, with density esti-

mation (Diggle and Gratton, 1984) and approximate Bayesian computation (ABC; see

e.g. Lintusaari et al., 2017 or Sisson et al. (2018) for a review) being among the most

commonly used methods.

In density estimation methods, histograms or kernel density estimates of simulated

data are used to approximate the log-likelihood function. Furthermore, although the

simulation and estimation of the density steps are computationally expensive, once the

likelihood function is approximated, new observations can be evaluated efficiently. This

leads to an amortised inference procedure as the computationally expensive steps need

not be repeated for new data. Owing to this, density estimation methods are well suited

for handling replicated data (Cranmer et al., 2020).

In turn, ABC methods are seen as rejection sampling algorithms, whereby observed

and simulated data are compared based on some distance measure, which often involves

some summary statistics. More specifically, the model parameters are drawn from a

prior distribution, and subsequently accepted if the simulated data are sufficiently close
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to the observed data, and rejected otherwise. Moreover, the acceptance probability is

determined for a tolerance level ε > 0; when ε → 0, then the inference procedure be-

comes exact. Choosing a suitable prior distribution, defining the similarity between the

samples, and choosing a suitable tolerance value constitute some drawbacks of using

ABC to perform inference. For instance, while uninformative priors are in general more

applicable, large distances between the data can be produced by most of parameter

values; this leads to the need for more simulated data sets, which comes at a compu-

tational cost (Grazian and Fan, 2020). Regarding the tolerance level, smaller values of

ε results in a higher number of simulations that are infeasible. On the other hand, an

increase in sample efficiency obtained by a large ε comes at the expense of inference

quality. Contrary to density estimation procedures, ABC methods are not amortised;

in fact, the majority of the algorithm steps have to be undertaken for new observations,

which makes ABC more suitable for cases where the number of i.i.d. observations is

small (Cranmer et al., 2020).

Both density estimation and ABC methods suffer from the curse of dimensionality,

performing poorly for high dimensional data. Alternatively, the synthetic likelihood

method proposed by Wood (2010) is computationally more efficient in higher dimen-

sional settings. More specifically, the synthetic likelihood method constructs an approx-

imate likelihood function by assuming that the summary statistics follow a multivariate

Gaussian distribution, whose mean and variances are approximated by averages over a

set of simulated summary statistics (Grazian and Fan, 2020). Whilst the approximated

likelihood becomes more accurate when the number of simulated data sets increases,

simulating new data sets is particularly expensive. Furthermore, the quality of infer-

ence depends on how close the Gaussian assumption is to the truth. The synthetic

likelihood method is usually easier to tune than ABC methods, but the Gaussian as-

sumption may lead to sub-optimal inferences in some situations. More recently, and

still assuming that the summary statistics follow a multivariate Gaussian distribution,
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Price et al. (2018) propose using the synthetic likelihood method to target the posterior

distribution of the data.

Alternative simulation-based methods include indirect inference or pseudo-marginal

Markov chain Monte Carlo (MCMC). Indirect inference methods involve using an aux-

iliary parametric model, which is analytically or computationally more tractable than

the likelihood function. Then, by deriving some summary statistics from this auxil-

iary model, the relationship between the parameters of the auxiliary model and those

of the likelihood function is analysed, and point estimates for the model parameters

can be obtained (Gourieroux et al., 1993). In pseudo-marginal MCMC, the likelihood

function is approximated by unbiased estimates, often obtained through importance

sampling. Since the expected value of these estimates correspond to the true likelihood

function, the pseudo-marginal MCMC algorithm is able to correctly sample from it; see

for instance Beaumont (2003) or Andrieu and Roberts (2009) for more details.

2.3.2 Neural simulation-based methods

In recent years, simulation-based approaches which leverage neural networks have been

emerging in the literature; Zammit-Mangion et al. (2025) review several of these meth-

ods. Briefly, a neural network works as a function approximator, mapping the inputs

to the outputs in a non-linear way. An application of neural simulation-based methods

is to use neural networks to obtain parameter point estimates. For instance, Gerber

and Nychka (2021) use neural networks to estimate the covariance parameters of a

spatial Gaussian process; more specifically, the network learns by taking synthetically

generated fields and their corresponding (known) covariance parameters as inputs. In

the approach of Lenzi et al. (2023), deep learning techniques are used to perform infer-

ence for max-stable processes given that simulating from such models is often fast and

tractable. In this, data generated from the max-stable model serves as the input to a

convolutional neural network (CNN), which maps the data to the parameter space and
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outputs the parameter estimates.

In turn, Majumder et al. (2024) construct a process mixture model based on a con-

vex combination of a max-stable and a Gaussian processes, whose likelihood function is

intractable. The authors use feed-forward neural networks to approximate the distribu-

tion at one spatial location given a neighbouring set, and develop synthetic likelihood

functions to approximate the likelihood function. An extension of the process mixture

model which aims to account for non-stationarity is proposed later by Majumder and

Reich (2023).

Alternatively, Sainsbury-Dale et al. (2024a) propose using neural Bayes estimators

(NBEs) to estimate the vector of model parameters for a general parametric model.

Similarly to the approach of Lenzi et al. (2023), the neural network takes as inputs

data, X, generated by the model, which are then mapped to a point summary of

the posterior distribution, returning an estimate of the vector of model parameters,

θ̂. More specifically, permutation-invariant neural networks are used to approximate

Bayes estimators, which minimise a weighted average of the Bayes risk, R(θ, θ̂).

Given n i.i.d. replicates of the data X1, . . .Xn ∈ S and parameter space Θ, a deep

neural network is used to approximate point estimators θ̂ : Sn → Θ. Such an approxi-

mation is achieved by finding the best parameters of the neural network (often known

as the ‘weights’ and ‘biases’) that minimise a loss function, L(θ, θ̂), which penalises the

distance between the observed data and the realisations of the output. In particular,

R(θ, θ̂) = E [L(θ, θ̂)]. Additionally, the proposed approach is able to handle replicated

data with different sample sizes.

This methodology was further developed by Richards et al. (2024) to account for cen-

sored observations as inputs; when the interest lies in the extremal behaviour, method-

ologies able to handle censored data are crucial since we do not wish non-extreme

observations to affect the extremal dependence estimation. The proposed approach

by Richards et al. (2024) further accounts for cases where the censoring level is not
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assumed fixed; this is achieved by considering the censoring level as an extra input to

the neural network. More recently, Sainsbury-Dale et al. (2024b) propose using graph

neural networks to handle irregular spatial data, which are collected over an arbitrary

set of spatial locations.

Instead of considering a point estimation approach, Walchessen et al. (2024) design a

binary classification task where a CNN learns the likelihood function of spatial processes

from which it is possible to simulate. In particular, simulations from the model are

used to create two classes, each consisting of pairs of model parameters and their

corresponding field realisations. The classifier is then trained to discriminate between

these two classes. Additionally, the classifier allows to produce not only the learned

likelihood surfaces, but also estimates of the model parameters and confidence regions.

Finally, Lenzi and Rue (2023) avoid the bias towards the parameter region of the

training data, often present in neural point approaches, by proposing an automatic

iterative approach; by dynamically updating the distribution of the parameters, the

training data are iteratively modified until the region of the parameters corresponding

to the actual data is achieved. Similarly to the approach of Sainsbury-Dale et al.

(2024a), the proposed method is also able to handle replicated data with different

sample sizes. Finally, while the training step of a neural network is computationally

expensive, once completed, inference on the model parameters is typically achieved in

fraction of seconds; in particular, the trained network can be applied every time there

is new data (Richards et al., 2024). This results in an amortised estimation process

over time, which is particularly useful in online inference, for example.

The use of neural networks as a modelling technique has also been growing in the

extremes literature. For instance, in a univariate framework, Cannon (2010), Cannon

(2011), Vasiliades et al. (2015), Bennett et al. (2015) and Shrestha et al. (2017) use

neural networks to estimate the parameters of a GEV distribution when accounting

for non-stationarity in the data. More specifically, a conditional density network is
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used to specify the GEV parameters as a function of covariates, allowing the model

to capture a wide range of non-stationary relationships. Ceresetti et al. (2012) use

neural networks to facilitate the estimation of return levels (i.e., the value we expect to

be exceeded, on average, once every 1/p observations, where p is a small probability),

whereas Carreau and Vrac (2011) propose a new class of conditional mixture models,

in which the EVMM of Carreau and Bengio (2009) is included (given in Section 2.1.3),

that builds on neural networks. In the multivariate framework, this area of research is

mainly predominant in a spatial setting. For instance, Ahmed et al. (2022) and Wixson

and Cooley (2024) leverage CNNs as classification tools. Contrary to the approach of

Walchessen et al. (2024), these aim at distinguish between the two regimes of extremal

dependence defined in Section 2.2.4. More recently, Ahmed et al. (2024) propose using

such neural networks for model selection of appropriate extremal dependence structures

in a spatial setting. Murphy-Barltrop et al. (2024) use neural networks to learn about

the extremal dependence structure of higher-dimensional data. More specifically, the

authors consider a geometric approach, where the joint behaviour can be inferred from

a star-shaped limit set; this limit set is estimated using a multi-layer perceptron neural

network. In a regression context, Cisneros et al. (2024) propose using graph CNNs

and a GP distribution to model the full distribution of wildfire spread. On the other

hand, Pasche and Engelke (2024) propose an extreme quantile regression network which

estimates the scale and shape parameters of a non-stationary GP distribution, that

hence depend on covariates, through a neural network, whilst Richards and Huser (2022)

create partially-interpretable neural networks to perform extreme quantile regression.



Chapter 3

Joint modelling of the body and tail

of bivariate data

3.1 Introduction

3.1.1 Motivation

When dealing with environmental phenomena such as high temperatures, wind speeds

or air pollution, or with financial applications such as insurance losses, interest often

lies in modelling the extreme observations, which are typically scarce. For such cases, a

model with focus on the tail of the distribution is required as common statistical models

that may be used to fit the entire data set lead to poor estimates of the extremes. To

overcome this issue, models based on extreme value theory (EVT) can be applied;

these aim to quantify the behaviour of a process at extremely large (or small) values of

a series. Typically, the generalised extreme value (GEV) distribution is fitted to block

maxima, often annual maxima, or the generalised Pareto distribution (GPD) is fitted

to data exceeding a high threshold. The former can be seen as a wasteful approach if

there are more data on extremes available, while the latter usually requires a subjective

choice of threshold, which inevitably leads to uncertainty, with different choices leading

44
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to different results; see Coles (2001).

However, in some cases, interest not only lies in modelling the extreme observations

accurately but also fitting the non-extremes well, meaning a flexible model over the

whole support of the distribution is required. For instance, the concentration of pollu-

tants in the air may be so high that harmful levels are actually in the body of the data

set. Thus, from a public health perspective, we care not only about the probability of

exceeding extreme, and potentially more dangerous, pollutant levels but also about the

probability of exceeding harmful yet locally moderate levels. Fitting a model to both

the bulk (i.e., the non-extreme observations) and tail (i.e., the extreme observations) of

a data set has been dealt with in the univariate framework but little work has been done

in extending to a multivariate setting. In this work, we outline an approach that offers

dependence models for the bulk and tail, while ensuring a smooth transition between

the two.

3.1.2 Background

In the univariate setting, several models have been proposed to join one distribution for

the bulk to a GPD for the tail. Scarrott and MacDonald (2012) review several of these

approaches, hereafter referred to as extreme value mixture models, or EVMMs. These

models aim to account for the uncertainty in the choice of threshold, by implicitly or

explicitly estimating it. With EVMMs, care is needed so that the bulk and tail are not

excessively influenced by each other, though they cannot be fully disjoint since they

share information. Parametric EVMMs entail fitting a specified distribution to the bulk

and a GPD to the tail, while semi-parametric models fit a GPD to the tail with a more

flexible model in the bulk. Behrens et al. (2004) propose a parametric model, which

exhibits discontinuity at the threshold; Carreau and Bengio (2009) avoid this by forcing

continuity up to the first derivative of the density function. On the other hand, Frigessi

et al. (2002) fit two distributions to the whole data, giving more weight to the bulk at
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low ranges in the support and to the GPD in the upper tail by means of a dynamic

weighting function p(x; θ) ∈ (0, 1]. The density of their model is defined as

h(x; θ,β,α) =
[1− p(x; θ)]f(x;β) + p(x; θ)g(x;α)

K(θ,β,α)
,

where g(x;α) is the density of the GPD with vector of parameters α, f(x;β) is a

density with a lighter tail and vector of parameters β, K(θ,β,α) is a normalising

constant and p(x; θ) is increasing in x for all θ. Because p(x; θ) depends on x, it favours

the GPD in the upper tail whilst the lower tail is controlled by f(x;β). However, careful

choice of the weighting function is needed since some functions, such as the unit step

function, may lead to a discontinuity in the transition between the two distributions;

see Frigessi et al. (2002) for details. More recently, methods introduced by Naveau et al.

(2016) and Stein (2021) aim to model the lower and upper tails of the data with GPDs,

while ensuring a smooth transition between the regions. The former achieve this by

constructing a model relying on compositions of functions, where one is a cumulative

distribution function (CDF) of a GPD, and the other is a CDF that satisfies certain

constraints to ensure both tails follow a generalised Pareto-type distribution. The

model proposed by Stein (2021) also assumes a composition of functions, where one is

a monotone-increasing function that controls both the lower and upper tails, and the

other is a Student t CDF. Finally, Krock et al. (2022) extend the latter approach to

incorporate non-stationarity. The methods proposed by Frigessi et al. (2002), Naveau

et al. (2016), Stein (2021) and Krock et al. (2022) avoid the choice of threshold.

In a semi-parametric framework, Cabras and Castellanos (2010) approximate the

bulk distribution by an equi-spaced binning of the data followed by a Poisson log-link

generalised linear model fit to the counts with a polynomial smoother for the mean

parameter. do Nascimento et al. (2012) define the bulk distribution as a weighted

mixture of gamma densities, extending the method proposed by Behrens et al. (2004),

while Huang et al. (2019) estimate the log-density by first transforming the data and
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then applying a cubic spline to the histogram. Tencaliec et al. (2020) propose a method

based on the extension of the GPD proposed by Naveau et al. (2016). Finally, Tancredi

et al. (2006) and MacDonald et al. (2011) propose non-parametric fits to the data. In

the former, the bulk model is fitted via a mixture of uniform distributions whereas in

the latter a kernel density estimator is used instead.

When we move to the multivariate setting, there is an extra difficulty; not only is

it important to model the margins of the data correctly, but the dependence between

the variables is also of interest since the behaviour of one variable can influence the be-

haviour and value of another. It is common practice to measure this relationship using

correlation coefficients, such as Pearson’s linear correlation or Kendall’s concordance

(Kendall, 1938). However, these only give information about the association between

variables as a whole. An alternative is to use copulas, which fully capture the depen-

dence between two or more variables. According to Sklar’s Theorem (Sklar, 1959), the

multivariate distribution function, F, of the random vector (X1, . . . , Xd) can be written

as the composition of a copula, C, and the marginal distributions of each Xi, FXi
(Xi),

i = 1, . . . , d, d ≥ 2, as follows

F (x1, . . . , xd) = C (FX1(x1), . . . , FXd
(xd)) .

If the variables are continuous, then the copula C is unique. One advantage of copulas

is that they are able to describe the dependence structure of two or more variables

in a way that does not depend on the margins. Where it exists, the copula density

c (FX1(x1), . . . , FXd
(xd)) can be obtained by taking the dth order derivative with respect

to the variables FX1(x1), . . . , FXd
(xd).

There is a large literature on dependence modelling for extremes, which usually in-

volves defining a multivariate threshold above which an asymptotically-motivated cop-

ula is assumed to hold. However, models specifically aimed at capturing the behaviour

of extremes as well as the body of the data, while permitting a likelihood-based ap-
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proach to inference, are scarce in the literature. Both defining and performing inference

on such models can be challenging compared to univariate models.

Methods for constructing more flexible copula families have been increasing in re-

cent years, especially in financial applications. For instance, Durrleman et al. (2000),

Morillas (2005), Klement et al. (2005) and Durante et al. (2010) propose transform-

ing known copulas, especially from the Archimedean family, by means of bijections

on [0, 1]. In particular, the methods proposed by Durrleman et al. (2000) and Durante

et al. (2010) allow for a more accurate fit of the dependence structure. Given a bijection

γ : [0, 1] → [0, 1], the copula C is transformed into a new copula Cγ in the following

way Cγ(x, y) = γ−1(C(γ(x), γ(y))). Moreover, depending on specific conditions im-

posed on γ, the dependence structure of Cγ contrasts with that of C in different ways.

Specifically, in the method proposed by Durrleman et al. (2000), changes in the overall

dependence measures of C, such as Kendall’s τ, are possible while C and Cγ share the

same extremal behaviour. On the other hand, Durante et al. (2010) study how the

dependence in the extremes changes from C to Cγ−1 , while the fit in the body remains

the same between the two.

Other possibilities for building new copula families rely on piecewise constructions

or convex combinations. For the former, by constructing box copulas (i.e., copulas

nested in each other), Hummel (2009) is able to control and modify the dependence

in the tail. For the latter, Bacigál et al. (2010) propose new construction techniques

through additive generators of binary Archimedean copulas, whereas Shamiri et al.

(2011) construct a Clayton-Gumbel copula, where, by means of a standard mixture

model, two individual copulas are joined into one. This model allows for asymmetry in

the data while being able to capture strong dependence in both tails.

Methods based on transformation of copulas or convex combinations allow for dif-

ferent, more flexible, dependence structures beyond the usual copulas. However, their

main focus lies in providing a way of constructing new copula families, rather than
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offering an accurate representation of the bulk and tail regions simultaneously.

Alternatively, patchwork copulas can offer a way to capture dependence structures

that are not well suited to standard copulas. These allow for different copula models

to be fitted to several regions of [0, 1]2 based on their characteristics; see for example

Pfeifer and Ragulina (2021). Particular cases of patchwork copulas include those based

on ordinal sums (Alsina et al., 2006); gluing copulas, where two or more copulas are

scaled back to boxes in a region of the unit square and glued together along some

hyperplane (Mesiar et al., 2008; Siburg and Stoimenov, 2008); and copulas based on

rectangular constructions, where it is possible to have a copula in the body and another

in the upper tail by defining two rectangles (disjoint up to their boundaries) over the

diagonal, for example; see Durante et al. (2009) for more details. A generalised method

to construct patchwork copulas that include the above mentioned cases is given in

Durante et al. (2013). Given a copula C, a patchwork copula derived from it features

the same probability mass distribution as C, excluding a d-dimensional box (⊆ [0, 1])

in which the probability mass is distributed differently. These models can be used to

modify the extremal behaviour of a copula in two or more corners of [0, 1]d, and allow

strong positive tail dependence to be induced if the application requires it. In this way,

patchwork copulas aim to overcome the issue of misrepresentation of the extremes,

when considering the whole data set. However, the transition between the non-extreme

and the extreme regions is not smooth and therefore may be unsuitable in many real

applications.

Aulbach et al. (2012a,b) suggest an extension to the multivariate setting of the

model proposed by Behrens et al. (2004). They define a novel copula model by joining

two d-dimensional (d ≥ 2) copulas, one for the upper tail and the other for the body, in

a manner that produces a new copula. Specifically, the authors assume two independent

random vectors, each of which follow an arbitrary copula, that is V = (V1, . . . , Vd) ∼ C1

and Y = (Y1, . . . , Yd) ∼ C2. It is also required that the copulas are defined in [−1, 0]d,
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which is not a problem since, if U follows a copula C : [0, 1]d → [0, 1], then Ũ =

U − 1 follows a copula C̃ with shifted support i.e., C̃ : [−1, 0]d → [0, 1]. Then, by an

appropriate choice of threshold vector t = (t1, . . . , td), they construct a random vector

Q, whose ith element is given by

Qi := Yi1Yi≤ti − tiVi1Yi>ti , i = 1, . . . , d. (3.1.1)

The authors prove thatQ also follows a copula with support on [−1, 0]d, which coincides

with C1 on the region (t1, 0]×. . .×(td, 0] and with C2 on the region [−1, t1]×. . .×[−1, td].

An exact representation of the method is presented in Aulbach et al. (2012b). However,

the model not only requires a choice of cut-off values ti, i = 1, . . . , d, to define the regions

to fit each copula but, as with patchwork copulas, the transition between the two copulas

may not be smooth. Figure 3.1.1 displays an example of a data set simulated according

to equation (3.1.1); the discontinuity at the threshold is evident. Moreover, this method

does not offer a convenient formulation of the likelihood, which results in difficulties for

inference.

More recently, Pfeifer et al. (2017) and Pfeifer et al. (2019) propose infinite discrete

and continuous partition-of unity copulas, respectively; these are flexible in higher di-

mensions and can be applied when there is asymmetry in the data. Similar to patchwork

copulas, these copulas allow for implementing positive dependence in the tails; the den-

sity of the proposed model is approximated by an infinite mixture of functions, and

careful choice of these functions can modify the tail behaviour if required.

A different type of approach was taken by Hu and O’Hagan (2021), who consider

averaging different copula families that have been fitted to the whole distribution, in

order to obtain a more robust estimate of the tail dependence of the data set. However,

the use of BIC in the calculation of the weights assigned to each copula places the focus

on the body and not on the tail of the data.

In a spatial context, Gräler (2014) proposes capturing the dependence of skewed
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Figure 3.1.1: Example of Q simulated according to equation (3.1.1) with a Gumbel
copula with parameter α = 2 selected for the upper tail copula C1 and Gaussian copula
with parameter ρ = 0.6 selected for the body copula C2 of the model proposed by
Aulbach et al. (2012a). For illustration purposes, the vector of thresholds was chosen
to be t = (0.8, 0.5).

spatial random fields (that display extreme events) by considering convex combinations

of bivariate copulas in the construction of a spatial copula. In this way, between each

location, a different dependence model is obtained. More recently, Krupskii et al. (2018)

and Zhang et al. (2022b) each propose models fitted to both the body and tail of a

distribution. The former outlines a copula model based on the assumption that there

exists a common factor which affects the joint dependence of all the observations of the

underlying process, and which is able to model both tail dependence and asymmetry.

Numerical integration over this factor variable leads to a likelihood that can be fitted

to all data. The latter propose using the generalised hyperbolic copula, which is flexible

due to having a relatively large number of parameters. For both of these models, the

authors show that there is reasonable flexibility for capturing both body and tail, yet

a primary motivation for fitting to all data is the desire to avoid the computational

difficulty involved in using censored likelihoods for extremes.
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3.1.3 Extremal dependence properties

When the focus lies on extreme values, studying the extremal dependence between the

variables is of interest. Two variables are said to be asymptotically dependent (AD)

if joint extremes occur at a similar frequency to marginal extremes, or asymptotically

independent (AI) otherwise. This dependence can be quantified through the measure

χ = lim
r→1

χ(r) ∈ [0, 1], where the limit exists, with

χ(r) = P [FY (Y ) > r | FX(X) > r] =
1− 2r + C(r, r)

1− r
, r ∈ (0, 1), (3.1.2)

where C is the copula of (X, Y ); see Joe (1997) or Coles et al. (1999). The random

variables X and Y are asymptotically independent if χ = 0, whereas if χ > 0 they are

asymptotically dependent.

A complementary measure to χ is the residual tail dependence coefficient η ∈ (0, 1]

proposed by Ledford and Tawn (1996). For a function L that is slowly-varying at zero,

they assume that the joint tail can be written as

P [FY (Y ) > r | FX(X) > r] ∼ L(1− r)(1− r)
1
η
−1 as r → 1.

The variables are asymptotically dependent if η = 1 and L(1 − r) ̸→ 0 as r → 1, and

asymptotically independent otherwise. Additionally, if η ∈ (0, 1/2) , the variables show

negative extremal association; positive extremal association if η ∈ (1/2, 1] and they

exhibit near extremal independence if η = 1/2.

Similarly to χ(r), for a particular value of r ∈ (0, 1), η(r) can be obtained as

η(r) =
log (P [FX(X) > r])

log (P [FX(X) > r, FY (Y ) > r])
, (3.1.3)

with η = lim
r→1

η(r).

This paper is organised as follows: in Section 3.2 we present our proposed model
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and its properties. Inference for the model is studied in Section 3.3, complemented by

a simulation study to demonstrate performance in correctly specified and misspecified

scenarios. We then apply our methodology to ozone and temperature data in the UK

in Section 3.4 and conclude with a discussion in Section 3.5.

3.2 Weighted copula model

3.2.1 Model definition

Our interest lies in accurately modelling both the bulk and the tail of the whole distri-

bution. From existing literature in the dependence context, Hummel (2009), Aulbach

et al. (2012a,b), Durante et al. (2013) and Pfeifer et al. (2017, 2019) are concerned with

representing both regions correctly. However, our model differs from these approaches

in that we aim for a smooth transition between the two regions and allow for likelihood-

based inference. To do so, we propose a mixture model where we fit two copulas to the

whole range of the support and blend them by means of a dynamic weighting function

π; in this way, data can be allowed to favour the “best” copula for each region, avoiding

the subjective choice of thresholds often present in EVT applications. This approach

can be seen as an extension to the multivariate framework of the model proposed by

Frigessi et al. (2002) mentioned in Section 3.1.2.

Although our ideas could theoretically be applied in higher dimensions, we restrict

ourselves to the bivariate setting for computational simplicity. Let ct and cb be copula

densities representing the tail and the body, with vectors of parameters α and β,

respectively. For (u∗, v∗) ∈ [0, 1]2, we define a new density c∗ by

c∗(u∗, v∗;γ) =
π(u∗, v∗; θ)ct(u

∗, v∗;α) + [1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)

K(γ)
, (3.2.1)
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where γ = (θ,α,β) is the vector of model parameters and

K(γ) =

∫ 1

0

∫ 1

0

[π(u∗, v∗; θ)ct(u
∗, v∗;α) + (1− π(u∗, v∗; θ))cb(u

∗, v∗;β)] du∗ dv∗

is a normalising constant. The weighting function π depends on the data, and is spe-

cified such that, for small values of u∗ and v∗, more weight is given to cb and, for

larger values, more weight is given to ct. Thus, for a fixed value of the parameter

θ, the function π : (0, 1)2 → (0, 1) should be increasing in u∗ and v∗. We note that

having a dynamic weighting function is a modelling choice, but without this equation

(3.2.1) simply represents a standard mixture model. Moreover, π is not required to be

monotonic and can be defined based on the application, which might make more sense

outside of the extreme value context.

A direct consequence of π(u∗, v∗; θ) depending on the data is that the margins of

the density c∗ are non-uniform; this leads to complications for inference. That is, we

cannot fit c∗ directly to the data as it is not a copula density. We overcome these

issues by fitting the copula of the density in equation (3.2.1), which requires numerical

integration to calculate. The first stage is to obtain the true margins of (U∗, V ∗) ∼ c∗ as

FU∗(u∗) = P [U∗ ≤ u∗] =

∫ u∗

0

∫ 1

0

c∗(u, v)dv du,

and similarly for FV ∗ , and then the corresponding inverse functions, F−1
U∗ and F−1

V ∗ so that

we can transform the margins to Uniform(0, 1) via the probability integral transform.

The resulting copula is thus represented as

c(u, v;γ) =
c∗
(
F−1
U∗ (u), F−1

V ∗ (v);γ
)

fU∗
(
F−1
U∗ (u)

)
fV ∗

(
F−1
V ∗ (v)

) , (3.2.2)

where fU∗ and fV ∗ are the marginal probability density functions of c∗ and γ = (θ,α,β)

is the vector of model parameters, common to the density in equation (3.2.1). Note
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that each of fU∗ , fV ∗ , FU∗ and FV ∗ depends on γ, but this is suppressed in the notation

for readability.

3.2.2 Simulation

It is important to be able to sample from the proposed model so that it can be validated.

To do so, we first note that we can rewrite the density (3.2.1) as a standard mixture of

two densities

c∗(u∗, v∗;γ) =
Kt

K
ft(u

∗, v∗; θ,α) +

(
1− Kt

K

)
fb(u

∗, v∗; θ,β),

where K = K(γ) and

ft(u
∗, v∗; θ,α) =

π(u∗, v∗; θ)ct(u
∗, v∗;α)

Kt

,

fb(u
∗, v∗; θ,β) =

[1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)

Kb

,

Kt =

∫ 1

0

∫ 1

0

π(u∗, v∗; θ)ct(u
∗, v∗;α)du∗ dv∗,

Kb =

∫ 1

0

∫ 1

0

[1− π(u∗, v∗; θ)]cb(u
∗, v∗;β)du∗ dv∗.

Note that K = Kt + Kb. Thus, to simulate from c∗(u∗, v∗;γ) we need to be able to

sample from the two densities ft(u
∗, v∗; θ,α) and fb(u

∗, v∗; θ,β), which are non-standard

as they depend on the weighting function π(u∗, v∗; θ) as well as the copula densities.

However, as we can sample from the densities ct(u
∗, v∗;α) and cb(u

∗, v∗;β), we can use

a rejection sampling scheme to simulate from the required densities ft and fb.

Note that, since the weighting function π(u∗, v∗; θ) is in (0, 1), it is the case that

sup
(u∗,v∗)∈(0,1)2

ft(u
∗, v∗;α)

ct(u∗, v∗;α)
= sup

(u∗,v∗)∈(0,1)2

π(u∗, v∗; θ)ct(u
∗, v∗;α)

Ktct(u∗, v∗;α)
=
π(u∗, v∗; θ)

Kt

≤ 1

Kt

.

Similarly, the ratio fb/cb is bounded by 1/Kb. The rejection algorithm for sampling
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from c∗ via ft and fb is then as follows:

1. Simulate n draws from ct(u
∗, v∗;α) and keep each with probability

ft(u
∗, v∗; θ,α)

(1/Kt)ct(u∗, v∗;α)
=
Ktπ(u

∗, v∗; θ)ct(u
∗, v∗;α)

Ktct(u∗, v∗;α)
= π(u∗, v∗; θ).

The expected number of returned draws from ft is nKt.

2. Simulate n draws from cb(u
∗, v∗;β) and keep each with probability

fb(u
∗, v∗; θ,β)

(1/Kb)cb(u∗, v∗;β)
=
Kb[1− π(u∗, v∗; θ)]cb(u

∗, v∗;β)

Kbcb(u∗, v∗;β)
= 1− π(u∗, v∗; θ).

The expected number of returned draws from fb is nKb.

The total expected number of draws from both distributions together is n(Kt+Kb) =

nK; these are in proportions Kt/K and Kb/K = 1−Kt/K, and consequently we have a

random sample from density c∗. To get a fixed sample size n′, we simply take sufficiently

large n and keep n′ draws at random.

Figure 3.2.1 illustrates two examples of random samples from our weighted copula

model with different weighting functions. In each case we take a Gumbel copula with

α = 2 as ct and a Gaussian copula with ρ = 0.6 as cb, which are the same components

as the example in Figure 3.1.1. See A.1 for a directory of copula models and their

parameterisations. Contrary to the Aulbach et al. (2012a) approach, we see that there

is no cut-off between the two regions, with a smooth transition from data points mainly

derived from cb in the bottom left to those mainly derived from ct in the top right. The

influence of the choice of weighting function is also visible; for the same value of θ, a

preference for ct over cb is shown in the right plot.
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Figure 3.2.1: Example of data points from two weighted copula models simulated ac-
cording to the sampling procedure detailed in Section 3.2.2. In both cases, a Gum-
bel copula with parameter α = 2 is taken as ct and a Gaussian copula with pa-
rameter ρ = 0.6 as cb. Two weighting functions are used with θ = 1.5 in both:
π(u∗, v∗; θ) = (u∗v∗)θ (left) and π(u∗, v∗; θ) = exp{−θ(1 − u∗)(1 − v∗)} (right). Points
in blue originate from cb and points in red originate from ct.

3.2.3 Extremal dependence properties

We are interested in understanding the extremal dependence properties of the proposed

model and, to do so, we compute the dependence measures χ and η mentioned in

Section 3.1.3. However, since they are defined in terms of the joint survival function

of (FX(X), FY (Y )) , which we do not have, and the integral of the density in equation

(3.2.1) is intractable, χ and η are mainly obtained numerically. We have, however,

derived these measures for one particular case with two different weighting functions;

these are presented in the Supplementary Material. For a set of bivariate copulas,

Heffernan (2000) and Joe (2014) study these dependence measures; a selection of which

are summarised in Table 3.2.1.
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Table 3.2.1: χ and η for a selection of copulas; ρ is the parameter of the Gaussian
copula, and α the parameter of the Gumbel and Hüsler-Reiss copulas.

Copula χ η
Gaussian 0 (1 + ρ)/2
Frank 0 1/2
Gumbel 2− 21/α 1
Hüsler-Reiss 2− 2Φ(1/α) 1

We consider mixtures of these four copulas to study the dependence properties of our

model. In addition, we study the influence of the weighting function π(u∗, v∗; θ) and its

parameter θ. Thus, we consider two functions, π(u∗, v∗; θ) = (u∗v∗)θ and π(u∗, v∗; θ) =

exp{−θ(1−u∗)(1−v∗)}, each with θ ∈ [0.2, 15]. The dependence measures χ(r) and η(r)

were computed for 10 different threshold values r ranging from 0.7 to 0.9998779, which is

1− (2×Machine Epsilon)0.25 in R, according to equations (3.1.2) and (3.1.3). For small

θ, the weighting functions are closer to 1 at lower levels u∗ and v∗, meaning that the tail

copula dominates over a larger region, and vice versa for large θ. In general, we expect

that, in the limit r → 1 and with a weighting function that goes to 1 with u∗ and v∗, the

dependence properties of our model are dominated by those from the copula tailored

to the tail, with similarities to the body copula for large θ and smaller r. Table 3.2.2

shows the theoretical values for χ and η for each of the copulas used in the four weighted

copula models, and Figure 3.2.2 shows the outcomes of our numerical investigations for

Case 3. The remaining results are shown in the Supplementary Material. For use in

Table 3.2.2 and beyond, we let ηt and χt represent η and χ for the tail copula, and

similarly ηb and χb for the body copula.

Table 3.2.2: Theoretical values for χ and η for each of the copulas considered in the
weighted copula models studied based on Table 3.2.1. AD denotes “asymptotically
dependent”; AI denotes “asymptotically independent”.

Case Body Copula cb Tail Copula ct χt χb ηt ηb
1 Frank (AI) α = 2 Gaussian (AI) ρ = 0.6 0 0 0.8 0.5
2 Frank (AI) α = 1 Gumbel (AD) α = 3 0.74 0 1 0.5
3 Gumbel (AD) α = 1.2 Gaussian (AI) ρ = 0.5 0.22 0 1 0.75
4 Gumbel (AD) α = 2 Hüsler-Reiss (AD) α = 2 0.62 0.59 1 1
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We can see from Figure 3.2.2 that, in the limit r → 1, χ(r) and η(r) of the weighted

copula model tend towards χt and ηt for both weighting functions. However, the results

in the Supplementary Material suggest that this does not hold true for each of the com-

binations we consider. Depending on the weighting function, our investigations suggest

that cb has an influence on the extremal dependence properties of the model in some

cases. In particular, if ct is an asymptotically dependent copula and the weighting func-

tion is π(u∗, v∗; θ) = (u∗v∗)θ, we observe that the limiting value of χ for the weighted

copula model is dominated by χt with an influence from χb. For an asymptotically inde-

pendent tail copula and/or the weighting function π(u∗, v∗; θ) = exp{−θ(1−u∗)(1−v∗)},

our investigations suggest that the limiting extremal dependence properties of the

model are those from ct. Moreover, the influence of the parameter θ differs since

π(u∗, v∗; θ) = (u∗v∗)θ grows more slowly than π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)} as

u∗, v∗ → 1.When θ is larger, χ(r) and η(r) are closer to χb(r) and ηb(r), particularly for

smaller r, where χb(r) and ηb(r) are the sub-asymptotic extremal dependence measures

χ(r) and η(r) for cb.

We note that this investigation suggests that there are some interesting subtleties

in the tail dependence of models constructed in this way, and does not provide general

conclusions. As shown theoretically for some of the considered cases, the weighted

copula model has some intriguing features, such as the influence that the body copula

might have when the tail component is asymptotically dependent for a given weighting

function, which are worth investigating further. However, for specific cases, similar

numerical or theoretical investigations can be carried out for any copulas and weighting

functions of interest.
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(a) χ(r) and η(r) with weighting function π(u∗, v∗; θ) = (u∗v∗)θ.
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(b) χ(r) and η(r) with weighting function π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)}.

Figure 3.2.2: χ(r) and η(r) for different thresholds r ∈ [0.7, 1) for the proposed model
with both π(u∗, v∗; θ) when cb is Gumbel (AD) and ct is Gaussian (AI). The coloured
lines represent the 10 different models depending on different values of θ; the thick
black lines represent the single copula models - Gumbel (dashed) and Gaussian (solid).
The theoretical values for the Gumbel and Gaussian copulas based on Table 3.2.2 are
represented by the horizontal dashed lines.
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3.3 Inference

3.3.1 Parameter estimation

In order to estimate γ, we maximise the log-likelihood function of model (3.2.2),

ℓ(γ) =
n∑
i=1

log c(ui, vi;γ), ui, vi ∈ [0, 1]2, i = 1, . . . , n, (3.3.1)

assuming n independent observations from the copula. Because F−1
U∗ and F−1

V ∗ are com-

putationally expensive to obtain by a root finding algorithm, these are approximated

using a smooth spline, following Zhang et al. (2022a). We found the spline approxima-

tion produces results with a similar degree of precision to the root finding algorithm,

while reducing the computational time considerably.

We conduct a simulation study to verify that inference on the proposed model

produces reasonable estimates for the vector of model parameters γ, and their inherent

uncertainty. To do so, we consider two examples with different sample sizes: 500 and

1000 data points. Data are sampled from density (3.2.1) via the sampling procedure

outlined in Section 3.2.2.

For the first case, we take cb to be the Clayton copula density with α = 1, and ct to

be the Gumbel copula density with α = 2. For the second example, cb is taken as the

Joe copula density with α = 2 and ct is the Gaussian copula density with ρ = 0.6. The

parameter of the weighting function is set to be θ = 0.8 in the first example and θ = 1

in the second case. Each data set is simulated 100 times.

Figure 3.3.1 displays the results of the simulation study. For each parameter, the

left boxplot shows the spread of estimates when n = 500, and the right boxplot displays

this for n = 1000.We observe that estimation seems generally unbiased and uncertainty

reduces when the sample size increases.
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Figure 3.3.1: Estimation variability obtained by simulating each case 100 times.

Because the copula density (3.2.2) relies on numerical integration to obtain F, f and

F−1, it is important to assess the computational effort required to perform inference.

Figure 3.3.2 displays the time taken to optimise the likelihoods on an internal computing

node running CentOS Linux, with an Intel CPU running at 500GB of RAM. We can

see that, for each of the models, the time taken increases with the sample size, which

is to be expected. It also varies with the chosen copulas; for example, to evaluate the

likelihood with n = 500 data points, the first model took around 30 minutes while the

second took around 50 minutes.
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(a) Case when ct is Gumbel and cb is Clay-
ton for n = 500 (left) and n = 1000
(right).

0

50

100

150

n=500 n=1000

T
im

e 
(m

in
ut

es
)

(b) Case when ct is Gaussian and cb is Joe
for n = 500 (left) and n = 1000 (right).

Figure 3.3.2: Time (minutes) taken to optimise the log-likelihood (3.3.1) for each sim-
ulation.
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3.3.2 Model misspecification

In addition to checking if inference on the model produces reasonable estimates for γ,

we study the ability of the model to capture a misspecified dependence structure. We

consider two situations: the case where the underlying data set comes from a single

copula and we fit our model with this copula as one of the components; and the case

where the fitted model does not contain the true copula. In the first case, we investigate

whether the estimate of the parameter of the weighting function θ agrees with the true

data. Since π(u∗, v∗; θ) is increasing in (0, 1), we expect θ̂ to be large (small) when the

true copula is tailored to the body (tail) of the distribution. In the second case, we

investigate whether our model still produces reliable estimates of various dependence

summaries even though the true dependence structure cannot be captured.

For the first case, we generate 1000 data points from a Joe copula with α = 2 and

fit two weighted copula models: one with the true copula as ct and a Gaussian copula

as cb, and the other with the true copula as cb and a Clayton copula as ct. As before,

100 simulations for each case were performed and the results are shown in the boxplots

in Figure 3.3.3.

2.0

2.2

2.4

Joe

α

0.0

0.3

0.6

Gaussian

ρ

0.0

0.1

0.2

0.3

0.4

Weighting Function

θ

(a) Parameter estimates when ct is taken
as the true copula (left) and cb is taken as
the Gaussian copula (middle). The true
value for the parameter is shown in red.
Estimates of θ are shown in the right box-
plot.

2.0

2.2

2.4

Joe

α J

0

5

10

15

Clayton

α C

5

10

Weighting Function

lo
g(

θ)

(b) Parameter estimates when cb is taken
as the true copula (left) and ct is taken
as the Clayton copula (middle). The true
value for the parameter is shown in red.
Estimates of log(θ) are shown in the right
boxplot.

Figure 3.3.3: Estimation variability obtained by simulating each case 100 times.
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We observe that, when the Joe copula is taken as ct, the estimates for θ are all

less than 1, and when it is taken as cb, these are considerably larger (here we use the

logarithm of θ for ease of visualisation). Looking at the estimates for the parameter

of the true copula, although they show some bias, they are fairly close to the true

values, represented by the red lines. Finally, the estimates for the parameters of the

misspecified copula show larger variability, which is to be expected as most of the weight

is on the true copula. Figure 3.3.4 shows a comparison between the AIC of the true and

weighted copula models, respectively. In the majority of cases (89% for the first and

92% for the second), the true model outperforms the weighted copula model in terms

of AIC, as expected.
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(a) Case with the true copula as ct and a
Gaussian copula as cb.
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(b) Case with true copula as cb and a Clay-
ton copula as ct.

Figure 3.3.4: Comparison between the AIC of the true model and the fitted model.

For our second experiment, to evaluate the outcome of not being able to capture

the true dependence structure, we simulate 1000 data points from a Gaussian copula

with ρ = 0.65 and from a Galambos copula with α = 2. For both cases, we generate

50 repetitions of the data set and fit a variety of weighted copula models, selecting the

best model based on the average AIC values. In order to assess if the selected weighted

copula model is flexible enough to capture the dependence of the true data sets, we

compute three measures of dependence: Kendall’s τ, and χ(r) and η(r) from equations

(3.1.2) and (3.1.3), respectively, at several thresholds r ∈ (0, 1).We show how the model

performs by comparing with the theoretical values of the underlying models; the results
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are shown in Figures 3.3.5 and 3.3.6.

Figure 3.3.5 displays the results for the weighted copula model where ct is inverted

Gumbel, cb is Student t, and the true underlying structure is Gaussian. The results

for the second model where the true underlying structure is Galambos and the selected

weighted copula model is Coles-Tawn as ct and Frank as cb are shown in Figure 3.3.6.

In both cases, we observe that the misspecified models capture the three dependence

measures fairly well.
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Figure 3.3.5: Model and theoretical (in red) χ(r) (top left) and η(r) (top right) at levels
r ∈ {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}, and Kendall’s τ (bottom) for the selected
model when the true model is Gaussian with ρ = 0.65.
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Figure 3.3.6: Model and theoretical (in red) χ(r) (top left) and η(r) (top right) at levels
r ∈ {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99}, and Kendall’s τ (bottom) for the selected
model when the true model is Galambos with α = 2.

3.4 Case study: ozone and temperature data

3.4.1 Data and background

The relationship between ozone concentration and temperature has been analysed pre-

viously in the literature. For instance, Finch and Palmer (2020) show that there is

an increase of exceeding regulated thresholds for ozone when the temperature is high.

More recently, Gouldsbrough et al. (2022) study how extreme levels of ozone concen-

tration are influenced by temperature in the UK by applying a temperature-dependent

univariate extreme value model. They show that, with the increase in temperatures,

the probability of exceeding a moderate regulated threshold of ozone concentration

has increased over the last decade; this leads to this event no longer being considered

extreme. The analysis of Gouldsbrough et al. (2022) only considers the univariate dis-
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tribution of ozone extremes conditional upon the value of temperature. Since both

temperature and ozone concentration are measurements of random variables, we can

apply our weighted copula model to learn about the relationship between these vari-

ables at all levels. Specifically, we study the dependence between temperature and

ozone concentration at two UK sites: Blackpool (urban background) and Weybourne

(rural background). Table 3.4.1 shows the regulated threshold indexes for the levels of

air pollution for Ozone in the UK.

Table 3.4.1: Daily Air Quality Index (DAQI) for ozone (O3) concentrations in the UK.

Levels Low Moderate High Very High

O3 (µg/m
3) [0, 100] [101, 160] [161, 240] > 240

We took the daily maxima from 8-hour running means ozone concentration available

on the UK’s Automatic Urban and Rural Network (AURN) (https://uk-air.defra.

gov.uk) and obtain the corresponding daily maximum temperature data from the

Centre for Environmental Analysis (CEDA) archive (https://archive.ceda.ac.uk).

