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Abstract

We use Luttinger surgery to show that there are no Lagrangian Klein bottles in
S2×S2 in the Z2-homology class of an S2-factor if the symplectic area of that factor
is at least twice that of the other.

1 Introduction

§1.1 Let X = S2 × S2 and let ωλ be the product symplectic form which gives the factors
areas 1 and λ respectively. Define the homology classes

α := [S2 × {p}]
β := [{p} × S2].

If λ < 2 then there is a Lagrangian Klein bottle in the homology class β; one can construct
this as a visible Lagrangian submanifold [6] (see Figure 1 below1) or in several other ways
[3, 4, 7].

The line over which the visible Lagrangian Klein bottle projects must have slope 2 and
connect the bottom and top edges, so it can be drawn if and only if λ < 2. For this reason,
the second author conjectured in [6] that there is no Lagrangian Klein bottle in the class
β when λ ≥ 2. We will prove this.

§1.2 Theorem. If L ⊂ X is a Lagrangian Klein bottle for ωλ in the homology class β
then λ < 2.

1The picture in [6, Fig. 2] is wrong and should be rotated by 90 degrees otherwise the Klein bottle
lives in the Z2-homology class α.
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Figure 1: The base (left) and fibre (right) of the moment map µ : X → R2. A visible
Lagrangian Klein bottle lives over the bold line in the base (slope 2) and intersects each
fibre in the bold line shown on the right (slope −1/2).

§1.3 Indeed, there are no null-homologous Klein bottles in X by Shevchishin [13] and
Nemirovski [11], and there are none in the Z2-homology class α + β because they would
violate the Audin identity [1]:

χ(L) = [L] · [L] mod 4

which holds for any totally real embedded submanifold L of an almost complex surface.
Here χ is the Euler characteristic and [L] · [L] mod 4 denotes the Pontryagin square of the
Z2-homology class. Therefore Theorem §1.2 gives a complete picture of which homology
classes are inhabited by Lagrangian Klein bottles for which symplectic forms.

§1.4 There is also a complete understanding of which homology classes are inhabited
by totally real Klein bottles, worked out by Derdzinski and Januszkiewicz [5, Proposition
29.1]. If we allow immersions then all homology classes can be represented, but there
are restrictions on the Maslov classes. If we allow only embeddings then the class α + β
cannot be represented but the others can. The restriction on Maslov classes will be vitally
important to us, so we review this in §1.7 once we have established more notation.

§1.5 The usual toric diagrams for other Hirzebruch surfaces also carry visible Klein bot-
tles. We can perform a sequence of almost toric mutations to get from such a diagram to
either a rectangle (for an even Hirzebruch surface) or a triangle with its corner truncated
(for an odd Hirzebruch surface), and this sequence of almost toric mutations happens away
from the visible Klein bottles, so the families of visible Klein bottles coming from different
Hirzebruch surfaces are symplectomorphic to each other. Note that in the case of odd
Hirzebruch surfaces, the visible Klein bottles are also real, i.e. fixed loci of anti-symplectic
involutions.

§1.6 Klein bottles. We will think of the Klein bottle as the quotient of R2 (coordinates
(ϕ, ψ)) by the action generated by the transformations

(ϕ, ψ) 7→ (ϕ+ 1,−ψ), (ϕ, ψ) 7→ (ϕ, ψ + 1).

2



We can represent this quotient as a square with its sides identified as in Figure 2; we write
A for the homology class of the loop t 7→ (t, 0) and B for the homology class of the loop
t 7→ (0, t). These generate the first homology and satisfy 2B = 0, A · B = 1, B2 = 0,
A2 = 1.

A

B

Figure 2: The Klein bottle as an identification space.

Because H2(L;Z) = H1(X;Z) = 0, the long exact sequence of the pair (X,L) splits off a
short exact sequence

0→ H2(X;Z) = Z2 → H2(X,L;Z)→ H1(L;Z) = Z⊕ Z2 → 0.

