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Abstract

In this paper, we present a novel diffusion model-based
monaural speech enhancement method. Our approach incor-
porates the separate estimation of speech spectra’s magni-
tude and phase in two diffusion networks. Throughout the
diffusion process, noise clips from real-world noise inter-
ferences are added gradually to the clean speech spectra
and a noise-aware reverse process is proposed to learn how
to generate both clean speech spectra and noise spectra.
Furthermore, to fully leverage the intrinsic relationship be-
tween magnitude and phase, we introduce a complex-cycle-
consistent (CCC) mechanism that uses the estimated magni-
tude to map the phase, and vice versa. We implement this al-
gorithm within a phase-aware speech enhancement diffusion
model (SEDM). We conduct extensive experiments on pub-
lic datasets to demonstrate the effectiveness of our method,
highlighting the significant benefits of exploiting the intrin-
sic relationship between phase and magnitude information to
enhance speech. The comparison to conventional diffusion
models demonstrates the superiority of SEDM.

Introduction
In real-world acoustic environments, speech signals are in-
evitably contaminated by background noise, which can sig-
nificantly deteriorate speech quality and intelligibility. The
primary goal of speech enhancement techniques is to sep-
arate the target speech signal from the background noise.
Consequently, speech enhancement plays a pivotal role in
various speech processing systems, including assisted living,
teleconferencing, and automatic speech recognition (ASR)
(Zhu et al. 2023; Yang, Pandey, and Wang 2023). Monaural
speech enhancement presents one of the most challenging
scenarios in this field, as it deals with a single channel.

Traditional deep learning-based methods for solving the
monaural speech enhancement problem have been exten-
sively studied. Recently, the diffusion model has not only
achieved significant success in the field of image processing
(Rahman, J. M. J. Valanarasu, and Patel 2023; Croitoru et al.
2023) but has also been introduced into the field of speech
enhancement with excellent results (Hu et al. 2023; Lu et al.
2022). However, these methods have two limitations.
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Firstly, these methods typically operate in the time-
frequency (T-F) domain, where they estimate the magnitude
response while leaving the phase response unaltered, as seen
in (Wang, Narayanan, and Wang 2014; Li et al. 2021b).
However, Wang et al. introduced a novel approach by
proposing a complex ideal ratio mask that allows for simul-
taneous enhancement of both magnitude and phase spectra,
operating in the complex domain (Williamson, Wang, and
Wang 2016). Recent studies, such as (Welker, Richter, and
Gerkmann 2022a), have widely adopted complex spectra in
monaural speech enhancement due to their efficient perfor-
mance improvement through the utilization of phase infor-
mation from speech signals. Nevertheless, in most cases,
magnitude and phase spectra are simultaneously enhanced
by one or two neural networks to generate the final estimated
speech spectra, neglecting the intrinsic relationship between
magnitude and phase, which has been shown to be beneficial
for further improving speech enhancement performance, as
indicated in (Shimauchlt et al. 2017).

Secondly, diffusion models for speech enhancement (Hu
et al. 2023; Lu et al. 2022) exploit Gaussian noise to learn
denoising noisy speech based on maximum entropy and sta-
tistical inference. However, some recent diffusion-based im-
age denoising techniques replace the Gaussian noise to real-
world noise. Wu et al. synthesise realistic noise with the en-
vironmental settings to better model noise distribution com-
plexity (Wu et al. 2023). The experiments prove that us-
ing real-world noise can boost the performance rather than
Gaussian noise. Nevertheless, there has been a lack of re-
cent research attempting to substitute real-world noise for
Gaussian noise in the filed of speech enhancement. This has
sparked our interest in exploring the problem.