Since higher temperatures are expected during summer, and in order to overcome the

non-stationarity often present in temperature data, we restrict our analysis to the sum-

mer months (June-August). Based on the available data, we consider the years from

2011 to 2019 for Blackpool and from 2010 to 2019 for Weybourne; this results in 827

and 892 observations, respectively. Figure 3.4.1a shows the scatterplot of the daily max-

ima of temperature and the daily maxima of ozone for the summers of 2011 to 2019

in Blackpool and the respective regulated UK thresholds, while Figure 3.4.1b shows

the relationship between the variables when transformed to uniform margins using a

semi-parametric approach with a GPD fit to the tail of both distributions. That is, we

https://uk-air.defra.gov.uk
https://uk-air.defra.gov.uk
https://archive.ceda.ac.uk
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estimate the CDF of each marginal distribution via

F (x) =


F̃ (x), x ≤ r,

1− ϕr

[
1 +

ξ(x− r)

σ

]−1/ξ

+
, x > r,

where F̃ (x) is the empirical distribution function, ϕr is the probability of exceeding a

selected high threshold r, and ξ and σ are the GPD shape and scale parameters, res-

pectively. The corresponding analysis for Weybourne is presented in the Supplementary

Material; the results show similar conclusions to the analysis for Blackpool.
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Figure 3.4.1: Summer data from 2011 to 2019 for Blackpool, UK.

3.4.2 Model fitting

We start by fitting a single copula model to the whole data set for comparison with

the weighted copula model. Looking at Figure 3.4.1b, the variables seem to exhibit
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positive correlation when they are both extreme, but negative dependence otherwise.

We anticipate that the weighted copula model may be flexible enough to capture this,

whereas a single copula is likely to be too rigid. Table 3.4.2 shows the MLEs obtained

by fitting a range of copulas and the corresponding AIC values. From the copulas

considered, the only ones capable of capturing negative dependence are the Gaussian

and Frank, when their parameters are negative, and the Student t (which also exhibits

lower and upper tail dependence). However, all parameter estimates are positive. In

terms of AIC, the best fit is the Joe, followed by the Galambos, Hüsler-Reiss, Gumbel

and Coles-Tawn copulas; these are all known to be asymptotically dependent copulas,

which appears to agree with the dependence in the upper tail shown in Figure 3.4.1b.

As a further diagnostic, we compute the dependence measure η(r) from equation (3.1.3)

for r ∈ (0, 1) empirically, as well as for the five best models in terms of AIC, and for

the Gaussian and Frank copulas; this is shown in Figure 3.4.2. The confidence intervals

in Figure 3.4.2 were obtained via block bootstrapping the data with a block length of

14 days, to reflect temporal dependence in the extremes. It is evident that none of the

copulas fit the model well in the whole support based on this measure. However, the

Joe copula (in orange) appears to give the best fit in the tail, consistent with its AIC

value being lowest.

Table 3.4.2: MLEs for ten copulas and their AIC values. Lower AIC values are preferred.

Copula Parameter AIC

Clayton 1.22× 10−8 2.0
Frank 0.92 -15.8
Gumbel 1.20 -97.4
Inverted Gumbel 1.04 0.1
Galambos 0.46 -99.0
Gaussian 0.19 -28.6
Joe 1.41 -143.6
Student t 0.16 4.52 -52.8
Hüsler-Reiss 0.82 -99.1
Coles-Tawn 0.24 0.22 -95.9

We next fit the weighted copula model to the whole data set taking the weighting



CHAPTER 3. JOINT MODELLING OF THE BODY AND TAIL 70

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

Thresholds

η

Joe
Galambos
Husler−Reiss
Gumbel
Coles−Tawn
Gaussian
Frank

Figure 3.4.2: Empirical η(r) (in black) and η(r) for seven copulas (in colour) for r ∈
(0, 1). The 95% confidence bands were obtained by block bootstrapping. Note that
the η(r) for the Galambos, the Hüsler-Reiss, the Gumbel and the Coles-Tawn copulas
overlap.

function π(u∗, v∗; θ) = (u∗v∗)θ. We consider several copulas with different extremal de-

pendence characteristics to fit both cb and ct; Table 3.4.3 shows the MLEs obtained

by optimising the log-likelihood (3.3.1) and their AIC values for some of the models

considered. According to AIC, there is a preference for models with the Gaussian and

Frank as candidates for cb and AD copulas, such as the Galambos, Hüsler-Reiss, Joe

and Coles-Tawn copulas, as ct. In contrast to the single copula fits, the parameter esti-

mates for the Gaussian and the Frank copulas are negative, which mirror the negative

association visible in the body of Figure 3.4.1b.

We next consider a different weighting function, π(u∗, v∗; θ) = exp{−θ(1− u∗)(1−

v∗)}, in the five models with the lowest AICs. The MLEs and the AIC values are shown

in Table 3.4.4. In terms of AIC, these models are all better fits to the data, while the

negative correlation is still captured by cb, and is now stronger. Because these models

represent a better fit based on AIC, we focus on them for the rest of the analysis.
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Table 3.4.3: MLEs for different weighted copula models and their AIC values when the
weighting function used is π(u∗, v∗; θ) = (u∗v∗)θ. Lower AIC values are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.24 -0.40 0.35 -176.1
Model 2 Galambos Gaussian 0.79 -0.41 0.34 -172.1
Model 3 Coles-Tawn Gaussian 0.35 2.86 -0.33 0.43 -158.4
Model 4 Coles-Tawn Frank 0.33 4.80 -2.52 0.37 -163.2
Model 5 Joe Frank 1.61 -4.11 0.18 -184.9
Model 6 Clayton Gaussian 12.10 -0.20 2.10 -129.9
Model 7 Inverted Gumbel Gaussian 2.65 -0.29 0.90 -153.4
Model 8 Hüsler-Reiss Joe 1.28 1.30 3.18 -145.6
Model 9 Student t Galambos 0.72 4.98 0.28 2.59 -125.0
Model 10 Gaussian Clayton 0.81 3.38× 10−4 2.80 -132.6
Model 11 Gumbel Joe 1.52 1.18 0.91 -145.1

Table 3.4.4: MLEs for five weighted copula models and their AIC values when the
weighting function used is π(u∗, v∗; θ) = exp{−θ(1 − u∗)(1 − v∗)}. Lower AIC values
are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.33 -0.74 3.32 -240.1
Model 2 Galambos Gaussian 0.90 -0.72 3.55 -237.2
Model 3 Coles-Tawn Gaussian 0.85 0.79 -0.74 3.25 -234.8
Model 4 Coles-Tawn Frank 0.869 1.02 -4.51 4.33 -235.7
Model 5 Joe Frank 1.72 -6.49 2.45 -232.9

3.4.3 Diagnostics

To check the adequacy of the model fits, we compare a variety of empirical dependence

measures to their model-based counterparts. These include Kendall’s τ, the dependence

measures χ(r) and η(r) for r ∈ (0, 1), and some probabilities of interest. Specifically,

we look at the probability of ozone concentrations exceeding the so-called moderate

threshold (i.e., 100 µg/m3) when the temperature is high or low, and the probability of

O3 exceeding this and the higher threshold of 160 µg/m3, knowing that the temperature

is in a specific range.

Figure 3.4.3 displays χ(r) and η(r) for r ∈ (0, 1). A clear improvement from the

single copula models shown in Figure 3.4.2 can be seen as now all five models offer

a reasonable fit throughout the whole support. In addition, model 5 (in light green)
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seems to provide slightly better χ(r) and η(r) estimates at median values of r and in

the tail.
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(a) Empirical χ(r) (in black) and χ(r) for the five models (in colour) for r ∈ (0, 1).
The 95% confidence bands were obtained by block bootstrapping.
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(b) Empirical η(r) (in black) and η(r) for the five models (in colour) for r ∈ (0, 1).
The 95% confidence bands were obtained by block bootstrapping.

Figure 3.4.3: Dependence measures χ(r) and η(r).
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The average temperature in summer in Blackpool is between 17◦C and 20◦C and

the observed 90th, 95th and 99th percentiles of the temperature are approximately

22◦C, 24◦C and 28◦C, respectively. Thus, we focus on probabilities based on these

values of temperature; these are presented with Kendall’s τ in Table 3.4.5. We can

see that the five models give very similar probabilities and they are all inside the

95% confidence interval of the empirical values, except for P [T ≤ 16, O3 ≥ 100] and

P [O3 ≥ 160 | 28 ≤ T ≤ 29]. The empirical probability and its 95% confidence interval

of the latter are explained by the low number of observations present in the data

set. When there are no observations in a certain region then this will be true of each

bootstrap sample as well. Gouldsbrough et al. (2022) obtained the mean probability

of exceeding the high threshold 160 µg/m3 at the 99th percentile of temperature for

urban and rural backgrounds across the UK. These were 0.0002 ([0, 0.0004]) for an

urban background and 0.006 ([0.003, 0.009]) for a rural background. We obtained

higher probabilities of exceeding this threshold given that the temperature is close

to the observed 99th percentile (we refer readers to the Supplementary Material for

the results for Weybourne). This might be due to having only considered two sites

within the UK, and potentially some of the characteristics of the relationship between

temperature and ozone being better captured with the weighted copula model than

with the univariate conditional model.

An advantage of this modelling approach in comparison to the conditional univariate

modelling of Gouldsbrough et al. (2022) is that we are able to extrapolate and consider

probabilities of ozone exceeding certain thresholds at temperature values that have

not been observed in the data set. In this way, we can consider probabilities such as

P [O3 ≥ 160 | 33 ≤ T ≤ 35], which we estimate to be 0.6944 for Model 1, for example.
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Table 3.4.5: Diagnostics for the best five models based on their AIC values. The 95%
confidence intervals for the empirical values were obtained by block bootstrapping.

Model Kendall’s τ P [T ≤ 16, O3 ≥ 100] P [T ≥ 22, O3 ≥ 100]

Empirical 0.0821 0.0012 0.0363

(95% CI) (0.0173 , 0.1867) (0.0000 , 0.0011) (0.0170 , 0.0601)

Model 1 0.0690 0.0036 0.0332

Model 2 0.0663 0.0040 0.0336

Model 3 0.0770 0.0039 0.0338

Model 4 0.0779 0.0035 0.0348

Model 5 0.0718 0.0036 0.0353

Model P [T ≥ 24, O3 ≥ 100] P [O3 ≥ 100 | 22 ≤ T ≤ 23] P [O3 ≥ 160 | 28 ≤ T ≤ 29]

Empirical 0.0302 0.1330 0.0000

(95% CI) (0.0147 , 0.0544) (0.0227 , 0.1944) (0.0000 , 0.0000)

Model 1 0.0246 0.1441 0.0070

Model 2 0.0250 0.1412 0.0062

Model 3 0.0251 0.1429 0.0061

Model 4 0.0262 0.1392 0.0055

Model 5 0.0267 0.1366 0.0050

3.5 Conclusions and discussion

In this paper, we introduced a dependence model that is able to capture both the

body and tail of a bivariate data set. This is important when we aim to obtain an

accurate representation of the data in both regions. The model has the advantage

of not requiring a choice of thresholds above which we fit the copula tailored to the

extreme observations. Moreover, it offers a smooth transition between the two copulas.

Through simulation studies, we have shown that the model behaves as expected when

only a single dependence structure is present, and that it is sufficiently flexible to capture

misspecified dependence structures. We applied the weighted copula model to study

the relationship between temperature and concentrations of air pollution in the UK

and showed that this model performs substantially better than fitting a single copula

model to the data. In fact, in this particular application, we were able to capture the

negative dependence exhibited by the bulk and the positive association present in the
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upper tail, which was not possible through fitting a single copula.

A drawback of the weighted copula model is that it is computationally expensive due

to the need for numerical integration and inversion. As shown in the simulation studies

in Sections 3.3.1 and 3.3.2, for a sample size of 1000, optimising the log-likelihood takes

more than one hour to compute, although the run time also varies depending on the

chosen copulas. Whilst in principle the weighted copula model could be extended to

higher dimensions, doing so would exacerbate the computational issues.

For the temperature and ozone data, we have χ(r) > 0 and η(r) < 1, for the largest

values of r, which does not allow us to draw conclusions about the extremal dependence.

This is a common situation in practice but results in complications if we wish to extrap-

olate for larger values than the ones observed. Incorporating a more flexible copula as

the tail component of the proposed model is a possibility to overcome this issue. Such

a copula could be the one proposed by Huser and Wadsworth (2019), which is able

to capture both dependence classes with the transition between them occurring at an

interior point of the parameter space. However, because it is computationally expensive

on its own, when applied as the tail component in our model, the computational time

required was not feasible.

It would be an advantage to have a copula model that could accommodate changes

in the dependence structure due to covariates over the whole support of the distribu-

tion. Until now, we have been assuming stationarity, which is rarely the case in real

world situations. Non-stationary multivariate extreme value methods naturally focus

on capturing trends present in the extreme observations. However, data may be ex-

treme in only one variable and thus studying the trends present in the body of the data

is of importance as well. Incorporating covariates in the proposed model would also be

an interesting avenue for future work.

Finally, some theoretical aspects of the weighted copula model remain open for fur-

ther work. For instance, it would be interesting to investigate bounds on differences
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between cb and/or ct with the copula c of c∗, or whether we could identify the family of

the resulting copulas in specific cases such as when both ct or cb are from the same fam-

ily. Further theoretical exploration of extremal dependence properties of the weighted

copula model would also be valuable as only particular cases were considered.



Chapter 4

Gaussian mixture copulas for

flexible dependence modelling in

the body and tails of joint

distributions

4.1 Introduction

4.1.1 Motivation

Preventing impactful events such as high temperatures, floods, market crashes is crucial,

requiring the need for models able to characterise well such large, and rare, observations.

When these rare observations are triggered by another event, the joint modelling of such

phenomena is needed to understand the effect of one occurrence on another. Since the

interest is on the joint behaviour in the tail, it is typical in the literature to define an

extreme region on which inference is based; this often requires selecting a threshold

above which the observations are deemed extreme. Such a choice, however, is often

arbitrary and might lead to inaccurate representations of the extremal dependence

77
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structure. This can be overcome if models that show flexibility in jointly modelling the

body and tail regions of the data are considered instead. This approach is particularly

useful in contexts such as air pollutant concentrations, where studying the effect of

one pollutant on another is as crucial as analysing them individually. Since harmful

levels might occur not only in the tails but also in the regions where only a subset of

air pollutants are extreme, modelling the body is as important as capturing the tail

behaviour accurately.

Modelling the entire data set with common statistical distributions might sometimes

lead to a poor fit of the data. For instance, in a univariate framework, distributions such

as the Gaussian are unfit to capture the tail behaviour well even if they are a reason-

able fit to the body of the distribution. Therefore, when the interest is in the extreme

observations of a data set, a model justified for the tail is required. In the univariate

framework, the common practice is to fit asymptotically justified models: either a gen-

eralised extreme value (GEV) distribution, if the underlying data are block maxima,

or a generalised Pareto (GP) distribution, if the underlying data are exceedances over

a threshold (Coles, 2001). Likewise, asymptotically justified models are required to fit

the tail region of a multivariate data set, with such models requiring marginal and de-

pendence structures supported by asymptotic arguments. While the margins are either

GEV or GP distributed, extra considerations are needed for the dependence structure of

a multivariate data set. Additionally, such asymptotically justified models are unlikely

to be an appropriate fit for non-extreme observations. Since often these observations

provide no useful information about the extremes, the body of the distribution has been

modelled empirically (Coles and Tawn, 1991). However, relying solely on thresholds to

determine which observations are useful for inferring the extremal behaviour of a data

set can be sometimes too simplistic. Specifically, the choice of threshold can be not

only subjective, but also introduce a high degree of sensitivity to the results, with small

changes in its value potentially leading to different outcomes. Furthermore, defining an
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extremal region in a multivariate setting is not as straightforward as with the univariate

framework, as there are various ways to represent it, potentially requiring a number of

thresholds. Lastly, in some cases, having an accurate fit of the body can be as important

as representing the tail correctly. Thus, empirically estimating the non-extremal region

might not be feasible and more suitable models might be required in some situations.

4.1.2 Univariate extreme value mixture models

In univariate extremes, the body and upper tail regions of a random variable X are

defined by the events {X < u} and {X ≥ u}, respectively, for a suitably defined thresh-

old u (Coles, 2001). While the common practice is to fit an asymptotically justifiable

model above u and model the observations below empirically, various univariate models

that fit parametric distributions to both of these regions jointly have been proposed;

Scarrott and MacDonald (2012) review several of these models, henceforth referred to

as extreme value mixture models (EVMMs). Typically, these involve fitting a GP dis-

tribution to the upper tail, while a different, more suitable, model is chosen for the bulk

region. Moreover, by implicitly or explicitly treating the threshold u as a parameter of

the model, the majority of these models aim to account for the uncertainty around this

threshold choice in the inference procedure.

A substantial literature of EVMM has been developed, with the following covering

the core examples. Frigessi et al. (2002) proposes a dynamically weighted mixture model

where a GP and a lighter tailed (such as the Weibull) distributions are fit to the full

support of the data. By means of a non-decreasing weighting function that depends on

the data, the GP distribution is tailored to the tail while the lighter tailed distribution

will be predominant in the bulk region. Contrarily, the models introduced by Behrens

et al. (2004), Carreau and Bengio (2009), Tancredi et al. (2006) and MacDonald et al.

(2011) fit the bulk region in a parametric, semi-parametric or non-parametric way,

respectively, whilst a GP distribution is used to model the exceedances above a large
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threshold; in these, the threshold u is usually estimated within the modelling framework.

de Mendes and Lopes (2004), Naveau et al. (2016), Tencaliec et al. (2020), Stein (2021)

and Krock et al. (2022) propose modelling both the lower and upper tails with a GP

distribution, and bridge them through either a different distribution for the bulk or

by means of a composition of functions. Finally, modelling the bulk and tail regions

jointly in a hierarchical way has also been proposed in the literature; for instance,

Bottolo et al. (2003) assume that the exceedances of different clusters are generated

by a Poisson process, whereby each parameter is modelled by a hierarchical mixture

prior. In this way, the presence of heterogeneity is accounted for in the modelling.

More recently, Castro-Camilo et al. (2019) construct a latent Gaussian model based on

a spliced Gamma-GP distribution to describe the body and tail regions, respectively,

while Yadav et al. (2021) propose a Gamma-Gamma hierarchical model for which the

GP distribution is a special case.

4.1.3 Dependence modelling

When moving to a multivariate framework, the dependence between variables presents

an additional challenge to those set out in Section 4.1.2. Let X = (X1, . . . , Xd) be

a d-dimensional random vector with d ≥ 2 and Xi be the ith marginal variables for

i ∈ D = {1, . . . , d}. Sklar’s theorem (Sklar, 1959) states that, ifX has joint distribution

function FX , marginal distribution functions FXi
(i ∈ D), and is a jointly continuous

variable, then there exists a unique copula CX : [0, 1]d → [0, 1] such that, for all

(u1, . . . , ud) ∈ [0, 1]d,

CX(u1, . . . , ud) = FX
(
F−1
X1

(u1), . . . , F
−1
Xd

(ud)
)
.

The dependence structure of X is then fully captured through the copula CX indepen-

dently of the margins. Additionally, where it exists, the copula density cX(u1, . . . , ud)
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can be obtained by taking the dth order mixed derivative of CX with respect to the

variables ui, i ∈ D. A review of a range of parametric copulas is provided by Joe (1997),

and methods for construction of flexible copula parametric families, which are tailored

to capture different dependence structures throughout the support [0, 1]d with d ≥ 2,

are reviewed by André et al. (2024).

In multivariate extremes, capturing the extremal behaviour of a data set is key to

correctly analysing and drawing appropriate conclusions about the data set in hand. In

particular, we are interested in models that are flexible enough to accommodate the two

regimes of extremal dependence: asymptotic dependence (AD), where the variables are

likely to occur together at an extreme level, or asymptotic independence (AI), otherwise.

The joint tail behaviour of a random vector X can be quantified through the measure

χD (Joe, 1997; Coles et al., 1999), which is defined, where it exists, via the limit

χD = limr→1 χD(r) ∈ [0, 1] with

χD(r) = Pr[FXi
(Xi) > r : ∀i ∈ D \ {1} | FX1(X1) > r] =

Pr[FXi
(Xi) > r : ∀i ∈ D]

1− r
,

(4.1.1)

for r ∈ (0, 1). If χD > 0, the variables in X are said to be AD, whilst in the case where

χD = 0, the variables cannot take all their largest values together. Moreover, larger

values of χD indicate stronger AD levels. In the bivariate case, when χD = 0, it can be

said that X1 and X2 are AI; however, care is needed in higher dimensions as a lower

dimensional subvector XC = {Xi : i ∈ C}, where C ⊂ D, could still exhibit AD and

have χC > 0 even though χD = 0 (Simpson et al., 2020).

A complementary measure to χD was introduced by Ledford and Tawn (1996) in

the bivariate case, and presented in d-dimensions by Eastoe and Tawn (2012). Given a

function LD that is slowly-varying at infinity, the joint tail of X can be characterised

as

Pr[FXi
(Xi) > r : ∀i ∈ D \ {1} | FX1(X1) > r] ∼ LD((1− r)−1)(1− r)1/ηD−1, (4.1.2)



CHAPTER 4. GAUSSIAN MIXTURE COPULAS 82

as r → 1, and ηD ∈ (0, 1]. The extremal dependence structure is quantified through

the measure ηD; when ηD = 1 and LD(x) ̸→ 0 as x → ∞, then the variables in X

are AD, and if ηD < 1, then they cannot all be extreme together. When d = 2, the

vector (X1, X2) is AI in the latter case. Furthermore, the coefficient ηD provides insight

about the strength of AI of a given random vector. In particular, if ηD = 1/d and

LD(x) = 1 (LD(x) ̸= 1) then independence (near independence) is achieved, whereas

when ηD > 1/d (ηD < 1/d), there is evidence of positive (negative) dependence in the

extremes. Similar to χD, the coefficient ηD is taken as the limit ηD = limr→1 ηD(r),

where it exists, with

ηD(r) =
log(1− r)

log (Pr[FXi
(Xi) > r : ∀i ∈ D])

, r ∈ (0, 1). (4.1.3)

The two measures (χD, ηD) of extremal dependence, however, are only informative

when studying the joint tail behaviour, i.e., when all the variables are extreme together.

An extension of expression (4.1.2) was proposed by Wadsworth and Tawn (2013) for

when the interest lies instead in regions where variables are not required to be equally

extreme over different margins. Specifically, the relative level of extremity across X

is represented by w = (w1, . . . , wd) ∈ Sd−1 := {w ∈ [0, 1]d :
∑d

i=1wi = 1}. In this

approach, the joint tail behaviour ofX is captured through the function λD(w) via the

assumption that, for any w ∈ Sd−1 with wt > 0, for some selected t ∈ D, we then have

Pr[FXi
(Xi) > 1− (1− r)wi/wt : ∀i ∈ D] ∼ Lw[(1− r)−1/wt ](1− r)λD(w)/wt (4.1.4)

as r → 1, where function Lw[(1 − r)−1/wt ] is slowly-varying at infinity (implying that

Lw(x) is slowly-varying at infinity for all w ∈ Sd−1 with wt > 0). The function λD(w)

satisfies a number of properties, including λD(w) ≥ max{w} for all w ∈ Sd−1. In

the boundary case then λD(w) = max{w}, and the variables in the random vec-

tor X exhibit AD. In addition, complete independence is achieved when λD(w) = 1
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for all w ∈ Sd−1. Furthermore, the coefficient ηD can be obtained from the function

λD(w) by setting w = 1d/d where 1d = (1, . . . , 1) is a d-dimensional vector as then

ηD = [dλD(1d/d)]
−1. In a similar way to χD and ηD, it can be shown by rearrangement

of expression (4.1.4) that λD(w) can be taken as the limit λD(w) = limr→1 λD(w, r),

where it exists, with

λD(w, r) = wt
log(Pr[FXi

(Xi) > 1− (1− r)wi/wt : ∀i ∈ D])

log(1− r)
, r ∈ (0, 1), (4.1.5)

for any w ∈ Sd−1 with wt > 0 for t ∈ D.

4.1.4 Multivariate extreme mixture models

In the univariate framework, the tail region is often defined by the observations exceed-

ing a high threshold value u; however, when moving to a multivariate setting, there are

several ways of defining such a region. For instance, by assuming a threshold vector

u = (u1, . . . , ud) ∈ Rd, the extremal region can be defined by the observations that

jointly exceed u (Ledford and Tawn, 1996), or by the components of X ∈ Rd that

exceed u in at least one component (Heffernan and Tawn, 2004).

Recent work has been carried out to try and capture the body and tail regions

accurately, either to avoid the choice of a threshold vector u, or due to the need for

modelling the whole distribution, or both. For instance, in the context of precipitation

modelling Vrac et al. (2007) propose a bivariate extension of the model of Frigessi

et al. (2002) with a bivariate Gamma model for the bulk region. For the upper tail

region, they transform (X1, X2) into pseudo-coordinates (R,W ) by setting R = X1+X2

and W = X1/(X1 + X2), and model R with a GP distribution and W with a Beta

distribution. This joint modelling approach results in previously unspecified margins.

Similarly to Frigessi et al. (2002), a dynamic weighting function is used to bridge both

regions, with this function only depending on the variable R, while avoiding the choice of
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threshold vector. Aulbach et al. (2012a,b) extend the model of Behrens et al. (2004) to a

multivariate setting. More specifically, given uniformly distributed variables U ∈ [0, 1]d

and a pre-defined d-dimensional threshold vector v := (v1, . . . , vd) ∈ [0, 1]d, one copula

is fit for the bulk region defined by the observations {U ̸≤ v}, i.e., where not all

components exceed their respective threshold, and the copula of a multivariate extreme

value (EV) distribution, is used for the upper tail region {U > v}. Similarly to Aulbach

et al. (2012a,b), the approach of Hu et al. (2024) builds upon the model of Behrens

et al. (2004); however, the authors do not work on a copula-based framework. Instead,

Hu et al. (2024) model the bulk, defined by the events that are jointly below a quantile

vector, with a multivariate GEV distribution whilst a multivariate GP distribution is

fitted to the upper tail region, defined by the events where at least one variable exceeds

a quantile level. Moreover, the threshold vector is treated as model parameters which

need to be estimated. Leonelli and Gamerman (2020) propose modelling the marginal

variables using EVMMs while the dependence structure is captured through a mixture

of elliptical copulas, which are fit to the full range of the data so that there is no need

to define an extremal region. Finally, André et al. (2024) extend the model of Frigessi

et al. (2002) to a multivariate setting, whereby two copulas are fitted to the full support

of the data and are then blended through a non-decreasing dynamic weighting function.

Similarly to Leonelli and Gamerman (2020), they do not require the definition of an

extremal region. While the model of Vrac et al. (2007) is limited to the bivariate case,

the remaining models can be extended to higher dimensions (d ≥ 2); however, due

to computational constraints, their practical application is restricted to the bivariate

setting.

The above listed models do not necessarily cover both AD and AI even in the bi-

variate case. Specifically, the models of Vrac et al. (2007), Aulbach et al. (2012a,b) and

Hu et al. (2024) are only suitable to modelling AD data, whereas those proposed by

Leonelli and Gamerman (2020) and André et al. (2024) capture both regimes, although
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the former can only capture AI if all the copulas in the mixture exhibit AI. This restric-

tion of the Leonelli and Gamerman (2020) approach makes the analysis highly sensitive

as it is necessary to determine which extremal dependence regime is appropriate to

fit the data prior to fitting their model. Additionally, Leonelli and Gamerman (2020)

and André et al. (2024) require choosing a priori which copula families to include in

the mixture model, which then requires multiple model fits using a range of copula

combinations.

We propose a copula model constructed from a mixture of multivariate Gaussian

distributions which overcomes the limitations of these existing approaches. It accom-

modates both AI and AD while avoiding the selection of a threshold vector u and,

subsequently, the need for defining an extremal region. The model scales relatively well

to dimensions d > 2, e.g., contrary to the approaches of Leonelli and Gamerman (2020)

and André et al. (2024). In addition, we only need to specify the number of Gaussian

mixture components to incorporate in the model, for which we develop diagnostics tools

to guide this choice. Therefore, while avoiding the choice of copulas or distributions to

take, this copula model is suitable to model the two regimes of extremal dependence,

and is fast to evaluate, even in a 5-dimensional setting.

This paper is organised as follows: in Section 4.2 we define our proposed model,

and introduce its properties, in terms of (χD, ηD), and its inference and diagnostic pro-

cedures. Section 4.3 presents simulation studies performed to assess the performance

of the model. We apply our methodology on the 5-dimensional seasonal air pollu-

tion data set analysed by Heffernan and Tawn (2004) in Section 4.4 and conclude in

Section 4.5.
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4.2 Methodology

4.2.1 Model definition and inference for copula

Let us consider a d-dimensional random vector Y := (Y1, . . . , Yd) ∈ Rd. We propose

a dependence model for the copula of Y based on a mixture of multivariate Gaussian

distributions. To do so, we first transform the margins of Y into uniform margins

through U = T (Y ), where T : Rd → [0, 1]d is applied componentwise, and then fit

a copula to the random vector U . Working in a copula-based framework instead of

considering the original scale is not novel; see for instance Wadsworth et al. (2017),

Huser and Wadsworth (2019), Engelke et al. (2019) or André et al. (2024).

Assume now that we have a mixture of k ≥ 1 components, where the jth component

is a d-dimensional random variable Zj := (Z1
j , . . . , Z

d
j ) where j ∈ K = {1, . . . , k}.

Variables from different mixture components, i.e., Zi
j and Zi′

j′ for any j ̸= j′ ∈ K,

are taken to be independent for all i, i′ ∈ D. Moreover, we assume that Zj follows a

multivariate Gaussian distribution, i.e., Zj ∼ MVN(µj,Σj), with mean vector µj =

(µ1
j , . . . , µ

d
j )

′ and variance-covariance matrix

Σj =



σ2
1j ρ1,2j σ1jσ2j . . . ρ1,dj σ1jσdj

ρ1,2j σ1jσ2j σ2
2j . . . ρ2,dj σ2jσdj

...
...

. . .
...

ρ1,dj σ1jσdj ρ2,dj σ2jσdj . . . σ2
dj


,

where ρm,nj ∈ [−1, 1] for j ∈ K and m ̸= n ∈ D is the correlation between the mth

and nth variables of the Zth
j mixture component, and σij > 0 for all j ∈ K and i ∈ D.

Consequently, we have that Zi
j ∼ N(µij, σ

2
ij) for i ∈ D and j ∈ K. As with any mixture

model some conditions need to be imposed to ensure identifiability of the parameters

of the mixture terms. Identifiability of our model is further complicated by the sole

use of the copula structure, leading to other parameters of our model for Y not being
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identifiable on the copula scale. For these two reasons, respectively, we impose that

µ1
j−1 < µ1

j for j = 2, . . . , k, and (µ1, σ
2
11) = (0, 1). The latter condition ensures some

referencing point when moving to the copula framework, as copulas are invariant to

additive and scale transformations of Y .

The random vector Y , whose distribution function is FY and Yi ∼ FYi (i ∈ D), is

then defined as below

Y =



Z1 =
(
Z1

1 , Z
2
1 , . . . , Z

d
1

)
, with probability p1,

Z2 =
(
Z1

2 , Z
2
2 , . . . , Z

d
2

)
, with probability p2,

...
...

Zk =
(
Z1
k , Z

2
k , . . . , Z

d
k

)
, with probability pk,

where p1 ∈ (0, 1], 0 ≤ pj ≤ 1 for j = 2, . . . k, and
∑k

j=1 pj = 1. Furthermore, the

survivor marginal distribution for random variable Yi (i ∈ D) can be defined as

F Yi(y) =
k∑
j=1

pjΦ

(
y − µij
σij

)
, for y ∈ R, (4.2.1)

where Φ denotes the standard Gaussian survivor distribution function and k ≥ 1.

Similarly, the joint survivor distribution function of Y is given as

FY (y) =
k∑
j=1

pj Pr[Z
1
j > y1, . . . , Z

d
j > yd], for y = (y1, . . . , yd) ∈ Rd. (4.2.2)

In order to be able to work on a copula-based framework, we first need to transform

the margins into uniform margins; this can be achieved via the probability integral

transform. More specifically, if T (Y ) = (FY1(Y1), . . . , FYd(Yd))
′ with Yi ∼ FYi for i ∈ D,

then U = T (Y ) is a random vector with standard uniform margins. Therefore, we can
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fit the copula density of Y as follows

cY (u;θ) =
fY
(
F−1
Y1

(u1), . . . , F
−1
Yd

(ud);θ
)

d∏
i=1

fYi
(
F−1
Yi

(ui)
) , u ∈ [0, 1]d, (4.2.3)

where fYi and fY are the density functions of Yi and Y , respectively, F
−1
Yi

is the inverse

cumulative distribution function (cdf) for i ∈ D, and θ = (p, (µj,σΣj
,ρΣj

) : j ∈ K)

is the vector of model parameters, where p = (p1, . . . , pk−1), µj = (µj1, . . . , µ
j
d),

σΣj
= (σ1j, . . . , σdj) and ρΣj

= (ρ1,2j , . . . , ρd−1,d
j ) from the variance-covariance matrix

Σj. This results in k (1 + d(d− 3)/2) − d − 2 model parameters that need to be esti-

mated, which increases with k, but more predominantly with dimension d.

When the margins of a random variable X ∈ Rd are unknown, which is often the

case, then U ∈ [0, 1]d, with uniform [0, 1] margins, is obtained through componentwise

rank transform of the data X. For n independent and identically distribution (i.i.d.)

observations from X, which are assumed to have copula family cY (u;θ), inference on

model (4.2.3) is performed by maximum likelihood estimation (MLE) of the vector of

parameters θ with the log-likelihood function

ℓ(θ) =
n∑
t=1

cY (ut;θ), (4.2.4)

where ut ∈ [0, 1]d, t = 1, . . . , n, n ≥ 2 are the transformed sample of n X variables to

uniform margins.

The identifiability constraints on the parameters are imposed within the log-likeli-

hood function; more specifically, every time the optimisation algorithm evaluates a

parameter value that fails to satisfy the constraints, a value of ℓ(θ) of −∞ is returned.

In the case of the mixing probabilities, the estimated pk (k ≥ 2) is obtained implicitly

as p ∈ Sd−1. In a higher-dimensional setting (d ≥ 2), the optimisation of the log-

likelihood (4.2.4) is initially performed in a lower-dimensional setting to ensure (faster)
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convergence to a global maximum; specifically, all pairwise parameter estimates are

obtained, and then these are used as initial values for the parameters in the higher-

dimensional optimisation. When these initial values do not meet higher dimensional

constraints, for example leading to non semi-positive definite Σj, small perturbations

on ρΣj
(j ∈ K) are added.

To aid the inference procedure, information about the proposed graphical structure

of Zj (j ∈ K) components can be exploited, enabling both expert judgement coupled

with a reduction in the dimensionality of the parameters space of our copula model. For

instance, if it is considered appropriate to model variables Zm
j and Zn

j for m ̸= n ∈ D

for some j ∈ K as conditionally independent given the remaining d − 2 variables

from the mixture component Zj, this information can be embedded in the likelihood

function. Alternatively, fewer parameters need to be estimated if we have pairwise

exchangeability, that is, for each mixture component Zj, all means and variances are

assumed to be identical, i.e., µ1
j = . . . = µdj and σ2

1j = . . . = σ2
dj for each j ∈ K; under

this assumption, only a single mean and a single variance are inferred for each one of the

k mixture components, rather than 2d parameters per component. We note, however,

that we are still required to estimate d(d− 1)/2 correlation parameters.

4.2.2 Extremal dependence properties

The sub-asymptotic measure χD(r), given by expression (4.1.1), can be found numeri-

cally for any vector of model parameters θ. Although it is known that for a Gaussian

copula, χD(r) → 0 and ηD(r) → (1′
dΣ

−1
ρ 1d)

−1, as r → 1, where Σρ ∈ Rd×d is the under-

lying Gaussian correlation matrix with d ≥ 2 (Joe, 2014), we will show that χD(r) can

be arbitrarily close to 1 for any r ∈ (0, 1) with the Gaussian mixture copula, and thus

being able to capture key features of the data at sub-asymptotic levels, even for AD

variables. In particular, assume that µj = 0d, where 0d = (0, . . . , 0) is a d-dimensional

vector of zeros, for j = 1, . . . , k − 1 and µk = µ1d with µ > 0, and σΣj
= 1d for
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all j ∈ K. Additionally, consider ρm,nj = ρ for all m ̸= n ∈ D and j ∈ K, and let

pj = (k− p)/(k(k− 1)) for j = 1, . . . , k− 1 and pk = p/k for 0 ≤ p ≤ 1. This structure

allows us to represent our model with k − 1 similar mixture terms. Furthermore, less

weight is assigned to the kth mixture component given that 0 ≤ pk ≤ 1/k. While these

are rather simplistic assumptions, the same arguments hold if we take µj = jε for small

ε > 0 (satisfying in this way the ordering condition) for example, therefore ensuring an

identifiable model.

Given this structure, the survivor marginal distribution of Yi (i ∈ D) from expres-

sion (4.2.1) simplifies to

F Yi(y) =
(
1− p

k

)
Φ(y) +

p

k
Φ(y − µ), y ∈ R. (4.2.5)

Similarly, we can define the joint survivor distribution of Y , given in expression (4.2.2),

as

FY (y1d) =
(
1− p

k

)
Φd(y1d; Σρ) +

p

k
Φd((y − µ)1d; Σρ),

where Φd is the standard multivariate Gaussian survivor distribution function with

correlation matrix Σρ, i.e., with all off-diagonal entries ρ, and d ≥ 2.

Consider now a large enough µ > 0. As y → ∞, we have that

F Yi(y) ∼
p

k
Φ(y − µ) and FY (y1d) ∼

p

k
Φd((y − µ)1d; Σρ).

Recall that χD(r), defined in expression (4.1.1), is in terms of standard uniform vari-

ables. So that we are able to determine χD(r) under the imposed conditions, we need

to express it in terms of the variables Yi for all i ∈ D. Owing to the assumptions made

on the parameters, we have common margins; hence we let y = F−1
Yi

(r) for i ∈ D.
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Expression (4.1.1) can then be rewritten as

χD(r) =
Pr[Yi > F−1

Yi
(r) : ∀i ∈ D]

Pr[Y1 > F−1
Y1

(r)]
, for r ∈ (0, 1).

With the imposed conditions on the mean, variance and correlation parameters, it

follows that the sub-asymptotic extremal dependence measure χD(r), can be explicitly

written as

χD(r) ∼
Φd

(
(F−1

Yi
(r)− µ)1d; Σρ

)
Φ
(
F−1
Yi

(r)− µ
) , as r → 1. (4.2.6)

Now consider letting µ → ∞ and p → 0 as r → 1, with Φ(µ)/p → 0 also as r → 1.

This ensures that the marginal tail of the distribution of Yi (i ∈ D) is dominated

by the kth mixture component. Specifically, we have that 1 − r = F Yi(y), so from

expression (4.2.5), when µ = y,

1− r =
p

k
Φ(0) +

(
1− p

k

)
Φ(µ) =

p

2k
+
(
1− p

k

)
Φ(µ),

since Φ(0) = 1/2. As p→ 0 and µ→ ∞, with Φ(µ)/p→ 0 as r → 1, we then have that

1− r =
p

2k
+O(Φ(µ)) =

p

2k

(
1 +O

(
Φ(µ)

p

))
=

p

2k
(1 + o(1)) .

Thus, 1 − r ∼ p/(2k) as r → 1, and F−1
Yi

(r) ∼ µ as r → 1. It then follows from

expression (4.2.6) that

χD(r) ∼
Φd (0d; Σρ)

Φ(0)
= 2Φd (0d; Σρ) .

Thus, we have that

χD(r) → 2Φd (0d; Σρ) , as r → 1.

Given that Φd(0d; Σ0) = (1/2)d and Φd(0d; Σ1) = 1/2, by suitable changes in ρ, the

measure χD(r) can exceed any arbitrary level up to 1. This is possible when the mode
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µ is sufficiently larger than the others, and the kth mixture probability pk approaches

0. Relaxing some or all of these constraints will only allow for more general and richer

joint behaviour. We note that similar results can be derived for measures ηD(r) and

λD(w, r) from expressions (4.1.3) and (4.1.5), respectively.

4.3 Simulation Studies

4.3.1 Model inference

We showcase the identifiability and inference performance of the Gaussian mixture

copula by performing a simulation study, illustrating the performance of the sampling

distribution of the MLE of θ over i.i.d. replicated samples. To do so, we consider three

Gaussian copula model specifications with (d, k) = (2, 2) (Case I), (d, k) = (2, 3) (Case

II) and (d, k) = (5, 2) (Case III) with parameters denoted by θI, θII and θIII parameters,

respectively. In all cases, i.i.d. realisations from model (4.2.3) are generated with a

sample size of 1000, and each sample is simulated 50 times. Examples of Cases I-III

with pairwise exchangeability, given in Figure B.2.3 of the Supplementary Material,

indicate that identifiability is not an issue when a simplified model specification is

assumed. Specifically, most estimates are concentrated around the true values for all

cases.

For Case I, we set p1 = 0.20, µ1 = 0, µ2 = (2, 4), σΣ1 = (1.00, 0.61), σΣ2 =

(0.43, 0.72), ρΣ1 = 0.66 and ρΣ2 = 0.57. In Case II, when an extra mixture component

is added, we retain the models for the Z1 and Z2 mixture components, and for the

extra mixture component we take (p1, p2) = (0.55, 0.18), µ3 = (5, 3), σΣ3 = (0.59, 0.57)

and ρΣ3 = 0.96. Figure 4.3.1 displays the results of the simulation study for Cases

I and II in the left and right panels, respectively, and the results for Case III are

shown in Figure B.2.1 of the Supplementary Material. From the findings of Cases I-

III, there is indication that model identifiability is not a concern. Additionally, it can
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be seen that the MLE estimates seem to be concentrated around the true values for

most parameters, particularly when the model includes fewer parameters. This is to

be expected since less parameters often leads to smaller variability in the estimation

and parameter dependencies. When moving to a higher dimensional setting, estimation

becomes computationally more expensive. Furthermore, as shown in Figure B.2.1 of

the Supplementary Material, a few of the estimates appear to deviate further from

the true values, particularly those associated with the Z2 mixture component, which

seem to show higher variability. Given the high number of parameters to estimate,

and that the numerical maximiser converged, without any convergence concerns, for all

the 35 parameters in the model, this is not considered an issue with the model or its

parameterisation.
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Figure 4.3.1: Boxplots of estimates of the Gaussian mixture copula model based on 50
replicated data sets: (a) Case I and (b) Case II. The true parameter values are indicated
by the red lines.

To assess the computational effort required to evaluate the log-likelihood function

given in expression (4.2.4), especially when moving to a higher dimensional setting, we

record the times taken to optimise the log-likelihood function across the three cases;

these are shown in Figure B.2.2 of the Supplementary Material. Additionally, the log-
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likelihood function is evaluated using an internal computing node running Linux on

an Intel Ice Lake CPU with 200GB RAM memory. As should be expected, the time

to optimise one log-likelihood increases with both d and k. While the optimisation

time increases, on average, in 1.6 minutes when one extra mixture component is added

when d = 2, in the case of a higher dimension such as d = 5, this computational time

increases in 6.9 hours, on average.

4.3.2 Model fit and diagnostics

Overview

The fit of the proposed model (4.2.3) is assessed in a range of data sets exhibiting

different dependence structures; we show several cases here and refer the reader to

Section B.2.2 of the Supplementary Material for additional cases. For the model se-

lection procedure, we use the Akaike information criterion (AIC; Akaike, 1974). We

compare estimates of the extremal dependence measures χD(r) and ηD(r) from ex-

pressions (4.1.1) and (4.1.3), respectively, obtained through the model fit with their

empirical counterparts and their true values. The marginal and joint empirical proba-

bilities needed to estimate the numerator and denominator of the empirical measures in

expressions (4.1.1) and (4.1.2) are computed by considering the proportion of points ly-

ing in the regions (u1, 1) and (u1, 1)× . . .× (ud, 1), respectively. Furthermore, pointwise

95% confidence intervals are obtained for both measures by computing the empirical

χD(r) and ηD(r) for B bootstrap samples of the data, with B set to the sample size

used in each application.

When we are interested in regions where at least one variable is extreme, we compare

probabilities obtained with the model fit and their empirical values in regions of the

form (u1, 1)× (0, u2)× . . .× (0, ud) when considering U1 being extreme (and hence u1 is

close to 1), for example. Although this relates with function λD(w, r) given in expres-

sion (4.1.5), we instead obtain such probabilities by considering extremal regions Aw,
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for w ∈ Sd−1, with this region defined by standard exponentially distributed variables.

More specifically, in a bivariate setting we have that

Aw =

{
XE

1 > max

{
w

1− w
, 1

}
uE, XE

2 > max

{
1− w

w
, 1

}
uE
}

where (XE
1 , X

E
2 ) is a 2-dimensional random vector with standard exponential random

variables XE
i for i = 1, 2, and uE is a threshold level for max{XE

1 , X
E
2 }; see Ap-

pendix B.1 for more details. When moving to a d-dimensional setting, we consider

the probability Pr((XE
1 , . . . , X

E
d ) ∈ Aw | maxi∈D{XE

i } > uE).