In particular, for any class H1(L;Z) there exists a class H2(X,L;Z) which maps to it under
the connecting homomorphism ∂. The set of such H2(X,L;Z)-classes form a torsor over
H2(X;Z).

§1.7 Maslov class constraint. If Σ ⊂ X is an oriented surface with boundary on
a totally real submanifold L ⊂ X then it has a well-defined Maslov index (see §2.13 for
a review). In fact, the reduction modulo 4 of this Maslov index depends only on the
boundary ∂Σ ∈ H1(L;Z). Derdzinski and Januszkiewicz [5] call this mod 4 index i(∂D).

Proof that i(∂Σ) is well-defined modulo 4. Recall that ∂−1([∂Σ]) is a torsor over H2(X;Z).
All classes in H2(X;Z) have Maslov index equal to zero modulo 4, since the Maslov index
on a class C ∈ H2(X;Z) agrees with 2c1(X) · [C] and c1(X) = 2(α + β).

§1.8 We will be interested in surfaces with boundary homologous to the loop B. Derdzin-
ski and Januszkiewicz show that for totally real immersions of the Klein bottle into S2×S2

in the Z2-classes 0 and α + β, we must have i(B) = 0 mod 4, but that for totally real
immersions in the Z2-classes α and β, we have i(B) = 2 mod 4. This comes from the
characterisation of the set Z(Σ,M) of possible Maslov/homology class pairs that appears
after [5, Theorem 2.2], which is spelled out for Klein bottles in S2 × S2 in the paragraph
before [5, Proposition 29.1]. We reproduce the specific parts of their argument we need in
§2.17–§2.20 below for convenience.
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§1.9 Example. To see that i(B) = 2 mod 4 for the visible Klein bottles, consider the
visible symplectic (but not holomorphic) 2-sphere living over the same line ` as our visible
bottle which intersects every (regular) fibre in a vertical loop as shown in Figure 3. This
sphere lives in the homology class β and intersects L in a circle in the homology class B,
which separates the sphere into two discs (one dotted, one dashed in Figure 3). These discs
form part of a 1-parameter family, as the vertical line moves horizontally; in particular they
have the same Maslov index. Since the sphere has Chern number 2 (and hence Maslov
index 4), each disc has Maslov index 2. Again, we emphasise these are symplectic but not
holomorphic discs.

`

Figure 3: A visible symplectic sphere living over ` made up of two discs (dotted and dashed)
with boundary on the visible Lagrangian L.

§1.10 Outline of the proof. We outline the proof of Theorem §1.2 here, leaving two
facts to be established later (Section 3). Recall that given a Lagrangian Klein bottle
L ⊂ X there is a symplectic surgery called Luttinger surgery which excises a Weinstein
neighbourhood of L and reglues it with a twist. This surgery is based on the surgery for
Lagrangian tori introduced by Luttinger [10], modified for Klein bottles by Nemirovski
[11]. We will write (X̃, ω̃) for the result of this Luttinger surgery.

We will first prove (§3.1) that X̃ is diffeomorphic to the first Hirzebruch surface F1
∼=

CP2#CP2
. The second homology of F1 is generated by two classes H and E with squares

1 and −1 respectively. We next prove (§3.2) that∫
E

ω̃ = 1− λ

2
.

By a result of Li and Liu [8, Theorem A], building on the seminal work of Taubes (specifi-
cally [14, Proposition 4.5]), the fact that E is represented by a smoothly embedded sphere
and has E2 = −1 and c1(E) = 1 implies that the class E is represented by a symplectic
sphere. This then implies that

∫
E
ω̃ > 0, that is 1− λ/2 > 0, or λ < 2, as required.