We present three contributions to address these limita-
tions in this paper. Firstly, we propose a novel speech en-
hancement diffusion model (SEDM). In contrast to conven-
tional diffusion model-based speech enhancement methods
(Lu, Tsao, and Watanabe 2021), we replace the Gaussian
noise in the forward process with real-world noise. In each
embedding, a noise clip is randomly selected from different
noise types, e.g., dwashing, dliving, and pstation (Thie-
mann, Ito, and Vincent 2013). Secondly, we propose a noise-
aware reverse process that facilitates learning to generate
both clean speech and noise spectra. Thirdly, we investigate
the speech enhancement performance with independent net-
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Figure 1: The overall architecture of SEDM consisted of a diffusion process (left) and a noise-aware reverse process (right).

works. In encoders of SEDM, we independently estimate the
noise distributions in the magnitude and phase of the mix-
ture spectrogram. Subsequently, the decoders generate the
estimated magnitude and phase of the target speech spec-
trogram. The relationship between magnitude and phase, as
shown in (Shimauchlt et al. 2017), is beneficial for further
enhancing speech enhancement performance. Therefore, we
calculate the commutative losses between the magnitude and
phase features to further improve estimation accuracy.

Related Works
Phase-Aware Speech Enhancement
In conventional speech enhancement studies, the desired
speech signal is typically reconstructed using the magnitude
of the estimated speech signal and the phase of the noisy
mixture. However, due to the reliance on noisy phase infor-
mation, the speech enhancement performance may be com-
promised. Therefore, recent studies have started to incorpo-
rate the phase information of the desired speech signal. Polar
coordinates (i.e. magnitude and phase) are commonly used
when enhancing the STFT of noisy speech, as defined in (1):

St,f = |St,f | eiθSt,f (1)

where |St,f | represents the magnitude response and θSt,f

represents the phase response of the short-time Fourier
transform (STFT) at time t and frequency f . Each T-F unit
in the STFT representation is a complex number with real
and imaginary components.

Diffusion Model
Diffusion models, initially proposed in (Sohl-Dickstein et al.
2015), have demonstrated strong generative capabilities. A
typical diffusion probabilistic model comprises two key pro-
cesses: a forward/diffusion process and a reverse process. In

the forward process, the model transforms clean input data
into an isotropic Gaussian distribution by introducing Gaus-
sian noise to the original signal at each step. Conversely, in
the reverse process, the diffusion probabilistic model pre-
dicts a noise signal and subtracts this predicted noise sig-
nal from the noisy input to recover the clean signal. As the
first diffusion model-based speech enhancement work, Lu
et al. introduced the concept of a supportive reverse process
in their work (Lu, Tsao, and Watanabe 2021), where noisy
speech is added at each time-step to the predicted speech
signal.

Phase-Aware Diffusion Models
The speech enhancement algorithm aims to estimate the
speech signal s(t) from noisy speech signal y(t). To achieve
that, we design a diffusion model-based training pipeline as
presented in Figure 1. The proposed SEDM consists of a
diffusion network (left side of Figure 1) and a noise-aware
reverse network (left side of Figure 1) for a diffusion pro-
cess and a reverse diffusion, respectively. In Figure. 1, the
input and output are spectra, as we omit Short-Time Fourier
Transform (STFT) for speech signals.

Diffusion Process
We disassemble STFT of clean speech signals into magni-
tude and phase components as the input for the diffusion
network. The diffusion network consists of a stack of N dif-
fusion blocks, each with a residual channel size of C, fol-
lowed by a 1×1 convolutional layer. A single diffusion block
is presented in Figure 2 (a).

Similar to U-net models (Zhao and Wang 2020; Li et al.
2023), we replace pooling operations in each diffusion block
with downsampling operators to complement a typical con-
tracting network with successive layers. Additionally, we



Figure 2: The proposed diffusion block and reverse block.

employ Parametric Rectified Linear Unit (PReLU) activa-
tion functions (He et al. 2015), which allow for flexibility
in the range of values in the feature map, encompassing
both negative and non-negative values. This flexibility con-
tributes to more accurate estimation of the speech source.
Furthermore, we incorporate residual connections (He et al.
2016) between the input of each diffusion block and the out-
put of the final 3×1 convolutional layer. This addition aids
in achieving rapid convergence, particularly when training a
deep diffusion network with a large value of N , by mitigat-
ing issues related to vanishing gradients.

In addition, each diffusion block includes a skip connec-
tion (He et al. 2016) to the next block to maintain the desired
information within the signal. Within the diffusion network,
each diffusion block generates feature maps at specific res-
olutions, which are then scaled to produce a latent represen-
tation of the noisy speech feature with multiple resolutions.
During the training of the diffusion network, the optimal
weighted combinations of these multi-resolution spectra are
learned in relation to the target, which is the original speech
feature representation.