We consider a range of copula families that exhibit different dependence structures

to assess the performance of the Gaussian mixture copula. More specifically, for the

case where the underlying data are AI, we consider an inverted extreme value cop-

ula with logistic dependence structure (Ledford and Tawn, 1997), since this copula is

known to have χD = 0. Following the same reasoning, we consider an extreme value

copula with logistic dependence structure (Gumbel, 1960) to assess the fit given by

our model when the data are AD, since this copula has χD > 0. To show the perfor-

mance of the Gaussian mixture copula with non-exchangeable underlying data (i.e.,

data showing asymmetries), an extreme value copula with an asymmetric logistic de-

pendence structure (Tawn, 1988) is used. Finally, we assess the fit of our copula model

with more complex type data by considering a particular specification of the weighted

copula model (henceforth referred to as WCM) proposed by André et al. (2024). In

all cases, the non-exchangeable Gaussian mixture copula model is used. However, in

the AI and AD cases, the performance of the model may improve if the exchangeable

model is used instead.

Asymptotically independent data

The performance of the Gaussian mixture copula is first assessed on bivariate data,

d = 2, generated from a bivariate inverted extreme value copula with logistic depen-
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dence structure, parameter αIL = 0.6 and n = 5000. This copula has χD = 0 and

so exhibits AI. We consider Gaussian mixture copulas with k = 1, 2 and 3 mixture

components. Not surprisingly given the AI nature of the underlying data, all the three

specifications provide good fits even though the fitted model does not contain the true

copula class as a special case. The decrease in AIC with k > 1 in relation to when k = 1

is −171.77 for k = 2 and −222.06 for k = 3, which indicates the best fit over k = 1−3 is

given by the copula with k = 3 components. The dependence measure χD(r) computed

from the three model fits for r ∈ (0, 1) is shown in the top left panel of Figure 4.3.2,

where a comparison with the true χ2(r) is given. In addition, we present the results for

η2(r) zoomed in for r ∈ [0.99, 1) in the top right panel. There are differences, though

small, between the three fits with k = 1 slightly over-estimating the empirical and true

χ2(r) for higher values of r. Given that the three models seem to capture the joint

behaviour for all r, it can be argued that it is sufficient to consider the simplest model

configuration. However, the closeness of fit for χ2(r) may not be representative of other

joint distribution characteristics, given the clear differences in AIC values. The plot for

η2(r) across all r, given in Figure B.2.4 of the Supplementary Material, shows similar

findings. We also consider a smaller sample size (n = 1000) with k = 1, 2, 3, where the

results shown in Figure B.2.5 of the Supplementary Material indicate a very good fit

for all k = 1, 2, 3 mixtures.

We also study the d = 5 case with n = 1000 and a dependence parameter of

αIL = 0.3. In addition, only k = 1 and 2 mixture components are consider. With a

decrease in AIC of −1221.46 for k = 2 in relation to k = 1, the model with k = 2 is the

preferred one to fit the data. This is also visible in the bottom left panel of Figure 4.3.2

with the k = 2 model capturing the joint tail behaviour well for all levels r ∈ (0, 1),

whilst with k = 1 the model under-estimates the empirical and true χ5(r) measures for

levels r < 0.75.We can see from the plot for ηD(r) for r ∈ [0.99, 1) on the bottom right,

however, that the k = 1 model is closer to the true η5(r) as r → 1. The results for η5(r)
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across all r is given in Figure B.2.4 of the Supplementary Material. In both studies, the

ηD(r) plots given in the right panel of Figure 4.3.2 show that for values r very close to

1, the empirical estimates fail to characterise the joint behaviour, whereas the Gaussian

mixture copulas with k = 1− 3 components are all able to extrapolate far into the tail.

This sudden drop of the empirical estimates and their pointwise confidence intervals

for r > 0.966 and r > 0.99 for d = 2 and d = 5, respectively, is due to the lack of

observations that are jointly bigger than r, resulting in ηD(r) not being defined.
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Figure 4.3.2: Estimates of χD(r) for r ∈ (0.1) with true (in orange) and empirical
(in black) values also shown. The corresponding results for ηD(r) are zoomed in for
r ∈ [0.99, 1) on the right. The pointwise 95% confidence intervals for the empirical
χD(r) are obtained through bootstrap. When d = 2 (top), models with k = 1, 2 and
3 mixture components are considered, whereas when d = 5 (bottom) models with only
k = 1 and 2 mixture components are studied.
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Asymptotically dependent data

We then consider an AD copula, specifically the extreme value copula with logistic

dependence structure. When d = 2, data are generated with dependence parameter

αL = 0.6, and sample size n = 5000. As mentioned previously, this model exhibits

AD with χ2 = 2 − 2αL . As before, we compare the fits with k = 1, 2 and 3 mixture

components. The decrease in AIC with k > 1 relative to when k = 1 is −219.28 for

k = 2 and −226.18 for k = 3, indicating that the copula with k = 3 mixture components

is the one that best fits the data. This is further supported when comparing measure

χ2(r) for r ∈ (0, 1) obtained with these three model fits. The results are shown in the

top panel of Figure 4.3.3, where in the right χ2(r) is zoomed in for r ∈ [0.99, 1). We can

see that in the case where k = 1, the fitted model is AI, thus clearly under-estimates

χ2(r) for r > 0.6, with the bias increasing as r → 1. On the other hand, the Gaussian

mixture copula with k = 2 and 3 are able to account for the behaviour of the joint tail

at levels r very close to 1 with values of χ2(r) close to the true value over this region.

This approximate finding of AD is consistent with the underlying data which is known

to exhibit AD. The corresponding plot for η2(r) is given in the left panel of Figure B.2.6

of the Supplementary Material, showing similar findings. A similar study with a smaller

sample size (n = 1000) is presented in Figure B.2.6 of the Supplementary Material. It

can be seen that now the model with k = 2 components is not able to capture the

extremal behaviour, i.e., at levels of r close to 1. Higher sample sizes may improve the

flexibility of this model specification and its ability to capture χ2(r) at levels of r very

close to 1, as shown by the case when n = 5000.

Consider now a d = 5 dimensional setting with n = 1000 instead. Due to the

larger number of parameters we study only k = 1 and 2 mixture components. When

considering k = 2 components, a mixing probability estimate of p̂1 = 0.98 is obtained.

Despite p̂1 being so close to one, the extra component adds more flexibility to the

modelling of the data, resulting in a decrease in AIC of −148.69 in relation to k = 1.
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This is also visible in the bottom right panel of Figure 4.3.3, where, as before, χ5(r) is

zoomed in for r ∈ [0.99, 1). Although the results suggest that for this setting we probably

need k > 2, and a larger n, to get a better estimate of χ5(r) from the Gaussian mixture

copula, the model with k = 2 components is able to capture the joint tail behaviour

well for levels r ∈ (0.9, 0.99], despite it under-estimating χ5(r) for lower values of r.

The results for ηD(r) are given in the right panel of Figure B.2.7 of the Supplementary

Material, and show similar findings. Similarly to before, the empirical estimates and

their pointwise confidence intervals are 0 for r > 0.998 and r > 0.996 for d = 2 and

d = 5, respectively, since there are no observations that jointly exceed such values.

Thus, the empirical χD(r) fails to characterise the joint behaviour beyond these values

of r. As shown by the right panel, this is not the case for the Gaussian mixture copula,

particularly for d = 2, as the estimates of χ2(r) for the k = 2 and k = 3 models lie close

to the truth for r very close to 1.

Non-exchangeable data

To show the performance of the Gaussian mixture copula with non-exchangeable data,

we generate n = 5000 samples from a bivariate extreme value copula with asymmetric

logistic dependence structure with dependence parameter αA = 0.2 and asymmetry

parameters t1 = 0.2 and t2 = 0.8 This copula has χ2 = t1 + t2 −
(
t
1/αA

1 + t
1/αA

2

)αA

. As

with the previous cases, we consider the Gaussian mixture copula with k = 1−3. From

the results shown in Figure 4.3.4, we see that the k = 1 model is not able to capture

the extremal behaviour of the data, while the k = 2 and k = 3 models provide a good

fit overall for χ2(r) up to r very close to 1. This is in agreement with the AIC values,

where a decrease of −978.76 for k = 2 and of −1020.02 for k = 3 relatively to the

k = 1 model is observed, so there is not much difference in AIC for k = 2 or k = 3. In

a similar argument to the model for the AI study, it is sufficient to consider a simpler

model with k = 2 in this particular case. The results for η2(r), given in Figure B.2.8 of
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Figure 4.3.3: Estimates of χD(r) for r ∈ (0.1) with true (in orange) and empirical
(in black) values also shown. These are zoomed in for r ∈ [0.99, 1) on the right.
The pointwise 95% confidence intervals for the empirical χD(r) are obtained through
bootstrap. When d = 2 (top), models with k = 1, 2 and 3 mixture components are
considered, whereas when d = 5 (bottom) models with only k = 1 and 2 mixture
components are studied.

the Supplementary Material, show similar conclusions.

Further, we assess the performance of the Gaussian mixture copula along different

rays w ∈ S1 and compute the probability Pr(Aw | maxi=1,2{XE
i } > uE). The results for

the 0.75 and 0.90 quantiles uE = {1.4, 2.3} of maxi=1,2{XE
i }, respectively, are shown in

Figure 4.3.5 in the left and right panels, respectively. Similarly to measures χ2(r) and

η2(r), the k = 2 and k = 3 models capture the extremal behaviour at all w considered



CHAPTER 4. GAUSSIAN MIXTURE COPULAS 101

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
r

χ

Asymmetric Logistic Empirical k = 1 k = 2 k = 3

0.00

0.25

0.50

0.75

1.00

0.9900 0.9925 0.9950 0.9975 1.0000
r

χ

Asymmetric Logistic Empirical k = 1 k = 2 k = 3

Figure 4.3.4: Estimates of χ2(r) for r ∈ (0.1) with true (in orange) and empirical
(in black) values also shown. These are zoomed in for r ∈ [0.99, 1) on the right.
The pointwise 95% confidence intervals for the empirical χ2(r) are obtained through
bootstrap.

for either uE. In particular, they lie within the pointwise 95% confidence intervals for

the empirical probabilities. On the other hand, the Gaussian mixture copula with k = 1

under-estimates the joint behaviour for w ≤ 0.5, and over-estimates otherwise, lying

outside of the pointwise 95% confidence intervals for the most w. This is particularly

pronounced for higher uE, as shown by the right panel.

Weighted copula model

Finally, we assess the fit of the Gaussian mixture copula in more complex type data. To

do so, we consider data generated from a configuration of the WCM. In particular, we

take the copula tailored to the tail, ct, to be a bivariate extreme value copula with logis-

tic dependence structure with dependence parameter αL = 0.3, and the copula tailored

to the body, cb, to be a Frank copula (Frank, 1979) with parameter αF = 2. Further-

more, we use the dynamic weighting function π(v; θ) = (v1v2)
θ, v = (v1, v2) ∈ [0, 1]2,

with θ = 1.5, and n = 5000. Similarly to the previous cases, the decrease in AIC with

k > 1 relative to when k = 1 is −974.27 for k = 2 and −1017.67 for k = 3, indicating
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Figure 4.3.5: Comparison between the estimates of probabilities Pr(Aw |
maxi=1,2{XE

i } > uE) for two large values uE = {1.4, 2.3} with true (in orange) and
empirical (in black) values also shown. The pointwise 95% confidence intervals for the
empirical probabilities are obtained through bootstrap.

that the k = 3 model provides the best fit to the data. Likewise to the previous case,

the difference in AIC between the k = 2 and k = 3 models is very small, meaning

that the Gaussian mixture copula with k = 2 may be sufficient to fit the underlying

data. This is also in agreement with the results for χ2(r) shown in Figure 4.3.6, and

for η2(r) given in Figure B.2.9 of the Supplementary Material. While the k = 1 model

clearly under-estimates χ2(r) from r > 0.5, the Gaussian mixture copulas with k = 2

and k = 3 lie closely to the true χ2(r) for the full distribution. Moreover, the results

for χ2(r) shown in the right panel of Figure B.2.9 indicate that the empirical estimates,

and their pointwise confidence intervals, become uninformative, and therefore unreli-

able, for r > 0.9975. This is not the case for the k = 2 and k = 3 models, for which the

estimates for χ2(r) remain stable and close to the truth.
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Figure 4.3.6: Estimates of χ2(r) for r ∈ (0.1) with true (in orange) and empirical
(in black) values also shown. These are zoomed in for r ∈ [0.99, 1) on the right.
The pointwise 95% confidence intervals for the empirical χ2(r) are obtained through
bootstrap.

4.4 Case study: air pollution data

4.4.1 Data description and previous analysis

We apply the Gaussian mixture copula to the 5-dimensional seasonal air pollution data

set analysed by Heffernan and Tawn (2004), which consider the joint behaviour of

random variables conditionally on one of them being large. Contrary to the Gaussian

mixture copula, the conditional approach requires the definition of an extremal region of

the form {X2, . . . , Xd} | {X1 > u} for some large marginal threshold u, for example. In

their study, Heffernan and Tawn (2004) take u to be the 0.9 marginal quantile. However,

as stated by Liu and Tawn (2014), this conditional approach is not self-consistent as

considering different conditioning variables, i.e., given {Xj > u} not given {Xi > u}

for j = 2, . . . , d, may lead to different conclusions in the joint region {Xi > u,Xj > u}

(i ∈ D), which is not the case for the Gaussian mixture copula model.

The data set includes daily maxima of the hourly means of ground level measure-

ments of ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO), sulphur dioxide
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(SO2) and particulate matter (PM10) recorded at Leeds, UK, from 1994 to 1998. In or-

der to remove the temporal non-stationarity, Heffernan and Tawn (2004) divide the data

set into two seasons, winter from the months of November to February, and summer

from the months of April to July. In their analysis, the pairs (NO2, NO), (NO,PM10)

and (NO2, PM10) were judged to exhibit AD in the winter season, with the remaining

pairs (in both seasons) indicating the presence of AI. In our analysis, we denote the

variables after rank transformation to uniform (0, 1) variables as O∗
3, NO

∗
2, NO

∗, SO∗
2

and PM∗
10.

4.4.2 Pairwise analysis

We apply our Gaussian mixture copula with k = 1 and 2 mixture components to

the three pairs that Heffernan and Tawn (2004) identified as being potentially AD to

determine whether we obtain similar results. The change observed in the AIC values

shown in Table 4.4.1 (denoted by AICk1−k2) suggest that k = 2 is the most suitable

model for all pairs except (NO,NO2), for which there is a small increase in AIC for

k = 2 when compared to the k = 1 model. These results are in agreement with the

model-based χ2(r) obtained for the three pairs for r ∈ (0, 1), as shown in Figure 4.4.1.

In particular, the estimated χ2(r) given by the mixture model with k = 2 closely

aligns with the behaviour of the empirical measure across all r ∈ (0.1). On the other

hand, it is clear that the k = 1 model is not able to capture the asymptotic behaviour

of pairs (NO2, PM10) and (NO,PM10), as it under-estimates the empirical χ2(r) for

r > 0.6 by approaching 0 quicker. However, it appears sufficient for pair (NO2, NO).

Although the estimated mixing probabilities are far from 0 or 1, the AIC and χ2(r)

results for pair (NO2, NO) indicate that adding an extra component is not necessary,

as little to no difference is notable in the considered diagnostics. Furthermore, for pairs

(NO,NO2) and (NO2, PM10), the empirical χ2(r) is clearly positive, which is also

mirrored by the sub-asymptotic model-based χ2(r) obtained by the k = 1 and k = 2
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models for pair (NO,NO2), and by the k = 2 for pair (NO2, PM10). These results

agree with the findings of Heffernan and Tawn (2004). Lastly, the results for η2(r),

given in Figure B.3.1 of the Supplementary Material, lead similar conclusions. For

pair (NO,PM10), the estimated χ2(r) from the k = 2 model approaches 0 as r → 1,

suggesting AI. In this case, measure η2(r) provides more insight. More specifically,

η2(r) → 0.75 as r → 1, meaning that the extremes of (NO,PM10) exhibit positive

dependence.
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Figure 4.4.1: Estimates of χ2(r) for r ∈ (0.1) with empirical (in black) values also
shown for pairs (NO2, NO) (left), (NO2, PM10) (middle) and (NO,PM10) (right).
The pointwise 95% confidence intervals for the empirical χ2(r) are obtained through
bootstrap.

Table 4.4.1: Change in AIC values obtained for the Gaussian mixture copula for k = 2
relative to when k = 1 for pairs (NO2, NO), (NO2, PM10) and (NO,PM10). The
estimated mixing probabilities (p̂1, p̂2) are reported for the k = 2 model. All the values
are rounded to 2 decimal places.

Pair AICk1−k2 (p̂1, p̂2)
(NO2, NO) 4.01 (0.37, 0.63)
(NO2, PM10) −34.40 (0.91, 0.09)
(NO,PM10) −50.87 (0.78, 0.22)

4.4.3 Trivariate analysis

Before analysing the full data set, we apply the Gaussian mixture copula with k = 1

and 2 mixture components to the triple consisting of the pollutants studied in the
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bivariate setting, i.e., (NO2, NO, PM10), in the winter season to assess if the triple

provides evidence for AD. Even if each of these pairs were AD, the triple being AD

does not necessarily follow. However, if one pair (e.g., (NO,PM10)) were AI, then

the triple must also be AI. The decrease in AIC for k = 2 relative to when k = 1

is of −61.22, meaning that the k = 2 provides the best fit to the triple according

to this criterion. In addition, the mixing probabilities obtained for the k = 2 model

are (p̂1, p̂2) = (0.73, 0.27), indicating that an extra Gaussian component allows for a

more flexible fit. This can also be seen with the χ3(r) estimates given in Figure 4.4.2.

Whilst the true χ3(r) is unknown, when comparing the model-based estimates with the

empirical values, the k = 2 model is able to capture the joint behaviour for all r ∈ (0, 1).

The same is not true with k = 1, as it appears to over-estimate the empirical χ3(r) for

smaller r and clearly under-estimate χ3(r) for r > 0.75. Given that pair (NO,PM10)

exhibits AI according to the pairwise analysis, it is not a surprise that both k = 1

and k = 2 indicate that NO2, NO and PM10 cannot all be extreme at the same time,

which is consistent with our findings from the three pairwise analysis. The results for

η3(r) are shown in Figure B.3.2 of the Supplementary Material, for which the same

conclusions can be drawn. Similarly to the pair (NO,PM10), the extremes of the triple

(NO2, NO, PM10) are jointly positively dependent as η3(r) → 0.62 as r → 1 for both

k = 1− 2 models.

We further assess the performance of the Gaussian mixture copula by considering

the behaviour of the remaining variables when conditioning on one variable being large.

More specifically, we are interested in probabilities where at least one variable is ex-

treme, e.g., of the form Pr(NO∗ > v, PM∗
10 > v | NO∗

2 > u) with v ∈ (0, 1) and some

large u. Considering such probabilities are key to learn about the risk of one pollutant, in

this case NO2, exceeding a large level, as well as its impact on other pollutants, whether

they too exceed or not a high level. Similarly to the measure χ3(r), we compare the

probabilities for both model fits with their empirical counterpart for u = {0.75, 0.90};
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Figure 4.4.2: Estimates of χ3(r) for r ∈ (0.1) with empirical (in black) values also
shown for the triple (NO2, NO, PM10). The pointwise 95% confidence intervals for the
empirical χ2(r) are obtained through bootstrap.

the results are shown in Figure 4.4.3. There is a clear the difference between the k = 1

and k = 2 models, with an improvement shown by k = 2 when u = 0.9. In particular,

the probabilities across all v ∈ (0, 1) lie within the empirical pointwise 95% confidence

intervals for both u. The same is not true for the k = 1 model when u = 0.90, suggesting

that the k = 1 model may perform poorly when at least one variable exceeds a very

high level, such as 0.90. We note that for v ≤ 0.25 and u = 0.9, the lower and upper

bounds of the confidence intervals for the empirical probability coincide and are equal

to 1.

Further conclusions about the dependence between the variables can be drawn by

exploring the graphical structure of the fit provided by each model. To do so, we analyse

the precision matrices estimated from the k = 1 − 2 models, denoted by Σ−1
ρ (k=1) and

Σ−1
ρ,j (k=2) for j = 1, 2, respectively; their off-diagonal values are given in Table 4.4.2.

From Σ−1
ρ (k=1), estimated with the k = 1 model, the entry for (NO2, PM10) is close to 0,

which might suggest that PM10 is conditionally independent to NO2 given NO. From

the fitted model with k = 2 components, we have µ̂2 = (0.83, 0.90, 2.73), meaning that
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Figure 4.4.3: Comparison between model-based probabilities Pr(NO∗ > v, PM∗
10 > v |

NO∗
2 > u) for two large values u = {0.75, 0.90} given by the Gaussian mixture copula

with k = 1 (in purple) and k = 2 (in pink) components. The empirical probability is
given in black, and its pointwise 95% confidence intervals are obtained through boot-
strap.

the second mixture component is further in the tail region, as all µi2 > 0 for i = 1, 2, 3.

In addition, the entry for (NO2, PM10) of Σ
−1
ρ,1 (k=2) remains close to 0, suggesting that

PM10 might be conditionally independent of NO2 given NO in the body of the data.

However, in Σ−1
ρ,2 (k=2), the entry for (NO2, PM10) is no longer close 0, whereas the entry

for (NO,PM10) is. This might indicate that variable PM10 is potentially conditionally

independent to NO given NO2 in the extremes. This interpretation would closely agree

with the pairwise analysis given that (NO,PM10) are potentially AI. This conclusion

would benefit from input from atmospheric scientists as it would be reassuring to know

if there was a physical basis for the transition of conditional independence from the

body to the tails of the joint distribution.

Table 4.4.2: Off diagonal values of the estimated precision matrices Σ−1
ρ (k=1) and Σ−1

ρ,j (k=2)

for j = 1, 2 for triplet (NO2, NO, PM10). All values are rounded to 2 decimal places.

Model Σ−1
(NO2,NO) Σ−1

(NO2,PM10)
Σ−1

(NO,PM10)

k = 1 −1.80 −0.09 −0.92

k = 2
(j = 1) −1.61 −0.07 −0.43
(j = 2) −1.68 −0.73 0.03
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4.4.4 Higher dimensional analysis

A similar analysis is performed for the full data set (d = 5), where, contrary to the

pairwise and trivariate analysis, the summer season is also presented. In this case, when

considering all the pollutants jointly, the Gaussian mixture copula with only k = 1 is

the preferred one. In particular, for the summer season, a mixing probability p̂1 of

exactly one is obtained when considering k = 2 components, meaning that adding an

extra component only adds complexity to the model. This is visible in Table 4.4.3 and

Figure 4.4.4 with the changes in AIC values and model-based χ5(r) obtained. For the

summer season, the k = 2 model reduces to the k = 1 model according to the estimated

mixing probabilities, with the larger number of parameters reflected on the change in

AIC. Exploring the graphical structure of the underlying data could help reducing

the dimensionality in such cases. In particular, potentially conditional independence

between variables could be taken into account during the analysis.

Table 4.4.3: Change in AIC values obtained for the Gaussian mixture copula for k = 2
relative to when k = 1 for (O3, NO2, NO, SO2, PM10) for the winter and summer
seasons. The mixing probabilities (p̂1, p̂2) are reported for the k = 2 model. All the
values are rounded to 3 decimal places.

Season AICk1−k2 (p̂1, p̂2)
Winter 25.519 (0.997, 0.003)
Summer 40.773 (1.000, 0.000)

Similarly to the trivariate case, we report the off-diagonal values of the estimated

precision matrices from the k = 1− 2 models for the winter and summer seasons in Ta-

ble 4.4.4. Given that the estimated mixing probability for the summer was p̂1 = 1, the

results for the k = 2 model are not presented. For the winter, the entry for (NO,SO2)

of Σ−1
ρ (k=1) is close to 0, which might suggest that NO and SO2 are conditionally in-

dependent given O3, NO2 and PM10. The same entry remains close to 0 for the first

mixture component j = 1 from the k = 2 model, which would still indicate that these

variables are conditionally independent given the remaining pollutants. In addition,
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the entry (NO,PM10) of Σ−1
ρ,2 (k=2) is near 0, which suggests that, given the remain-

ing variables, NO and PM10 are potentially conditionally independent further in the

tail. However, given that µ̂2 = (2.36, 3.18,−0.20, 0.16, 3.96) and thus not all µi2 > 0

for i ∈ D, it is not clear from µ̂2 alone if the second mixture component is further in

the joint tail. Simulation from the mixture copula, with different mixture components

being identified, shows that the second mixture component is allowing for asymmetries

in each pair. Similarly to the trivariate results, this interpretation would closely agree

with the findings of the pairwise analysis for this pair. For summer, the entries for

(O3, SO2) and (NO,SO2) are close to 0. In this case, the results suggest that O3 and

SO2 may be conditionally independent given NO2, NO and PM10, and the same for

variables NO and SO2. Finally, the results from Table 4.4.4 suggest that (NO,SO2)

might be conditionally independent given the remaining variables across both seasons

with all models considered. The same is not true for pair (O3, SO2); in particular,

the results indicate that these variables might potentially be conditionally independent

given NO2, NO and PM10 in summer but not in winter. As before, it would be ben-

eficial to have atmospheric scientific expertise to help to better understand why this

change between seasons is occurring.

Table 4.4.4: Off diagonal values of the estimated precision matrices Σ−1
ρ (k=1) and Σ−1

ρ,j (k=2)

for j = 1, 2 for (O3, NO2, NO, SO2, PM10). All values are rounded to 2 decimal places.

Model Σ−1
(O3,NO2)

Σ−1
(O3,NO) Σ−1

(O3,SO2)
Σ−1

(O3,PM10)
Σ−1

(NO2,NO)

W

k = 1 −0.75 0.88 0.68 0.14 −1.86

k = 2
(j = 1) −0.81 0.91 0.66 0.38 −2.03

(j = 2) −0.31 0.33 0.11 0.60 0.25

S k = 1 −0.54 0.80 0.00 −0.24 −1.45

Model Σ−1
(NO2,SO2)

Σ−1
(NO2,PM10)

Σ−1
(NO,SO2)

Σ−1
(NO,PM10)

Σ−1
(SO2,PM10)

W

k = 1 −0.38 −0.38 0.08 −0.58 −0.44

k = 2
(j = 1) −0.18 −0.20 0.02 −0.58 −0.37

(j = 2) −0.20 0.20 0.90 0.04 0.42

S k = 1 −0.48 −0.40 0.03 −0.28 −0.54
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From Figure 4.4.4, it is clear that χ5(r) → 0 as r → 1 when considering the joint

behaviour of all pollutants for both seasons indicating that all the pollutants cannot be

large together; given that some pollutants are AI between pairs, this is not surprising.

The model-based χ5(r) obtained with both k = 1 and k = 2 lie within pointwise 95%

confidence intervals for the empirical estimate of χ5(r), especially in the winter season.

Moreover, both model χ5(r) estimates are close to the empirical values, indicating that

either model is a good fit to the data. Although not as pronounced as in the winter

season, similar conclusions can be drawn for the summer season. The corresponding

results for η5(r) are presented in Figure B.3.3. Whilst for the summer season, the model

estimates of η5(r) approach 0.35 as r → 1, for the winter season η5(r) → 0.2 with the

k = 1 model, and η5(r) → 0.15 with the k = 2 model. These results indicate that, in the

summer season, the extremes of (O3, NO2, NO, SO2, PM10) are positively dependent,

but in the winter season, they either nearly independent according to the k = 1 model,

or negatively dependent based on the mixture model with k = 2 components. We note

that there are no points that are jointly bigger than r > 0.75, which results in η5(r)

not being defined (recall expression (4.1.3)). Thus, a drop in the empirical η5(r) and

corresponding pointwise confidence intervals values is observed.

Similarly to the d = 3 case, we assess the performance of the Gaussian mixture

copula by considering the behaviour of the remaining variables when conditioning on

one variable being large. More specifically, we condition on O∗
3 being larger than

u = {0.75, 0.90}, and compare the model-based probabilities with their empirical coun-

terpart; these are shown in Figure 4.4.5. Analogous to the trivariate case, such proba-

bilities inform us about the joint behaviour of the remaining pollutants when, in this

case, O3 exceeds large levels. Figure 4.4.5 shows that, for each season, the fitted models

seem to capture the conditioning behaviour for all levels v ∈ (0, 1), especially when

u = 0.75. However, for u = 0.9, and particularly for the summer season, there is evi-

dence that the model fit can be improved as the probabilities estimated by the model
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Figure 4.4.4: Estimates of χ5(r) for r ∈ (0.1) with empirical (in black) values also
shown for (O3, NO2, NO, SO2, PM10) in the winter season (left) and the summer season
(right). The pointwise 95% confidence intervals for the empirical χ5(r) are obtained
through bootstrap. Note that χ5(r) for k = 1 and k = 2 overlap in the right panel.

lie outside the pointwise 95% confidence intervals.

4.5 Conclusions and discussion

We proposed a copula model based on a mixture of multivariate Gaussian distributions

to represent the body and tail regions of multivariate data. This copula model avoids

the need to specify a threshold vector which defines an extremal region, and is able

to represent a broad range of complex extremal dependence structures. While the

model exhibits asymptotic independence in the limit, theory and the simulation studies

performed showed that the Gaussian mixture copula is able to capture asymptotic

dependence at quantiles on uniform margins r approaching 1, particularly for models

with k = 3 mixture components, or k = 2 with larger sample sizes. Additionally,

we showed that the Gaussian mixture copula is flexible enough to fit more complex

data structures, including non-exchangeable data; in particular, the model represents

the joint tail for levels r very close to 1, and captures the sub-asymptotic extremal
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Figure 4.4.5: Comparison between model-based probabilities Pr(NO∗
2 > v,NO∗ >

v, SO∗
2 > v, PM∗

10 > v | O∗
3 > u) for v ∈ (0, 1), for two large values u = {0.75, 0.90}

given by the Gaussian mixture copula with k = 1 (in purple) and k = 2 (in pink) com-
ponents. The empirical probability is given in black, and its pointwise 95% confidence
intervals are obtained through bootstrap. Note that for the summer season, the k = 1
and k = 2 model probabilities overlap.

behaviour along different rays accurately.

We showcased the performance of the Gaussian mixture model by applying it to the

5-dimensional seasonal air pollution data set analysed by Heffernan and Tawn (2004).

We started by performing a bivariate analysis on the pairs of pollutants identified

by Heffernan and Tawn (2004) as exhibiting asymptotic dependence. When applying

the proposed copula model, we obtained similar findings for sub-asymptotic levels;
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more specifically, we showed that using a model with k = 2 mixture components,

the joint behaviour could be effectively characterised for values of r very close to 1.

Before studying the full data set, we extended the analysis to the triple of pollutants

used in the bivariate case. In higher dimensions, it becomes evident that the fitted

Gaussian mixture copula exhibits asymptotic independence, which is consistent with the

empirical evidence based on non-parametric estimates. Nevertheless, it provides a more

accurate representation of the joint behaviour with k = 2 components when compared

to k = 1. This conclusion was further supported by examining the conditional behaviour

of the variables at various levels, given one variable being large. For each analysis, we

constructed the copula model based on the dimension of each data set. Alternatively, it

would be interesting to evaluate the performance of the copula model in fitting the pairs

and triple by marginalising the 5-dimensional copula over the variables not included

in the joint vector of interest. Finally, as shown by the pairwise study and noted by

Simpson et al. (2020), there are variables indexed by C ⊂ D that exhibit χC(r) > 0

even though χD(r) = 0 when r = 0.99.

Although the Gaussian mixture copula scales relatively well to higher dimensions,

the evaluation of its log-likelihood becomes increasingly computationally expensive

when d ≥ 2. For instance, when moving from a bivariate to a 5-dimensional set-

ting, our simulation studies showed that the computational time increased in 6.9 hours

on average for a model with k = 2 mixture components. This is heavily due to the high

number of correlation parameters in the model, but also due to the need for inversion

of functions when constructing the copula model. These issues lead to complications in

the inference procedure, particularly when we wish to consider adding an extra mixture

component, or moving to an even higher dimensional setting. Since simulation from

the model is straightforward and efficient, the computational burden of the inference

procedure can be mitigated by employing simulation-based methods. Such methods,

often referred to as likelihood-free approaches, do not rely on the knowledge of a likeli-
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hood function. Examples include approximate Bayesian computation (ABC; e.g., Sisson

et al., 2018) or neural network-based techniques (e.g., Zammit-Mangion et al., 2025).

Alternatively, the number of parameters in the model could be reduced by exploring

data reduction methods for the covariance structure, such as those used in the Gaussian

mixture models considered by McNicholas and Murphy (2008).

The literature in mixture modelling is vast. While we have focused on Gaussian

mixture models, considering Dirichlet mixture models (see, e.g., Ferguson, 1974, Es-

cobar and West, 1995, De Iorio et al., 2009, Inácio de Carvalho et al. 2017, Quin-

tana et al., 2022) instead would allow, for example, to incorporate non-stationarity,

by extending the modelling framework to a regression context. Within a regression

framework, alternative approaches include mixture of experts models (Gormley and

Frühwirth-Schnatter, 2019), whereby the parameters of the mixture model vary with

covariates, or the heavy-tailed normalised generalised Gamma-mixture models proposed

by Ramı́rez et al. (2024).



Chapter 5

Neural Bayes estimation for

complex bivariate extremal

dependence models

5.1 Introduction

Recent developments in multivariate extreme value modelling have produced new classes

of models that allow for interpolation between the two key tail dependence regimes

of asymptotic dependence and asymptotic independence. These models simplify the

approach to bivariate extremal modelling, by eliminating the need to pre-determine a

dependence regime using unreliable empirical diagnostics. However, their likelihoods

often rely on numerical integration and inversion of functions, as well as censoring of

non-extreme values, which makes likelihood evaluation burdensome. In other situations,

the likelihood function might not be available at all. However, despite the likelihood

function being intractable or unavailable, it is often possible to simulate data from the

model; this allows for the use of simulation-based likelihood-free algorithms to estimate

model parameters.

116
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One simulation-based approach is the pseudo-marginal Markov chain Monte Carlo

(MCMC) sampler proposed first by Beaumont (2003) and later formalised by Andrieu

and Roberts (2009). When the target distribution (e.g., a likelihood function) is in-

tractable, pseudo-marginal MCMC is able to approximate the target function using

an unbiased estimator obtained through importance sampling. The expected value of

such an estimator corresponds to the true target distribution, enabling the algorithm

to correctly sample from it. Another commonly used likelihood-free procedure is ap-

proximate Bayesian computation (ABC; see, e.g., Lintusaari et al., 2017 and Sisson

et al., 2018). Specifically, this can be seen as a rejection sampling algorithm, where the

model parameters are generated from a prior distribution and subsequently accepted or

not based on the distance between the simulated sample and the original sample, often

evaluated based on informative summary statistics. Choosing a suitable prior distri-

bution, and defining how similar the samples are, constitute major drawbacks of using

ABC to perform inference. A poor choice of prior distribution might lead to mislead-

ing posterior estimates, particularly in situations where the selected summary statistics

are not very informative. Conversely, a prior distribution which is too informative can

result in a posterior that is skewed or biased towards the prior distribution, even if

it leads to less variable estimates. Alternatively, Wood (2010) propose the ‘synthetic

likelihood’ method, which constructs an approximate likelihood function by assuming

that user-defined summary statistics follow a multivariate normal distribution. This

approach is usually easier to tune than ABC and computationally more efficient, espe-

cially with higher dimensional data sets (Price et al., 2018), but its underlying Gaussian

assumption makes it inflexible in some cases, which may lead to sub-optimal inferences.

More recently, there has been a growing interest in likelihood-free estimation meth-

ods which use neural networks; see Zammit-Mangion et al. (2025) for an in-depth

review. The extremes literature has also started to be impacted by this new inference

paradigm, mostly in the spatial setting; see for instance Lenzi et al. (2023), Majumder
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and Reich (2023), Majumder et al. (2024), Richards et al. (2024), Sainsbury-Dale et al.

(2024a,b) and Walchessen et al. (2024). An approach to likelihood-free inference using

neural networks is to obtain a point estimate of the vector of model parameters through

a neural Bayes estimator (Sainsbury-Dale et al., 2024a). It can be argued that training

the neural network to build such an estimator is computationally expensive; however,

this step only needs to be done once, with estimates subsequently obtained in millisec-

onds with new data, using a single graphics processing unit (GPU). As mentioned in

Zammit-Mangion et al. (2025), this means that neural Bayes estimators are amortised,

which allows for their repeated use at almost no extra computational cost (see, e.g.

Richards et al., 2024 for a compelling data illustration). This makes neural Bayes es-

timation an appealing, and much faster, avenue to performing inference compared to

state-of-the-art likelihood-based methods. Moreover, unlike other likelihood-free meth-

ods, such as ABC, this approach automatically learns the relevant summary statistics

for the inference problem at hand. Given the computational complexity of the models

of interest, this is the approach we take in this paper. Whilst the methodology devel-

oped for neural Bayes estimation has been mostly applied in the spatial and temporal

contexts, we are interested in exploring its applicability in a simple bivariate setting,

while allowing for censored data inputs. In order to achieve this, an appropriate neural

network architecture will need to be designed, along with suitable prior choices. While

the number of parameters to estimate may be similar to typical spatial models, the in-

ference procedure may be more challenging in a bivariate setting compared to a spatial

context, since there are fewer distinctive features (e.g., location, distance) in the data

that the neural Bayes estimator can learn from.

When neural Bayes estimators are adopted for inference, typical model selection

techniques, such as the Akaike information criterion (AIC) or the Bayesian information

criterion (BIC), are often not available as they require knowledge of the likelihood

function. Therefore, having a likelihood-free way of selecting the best model, for a given
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set of candidate models fitted to a certain data set, is desirable. Radev et al. (2023) show

how the marginal likelihood (and hence, Bayes factors useful for model selection) may

be approximated using a neural network-based approach. Similarly, neural methods

targeting the likelihood-to-evidence ratio (see, e.g., Cranmer et al., 2016, Hermans

et al., 2020) could be used for model selection using likelihood ratios. However, these

methodologies rely on full posterior and/or full likelihood neural approximations, which

are harder to train than neural Bayes estimators. Ahmed et al. (2024) propose using

neural networks for model selection of the extremal dependence structure, but only in

the spatial context. Furthermore, it is based on a relatively simple neural network,

which — similarly to ABC — relies on user-defined summary statistics (used therein as

input to the neural network). Such a neural classifier thus loses discriminatory power

if these summary statistics are not sufficient. Alternatively, if the set of candidate

models is finite and exhaustive, model selection can naturally be seen as a classification

problem. This is the approach we propose, for which we consider a neural network

architecture that is analogous to that used for parameter estimation. More specifically,

a neural classifier is designed to learn the distinguishing features of each model. Once

trained, this classifier is able to estimate the probability of a data set arising from a

certain model.

In this paper, we aim to provide a toolbox for simple fitting and comparison of

complex bivariate extremal dependence models, which avoids the subjective, and often

awkward, selection of summary statistics. We start by exploring the utility of neu-

ral Bayes estimation in this specific setting; this is done through assessment of the

estimation accuracy of the model parameters and key dependence measures. We then

examine the success of the neural model selection classifier; when available, we compare

its performance to a likelihood-based information criterion. The end goal is to make

the entire statistical pipeline amortised. First, the best model for a given data set is

selected through the neural classifier, and then estimates of the model parameters are
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obtained through a neural Bayes estimator.

This paper is organised as follows: in Section 5.2, we introduce the methodology

used for parameter estimation using neural networks for both uncensored and cen-

sored data, and describe our model selection procedure based on a classification task.

Section 5.3 presents an overview of bivariate extreme value modelling and introduces

the models of interest for which likelihood-based inference is burdensome. Simulation

studies assessing our proposed inference and model selection frameworks are discussed

in Section 5.4. We then apply the proposed toolbox to study the pairwise extremal

behaviour of the changes in horizontal geomagnetic field fluctuations between three

locations in Section 5.5, followed by a conclusion in Section 5.6.

5.2 Inference methodology

In this section, we review background on neural point estimation using the methodology

developed by Sainsbury-Dale et al. (2024a) and Richards et al. (2024) and describe

our neural approach to model selection. In Section 5.2.1, we introduce neural Bayes

estimators; the basic approach outlined here is suitable when the sample size is fixed

and known, and data are fully observed (i.e., uncensored). In Sections 5.2.2 and 5.2.3,

we explain how to adapt the estimation procedure to account for variable sample size

and censored data, respectively. In Section 5.2.4, we present our neural classifier for

model selection and describe how to construct it. Finally, in Section 5.2.5, we give

implementation details.

5.2.1 Neural Bayes estimators

Let Z1, . . . ,Zn ∈ S ⊆ Rd be n independent and identically distributed random vectors

with density f(z;θ), where θ ∈ Rp is the vector of parameters, and let their collection be

represented by Z = (Z ′
1, . . . ,Z

′
n)

′. A point estimator θ̂(·) maps data Z to parameter
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estimates from the parameter space Θ, i.e., θ̂ : Sn → Θ. Given a non-negative loss

function L(θ, θ̂(·)), a Bayes estimator minimises a weighted average of the risk at θ,

R(θ, θ̂(·)), which may be expressed as

rΩ(θ̂(·)) =
∫
Θ

R(θ, θ̂(·))dΩ(θ) =
∫
Θ

∫
Sn

L(θ, θ̂(z))f(z | θ)dzdΩ(θ), (5.2.1)

where Ω(·) is a prior measure for θ. Equation (5.2.1) is known as the Bayes risk. Under

suitable regularity conditions and the squared error loss, these estimators are consistent

and asymptotically efficient; see for instance Lehmann and Casella (1998, Ch. 5 and 6).

In practice, however, Bayes estimators are rarely available in closed form, and the

Bayes risk in equation (5.2.1) is difficult to evaluate. This can be overcome by ap-

proximating these estimators using a neural network, since these are universal function

approximators (Hornik et al., 1989, Sainsbury-Dale et al., 2024a). In this situation,

a neural point estimator θ̂(·;γ) is constructed as a neural network (with parameters

γ) that returns a point estimate from data input Z. Bayes estimators may thus be

approximated with θ̂(·;γ∗) where γ∗ = argminγ rΩ(θ̂(·;γ)). Since equation (5.2.1) can

rarely be evaluated, it is usually approximated using Monte Carlo techniques as follows

rΩ(θ̂(·;γ)) ≈
1

KJ

∑
θ∈Υ

∑
Z∈Zθ

L(θ, θ̂(Z;γ)), (5.2.2)

where Υ is a set of K samples θ ∼ Ω from the prior and Zθ is a set of J samples

Z ∼ f(z;θ) for each given θ. A neural point estimator θ̂(·;γ∗) is called a neural Bayes

estimator (NBE) as it minimises a Monte Carlo approximation of the Bayes risk; see

Sainsbury-Dale et al. (2024a) for more details.

The discrepancy between the neural Bayes estimator and the true Bayes estimator

will depend on a few factors, one of which is the neural network architecture (Sainsbury-

Dale et al., 2024a). Through a judicious choice of architecture, NBEs can be enforced

to satisfy the fundamental property that θ̂(Z;γ) = θ̂(Z∗;γ), for any permutation
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Z∗ of the independent replicates in Z; this can be achieved by exploiting a neural

network architecture known as DeepSets (Zaheer et al., 2017). Let ψ : Rd → Rq

and ϕ : Rq → Rp be two multi-layer neural networks parametrised by γψ and γϕ,

respectively, and a : (Rq)n → Rq be a permutation-invariant set function where each

element as(·) returns the elementwise average over its input set for s = 1, . . . , q. The

NBE is then represented as

θ̂(Z;γ) = ϕ (T (Z;γψ);γϕ) with T (Z;γψ) = a ({ψ(Zi;γψ) : i = 1, . . . , n}) ,

(5.2.3)

where T denotes a vector of learnt summary statistics, and γ = (γ ′
ϕ,γ

′
ψ)

′ are the

parameters of the neural networks ψ and ϕ. In the multivariate unstructured setting,

a dense neural network (DNN) may be used for both ψ and ϕ; see Sainsbury-Dale

et al. (2024a) for more details. A schematic of the DeepSets architecture is shown in

Section C.1 of the Supplementary Material.

5.2.2 Variable sample size

When training a neural Bayes estimator on a data set with a fixed number, n, of repli-

cates, this estimator will generally not be Bayes for a data set with a different sample

size ñ ̸= n. Therefore, in order to ensure that the trained NBE approximately minimises

the Bayes risk rΩ(θ̂(·;γ)), Sainsbury-Dale et al. (2024a) propose two approaches: either

obtaining a piecewise neural Bayes estimator by pre-training the estimator for specific

fixed sample sizes (Goodfellow et al., 2016), or treating the sample size as a random

variable N ; we adopt the latter in our work.

Let us assume that the sample size N follows a discrete uniform distribution, that is

N ∼ Unif({n1, n1+1, . . . , n2}) where Pr(N = n) = 1/(n2−n1+1) for n ∈ (n1, n2) and

n1, n2 ∈ N. Further, the sample size N is assumed independent of the model parameters

θ. This extra random variable modifies the Bayes risk function (5.2.1), which can now
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be approximated as follows

rΩ(θ̂(·;γ)) ≈
1

KJ

∑
θ∈Υ

∑
n∈N

∑
Z∈Zθ,n

Pr(N = n)L(θ, θ̂(Z;γ)),

where N is the set of sample sizes drawn from the Unif({n1, n1 + 1, . . . , n2}), and Zθ,n

is a set of J data sets of size n drawn from the model for the sampled parameters θ.

Thus, during training, it is now necessary to simulate the sample size along with model

parameters from the prior and replicated data from the model; however, the general

method remains the same.