2 Klein bottle Luttinger surgery

In this section, we will review the Klein bottle Luttinger surgery of Nemirovski [11] in a
form closer to the exposition of Auroux, Donaldson and Katzarkov [2]. We will establish
some basic but important properties about how Chern and Maslov classes are related before
and after the surgery.
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§2.1 LetDr denote the square [−r, r]×[−r, r], with coordinates (p1, p2) and let T 2 be the 2-
torus with 1-periodic coordinates (q1, q2). Consider the symplectic manifold (D2r \Dr)×T 2

with symplectic form
∑
dpi∧dqi (this is a punctured subdomain in T ∗T 2). Let χ : [−r, r]→

[0, 1] be a smooth, monotonically increasing function satisfying

χ(p) =

{
0 if p < −r/3
1 if p > r/3.

To ensure compatibility with the Klein bottle case later, we will further assume that
χ(p)− 1/2 is an odd function, that is

χ(−p) = −χ(p) + 1.

As observed by Auroux, Donaldson and Katzarkov [2], the diffeomorphism

F (p1, p2, q1, q2) =

{
(p1, p2, q1, q2 + χ(p2)) if p1 > 0

(p1, p2, q1, q2) if p1 < 0

preserves the symplectic form:

F ∗
(∑

dpi ∧ dqi
)

= dp1 ∧ dq1 + dp2 ∧ (dq2 + χ′(p2)dp2) =
∑

dpi ∧ dqi.

§2.2 We will think of T 2 as a double cover of the Klein bottle L, with deck transformation
(q1, q2) 7→ (q1 + 1/2,−q2). This deck transformation induces a symplectomorphism of
D2r × T 2:

Ψ(p1, p2, q1, q2) = (p1,−p2, q1 + 1/2,−q2)

which commutes with F . To see this, observe that

F (Ψ(p1, p2, q1, q2)) = (p1,−p2, q1 + 1/2,−q2 + χ(−p2))

Ψ(F (p1, p2, q1, q2)) = (p1,−p2, q1 + 1/2,−q2 − χ(p2)).

Since by assumption χ(−p2) = −χ(p2) + 1, we have

−q2 + χ(−p2) = −q2 − χ(p2) + 1,

so the final coordinates of F ◦Ψ and Ψ ◦ F coincide (recall that they are periodic modulo
1). Let us write Ur for the neighbourhood of the zero-section in T ∗L given by quotienting
Dr × T 2 by Ψ and we continue to write F for the symplectomorphism of Ur induced by
F : Dr × T 2 → Dr × T 2.

§2.3 If X is a symplectic manifold containing a Lagrangian Klein bottle L then we can
find a symplectic embedding (Weinstein neighbourhood) i : U2r → X for some r. Let
U = i(U2r), let V = X \ i(Ur), and let W = U ∩ V ∼= U2r \ Ur. We can form the surgered
manifold X̃ = U ∪W V , where a point x ∈ W is identified with x ∈ V and with F (x) ∈ U .
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§2.4 Consider the hypersurface N = i({p2
1 + p2

2 = 3r2}) ⊂ W . Whilst the boundaries of
U and V are only piecewise smooth, this is a smooth contact hypersurface isomorphic to
the radius r cosphere bundle of L. The hypersurface N separates X into two closed sets U
(containing L) and V which are deformation retracts of U and V . We can think of V as a
subset of both X and X̃ which is filled by two different symplectic fillings of N which we
call U (before surgery) and Ũ (after surgery).

§2.5 Note that N is a circle bundle over L; we will use coordinates (q1, q2, θ) on N , where
the coordinates are understood modulo the identifications

(q1, q2, θ) 7→ (q1 + 1/2,−q2,−θ)
(q1, q2, θ) 7→ (q1, q2 + 1, θ)

(q1, q2, θ) 7→ (q1, q2, θ + 1)

shown in Figure 4.

A

C

B

Figure 4: The space N as an identification space.

We write A, B and C for the homology classes of the three loops t 7→ (t/2, 0, 0), t 7→ (0, t, 0)
and t 7→ (0, 0, t).