Within the forward process q (Y1, · · · , YN | Y0) of each
diffusion block, we embed either the magnitude or phase of
a noise clip’s spectrogram into the input speech spectrogram
Y0 as:

q (Y1, · · · , YN | Y0) =
N∏

n=1

q (Yn | Yn−1) (2)

where n is the index of diffusion block. Different from con-
ventional diffusion models, we replace the Gaussian noise
by real-world noises during the diffusion process. To achieve
that, we divide four-minute noise sequences among all noise
types from the DEMAND dataset (Thiemann, Ito, and Vin-
cent 2013) into clips to align with the length of the input
speech signals. We randomly select one clip In and progres-
sively add to a clean speech spectrogram as a stochastic dif-
ferential equation (SDE) (Rogers and Williams 2000):

dYn = µ (Yn, n) dn+ σ (Yn, n) dIn (3)

where µ(Yn, n) is the drift term representing the determinis-
tic component and σ(Yn, n) is the diffusion term represent-
ing the stochastic (random) component. The final diffusion
block generates the latent representation of the noisy speech
spectra.

Reverse Process
Different from conventional diffusion models, we propose a
noise-aware reverse process that initiates the sampling pro-
cess from the noisy speech spectrogram. At each reverse
block, we estimate both the clean speech and noise spec-
tra, all while minimizing the introduction of additional noise
signals. A single reverse block is presented in Figure 2 (b).

In the proposed noise-aware reverse process, we aim to
generate each Ym−1 from the previous step Ym. To achieve
that, we define each reverse step with two trainable parame-
ters γm and θm as:

Ym−1 =
1

γm

(
Ym − θm

1− γm
Im

)
+ σm (4)

where σm is the variance of the estimated speech spectra
distribution, which can be calculated as:

σm =
1− γ̄m−1

1− γ̄m
θm (5)

Again, similarly to the U-net models, reverse blocks uti-
lize upsampling operators to restore the original spectrogram
size. The final estimated magnitude and phase of the target
speech spectrogram are derived from the last reverse blocks.
Subsequently, the proposed CCC block further enhances the
estimation accuracy of both magnitude and phase using the
clean spectrogram.

Finally, the phase is reconstructed by re-wrapping the es-
timated unwrapped phase of the speech signal. This phase,
along with the recovered speech magnitude, is used in the
speech recovery module to reconstruct the estimated speech
signal. During the test stage, the diffusion network is disre-
garded, and the reverse network is employed to enhance the
noisy speech signals.

Complex-Cycle-Consistent Learning
After estimating the magnitude and phase of speech sources
from the reverse blocks, they are input into the proposed
Complex-Cycle-Consistent block (CCC) along with the
clean magnitude and phase as shown in Figure 3. The block
consists of two long short-term memory (LSTM) networks,
with their parameters denoted as θA and θP . We denote the
estimated magnitude and phase of speech spectra as SA and
SP , respectively.

As the input, the magnitude and phase of the estimated
speech are fed into the CCC module with the clean magni-
tude and phase. First, the magnitude loss is estimated with
(3). We define P → A as the mapping of the spectra from
the phase to the magnitude. We refer to SP→A as the new
phase reconstruction from the last cycle. Then, the loss be-
tween the magnitude of clean speech spectra and SP→A is
computed with the L2 norm of the error as:

LSP→A
= ∥SA − SP→A∥22 (6)

In the training stage, the loss term LSP→A
is relatively large,

in contrast to the loss LSA
. Therefore, we use a weight λ1

to attenuate LSP→A
. The combined magnitude loss can be

obtained as:

LS′
A
= LSA

+ λ1 · LSP→A
(7)



Figure 3: The proposed complex-cycle-consistent learning
for speech (CCC) enhancement.

The combined magnitude loss LS′
A

is applied to train θA
which is used to map the spectra from the magnitude to the
phase SA→P in the A → P mapping cycle. Similarly, the
loss between the phase of the clean speech spectra and the
reconstruction from the mapping SA→P is written as:

LSA→P
= ∥SP − SA→P ∥22 (8)

Accordingly, the combined phase loss is presented as:

LS′
P
= LSP

+ λ2 · LSA→P
(9)

where a weight λ2 is a weight parameter. Then, θP is trained
with the combined phase loss and yields a new mapping
magnitude reconstructions as SP→A for the next epoch. Pa-
rameters θA and θP trained with the cycle-consistent learn-
ing approach and finally outputs the magnitude and phase of
estimated speech spectra. The pseudocode of the proposed
CCC module is summarized as Algorithm 1.