5.2.3 Censored data

The methodology proposed by Sainsbury-Dale et al. (2024a) is not able to handle

censored data as input of the neural network; however, this is essential in multivariate

models aimed at capturing the extremal dependence structure. In these models, low

observations are often censored to prevent these non-extreme values from affecting the

estimation of this tail dependence. Thus, Richards et al. (2024) propose an adaptation

of the neural Bayes estimators in order to include this type of data.

Consider the random vector Zi = (Zi1, . . . , Zid)
′, i = 1, . . . , n, and let F−1

j be the

inverse cumulative distribution function (cdf) of variable Zi,j, j = 1, . . . , d. There are

various censoring schemes that can be adopted. One possibility, used by Richards

et al. (2024), is to censor the observations that fall below a high marginal quantile τ ,

i.e., if Zi,j < F−1
j (τ ;θ), then Zi,j is treated as censored. Instead, in this paper, we

censor the observations only if all the components are below the marginal quantile, i.e.,

if maxj=1,...,d Zi,j < F−1
j (τ ;θ), then the entire vector Zi is treated as fully censored,

otherwise, if at least one component of Zi has a value above its marginal quantile,

the entire vector is treated as uncensored. In order for the neural Bayes estimator

to account for censored-type data, Richards et al. (2024) propose standardising data
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Zi (i = 1, . . . , n) to a common margin and setting the censored observations to some

constant c ∈ R, yielding Z∗
i ∈ Rd (i = 1, . . . , n). To improve performance of the NBE,

this constant c should be set to a value outside of the support of the data. In order

for information on the censored observations to be passed to the NBE, Richards et al.

(2024) propose creating a one-hot encoded vector Ii that identifies which indices of

Z∗
i are censored (with value 1), and which are not (with value 0). Then, the neural

Bayes estimator is trained using an augmented data set A containing the data Z∗ =

((Z∗
1)

′, . . . , (Z∗
n)

′)′ and the indicator vector I = (I ′1, . . . I
′
n)

′, that is A = ((Z∗)′, I ′)′ .

Passing A as the input to the neural network in place of Z in equation (5.2.3) is

sufficient to ensure the information about the censoring scheme is given to the NBE.

Lastly, to handle the augmented data set A, a dense bilinear layer is used as the input

layer of the neural network ψ(·); this allows for a full connection between two inputs

(here, Z∗ and I) and the output.

Similarly to the sample size, these NBEs are only (approximately) optimal when

applied to data sets where the censoring level is kept the same as the one used for

training. When this is not the goal, having an estimator which performs well for any

valid τ ∈ (0, 1) is desirable. This can be achieved by feeding τ as an extra input to the

outer neural network ϕ(·) as

θ̂(A;γ, τ) = ϕ (T (A;γψ, τ);γϕ) with T (A;γψ, τ) = (T (A;γψ)
′, τ)

′
,

where T (A;γψ) = a ({ψ(Ai;γψ) : i = 1, . . . , n}) as in (5.2.3) with Ai in place of Zi.

In this situation, the censoring level is treated as a random variable T, which re-

quires an additional prior. Since we are not interested in censoring too low, the prior

T ∼ Unif(τ1, 1) with τ1 > 0 seems the most straightforward choice. Thus, each vector

of parameters θ now has a censoring level associated with it, making it possible to

have different censoring levels for the K training parameter vectors and corresponding

J samples. The Monte Carlo approximation of the Bayes risk in this case takes now
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the form

rΩ(θ̂(·; τ,γ)) ≈
1

KJ

∑
θ∈Υ

∑
n∈N

∑
τ∈T

∑
A∈Aθ,n,τ

Pr(T = τ) Pr(N = n)L(θ, θ̂(A;γ, τ)). (5.2.4)

In equation (5.2.4), T is the set of censoring levels drawn from the Unif(τ1, 1) distri-

bution with Pr(T = τ) = 1/(1− τ1), and Aθ,n,τ is a set of J data sets of size n drawn

from the model for given sampled parameters θ, masked at the censoring level τ and

augmented with the threshold exceedances indicator vector as described above.

5.2.4 Model selection

In a likelihood-free setting, we can treat model selection as a multiclass classification

problem. Consider M ≥ 2 candidate models indexed by ζ ∈ {1, . . . ,M}, and let

pζ ∈ [0, 1] denote the prior probability of each data set Z being generated by the model

with index ζ, where p1 + . . .+ pM = 1. Let us also assume that, a priori, each data set

has equal probability of being assigned to each model (herein referred to as a ‘class’).

Thus, our prior on the class index ζ is ζ ∼ Multinomial(1/M, . . . , 1/M).

Similarly to the parameter estimation procedure, a dense neural network (DNN)

is used to train the model selection classifier. Note that, as before, a prior on the

vector of model parameters is also required and it should be in agreement with the

prior distributions used for training of the NBEs described in Section 5.2.1. More

specifically, our neural classifier takes data Z as input, and maps it using a DNN to

an estimate p̂ = (p̂1, . . . , p̂M)′ of p, giving the posterior probabilities of Z belonging

to each class index ζ ∈ {1, . . . ,M}. In the multiclass classification problem, a natural

choice of loss function is the categorical cross-entropy function, which can be thought

of as stemming from a multinomial likelihood. This loss function is given by

L(ζ∗, p̂) = −
M∑
m=1

ζ∗m log(p̂m),
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where ζ∗ = (ζ∗1 , . . . , ζ
∗
M)′ with ζ∗m ∈ {0, 1} being the indicator of the true model corre-

sponding to the training data set Z, that is ζ∗m = 1 if Z is generated from model m,

and ζ∗m = 0 otherwise. In addition, p̂m is the estimated probability outcome of each

data set Z, for m = 1, . . . ,M. This loss function measures the dissimilarity between the

estimated outcomes and actual classes, adjusting the training of the model by penalis-

ing incorrect predictions. Finally, the DeepSets architecture introduced in Section 5.2.1

can also be applied to the model selection procedure, and similar techniques to those

used for parameter estimation can be employed to ensure the model selection classi-

fier remains suitable for censored data, variable sample sizes, and/or variable censoring

levels.

We note, however, that while in likelihood-based inference the classical model se-

lection criteria, such as the BIC, are linked with the parameter estimation (i.e., the

parameter estimates are used to calculate the BIC value), the same does not hold true

with the proposed toolbox. Instead, two separate neural networks need to be trained

for the model selection and parameter estimation procedures. Once a model is selected

by the neural classifier, the parameters of that model are estimated using the techniques

from Section 5.2.1.

5.2.5 Implementation details

Two key components of a standard dense neural network are its activation function

and parameters γ (often referred to as weights and biases). The activation func-

tion introduces non-linearity into the model, allowing the network to learn and rep-

resent the complexities of the underlying data. The parameters determine the strength

(weights) of the connection between two neurons (i.e., nodes of the neural network),

and shift the input of the activation function (biases). Let wi ∈ R represent the

weights of each neuron i, i = 1, . . . , n, and b denote the bias; an activation func-

tion σ transforms the weighted sum of the inputs of each neuron and the bias as
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σ (
∑n

i=1wizi + b) . Unless stated otherwise, the Rectified Linear Unit (ReLU) activa-

tion function is used when training the neural Bayes estimator, except in the final layer.

Assuming x =
∑n

i=1wizi + b ∈ R, the ReLU function returns the same value if

x > 0, and 0 otherwise, i.e, σ(x) = max{x, 0}. For the final layer, different activa-

tion functions are used so that constraints on the parameters support are satisfied.

In particular, for strictly positive parameters, the softplus activation function, i.e.,

σ(x) = log(1 + exp{x}), is used. Where the parameter is bounded in the interval [a, b],

a layer compression is used instead; such layer uses a logistic function σ(x) = a+(b−a)/

(1+exp{−kx}), that restricts input x to be within [a, b]. The identity function, σ(x) = x,

is used for parameters whose support is on the real line. For the model selection pro-

cedure, the softmax activation function is used in the final layer so that the output

p̂ is a valid vector of probabilities, i.e. is non-negative and
∑M

m=1 p̂m = 1. More

specifically, given a particular class m and assuming that x = (x1, . . . , xM)′ ∈ RM is

the output from the penultimate layer, the softmax activation function takes the form

σ(x)m = exp{xm}/
∑M

m∗=1 exp{xm∗}.

As mentioned in Section 5.2.1, neural Bayes estimators are trained by minimis-

ing the empirical Bayes risk with respect to the parameters γ; more specifically, the

training process involves learning the optimal parameters γ that map the data in-

puts Z to the parameter estimates θ̂. This optimisation is done via back-propagation

and the stochastic gradient descent (SGD) algorithm, where parameters are iteratively

updated to minimise the objective function. Moreover, during training, two types

of data sets are used: the training and validation sets. Both data sets are passed

through the network and are refreshed after every epoch; here an epoch is defined

as one full cycle through all the input data in the training set during the SGD pro-

cess. In particular, the training set contains data used to train the model, which are

used to update the parameters of the network. On the other hand, the validation set

does not contribute to the parameter updates; instead, it is used to assess the abil-



CHAPTER 5. NEURAL-BASED INFERENCE 128

ity of the model to generalise to new data, thus avoiding overfitting, and also used

to define an early-stopping criterion for the algorithm. Finally, the performance of

the trained estimator to model new data is further assessed with a test set, which

is not to be used during training. All the computations are performed using the

NeuralEstimators (Sainsbury-Dale et al., 2024a) and Flux (Innes, 2018) packages

in julia; see https://msainsburydale.github.io/NeuralEstimators.jl/dev/ and

https://fluxml.ai/Flux.jl/stable/, respectively, for the full documentation.

5.3 Bivariate models of interest

From now on, we work in the bivariate setting. Specifically, we focus on the modelling

of the joint tail behaviour of the random vector Z = (Z1, Z2)
′. We note, however, that

the inference methodology can be applied to higher dimensions. We are particularly in-

terested in bivariate models that are suitable for the modelling of both types of extremal

dependence structures. More specifically, we focus on flexible models that allow inter-

polation between asymptotic dependence and independence, as well as on the weighted

copula model (WCM) proposed by André et al. (2024). We aim to provide a tool for fast

inference for a variety of bivariate models exhibiting complex dependence structures.

Evaluation of their likelihood functions relies heavily on numerical integration and in-

version of functions; this results in computationally costly likelihood-based inference

procedures and may otherwise limit the use of these models in practice. Furthermore,

likelihood-based inference for the WCM (which is a mixture model) is currently in-

feasible when one of its components is taken as one of the models able to interpolate

between the two classes of extremal dependence. Section 5.3.1 reviews basics of copula

modelling, while a background on extremal dependence measures is given in Section

5.3.2. The models of interest are introduced in Sections 5.3.3 and 5.3.4.

https://msainsburydale.github.io/NeuralEstimators.jl/dev/
https://fluxml.ai/Flux.jl/stable/
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5.3.1 Copula modelling

The dependence between variables Z1 and Z2 can be characterised by means of copulas.

Let FZ1 and FZ2 be the marginal cumulative distribution functions of variables Z1

and Z2, respectively, i.e., Z1 ∼ FZ1 and Z2 ∼ FZ2 , and let FZ1,Z2 denote their joint

distribution function. According to Sklar’s theorem (Sklar, 1959), the underlying copula

C : [0, 1]2 → [0, 1] of Z = (Z1, Z2)
′ can be obtained as

C(u1, u2) = fZ1,Z2

(
F−1
Z1

(u1), F
−1
Z2

(u2)
)
, (u1, u2)

′ ∈ [0, 1]2.

When Z1 and Z2 are continuous variables, the copula C is unique and represents the

joint distribution function of U = (U1, U2)
′, where U1 = FZ1(Z1) and U2 = FZ2(Z2)

are Unif(0, 1) random variables. This result is useful since it is sufficient to marginally

transform the data to a uniform scale through the probability integral transform and

represent their joint behaviour via a copula model C. Finally, when it exists, the copula

density c(u1, u2) can be obtained by taking the second derivative of C with respect to

u1 and u2, as

c(u1, u2) =
FZ1,Z2

(
F−1
Z1

(u1), F
−1
Z2

(u2)
)

fZ1

(
F−1
Z1

(u1)
)
fZ2

(
F−1
Z2

(u2)
) , (u1, u2)

′ ∈ [0, 1]2,

where fZi
is the probability density function of variable Zi for i = 1, 2. When FZi

does

not have an explicit form, it often needs to be computed through numerical integration

in the original scale; this is also necessary for fZi
. Additionally, inversion techniques are

required to compute F−1
Zi
. All of these can require substantial computational resources.

5.3.2 Bivariate extremal dependence measures

When interest lies in the joint extremes of a bivariate random vector, a key element

is to correctly identify its extremal dependence behaviour, i.e., whether large values in
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different components of this vector are likely to occur simultaneously or not. Misiden-

tifying the extremal dependence structure may indeed lead to inaccurate representa-

tions of the extremes, and incorrect extrapolations. Intuitively speaking, asymptotic

dependence (AD) is present if the most extreme values of the components of the ran-

dom vector (Z1, Z2)
′ can occur together, and asymptotic independence (AI) is present

otherwise. This extremal behaviour is often quantified through the tail dependence

coefficient χ ∈ [0, 1] (see, e.g., Joe, 1997) and/or through the residual tail dependence

coefficient η ∈ (0, 1] (Ledford and Tawn, 1996). The coefficient χ can be obtained as

χ = limy→1 χ(y), when it exists, with

χ(y) =
Pr(FZ1(Z1) > y, FZ2(Z2) > y)

1− y
, y ∈ (0, 1). (5.3.1)

The vector (Z1, Z2)
′ is asymptotically independent if χ = 0, and asymptotically depen-

dent if χ > 0. Given a function L, that is slowly-varying at zero (i.e, for any c > 0,

L(cx)/L(x) → 1 as x → 0), Ledford and Tawn (1996) assume the joint tail may be

expressed as

Pr(FZ2(Z2) > y | FZ1(Z1) > y) = L(1− y)(1− y)1/η−1, η ∈ (0, 1], y → 1. (5.3.2)

If η = 1 and L(1 − y) ̸→ 0 as y → 1, then (Z1, Z2)
′ is asymptotically dependent with

χ = limy→1 L(1 − y), otherwise it is asymptotically independent, with larger values of

η ∈ (0, 1] indicating stronger dependence. Similarly to χ, a sub-asymptotic version of

η can be obtained from equation (5.3.2).

Taken together, χ > 0 provides a summary measure of dependence within the AD

class (with η = 1), while η ≤ 1 provides a summary within the AI class (with χ = 0).

Available models in the multivariate extremes literature are often only suitable for one

extremal dependence class. That is, aside from boundary points of the parameter space,

traditional models either yield {χ > 0, η = 1} or {χ = 0, η ≤ 1}, but cannot span across
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both classes. However, in recent years, more flexible methods which are able to capture

both types of dependence have been proposed; see for instance Wadsworth et al. (2017),

Huser and Wadsworth (2019) and Engelke et al. (2019). Each of these can be written

as a random scale construction, which we introduce in the following section.

5.3.3 Random scale construction models

A range of bivariate dependence models can be constructed using a random scale repre-

sentation based on ‘radial’ and ‘angular’ coordinates. More specifically, a random scale

mixture vector (Z1, Z2)
′ is constructed as follows

(Z1, Z2)
′ = R(V1, V2)

′, R ⊥⊥ (V1, V2)
′, (5.3.3)

where R > 0 is the ‘radial’ variable and is assumed to follow a non-degenerate distri-

bution, and (V1, V2)
′ ∈ V ⊆ R2 is the vector of ‘angular’ components. Different models

can be obtained by varying the distributions and constructions of R and (V1, V2)
′. De-

pending on the precise specification, these may be able to interpolate between the two

regimes of extremal dependence; see Engelke et al. (2019) for a detailed overview of

the dependence properties arising from this construction. Interest lies in exploiting the

copula C of these flexible models. Moreover, since these aim at capturing the extremal

dependence of the vector (Z1, Z2)
′, non-extreme values are often censored to prevent

their influence on the joint tail. We now present four particularly interesting bivariate

models with construction (5.3.3), each of which can yield both {χ > 0, η = 1} and

{χ = 0, η ≤ 1} (depending on their parameter vectors), with the transition between

these two regimes occurring at interior points of the parameter space.

Model W. Let V ∼ Beta(α, α), and let R follow a generalised Pareto distribu-

tion (GPD) with scale parameter 1 and shape parameter ξ ∈ R, i.e, R ∼ GPD(1, ξ).



CHAPTER 5. NEURAL-BASED INFERENCE 132

Wadsworth et al. (2017) propose a model with

(V1, V2)
′ =

(V, 1− V )′

max(V, 1− V )
∈ Σ = {v ∈ R2

+ : max(v, 1− v) = 1}.

Given the model construction, C(u1, u2) is assumed to hold only when ∥(Z1, Z2)
′∥∞ is

large. This model is able to smoothly interpolate between the two classes of asymptotic

dependence through the parameter ξ. For ξ > 0, (Z1, Z2)
′ is asymptotically dependent

with

χW = E

min

 V
1/ξ
1

E
(
V

1/ξ
1

) , V
1/ξ
2

E
(
V

1/ξ
2

)

 > 0 and ηW = 1.

If ξ ≤ 0, then asymptotic independence is present with ηW = (1−ξ)−1 ≤ 1 and χW = 0.

More details can be found in Wadsworth et al. (2017).

Model HW. Huser and Wadsworth (2019) detail a model construction providing

flexible extremal dependence structures for spatial processes. However, they also pro-

pose a bivariate model able to transition between different types of dependence. In this

model, both R and the vector (V1, V2)
′ are marginally Pareto distributed with different

shape parameters. More specifically, the marginal cdfs of each variable are given as

FR(r) = 1−r−1/δ, r ≥ 1, and FV1(v1) = 1−v−1/(1−δ)
1 , v1 ≥ 1, with FV2(v2) defined anal-

ogously, for δ ∈ (0, 1). Additionally, we assume here that (V1, V2)
′ follows a bivariate

Gaussian copula with correlation parameter ω ∈ (−1, 1).

This model is able to interpolate between the two classes of extremal dependence

through the parameter δ; when δ > 1/2, the tail of R is heavier than (V1, V2)
′ and so

(Z1, Z2)
′ is asymptotically dependent with

χHW = E

min

 V
1/δ
1

E
(
V

1/δ
1

) , V
1/δ
2

E
(
V

1/δ
2

)

 > 0 and ηHW = 1.
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When δ ≤ 1/2, (Z1, Z2)
′ is asymptotically independent with

ηHW =


1, if δ = 1/2,

δ/(1− δ), if ηV /(1 + ηV ) < δ < 1/2,

ηV , if δ ≤ ηV /(1 + ηV ),

where ηV < 1 is the residual tail dependence coefficient (5.3.2) of vector (V1, V2)
′.

Although ηHW = 1 for δ = 1/2, the variables Z1 and Z2 are asymptotically independent

since L(1 − y) → 0 as y → 1 in equation (5.3.2). More details can be found in Huser

and Wadsworth (2019).

The final two models were proposed by Engelke et al. (2019). Similarly to the model

introduced by Wadsworth et al. (2017), let V ∼ Beta(α, α), α > 0.

Model E1. For the first model, R follows a Weibull distribution with distribution

function FR(r) = 1− exp{−rβ}, r, β > 0, and the angular components are constructed

as follows

(V1, V2)
′ =

(V, 1− V )′

ν(V, 1− V )′
,

where ν(V, 1−V ) = µmax(V, 1−V )+(1−µ)min(V, 1−V ) and µ ≥ 1/2. For this model,

the extremal dependence is controlled by µ; when µ ≤ 1, Z1 and Z2 are asymptotically

independent with χE1 = 0 and ηE1 = µβ. If µ > 1, they are asymptotically dependent

with

χE1 =
2(µ− 1)

2µ− 1
and ηE1 = 1.

Model E2. For the second model, R ∼ GPD(1, ξ) with ξ ∈ R as in Wadsworth et al.

(2017). The angular components V1 and V2 are now independent of each other and

distributed as V, that is V1, V2 ∼ Beta(α, α). The extremal dependence of this model is
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determined by ξ. In particular, if ξ > 0,

χE2 =
E
(
min{V1, V2}1/ξ

)
E (V 1/ξ)

and ηE2 = 1,

and (Z1, Z2)
′ are asymptotically dependent. When ξ ≤ 0, the variables are asymptoti-

cally independent with

χE2 = 0 and ηE2 =


1, if ξ = 0,

1− ξα

1− 2ξα
, if ξ < 0.

5.3.4 Weighted copula model

André et al. (2024) propose a model that is able to accurately represent both the body

and tail regions of a data set, while ensuring a smooth transition between them. Let

ct denote the density of the copula tailored to the tail and cb denote the density of the

copula tailored to the body. For (x1, x2)
′ ∈ [0, 1]2, the density of the proposed model is

given by

h(x1, x2;θ) =
π(x1, x2;κ)ct(x1, x2;λt) + [1− π(x1, x2;κ)]cb(x1, x2;λb)

K(θ)
, (5.3.4)

where θ = (λ′
t,λ

′
b, κ)

′ is the vector of model parameters, K(θ) a normalising con-

stant, and π(x1, x2;κ) : (0, 1)2 → (0, 1) is a dynamic weighting function. Note that

model (5.3.4) does not have uniform margins in general, which makes likelihood-based

inference difficult. The weighting function depends on the data and is specified such

that it is increasing in x1 and x2 for a fixed value of κ; in particular, more weight is

given to cb for small values of (x1, x2)
′, and more weight is given to ct for large values of

(x1, x2)
′. Similarly to the models introduced in Section 5.3.3, the interest is in exploiting

the copula C(u1, u2;θ) = H
(
H−1
X1

(u1), H
−1
X2

(u2);θ
)
of density (5.3.4), where HX1 and

HX2 are the marginal cdfs of H. As shown in André et al. (2024), the model shows
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some interesting features regarding extremal dependence, with cb potentially having an

influence on χ depending on the weighting function chosen. More details can be found

in André et al. (2024).

5.4 Simulation studies

Several simulation studies are performed to assess the trained neural Bayes estimators in

different scenarios. We present selected studies in this section, and give the remaining

ones in the Supplementary Material. All general settings and priors are outlined in

Section 5.4.1. We then start by studying the performance of the NBE in estimating the

model parameters in Section 5.4.2. In Section 5.4.3, the efficacy of the neural classifier

for model selection is assessed, in which we focus on the four models from Section 5.3.3.

In Section 5.4.4 we investigate the performance of the NBEs trained for model selection

and parameter estimation in misspecified scenarios.

5.4.1 General settings

In all simulations, the sample size n and, when applicable, the censoring level τ are

assumed random and independent realisations of variables distributed, respectively,

as N ∼ Unif({100, 101, . . . , 1500}) and T ∼ Unif(0.5, 0.99). Each parameter of the

four models mentioned in Section 5.3.3 are also assumed independent a priori and

uniformly distributed. In particular, for Model W (Wadsworth et al., 2017) we take

α ∼ Unif(0.2, 15) for the parameter of the Beta distribution, and ξ ∼ Unif(−2, 1) for

the shape parameter of the GPD. For Model HW (Huser and Wadsworth, 2019), we

take δ ∼ Unif(0, 1) and ω ∈ Unif(−1, 1). For Model E1 (Engelke et al., 2019), we

take α ∼ Unif(0.2, 15) for the parameter of the Beta distribution, β ∼ Unif(0, 15) for

the Weibull parameter, and µ ∼ Unif(0.5, 4). For Model E2 (Engelke et al., 2019), we

assume that α ∼ Unif(0.2, 15) and ξ ∼ Unif(−2, 1). For the weighted copula model



CHAPTER 5. NEURAL-BASED INFERENCE 136

from equation (5.3.4), we take the weighting function to be π(x1, x2;κ) = (x1x2)
exp{κ},

with κ ∼ Unif(−3.51, 1.95) as the prior for the weighting function parameter; based

on previous analysis of this model, κ ∈ (−3.51, 1.95) ensures that there is a good

representation of both copula components, cb and ct, in each drawn sample.

For each step, training and validation sets for the vector of parameters and corre-

sponding data realisations are generated. More specifically, we use |Υ|train = K and

|Υ|val = K/5 with K = 100 000 (recall equation (5.2.2)) for the training and validation

parameter sets, respectively. The number of layers assumed for each neural network ψ

and ϕ (recall equation (5.2.3)) and its parameters are determined experimentally, and in

order to reduce the computational intensity, we adopt the ‘simulation-on-the-fly’ tech-

nique where the train and validation sets are refreshed every epoch; see Sainsbury-Dale

et al. (2024a) for more details. When censoring is applicable, we adopt the scheme where

the observations for which the maximum value is less than τ are censored. All the sim-

ulations are performed using a high-end computing cluster with a NVidia V100 32 GB

GPU hardware with 192 GB of memory; see https://lancaster-hec.readthedocs.

io/en/latest/ for more details (last accessed on 20/11/2024). For reproducibility

and to make our methodology available to a broad readership, all the trained NBEs

for parameter estimation and neural classifiers for model selection are available on

https://github.com/lidiamandre/NBE_classifier_depmodels.

5.4.2 Parameter estimation

We take the mean absolute loss function, L(θ, θ̂) = |θ̂ − θ|, which targets the marginal

posterior medians, and set J = 5 in equation (5.2.2). This means that we have 5

data set realisations (and censoring level values when applicable) for each parameter

vector θ(k) (k = 1, . . . , K). Moreover, the training step finishes if the estimated Bayes

risk computed based on the validation set has not decreased in 5 consecutive epochs.

We first demonstrate the performance of NBEs for uncensored data from the weighted

https://lancaster-hec.readthedocs.io/en/latest/
https://lancaster-hec.readthedocs.io/en/latest/
https://github.com/lidiamandre/NBE_classifier_depmodels
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copula model from Section 5.3.4, and for censored data from one of the random scale

mixture models mentioned in Section 5.3.3. The neural network architecture used

for parameter estimation is given in Table C.2.1 of Section C.2 of the Supplementary

Material. Finally, the assessment of the NBEs is done on a test parameter set with 1000

parameter vectors θ, and corresponding test data realisations, each of size n = 1000.

In the first simulation study, we consider the weighed copula model from equation

(5.3.4). In particular, we take cb to be the Gaussian copula density with correlation

parameter λb ≡ ρ ∈ (−1, 1), for which we take ρ ∼ Unif(−1, 1), and ct to be the

copula density of Model E1 with λt = (α, β, µ)′. This is a configuration for which

likelihood-based inference is simply infeasible, owing to the nesting of two complex

models requiring numerical integrals and inversion of functions. Figure 5.4.1 shows the

results; the true values for each parameter are compared with their estimated values

given by the trained NBE. It can be seen that there is a bit of variability, in particular

for the parameters α and β; we note that these are the parameters with the largest

prior range. Analysing the most interesting parameters, we can see that the NBE gen-

erally estimates the weighting parameter κ well, indicating that it is able to distinguish

between the body and tail components of the copula. In addition, estimates of µ are

quite accurate; this means that the two regimes of extremal dependence are well cap-

tured. In particular, from the asymptotically dependent samples (i.e., µ > 1), 98.28%

were estimated to exhibit AD, whereas 86.15% of the data sets showing asymptotic

independence (i.e., µ ≤ 1) were estimated to be AI. Finally, estimates of ρ exhibit the

best results. For negatively correlated data sets (i.e., ρ < 0), 96.06% were estimated

to be negatively correlated, whereas 92.28% of the positively correlated data sets were

correctly identified.

It is important to assess the uncertainty of the NBE; we consider two different ap-

proaches to this task. For the first, a non-parametric bootstrap procedure is adopted,

where we generate B = 400 bootstrap samples from which model parameters are re-
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Figure 5.4.1: Assessment of the NBE when cb is the Gaussian copula with parame-
ter ρ, ct is Model E1 with parameters λt = (α, β, µ)′, and with weighting function
π(x1, x2;κ) = (x1x2)

exp{κ}, x1, x2 ∈ (0, 1) for a sample size of n = 1000. The points
highlighted in different shapes and colours refer to parameter configurations used for
further diagnostics (see Figure 5.4.2).

estimated and 95% confidence intervals are obtained. This is done for each parameter

configuration and data from the test set. For the second approach, we train an ad-

ditional estimator, now under the quantile loss function targeting jointly a low and a

high posterior quantile; precisely, given a probability level q ∈ (0, 1), this loss function

is defined as Lq(θ, θ̂) =
∑p

k=1(θ̂k−θk)(1(θ̂k>θk)
−q).With this estimator (herein referred

to as the neural interval estimator), we are able to approximate marginal 95% central

credible intervals by training for q = {0.025, 0.975}. We evaluate the performance of

each approach by computing coverage probabilities, with the results presented in Ta-

ble 5.4.1. The bootstrap procedure leads to lower than nominal coverage rates, which

can be linked to the quality of estimates shown in Figure 5.4.1: the best coverage is ob-

tained for the parameters showing a better correspondence between true and estimated
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values, such as ρ or µ. The parameters α and β exhibit more bias in their estimation,

which is reflected in worse coverage rates. On the other hand, the neural interval es-

timator is much better calibrated. In the context of NBE, bootstrap-based confidence

intervals have been used to account for the uncertainty in the estimation; however, to

the best of our knowledge, their coverage rates have not been explored.

Table 5.4.1: Coverage probability and average length of the 95% uncertainty intervals
obtained via a non-parametric bootstrap procedure and via the neural interval estimator
averaged over 1000 models fitted using a NBE (rounded to 2 decimal places).

Parameter
Bootstrap procedure Interval estimator
Coverage Length Coverage Length

ρ 0.80 0.27 0.97 0.57
α 0.36 3.12 0.97 11.84
β 0.53 3.42 0.96 10.32
µ 0.67 0.63 0.97 1.67
κ 0.70 1.12 0.97 2.54

We explore whether apparent bias in parameter estimates leads to bias in depen-

dence quantities of interest. To do so, we consider parameter and data sets for which

the NBE severely under- or over-estimates at least one parameter and compare the

empirical and model-based dependence measure χ(y) from equation (5.3.1) at several

thresholds y ∈ [0.01, 0.99]. For this model configuration, model-based χ(y) are estimated

using a Monte Carlo approximation with 500 000 samples. The parameter configura-

tions considered are highlighted with different shapes and colours in Figure 5.4.1, and

the results for χ(y) are shown in Figure 5.4.2. Despite some parameters being massively

under/over-estimated, the dependence structure is still well captured overall, apart from

configuration θ(1) (in blue) for which µ is over-estimated. Given that this is the pa-

rameter that controls the dependence structure of the data, directly determining the

value of χE1, this result is not surprising. Finally, from the B = 400 bootstrap samples

obtained previously, we compute coverage probabilities of 95% confidence intervals for

χ(y) at levels y = {0.50, 0.80, 0.95}; these are shown in Table 5.4.2. As can be seen,

the true value for χ(y) is within the confidence intervals in more than 79% of the time,
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suggesting that this derived feature of the models is well estimated and well calibrated

even when the individual parameter estimates obtained by the NBE exhibit bias and

display poor coverage properties.

Figure 5.4.2: Empirical χ(y) (in grey) and model-based χ(y) for the fitted weighted
copula model with parameter configurations: θ̂(1) (in blue), θ̂(2) (in orange), θ̂(50) (in
green), θ̂(78) (in red), θ̂(100) (in purple) and θ̂(500) (in brown), for y ∈ [0.01, 0.99].
The 95% confidence bands, representing uncertainty in the empirical estimates, were
obtained by boostrapping.

Table 5.4.2: Coverage probability and average length of the 95% confidence intervals for
χ(y) at levels y = {0.50, 0.80, 0.95} obtained via a non-parametric bootstrap procedure
averaged over 1000 models fitted using a NBE (rounded to 2 decimal places).

χ(y) Coverage Length
χ(0.50) 0.86 0.09
χ(0.80) 0.82 0.11
χ(0.95) 0.79 0.12

For the second simulation study, we consider Model W with the priors mentioned

in Section 5.4.1; since this model is suitable for censored data, we consider a variable
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censoring level τ drawn from the prior given in Section 5.4.1. Figure 5.4.3 shows the

performance of the trained NBE; estimates are quite accurate overall, but with some

bias for large α. We observe from the right panel of Figure 5.4.3 that the two regimes

of extremal dependence are well captured; in particular, from the samples exhibiting

asymptotic dependence (i.e., ξ > 0), 94.05% were estimated to be AD, while 98.19%

of the asymptotically independent samples (i.e., ξ ≤ 0) were correctly identified as AI

data sets.

Figure 5.4.3: Assessment of the NBE for Model W with parameters θ = (α, ξ)′ for a
sample size of n = 1000. The points highlighted in different shapes and colours refer to
parameter configurations used for further diagnostics (see Figure 5.4.4).

As with the first study, we assess the uncertainty of the NBE through non-parametric

bootstrap and by training a neural interval estimator. Coverage probabilities of the 95%

uncertainty intervals and their average length are shown in Table 5.4.3. The coverage

probabilities are once again better using the trained neural interval estimator, but at

the cost of wider intervals on average. The extremal dependence measure χ(y) from

equation (5.3.1) at several thresholds y ∈ [τ, 0.99], where τ is the censoring level, is

computed as a further diagnostic for the four parameter configurations highlighted in

Figure 5.4.3; the results are given in Figure 5.4.4. Despite the under/over-estimation

by the NBE, e.g., shown by the vector of parameters θ(980) given in red, the extremal

dependence behaviour is well captured. This is further supported by the coverage
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probabilities of 95% confidence intervals for χ(y) at levels y = {0.80, 0.95, 0.99}, which

are achieved with new data sets for 1000 parameter configurations, each generated with

a fixed censoring level τ = 0.8; the results are shown in Table 5.4.4. As a final diagnostic,

we compare the joint behaviour along different rays. Transforming the model variables,

U1 and U2, into standard exponentially distributed variables, XE
1 and XE

2 , and given

ray w ∈ [0, 1], the joint probability Pr(XE
1 > wy,XE

2 > (1 − w)y) is compared with

its empirical counterpart for two different rays w = {0.3, 0.8} and y ∈ [τ, 0.99]. The

results for three parameter configurations exhibiting asymptotic independence are given

in Figure 5.4.5. It is visible that there is a very good agreement between the estimated

and empirical joint probabilities for both rays considered, supporting the efficacy of the

trained NBE.

Table 5.4.3: Coverage probability and average length of the 95% uncertainty intervals
obtained via a non-parametric bootstrap procedure and via the neural interval estimator
averaged over 1000 models fitted using a NBE (rounded to 2 decimal places).

Parameter
Bootstrap procedure Interval estimator
Coverage Length Coverage Length

α 0.70 3.05 0.96 6.68
ξ 0.78 0.41 0.98 0.81

Table 5.4.4: Coverage probability and average length of the 95% confidence intervals for
χ(y) at levels y = {0.80, 0.95, 0.99} obtained via a non-parametric bootstrap procedure
averaged over 1000 models fitted using a NBE (rounded to 2 decimal places).

χ(y) Coverage Length
χ(0.80) 0.91 0.06
χ(0.95) 0.89 0.09
χ(0.99) 0.88 0.09

Comparison with censored maximum likelihood estimation

Finally, we compare estimates obtained by the NBE and the censored maximum

likelihood estimation (CMLE) procedure. We first compute the CMLE for the four pa-

rameter configurations highlighted in Figure 5.4.3, and the corresponding estimates for
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Figure 5.4.4: Empirical χ(y) (in grey) and model-based χ(y) estimated via the NBE
with parameter configurations: θ̂(1) (in blue), θ̂(32) (in orange), θ̂(403) (in green) and
θ̂(980) (in red) for y ∈ [τ, 0.99], where τ is the corresponding censoring level. A compar-
ison with model χ(y) estimated via censored maximum likelihood inference is given in
pink. The 95% confidence bands, representing uncertainty in empirical estimates, were
obtained by boostrapping.

χ(y) for y ∈ [τ, 0.99]. The results are shown by the pink lines in Figure 5.4.4. As it can

be seen, almost identical results are obtained when using censored maximum likelihood.

Then, with the assigned prior distributions, we generate 5 different parameter vectors

θ = (α, ξ)′, censoring levels τ and the corresponding data sets, each of which with a

sample size of 1000. Each data set is simulated 100 times. Figure 5.4.6 shows the com-

parison between the two estimators for two parameter vectors: θ1 = (2.94, 0.11)′ with

censoring level τ1 = 0.79 and θ2 = (8.87,−1.97)′ with τ2 = 0.60 (rounded to 2 decimal

places). The remaining three cases are given in Section C.2.2 of the Supplementary
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Figure 5.4.5: Empirical (in grey) and model-based estimates of Pr(XE
1 > wy,XE

2 >
(1−w)y) estimated via the NBE with parameter configurations: θ̂(181) (in purple), θ̂(272)

(in yellow) and θ̂(983) (in cyan) for y ∈ [τ, 0.99], where τ is the corresponding censoring
level. The 95% confidence bands, representing uncertainty in empirical estimates, were
obtained by boostrapping.

Material. Estimates given by the NBE are more biased, and generally less variable

than the CMLE depending on the case. Despite this small bias, estimates provided by

the NBE are still relatively accurate whilst being much faster to obtain. In particular,

the NBE took on average 0.676 seconds to evaluate, whereas the censored MLE took

92.611 seconds on average, thus the NBE is about 137 times faster.

To assess the effect of assuming the sample size and/or censoring level to be un-

known, we perform a similar study considering fixed censoring level (τ = 0.8) with fixed

(n = 1000) and variable sample size. The results are presented in Section C.2.2 of the

Supplementary Material. Although the overall findings are similar, slightly higher cov-

erage probabilities, and less wider intervals, are obtained in the cases with less unknown

quantities.
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(a)

(b)

Figure 5.4.6: Comparison between parameter estimates θ̂ = (α̂, ξ̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameters are
given by the red line. (a) θ1 = (2.94, 0.11)′ with censoring level τ1 = 0.79 and (b)
θ2 = (8.87,−1.97)′ with censoring level τ2 = 0.60.

5.4.3 Model selection

Here we investigate the performance of the neural classifier for model selection, outlined

in Section 5.2.4. We set J = 1 from equation (5.2.2) for both training and validation

data sets. For each sampled class index ζ(k) (k = 1, . . . , K), data set Z(k) is generated

with a random sample size n, a random censoring level τ, and a random vector of

model parameters θ using the priors defined in Section 5.4.1. The training finishes

if the Bayes risk using the validation set has not decreased in 10 consecutive epochs.
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We demonstrate the performance of the model selection classifier for the four models

mentioned in Section 5.3.3, and since their focus is in the modelling of the joint tail

behaviour, the data are treated as censored. The neural network architecture used for

the classification problem is given in Table C.3.1 in Section C.3 from the Supplementary

Material. When M = 2, all pair combinations, out of the four models, are compared,

whereas all models are considered simultaneously when M = 4. Finally, in order to

assess the neural classifier, we generate a test parameter set with 1000 values for model

index ζ, and a test data set of size n = 1000. The class which has the highest probability

as output is the assigned model for the data set. We also compare the classifier with

model selection via the Bayesian information criterion (BIC). This requires optimisation

of the CMLE, which is time-consuming. However, we wish to explore how well the

neural classifiers perform in comparison to established methods.

Figure 5.4.7 shows the assessment of the classifier when M = 2; the left bar plot

represents the true counts of data sets generated from each model, whereas the middle

and right bar plots represent the percentage of correctly identified models after apply-

ing the neural classifier and via BIC, respectively. For this study, the proportions of

correctly identified models with the neural classifier are always above 71%, with an

average of 87%, whilst through BIC these are above 63% with an average of 86%. Aside

from the cases where the choice is between Model W and Model E2 or between Model

HW and Model E2, the neural classifier and the likelihood-based BIC do a similar job,

with the selection procedure through neural classifier being quicker than using the BIC

as no likelihood evaluation is needed. Finally, the uncertainty of the neural classifiers is

assessed through a bootstrap procedure. Given B = 400 samples, the 95% confidence

intervals for the proportions of correctly identified data sets are computed for each

model and classifier; these results are reported in the middle bar plots of Figure 5.4.7.

Results for the case whenM = 4 are displayed in Figure 5.4.8. As before the left bar

plot represents the true counts of data sets generated from each model, whilst the middle
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Figure 5.4.7: Proportion (in %) of correctly identified data sets whenM = 2 through the
neural classifier (middle) and through BIC (right) for the six pairs of models considered.
The true counts of data sets generated from class index ζ = 1 (red) and from class index
ζ = 2 (orange) are given in the left bar plot.

and right bar plots show the percentage of correctly identified models through neural

classification and through the BIC, respectively. Similarly to the previous case, the

uncertainty of the neural classifier is assessed via a bootstrap procedure with B = 400

bootstrap samples; the 95% confidence intervals for the proportions obtained by the

neural classifier are shown in the middle bar plot. The resulting proportions achieved

through the neural classifier are all above 68% with an average of 78%, whereas via

the BIC they are above 61% with and average of 72%. The proportions obtained via

the BIC are lower than the ones obtained with the neural classifier apart from Model



CHAPTER 5. NEURAL-BASED INFERENCE 148

W, which indicates that the neural classifier correctly identifies the data sets more

frequently than the BIC, and in a quicker way.

244
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(61.88, 73.89)

76.64%
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(66.92, 77.61) 61.15%
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Model E2 (ζ = 4)
Model E1 (ζ = 3)
Model HW (ζ = 2)
Model W (ζ = 1)

Figure 5.4.8: Proportion (in %) of correctly identified data sets when M = 4 through
the neural Bayes estimators (middle) and through BIC (right). The true counts of data
sets generated from class indices ζ = 1 (red), ζ = 2 (light red), ζ = 3 (orange) and
ζ = 4 (light orange) are given in the left bar plot.

5.4.4 Misspecified scenarios

We now examine the performance of the model selection and subsequent parameter

estimation in a misspecified scenario, where the underlying data do not come from one

of the models considered. We consider two different situations and, in both cases, model

selection is first done using the neural classifier, followed by estimation of the model

parameters using the NBE trained for the selected models. A comparison with classical

model selection and inference tools is also provided.

For the first study, we generate 100 samples, each with n = 1000, from a Gaussian

copula with correlation parameter ρ = 0.5, and consider a censoring level of τ = 0.75.

The proportion of times each model was selected through the neural classifier and

BIC is given on the left of Table 5.4.5, and the proportion of AD and AI samples
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identified by the NBE and CMLE is on the right. Model HW is the most suitable

according to either selection procedure, with the classifier selecting it 88% of the time

and the BIC 69%. This is to be expected given the nature of the underlying data and the

model assumptions, i.e., we are assuming that (V1, V2)
′ follows a Gaussian copula. Both

inference procedures are able to capture the correct extremal dependence structure. In

particular, according to the NBE and CMLE, 97% and 96% of the samples, respectively,

exhibit AI, which is in agreement with the underlying data since Gaussian data are

known to be AI. According to the NBE, the two samples fitted with Model E1 exhibit

AD, with estimated values µ = 1.127 and µ = 1.247. For the CMLE, three of the samples

fitted with Model W are AD; for these, the estimates for ξ are close to 0, specifically

ξ = {0.003, 0.021, 0.043}. As a further diagnostic, we compute χ(y) estimates at three

levels y = {0.80, 0.95, 0.99} for the selected models, and compare with the true χ(y) at

each level. The results are given in Figure 5.4.9. The estimates obtained with either

inference method are concentrated around the true value, indicating that both the NBE

and CMLE are able to capture the true extremal dependence structure. In Section C.4

of the Supplementary Material we describe an individual example, where the proposed

toolbox for model selection and inference is presented in detail. The results obtained

through this individual example agree with the findings of the repeated study.

Table 5.4.5: Proportion of times each model was selected through the neural classifier
and through BIC (left), and proportion of AD and AI samples identified by the NBE
and CMLE (right). All the values are rounded up to 2 decimal places.

Model Neural classifier BIC
Model W 0.02 0.30
Model HW 0.88 0.69
Model E1 0.02 0.00
Model E2 0.08 0.01

Method AD AI
NBE 0.02 0.98
CMLE 0.03 0.97

For the second case, we generate 100 samples, each with n = 1000, from a logis-

tic distribution (Gumbel, 1960) with dependence parameter αL = 0.4, and consider

a censoring level of τ = 0.8. The proportion of times each model was selected and



CHAPTER 5. NEURAL-BASED INFERENCE 150

the proportion of AD and AI samples identified by the NBE and CMLE are given in

Table 5.4.6. For this case, the model selection procedures differ, with the neural clas-

sifier selecting Model HW 79% of the time, and the BIC selecting Model W as the

most suitable in 46% of cases. Additionally, the CMLE correctly identifies all of the

samples to be AD, whereas the NBE misclassifies 16 of the samples fitted with Model

HW. For these 16 samples, the estimated values for δ are near 0.5, the boundary point

for AI, in 12 samples; specifically, δ ∈ [0.45, 0.5]. The estimates for χ(y) at three lev-

els y = {0.80, 0.95, 0.99} are shown in Figure 5.4.9. Contrarily to the previous case,

the NBE under-estimates the true χ(y) of the logistic distribution, while the CMLE

under-estimates slightly for higher levels. Moreover, the estimates provided by the NBE

exhibit higher variability than the CMLE. As with the first specification in the section,

an individual example is presented in Section C.4 of the Supplementary Material. Sim-

ilarly to the repeated study, Model HW is selected as the most suitable to fit the data

and seems to under-estimate the true χ(y) for y ∈ [0.8, 0.99].