§2.6 Lemma. From the cell decomposition inherited from the cube (respectively the
square), we can easily compute:

N L

H3(−;Z) Z 0
H2(−;Z) Z 0
H1(−;Z) 〈A,B,C | 2B = 2C = 0〉 〈A,B | 2B = 0〉
H3(−;Z) Z 0
H2(−;Z) Z⊕ Z2

2 Z2

H1(−;Z) Z Z

and the inclusion i : N → U ' L induces the map A 7→ A, B 7→ B, C 7→ 0 on homology.
Over R, the pullback i∗ induces an isomorphism on H1 and the zero map on H2.
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§2.7 Lemma. Now suppose that H1
dR(X) = H3

dR(X) = 0. We have H1
dR(V ) ∼= 0 and

H2
dR(V ) ∼= H2

dR(X)⊕ R. Moreover, the pullback map H2
dR(X)→ H2

dR(V ) is injective.

Proof. For the purposes of the proof it is more convenient to work with U and V than
U and V , but since they are deformation retracts the conclusions are the same. Since N
is a deformation retract of U ∩ V , the relevant part of the Mayer–Vietoris sequence for
X = U ∪ V is:

· · · → H1
dR(X)→ H1

dR(U)⊕H1
dR(V)→ H1

dR(N)→
→ H2

dR(X)→ H2
dR(U)⊕H2

dR(V)→ H2
dR(N)→

→ H3
dR(X)→ · · · (2.1)

Using the facts that H1
dR(X) = H3

dR(X) = 0, H2
dR(U) = 0, and that the map H1

dR(U) →
H1
dR(N) is an isomorphism, we deduce that H1

dR(V) = 0 and split off a short exact sequence

0→ H2
dR(X)→ H2

dR(V)→ H2
dR(N) = R→ 0,

which implies what is claimed.

§2.8 Corollary. The De Rham cohomology class of a 2-form on X is determined by
its integrals over 2-cycles in V .

§2.9 Lemma. Let L ⊂ X be a Lagrangian Klein bottle and let X̃ be the result of
performing Luttinger surgery along L. Then H1

dR(X̃) = H3
dR(X̃) = 0, H2

dR(X̃) ∼= H2
dR(X),

and the cohomology class of a 2-form on X̃ is determined by its integrals over 2-cycles in
V .

Proof. Write X̃ as Ũ ∪ V , where Ũ is the Weinstein neighbourhood of the Klein bottle
after surgery. The map N → Ũ still induces an isomorphism on H1

dR and the maps
Hk
dR(V )→ Hk

dR(N) are unchanged, so the Mayer–Vietoris sequence (2.1) (with X̃ instead
of X and Ũ instead of U) gives the conclusions.

§2.10 Lemma. We have c1(X) · [ωλ] = c1(X̃) · [ω̃]. (This observation is due to Ne-
mirovski [11, Section 2.3]; we have given details here for convenience.)

Proof. Represent c1 in each case by a Chern form ρ, ρ̃ given by the curvature of an Her-
mitian line bundle. By picking the Hermitian metrics to agree over V , we can ensure that
ρ|V = ρ̃|V . We also know that ωλ|V = ω̃|V , so that∫

C

ωλ =

∫
C

ω̃ and

∫
C

ρ =

∫
C

ρ̃
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for any 2-cycle C ⊂ V . Since H2
dR(U) = 0, both ωλ and ρ are cohomologous to 2-forms ω′λ

and ρ′ which vanish on X \ V . Their restrictions to V extend (by zero) over X̃ \ V ; let us
write ω̃′ and ρ̃′ for these extensions. Then, for any 2-cycle C ⊂ V , we have∫

C

ω̃ =

∫
C

ωλ =

∫
C

ω′λ =

∫
C

ω̃′,

and similarly
∫
C
ρ̃ =

∫
C
ρ̃′. By §2.8, this shows that [ω̃] = [ω̃′] and [ρ̃] = [ρ̃′], so

c1(X) · [ωλ] =

∫
X

ρ ∧ ωλ =

∫
V

ρ′ ∧ ω′λ =

∫
X̃

ρ̃′ ∧ ω̃′ =
∫
X̃

ρ̃ ∧ ω̃ = c1(X̃) · [ω̃].