Experiments
Datasets
We extensively perform experiments on several public
speech datasets, including IEEE (IEEE Audio and Electroa-
coustics Group 1969), TIMIT Acoustic-Phonetic Continu-
ous Speech Corpus (TIMIT) (Garofolo et al. 1993), VOICE
BANK (VCTK) (Veaux, Yamagishi, and King 2013), and
Deep Noise Suppression (DNS) challenge (Reddy et al.
2021). To generate noisy speech signals in training and
test, we randomly collect and use 10 of 15 noise types
psquare, dliving, dkitchen, nriver, tcar, dwashing,

Algorithm 1: Proposed complex-cycle-consistent learning

1: Input: magnitude of the clean speech spectra SA, phase
of the clean speech spectra SP , epoch E = 1, 2, ...,
Emax

2: Output: Estimated speech ŜA and ŜP

3: Initialize reverse network parameters θA and θP
4: while E = 1 do
5: Estimate ŜA and ŜP

6: Calculate the losses: LSA
and LSP

7: end while
8: for E = 2, ..., Emax do
9: Run the mapping cycle SA→P by using θA

10: Update LS′
A

as (8)
11: Run the mapping cycle SP→A by using θP
12: Update LS′

P
as (10)

13: LSA
= LS′

A
, LSP

= LS′
P

14: Update θA, θP by minimizing LSA
and LSP

15: end for
16: Estimate ŜA and ŜP with trained θA and θP

npark, omeeting, ohallway and pstation from Diverse
Environments Multichannel Acoustic Noise Database (DE-
MAND) (Thiemann, Ito, and Vincent 2013). Each noise in-
terference has a unique case and lasts four minutes long, and
it is divided into two clips with an equal length. One is used
to match the lengths of the speech signals to generate train-
ing data in the diffusion process and the other is used to gen-
erate development and inference data.

Model Configuration

We set the number of diffusion blocks and channels as
[N ,C] ∈ [30,63],[40,128],[50,128] for small, medium, and
large SEDM models (SEDM-S, SEDM-M, SEDM-L), re-
spectively. The number of reverse blocks is equal to the
number of diffusion blocks, i.e., M = N .The kernel size
of Bi-DilConv is 3, and the dilation is doubled at each layer
within each block as [1, 2, 4, ..., 2n−1 ]. Each LSTM in CCC
consists of three hidden layers and 30 features in the hidden
state. Further studies on model backbones are out of scope
of this paper.

The proposed model is trained by using the Adam opti-
mizer with a weight decay of 0.0001, a momentum of 0.9,
and a batch size of 64. We train the networks for 200 epochs,
where we warm-up the network in the first 20 epochs by
without CCC losses. The initial learning rate is 0.03, and is
multiplied by 0.1 at 120 and 160 epochs. All the experiments
are run on Tesla V100 GPUs.

Moreover, all the speech utterances are resampled to 16
kHz. They are converted to spectrogram using fast Fourier
transform (FFT), with a window of 512 samples (32ms) with
an overlap of 256 samples (16ms) between the neighboring
windows. Since the input and the output of the proposed
method and baselines are both magnitude spectrogram and
the dimension of single axis is set to 257. A linear process-
ing layer is stacked when splitting the feature map to convert
the spectrogram to feature vectors of 512 dimensions.



Table 1: Speech enhancement performance comparisons on the IEEE and TM datasets. The number of residual blocks, channels
and kernel is denoted as N, C, and K, respectively.