Table 5.4.6: Proportion of times each model was selected through the neural classifier
and through BIC (left), and proportion of AD and AI samples identified by the NBE
and CMLE (right). All the values are rounded up to 2 decimal places.

Model Neural classifier BIC
Model W 0.18 0.46
Model HW 0.79 0.24
Model E1 0.02 0.03
Model E2 0.01 0.27

Method AD AI
NBE 0.84 0.16
CMLE 1.00 0.00
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(a)

(b)

Figure 5.4.9: Model-based estimates of χ(y) given by the NBE (red) and by the CMLE
(orange) for levels y = {0.80, 0.95, 0.99} and for 100 samples of (a) a Gaussian copula
with correlation parameter ρ = 0.5 and τ = 0.75, and of (b) a logistic distribution with
dependence parameter αL = 0.4 and τ = 0.8. For both cases, the true χ(y) value is
given by the dashed red lines.

5.5 Case study: changes in horizontal geomagnetic

field fluctuations

5.5.1 Data and background

The behaviour of the sun and the consequences of its interaction with the Earth’s

magnetic field and atmosphere are known as space weather events. Examples include

phenomena such as the auroras, often known as Southern and Northern lights, or solar

storms. These events can cause large fluctuations in the geomagnetic field, leading to

geomagnetically induced currents (GICs), which are electrical currents generated at the

surface of the planet by rapid changes in the magnetic field. Furthermore, GICs can

cause disruption on power grids, communication systems, railway systems, and other
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critical infrastructures. Thus, the modelling of extreme solar activity can help prevent

the impacts of GICs.

Following Rogers et al. (2020), we use the rate of change of the horizontal geo-

magnetic field dBH/dt, which is available through the SuperMAG interface (Gjerloev,

2009), as a measure of the magnitude of GICs. In particular, we apply the proposed

toolbox to select and infer on the pairwise extremal dependence structure between mea-

surements at three pairs of locations in the northern hemisphere: two in Greenland and

one in the east coast of Canada (see Table 5.5.1). We take daily maximum absolute

one-minute changes in dBH/dt, which results in 7572 complete observations. However,

since the estimators are trained for sample sizes between 100 and 1500, we take a subset

of the data set with n = 1500, retaining every 5th observation in order to reduce the

temporal dependence present in the data, and truncate the resulting data set to 1500

observations by removing the last few. Figure 5.5.1 shows the scatterplots of pairwise

daily maxima absolute one-minute changes in dBH/dt between the pairs of locations

considered. We first transform the data to uniform margins using the semi-parametric

approach of Coles and Tawn (1991) with a generalised Pareto distribution fit to the tail

of the data. Thus, the cdf of each margin is estimated via

F (x) =


F̃ (x), if x ≤ r,

1− ϕr
[
1 + ξ

(
x−r
σ

)]−1/ξ

+
, if x > r,

where F̃ (x) is the empirical distribution, ϕr is the probability of exceeding a select-

ing high threshold r, and σ and ξ are the scale and shape parameters of the GPD,

respectively.
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Table 5.5.1: International Association of Geomagnetism and Aeronomy (IAGA) code,
and location of the observatory for the three locations considered.

IAGA code Observatory (Country) Latitude Longitude
SCO Scoresby Sund 2 (Greenland) 70.48 −21.97
STF Sdr Stromfjord (Greenland) 67.02 −50.72
STJ St. John’s (Canada) 47.60 −52.68

Figure 5.5.1: Daily maxima absolute one-minute changes in dBH/dt measurements
between three pairs of locations: (SCO, STF) on the left, (SCO, STJ) in the middle,
and (STF, STJ) on the right.

5.5.2 Statistical inference

We are interested in modelling the joint extremal behaviour of dBH/dt between each

pair of locations, so we focus on the four models mentioned in Section 5.3.3, and censor

the non-extreme observations; we do so by taking τ = 0.85 as the censoring threshold.

We note, however, that we have considered a range of censoring levels and summarise

these results in Section C.5 of the Supplementary Material. We start by applying our

neural classifier to select the best model and estimate its parameters through the corres-

ponding trained NBE; the results are shown in Tables 5.5.2, 5.5.3 and 5.5.4 for pairs

(SCO, STF), (SCO, STJ) and (STF, STJ), respectively. The fit of the preferred model

is then assessed by comparing the estimated dependence measure χ(y) with its empirical

counterparts for levels y ∈ [0.85, 0.99]. As an extra comparison, the estimated measures

for the model with the second highest posterior probability are also obtained. Finally,

a comparison with the results obtained through censored MLE is also provided; the
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results for χ(y) are shown in Figure 5.5.2, where the confidence bands are obtained via

block bootstrap with a block length of 10 to reflect the remaining temporal dependence

present.

For pair (SCO, STF), Model HW is clearly the selected model with a probability

of 0.992 followed by Model E2 with probability 0.078. As can be seen by the estimates

given by the parameters of interest, δ̂ and ξ̂, respectively, both models indicate the

presence of asymptotic independence in the data. The same is not true for Model W. It

can be seen on the left panel of Figure 5.5.2 that models HW and E2 (in blue and orange,

respectively) seem to capture well the extremal dependence of data. According to the

BIC, however, Model E1 is the most appropriate to fit this pair. Likewise to the NBE

estimates, the CMLE estimates for this model indicate the presence of asymptotically

independent data, which is in agreement with the estimates obtained by the NBE and

CMLE for models HW and E2. Furthermore, the estimated χ(y) given by the CMLE

(in purple) almost overlaps with the obtained χ(y) with Model E2. When testing a

range of censoring thresholds, Model E2 or HW were consistently the preferred choices,

both indicating asymptotic independence.

Model E2 is clearly selected as the best model to fit pair (SCO, STJ) with a posterior

probability of 0.9. However, as shown by the middle panel of Figure 5.5.2, the estimated

χ(y) measure seems to be under-estimated by this model (in blue) for higher levels

y. In turn, the estimated measure χ(y) given by Model HW (in orange) is closer to

its empirical counterpart further in the tail, indicating a better fit of the dependence

structure in the limit. Although small, the probability for Model HW given by the

neural classifier is the second highest, followed closely by Model W. For this pair,

all four models indicate the presence of asymptotic independence data through the

estimates given by the NBE and CMLE. Contrarily to the neural classifier, BIC selects

Model E1 as the best model to fit the data, with a very small difference to model HW

and W. The estimated χ(y), highlighted in purple, is also able to capture the extremal
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Table 5.5.2: Model selection procedure obtained through the neural classifier for cen-
soring level τ = 0.85, and parameter estimates given by the trained NBE for pair (SCO,
STF). The results through censoring MLE and BIC are given in the bottom table. All
the values are rounded to 3 decimal places.

Model p̂ θ̂NBE Extremal dependence

W 1.762× 10−4 (α̂, ξ̂) = (2.625, 0.121) AD

HW 0.922 (δ̂, ω̂) = (0.258, 0.714) AI

E1 8.539× 10−11 (α̂, β̂, µ̂) = (3.771, 0.150, 0.939) AI

E2 0.078 (α̂, ξ̂) = (2.450, −0.179) AI

Model BIC θ̂CMLE Extremal dependence

W 229.875 (α̂, ξ̂) = (2.724, 0.093) AD

HW 218.987 (δ̂, ω̂) = (0.353, 0.676) AI

E1 211.927 (α̂, β̂, µ̂) = (0.708, 0.339, 0.488) AI

E2 216.518 (α̂, ξ̂) = (2.321, −0.180) AI

dependence well. Similarly to the first pair, Model HW or E2 were selected as the

preferred fit for pair (SCO, STJ) for a range of censoring levels, both models indicating

asymptotic independence.

For the final pair (STF, STJ), Model E2 is again selected as the preferred model

with a probability of 0.672. Model W closely follows with a posterior probability of

0.308. However, Model E2 has the highest BIC value, indicating that, in the likeli-

hood framework, any of the other models would provide a better fit for this pair. The

right panel of Figure 5.5.2 shows that Model E2 (in blue) under-estimates measure χ(y)

for all levels y considered, whilst Model E1 (obtained by CMLE and given in purple)

over-estimates slightly the empirical value of χ(y). On the other hand, Model W (in or-

ange) best captures the extremal dependence structure over most of the range. Despite

this, all models indicate asymptotically independent variables; this is also in agreement

with the estimates obtained by censored maximum likelihood inference. Interestingly

enough, the estimated value of parameter µ of Model E1 given by either approach is

(very close to) 1. When considering different censoring thresholds, the neural classifier

consistently chose either Model HW or E2 as the best fit for the pair (STF, STJ), both

models indicating asymptotic independence across all censoring levels.
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Table 5.5.3: Model selection procedure obtained through the neural classifier for cen-
soring level τ = 0.85, and parameter estimates given by the trained NBE for pair (SCO,
STJ). The results through censoring MLE and BIC are given in the bottom table. All
the values are rounded to 3 decimal places.

Model p̂ θ̂NBE Extremal dependence

W 0.029 (α̂, ξ̂) = (2.527, −0.271) AI

HW 0.072 (δ̂, ω̂) = (0.125, 0.621) AI

E1 2.352× 10−7 (α̂, β̂, µ̂) = (9.546, 2.171, 0.855) AI

E2 0.900 (α̂, ξ̂) = (2.316 − 0.791) AI

Model BIC θ̂CMLE Extremal dependence

W 393.877 (α̂, ξ̂) = (2.364, −0.187) AI

HW 393.629 (δ̂, ω̂) = (0.242, 0.584) AI

E1 393.138 (α̂, β̂, µ̂) = (2.634, 1.112, 0.735) AI

E2 396.562 (α̂, ξ̂) = (2.115, −0.645) AI

Table 5.5.4: Model selection procedure obtained through the neural classifier for cen-
soring level τ = 0.85, and parameter estimates given by the trained NBE for pair (STF,
STJ). The results through censoring MLE and BIC are given in the bottom table. All
the values are rounded to 3 decimal places.

Model p̂ θ̂NBE Extremal dependence

W 0.308 (α̂, ξ̂) = (2.670, −0.317) AI

HW 0.019 (δ̂, ω̂) = (0.111, 0.632) AI

E1 5.876× 10−5 (α̂, β̂, µ̂) = (10.393, 3.228, 0.996) AI

E2 0.672 (α̂, ξ̂) = (2.420, −0.849) AI

Model BIC θ̂CMLE Extremal dependence

W 401.813 (α̂, ξ̂) = (2.222, −0.153) AI

HW 400.142 (δ̂, ω̂) = (0.025, 0.601) AI

E1 398.434 (α̂, β̂, µ̂) = (13.559, 3.023, 1.000) AI

E2 412.893 (α̂, ξ̂) = (2.072, −0.680) AI

From the results obtained, a few conclusions can be drawn. For instance, although

the selected model may not always be the best to capture the extremal dependence of

the data, a good representation can still be achieved if the model with the second highest

probability is considered instead. Additionally, with the proposed toolbox, we are not

only able to infer about some model characteristics, but also able to assess the sensitivity

to the censoring threshold by considering a range of different levels τ. In particular, from

the results obtained for the range of τ considered (see Section C.5 of the Supplementary
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Figure 5.5.2: Empirical (in grey) and model χ(y) estimated via the NBE for y ∈
[0.85, 0.99] for the models with the two highest posterior probabilities. For each pair, the
estimated χ(y) for the selected model is given by the blue line, followed by its estimate
obtained with the model with the second highest probability in orange. Estimated
model χ(y) for the selected model through AIC is given by the purple line. The 95%
confidence bands were obtained by block boostrapping.

Material), we can see that, for lower censoring levels, Model HW is clearly the preferred

one to fit the three pairs, with posterior probabilities above 0.9 in all cases. This changes

for censoring levels τ ≥ 0.85, or τ ≥ 0.9 for pair (SCO, STF), for which Model E2 is

the most suitable to fit the data according to the neural classifier. In all cases, the

selected models consistently indicate the presence of asymptotic independence in each

pair. This sensitivity analysis to the censoring level is computationally expensive in a

likelihood-based inference method, where the likelihood needs to be evaluated for all

considered models across various censoring levels; this leads to the need for choosing a

censoring level before the analysis, which might end up not being the most suitable to

the underlying application.

5.6 Conclusion and discussion

In some situations, while the likelihood function of a model may be available, its evalu-

ation is computationally costly; this might be due to the need for inversion of functions,

numerical integration or even a combination of the two. This computational burden in
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the inference process poses limitations on the use of certain models in practice since

modelling normally entails consideration of different candidate models and threshold

levels. In this paper, we exploited the use of neural Bayes estimation, a likelihood-

free approach which uses neural networks, to perform inference on the vector of model

parameters. In particular, we focused on two types of models which are available in

the multivariate extremes literature: a weighted copula model, which is able to repre-

sent both the body and tail regions of a data set, and models based on random scale

constructions, which are flexible enough to capture the two regimes of extremal de-

pendence, interpolating between the two in the interior of the parameter space. When

likelihood evaluation is no longer required, model selection criteria such as the AIC or

BIC are now unavailable for determining the best-fitting model. We overcame this by

proposing a model selection neural classifier which allows us to choose the most suitable

model from the candidates in a fast and effective manner.

For the models where it is feasible, albeit relatively slow, to evaluate the likelihood

function, we compared the performance of the neural Bayes estimators and neural clas-

sifier with (censored) maximum likelihood inference and BIC, respectively. Through

simulation studies, we have shown that NBEs tend to be more biased than the (cen-

sored) MLE, though they do not always exhibit higher variability. Moreover, when esti-

mating quantities of interest, such as the extremal measures χ(y) from equation (5.3.1),

we did not find the bias significant, as the dependence structure appeared to be well

captured with the trained NBEs. However, the bias of the estimates might be reflected

in the lower coverage shown by the bootstrap-based credible intervals for some param-

eters in Section 5.4.2. Whilst the coverage probability significantly improved when we

trained a neural interval estimator (obtaining a value of 0.96 or higher) it would be

ideal to also obtain such values with bootstrap-based intervals as we would only need

to train the estimator once in a single loss function. Despite this, since the neural Bayes

estimates are considerably faster to obtain than the (censored) MLE and the extremal
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dependence structure is generally well captured, the methodology may be considered

preferable overall.

When comparing the neural classifier with the BIC, both procedures performed

similarly for the case when M = 2. However, when M = 4, the neural classifier was

able to correctly categorise more data sets than the BIC for all considered models,

except Model W. We have also shown that the proposed toolbox for model selection

and inference performs well — though not always as well as classical likelihood inference

— for scenarios where the data set does not originate from one of the models considered

in this paper, with the extremal dependence structure being generally well captured. In

particular, through repeated simulation, we showed that the neural classifier and NBE

captured the true extremal dependence structure the majority of the times, especially

for asymptotically independent data. A general consideration of the performance of

NBEs in misspecified scenarios is an important future line of research.

In all our examples, we assumed the parameters to be uniformly distributed a priori.

However, we note this implies non-uniform priors in alternative parameterisations and

we did not assess the effect of this choice on the performance of the trained NBE.

Despite this, for studies involving the weighted copula model from Section 5.3.4, we

found that reparameterising some of the model parameters helped the neural network

to learn about them in the training step of the NBE. More specifically, the assessment of

the NBE showed less variability and higher coverage probabilities (with narrower range)

of the 95% uncertainty intervals for each model parameters obtained with bootstrap-

based intervals. The performance of the NBE is inherently influenced by the choice

of the prior distributions. While an informative prior might reduce the volume of the

parameter space, and allow lower values for K and J in equation (5.2.2), this restricts

the use of the trained estimators across several applications; when the latter is desirable,

a vague prior is advisable (Sainsbury-Dale et al., 2024a). On the other hand, when the

likelihood is available, and feasible, informative prior distributions can be constructed
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using likelihood-based estimates (Lenzi et al., 2023). Finally, we restricted our analysis

to the bivariate setting. Each of the random scale models described in Section 5.3.3

could be expanded to higher dimensions; however, this may not be as useful since the

models considered are only suitable when all the variables are asymptotically dependent

or asymptotically independent. On the other hand, the mixture model could usefully

be extended to higher dimensions, and the benefits of NBEs may be even clearer in this

setting as the complexity of the likelihood increases with dimension for this model.

Neural network-based approaches have be a growing subject in the extremes liter-

ature. For instance, in a univariate setting, Cannon (2010), Cannon (2011), Carreau

and Vrac (2011), Ceresetti et al. (2012), Vasiliades et al. (2015), Bennett et al. (2015)

and Shrestha et al. (2017) leverage neural networks to estimate the parameters, risk

measures or to build mixture models. In the multivariate framework, this has been

mainly predominant in, but not restricted to, the spatial setting. Ahmed et al. (2022)

and Wixson and Cooley (2024) propose using neural networks as classification tools

for testing the extremal dependence type of a data set. Whilst the former only focus

on spatial processes, the latter applies the classifier to both spatial and non spatial

data sets. In the approach of Murphy-Barltrop et al. (2024), neural networks are

used to learn about the extremal dependence structure of higher-dimensional data, by

considering a geometric approach whereby the joint behaviour can be inferred from a

star-shaped limit set. In a regression context, Cisneros et al. (2024) use neural networks

to model the full distribution of wildfire spread, whereas Pasche and Engelke (2024)

and Richards and Huser (2022) propose neural-based approaches to extreme quantile

regression problems.



Chapter 6

Extreme value methods for

estimating rare events in Utopia

6.1 Introduction

This paper details an approach to the data challenge organised for the Extreme Value

Analysis (EVA) 2023 Conference. The objective of the challenge was to estimate ex-

tremal probabilities, or their associated quantiles, for simulated environmental data sets

for various locations in a fictitious country called Utopia. The data challenge is split

into 4 challenges; challenges C1 and C2 focus on a setting where data is obtained from

a single location while challenges C3 and C4 concern multivariate data sets, where data

is obtained simultaneously from multiple locations.

Challenge C1 requires estimation of the 0.9999-quantile of the distribution of the

environmental response variable Y conditional on a covariate vector X, for 100 realisa-

tions of covariates. To do so, we model the tail of Y |X = x using a generalised Pareto

distribution (GPD; Pickands, 1975) and employ the extreme value generalised additive

modelling (EVGAM) framework, first introduced by Youngman (2019), to account for

the non-stationary data structure. We consider a variety of model formulations and

161
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select our final model using cross-validation. Furthermore, central 50% confidence in-

tervals are estimated via a non-stationary bootstrapping technique, and the final model

performance is assessed using the number of times the true conditional quantile lies in

the confidence intervals (Rohrbeck et al., 2024). For Challenge C2, we are interested in

estimating the value of q that satisfies Pr(Y > q) = 1/(300T ), where T = 200.

Challenges C3 and C4 concern the estimation of probabilities for extreme multivari-

ate regions, subsets of Rd, where some or all of the components are so large that we

seldom observe any data in them. Such estimates require techniques for modelling and

extrapolating within the joint tail. For challenge C3, we want to estimate two joint tail

probabilities for three unknown non-stationary environmental variables. To achieve

this, we propose a non-stationary extension of the model introduced by Wadsworth

and Tawn (2013). Lastly, for challenge C4, we wish to estimate the probability that

50 variables (locations) jointly exceed prespecified extreme thresholds. Based on an

initial analysis, we separate the variables into five independent groups, and obtain dis-

tinct probability estimates for each group using the conditional extremes approach of

Heffernan and Tawn (2004).

The remainder of the paper is structured as follows. A suitable background to

EVA is provided in Section 6.2, introducing concepts required throughout our work.

Section 6.3 covers our approach to the univariate challenges C1 and C2, and the multi-

variate challenges C3 and C4 are considered in Sections 6.4 and 6.5, respectively. The

paper ends with a discussion of the results of all challenges in Section 6.6.

6.2 EVA background

6.2.1 Univariate modelling

Univariate EVA methods are concerned with capturing the behaviour of the tail of a

distribution which allows for extreme quantities to be estimated. A common univariate
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approach is the peaks-over-threshold framework. Consider a continuous, independent

and identically distributed (IID) random variable Y with distribution function F and

upper endpoint yF := sup{y : F (y) < 1}. Pickands (1975) shows that, for some high

threshold v < yF , the excesses (Y − v) | Y > v, after suitable rescaling, converge in

distribution to a GPD as v → yF . Davison and Smith (1990) provide an overview of

the properties of the GPD, and also propose an extension of this framework to the

non-stationary setting: given a non-stationary process Y with associated covariate(s)

X, the authors propose the following model

Pr(Y > y + v | Y > v,X = x) =

(
1 +

yξ(x)

σ(x)

)−1/ξ(x)

+

, (6.2.1)

for y > 0, where σ(·), ξ(·) are the covariate-dependent scale and shape parameters,

respectively. Recent extensions of the Davison and Smith (1990) framework include al-

lowing the threshold to be covariate-dependent, i.e., v(x) (Kyselý et al., 2010; Northrop

and Jonathan, 2011), and using generalised additive models (GAMs; Chavez-Demoulin

and Davison, 2005; Youngman, 2019) to capture the functions σ(·) and ξ(·) in a flexible

manner.

6.2.2 Extremal dependence measures

In addition to analysing marginal tail behaviours, multivariate EVA methods are con-

cerned with quantifying the dependence between extremes of the individual compo-

nents. An important classification of this dependence is obtained through the measure

χ (Joe, 1997): given a d-dimensional random vector Z, with d ≥ 2 and Zi ∼ F for all

i ∈ {1, . . . , d},

χ(u) :=

(
1

1− u

)
Pr(F (Z1) > u, . . . , F (Zd) > u), (6.2.2)

with u ∈ [0, 1). Where the limit exists, we set χ := limu→1 χ(u) ∈ [0, 1]. When χ > 0,

we say that the variables in Z exhibit asymptotic dependence, i.e., can take their largest
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values simultaneously, with the strength of dependence increasing as χ approaches 1.

If χ = 0, the variables cannot all take their largest values together. In particular, for

d = 2, we refer to the case χ = 0 as asymptotic independence.

We also consider the coefficient of tail dependence proposed by Ledford and Tawn

(1996). Using the formulation given in Resnick (2002), let

η(u) :=
log (1− u)

log Pr (F (Z1) > u, . . . , F (Zd) > u)
,

with u ∈ [0, 1). When the limit exists, we set η := limu→1 η(u) ∈ (0, 1]. The cases η = 1

and η < 1, correspond to χ > 0 and χ = 0, respectively. For η < 1, this coefficient

quantifies the form of dependence for random vectors that do not take their largest

values simultaneously.

Since χ and η are limiting values, they are unknown in practice and must be approx-

imated using numerical techniques. Therefore, when quantifying extremal dependence,

we approximate χ (η) using empirical estimates of χ(u)
(
η(u)

)
for some high threshold

u.

6.3 Challenges C1 and C2

Both challenges concern 70 years of daily data for the capital city of Amaurot. Each

year has 12 months of 25 days and two seasons (season 1 for months 1-6, and season 2

for months 7-12). Suppose Y is an unknown response variable, and X = (V1, . . . , V8)

is a vector of covariates, (V1, V2, V3, V4) denoting unknown environmental variables and

(V5, V6, V7, V8) denoting season, wind direction (radians), wind speed (unknown scale),

and atmosphere (recorded monthly), respectively.

For C1, we build a model for Y | X and estimate the 0.9999-quantile, with associ-

ated 50% confidence intervals, for 100 different covariate combinations denoted x̃i for

i ∈ {1, . . . , 100}. Note x̃i are not covariates observed within the data set, but new
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observations provided by the challenge organisers.

For C2, we estimate the marginal quantile q such that Pr(Y > q) = (6×10)−4, which

corresponds to a once in 200-year event in the IID setting; in particular, q is obtained

subject to a predefined loss function. We first estimate the marginal distribution FY (y)

using Monte-Carlo techniques; see for instance, Eastoe and Tawn (2009). Since we have

a large sample size, n = 21, 000, it is reasonable to assume that the observed covariate

sample is representative of X. Thus, we can approximate the marginal distribution

FY (y) as follows,

F̂Y (y) =

∫
X

FY |X(y | x)fX(x)dx ≈ 1

n

n∑
t=1

FYt|Xt(yt | xt). (6.3.1)

where FY |X(·) is the conditional distribution function of Y | X and fX(·) denotes the

joint probability density of the covariates X.

We incorporate the following loss function provided by the challenge organisers,

L(q, q̂) =


0.9(0.99q − q̂) if 0.99q > q̂,

0 if |q − q̂| ≤ 0.01q,

0.1(q̂ − 1.01q) if 1.01q < q̂,

(6.3.2)

where q and q̂ are the true and estimated marginal quantiles, respectively. This loss

function penalises under-estimation more heavily than an over-estimation.

We conduct the same exploratory data analysis for both challenges given the same

covariates are used; this is outlined in Section 6.3.1. In Section 6.3.2 we introduce our

techniques for modelling Y | X, which is then used for modelling Y via (6.3.1). Our

approach for uncertainty quantification is outlined in Section 6.3.3, and we give our

results for both challenges in Section 6.3.4.
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6.3.1 Exploratory data analysis

Given the covariate vector Xt = {V1,t, . . . , V8,t}, the environmental response variable

Yt, t ∈ {1, . . . , n}, is temporally independent (Rohrbeck et al., 2024). However, it is not

clear which covariates affect Y , and what form these covariate-response relationships

take. In what follows, we aim to explore these relationships so we can account for them

in our modelling framework.

To begin, we explore the dependence between all variables to understand the rela-

tionships between covariates, as well as the relationships between individual covariates

and the response variable. We investigate dependence in the main body of the data

using Kendall’s τ measure, while for the joint tails, we use the pairwise extremal de-

pendence coefficients χ and η defined in Section 6.2; values for all pairs are shown in

Figure 6.3.1, with the threshold u set at the empirical 0.95-quantile for the extremal

measures.
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Figure 6.3.1: Heat maps for dependence measures for each pair of variables: Kendall’s
τ (left), χ (middle) and η (right). Note the scale in each plot varies, depending on
the support of the measure, and the diagonals are left blank, where each variable is
compared against itself.

The response variable Y has the strongest dependence with V3 in the body of the

distribution (see τ̂ in Figure 6.3.1), followed by V6 (wind speed) then V7 (wind direction).

For the tail of the distribution, Y has strongest dependence with V2, V3 and V6 (see

χ̂ and η̂ in Figure 6.3.1). We also find strong dependence between V6 and V7 in the
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body, but evidence of weak dependence in the tail (dark blue for χ̂ and η̂). There

is also strong dependence between V1 and V2 in both the body and tail (see dark

red for η̂). We find very similar dependence relationships when the data are split

into seasons. In the Supplementary Material, we show scatter plots of each covariate

against the response variable; these demonstrate a highly non-linear relationship for

each explanatory variable with Y .

Next, we explore temporal relationships for the response variable Y . We first find

temporal non-stationarity as the distribution of Y varies significantly with V5 (season);

see the Supplementary Material for more detail. The mean and range of Y is higher

in season 1 than season 2, with greater extreme values observed in season 1. However,

within each season, across months, there is little temporal variation in the distribution of

Y . We also find that Y exhibits temporal independence at all lags, with auto-correlation

function (acf) values close to zero; see the Supplementary Material.

As noted in Rohrbeck et al. (2024), 11.7% of the observations have at least one

value missing completely at random (MCAR). A detailed breakdown of the pattern of

missing predictor observations is provided in the Supplementary Material. Since we can

assume the data are MCAR, ignoring the observations that have a missing predictor

covariate will not bias our inference, however, a complete case analysis is undesirable

due to the amount of data loss. To mitigate against this, we attempted to impute the

observations where predictors are missing but ultimately could not find an imputation

method that satisfactorily retained the dependence structure between the response and

covariates, particularly in the tails of the distribution. Therefore, we use a case analysis

approach, whereby an observation is only removed if a predictor covariate of interest is

missing. This results in only 4% of observations being removed for our final model.
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6.3.2 Methods

Due to the complex nature of the data, we consider various non-stationary GPD mod-

els, as in equation (6.2.1), that are formulated as GAMs to fit Y | X. For threshold

selection, we extend the method proposed by Murphy et al. (2024) to select a thresh-

old for non-stationary, covariate-dependent GPD models; the details are provided in

Section 6.3.2. Our inference and model selection procedures are then provided in Sec-

tions 6.3.2 and 6.3.2, respectively. We note that the same model formulation is used for

both C1 and C2 with a small adjustment to the parameter estimation procedure for C2

to incorporate the provided loss function given in (6.3.2). We utilise equation (6.3.1)

to obtain the marginal distribution of Y .

General model formulation

Let X̃t denote the set of predictor covariates with t ∈ {1, . . . , n}. Then yt and x̃t

denote the observations of the response variable and predictive covariates, respectively.

We consider models with the following form,

FYt|X̃t
(yt|X̃t = x̃t) = 1− ζ(x̃t)

[
1 + ξ(x̃t)

(
yt − v(x̃t)

σ(x̃t)

)]−1/ξ(x̃t)

+

, (6.3.3)

where v(x̃t) and ζ(x̃t) are a covariate-dependent threshold and rate parameter, respec-

tively, such that the rate parameter corresponds to the probability of exceeding the

threshold.

Our analysis in Section 6.3.1 indicates that V3, V5 (season), and V6 (wind speed)

exhibit non-trivial dependence relationships with the response variable. Therefore we

assume these variables can be used as predictor variables for modelling Y , and set

x̃ := (Vj)j∈{3,5,6}. Although V7 (wind direction) also exhibits strong dependence with Y ,

we do not consider it here since it is highly correlated with wind speed so would involve

adding complex interaction terms to the model formulation, and V6 has a stronger
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relationship with Y compared to V7 (see Figure 6.3.1).

Owing to the complex covariate structure observed in the data, as described in

Section 6.3.1, we employ the flexible EVGAM framework proposed in Youngman (2019)

for modelling tail behaviour. Under this framework, GAM formulations are used to

capture non-stationarity in the threshold, scale and shape functions given in equation

(6.3.3). Without loss of generality, consider the scale function σ(·). We assume that

h(σ(x̃)) = ψσ(x̃), with ψσ(x̃) = β0 +
K∑
κ=1

Pκ∑
p=1

βκpbκp(x̃), (6.3.4)

where h(x) := log(x) denotes the link function which ensures the correct support,

with coefficients β0, βκp ∈ R and basis functions bκp for p ∈ {1, . . . , Pκ}, κ ∈ {1, . . . , K},

where K is the number of splines in the GAM formulation and Pκ is the basis dimension

relating to spline κ. The basis functions can be in terms of individual covariates, i.e.,

bκp : R 7→ R, or multiple covariates, i.e., bκp : Rm 7→ R, 1 < m ≤ 8. Analogous forms

can be taken for v(·) and ξ(·), adjusting the link function h(·) as appropriate, although

these are not considered here for reasons detailed below.

To select an appropriate threshold, we employ the threshold selection method of

Murphy et al. (2024) and extend this approach to select a threshold for non-stationary,

covariate-dependent GPD models. The method selects a threshold based on minimis-

ing the expected quantile discrepancy (EQD) between the sample quantiles and fitted

GPD model quantiles. When fitting a non-stationary model, the excesses will not be

identically distributed across covariates. Thus, to utilise the EQD method in this case,

we use the fitted non-stationary GPD parameter estimates to transform the excesses

to common standard exponential margins and compare sample quantiles against theo-

retical quantiles from the standard exponential distribution. This transformation is a

common approach for checking the model fit of a non-stationary GPD (Coles, 2001).

We use a stepped-threshold according to season as there is clear variation in the
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distribution, and thereby the extremes, of Y between seasons; see the Supplementary

Material for more details. Specifically, we set v(x̃t) := 1(x̃2,t = 1)v1 + 1(x̃2,t = 2)v2,

v1, v2 ∈ R, with corresponding rate parameter ζ(x̃t) := 1(x̃2,t = 1)ζ1 + 1(x̃2,t = 2)ζ2,

where ζ1, ζ2 ∈ [0, 1] denote the probabilities of exceeding the threshold for seasons 1 and

2, respectively, and x̃r,t are realisations of the r
th component of x̃ for r ∈ {1, 2, 3}. This

seasonal threshold significantly improves model fits; see the Supplementary Material

for further details. GAM forms for the threshold were also explored, but did not offer

significant improvement. Furthermore, the smooth GAM formulation of the GPD scale

parameter adequately captures any residual variation in the response arising due to

covariate dependence.

Inference

For all GAM formulations, we only consider basis functions of singular covariates, since

specifying basis functions of multiple variables requires a detailed understanding of

covariate interactions and can significantly increase the computational complexity of

the modelling procedure (Wood, 2017). We keep the shape function ξ(x) := ξ ∈

R constant across covariates; this is common in non-stationary analyses, since this

parameter is difficult to estimate (Chavez-Demoulin and Davison, 2005). Within the

GAM formulation, we consider several parametric forms to account for the predictive

covariates in the scale parameter using linear models, indicator functions and splines.

When using splines, we are required to select a basis dimension Pκ ∈ N; this deter-

mines the number of coefficients to be estimated. Basis dimension is the most important

choice within spline modelling procedures and directly corresponds with the flexibility

of the framework (Wood, 2017). We only consider splines for V3 and V6. For each X̃r,

r ∈ {1, 3}, we determine the basis dimension P1 and P2, respectively, by first building

a model for Yt | X̃r,t, to allow us to consider the effect of this predictor on the response

directly. We vary the basis dimension and compare the resulting models using cross



CHAPTER 6. ESTIMATION OF RARE EVENTS IN UTOPIA 171

validation (CV), detailed in the following section. We set P1 = 4 and P2 = 3 for V3 and

V6, respectively.

For C2, we incorporate the loss function of equation (6.3.2) into the estimation

procedure. Let Iv := {t ∈ {1, . . . , n} | yt > v(x̃t)} denote the set of temporal indices

corresponding to threshold exceedances and nv := |Iv|. We consider the objective

function

S(θ) := −lR(θ) +
∑
i∈Iv

L(q∗i , q̂i)/nv, (6.3.5)

where lR(θ) denotes the penalised log-likelihood function of the restricted maximum

likelihood estimation (REML) approach (Wood, 2017), θ denotes the parameter vector

associated with the GPD formulation of equation (6.3.4), and
∑

i∈Iv L(q
∗
i , q̂i)/nv denotes

the average loss between the sample quantiles of the transformed excesses and the

theoretical standard exponential quantiles. Specifically, we transform the excesses,

(yt − v(x̃t))t∈Iv , to standard exponential margins using the fitted non-stationary GPD

parameter estimates and compare the ordered excesses, q∗, to the theoretical quantiles,

q̂, from a standard exponential distribution evaluated at probabilities {pi = i/(nv +

1), i = 1, . . . , nv}. Minimising the objective function S(θ) ensures that the parameter

estimates also account for and minimise the loss function, L. We use this formulation

to adjust the GPD parameters for challenge C2 once a threshold is selected.

Model selection

To determine the best-fitting model, we use a forward selection process and aim to

minimise the model’s CV score. For each model, we apply k-fold CV (Hastie et al.,

2001, Ch 7.) utilising the continuous ranked probability score (CRPS, Gneiting and

Katzfuss, 2014) as our goodness-of-fit metric. CRPS describes the discrepancy between

the predicted distribution function and observed values without the specification of

empirical quantiles. We explore model ranking by taking both k = 10 and 50, and

find that both give an equivalent ranking; we present results for the latter. We also
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provide the Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) values to aid in model selection. A subset of models used in the forward selection

process are detailed in Table 6.3.1 where, for each model, we provide the change in the

CRPS, AIC and BIC relative to model 1. The parameterisation of model 7 achieves

the largest reduction for all three metrics relative to the baseline model.

Table 6.3.1: Table of selected models considered for challenge C1. 1(·) denotes an
indicator function, si(·) for i ∈ {1, 2} denote thin-plate regression splines, β0, β1 are
coefficients to be estimated, and x̃r,t is defined as in the text. All values have been
given to one decimal place.

Model σ(x̃t) ∆CRPS ∆AIC ∆BIC
1 β0 0 0 0
2 β0 + β11(x̃2,t = 1) -0.5 -33.4 -26.1
3 β0 + s1(x̃1,t) -0.9 -408.5 -379.2
4 β0 + s2(x̃3,t) -0.5 -284.3 -276.8
5 β0 + β11(x̃2,t = 1) + s1(x̃1,t) -0.9 -425.8 -388.1
6 β0 + s1(x̃1,t) + s2(x̃3,t) -1.0 -752.7 -717.2
7 β0 + β11(x̃2,t = 1) + s1(x̃1,t) + s2(x̃3,t) -1.1 -780.0 -735.3

6.3.3 Uncertainty

For each of the 100 different covariate combinations, x̃i for i ∈ {1, . . . , 100}, we need

to construct central 50% confidence intervals. We use a bootstrapping procedure to

avoid making potentially inaccurate assumptions such as the asymptotic normality ap-

proximation of maximum likelihood estimates, for example. Traditional bootstrap ap-

proaches are non-parametric and randomly resample the data with replacement. How-

ever, in Section 6.3.1 we find that the response variable is dependent on covariates, and

these covariates exhibit temporal dependence. A standard bootstrap procedure would

therefore not retain this dependence. Instead, we preserve the temporal dependence

structure of covariates and their relationship with the response variable by approxi-

mating our confidence intervals using the stationary, semi-parametric bootstrapping

procedure adopted by D’Arcy et al. (2023).
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First, the response variable Yt is transformed to Uniform(0,1) margins to preserve its

non-stationary behaviour; denote this sequence UY
t = FYt|X̃t

(Yt|X̃t = x̃t) where FYt|X̃t
is

the estimated model given in equation (6.3.3). We then adopt the stationary bootstrap

procedure of Politis and Romano (1994) to retain the temporal dependence in the

response and explanatory variables by sampling blocks of consecutive observations. The

block length L is random and simulated from a Geometric(1/l) distribution, where the

mean block length l ∈ N is carefully selected based on the autocorrelation function. This

was selected at 50 days, the maximum lag for which the autocorrelation was significant

across all variables; see the Supplementary Material. Denote this bootstrapped sequence

on Uniform margins by UB
t . We transform UB

t back to the original scale using our fitted

model, preserving the original structure of Yt; we denote this series Y B
t . Then we fit

our model to Y B
t to re-estimate all of the parameters and thus the quantile of interest.

We repeat this procedure to obtain 200 bootstrap samples.

6.3.4 Results

For C1, we use our final model of Section 6.3.2 to estimate the 0.9999-quantile of

Y | X̃ = x̃i, i ∈ {1, . . . , 100}, for the set of 100 covariate combinations. The left

panel of Figure 6.3.2 shows the quantile-quantile (QQ) plot for our model. There is

general alignment between the model and empirical quantiles; however, there is some

over-estimation in the upper tail, and our 95% tolerance bounds do not contain some of

the most extreme response values. The right panel of Figure 6.3.2 shows our predicted

quantiles, and their associated confidence intervals, compared to their true quantiles.

As expected, our predictions tend to over-estimate the true quantiles. We note this

figure is different from the one presented by Rohrbeck et al. (2024) due to an error

in our code being fixed after submission. In this scenario, our estimated confidence

intervals lead to a 14% coverage of the true quantiles, which does not alter our ranking

for this challenge. Our performance and model improvements are discussed in Section
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Figure 6.3.2: QQ plot for our final model (model 7 in Table 6.3.1) on standard ex-
ponential margins. The y = x line is given in red and the grey region represents the
95% tolerance bounds (left). Predicted 0.9999−quantiles against true quantiles for the
100 covariate combinations. The points are the median predicted quantile over 200
bootstrapped samples and the vertical error bars are the corresponding 50% confidence
intervals. The y = x line is also shown (right).

6.6.

For challenge C2, we estimate the quantile of interest as q̂ = 213.1 (209.3, 242.1).

A 95% confidence interval for the estimate is given in parentheses based on the boot-

strapping procedure outlined in Section 6.3.2. Due to a coding error, this value differs

from the original estimate submitted for the EVA (2023) Conference Data Challenge.

The updated value over-estimates compared to the truth (q = 196.6).

6.4 Challenge C3

6.4.1 Exploratory data analysis

For challenge C3, we are provided with 70 years of daily data of an environmental

variable for three towns on the island of Coputopia. These data are denoted by Yi,t,

i ∈ {1, 2, 3}, t ∈ {1, . . . , n}, where i is the index of each town and t is the point in
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time. Each year consists of 12 months, each lasting 25 days, resulting in n = 21, 000

observations for each location.

We are also provided with daily covariate observations Xt = (St, At), where St

and At denote seasonal and atmospheric conditions, respectively. Season is a binary

variable, taking values in the set {1, 2}, with each year of observations exhibiting both

seasons for exactly 150 consecutive days. Atmospheric conditions are piecewise constant

over months, with large variation in the observed values between months. A descriptive

figure of both covariates is given in the Supplementary Material.

In Rohrbeck et al. (2024), we are informed that Yi,t are distributed identically across

all sites and over time, with standard Gumbel margins. However, it is not known

whether the covariates Xt influence the dependence structure of Yt := (Y1,t, Y2,t, Y3,t).

We are also informed that, conditioned on covariates, the process is independent over

time, i.e., (Yt | Xt) ⊥⊥ (Yt′ | Xt′) for any t ̸= t′. In this section, we examine what

influence, if any, the covariate process Xt may have on the dependence structure of Yt.

We begin by transforming the time series Yi,t to standard exponential margins, de-

noted by Zi,t, via the probability integral transform. This transformation is common

in the study of multivariate extremes and can simplify the description of extremal

dependence (Keef et al., 2013a). To explore the extremal dependence in the Copu-

topia time series, we consider all 2- and 3-dimensional subvectors of the process, i.e.,

{Zi,t, i ∈ I, t ∈ {1, . . . , n}}, I ∈ I := {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. This separation is

important to ensure the overall dependence structure is fully understood, since inter-

mediate scenarios can exist where a random vector exhibits χ = 0, but χ > 0 for some

2-dimensional subvector(s) (Simpson et al., 2020).

Furthermore, to explore the impact of covariates on the dependence structure, we

partition the time series into subsets using the covariates. For the seasonal covariate,

let GS
I,j := {Zi,t, i ∈ I, St = j} for j = 1, 2, and for the atmospheric covariate, let

π : {1, . . . , n} → {1, . . . , n} denote the permutation associated with the order statistics
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of At, defined so that ties in the data are accounted for. We then split the data

into 10 equally sized subsets corresponding to the atmospheric order statistics, i.e.,

GA
I,k :=

{
Zi,t, i ∈ I, t ∈ Σk

}
for k = 1, 2, . . . , 10, where Σk := {t | (k − 1)n/10 + 1 ≤

π(t) ≤ kn/10}. Thus, the atmospheric values associated with each subset GA
I,k will

increase over k.

The idea behind these subsets is to examine whether altering the values of either

covariate impacts the extremal dependence structure. Consequently, we set u = 0.9 and

estimate χ(u) using the techniques outlined in Section 6.2, with uncertainty quantified

through bootstrapping with 200 samples. The bootstrapped χ estimates for GA
I,k with

I = {1, 2, 3} are given in Figure 6.4.1. The plots for the remaining index sets in I, along

with the subsets associated with the seasonal covariate, are given in the Supplementary

Material. The estimates of χ appear to vary, in the majority of cases, across both subset

types (seasonal and atmospheric), suggesting both covariates have an impact on the

dependence structure. For the atmospheric process in particular, the values of χ tend

to decrease for higher atmospheric values, suggesting a negative association between

the strength of positive extremal dependence and the atmospheric covariate. We also

observe that across all subsets, χ appears consistently low in magnitude, suggesting the

extremes of some, if not all, of the sub-vectors are unlikely to occur simultaneously. As

such, for modelling the Coputopia time series, we require a framework that can capture

such forms of dependence. We also consider pointwise estimates of the function λ(·),

as defined later in equation (6.4.1), over GS
I,j and G

A
I,k for fixed simplex points; these

results are given in the Supplementary Material. Similar to χ, estimates of λ(·) vary

significantly across subsets, providing additional evidence of non-stationarity within

extremal dependence structure.
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Figure 6.4.1: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.

6.4.2 Modelling of joint tail probabilities under asymptotic

independence

For challenge C3, we are required to estimate probabilities p1 := Pr(Y1 > y, Y2 > y,

Y3 > y) and p2 := Pr (Y1 > v, Y2 > v, Y3 < m), with y = 6, v = 7 andm = − log(log(2)).

Note that p1 and p2 are independent of the covariate process and correspond to dif-

ferent extremal regions in R3; we refer to p1 and p2 as parts 1 and 2 of the challenge,

respectively. For the remainder of this section we will consider the transformed expo-

nential variables (Z1, Z2, Z3), omitting the subscript t for ease of notation. Observe

that F(−Z3)(z) = ez, for z < 0; setting Z̃3 := − log (1− exp(−Z3)) , we have

p2 = Pr (Z1 > ṽ, Z2 > ṽ, Z3 < m̃) = Pr
(
Z1 > ṽ, Z2 > ṽ, Z̃3 > m̃

)
,

where ṽ and m̃ denote the values v and m transformed to the standard exponential

scale, e.g., ṽ := − log (1− exp(− exp(−v))). Similarly, we have p1 = Pr(Z1 > ỹ, Z2 > ỹ,

Z3 > ỹ). Consequently, both p1 and p2 can be considered as joint survivor probabilities.