§2.11 Corollary. If c1(X) · [ω] > 0 and H1
dR(X) = 0 then X̃ is a rational symplectic

4-manifold.

Proof. By Lemma §2.10, c1(X̃) · [ω̃] > 0, so by the Liu–Ohta–Ono Theorem ([9, Theorem
B], [12, Theorem 1.2]) the 4-manifold X̃ is either rational or ruled. But by Lemma §2.9,
H1
dR(X̃) = 0, so X̃ cannot be (a blow-up of) an irrational ruled surface. Therefore it is

rational.

§2.12 Chern and Maslov classes. Let X be an almost complex manifold of real
dimension 2n. Consider the complex line bundle V := (Λn

CTX)⊗2 and let E ⊂ V be its
unit circle bundle. The first Chern class of E → X is 2c1(X), and if S ⊂ X is a closed,
oriented surface then 2c1(X) · [S] is the obstruction to finding a section of E|S; in other
words, 2c1(X) · [S] is the signed count of zeros of a generic section of V |S.

§2.13 If we have a surface Σ with boundary and a nowhere-vanishing section σ of V
defined along the boundary ∂Σ then the Maslov index µ(Σ, σ) of the pair (Σ, σ) is the
number of zeros of an extension of σ over Σ. One way of obtaining a nowhere-vanishing
section of V over a subset Y ⊂ X is from a field of unoriented totally real n-planes ζ on
Y : namely, we pick a section of (Λn

Rζ)⊗2 by squaring a local orientation of ζ. Since ζ is
totally real, this section is nowhere-vanishing when considered as a section of V .

For example, if Σ has boundary on a totally real submanifold L then there is a canonical2

nowhere-vanishing section σcan defined along ∂Σ coming from the field of tangent planes
TL. The Maslov index µ(Σ) is then defined to be the Maslov index of the pair µ(Σ, σcan).

§2.14 If two boundary conditions σ0 and σ1 are homotopic through sections of E|∂Σ

then µ(Σ, σ0) = µ(Σ, σ1). If L is a Lagrangian submanifold and we choose a Weinstein
neighbourhood then one obvious choice for an alternative boundary condition equivalent

2Canonical up to a positive real scalar.
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to σcan is the vertical distribution of tangent spaces to cotangent fibres. This actually gives
us a section of E over the whole of the Weinstein neighbourhood. We call this section ξcan.

§2.15 Lemma. Let F be the diffeomorphism of a punctured Weinstein neighbourhood
of a Lagrangian Klein bottle defined in §2.1–§2.2. The field ξcan is homotopic through
sections of E to F∗ξcan.

Proof. The vertical distribution on the cotangent bundle is spanned by ∂p1 and ∂p2 . We
have F∗∂p1 = ∂p1 and F∗∂p2 = ∂p2 + χ′(p2)∂q2 . The homotopy between these is given by
taking ∂p1 and ∂p2 + tχ′(p2)∂q2 , which are complex linearly-independent for all t.

§2.16 Lemma. Let X be a symplectic 4-manifold and L ⊂ X a Lagrangian Klein bottle.
Let U be a closed Weinstein neighbourhood of L with boundary N and let V = X \ U . Let
Σ ⊂ X be a smooth, oriented surface with boundary on L; by making a small perturbation,
assume that Σ is transverse to N . Let Σ′ = V ∩Σ; this is a smooth surface with boundary
on N . Suppose that F (∂Σ) is nullhomologous in Ũ , pick an oriented smooth surface T ⊂ Ũ
with ∂T = −F (∂Σ), and let S̃ = Σ′ ∪ T . Then

2c1(X̃) · [S̃] = µ(Σ).

Proof. Using ξcan on U and on Ũ produces homotopic nowhere-vanishing boundary condi-
tions for Σ′, regardless of whether the rest of the surface is Σ∩U or S̃ ∩ Ũ . Therefore the
obstruction to extending these boundary conditions is the same; in the one case it is µ(Σ)
and in the other it is 2c1(X̃) · [S̃].