Configuration IEEE TIMIT
Method N C K STOI (%) PESQ fwSNRseg (dB) STOI (%) PESQ fwSNRseg (dB)

Unprocessed - - - 42.3 1.52 3.11 41.5 1.44 3.04
DCTCRN 7 256 5 73.4 2.36 12.88 78.5 2.45 13.24
RemixIT 64 512 21 74.8 2.42 13.13 79.3 2.56 13.97
FRCRN 6 128 7 76.5 2.50 13.87 80.2 2.59 14.43
CMGAN 16 64 8 75.2 2.47 12.98 79.6 2.55 13.78

SCP-GAN - - - 77.3 2.66 14.04 81.5 2.77 15.00
SEDM-S 30 63 3 79.0 2.68 13.97 81.2 2.76 14.85
SEDM-M 40 128 3 79.7 2.73 14.22 81.7 2.81 15.18
SEDM-L 50 128 3 80.2 2.75 14.30 81.9 2.83 15.29

Competitors
In this work, we compare the proposed method with six
state-of-the-art models DCTCRN (Li et al. 2021a), RemixIT
(Tzinis et al. 2022), FRCRN (Zhao, Nguyen, and Ma 2021),
CMGAN (Cao, Abdulatif, and Yang 2022), and SCP-GAN
(Zadorozhnyy and Q. Ye 2022), which reach state-of-the-art
benchmarks in the DNS challenge and VCTK + DEMAND
datasets. It is highlighted that we reproduce these models
with the same experimental setting, e.g., training data and
reverberations, as the proposed method for fair comparison.

Results
In this section, we firstly evaluate the speech enhancement
performance of SEDM family and compare to state-of-the-
art benchmarks on commonly used datasets, i.e., IEEE,
TIMIT, VCTK, and DNS challenge. Then, we compare the
proposed models to other diffusion models in the literature.
Finally, we provide some visualizations and ablation study
to further confirm the effectiveness of contributions.

Evaluations on the IEEE and TIMIT Datasets
The first experiment is conducted on IEEE and TIMIT
(IEEE Audio and Electroacoustics Group 1969; Garofolo
et al. 1993). In the training and development stages, 600
recordings from 60 speakers and 60 recordings from 6
speakers are randomly selected in each dataset, respectively.
To evaluate and compare the quality of the enhanced speech
with various methods, we use the short-time objective in-
telligibility (STOI), perceptual evaluation of speech quality
(PESQ), and frequency-weighted segmental signal-to-noise
ratio (fwSNRseg) as performance measures on the IEEE and
TIMIT datasets. The STOI and the PESQ are bounded in the
range of [0, 1] and [-0.5, 4.5], respectively (Hu and Loizou
2008). The fwSNRseg is estimated by computing the seg-
mental signal-to-noise ratios (SNRs) in each spectral band
and summing the weighed SNRs from all bands (Liu, Ma,
and Chen 2017) in the range of [-10, 35] dB.

Table 1 shows the averaged speech enhancement perfor-
mance of the proposed method as compared to state-of-the-
art models using the IEEE and the TIMIT datasets, with
three SNR levels (-5, 0, 5 dB) and ten noise interferences
in . Each result is the average of 360 noisy speech signals

(120 clean speech signals ×3 SNR levels). From Table 1, it
can be observed that in all the evaluated models, SEDM-L
offers the best effectiveness.

Evaluations on the VCTK and DNS Challenge
Datasets
We perform extensive experiments to evaluate whether
SEDM family can achieve a good speech enhancement per-
formance over the VCTK dataset. We randomly generate
11572 noisy mixtures with 10 background noises at one of
4 SNR levels (15, 10, 5, and 0 dB) in the training stage.
The test set with 2 speakers, unseen during training, con-
sists of a total of 20 different noise conditions: 5 types of
noise sourced from the DEMAND dataset at one of 4 SNRs
each (17.5, 12.5, 7.5, and 2.5 dB). This yields 824 test items,
with approximately 20 different sentences in each condition
per test speaker. To evaluate and compare the quality of the
enhanced speech with various methods, we use mean opin-
ion score (MOS) predictor of signal distortion (CSIG), MOS
predictor of background intrusiveness (CBAK), MOS pre-
dictor of overall speech quality (COVL) to map the enhance-
ment between [1, 5] (Hu and Loizou 2008). Furthermore,
similar to (Macartney and Weyde 2018; Deng et al. 2020),
PESQ and segmental signal-to-noise ratio (SSNR) are used
as well. Table 2 shows the averaged speech enhancement
results on the VCTK dataset (Veaux, Yamagishi, and King
2013).

Table 2: Speech enhancement performance comparison on
VCTK.