Since not all extremes of Z1, Z2 and Z3 are observed simultaneously, we employ the

framework by Wadsworth and Tawn (2013), which is a generalisation of the approach
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proposed in Ledford and Tawn (1996). The model of Wadsworth and Tawn (2013)

assumes that for any ray ω ∈ S2 := {(ω1, ω2, ω3) ∈ [0, 1]3 : ω1 + ω2 + ω3 = 1} , where

S2 denotes the standard 2-dimensional simplex,

Pr (Z1 > ω1r, Z2 > ω2r, Z3 > ω3r) =Pr (min{Z1/ω1, Z2/ω2, Z3/ω3} > r)

=L(er;ω)e−rλ(ω), (6.4.1)

as r → ∞, where λ(ω) ≥ max(ω) is known as the angular dependence function

(ADF). Asymptotic dependence occurs at the lower bound, i.e., λ(ω) = max(ω)

for all ω ∈ S2, and the coefficient of tail dependence is related to the ADF via

η = 1/{3λ(1/3, 1/3, 1/3)}. In practice, equation (6.4.1) can be used to evaluate ex-

treme joint survivor probabilities; in particular, probabilities p1 and p2 can be identified

with the rays ω(1) := (ỹ, ỹ, ỹ)/r(1) and ω(2) := (ṽ, ṽ, m̃)/r(2) in S2, respectively, where

r(1) := ỹ + ỹ + ỹ and r(2) := ṽ + ṽ + m̃. See Section 6.4.4 for further details.

6.4.3 Accounting for non-stationary dependence

In the stationary setting, pointwise estimates of λ(·) can be obtained via the Hill es-

timator (Hill, 1975), from which tail probabilities can be approximated. However,

alternative procedures are required for data exhibiting trends in dependence, such as

the Coputopia data set. Existing approaches for capturing non-stationary dependence

structures are sparse in the extremes literature, and most approaches are limited to

asymptotically dependent data structures. For the case when data are not asymp-

totically dependent, Mhalla et al. (2019) and Murphy-Barltrop and Wadsworth (2024)

propose non-stationary extensions of the Wadsworth and Tawn (2013) framework, while

Jonathan et al. (2014) and Guerrero et al. (2023) propose non-stationary extensions of

the Heffernan and Tawn (2004) model (see Murphy-Barltrop and Wadsworth (2024) for

a detailed review).
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To account for non-stationary dependence in C3, we propose an extension of the

Wadsworth and Tawn (2013) framework. With Zt = (Z1,t, Z2,t, Z3,t) andXt, defined as

in Section 6.4.1, we define the structure variable Tω,t := min{Z1,t/ω1, Z2,t/ω2, Z3,t/ω3},

for any ω ∈ S2; we refer to Tω,t as the min-projection variable at time t. From Section

6.4.1, we know that the joint distribution of Zt is not identically distributed over t;

which implies non-stationarity in the distribution of Tω,t. To account for this, Mhalla

et al. (2019) and Murphy-Barltrop and Wadsworth (2024) assume the following model

given the vector of covariates xt:

Pr (Tω,t > u |Xt = xt) = L (eu | ω,xt) e−λ(ω;xt)u as u→ ∞, (6.4.2)

for all t, where λ (·;xt) denotes the non-stationary ADF. Note that this assumption is

very similar in form to equation (6.4.1), with the primary difference being the function

λ(·;xt) is non-stationary over t. From equation (6.4.2), we have

Pr (Tω,t − u > z | Tω,t > u,Xt = xt) = e−λ(ω;xt)z as u→ ∞, (6.4.3)

for z > 0. Consequently, equation (6.4.2) is equivalent to assuming (Tω,t − u) | {Tω,t >

u,Xt = xt} ∼ Exp(λ (ω;xt)) as u→ ∞.

We found that equation (6.4.2) was not flexible enough to capture the tail of Tω,t

for the Coputopia data; see Section 6.4.3 for further discussion. Thus, we propose the

following model: given any z > 0 and a fixed ω ∈ S2, we assume

Pr (Tω,t − u > z | Tω,t > u,Xt = xt) =

(
1 +

ξ (ω;xt) z

σ (ω;xt)

)−1/ξ(ω;xt)

as u→ ∞, (6.4.4)

where σ(·;xt), ξ(·;xt) are non-stationary scale and shape parameter functions, respec-

tively. This is equivalent to assuming (Tω,t−u) | {Tω,t > u,Xt = xt} ∼ GPD(σ (ω;xt) ,

ξ (ω;xt)) as u → ∞, and equation (6.4.3) is recovered by taking the limit as
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ξ (ω;xt) → 0 for all t.

Our proposed formulation in equation (6.4.4) allows for additional flexibility within

the modelling framework by including a GPD shape parameter ξ (ω;xt), which quan-

tifies the tail behaviour of Tω,t. Given the wide range of distributions in the domain of

attraction of a GPD (Pickands, 1975), it is reasonable to assume that the tail of Tω,t can

be approximated by equation (6.4.4). For the Coputopia time series, this assumption

appears valid, as demonstrated by the diagnostics in Section 6.4.3.

Model fitting

To apply equation (6.4.4), we first fix ω ∈ S2 and assume that the formulation holds

approximately for some sufficiently high threshold level from the distribution of Tω,t; we

denote the corresponding quantile level by τ ∈ (0, 1). For simplicity, the same quantile

level is considered across all t. Further, let vτ (ω,xt) denote the corresponding threshold

function, i.e., Pr(Tω,t ≤ vτ (ω,xt) | Xt = xt) = τ for all t. Under our assumption, we

have (Tω,t − vτ (ω,xt)) | {Tω,t > vτ (ω,xt),Xt = xt} ∼ GPD(σ (ω;xt) , ξ (ω;xt)). We

emphasise that vτ (ω,xt) is not constant in t, and we would generally expect vτ (ω,xt) ̸=

vτ (ω,xt′) for t ̸= t′.

As detailed in Section 6.4.2, both p1 and p2 can be associated with points on the sim-

plex S2, denoted by ω(1) and ω(2), respectively. Letting ω ∈ {ω(1),ω(2)}, our estimation

procedure consists of two stages: estimation of the threshold function vτ (ω, zt) for a

fixed τ ∈ (0, 1), followed by estimation of GPD parameter functions σ (ω;xt) , ξ (ω;xt).

For both steps, we take a similar approach to Section 6.3.2 and use GAMs to capture

these covariate relationships. To simplify our approach, we falsely assume that the

atmospheric covariate At is continuous over t; this step allows us to utilise GAM for-

mulations containing smooth basis functions. Given the significant variability in At

between months, discrete formulations for this covariate would significantly increase

the number of model parameters and result in higher variability.
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Let log(vτ (ω,xt)) = ψv(xt), log(σ (ω;xt)) = ψσ(xt) and ξ (ω;xt) = ψξ(xt) denote

the GAM formulations of each function, where ψ− denotes the basis representation of

equation (6.3.4). Exact forms of basis functions are specified in Section 6.4.3. As in

Section 6.3.2, model fitting is carried out using the evgam software package (Youngman,

2022). For the first stage, vτ (ω,xt) is estimated by exploiting a link between the loss

function typically used for quantile regression and the asymmetric Laplace distribution

(Yu and Moyeed, 2001). The spline coefficients associated with ψσ and ψξ are estimated

subsequently using the obtained threshold exceedances.

Selection of GAM formulations and diagnostics

Prior to estimation of the threshold and parameter functions, we specify a quantile

level τ and formulations for each of the GAMs. To begin, we fix τ = 0.9 and consider

a variety of formulations for each ψv, ψσ and ψξ. By comparing metrics for model

selection, namely AIC, BIC and CRPS, we found the following formulations to be

sufficient

ψv(xt) = βv+sv(at)+βs1(st = 2), ψσ(xt) = βσ+sσ(at) and ψξ(xt) = βξ, (6.4.5)

for parts 1 and 2, where βv, βσ, βξ ∈ R denote constant intercept terms, 1 denotes

the indicator function with corresponding coefficient βs ∈ R, and sv, sσ denote cubic

regression splines of dimension 10. The shape parameter is set to constant for the

reasons outlined in Section 6.3.2. Cubic basis functions are used for ψv and ψσ since they

have several desirable properties, including continuity and smoothness (Wood, 2017).

A dimension of size 10 appears more than sufficient to capture the trends relating to

the atmosphere variable. Alternative formulations were tested for both parts, but this

made little difference to the resulting model fits.

We remark that the seasonal covariate is only present with the formulation for ψv.

Once accounted for in the non-stationary threshold, the seasonal covariate appeared to
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have little influence on the fitted GPD parameters. More complex GAM formulations

were tested involving interaction terms between the seasonal and atmospheric covari-

ates, which showed little to no improvement in model fits. Thus, we prefer the simpler

formulations on the basis of parsimony.

With GAM formulations selected, we now consider the quantile level τ ∈ (0, 1).

To assess sensitivity in our formulation, we set T := {0.8, 0.81, . . . , 0.99} and fit the

GAMs outlined in equation (6.4.5) for each τ ∈ T. Letting δω,t and Tτ := {t ∈

{1, . . . , n} | δω,t > vτ (ω,xt)} denote the min-projection observations and indices of

threshold-exceeding observations, respectively, we expect the set E := {− log{1 −

FGPD(δω,t − vτ (ω,xt)) | σ (ω;xt) , ξ (ω;xt)} | t ∈ Tτ} to follow a standard exponential

distribution.

With all exceedances transformed to a unified scale, we compare the empirical and

model exponential quantiles using QQ plots, through which we assess the relative per-

formance of each τ ∈ T. We selected τ values for which the empirical and theoretical

quantiles appeared most similar in magnitude. From this analysis, we set τ = 0.83 and

τ = 0.85 for parts 1 and 2, respectively. The corresponding QQ plots are given in Fig-

ure 6.4.2, where we observe reasonable agreement between the empirical and theoretical

quantiles. However, whilst these values appeared optimal within T, we stress that ade-

quate model fits were also obtained for other quantile levels, suggesting our modelling

procedure is not particularly sensitive to the exact choice of quantile. Furthermore, we

also tested a range of quantile levels below the 0.8-level, but were unable to improve

the quality of model fits.

Plots illustrating the estimated GPD scale parameter functions are given in the

Supplementary Material, with the resulting dependence trends in agreement with the

observed trends from Section 6.4.1. We also remark that the estimated GPD shape

parameters obtained for parts 1 and 2 were 0.042 (0.01, 0.075) and 0.094 (0.059, 0.128),

respectively, where the brackets denote 95% confidence intervals obtained using pos-
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Figure 6.4.2: Final QQ plots for parts 1 (left) and 2 (right) of C3, with the y = x line
given in red. In both cases, the grey regions represent the 95% bootstrapped tolerance
bounds.

terior sampling (Wood, 2017). These estimates, which indicate slightly heavy-tailed

behaviour within the min-projection variable, provide insight into why the original

exponential modelling framework is not appropriate for C3.

Overall, these results suggest different extremal dependence trends exist for the two

simplex points ω(1) and ω(2), illustrating the importance of the flexibility in our model.

These findings are also in agreement with empirical trends observed in Section 6.4.1,

suggesting our modelling framework is successfully capturing the underlying extremal

dependence structures.

6.4.4 Results

Given estimates of threshold and parameter functions, probability estimates can be

obtained via Monte Carlo techniques. Taking p1, for instance, we have
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p1 =Pr(Z1 > ỹ, Z2 > ỹ, Z3 > ỹ)

=Pr
(
min

(
Z1/ω

(1)
1 , Z2/ω

(1)
2 , Z3/ω

(1)
3

)
> r(1)

)
=

∫
Xt

Pr
(
Tω(1), t > r(1) |Xt = xt

)
fXt(xt)dxt

=(1− τ)

∫
Xt

Pr(Tω(1), t > r(1) | Tω(1), t > vτ (ω
(1),xt),Xt = xt)fXt(xt)dxt

≈1− τ

n

n∑
t=1

(
1 +

ξ(ω(1);xt)
(
r(1) − vτ (ω

(1),xt)
)

σ (ω(1);xt)

)−1/ξ(ω(1);xt)

,

assuming {xt : t ∈ {1, . . . , n}} is a representative sample from Xt. The proce-

dure for p2 is analogous. We note that this estimation procedure is only valid when

r(1) > vτ (ω
(1),xt), or r

(2) > vτ (ω
(2),xt), for all t: however, for each τ ∈ T, this inequal-

ity is always satisfied, owing to the very extreme nature of the probabilities in question.

Through this approximation, we obtain p̂1 = 1.480× 10−5 and p̂2 = 2.461× 10−5.

6.5 Challenge C4

6.5.1 Exploratory data analysis

Challenge C4 entails estimating survival probabilities across 50 locations on the island

of Utopula. As stated in Rohrbeck et al. (2024), the Utopula island is split in two ad-

ministrative areas, for which the respective regional governments 1 and 2 have collected

data concerning the variables Yi,t, i ∈ I = {1, . . . , 50}, t ∈ {1, . . . , 10, 000}. Index i de-

notes the ith location, with locations i ∈ {1, . . . , 25} and i ∈ {26, . . . , 50} belonging

to the administrative areas of governments 1 and 2, respectively. Index t denotes the

time point in days; however, since Yi,t are IID for all i, we drop the subscript t for the

remainder of this section.

Since many multivariate extreme value models are only applicable in low-to-moderate

dimensions, we consider dimension reduction based on an exploration of the extremal
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dependence structure of the data. In particular, we analyse pairwise estimates of the

extremal dependence coefficient χ(u), introduced in equation (6.2.2), for all possible

pairwise combinations of sites; the resulting estimates, using u = 0.95, are presented

in the heat map of Figure 6.5.1. Identification of any dependence clusters is achieved

through visual investigation, which seems appropriate for this data. We note, however,

that should visual considerations not suffice, alternative more sophisticated clustering

methods are available and can be applied; see for example Bernard et al. (2013).

Figure 6.5.1 suggests the existence of 5 distinct subgroups where all variables within

each subgroup have similar extremal dependence characteristics, while variables in dif-

ferent subgroups appear to be approximately independent of each other in the ex-

tremes. It is worth mentioning that the same clusters are identified when we analyse

pairwise estimates of the extremal dependence coefficient η(u); the resulting estimates

can be found in the Supplementary Material. Moreover, examining the magnitudes of

χ(·) and η(·) estimates, it does not appear reasonable to assume asymptotic depen-

dence between variables in the same group. We therefore consider models that can

be applied to data structures that do not take their extreme values simultaneously.

The indices of the five aforementioned subgroups are G1 = {4, 14, 19, 28, 30, 38, 43, 44},

G2 = {3, 10, 15, 18, 22, 29, 45, 47}, G3 = {8, 21, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50},

G4 = {1, 2, 5, 7, 9, 17, 20, 31, 46} and G5 = {6, 11, 12, 13, 16, 23, 24, 27, 35, 36, 37, 39}.

Groups G1 and G2 include the most strongly dependent variables (shown by the darkest

color blocks in Figure 6.5.1), followed by group G3, while groups G4 and G5 contain

the most weakly dependent variables. We henceforth assume independence between

these groups of variables, i.e., Pr((Yi)i∈Gk
∈ Ak, (Yi)i∈Gk′

∈ Ak′) = Pr((Yi)i∈Gk
∈

Ak) Pr((Yi)i∈Gk′
∈ Ak′), Ak ⊂ R|Gk|, Ak′ ⊂ R|Gk′ |, for any k ̸= k′ ∈ {1, . . . , 5}.

Challenge C4 requires us to estimate the probabilities p1 = Pr (Yi > si; i ∈ I) and

p2 = Pr(Yi > s1; i ∈ I), where si := 1(i ∈ {1, 2, . . . , 25})s1 + 1(i ∈ {26, 27, . . . , 50})s2

and s1 (s2) denotes the marginal level exceeded once every year (month) on average.
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Figure 6.5.1: Heat map of estimated empirical pairwise χ(u) extremal dependence
coefficients with u = 0.95.

Under the assumption of independence between groups, the challenge can be broken

down to 5 lower-dimensional challenges involving the estimation of joint tail probabil-

ities for each Gk, k ∈ {1, . . . , 5}. These can then be multiplied together to obtain the

required overall probabilities due to (assumed) between-group independence; specifi-

cally, we have p1 =
∏5

k=1 Pr (Yi > si; i ∈ Gk) and p2 =
∏5

k=1 Pr (Yi > s1; i ∈ Gk).

6.5.2 Conditional extremes

The conditional multivariate extreme value model (CMEVM) of Heffernan and Tawn

(2004) provides a flexible multivariate extreme value framework capable of capturing

a range of extremal dependence forms without making assumptions about the spe-

cific form of joint dependence structure. Consider a d-dimensional random variable

W = (W1, . . . ,Wd) on standard Laplace margins. For i ∈ {1, . . . , d}, the CMEVM

approach assumes the existence of parameter vectors α−|i ∈ [−1, 1]d−1 and β−|i ∈

(−∞, 1]d−1 such that

lim
ui→∞

Pr
{
W−i ≤ α−|iWi +W

β−|i
i z|i,Wi − ui > w | Wi > ui

}
= e−wH|i

(
z|i
)
, w > 0,
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with non-degenerate distribution function H|i(·), vector operations being applied com-

ponentwise, and conditional threshold ui. The vector W−i denotes W excluding its

ith component and z|i is within the support of the residual random vector Z|i =

(W−i − α−|iwi)/w
β−|i
i ∼ H|i(·). We apply this model to data where Wi > ui, for

some finite conditioning threshold ui, to estimate the probabilities p1 and p2 defined in

Section 6.5.1, using the inference procedure of Keef et al. (2013a).

6.5.3 Results

Let W := (W1, . . . ,W50) denote the random vector after transformation to standard

Laplace margins. This vector is divided into the five subgroups identified in Sec-

tion 6.5.1, and the subgroup probabilities are estimated using predictions obtained

from the sampling method of Heffernan and Tawn (2004). We condition on the first

variable of each subgroup being extreme, and simulate 108 predictions from each of

the resulting fitted conditional extremes models. To account for uncertainty in the

estimates, we perform a parametric bootstrapping procedure with 100 samples.

Sensitivity analyses of the estimated probabilities to the choice of conditioning

variable suggest no significant effect. Furthermore, we consider a range of condition-

ing thresholds; the corresponding estimates of subgroup probabilities defined in Sec-

tion 6.5.1 appear relatively stable with respect to the conditioning threshold quantile.

We ultimately select 0.85-quantiles for the conditioning thresholds of our final proba-

bility estimates. These are given by p̂1 = 1.094 × 10−26 (2.150 × 10−36, 1.359 × 10−24)

and p̂2 = 1.076 × 10−31 (1.596 × 10−46, 1.850 × 10−29), with 95% confidence intervals

obtained from parametric bootstrapping given in parentheses.
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6.6 Discussion

In this paper, we have proposed a range of statistical methods for estimating ex-

treme quantities for challenges C1-C4. For the univariate challenge C1, we estimated

the 0.9999-quantile, and the associated 50% confidence intervals, of Y | X = xi,

i ∈ {1, . . . , n}. For challenge C2, we estimated a quantile, corresponding to a once

in 200 year level, of the marginal distribution Y whilst incorporating the loss func-

tion in equation (6.3.2). Overall we ranked 6th and and 4th for challenges C1 and C2,

respectively.

For challenge C1, our final model (model 7 in Table 6.3.1) was chosen to minimise

the model selection criteria; however, QQ plots showed over-estimation of the most

extreme values of the response (see Figure 6.3.2). As a result, the conditional quantiles

calculated for C1 are generally over-estimated when compared with the true quantiles. If

we ignored the model selection criteria and chose the model based on a visual assessment

of QQ plots, we would have chosen model 5 in Table 6.3.1 and this would have covered

the true quantile on fewer occasions than our chosen model. Therefore, the main issue

with our results concerns the width of the confidence intervals.

Narrow confidence intervals are an indication of over-fitting and this could have

arisen in several places. For instance, Rohrbeck et al. (2024) suggested all the sea-

sonality is captured in the threshold, while our model includes a seasonal threshold

and a covariate for seasonality in the scale parameter of the GPD model. As well as

over-fitting, the model may not have been flexible enough; this could be, in part, due to

our model missing covariates. For instance, the true model contained V2 as a covariate

(Rohrbeck et al., 2024) whilst our model did not. In addition, the basis dimensions

for our splines are low. In practice, a higher dimension than we would expect should

be considered and, although we chose the dimension using a model-based approach, it

may have resulted in the splines not being flexible enough to capture all of the trends

in the data.
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Narrow confidence intervals may have also resulted from the choice of uncertainty

quantification procedure. Changing the average block length l in our stationary boot-

strap procedure would alter the confidence interval widths, although this was carefully

chosen to reflect the temporal dependence in the data. Alternative methods, such as

the standard bootstrap procedure or the delta method, could be implemented to inves-

tigate how this affects the confidence interval widths. We expect that such confidence

intervals will be wider than those presented here since the dependence in the data is

not accounted for, but assuming temporal independence would be inaccurate. There-

fore, whilst adopting an alternative procedure may widen confidence intervals, thus

improving our performance, such intervals may not be well calibrated for this data set.

The over-fitting and over-estimation issues encountered in C1 are carried through

to C2 since the same model is used for both challenges. However, one aspect specific

to C2 is the choice of quantile evaluation within the loss function. Many methods exist

for evaluating the non-stationary quantiles which feed into the loss function term of the

objective function S(θ) in equation (6.3.5). As the loss function will be dominated by

the log-likelihood in S(θ), we choose to transform to standard exponential margins when

evaluating the quantiles in order to give more importance to the loss function. Since the

data is light tailed (ξ < 0) this transformation elongates the tail and therefore inflates

any deviations between the model and theoretical quantiles which in turn, inflates the

contribution of the average loss function to S(θ). However, this approach means that

the objective function will have a preference to minimise the deviations in the upper-

tail of the distribution, leading to potential over-fitting to the upper-tail and possibly,

a poor fit in the rest of the tail. This may not necessarily be undesirable since the

loss function penalises under-estimation more than over-estimation, however, since the

model in C1 already over-fits, this method may only exacerbate the problem for C2.

For the first multivariate challenge C3, we employed an extension of the method

proposed by Wadsworth and Tawn (2013) to estimate probabilities of three variables
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lying in extremal sets. Our extension accounts for non-stationarity in the extremal

dependence structure, with GAMs used to represent covariate relationships. The QQ

plots for the resulting model suggested reasonable fits. For this challenge, we ranked

5th and our estimates are on the same order of magnitude as the truth (Rohrbeck et al.,

2024).

We note similarities in the methodologies presented for the challenges C1, C2, and

C3. Specifically, each of the proposed methods used the EVGAM framework for captur-

ing non-stationary tail behaviour via a generalised Pareto distribution. We acknowledge

that the model selection tool proposed for C1 and C2 could also be applied for C3. How-

ever, we opted not to use this tool for several reasons. Firstly, unlike the univariate

setting, there is no guarantee of convergence to a GPD in the limit, and the GPD tail

assumption thereby needs to be tested. Moreover, in exploratory analysis, we tested

the model selection tool for C3 but found the selected models and quantiles to not be

satisfactory, particularly in the upper tail of the min-projection variable. We therefore

selected a model manually, using QQ plots to evaluate performance. Exploring thresh-

old and model selection techniques for multivariate extremes represents an important

area of research.

In the final multivariate challenge C4, we estimated very high-dimensional joint

survival probabilities. To do so, we split the probability into 5 lower-dimensional com-

ponents which are assumed independent of each other, then estimated each using the

CMEVM of Heffernan and Tawn (2004). In the final rankings of Rohrbeck et al.

(2024), we ranked 3rd for this challenge. A more prudent method could have been

implemented, as groups of variables were never truly independent. Alternatively, al-

though we achieve relatively stable probability estimates with respect to threshold in

Section 6.5.2 (see Supplementary Material for details), our approach could potentially

have been improved by estimating individual group probabilities across varying thresh-

olds and taking an average value as our final result. We also do not report the effect of
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the choice of the conditioning variable on our estimates. Preliminary analysis suggested

this to be negligible. However, conditioning on each site in a given subgroup and then

taking a weighted sum of the resulting probabilities (e.g., Keef et al., 2013b) may have

resulted in more robust estimates.



Chapter 7

Conclusions and further work

The main goal of this thesis was to develop dependence models which are able to jointly

capture the body and tail regions of multivariate data, while ensuring an accurate repre-

sentation across both regions. To address the computational challenges associated with

intensive likelihood evaluation, we also explored the neural Bayes estimation methodo-

logy proposed by Sainsbury-Dale et al. (2024a), facilitating the inference process for

the proposed models and other available models from the bivariate extremes literature.

In Chapter 3, we introduced a dependence model that jointly captures the body

and tail regions of bivariate data, providing a smooth transition between them. A

key advantage of the proposed model is its ability to bypass the need for selecting,

or estimating, a threshold vector above which the observations are deemed extreme.

We have also demonstrated that, even under misspecified dependence structures, the

copula model proved sufficiently flexible to capture different behaviours. Finally, when

applied to model the relationship between temperature and ozone concentrations, the

weighted copula model significantly outperformed the fit provided by a single copula

model. Furthermore, we showed that the copula model is able to distinguish between

contrasting behaviours in the body and tail regions. More specifically, it identified

negative associations in the body, and positive dependence in the tail.

192
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The weighted copula model, however, is computationally expensive due to the need

for inversion and numerical integration of functions. As a result, it does not scale well to

higher dimensions. While extending the model beyond the bivariate case is theoretically

possible, it leads to significant computational challenges or even infeasibility. This

issue became evident when we tried to incorporate one of the bivariate models based

on random scale constructions from Chapter 2.2.7 as the tail component. Given that

these models also rely on inversion of functions and/or numerical integration, they are

themselves computationally expensive. This led to the computational time when fitting

the weighted copula model being infeasible. Additionally, we need to choose a priori

which copula families to include in the weighted copula model; this results in the need

for comparing various model specifications to identify the most suitable one for each

data set. Given the computational time required to evaluate one likelihood, this process

is inevitably intensive.

It may be the case that we are not able to draw conclusions about the extremal

dependence with the weighted copula model, i.e., when χ(r) > 0 and η(r) < 1 as r → 1,

which can result in misrepresentation of the extremal region when extrapolating beyond

the observed data. This could be addressed by incorporating one of the copulas from

Chapter 2.2.7 as the tail component, since these models are capable of representing both

regimes of extremal dependence. As this approach proved computationally infeasible,

studying the extremal dependence measures for the proposed model is crucial. While

we have numerically investigated these properties for specific model configurations, and

theoretically derived the measures for one specific case, further exploration is needed

to fully describe the extremal region across various configurations.

In Chapter 4, we proposed an alternative copula model based on a mixture of mul-

tivariate Gaussian distributions. Similarly to the weighted copula model from Chap-

ter 3, this model is able to represent the body and tail regions of multivariate data

without requiring the definition of an extremal region. In contrast to the weighted
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copula model from Chapter 3, this model does not require the selection a priori of the

copula or distributions to be included in the mixture. Owing to its construction, the

model intrinsically exhibits asymptotic independence. Nevertheless, we showed that it

is sufficiently flexible to accommodate a wide range of complex extremal dependence

structures at near-asymptotic levels, including scenarios with asymptotically dependent

or non-exchangeable data. Contrarily to the model from Chapter 3, the Gaussian mix-

ture copula scales effectively to dimensions beyond the bivariate case. More specifically,

through simulation studies, we showed that the proposed model is identifiable in a 5-

dimensional setting. We illustrated its performance using a 5-dimensional air pollution

data set analysed previously by Heffernan and Tawn (2004), and our results showed

that the Gaussian mixture copula reasonably characterised the joint behaviour of the

variables.

Despite the model scaling well up to d = 5, the evaluation of the likelihood of

the Gaussian mixture copula becomes increasingly computationally expensive with the

dimension. This is primarily due to the high parameterisation of the Gaussian mix-

ture copula. This issue leads to complications in the inference procedure, particularly

when results suggest that adding an extra mixture component would be beneficial. As

discussed in Chapter 4, exploring the graphical structure of the mixture components

presents an interesting avenue for further work, as it might aid the inference procedure.

More specifically, identifying potential conditional independence between pairs of vari-

ables (within the same mixture component) could be incorporated into the likelihood

function, resulting in a reduction in the dimensionality of the Gaussian mixture copula

model. The high number of parameters in the model may reduce its interpretability.

Further imposing an ordering on all the means of the mixture components, rather than

just the first element of each component, i.e., µij−1 < µij for all i ∈ D and j = 2, . . . , k,

could improve the interpretability of the Gaussian mixture copula. In this approach, it

would be clearer that each mixture component is progressively further into the tails.
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In Chapters 3 and 4, we have assumed stationarity, which is a common assumption

in practice but may often not be the case in real world applications. Therefore, ex-

tending both models to accommodate for non-stationarity in the dependence structure

due to covariates across the entire distribution is of interest, and an important avenue

for future research. While the typical strategy in multivariate extremes is to focus on

trends that might occur in the extreme observations, it is also essential to consider

non-stationarity in the body region as only a subset of components may be extreme. In

a univariate setting, capturing trends in the data by also considering the non-extreme

observations has been studied by Eastoe and Tawn (2009) or by de Carvalho et al.

(2022) in a regression context. Although the conditional extremes method proposed by

Heffernan and Tawn (2004) (recall Chapter 2.2.6) could be applied in situations where

only a subset of variables is extreme, defining a threshold above which the condition-

ing variables are deemed extreme may introduce discontinuities at the threshold. As

we would expect similarities in the trends of the body and tail regions, this approach

may not be realistic. Therefore, adapting the weighted copula and the Gaussian mix-

ture copula models to capture changes in the dependence across both regions may be

advantageous.

In Chapter 5, we introduced an amortised statistical toolbox for model selection and

inference, which leverages neural networks and bypasses the need for likelihood evalua-

tion. In particular, we exploited the utility of neural Bayes estimation (Sainsbury-Dale

et al., 2024a) to perform inference on the weighted copula model from Chapter 3, as

well as on bivariate models based on random scale constructions, which are able to

interpolate between asymptotic independence and dependence at the interior of their

parameter space. Through simulation studies, we have shown that the inference process

is considerably faster with neural Bayes estimation than maximum likelihood estimation

(when this is feasible). Additionally, the derived extremal dependence measures are well

calibrated, indicating that the neural Bayes estimator effectively captures the tail be-
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haviour. As previously mentioned, incorporating one of the models from Chapter 2.2.7

as the tail component in the weighted copula model from Chapter 3 is computation-

ally infeasible with a likelihood-based approach. With neural Bayes estimation, this is

no longer the case, as demonstrated in Chapter 5.4.2 and C.2.1 where we performed

inference within such model configurations.

We have also proposed a model selection neural classifier that enables fast and

effective selection of the most suitable model from a set of candidates, performing

comparably to the BIC in simulation studies. Additionally, we demonstrated that the

proposed toolbox for model selection and inference is robust even when the data is

not generated by any of the models considered. Finally, when applying the toolbox

to study the pairwise extremal dependence of the changes in horizontal geomagnetic

field fluctuation across three locations, we showed that it allows for sensitivity analysis

to the threshold used to censor non-extremal observations, when the focus is solely

on extreme observations. By applying the methodology across a range of threshold

levels, we assessed the impact of this choice on the results. Notably, this step would be

computationally expensive with a likelihood-based approach.

Simulation studies showed, however, that the estimates given by the NBE were gen-

erally more biased compared to those obtained through maximum likelihood inference,

when likelihood evaluation was feasible. Such bias led to poor coverage (and wider)

bootstrap-based uncertainty intervals. Whilst the coverage probabilities significantly

improved when training a second estimator to target specific posterior marginal quan-

tiles, rather than targeting posterior quantities such as the median, doing so results in

extra computational cost. Further investigation into reducing the bias and improving

coverage rates is of importance; to the best of our knowledge, exploring coverage rates

in the NBE context has not been done yet.

One possible approach is to explore different neural network architectures, such as

adding more layers or initialising the weights and biases at different values. Addition-
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ally, exploring different optimiser algorithms and adjusting their learning rates may lead

to different, potentially better, results. Another possibility could be to implement an

ensemble approach, where multiple models are trained, each with different weights and

biases, and their estimates combined. However, an initial exploration of these strate-

gies did not yield improvements when applied to the models considered in Chapter 5.

Finally, the impact of the prior choice on the results can be further explored. Specif-

ically, the simulation studies shown in Chapter C.2.1 suggest that reparameterising

certain model parameters improved the inference procedure, reducing the bias observed

throughout the analysis of Chapter 5. However, uniform priors do not necessarily lead

to uniform priors in alternative parameterisations, and thus more careful consideration

of priors is required.

Similarly to Chapter 3, we have restricted our analysis to the bivariate setting. How-

ever, given that we no longer rely on likelihood evaluations, applying the NBE to higher

dimensions is now available. While this might not be useful for the random scale models

from Chapter 2.2.7, as they are only meaningful when all variables exhibit joint asymp-

totic dependence or independence, the same is not true for the weighted copula model

from Chapter 3 and the Gaussian mixture copula from Chapter 4. For these models,

the advantages of neural Bayes estimation would be even more pronounced, especially

for the model from Chapter 3, since likelihood evaluation becomes computationally

infeasible with triple integrals and beyond. In addition, neural Bayes estimation may

be useful for incorporating covariates into the models to account for non-stationarity,

especially if doing so demands extra computational resources. In this case, we would

require a model for the covariates from which we could simulate.

The weighted copula model from Chapter 3 and the Gaussian mixture copula from

Chapter 4 both require making a few choices in advance. As mentioned before, for the

former, we need to decide which copula families to include and which weighting function

to use, while for the latter, the number of mixture components to incorporate into
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the model need to be specified. Inevitably, if a likelihood-based inference procedure is

adopted, model selection for both copula models becomes computationally expensive, as

all possible options have to be fitted for comparison. Furthermore, if no prior knowledge

of the data structure can be leveraged into the analysis, this leads to hundreds of

possible model specifications — particularly for the weighted copula model — resulting

in a tedious and time-consuming process.

On the other hand, if asymptotic (in)dependence is sought, then an asymptotically

(in)dependent copula should be chosen for the tail component, possibly along with a

monotonic increasing weighting function, such as those used in Chapter 3. Similar

considerations can be made for the Gaussian mixture copula from Chapter 4; in a

higher dimensional setting and/or when the data exhibits a more complex dependence

structure (which can be explored visually, for example), additional mixture components

are needed, as shown by the simulation and case studies. Instead, the model selection

can be facilitated by adopting a likelihood-free framework, such as the one discussed in

Chapter 5. In this case, a neural network would need to be trained on all possible model

specifications. However, depending on the number of candidate models, a different —

perhaps more flexible — neural network architecture than the one used in Section 5.2.4

may need to be considered.

Lastly, Chapter 6 detailed the contribution of a wider team for the 2023 EVA con-

ference data challenge. This challenge was comprised of four challenges C1-C4, for

which we proposed a range of statistical methods to estimate extreme quantiles. For

challenge C1, the 0.9999-quantile and its 50% confidence intervals, were estimated for

a response variable conditioned on a set of environmental covariates. For challenge

C2, we estimated the marginal 200-year return level; to do so we have incorporated a

specific loss function. For challenge C3, we extended the method of Wadsworth and

Tawn (2013) to account for non-stationarity, whilst using generalised additive models,

to estimate probabilities of three variables lying in two different extremal regions. For
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the final challenge, C4, we estimated two 50-dimensional joint survival probabilities; we

do so by splitting the probabilities into five lower-dimensional components, assumed in-

dependent of each other, and estimating each using the conditional extremes approach

of Heffernan and Tawn (2004).

For challenge C3 (recall Section 6.4), the threshold above which a GP distribution

is assumed for the tail was selected through exploratory analysis. In particular, by con-

sidering a range of thresholds, we have assessed the fit of the GP distribution through

QQ plots. A similar approach was taken to select the threshold above which the condi-

tioning variable is assumed large in challenge C4 (recall Section 6.5). More specifically,

by performing a sensitivity analysis to the choice of conditioning threshold, we showed

that the threshold appeared to not have a significant effect on the estimated proba-

bilities, obtaining relatively stable results. Nevertheless, exploring threshold selection

methods for multivariate extremes is of interest as, in general, different choices may

lead to different conclusions.

To address the high dimensionality presented by challenge C4, we have identified

subgroups of variables, which we assumed independent of each other, through visual in-

spection of pairwise estimates of the extremal dependence coefficient. While this proved

sufficient for the Utopula data, considering clustering methods for multivariate extremes

(e.g., Bernard et al., 2013, Chautru, 2015 or Janßen and Wan, 2020) to identify lower-

dimensional components is an alternative. Finally, we found the choice of conditioning

variable to be insignificant for C4. However, since the conditional extremes method

(recall Section 2.2.6) is known to not be self-consistent (Liu and Tawn, 2014), and thus

different conclusions may be obtained when considering a different conditioning site,

more robust estimates might have been obtained by considering a weighted sum of the

probabilities considering each site as the conditioning variable instead.
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Supplementary material for

Chapter 3

A.1 Copula densities

In this appendix we give the copula distribution function C and density function c for

all copulas used in the paper.

Gaussian copula

The Gaussian copula with correlation parameter ρ ∈ (−1, 1) is given by

C(u, v; ρ) = Φ2

(
Φ−1

1 (u),Φ−1
1 (v); ρ

)
, u, v ∈ (0, 1),

where Φ2(·, ·; ρ) is the bivariate standard normal distribution function with correlation

ρ and Φ−1
1 (·) is the inverse of the univariate standard normal distribution function. The

Gaussian copula density can be written as

c(u, v; ρ) =
1√

1− ρ2
exp

{
−ρ

2x2 + ρ2y2 − 2ρxy

2(1− ρ2)

}
, u, v ∈ (0, 1),
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where x = Φ−1
1 (u) and y = Φ−1

1 (v).

Student t copula

The Student t copula with correlation parameter ρ ∈ (−1, 1) and ν > 0 degrees of

freedom is given by

C(u, v; ρ, ν) = T2,ν
(
T−1
ν (u), T−1

ν (v); ρ
)
, u, v ∈ (0, 1),

where T2,ν(·, ·; ρ) is the bivariate t distribution function with correlation parameter ρ

and T−1
ν (·) is the inverse of the univariate t distribution function. The Student t copula

density can be written as

c(u, v; ρ, ν) =
1√

1− ρ2

Γ
(
ν+2
2

)
Γ
(
ν
2

)
Γ
(
ν+1
2

)2
[(

1 + x2

ν

)(
1 + y2

ν

)](ν+1)/2

[
1 + (x2+y2−2ρsr)

ν(1−ρ)2

](ν+2)/2
, u, v ∈ (0, 1),

where x = T−1(u) and y = T−1(v).

Frank copula

The Frank copula with parameter α ∈ R \ {0} is given by

C(u, v;α) = − 1

α
log

(
1− (1− e−αu) (1− e−αv)

1− e−α

)
, u, v ∈ (0, 1),

and its density can be written as

c(u, v;α) =
α(1− e−α)e−α(u+v)

[1− e−α − (1− e−αu)(1− e−αv)]2
, u, v ∈ (0, 1).
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Clayton copula

The Clayton copula with parameter α ∈ R+ is given by

C(u, v;α) =
(
u−α + v−α − 1

)−1/α
, u, v ∈ (0, 1),

and its density can be written as

c(u, v;α) =
(α + 1)(uv)α

(uα + vα − (uv)α)1/α+2
, u, v ∈ (0, 1).

Joe copula

The Joe copula with parameter α > 1 is given by

C(u, v;α) = 1− [(1− u)α + (1− v)α − (1− u)α (1− v)α]
1/α

, u, v ∈ (0, 1),

and its density can be written as

c(u, v;α) = (xα + yα − (xy)α)1/α−2 (xy)α−1 (α− 1 + xα + yα − (xy)α) , u, v ∈ (0, 1),

where x = 1− u and y = 1− v.

Gumbel copula

The Gumbel copula with parameter α > 1 is given by

C(u, v;α) = exp
{
− (xα + yα)1/α

}
, u, v ∈ (0, 1),

where x = − log(u) and y = − log(v). The Gumbel copula density can be written as

c(u, v;α) =
C(u, v;α)

uv
(xy)α−1 (xα + yα)1/α−2

[
(xα + yα)1/α + α− 1

]
, u, v ∈ (0, 1).
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The Inverted Gumbel copula density is obtained if we substitute u and v by (1 − u)

and (1− v), respectively.

Hüsler-Reiss copula

The Hüsler-Reiss copula with parameter α ∈ R+ is given by

C(u, v;α) = exp

{
−xΦ

(
1

α
+
α

2
log

(
x

y

))
− yΦ

(
1

α
+
α

2
log

(
y

x

))}
, u, v ∈ (0, 1),

where x = − log(u) and y = − log(v). The Hüsler-Reiss copula density can be written

as

c(u, v;α) =
C(u, v;α)

uv

[
Φ

(
1

α
+
α

2
log

(
x

y

))
Φ

(
1

α
+
α

2
log

(
y

x

))
+
α

2y
ϕ

(
1

α
+
α

2
log

(
x

y

))]
, u, v ∈ (0, 1).

Galambos copula

The Galambos copula with parameter α ∈ R+ is given by

C(u, v;α) = exp
{
−x− y +

(
x−α + y−α

)−1/α
}
, u, v ∈ (0, 1),

where x = − log(u) and y = − log(v). For u, v ∈ (0, 1), the Galambos copula density

can be written as

c(u, v;α) =
C(u, v;α)

uv

[
1− (x−α + y−α)−1−1/α(x−α−1 + y−α−1)

+(x−α + y−α)−2−1/α(xy)−α−1
(
1 + α + (x−α + y−α)−1/α

)]
.
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Coles-Tawn copula

The Coles-Tawn copula with parameters α, β ∈ R+ is given by

C(u, v;α, β) = exp {−x (1− Be(q;α + 1, β))− yBe(q;α, β + 1)} , u, v ∈ (0, 1),

where x = − log(u), y = − log(v), q =
αx

αy + βx
and Be(q; a, b) represents the Beta

distribution function with shape parameters a > 0 and b > 0. The Coles-Tawn copula

density can be written as

c(u, v;α, β) =
C(u, v;α, β)

uvx2y2

[
x2y2 (1− Be (q;α + 1, β)) Be (q;α, β + 1)

+
αβΓ(α + β + 1)

Γ(α)Γ(β)

qα−1(1− q)β−1

(α/x+ β/y)3

]
, u, v ∈ (0, 1).

A.2 Extremal dependence properties

The extremal dependence measures χ and η of the weighted copula model presented

in Section 2 of the main text were derived for the case where cb is a Frank copula and

ct a Gumbel copula, with two different weighting functions, and are presented in this

Section. From equation (2) of Section 1.3 of the main text, we have

χ = lim
r→1

χ(r) = lim
r→1

P [U∗ > r, V ∗ > r]

P [U∗ > r]

= lim
r→1

(1/K)
∫ 1

r

∫ 1

r
fct(u

∗, v∗;α, θ)dv∗ du∗ + (1/K)
∫ 1

r

∫ 1

r
fcb(u

∗, v∗;β, θ)dv∗ du∗

(1/K)
∫ 1

r

∫ 1

0
fct(u

∗, v∗;α, θ)dv∗ du∗ + (1/K)
∫ 1

r

∫ 1

0
fcb(u

∗, v∗;β, θ)dv∗ du∗

= lim
r→1

∫ 1

r

∫ 1

r
fct(u

∗, v∗;α, θ)dv∗ du∗ +
∫ 1

r

∫ 1

r
fcb(u

∗, v∗;β, θ)dv∗ du∗∫ 1

r

∫ 1

0
fct(u

∗, v∗;α, θ)dv∗ du∗ +
∫ 1

r

∫ 1

0
fcb(u

∗, v∗;β, θ)dv∗ du∗
,

where fct = Ktft and fcb = Kbfb with Kt, Kb, ft, fb and K as defined in Section 2.2 of

the main text.
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Case 2: cb is a Frank copula, ct is a Gumbel copula and π(u∗, v∗; θ) =

(uv)θ

Assuming π(u∗, v∗; θ) = (u∗v∗)θ, we have

fcb(u
∗, v∗; β, θ) = [1− (u∗v∗)θ]

β(1− exp{−β}) exp{−β(u∗ + v∗)}
[1− exp{−β} − (1− exp{−βu∗})(1− exp{−βv∗})]2

and

fct(u
∗, v∗;α, θ) = (u∗v∗)θ

Ct(u
∗, v∗;α)

u∗v∗
(xy)α−1 (xα + yα)1/α−2

[
(xα + yα)1/α + α− 1

]
=(u∗v∗)θ−1Ct(u

∗, v∗;α)(xy)α−1 (xα + yα)1/α−2
[
(xα + yα)1/α + α− 1

]
,

with x = − log(u∗), y = − log(v∗) and Ct(u
∗, v∗;α) = exp

{
− (xα + yα)1/α

}
.

Effect of the body copula cb

Since the interest is on the limit when u∗ and v∗ are very near (1,1) and fcb(u
∗, v∗; β, θ)

is defined at (1,1), a Taylor approximation of order 1 can be used about (1,1) with point

(1− s, 1− t) for
∫ 1

r

∫ 1

r
fcb(u

∗, v∗)dv∗ du∗, where s, t→ 0. Therefore, for some norm ∥ · ∥

near 0, we have

fcb(1− s, 1− t; β, θ) = fcb(1, 1)− s
∂fcb
∂s

(1, 1)− t
∂fcb
∂t

(1, 1) +O
(
∥(s, t)∥2

)
,

where

∂fcb
∂s

=
2β2[1− (st)θ](1− exp{−β})(1− exp{−βt}) exp{−β(2s+ t)}

[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]3

− βθsθ−1tθ(1− exp{−β}) exp{−β(s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]2

− β2[1− (st)θ](1− exp{−β}) exp{−β(s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]2

.
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At the point (1,1), fcb(1, 1) = 0 and

∂fcb
∂s

(1, 1) =
∂fcb
∂t

(1, 1) = −βθ (1− exp{−β})−1.