§2.17 For the convenience of the reader, we now give a summary of how Derdzinski and
Januszkiewicz prove that a surface Σ in S2 × S2 with boundary on a Lagrangian Klein
bottle L in the Z2-homology class α or β must have Maslov index µ(Σ) = 2 mod 4.

§2.18 Lemma. For X = S2 × S2 we have π1(E) = Z/4.

Proof. This follows from the homotopy long exact sequence of the circle bundle E → X:

0→ π2(E)→ π2(X)→ Z→ π1(E)→ 0.

Under the identification H2(X;Z) ∼= Hom(π2(X),Z), the map π2(X) = Z2 → π1(S1) = Z
is the first Chern class of the circle bundle E, that is 2c1(X) = 4(α + β). Therefore its
image is the subgroup 4Z ⊂ Z and its cokernel is π1(E) = Z/4.
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§2.19 Lemma. Let Σ be an oriented surface with boundary on a totally real surface
L ⊂ X = S2× S2. Let ` be the loop in E given by restricting the section ξcan to ∂Σ. Then
µ(Σ) mod 4 = [`] ∈ π1(E).

Proof. The bundles E|∂Σ and E|Σ are trivial, and only one of the trivialisations of E|∂Σ

is compatible with a trivialisation of E|Σ. The Maslov index µ(Σ) can be interpreted as
the winding number of the boundary condition ξcan with respect to this trivialisation, that
is the projection of ξcan|∂Σ to the second factor in π1(E|∂Σ) = π1(∂Σ) × Z. The inclusion
map ∂Σ→ E induces a map π1(∂Σ)× Z→ π1(E) = Z/4, which coincides with reduction
modulo 4 on the second factor, and ξcan|∂Σ maps to [`].

§2.20 Lemma. Let L ⊂ X = S2×S2 be a totally real Klein bottle (or, more generally,
nonorientable surface with χ(L) = 0 mod 4) in the Z2-homology class α or β, let B ⊂ L
be the meridian loop (or, more generally, a 2-sided simple closed curve representing the
unique torsion class in H1(L;Z)) and let Σ ⊂ X be a surface with ∂Σ = B. Then µ(Σ) = 2
mod 4.

Proof. Let ` ⊂ E be the loop given by the section ξcan|B. Since B is 2-sided, the section
ξcan|B admits a square root (that is, a lift to Λn

CTX), which means that [`] ∈ {0, 2} ⊂
π1(E) = Z/4. Suppose that [`] = 0 ∈ π1(E); we will derive a contradiction. We can cut
open L along B to obtain an orientable surface L′ with two circular boundary components;
let L′′ be the abstract orientable surface obtained by capping these circles off with discs.
Since [`] = 0 ∈ π1(E), the canonical section σL|L′ : L′ → E extends to a map L′′ → E
which sends the two capping discs to a single disc ∆ which is a nullhomotopy of `. We
can then project L′′ to X to obtain a continuous map f : L′′ → X. Since f ∗E admits a
section (by construction) this means that c1(f ∗E) = 0. Since c1(f ∗E) = 2c1(X) · f∗[L′′]
and 2c1(X) = 4(α+ β), this tells us that f∗[L

′′] = k(α− β) for some k ∈ Z, which implies
that f∗[L

′′] mod 2 is either 0 or α+β. But since the two capping discs project to the same
disc (with opposite orientations), f∗[L

′′] = [L] mod 2, which contradicts the fact that [L]
is either α mod 2 or β mod 2.

3 Finishing the proof

We now provide the details that were missing from the sketch proof.

§3.1 Proposition. Let X = S2 × S2 with the symplectic form ωλ and suppose that
L ⊂ X is a Lagrangian Klein bottle in the Z2-homology class β. Let X̃ be the result of

Luttinger surgery. Then X̃ is diffeomorphic to F1 = CP2#CP2
.
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Proof. By Corollary §2.11, X̃ is a rational symplectic 4-manifold and by Lemma §2.9, it

has b2 = 2. Therefore X̃ is diffeomorphic to either S2 × S2 or to F1 = CP2#CP2
. We

will exhibit a surface Σ̃ in X̃ with odd Chern number, which is only possible for F1 since
c1(S2 × S2) is divisible by 2 in integral cohomology.