So,

fcb(1− s, 1− t; β, θ) = βθ (1− exp{−β})−1 (s+ t) +O
(
∥(s, t)∥2

)
.

Taking s = 1− u∗ and t∗ = 1− v∗, we have

∫ 1

r

∫ 1

r

fcb(u
∗, v∗)dv∗ du∗

=

∫ 1−r

0

∫ 1−r

0

βθ (1− exp{−β})−1 (s+ t)dt ds+O
(
(1− r)4

)
=βθ (1− exp{−β})−1

∫ 1−r

0

∫ 1−r

0

(s+ t)dt ds+O
(
(1− r)4

)
=βθ (1− exp{−β})−1 (1− r)3 +O

(
(1− r)4

)
.

Similarly, for
∫ 1

r

∫ 1

0
fcb(u

∗, v∗)dv∗ du∗, a Taylor approximation of order 1 can be used

about (1, v∗) with point (u∗, v∗). Thus, we have

fcb(u
∗, v∗; β, θ) = fcb(1, v

∗) + (u∗ − 1)
∂fcb
∂u∗

(1, v∗) +O
(
(u∗ − 1)2

)
,

where

fcb(1, v
∗) =

(1− (v∗)θ)β exp{−β(1− v∗)}
1− exp{−β}

= Av∗,β,θ
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and

∂fcb
∂u∗

(1, v∗) =
2β2(1− (v∗)θ)(1− exp{−βv∗}) exp{−2β(1− v∗)}

(1− exp{−β})2

− βθ(v∗)θ exp{−β(1− v∗)}
1− exp{−β}

− β2(1− (v∗)θ) exp{−β(1− v∗)}
1− exp{−β}

=Bv∗,β,θ.

So, fcb(u
∗, v∗) = Av∗,β,θ +Bv∗,β,θ(u

∗ − 1) +O ((u∗ − 1)2) , and we obtain

∫ 1

r

∫ 1

0

fcb(u
∗, v∗)dv∗ du∗

=

∫ 1

r

∫ 1

0

[Av∗,β,θ +Bv∗,β,θ(u
∗ − 1)]dv∗ du∗ +O

(
(1− r)3

)
=

∫ 1

0

Av∗,β,θ

∫ 1

r

du∗ dv∗ +

∫ 1

0

Bv∗,β,θ

∫ 1

r

(u∗ − 1)du∗ dv∗ +O
(
(1− r)3

)
=(1− r)

∫ 1

0

Av∗,β,θdv
∗︸ ︷︷ ︸

Cβ,θ

−1

2
(1− r)2

∫ 1

0

Bv∗,β,θdv
∗︸ ︷︷ ︸

Dβ,θ

+O
(
(u∗)2

)

=Cβ,θ(1− r)− Dβ,θ

2
(1− r)2 +O

(
(1− r)3

)
Effect of the tail copula ct

Contrarily to fcb(·), fct(u∗, v∗;α, θ) is not finite at (1,1). For this reason, it is not

possible to use a Taylor approximation about (1,1). Instead, we use asymptotics near

this point. Specifically, we now write u∗ and v∗ in terms of s and t, where s, t > 0 and

u∗ = 1− s+ o(s) and v∗ = 1− t+ o(t) as s, t → 0. This describes the behaviour of u∗

and v∗ as they tend to 1. Thus, for the first term of fct , we have

(u∗v∗)θ−1 =(1− s)θ−1(1− t)θ−1 + o(s) + o(t)

=[1− (θ − 1)s][1− (θ − 1)t] + o(s) + o(t),

as s, t→ 0.
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Let us first consider the case when x = − log(u∗) > y = − log(v∗). For (u∗, v∗) →

(1, 1), i.e., s→ 0 and t→ 0, with t/s→ c for c ∈ (0, 1), the copula density term follows

asymptotically

ct(u
∗, v∗;α) ∼ (α− 1)x−αyα−1

[
1 +

(y
x

)α]1/α−2

.

Analogously, when x < y, i.e., s→ 0 and t→ 0, with t/s→ c for c ∈ (1,∞),

ct(u
∗, v∗;α) ∼ (α− 1)y−αxα−1

[
1 +

(
x

y

)α]1/α−2

.

Moreover, x = s + o(s) and y = t + o(t) as s, t → 0. So, considering the symmetry

between cases x > y and x < y, and recalling u∗ = 1− s+ o(s) and v∗ = 1− t+ o(t),

∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ = P [1− S > r, 1− T > r] = 2P [S < 1− r, T < S].

So, we have

P [S < 1− r, T < S] =

∫ 1−r

0

∫ s

0

f ∗
ct(s, t;α, θ)dt ds

=

∫ 1−r

0

∫ s

0

[1− (θ − 1)s][1− (θ − 1)t](α− 1)s−αtα−1

×
[
1 +

(
t

s

)α]1/α−2

dt ds+ o
(
(1− r)2

)
= (α− 1)

∫ 1−r

0

[1− (θ − 1)s]s−α∫ s

0

[1− (θ − 1)t]tα−1

[
1 +

(
t

s

)α]1/α−2

dt︸ ︷︷ ︸
A(s)

ds+ o
(
(1− r)2

)
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as r → 1. Evaluating A(s) by parts, we get

∫ s

0

[1− (θ − 1)t]tα−1

[
1 +

(
t

s

)α]1/α−2

dt

=
21/α−1sα

1− α
− 21/α−1(θ − 1)sα+1

1− α
− sα

1− α
− (1− θ)sα+1

1− α
Cα,

with Cα =

∫ 1

0

(1 + qα)1/α−1dq. And, by substituting A(s) in the outer integral, we

obtain

P [S < 1− r, T < s] =(1− 21/α−1)(1− r) +
[
(21/α − 1− Cα)(θ − 1)/2

]
(1− r)2

+ o
(
(1− r)2

)
, as r → 1.

Then, as r → 1,

∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗

=2(1− 21/α−1)(1− r) + 2
[
(21/α − 1− Cα)(θ − 1)/2

]
(1− r)2 + o

(
(1− r)2

)
=(2− 21/α)(1− r) + (21/α − 1− Cα)(θ − 1)(1− r)2 + o

(
(1− r)2

)
,

Since for
∫ 1

r

∫ 1

0
fct(u

∗, v∗)dv∗ du∗ we need to integrate over the support for v∗, it is

not possible to approximate fct(·) as above. Instead, we take the change of variable

y = xz, with z = y/x ∈ R+, so we have u∗ = exp{−x} and v∗ = exp{−xz}. Thus, we

obtain
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∫ 1

r

∫ 1

0

fct(u
∗, v∗;α, θ)dv∗ du∗

=

∫ 1

r

∫ 1

0

(u∗v∗)θ−1Ct(u
∗, v∗;α)(xy)α−1 (xα + yα)1/α−2

×
[
(xα + yα)1/α + α− 1

]
dv∗ du∗

=

∫ − log(r)

0

∫ ∞

0

exp
{
−x
[
θ(1 + z) + (1 + zα)1/α

]}
zα−1 (1 + zα)1/α−2

×
[
x (1 + zα)1/α + α− 1

]
dz dx

=

∫ − log(r)

0

∫ ∞

0

x zα−1 (1 + zα)2/α−2︸ ︷︷ ︸
g(z)

exp

−x
[
θ(1 + z) + (1 + zα)1/α

]︸ ︷︷ ︸
h(z)

 dz dx

+ (α− 1)

∫ − log(r)

0

∫ ∞

0

zα−1 (1 + zα)1/α−2︸ ︷︷ ︸
f(z)

× exp

−x
[
θ(1 + z) + (1 + zα)1/α

]︸ ︷︷ ︸
h(z)

 dz dx

=

∫ ∞

0

g(z)

∫ − log(r)

0

x exp{−xh(z)}dx︸ ︷︷ ︸
B(z,r)

dz

+ (α− 1)

∫ ∞

0

f(z)

∫ − log(r)

0

exp{−xh(z)}dx︸ ︷︷ ︸
C(z,r)

dz.

Evaluating B(z, r) by parts, we get

∫ − log(r)

0

x exp{−xh(z)}dx

=

[
− x

h(z)
exp{−xh(z)}

]x=− log(r)

x=0

−
[

1

h2(z)
exp{−xh(z)}

]x=− log(r)

x=0

=
log(r)

h(z)
rh(z) − 1

h2(z)
rh(z) +

1

h2(z)
.
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Analogously, by evaluating C(z, r), we have

∫ − log(r)

0

exp{−xh(z)}dx =

[
− 1

h(z)
exp{−h(z)x}

]x=− log(r)

x=0

=− 1

h(z)
rh(z) +

1

h(z)
.

Substituting B(z, r) and C(z, r) in the outer integral, we obtain

∫ 1

r

∫ 1

0

fct(u
∗, v∗;α, θ)dv∗ du∗ = log(r)

∫ ∞

0

g(z)

h(z)
rh(z)dz +

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

+ (α− 1)

∫ ∞

0

f(z)

h(z)

(
1− rh(z)

)
dz.

Evaluating

∫ ∞

0

f(z)

h(z)

(
1− rh(z)

)
dz by parts, we have

∫ ∞

0

f(z)

h(z)

(
1− rh(z)

)
dz

=

[
1

1− α
(1 + zα)1/α−1 1− rh(z)

h(z)

]∞
0

−
∫ ∞

0

1

1− α
(1 + zα)1/α−1

(
h′(z)

(
rh(z) − 1

)
h2(z)

− log(r)h′(z)rh(z)

h(z)

)
dz︸ ︷︷ ︸

D(r)

=
1

1− α
lim
z→∞

(1 + zα)1/α−1 1− rθ(1+z)+(1+zα)1/α

θ(1 + z) + (1 + zα)1/α

− 1

1− α

1− rθ+1

θ + 1
−D(r)

=
1

1− α
lim
z→∞

z1−α
rz(θ+1)

z(1 + θ)
+

1− rθ+1

(α− 1)(θ + 1)
−D(r)

=
1

1− α
lim
z→∞

z−α
rz(θ+1)

1 + θ
+

1− rθ+1

(α− 1)(θ + 1)
−D(r)

=
1− rθ+1

(α− 1)(θ + 1)
−D(r).

Noting that h′(z) = θ+ zα−1(1 + zα)1/α−1, and recalling that g(z) = zα−1(1 + zα)2/α−2,

D(r) can be simplified as below
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D(r) =

∫ ∞

0

1

1− α
(1 + zα)1/α−1

(
h′(z)

(
rh(z) − 1

)
h2(z)

− log(r)h′(z)rh(z)

h(z)

)
dz

=

∫ ∞

0

1

1− α
(1 + zα)1/α−1 [θ + zα−1(1 + zα)1/α−1

] (rh(z) − 1
)

h2(z)
dz

− log(r)

∫ ∞

0

1

1− α
(1 + zα)1/α−1 [θ + zα−1(1 + zα)1/α−1

] rh(z)
h(z)

dz

=− θ

∫ ∞

0

1

1− α
(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz

−
∫ ∞

0

1

1− α
zα−1 (1 + zα)2/α−2

(
1− rh(z)

)
h2(z)

dz

− θ log(r)

∫ ∞

0

1

1− α
(1 + zα)1/α−1 r

h(z)

h(z)
dz

− log(r)

∫ ∞

0

1

1− α
zα−1 (1 + zα)2/α−2 r

h(z)

h(z)
dz

=
θ

α− 1

∫ ∞

0

(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz +
1

α− 1

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

+
θ log(r)

α− 1

∫ ∞

0

(1 + zα)1/α−1 r
h(z)

h(z)
dz +

log(r)

α− 1

∫ ∞

0

g(z)

h(z)
rh(z)dz.

Thus, we have

∫ 1

r

∫ 1

0

fct(u
∗, v∗;α, θ)dv∗ du∗ = log(r)

∫ ∞

0

g(z)

h(z)
rh(z)dz +

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

+ (α− 1)
1− rθ+1

(α− 1)(θ + 1)
− (α− 1)

θ

α− 1

∫ ∞

0

(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz

− (α− 1)
1

α− 1

∫ ∞

0

g(z)

h2(z)

(
1− rh(z)

)
dz

− (α− 1)
θ log(r)

α− 1

∫ ∞

0

(1 + zα)1/α−1 r
h(z)

h(z)
dz

− (α− 1)
log(r)

α− 1

∫ ∞

0

g(z)

h(z)
rh(z)dz

=
1− rθ+1

θ + 1
− θ

∫ ∞

0

(1 + zα)1/α−1

(
1− rh(z)

)
h2(z)

dz

− θ log(r)

∫ ∞

0

(1 + zα)1/α−1 r
h(z)

h(z)
dz

=1− r − θ

2
(1− r)2 + o

(
(1− r)2

)
,
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where −θ
∫∞
0

(1 + zα)1/α−1 (1−rh(z))
h2(z)

dz − θ log(r)
∫∞
0

(1 + zα)1/α−1 rh(z)

h(z)
dz = o((1 − r)2)

as r → 1. Additionally, rθ+1 = 1− (θ+1)(1− r) + [θ(θ + 1)/2] (1− r)2 + o ((1− r)2) as

r → 1 by the Binomial expansion.

Extremal dependence χ for this case

Let

c1 = 2− 21/α = χGumbel, c5 = −θ/2 + o
(
(1− r)2

)
,

c2 = (21/α − 1− Cα)(θ − 1), c6 = Cβ,θ = β (1− exp{−β})−1

c3 = βθ (1− exp{−β})−1 , ×
∫ 1

0

(1− (v∗)θ)e−β(1−v
∗)dv∗,

c4 = 1, c7 = −Dβ,θ/2.

We then have

χ = lim
r→1

c1(1− r) + c2(1− r)2 + c3(1− r)3 + o ((1− r)3)

c4(1− r) + c5(1− r)2 + c6(1− r) + c7(1− r)2 + o ((1− r)2)

= lim
r→1

(
c1

c4 + c6
+

[
c2 − c1(c5 + c7)

(c4 + c6)2

]
(1− r) +O

(
(1− r)2

))
=

c1
c4 + c6

=
2− 21/α

1 + β (1− exp{−β})−1 ∫ 1

0
(1− (v∗)θ)e−β(1−v∗)dv∗

(A.2.1)

For the vector of parameters γ = (3, 1, 1.844444), c1 ≈ 0.740079, c5 = 1 and c7 ≈

0.5630892. Thus, from equation (A.2.1), we have χ ≈ 0.473472. Moreover, from the

numerical investigation, χ(r) ≈ 0.4699556 with r = 0.9998779. Figure A.2.1 shows this

comparison.
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Figure A.2.1: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function
π(u∗, v∗; θ) = (u∗v∗)θ and θ = 1.84444. The thick black lines represent the single copula
models - Frank (dashed) and Gumbel (solid). The theoretical values for the Frank and
Gumbel copulas based on Table 2 of Section 2.3 from the main text are represented by
the horizontal dashed lines, and the value derived for the model is represented by the
pink dashed line.

For the vector of parameters γ = (1.5, 3, 3.488889), c1 ≈ 0.4125989, c5 = 1 and

c7 ≈ 0.5555462. Thus, from equation (A.2.1), we have χ ≈ 0.2652438. Moreover, from

the numerical investigation, χ(r) ≈ 0.2842924 with r = 0.9998779. Figure A.2.2 shows

this comparison.
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Figure A.2.2: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function
π(u∗, v∗; θ) = (u∗v∗)θ and θ = 3.488889. The thick black lines represent the single copula
models - Frank (dashed) and Gumbel (solid). The theoretical values for the Frank and
Gumbel copulas based on Table 2 of Section 2.3 from the main text are represented by
the horizontal dashed lines, and the value derived for the model is represented by the
pink dashed line.
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Extremal dependence η for this case

As χ > 0, we should expect η = 1. Following equation (4) of Section 1.3 from the main

text, we have

η = lim
r→1

log (P [U∗ > r])

log (P [U∗ > r, V ∗ > r])

= lim
r→1

log [c4(1− r) + c5(1− r)2 + c6(1− r) + c7(1− r)2 + o ((1− r)2)]

log [c1(1− r) + c2(1− r)2 + c3(1− r)3 + o ((1− r)3)]

(∞
∞)
= lim

r→1

−c4 − c6 − 2(c5 + c7)(1− r) + o(1− r)

−c1 − 2c2(1− r)− 3c3(1− r)2 + o ((1− r)2)

× c1 + c2(1− r) + c3(1− r)2 + o((1− r)2)

c4 + c6 + (c5 + c7)(1− r) + o (1− r)

=
c4 + c6
c1

c1
c4 + c6

= 1,

by L’Hôpital’s Rule.

Case 2.1: cb is a Frank copula, ct is a Gumbel copula and

π(u∗, v∗; θ) = exp{−θ(1− u∗)(1− v∗)}

Let us now assume a different weighting function π(u∗, v∗; θ) = exp{−θ(1−u∗)(1−v∗)}.

We have

fcb(u
∗, v∗; β, θ) =[1− exp{−θ(1− u∗)(1− v∗)}]

× β(1− exp{−β}) exp{−β(u∗ + v∗)}
[1− exp{−β} − (1− exp{−βu∗})(1− exp{−βv∗})]2

and

fct(u
∗, v∗;α, θ) = exp{−θ(1− u∗)(1− v∗)}Ct(u

∗, v∗;α)

u∗v∗
(xy)α−1 (xα + yα)1/α−2

×
[
(xα + yα)1/α + α− 1

]
,
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with x = − log(u∗), y = − log(v∗) and Ct(u
∗, v∗;α) = exp

{
− (xα + yα)1/α

}
.

Effect of the body copula cb

As the above case, a Taylor approximation of order 1 can be used about (1,1) with

point (1−s, 1− t) for
∫ 1

r

∫ 1

r
fcb(u

∗, v∗)dv∗ du∗, where s, t→ 0. Therefore, for some norm

∥ · ∥ near 0, we have

fcb(1− s, 1− t; β, θ) = fcb(1, 1)− s
∂fcb
∂s

(1, 1)− t
∂fcb
∂t

(1, 1) +O
(
∥(s, t)∥2

)
,

where

∂fcb
∂s

=− exp{−θ(1− s)(1− t)}

× 2β2(1− exp{−β})(1− exp{−βt}) exp{−β(2s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]3

− exp{−θ(1− s)(1− t)}

× β(1− exp{−β})[θ(1− t)− β] exp{−β(s+ t)}
[1− exp{−β} − (1− exp{−βs})(1− exp{−βt})]2

.

At the point (1,1), fcb(1, 1) = 0 and

∂fcb
∂s

(1, 1) =
∂fcb
∂t

(1, 1) = −β2 (1− exp{−β})−1.

So,

fcb(1− s, 1− t; β, θ) = β2 (1− exp{−β})−1 (s+ t) +O
(
∥(s, t)∥2

)
,
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and we obtain

∫ 1

r

∫ 1

r

fcb(u
∗, v∗)dv∗ du∗

=

∫ 1

r

∫ 1

r

β2 (1− exp{−β})−1 (s+ t)dt ds+O
(
(1− r)4

)
=β2 (1− exp{−β})−1 (1− r)3 +O

(
(1− r)4

)
.

Similarly, for
∫ 1

r

∫ 1

0
fcb(u

∗, v∗)dv∗ du∗, a Taylor approximation of order 1 can be used

about (1, v∗) with point (u∗, v∗). Thus, we have

fcb(u
∗, v∗; β, θ) = fcb(1, v

∗) + (u∗ − 1)
∂fcb
∂u∗

(1, v∗) +O
(
(u∗ − 1)2

)
,

where fcb(1, v
∗) = 0 and

∂fcb
∂u∗

(1, v∗) =− 2β2(1− exp{−β}) exp{−2β(1− v∗)}
(1− exp{−β})2

− βθ(1− v∗) exp{−β(1− v∗)}
1− exp{−β}

+
β2 exp{−β(1− v∗)}

1− exp{−β}
= Av∗,β,θ.

So, fcb(u
∗, v∗) = Av∗,β,θ +O ((u∗ − 1)2) , and we obtain

∫ 1

r

∫ 1

0

fcb(u
∗, v∗)dv∗ du∗ =

∫ 1

r

∫ 1

0

Av∗,β,θ(u
∗ − 1)dv∗ du∗ +O

(
(1− r)3

)
=

∫ 1

0

Av∗,β,θ

∫ 1

r

(u∗ − 1)du∗ dv∗ +O
(
(1− r)3

)
=− 1

2
(1− r)2

∫ 1

0

Av∗,β,θdv
∗︸ ︷︷ ︸

Bβ,θ

+O
(
(1− r)3

)

=− Bβ,θ

2
(1− r)2 +O

(
(1− r)3

)
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Effect of the tail copula ct

Let us again write u∗ and v∗ in terms of s and t, where s, t > 0 and u∗ = 1− s + o(s)

and v∗ = 1− t + o(t) as s, t → 0. As before, this describes the behaviour of u∗ and v∗

as they tend to 1. For the weighting function term of fct , we have

exp{−θ(1− u∗)(1− v∗)} = exp{−θst}+ o(s) + o(t),

as s, t→ 0.

Similarly to the previous case, we consider x = − log(u∗) > y = − log(v∗). For

(u∗, v∗) → (1, 1), i.e, s → 0 and t → 0, with t/s → c for c ∈ (0, 1), the copula density

term follows asymptotically

ct(u
∗, v∗;α) ∼ (α− 1)x−αyα−1

[
1 +

(y
x

)α]1/α−2

.

And, when x < y, i.e, s→ 0 and t→ 0, with t/s→ c for c ∈ (1,∞),

ct(u
∗, v∗;α) ∼ (α− 1)y−αxα−1

[
1 +

(
x

y

)α]1/α−2

.

Finally, x = s + o(s) and y = t + o(t) as s, t → 0. Thus, considering the symmetry

between cases x > y and x < y, and recalling u∗ = 1− s+ o(s) and v∗ = 1− t+ o(t),

∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ = P [1− S > r, 1− T > r] = 2P [S < 1− r, T < s].
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So, we have

P [S < 1− r, T < s] =

∫ 1−r

0

∫ s

0

f ∗
ct(s, t;α, θ)dt ds

= (α− 1)

∫ 1−r

0

∫ s

0

exp{−θst}s−αtα−1

[
1 +

(
t

s

)α]1/α−2

dt ds+ o
(
(1− r)2

)
= (α− 1)

∫ 1−r

0

s−α
∫ s

0

exp{−θst}tα−1

[
1 +

(
t

s

)α]1/α−2

dt︸ ︷︷ ︸
A(s)

ds+ o
(
(1− r)2

)

as r → 1. Evaluating A(s) by parts, we get

∫ s

0

exp{−θst}tα−1

[
1 +

(
t

s

)α]1/α−2

dt =
21/α−1 exp{−θs2}sα

1− α
− sα

1− α

+
θsα+2

1− α
Cα −

θ2sα+4

1− α
C∗
α,

with Cα =

∫ 1

0

(1 + qα)1/α−1dq and C∗
α =

∫ 1

0

q(1 + qα)1/α−1dq. By substituting A(s) in

the outer integral, we obtain

P [S < 1− r, T < s] =− 21/α−1

∫ 1−r

0

e−θs
2

ds+

∫ 1−r

0

ds

− θCα

∫ 1−r

0

s2ds+ θ2C∗
α

∫ 1−r

0

s4ds+ o
(
(1− r)2

)
=− 21/α−1

∫ 1−r

0

(1− θs2)ds+ (1− r) + o
(
(1− r)2

)
=(1− 21/α−1)(1− r) + o

(
(1− r)2

)
,

as r → 1 and where exp{−θs2} = 1− θs2 +O ((1− r)4) as s→ 0. Thus,

∫ 1

r

∫ 1

r

fct(u
∗, v∗)dv∗ du∗ =2(1− 21/α−1)(1− r) + o

(
(1− r)2

)
=(2− 21/α)(1− r) + o

(
(1− r)2

)
,

as r → 1.
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As before, for
∫ 1

r

∫ 1

0
fct(u

∗, v∗)dv∗ du∗, we take the change of variable y = xz, with

z = y/x ∈ R+, so we have u∗ = exp{−x} and v∗ = exp{−xz}. Thus, we obtain

∫ 1

r

∫ 1

0

fct(u
∗, v∗)dv∗ du∗

=

∫ 1

r

∫ 1

0

exp{−θ(1− u∗)(1− v∗)}Ct(u
∗, v∗;α)

u∗v∗
(xy)α−1 (xα + yα)1/α−2

×
[
(xα + yα)1/α + α− 1

]
dv∗ du∗

=

∫ − log(r)

0

∫ ∞

0

exp{−θ(1− exp{−x}−exp{−xz}+exp{−x− xz})−x(1 + zα)1/α}

× zα−1 (1 + zα)1/α−2
[
x (1 + zα)1/α + α− 1

]
dz dx

We have exp{−x} = 1− x+
x2

2
+O

(
x3
)
, exp{−xz} = 1− xz +

x2z2

2
+O

(
x3
)

and exp{−x(1+z)} = 1− x(1 + z) +
x2(1 + z)2

2
+O

(
x3
)
as x→ 0. So, the exponential

term

exp{−θ(1− exp{−x} − exp{−xz}+ exp{−x(1 + z)})− x(1 + zα)1/α}

=exp

{
−θ
[
1−

(
1− x+

x2

2

)
−
(
1− xz +

x2z2

2

)
+

(
1− x(1 + z) +

x2(1 + z)2

2

)]
− x(1 + zα)1/α

}
+O

(
x3
)

=exp
{
−θx2z − x(1 + zα)1/α

}
+O

(
x3
)
= exp{−x(1 + zα)1/α}+O

(
x2
)

as x→ 0.
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So, we have

∫ 1

r

∫ 1

0

fct(u
∗, v∗)dv∗ du∗

=

∫ − log(r)

0

∫ ∞

0

exp{−x(1 + zα)1/α}zα−1 (1 + zα)1/α−2

×
[
x (1 + zα)1/α + α− 1

]
dz dx

=

∫ − log(r)

0

∫ ∞

x

exp{−w}
( x
w

)α
(w + α− 1)

1

x
dw dx

=

∫ − log(r)

0

∫ w

0

xα−1 exp{−w}w−α(w + α− 1)dx dw

+

∫ ∞

− log(r)

∫ − log(r)

0

xα−1 exp{−w}w−α(w + α− 1)dx dw

=

∫ − log(r)

0

exp{−w}w−α(w + α− 1)

[
xα

α

]w
0

dw

+

∫ ∞

− log(r)

exp{−w}w−α(w + α− 1)

[
xα

α

]− log(r)

0

dw

=
1

α

∫ − log(r)

0

exp{−w}(w + α− 1)dw

+
[− log(r)]α

α

∫ ∞

− log(r)

exp{−w}w−α(w + α− 1)dw

=
1

α

∫ − log(r)

0

w exp{−w}dw +
α− 1

α

∫ − log(r)

0

exp{−w}dw

+
[− log(r)]α

α

∫ ∞

1

rt[− log(r)t]−α(− log(r)t+ α− 1)(− log(r)dt

=
1

α
(r log(r)− r + 1) +

α− 1

α
(−r + 1)

+
− log(r)[− log(r)]−α[− log(r)]α

α

∫ ∞

1

rtt−α(− log(r)t+ α− 1)dt

=
r log(r)

α
+ 1− r − log(r)

α

∫ ∞

1

rtt−α(− log(r)t+ α− 1)dt,
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where w = x(1 + zα)1/α and t = w
− log(r)

. As r → 1, we have

∫ 1

r

∫ 1

0

fct(u
∗, v∗)dv∗ du∗

=
r log(r)

α
+ 1− r − log(r)

α

∫ ∞

1

t−α(α− 1)dt

=
r log(r)

α
+ 1− r − log(r)

α

=

(
1− log(r)

α

)
(1− r) =

(
1− −(1− r) +O ((1− r)2)

α

)
(1− r)

=(1− r) +
1

α
(1− r)2 +O

(
(1− r)3

)
.

Extremal dependence χ for this case

Let

c1 = 2− 21/α = χGumbel, c3 = 1/α,

c2 = 1, c4 = −Bβ,θ/2.

we then have

χ = lim
r→1

c1(1− r) + o ((1− r)2)

c2(1− r) + c3(1− r)2 + c4(1− r)2 + o ((1− r)2)

= lim
r→1

(
c1
c2

− c3 + c4
c22

(1− r) +O
(
(1− r)2

))
=
c1
c2

= 2− 21/α (A.2.2)

For the vector of parameters γ = (3, 1, 1.844444), c1 ≈ 0.740079 and c5 = 1. Thus,

from equation (A.2.2), we have χ ≈ 0.740079. Moreover, from the numerical investiga-

tion, χ(r) ≈ 0.7350891 with r = 0.9998779. Figure A.2.3 shows this comparison.
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Figure A.2.3: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function
π(u∗, v∗; θ) = exp{−θ(1−u∗)(1− v∗)} and θ = 1.84444. The thick black lines represent
the single copula models - Frank (dashed) and Gumbel (solid). The theoretical values
for the Frank and Gumbel copulas based on Table 2 of Section 2.3 from the main text
are represented by the horizontal dashed lines, and the value derived for the model is
represented by the pink dashed line. Note that the theoretical value for the Gumbel
copula, χt, is the same as the one derived for the model, χModel.

For the vector of parameters γ = (1.5, 2, 3.488889), c1 ≈ 0.4125989 and c5 = 1.

Thus, from equation (A.2.1), we have χ ≈ 0.4125989. Moreover, from the numerical in-

vestigation, χ(r) ≈ 0.4093587 with r = 0.9998779. Figure A.2.4 shows this comparison.
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Figure A.2.4: The blue line represents χ(r) for r ∈ [0.7, 1) with weighting function
π(u∗, v∗; θ) = exp{−θ(1−u∗)(1−v∗)} and θ = 3.488889. The thick black lines represent
the single copula models - Frank (dashed) and Gumbel (solid). The theoretical values
for the Frank and Gumbel copulas based on Table 2 of Section 2.3 from the main text
are represented by the horizontal dashed lines, and the value derived for the model is
represented by the pink dashed line. Note that the theoretical value for the Gumbel
copula, χt, is the same as the one derived for the model, χModel.

Extremal dependence η for this case

As χ > 0, we should expect η = 1. Following equation (4) of Section 1.3 from the main

text, we have
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η = lim
r→1

log (P [U∗ > r])

log (P [U∗ > r, V ∗ > r])

= lim
r→1

log [c2(1− r) + c3(1− r)2 + c4(1− r)2 + o ((1− r)2)]

log [c1(1− r) + o ((1− r)2)]

(∞
∞)
= lim

r→1

−c2 − 2(c3 + c4)(1− r) + o (1− r)

−c1 + o (1− r)

c1 + o ((1− r)2)

c2 + (c3 + c4)(1− r) + o ((1− r)2)

=
c2
c1

c1
c2

= 1

by L’Hôpital’s Rule.

A.3 Extremal dependence properties: numerical in-

vestigation

Figures A.3.1 and A.3.2 show the results of the numerical study presented in Section

2.3 of the main text for the remaining three models considered.



APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 3 227

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Thresholds

χ

 χt, χb

ct
cb
θ =  0.2
θ =  1.84
θ =  3.49
θ =  5.13
θ =  6.78
θ =  8.42
θ =  10.07
θ =  11.71
θ =  13.36
θ =  15

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Thresholds

η

ct
cb
θ =  0.2
θ =  1.84
θ =  3.49
θ =  5.13
θ =  6.78
θ =  8.42
θ =  10.07
θ =  11.71
θ =  13.36
θ =  15

ηb

ηt

Case 1: Body Frank and Tail Gaussian

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Thresholds

χ

χb

χt

ct
cb
θ =  0.2
θ =  1.84
θ =  3.49
θ =  5.13
θ =  6.78
θ =  8.42
θ =  10.07
θ =  11.71
θ =  13.36
θ =  15

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
2

0.
4

0.
6

0.
8

1.
0

Thresholds

η

ct
cb
θ =  0.2
θ =  1.84
θ =  3.49
θ =  5.13
θ =  6.78
θ =  8.42
θ =  10.07
θ =  11.71
θ =  13.36
θ =  15

ηb

ηt

Case 2: Body Frank and Tail Gumbel

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
50

0.
55

0.
60

0.
65

0.
70

Thresholds

χ

χt

χb
ct
cb
θ =  0.2
θ =  1.84
θ =  3.49
θ =  5.13
θ =  6.78
θ =  8.42
θ =  10.07
θ =  11.71
θ =  13.36
θ =  15

0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Thresholds

η

ct
cb
θ =  0.2
θ =  1.84
θ =  3.49
θ =  5.13
θ =  6.78
θ =  8.42
θ =  10.07
θ =  11.71
θ =  13.36
θ =  15

 ηt, ηb

Case 4: Body Gumbel and Tail Husler−Reiss

Figure A.3.1: χ(r) and η(r) for r ∈ [0.7, 1) with weighting function π(u∗, v∗; θ) =
(u∗v∗)θ.
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Figure A.3.2: χ(r) and η(r) with weighting function π(u∗, v∗; θ) = exp{−θ(1− u∗)(1−
v∗)}, for r ∈ [0.7, 1).
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A.4 Ozone and temperature analysis for Weybourne,

UK

Following the same structure as the case study in Section 4 in the main paper, the

analysis for the summers of 2010 to 2019 of Weybourne, UK, is presented here. Figures

A.4.1a and A.4.1b show the scatterplots of the daily maxima of temperature and the

daily maxima of ozone on the original scale and on uniform margins, respectively.
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(a) Daily maxima of temperature
and ozone. The moderate, high
and very high DAQI are repre-
sented by the yellow, orange and
red lines, respectively.
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(b) Daily maxima of temperature (u) and
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DAQI are represented by the yellow, or-
ange and red lines, respectively.

Figure A.4.1: Summer data from 2010 to 2019 for Weybourne, UK.

Model fitting

Table A.4.1 shows the MLEs obtained by fitting a range of single copulas and the

corresponding AIC values, whereas Figure A.4.2 illustrates the comparison between the

empirical extremal dependence measure η(r) for r ∈ (0, 1) and the model-derived ones.
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Table A.4.1: MLEs for ten copulas and their AIC values. Lower AIC values are pre-
ferred.

Copula Parameter AIC
Clayton 7.21× 10−9 2.0
Frank 0.94 -19.2
Gumbel 1.18 -81.7
Inverted Gumbel 1.03 0.9
Galambos 0.43 -82.9
Gaussian 0.18 -27.6
Joe 1.34 -113.8
Student t 0.17 8.95 -34.9
Hüsler-Reiss 0.82 -99.1
Coles-Tawn 0.16 0.24 -80.4
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Gumbel
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Figure A.4.2: Empirical η(r) (in black) and η(r) for seven copulas (in colour) for r ∈
(0, 1). The 95% confidence bands were obtained by block bootstrapping. Note that
the η(r) for the Galambos, the Hüsler-Reiss, the Gumbel and the Coles-Tawn copulas
overlap.

Table A.4.2 shows the MLEs when fitting a range of weighted copula models with

π(u∗, v∗; θ) = (u∗v∗)θ and their AIC values. Table A.4.3 shows the MLEs of the five

best models according to AIC when the weighting function is π(u∗, v∗; θ) = exp{−θ(1−

u∗)(1− v∗)}.
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Table A.4.2: MLEs for different weighted copula models and their AIC values when the
weighting function used is π(u∗, v∗; θ) = (u∗v∗)θ. Lower AIC values are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.08 -0.23 0.34 -124.2

Model 2 Galambos Gaussian 0.66 -0.23 0.33 -121.9

Model 3 Coles-Tawn Gaussian 0.29 1.10 -0.22 0.34 -122.5

Model 4 Coles-Tawn Frank 0.30 1.22 -1.59 0.32 -123.8

Model 5 Joe Frank 1.46 -1.95 0.16 -126.7

Model 6 Clayton Gaussian 14.99 -0.05 4.33 -92.8

Model 7 Inverted Gumbel Gaussian 2.33 -0.15 0.96 -105.4

Model 8 Hüsler-Reiss Joe 1.19 1.26 4.93 -112.2

Model 9 Student t Galambos 0.69 4.82 0.27 2.71 -98.0

Model 10 Gaussian Clayton 0.75 1.16× 10−5 2.45 -99.1

Model 11 Gumbel Joe 1.47 1.26 4.27 -111.8

Table A.4.3: MLEs for five weighted copula models and their AIC values when the
weighting function used is π(u∗, v∗; θ) = exp{−θ(1 − u∗)(1 − v∗)}. Lower AIC values
are preferred.

Model ct cb α̂ β̂ θ̂ AIC

Model 1 Hüsler-Reiss Gaussian 1.12 -0.52 3.21 -158.5

Model 2 Galambos Gaussian 0.72 -0.51 3.48 -159.2

Model 3 Coles-Tawn Gaussian 0.46 0.82 -0.48 4.13 -158.1

Model 4 Coles-Tawn Frank 0.48 0.74 -3.05 3.61 -150.0

Model 5 Joe Frank 1.52 -2.63 2.85 -147.1

Diagnostics

Figure A.4.3 displays χ(r) and η(r) for r ∈ (0, 1) for the five models considered. A

clear improvement from the single copula models shown in Figure A.4.2 can be seen

as now all five models offer a reasonable fit throughout the whole support of the data.

In summer, the average temperature in Weybourne is between 18◦C and 22◦C and the

observed 90th, 95th and 99th percentiles of the temperature are around 24◦C, 26◦C and

29◦C, respectively. Table A.4.4 shows Kendall’s τ and some probabilities of interest.
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(a) Empirical χ(r) (in black) and χ(r) for the five models (in colour) for r ∈ (0, 1).
The 95% confidence bands were obtained by block bootstrapping.
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(b) Empirical η(r) (in black) and η(r) for the five models (in colour) for r ∈ (0, 1).
The 95% confidence bands were obtained by block bootstrapping.

Figure A.4.3: Dependence measures χ(r) and η(r).
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Table A.4.4: Diagnostics for the best five models according to their AIC values. The
95% confidence intervals for the empirical values were obtained by block bootstrapping.
The empirical probability P [O3 ≥ 160 | 29 ≤ T ≤ 30] and its 95% confidence interval
are explained by the low number of observations present in the data set.

Model Kendall’s τ P [T ≤ 15, O3 ≥ 100] P [T ≥ 24, O3 ≥ 100]

Empirical 0.0966 0.0045 0.0460

(95% CI) (0.0555 , 0.1934) (0.0000 , 0.0050) (0.0338 , 0.0667)

Model 1 0.0881 0.0072 0.0491

Model 2 0.0900 0.0076 0.0502

Model 3 0.0853 0.0084 0.0509

Model 4 0.0944 0.0069 0.0512

Model 5 0.0882 0.0068 0.0517

Model P [T ≥ 26, O3 ≥ 100] P [O3 ≥ 100 | 24 ≤ T ≤ 25] P [O3 ≥ 160 | 29 ≤ T ≤ 30]

Empirical 0.0291 0.1520 0.0000

(95% CI) (0.0189 , 0.0438) (0.0488 , 0.2800) (0.0000 , 0.0000)

Model 1 0.0283 0.2557 0.1912

Model 2 0.0287 0.2617 0.1982

Model 3 0.0300 0.2516 0.1894

Model 4 0.0298 0.2573 0.1921

Model 5 0.0297 0.2646 0.2176
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Supplementary material for

Chapter 4

B.1 Formulation of set Aw from Section 4.3.2

Here we present only the bivariate case, with the general d-dimensional case following

similarly. Consider w ∈ S1, and standard exponential random variables, XE
1 and XE

2 ,

with marginal distribution function FE(x) = 1 − exp{−x} for x > 0 and i = 1, 2.

Following Wadsworth and Tawn (2013), we are interested in regions of the form

A(x, y) = {XE
1 > x,XE

2 > y}, (B.1.1)

for x > 0 and y > 0.

Let us now assume that w := x/(x + y) and max{x, y} = uE, where uE is some

threshold level in exponential margins. Two examples of such sets are shown by the

shaded regions in Figure B.1.1.

By the definition of w, we have that

max{x, y} = x⇔ max

{
x,

1− w

w
x

}
= x⇒ 1 >

1− w

w
⇔ w >

1

2
.

234
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Figure B.1.1: Example of regions Aw for w = {0.3, 0.8} and uE = 2.

Thus, we have x = uE and set A(x, y) from expression (B.1.1) can be rewritten as

Aw =

{
XE

1 > uE, XE
2 >

1− w

w
uE
}
,

when w > 1/2.

Similarly, we have w ≤ 1/2 when max{x, y} = y = uE. Therefore,

Aw =

{
XE

1 >
w

1− w
uE, XE

2 > uE
}
,

for w ≤ 1/2. Combining the two, we arrive to region given in Section 4.3.2.

Aw =

{
XE

1 > max

{
w

1− w
, 1

}
uE, XE

2 > max

{
1− w

w
, 1

}
uE
}
.
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B.2 Simulation Studies

B.2.1 Model inference

For Case III, we take p = 0.71, µ1 = 0, µ2 = (5, 3, 2, 3, 5), σΣ1 = (1.00, 0.60, 1.60,

0.80, 1.80), σΣ2 = (6.26, 4.31, 3.23, 4.01, 1.34), ρΣ1 = (0.26,−0.08, 0.34, 0.37,−0.41, 0.14,

0.19,−0.27, 0.35,−0.17) and ρΣ2 = (−0.14,−0.06,−0.02,−0.04, 0.06, 0.08,−0.23, 0.68,

−0.56, 0.19).
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Figure B.2.1: Boxplots of estimates of the Gaussian mixture copula model based on 50
replicated data sets for Case III. The true parameter values are indicated by the red
lines.



APPENDIX B. SUPPLEMENTARY MATERIAL FOR CHAPTER 4 237

4

5

6
T

im
e 

(in
 m

in
ut

es
)

300

400

500

600

T
im

e 
(in

 m
in

ut
es

)
Figure B.2.2: Time (in minutes) taken to optimise the log-likelihood 4.2.4 of a model
with d = 2 and k = 2 or d = 2 and k = 3 (left), and d = 5 and k = 2 (right).

Pairwise exchangeability

We present now examples of simplified model specifications for Cases I-III defined in

Section 4.3.1 from the main paper. More specifically, we consider pairwise exchange-

ability where for each mixture component Zj, µ
1
j = . . . = µdj and σ2

1j = . . . = σ2
dj for

j ∈ K, d ∈ D.

For Case I, we set p1 = 0.30, µ1 = 0, µ2 = 3, σΣ1 = 1, σΣ2 = 1.62, ρΣ1 = 0.29

and ρΣ2 = 0.20. In Case II, when an extra mixture component is added, we retain

the models for the Z1 and Z2 mixture components, and for the extra mixture com-

ponent we take (p1, p2) = (0.20, 0.53), µ3 = 5, σΣ3 = 2.51 and ρΣ3 = 0.02. For

Case III, we take p = 0.27, µ1 = 0, µ2 = 2, σΣ1 = 1, σΣ2 = 0.6, ρΣ1 = (−0.12,

0.79, 0.03, 0.11,−0.39,−0.20,−0.24, 0.03,−0.30,−0.23) and ρΣ2 = (−0.14,−0.06,−0.02,

−0.04, 0.06, 0.08,−0.23, 0.68,−0.56, 0.19). The results are shown in Figure B.2.3.
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Figure B.2.3: Boxplots of estimates of the Gaussian mixture copula model when as-
suming pairwise exchangeability based on 50 replicated data sets: (a) Case I, (b) Case
II and (c) Case III. The true parameter values are indicated by the red lines.
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B.2.2 Model fit and diagnostics

Asymptotically independent data

Figure B.2.4 shows the results for ηD(r) for the case where the underlying data is AI

given in the main paper.
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Figure B.2.4: Estimates of ηD(r) for r ∈ (0.1) with true (in orange) and empirical
(in black) values also shown. The pointwise 95% confidence intervals for the empirical
ηD(r) are obtained through bootstrap. When d = 2 (left), models with k = 1 − 3
mixture components are considered, whereas when d = 5 only models with k = 1 − 2
mixture components are studied.

When considering a smaller sample size (n = 1000), the decrease in AIC with k = 3

in relation to when k = 1 is of −32.15, with k = 2 of −29.47 relative to k = 1. These

results indicate that either the k = 2 or the k = 3 model is suitable to model the data,

with a slight preference for the k = 3 model. Figure B.2.5 shows a comparison between

model-based χ2(r) and η2(r) with their true and empirical counterparts. Although

small, there are differences between the three fits, especially for the k = 3 model.

Asymptotically dependent data

Figure B.2.6 shows the results for ηD(r) for the case where the underlying data is AD

given in the main paper.
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Figure B.2.5: Estimates of χ2(r) (left) and of η2(r) (right) for r ∈ (0.1) with true
(in orange) and empirical (in black) values also shown. The pointwise 95% confidence
intervals for the empirical χ2(r) and η2(r) are obtained through bootstrap.
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Figure B.2.6: Estimates of ηD(r) for r ∈ (0.1) with true (in orange) and empirical
(in black) values also shown. The pointwise 95% confidence intervals for the empirical
ηD(r) are obtained through bootstrap. When d = 2 (left), models with k = 1 − 3
mixture components are considered, whereas when d = 5 only models with k = 1 − 2
mixture components are studied.

When considering a smaller sample size (n = 1000), the decrease in AIC with k = 3

in relation to when k = 1 is −43.18, whereas there is an increase in AIC of 11.69 with

k = 2 relative to k = 1. These results indicate that the k = 3 model is the most suitable

for the underlying data. Figure B.2.7 shows a comparison between model-based χ2(r)
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and η2(r) with their true and empirical counterparts. Only the k = 3 is able to capture

the extremal behaviour of the underlying data.
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Figure B.2.7: Estimates of χ2(r) (left) and of η2(r) (right) for r ∈ (0.1) with true
(in orange) and empirical (in black) values also shown. The pointwise 95% confidence
intervals for the empirical χ2(r) and η2(r) are obtained through bootstrap.

Non-exchangeable data

Figure B.2.8 shows the results for η2(r) in the case where the underlying data exhibits

asymmetry patterns given in the corresponding section of the main paper.

Weighted copula model

Figure B.2.9 shows the results for η2(r) for the case where the underlying data is

generated from the WCM, which is given in the corresponding section of the main

paper.
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Figure B.2.8: Estimates of η2(r) for r ∈ (0.1) with true (in orange) and empirical (in
black) values also shown. The pointwise 95% confidence intervals for the empirical η2(r)
are obtained through bootstrap.
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Figure B.2.9: Estimates of η2(r) for r ∈ (0.1) with true (in orange) and empirical (in
black) values also shown. The pointwise 95% confidence intervals for the empirical η2(r)
are obtained through bootstrap.
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B.3 Case study: air pollution data

Pairwise analysis

Figure B.3.1 shows the results for η2(r) for the pairwise analysis presented in the main

paper.
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Figure B.3.1: Estimates of η2(r) for r ∈ (0.1) with empirical (in black) values also
shown for pairs (NO2, NO) (left), (NO2, PM10) (middle) and (NO,PM10) (right).
The pointwise 95% confidence intervals for the empirical χ2(r) are obtained through
bootstrap.

Trivariate analysis

Figure B.3.2 shows the results for η3(r) for the trivariate analysis presented in the

corresponding section of the main paper.

Higher dimensional analysis

Figure B.3.3 shows the results for η5(r) for the full analysis presented in the main paper.
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Figure B.3.2: Estimates of χ3(r) for r ∈ (0.1) with empirical (in black) values also
shown for the triple (NO2, NO, PM10). The pointwise 95% confidence intervals for the
empirical χ2(r) are obtained through bootstrap.
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Figure B.3.3: Estimates of η5(r) for r ∈ (0.1) with empirical (in black) values also
shown for (O3, NO2, NO, SO2, PM10) in the winter season (left) and the summer season
(right). The pointwise 95% confidence intervals for the empirical χ5(r) are obtained
through bootstrap. Note that η5(r) for k = 1 and k = 2 overlap in the right panel.
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Supplementary material for

Chapter 5

C.1 DeepSets architecture

A schematic of the DeepSets architecture (recall Section 5.2.1 of the main paper) used

is shown in Figure C.1.1.

Z1

Zn

ψ(·)

ψ(·)

a(·) T ϕ(·) θ̂(·)...
...

Figure C.1.1: In the first step, the data inputs Z1, . . . ,Zn are transformed indepen-
dently through neural network ψ(·), They are then aggregated through a permutation-
invariant function a(·), obtaining the summary statistic T . In the last step, neural
network ϕ(·) maps the summary statistic T to an estimate of the vector of model
parameters θ̂(·).
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C.2 Parameter estimation

In this section, we present the simulation studies done for the remaining models con-

sidered in this work. In Section C.2.1, we show the performance of the NBEs for

uncensored data in five configurations of the WCM from Section 5.3.4 of the main pa-

per. Where feasible, a comparison with maximum likelihood inference is presented. In

Section C.2.2, we show the performance of the NBEs when the sample size and censor-

ing level are kept fixed, and when the sample size is assumed variable but the censoring

level is still fixed for Model W. Finally, in Sections C.2.3, C.2.4 and C.2.5, we present

the results for the remaining three models from Section 5.3.3 of the main paper. In all

these cases, a comparison with censored maximum likelihood estimation is given.

The neural network architecture used for parameter estimation (recall Section 5.4.2

of the main paper) is given in Table C.2.1.

Table C.2.1: Summary of the neural network architecture used to train the NBE. The
input array to the first layer represents the dimension d = 2 of data set Z; this differs
for uncensored and censored data. For the censored case, a dense Bilinear layer is used
instead, and an extra dimension for the indicator vector I is needed. In addition, the
input layer of ϕ(·) has an extra dimension in the case of censored data with random
censoring level τ. The output array |θ| to the last layer represents the number of pa-
rameters in the model.

Neural network Layer type Input dimension Output dimension

ψ(·)
Dense [2] or [2, 2] [128]
Dense [128] [128]
Dense [128] [256]

ϕ(·) Dense [256] or [257] [128]
Dense [128] [ |θ| ]

C.2.1 Weighted copula model

We consider now five additional configurations of the WCM. For the first two models,

we assume cb and ct to be one-parameter copulas, while for the remaining three con-

figurations cb is assumed to be a Gaussian copula, and ct is one of the flexible copulas
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mentioned in Section 5.3.3 of the main article. For these three models configurations,

the likelihood is infeasible and hence no comparison with MLE is provided. In all the

models, we take π(x1, x2; γ) = (x1x2)
γ as the weighting function. Since preliminary

analysis indicated that the neural network was struggling to learn γ, we set κ = log γ

and estimate κ instead. Lastly, the model-based χ(y) estimates of the WCM are ob-

tained using a Monte Carlo approximation with 500 000 samples.

Model 1: cb is a Gaussian copula and ct is a logistic copula

For the first model, we consider the copula tailored to the body cb to be a Gaussian

copula with correlation parameter ρ ∈ (−1, 1), and the copula tailored to the tail ct

to be a logistic copula with αL ∈ (0, 1]. Similarly to the weighting function parameter

γ, we take an alternative parameterisation and set τL = logit(αL). Additionally, we

set ρ ∼ Unif(−1, 1), τL ∼ Unif(−3, 3), which results in αL ∈ (0.05, 0.95), and κ ∼

Unif(−3.51, 1.95), which leads to γ ∈ (−0.03, 7.03), as the priors for the parameters.

The performance of the NBE is assessed in Figure C.2.1 where the true values of the

parameters are compared with their estimated values. It can be seen that parameter κ

exhibits a bit of variability, while parameters ρ and τL are estimated quite well via the

NBE. The coverage probabilities and average length of the 95% uncertainty intervals

obtained via a non-parametric bootstrap procedure shown in Table C.2.2. Similarly to

the main paper, we compute the coverage probabilities of 95% uncertainty intervals,

and their average length, for χ(y) at levels y = {0.50, 0.80, 0.95}; the results are shown

on the right of Table C.2.2. According to these results, the true χ(y) is within the

confidence intervals in more than 77% of the time, which suggest that this measure is

well derived from the NBE.
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Figure C.2.1: Assessment of the NBE when cb is a Gaussian copula with correlation
parameter ρ, ct is a logistic copula with parameter τL = logit(αL), and with weighting
function π(x1, x2;κ) = (x1x2)

exp{κ}, x1, x2 ∈ (0, 1) for a sample size of n = 1000.

Table C.2.2: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.50, 0.80, 0.95} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
ρ 0.71 0.26
τL 0.75 0.76
κ 0.69 1.33

χ(y) Coverage Length
χ(0.50) 0.77 0.05
χ(0.80) 0.79 0.08
χ(0.95) 0.78 0.09

Comparison with maximum likelihood estimation

Since the likelihood of this model is feasible, though computationally intensive, we

compare the estimations obtained by the NBE to the MLEs. With the assigned priors,

we generate five different parameter vectors θ = (ρ, τL, κ)
′ and the corresponding data

sets, each of which has n = 1000. Additionally, each data set is simulated 100 times. The

results are shown in Figure C.2.2; it can be seen that the NBE estimates are generally

more biased, and sometimes more variable, than the MLEs. However, they are less

likely to have big outliers as the neural network is trained in a bounded interval. Despite

slightly more biased estimates, the estimates obtained with the NBE are generally good.

Furthermore, it is substantially faster to obtain an estimate through NBE than through

maximum likelihood. In particular, on average, the MLE took 3 hours and 12 minutes

to evaluate, while the NBE took 0.653 seconds; this means that the NBE is about
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17, 663 times faster, which is a substantial improvement in computational time.

(a) (b)

(c) (d)

(e)

Figure C.2.2: Comparison between parameter estimates θ̂ = (ρ̂, τ̂L, κ̂)
′ given by MLE

(orange) and by NBE (red) for 100 samples with n = 1000. The true parameter values
are given by the red line. (a) θ = (0.91,−1.27, 1.71)′, (b) θ = (0.91, 1.73,−1.03)′, (c)
θ = (0.91,−0.55, 0.19)′, (d) θ = (0.91, 2.30,−0.38)′ and (e) θ = (0.91, 2.64,−2.95)′.
For better visualisation, the larger outliers obtained through MLE were removed for τ̂L
in (d) and (e).

Model 2: cb is a Frank copula and ct is a Joe copula

For the second model, we consider cb to be a Frank copula (Frank, 1979) with parameter

βF ∈ R, and ct to be a Joe copula (Joe, 1996) with αJ > 1. As priors for the model

parameters, we take βF ∼ Unif(−15, 15), αJ ∼ Unif(1, 15) and κ ∼ Unif(−3.51, 1.95).

The performance of the NBE is assessed in Figure C.2.3 where the true values of the

parameters are compared with their estimated values. It can be seen that all the

parameters are estimated quite well with the NBE, with βF and αJ showing a bit

of variability for lower and higher values, respectively. The coverage probabilities and

average length of the 95% uncertainty intervals obtained via a non-parametric bootstrap
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procedure for the parameter estimates and for χ(y) at levels y ∈ {0.50, 0.80, 0.95} are

shown in Table C.2.3. The lower coverage rates given on the left table reflect the bias

shown by the parameter estimates. However, the results for χ(y) suggest that the NBE

is able to capture the dependence structure of the data, especially for higher y, with

the true χ(y) being within the confidence intervals in more than 59% of the time.

Figure C.2.3: Assessment of the NBE when cb is a Frank copula with parameter β, ct is a
Joe copula with parameter αJ , and with weighting function π(x1, x2;κ) = (x1x2)

exp{κ},
x1, x2 ∈ (0, 1) for a sample size of n = 1000.

Table C.2.3: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.50, 0.80, 0.95} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
βF 0.68 3.03
αJ 0.72 1.95
κ 0.62 0.92

χ(y) Coverage Length
χ(0.50) 0.61 0.05
χ(0.80) 0.59 0.06
χ(0.95) 0.64 0.06

Comparison with maximum likelihood estimation

For this model the likelihood is feasible, though computational intensive. Therefore,

we compare the estimations obtained by the NBE and by the MLE for five different

parameter vectors θ = (βF , αJ , κ)
′ generated with the pre-specified priors. Addition-

ally, each data set with n = 1000 is simulated 100 times. The results are shown in

Figure C.2.4. Similarly to the first model, the NBE estimates are generally more biased
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than the MLEs, are less prone to have large outliers, and are generally good. While,

on average, the MLE took 52 minutes to evaluate, the NBE took 0.203 seconds, which

is about 15, 339 times faster.

(a) (b)

(c) (d)

(e)

Figure C.2.4: Comparison between parameter estimates θ̂ = (β̂F , α̂J , κ̂)
′ given by MLE

(orange) and by NBE (red) for 100 samples with n = 1000. The true parameter values
are given by the red line. (a) θ = (−13.63, 5.02, 1.71)′, (b) θ = (0.84, 12.04,−1.03)′, (c)
θ = (11.77, 6.73, 0.19)′, (d) θ = (1.54, 13.36,−0.38)′ and (e) θ = (−1.30, 14.17,−2.95)′.

Model 3: cb is a Gaussian copula and ct is Model W

For the third model, we consider ct to be Model W, for which the priors for the parame-

ters are those mentioned in Section 5.4.1 from the main paper. Figure C.2.5 displays the

performance of the NBE. Despite the variability shown, especially by α and κ, the NBE

provides good estimates overall. The coverage probabilities and average length of the

95% uncertainty intervals for the parameters and for χ(y) at levels y = {0.50, 0.80, 0.95}

obtained via a non-parametric bootstrap procedure are given in Table C.2.4 on the left

and right, respectively. The results for the parameter uncertainty are in agreement
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with Figure C.2.5 with the coverage probability for α being the lowest and its average

length the highest. However, as shown by the coverage probability for χ(y), this bias

does not affect this dependence quantity. More specifically, the true value is within the

confidence intervals in more than 85% of the time.

Figure C.2.5: Assessment of the NBE when cb is a Gaussian copula with correla-
tion parameter ρ, ct is Model W with parameters (α, ξ)′ and with weighting function
π(x1, x2;κ) = (x1x2)

exp{κ}, x1, x2 ∈ (0, 1) for a sample size of n = 1000.

Model 4: cb is a Gaussian copula and ct is Model HW

For the forth model, we consider ct to be Model HW with the priors for the model

parameters mentioned in Section 5.4.1 from the main paper. Figure C.2.6 displays the
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Table C.2.4: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.50, 0.80, 0.95} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
ρ 0.85 0.24
α 0.60 4.28
ξ 0.71 0.56
κ 0.73 1.16

χ(y) Coverage Length
χ(0.50) 0.91 0.06
χ(0.80) 0.89 0.09
χ(0.95) 0.85 0.11

performance of the NBE, showing that δ and ω seem to be over-estimated by the NBE

for lower values. Table C.2.5 shows the coverage probabilities and average length of

the 95% uncertainty intervals obtained via a non-parametric bootstrap procedure for

the parameters on the left, and for χ(y) at levels y = {0.50, 0.80, 0.95} on the right.

The results for the parameter estimates mirror the variability shown in Figure C.2.6,

where the coverage probability for ω and δ are the lowest. The coverage probabilities

of 95% uncertainty intervals for χ(y) show that the true value is within the confidence

intervals in more than 86% of the time, indicating that despite the bias shown by the

estimation, this dependence measure is well calibrated.

Table C.2.5: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.50, 0.80, 0.95} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
ρ 0.80 0.28
δ 0.58 0.15
ω 0.44 0.47
κ 0.71 1.33

χ(y) Coverage Length
χ(0.50) 0.91 0.07
χ(0.80) 0.88 0.10
χ(0.95) 0.86 0.12

Model 5: cb is a Gaussian copula and ct is Model E2

For the final model, we take ct to be Model E2 with the priors for the model parameters

mentioned in Section 5.4.1 from the main paper. Figure C.2.7 shows the performance

of the NBE. Similarly to Model 3, there is some variability in the NBEs, especially for
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Figure C.2.6: Assessment of the NBE when cb is a Gaussian copula with correlation
parameter ρ, ct is Model HW with parameters (δ, ω)′, and with weighting function
π(x1, x2;κ) = (x1x2)

exp{κ}, x1, x2 ∈ (0, 1) for a sample size of n = 1000.

α. This parameter is also the one with lowest coverage probability and wider intervals

for the parameters estimation, as shown in left of Table C.2.6. Similarly to the previous

models, the coverage probability for χ(y) at levels y = {0.50, 0.80, 0.95}, shown in the

right of Table C.2.6, indicate that this measure is well captured by the NBE, with the

true value lying within the confidence intervals in at least 83% of the time.
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Figure C.2.7: Assessment of the NBE when cb is a Gaussian copula with correla-
tion parameter ρ, ct is Model E2 with parameters (α, ξ)′ and with weighting function
π(x1, x2;κ) = (x1x2)

exp{κ}, x1, x2 ∈ (0, 1) for a sample size of n = 1000.

Table C.2.6: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.50, 0.80, 0.95} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
ρ 0.83 0.22
α 0.57 4.48
ξ 0.72 0.59
κ 0.75 0.96

χ(y) Coverage Length
χ(0.50) 0.88 0.05
χ(0.80) 0.84 0.07
χ(0.95) 0.83 0.10
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C.2.2 Model W

Variable sample size and censoring level

Comparison with censored maximum likelihood estimation

The comparison between the NBE and CMLE estimators for the remaining three pa-

rameter vectors considered in the simulation study of the main paper is given in Fig-

ure C.2.8.

(a) (b)

(c)

Figure C.2.8: Comparison between parameter estimates θ̂ = (α̂, ξ̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameters are
given by the red line. (a) θ3 = (9.17, 0.81)′ with τ3 = 0.80, (b) θ4 = (7.71,−1.08)′ with
τ4 = 0.73 and (c) θ5 = (7.10,−1.38)′ with τ5 = 0.98. For better visualisation, the larger
outliers obtained through MLE are removed for α̂ in (e).

For comparison with the simulation study of Model W given in Section 5.4.2, we

now present the results for when both sample size n and censoring level τ are kept fixed,

and for when the sample size is assumed variable but the censoring level is kept fixed.
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Fixed sample size and censoring level

We first assume that the sample size and the censoring level are kept fixed at n = 1000

and τ = 0.8, respectively, and the performance of the NBE is shown in Figure C.2.9.

Similarly to the case presented in Section 5.4.2 of the main paper, the NBE exhibits

some bias for larger values of α. This is also noticeable with the average length of the

95% uncertainty intervals obtained via a non-parametric bootstrap procedure given in

Table C.2.7. It can also be seen that the coverage probabilities are slightly higher than

the ones from Section 5.4.2. This might be due to the fact that there are less unknown

variables in this configuration. Finally, the coverage probabilities of 95% uncertainty

intervals, and their average length, for χ(y) at levels y = {0.80, 0.95, 0.99} are shown

on the right of Table C.2.7. The results are similar to the ones presented in the main

paper, with a slightly higher coverage for larger y.

Figure C.2.9: Assessment of the NBE for Model W with parameters θ = (α, ξ)′ for a
sample size of n = 1000 and fixed censoring level τ = 0.8.

Comparison with censored maximum likelihood estimation

We compare the estimations obtained by the NBE and by the MLE for the five param-

eter vectors θ = (α, ξ)′ considered in Section 5.4.2 with now fixed τ = 0.8. Likewise
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Table C.2.7: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.80, 0.95, 0.99} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
α 0.79 4.06
ξ 0.88 0.51

χ(y) Coverage Length
χ(0.80) 0.91 0.07
χ(0.95) 0.92 0.09
χ(0.99) 0.92 0.10

before, each data set is simulated 100 times and has a sample size of n = 1000. The

results are shown in Figure C.2.10; these are fairly similar to those obtained when n and

τ are assumed unknown, and given in the main paper. This is also the configuration for

which censored MLE is faster; for instance, on average, the CMLE took 77.550 seconds,

while the NBE was 356 times faster with an average time of 0.218 seconds.

Variable sample size and fixed censoring level

We now assume the sample size is unknown but we keep the censoring level fixed

at τ = 0.8. The performance of the NBE is given in Figure C.2.11, where a similar

behaviour to the results obtained either when n is assumed fixed or when τ is also

assumed unknown. The coverage probability of the 95% uncertainty intervals obtained

via (non-parametric) bootstrap shown in Table C.2.8 are now slightly lower than the

ones from the case when n is assumed fixed at 1000. However, these are still slightly

higher that those from Section 5.4.2. The coverage probabilities of 95% uncertainty

intervals, and their average length, for χ(y) at levels y = {0.80, 0.95, 0.99} are shown

on the right of Table C.2.8, and are similar in magnitude to the corresponding results

presented in the main paper.

Comparison with censored maximum likelihood estimation

The same five parameter vectors θ = (α, ξ)′ considered for the cases where n is fixed at

1000 and the one presented in Section 5.4.2 are used to compare the NBE and CMLE
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(a) (b)

(c) (d)

(e)

Figure C.2.10: Comparison between parameter estimates θ̂ = (α̂, ξ̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameters are
given by the red line. (a) θ = (2.94, 0.11)′, (b) θ = (8.87,−1.97)′, (c) θ = (9.17, 0.81)′,
(d) θ = (7.10,−1.38)′ and (e) θ = (7.71,−1.08)′.

Table C.2.8: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.80, 0.95, 0.99} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
α 0.72 3.53
ξ 0.80 0.46

χ(y) Coverage Length
χ(0.80) 0.90 0.06
χ(0.95) 0.88 0.08
χ(0.99) 0.85 0.09

estimates. Similarly to the previous case, we fix τ = 0.8, and each data set has a sample

size of n = 1000 and is simulated 100 times. No evident key differences to the estimates
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Figure C.2.11: Assessment of the NBE for Model W with parameters θ = (α, ξ)′ for a
sample size of n = 1000 and fixed censoring level τ = 0.8.

obtained when n is assumed fixed and when n and τ are assumed unknown are shown

by the results in Figure C.2.12. For this case, the average time to get a NBE is of 0.470

seconds, which is about 165 faster than CMLE on average.

General conclusions

The results with fixed censoring level (τ = 0.8) with fixed (n = 1000) and variable sam-

ple size exhibit similar findings. In the case where both τ and n are fixed, the obtained

bootstrap-based intervals have better coverage. Although not as evident, this is also the

case when we assume fixed τ = 0.8 with a variable sample size. When comparing the

estimates given by the NBEs with the ones obtained by classical inference techniques,

fixing one or both n and τ did not improve the performance of the estimators.
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(a) (b)

(c) (d)

(e)

Figure C.2.12: Comparison between parameter estimates θ̂ = (α̂, ξ̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameters are
given by the red line. (a) θ = (2.94, 0.11)′, (b) θ = (8.87,−1.97)′, (c) θ = (9.17, 0.81)′,
(d) θ = (7.10,−1.38)′ and (e) θ = (7.71,−1.08)′.
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C.2.3 Model HW

We assess the performance of the NBE for Model HW. The results are shown in Fig-

ure C.2.13 and Table C.2.9. Similarly to Model W, there is some variability in the

estimates, in particular for lower values of δ and ω. The coverage probabilities of 95%

uncertainty intervals, and their average length, for χ(y) at levels y = {0.80, 0.95, 0.99},

shown on the right of Table C.2.8, indicate that even with biased results, the NBE is

able to characterise the extremal dependence at high levels of y.We note that, similarly

to the study involving Model W given in the main paper, the coverage probabilities for

χ(y) are achieved with new data sets for 1000 parameter configurations, each generated

with a fixed censoring level τ = 0.8.

Figure C.2.13: Assessment of the NBE for Model HW, where V follows a bivariate
Gaussian copula, with parameters θ = (δ, ω)′ for a sample size of n = 1000.

Table C.2.9: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.80, 0.95, 0.99} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
δ 0.64 0.12
ω 0.69 0.41

χ(y) Coverage Length
χ(0.80) 0.90 0.08
χ(0.95) 0.90 0.09
χ(0.99) 0.90 0.10
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Comparison with censored maximum likelihood estimation

Similarly to the previous cases, we generate five parameter vectors from the priors

considered with the corresponding data sets with n = 1000, and we simulate each data

set 100 times. The comparison between the NBE and CMLE is shown in Figure C.2.14;

the estimates given by the NBE are quite good, particularly for lower censoring levels.

As for computational times, on average the CMLE took 198.489 seconds, while the

NBE was 732 times faster with an average of 0.271 seconds.

(a) (b)

(c) (d)

(e)

Figure C.2.14: Comparison between parameter estimates θ̂ = (δ̂, ω̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameters are
given by the red line. (a) θ = (0.20, 0.37)′ with τ = 0.65, (b) θ = (0.51,−0.39)′ with
τ = 0.76, (c) θ = (0.60,−0.61)′ with τ = 0.95, (d) θ = (0.88, 0.54)′ with τ = 0.57 and
(e) θ = (0.42, 0.39)′ with τ = 0.91.
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C.2.4 Model E1

Figure C.2.15 and Table C.2.10 show the performance of the NBE for Model E1. As can

be seen, parameters α and β have the lowest coverage probability and higher average

length of their 95% uncertainty intervals; this is in agreement with the variability shown

when comparing the true values with their estimated values in Figure C.2.15. As before,

we compute the coverage probabilities of the 95% confidence intervals for χ(y) at levels

y = {0.80, 0.95, 0.99} by considering new data sets for 1000 parameter configurations,

each generated with a fixed censoring level τ = 0.8. The results, given on the right of

Table C.2.10, indicate that the bias shown by the NBE does not seem to influence the

estimation of χ(y). In particular, the true value is within the confidence intervals in

more than 81% of the time.

Figure C.2.15: Assessment of the NBE for Model E1 with parameters θ = (α, β, µ)′ for
a sample size of n = 1000.

Table C.2.10: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.80, 0.95, 0.99} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
α 0.38 3.04
β 0.61 2.84
µ 0.70 0.51

χ(y) Coverage Length
χ(0.80) 0.82 0.11
χ(0.95) 0.82 0.11
χ(0.99) 0.81 0.12
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Comparison with censored maximum likelihood estimation

We compare the estimations obtained by the NBE and by the CMLE for five parameter

vectors θ = (α, β, µ)′ generated from the priors considered. Each corresponding data

set has n = 1000 and is simulated 100 times. Similarly to the other models considered,

the NBE is more biased than the CMLE and, in some cases, can be more variable than

the CMLE. Despite that, on average, the CMLE took 28 minutes, whereas the NBE

took 0.159 seconds, meaning that the NBE is about 10, 420 times faster.

(a) (b)

(c) (d)

(e)

Figure C.2.16: Comparison between parameter estimates θ̂ = (α̂, β̂, µ̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameter
values are given by the red line. (a) θ = (2.77, 10.54, 2.51)′ with τ = 0.79, (b)
θ = (9.09, 14.06, 1.43)′ with τ = 0.60, (c) θ = (9.09, 14.06, 1.43)′ with τ = 0.80, (d)
θ = (7.61, 4.60, 1.99)′ with τ = 0.73 and (e) θ = (6.99, 3.12, 3.30)′ with τ = 0.98. For
better visualisation, the larger values obtained through MLE were removed for θ in (e).
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C.2.5 Model E2

For the final model, we consider Model E2, for which the performance of the NBE is

shown in Figure C.2.17 and Table C.2.11. Parameter α shows the higher variability,

especially for larger values, with its 95% uncertainty intervals being wider and having

lower coverage probabilities. The coverage probabilities of 95% uncertainty intervals of

χ(y) at levels y = {0.80, 0.95, 0.99}, shown on the right of Table C.2.11, indicate that

the this measure is well calibrated, with the true χ(y) lying within the intervals at least

87% of the time in spite of the bias shown by the NBE. As before, the results for χ(y)

are obtained with ne data sets for 1000 parameter configurations with a fixed censoring

level τ = 0.8.

Figure C.2.17: Assessment of the NBE for Model E1 with parameters θ = (α, ξ)′ for a
sample size of n = 1000.

Table C.2.11: Coverage probability and average length of the 95% uncertainty intervals
for the parameters (left) and for χ(y) at levels y = {0.80, 0.95, 0.99} (right) obtained via
a non-parametric bootstrap procedure averaged over 1000 models fitted using a NBE
(rounded to 2 decimal places).

Parameter Coverage Length
α 0.65 3.10
ξ 0.75 0.44

χ(y) Coverage Length
χ(0.80) 0.94 0.06
χ(0.95) 0.90 0.10
χ(0.99) 0.87 0.12
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Comparison with censored maximum likelihood estimation

The estimation obtained by the NBE and the CMLE is assessed for five parameter

vectors θ = (α, ξ)′ and their corresponding data sets with n = 1000, which are simulated

100 times each. The results, shown in Figure C.2.18, indicate that the NBE is more

biased than the CMLE. However, as with the previous models, the NBE is about 2, 314

times faster than CMLE; in particular, on average, the CMLE took 21 minutes to

compute, whilst the NBE took 0.557 seconds.

C.3 Model selection

The neural network architecture used for model selection (recall Section 5.4.3 of the

main paper) is given in Table C.3.1.

Table C.3.1: Summary of the neural network architecture used for the model selection
classifier. The input array to the first layer represents the dimension d of data set Z
and the one-hot encoded vector I; see Section 5.2.3. The output array of the last layer
of neural network ψ differ based on the number of models M : for M = 2, we have
wψ = 128, while for M = 4, wψ = 256. The output array of the last layer of neural
network ϕ represents the output class probabilities p̂.

Neural network Layer type Input dimension Output dimension

ψ(·)
Dense [2, 2] [128]
Dense [128] [128]
Dense [128] [wψ]

ϕ(·) Dense [dψ + 1] [128]
Dense [128] [M ]

C.4 Misspecified scenarios

We present now two examples, one for each study performed in Section 5.4.4 from

the main paper. For each case, the best model is selected through the trained neural

classifier, and the vector of parameters is estimated using the NBE trained for inference

on the selected model. In addition, a comparison with classical model selection tools and
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(a) (b)

(c) (d)

(e)

Figure C.2.18: Comparison between parameter estimates θ̂ = (α̂, ξ̂)′ given by CMLE
(orange) and by NBE (red) for 100 samples with n = 1000. The true parameter values
are given by the red line. (a) θ = (2.77, 0.11)′ with τ = 0.79, (b) θ = (8.79,−1.97)′

with τ = 0.60, (c) θ = (9.09, 0.81)′ with τ = 0.80, (d) θ = (7.61,−1.08)′ with τ = 0.73
and (e) θ = (6.99,−1.38)′ with τ = 0.98. For better visualisation, the larger outliers
obtained through MLE were removed for α̂ in (e).

inference is given. As a further diagnostic, we compare χ(y) for y ∈ (0, 1) obtained with

the NBE for the estimated model with their empirical counterparts, the true values and

with the ones obtained by the model selected and estimated through BIC and CMLE.

Results for model selection through the neural classifier and BIC for the Gaussian

data case can be seen on the left of Table C.4.1, and the estimates for the vector of

parameters obtained by the NBE and CMLE are on the right. The neural classifier
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Table C.4.1: Model selection procedure obtained through the probabilities given by the
neural classifier and through BIC (left), and parameter estimates given by the NBE
and by the CMLE (right) for the selected model (in bold). All the values are rounded
up to 3 decimal places.

Model p̂ BIC

Model W 4.609× 10−5 569.257
Model HW 0.987 570.297

Model E1 2.392× 10−8 576.295
Model E2 0.013 576.452

Method Model parameters

NBE (Model HW) (δ̂, ω̂) = (0.201, 0.400)

CMLE (Model W) (α̂, ξ̂) = (1.155,−0.092)

selected Model HW as the most suitable one for the data set, whilst according to

the BIC, Model W is the best one. In spite of this difference, both models indicate

the presence of asymptotically independent data since δ̂ ≤ 0.5 and ξ̂ < 0. This is

in agreement with the underlying Gaussian data being AI. The comparison between

χ(y) obtained by the models estimated through the NBE and the CMLE, with the

true values of χ(y) based on the Gaussian copula, and their empirical estimates, for

y ∈ [0.75, 0.99] are shown in the left panel of Figure C.4.1. The model estimates

obtained through CMLE inference are overall closer to the truth than the ones given by

the NBE; however, the NBE estimates are closer to the empirical estimates. Overall,

the extremal dependence behaviour of the data is well captured by the trained NBE.

Table C.4.1 gives the results for model selection and parameter estimation for the

logistic data case. For the model selection, the neural classifier selected Model HW,

whereas BIC preferred Model W, though the difference with Model E2 is very small.

Despite this difference, looking at the parameters for each model that indicate the

extremal dependence structure, we have δ̂ > 0.5 and ξ̂ > 0, respectively. Thus, both

parameters indicate correctly the presence of asymptotically dependent data. The com-

parison between χ(y) obtained by the models estimated through the NBE and the

CMLE, with the true values χ(y) for the logistic data, and their empirical estimates,

for y ∈ [0.8, 0.99] is shown in right panel of Figure C.4.1. For this case, the estimated

model χ(y) given by the CMLE overlap with the true values for the logistic data. On
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Table C.4.2: Model selection procedure obtained through the probabilities given by the
neural classifier and through BIC (left), and parameter estimates given by the NBE
and by the CMLE (right) for the selected model (in bold). All the values are rounded
to 3 decimal places.

Model p̂ BIC

Model W 7.774× 10−5 −53.077
Model HW 0.999 −46.030

Model E1 2.104× 10−7 −38.450
Model E2 0.001 −52.987

Method Model parameters

NBE (Model HW) (δ̂, ω̂) = (0.640,−0.147)

CMLE (Model W) (α̂, ξ̂) = (2.173, 1.000)

(a) (b)

Figure C.4.1: Model-based χ(y) given by the NBE (in orange) and by the CMLE (in
green), and empirical χ(y) (in grey) for y ∈ [τ, 0.99]. The 95% confidence bands were
obtained by boostrapping. (a) χ(y) for a Gaussian copula with correlation parameter
ρ = 0.5 (in blue) and censoring level τ = 0.75, and (b) χ(y) for a logistic distribution
with dependence parameter αL = 0.4 (in blue) and censoring level τ = 0.8. Note that
χ(y) for the logistic data and for the model given by the CMLE almost overlap (right).

the other hand, the model χ(y) estimated by the NBE seems to under-estimate the

truth. However, as before, the extremal dependence structure is still reasonably well

captured with the trained NBE.
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C.5 Case study: changes in horizontal geomagnetic

field fluctuations

In this section, we summarise the results for the remaining censoring levels for each

pair of locations. Contrarily to the main paper, we only show the selected model for

each censoring level and the type of extremal dependence estimated with it.

Pair (SCO, STF)

Table C.5.1: Model selected by the neural classifier for censoring levels
τ = {0.60, 0.65, . . . , 0.95} and parameter estimates given by the trained NBE for pair
(SCO, STF). All the values are rounded up to 3 decimal places.

τ Model p̂ θ̂NBE Extremal dependence

0.60 Model HW 0.999 (δ̂, ω̂) = (0.170, 0.743) AI

0.65 Model HW 0.998 (δ̂, ω̂) = (0.178, 0.767) AI

0.70 Model HW 0.954 (δ̂, ω̂) = (0.178, 0.800) AI

0.75 Model HW 0.906 (δ̂, ω̂) = (0.195, 0.767) AI

0.80 Model HW 0.917 (δ̂, ω̂) = (0.228, 0.742) AI

0.85 Model HW 0.922 (δ̂, ω̂) = (0.258, 0.714) AI

0.90 Model E2 0.935 (α̂, ξ̂) = (3.512, −0.368) AI

0.95 Model E2 0.640 (α̂, ξ̂) = (3.616, −0.399) AI
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Pair (SCO, STJ)

Table C.5.2: Model selected by the neural classifier for censoring levels
τ = {0.60, 0.65, . . . , 0.95} and parameter estimates given by the trained NBE for pair
(SCO, STJ). All the values are rounded up to 3 decimal places.

τ Model p̂ θ̂NBE Extremal dependence

0.60 Model HW 1.000 (δ̂, ω̂) = (0.085, 0.560) AI

0.65 Model HW 1.000 (δ̂, ω̂) = (0.093, 0.580) AI

0.70 Model HW 1.000 (δ̂, ω̂) = (0.109, 0.586) AI

0.75 Model HW 1.000 (δ̂, ω̂) = (0.104, 0.591) AI

0.80 Model HW 0.958 (δ̂, ω̂) = (0.105, 0.626) AI

0.85 Model E2 0.900 (α̂, ξ̂) = (2.316 − 0.791) AI

0.90 Model E2 0.940 (α̂, ξ̂) = (2.748, −0.834) AI

0.95 Model E2 0.875 (α̂, ξ̂) = (3.223, −0.782) AI

Pair (STF, STJ)

Table C.5.3: Model selected by the neural classifier for censoring levels
τ = {0.60, 0.65, . . . , 0.95} and parameter estimates given by the trained NBE for pair
(STF, STJ). All the values are rounded up to 3 decimal places.

τ Model p̂ θ̂NBE Extremal dependence

0.60 Model HW 1.000 (δ̂, ω̂) = (0.106, 0.558) AI

0.65 Model HW 1.000 (δ̂, ω̂) = (0.113, 0.571) AI

0.70 Model HW 1.000 (δ̂, ω̂) = (0.117, 0.588) AI

0.75 Model HW 0.996 (δ̂, ω̂) = (0.134, 0.585) AI

0.80 Model HW 0.920 (δ̂, ω̂) = (0.125, 0.610) AI

0.85 Model E2 0.672 (α̂, ξ̂) = (2.420, −0.849) AI

0.90 Model E2 0.727 (α̂, ξ̂) = (2.573, −0.846) AI

0.95 Model E2 0.832 (α̂, ξ̂) = (3.711, −0.772) AI



Appendix D

Supplementary material for

Chapter 6

D.1 Additional figures for Section 6.3

In this section, we present additional figures for Section 6.3 of the main paper, concerned

with challenges C1 and C2. Figures D.1.1-D.1.3 support the exploratory analysis for

challenges C1 and C2. We explore the within-year seasonality of the response variable Y

in Figure D.1.1, looking at the distribution of Y per month and across the two seasons.

This shows that there is a significant difference in the distribution of Y between seasons

1 and 2, but within each season there is little difference across months.

Figure D.1.2 shows a scatter plot of Y against each covariate V1, . . . , V8, excluding V6

which corresponds to season. Covariates V1, V2 and V8 do not seem to have a relationship

with Y , whilst there seems to be dependence for the remaining covariates. These

observed relationships appear complex and non-linear.

273
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Figure D.1.1: Box plot of the response variable Y with each month and season (season
1 in grey and season 2 in red).
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Figure D.1.2: Scatter plots of explanatory variables V1, . . . , V4, wind speed (V6), wind
direction (V7) and atmosphere (V8), from top-left to bottom-right (by row), against the
response variable Y .
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We also explore temporal dependence in Figure D.1.3 that details the auto-corre-

lation function (acf) values for the response Y and explanatory variables V1, . . . , V4,

V6, . . . , V8, up to a lag of 60. All variables have negligible acf values beyond lag 0,

except V6 (wind speed), V7 (wind direction) and V8 (atmosphere).
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Figure D.1.3: Autocorrelation function plots for the response variable Y and explana-
tory variables V 1, . . . , V 4, wind speed (V 6), wind direction (V 7) and atmosphere (V 8),
from top-left to bottom-right (by row).

Figure D.1.4 shows the QQ-plots corresponding to a standard GPD model fitted

to the excesses of Y above a constant (left) and seasonally-varying threshold (right).
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95% tolerance bounds (grey) show a lack of agreement between observations and the

standard GPD model above a constant threshold. The second plot demonstrates a

significant improvement in model fit.
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Figure D.1.4: QQ-plots showing standard GPD model fits with 95% tolerance bounds
(grey) above a constant (left) and stepped-seasonal (right) threshold.

Figure D.1.5 shows a detailed summary of the pattern of missing data in the data

and can be produced using the missing_pattern function in the finalfit package in R

(Harrison et al., 2024). To interpret the figure note that blue and red squares represent

observed and missing variables, respectively. The number on the right indicates the

number of missing predictor variables (i.e., the number of red squares in the row), while

the number on the left is the number of observations that fall into the row category. On

the bottom, we have the number of observations that fall into the column category. For

example, 18,545 observations are fully observed (denoted by the first row); there are

407 observations where only V 4 is missing (denoted by the second row), 13 observations

where both V 4 and V 6 are missing (denoted by the fourth row), 456 observations where

V 4 and at least one other predictor is missing (denoted by the last column in the table),

etc. It can be seen that there are very few observations where more than one predictor

is missing.
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Figure D.1.5: Detailed pattern of missing predictor variables in the Amaurot data set.
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D.2 Additional figures for Section 6.4

In this section, we present additional plots related to Section 6.4 of the main article.

Figure D.2.1 illustrates the time series of both covariates for the first 3 years of the

observation period. It can be seen how the seasons vary periodically over each year, as

well as the discrete nature of the atmospheric covariate.

0 200 400 600 800

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Season over time

t

S
t

0 200 400 600 800

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Atmosphere over time

t

A
t

Figure D.2.1: Plots of St (left) and At (right) against t for the first 3 years of the
observation period.

Bootstrapped χ estimates for the groups GA
I,k, k ∈ {1, . . . , 10}, I ∈ I \ {1, 2, 3} and

GS
I,k, k ∈ {1, 2}, I ∈ I are given in Figures D.2.2 - D.2.5. These estimates illustrate the

impact of atmosphere on the dependence structure.

For a 3-dimensional random vector, the angular dependence function, denoted λ(·),

is defined on the unit-simplex S2 and describes extremal dependence along different

rays ω ∈ S2. As noted in Section 4.2 of the main manuscript, we can associate each of

the probabilities from C3, p1 and p2, with points on S2, denoted ω1 and ω2 respectively.

With I = {1, 2, 3}, we consider λ(ω1) and λ(ω2) over the subsets GS
I,k, k ∈ {1, 2} and

GA
I,k, k ∈ {1, . . . , 10}. We note that λ(ω1) is analogous with the coefficient of tail

dependence η ∈ (0, 1] (Ledford and Tawn, 1996), with η = 1/3λ(ω1); this corresponds
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Figure D.2.2: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure D.2.3: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.

with the region where all variables are simultaneously extreme. Furthermore, λ(ω2),

which corresponds to a region where only two variables are extreme, is only evaluated

after an additional marginal transformation of the third Coputopia time series; see
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Figure D.2.4: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.

Section 4.2 of the main manuscript.

Estimation of λ(·) for each simplex point and subset was achieved using the Hill

estimator (Hill, 1975) at the 90% level, with uncertainty subsequently quantified via

bootstrapping. These results are given in Figures D.2.6 - D.2.9. These plots provide

further evidence of a relationship between the extremal dependence structure and the

covariates.

To illustrate the estimated trend in dependence, Figure D.2.10 shows the estimated

scale functions, σ (ω;xt), over atmosphere for parts 1 and 2. Under the assumption of

asymptotic normality in the spline coefficients, 95% confidence intervals are obtained

via posterior sampling; see Wood (2017) for more details. We observe that σ tends

to increase and decrease over atmosphere for parts 1 and 2, respectively, although the

trend is less pronounced for the latter. Under our modelling framework, we note that

higher values of σ are associated with less positive extremal dependence in the direction

ω of interest; to see this, observe that the survivor function of the GPD with fixed ξ is

negatively associated with σ. Considering the trend in σ (ω;xt), our results indicate a
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Figure D.2.5: Boxplots of empirical χ estimates obtained for the subsets GS
I,k, with

k = 1, 2. In each case, pink and blue colours illustrate estimates for seasons 1 and
2, respectively. From top left to bottom right: I = {1, 2, 3}, I = {1, 2}, I = {1, 3},
I = {2, 3}.

decrease in dependence in the region where all variables are extreme.



APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6 282

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0.
67

0.
68

0.
69

0.
70

0.
71

0.
72

λ(ω1) estimates over atmosphere subsets

λ̂

Figure D.2.6: Boxplots of empirical λ(ω1) estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in λ estimates as the atmospheric values are increased.
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Figure D.2.7: Boxplots of empirical λ(ω1) estimates obtained for the subsets GS
I,k, with

k = 1, 2 and I = {1, 2, 3}. In each case, pink and blue colours illustrate estimates for
seasons 1 and 2, respectively.



APPENDIX D. SUPPLEMENTARY MATERIAL FOR CHAPTER 6 283

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

0.
88

0.
89

0.
90

0.
91

0.
92

0.
93

λ(ω2) estimates over atmosphere subsets

λ̂

Figure D.2.8: Boxplots of empirical λ(ω2) estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in λ estimates as the atmospheric values are increased.
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Figure D.2.9: Boxplots of empirical λ(ω2) estimates obtained for the subsets GS
I,k, with

k = 1, 2 and I = {1, 2, 3}. In each case, pink and blue colours illustrate estimates for
seasons 1 and 2, respectively.
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Figure D.2.10: Estimated σ functions (green) over atmosphere for part 1 (left) and
2 (right). In both cases, the regions defined by the black dotted lines represent 95%
confidence intervals obtained using posterior sampling.
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D.3 Additional figures for Section 6.5

In this section, we present additional plots related to Section 6.5 of the main article an

we refer to p1 and p2 as parts 1 and 2 of C4, respectively. Figure D.3.1 shows a heat

map of empirically estimated η(·) dependence coefficients and provides further evidence

of the existence of the 5 dependence subgroups identified in our exploratory analysis for

challenge C4. It also suggests that our modelling assumptions are reasonable; specifi-

cally that there is in-between group independence, and that the extremes within each

group do not occur simultaneously.

G1

G2

G3

G4

G5

G1 G2 G3 G4 G5

0.00

0.25

0.50

0.75

1.00
η̂(u)

Figure D.3.1: Heat map of estimated empirical pairwise η(u) extremal dependence
coefficients with u = 0.95.

Figure D.3.2 shows the bootstrapped estimated individual group and overall probabili-

ties with respect to conditioning threshold quantile for part 1 of challenge C4. Similarly,

Figure D.3.3 shows the bootstrapped estimated individual group and overall probabil-

ities with respect to conditioning threshold quantile for part 2 of challenge C4.
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Figure D.3.2: Part 1 subgroup and overall bootstrapped probability estimates on the
log scale. The red points indicate the original sample estimates and the colouring of the
boxplots indicates the choice of conditioning threshold, with the conditioning quantile
indices 1-6 referring to the quantile levels {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respectively.
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Figure D.3.3: Part 2 subgroup and overall bootstrapped probability estimates on the
log scale for C4. The red points indicate the original sample estimates and the colour-
ing of the boxplots indicates the choice of conditioning threshold, with the conditioning
quantile indices 1-6 referring to the quantile levels {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respec-
tively.
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