To find Σ̃, we start with a surface D with boundary on L such that [∂D] = B and µ(D) = 2
mod 4. It is possible that D intersects L at interior points of D; if so, we perturb D so that
it intersects L transversely on its interior and open out these intersections to form small
nullhomologous boundary components on L. We continue to call the resulting surface
D. Since the boundary of D still lies in the class B (because the punctures gave only
nullhomologous boundary components), the intersection D ∩ N lies either in the class
B + C or the class B. In the former case, we define Σ = D. In the latter case, we take
Σ = S ∪ D where S is a sphere in the homology class α, perturbed to be transverse to
L, again with these intersections opened out into boundary components on L. Since S
must intersect L an odd number of times, this has the effect of changing the intersection
N ∩ (D ∪ S) so that it lives in the class B + C.

Now F∗(B + C) = C, which is nullhomologous in Ũ , so we can apply Lemma §2.16:
note that µ(Σ) = µ(D) + kµ(α) for some k, but µ(α) = 4, so µ(Σ) = µ(D) mod 4 and by
Lemma §2.20, µ(D) = 2 mod 4. This implies that 2c1(Σ̃) = 2 mod 4, so c1(Σ̃) is odd.

§3.2 Proposition. Let H and E be the classes in F1 coming from a line in CP2 and the
exceptional curve. If L ⊂ X is a Lagrangian Klein bottle in the Z2-class β in X = S2×S2

with symplectic form ωλ then the Luttinger surgery (X̃, ω̃) satisfies∫
E

ω̃ = 1− λ

2
.

Proof. The rational homology of V fits into a Mayer–Vietoris sequence

H2(N ;Z)→ H2(U ;Z)⊕H2(V ;Z)→ H2(X;Z)→ H1(N ;Z)→ H1(U ;Z).

Since [L] = β mod 2, a generic sphere in the class β intersects L transversely an even
number of times. Thus ∂β ∈ H1(N ;Z) is an even multiple of C; since 2C = 0, this means
that β lives in the image of H2(V ;Z). Similarly, 2α lies in the image of H2(V ;Z). In
particular, this means that 2α and β can be represented respectively by surfaces S2α and
Sβ in V with

S2
2α = S2

β = 0, c1(X) · S2α = 4

∫
S2α

ωλ = 2,

S2α · Sβ = 2, c1(X) · Sβ = 2,

∫
Sβ

ωλ = λ.
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After surgery, since these surfaces were in V , they can be thought of as surfaces S̃2α and
S̃β in X̃. We still have

S̃2
2α = S̃2

β = 0, c1(X̃) · S̃2α = 4,

∫
S̃2α

ω̃ = 2,

S̃2α · S̃β = 2, c1(X̃) · S̃β = 2,

∫
S̃β

ω̃ = λ.

Suppose that [Sβ] = aH+bE. Then S2
β = a2−b2 = 0, so a = ±b, and c1(X̃)·Sβ = 3a±a = 2.

Since a ∈ Z, we must have a = −b = 1, so [Sβ] = H − E.

Suppose that S2α = cH + dE. In the same way, from S2
2α = 0 we have c = ±d, and from

c1(X̃) · [S2α] = 4 we have 3c±d = 4, so either c = d = 1 or c = −d = 2, that is S2α = H+E
or 2H − 2E. Since Sα · Sβ = 2, we must have S2α = H + E.

But now ∫
S2α

ω̃ = 2 =

∫
H

ω̃ +

∫
E

ω̃ and

∫
Sβ

ω̃ = λ =

∫
H

ω̃ −
∫
E

ω̃,

so

2− λ = 2

∫
E

ω̃ or

∫
E

ω̃ = 1− λ

2
.
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