Method PESQ CSIG CBAK COVL SSNR
Unprocessed 1.97 3.35 2.44 2.63 1.7

DCTCRN 3.30 3.69 3.90 4.53 10.1
RemixIT 3.38 3.85 3.99 4.68 10.2
FRCRN 3.43 3.92 4.20 4.71 11.6
CMGAN 3.41 3.94 4.12 4.63 11.1

SCP-GAN 3.52 3.97 4.25 4.75 10.8
SEDM-S 3.46 3.88 4.07 4.58 11.6
SEDM-M 3.50 3.94 4.15 4.71 11.7
SEDM-L 3.59 4.06 4.22 4.89 11.8

From this table, we can see that the proposed method out-
performs the state-of-the-art methods in terms of all perfor-



mance measures. The proposed SEDM-L is 0.96 higher than
SCP-GAN (11.8 vs. 10.8, SSNR).

The proposed method is further evaluated on the DNS
challenge benchmark and compared with the state-of-the-art
methods. The clean speech set includes over 500 hours of
clips from 2150 speakers and the noise set includes over 180
hours of clips from 150 classes in the DNS challenge (Reddy
et al. 2021). In the training stage, 75% of the clean speeches
are mixed with the background noise but without reverber-
ation at a random SNR in between -5 and 20 dB as (Hao
et al. 2021). In the test stage, 150 noisy clips are randomly
selected from the blind test dataset without reverberations.
In these experiments, the averaged STOI (%), wide-band
PESQ (WP), narrow-band PESQ (NP), and scale-invariant
source-to-distortion ratio (SI-SDR) (dB) performances are
presented in Table 3.

Table 3: Speech enhancement performance comparison on
the DNS challenge dataset without reverberations.

Method WP NP STOI (%) SI-SDR
Unprocessed 1.56 2.45 91.2 9.0

DCTCRN 2.82 3.17 94.6 10.8
RemixIT 2.95 3.33 97.1 19.7
FRCRN 2.65 3.23 96.1 11.1
CMGAN 2.54 3.10 94.1 10.6

SCP-GAN 2.84 3.25 95.2 10.9
SEDM-S 2.88 3.31 96.6 12.6
SEDM-M 2.91 3.35 97.2 13.0
SEDM-L 2.93 3.42 97.4 13.2

We observe that the proposed SEDM model shows com-
petitive performance compared to the state-of-the-art model,
Remix, on the DNS challenge. Specifically, SEDM-L out-
performs the state-of-the-art models in terms of NP and
STOI metrics.

Comparison to other Diffusion Models

We further investigate the effectiveness of our diffusion
model against state-of-the-art diffusion models in the lit-
erature, including denoising diffusion probabilistic model
(DDPM) (Hu et al. 2020), diffusion probabilistic model-
based speech enhancement (DiffuSE) (Lu, Tsao, and Watan-
abe 2021), noise-aware speech enhancement (NASE) (Hu
et al. 2023), score-based generative models speech enhance-
ment (SGMSE) (Welker, Richter, and Gerkmann 2022b),
conditional diffusion probabilistic model for speech en-
hancement (CDiffuSE) (Lu et al. 2022), neural audio upsam-
pling model (NU-Wave) (Han and Lee 2022). The evaluation
results on VCTK (Veaux, Yamagishi, and King 2013) + DE-
MAND (Thiemann, Ito, and Vincent 2013) are reported in
Table 4, and the experimental setting is the same as Table 2.

We observe that the proposed SEDM-L achieves the
best performance, outperforming the second-best NASE (Hu
et al. 2023) by 0.58 and 0.04 over PESQ and ESTOI, respec-
tively.

Table 4: Speech enhancement performance comparison to
other diffusion models on the VCTK dataset.

Models PESQ ESTOI SI-SDR
DDPM 2.28 0.64 8.5

NU-Wave 2.33 0.67 9.0
DiffuSE 2.41 0.72 10.9

CDiffuSE 2.58 0.79 12.4
SGMSE 2.93 0.87 17.3
NASE 3.01 0.87 17.6

SEDM-L 3.59 0.91 19.4

Ablation Study
In this experiment, we investigate the effectiveness of each
contribution. A ResNet152 (He et al. 2016) is used when the
diffusion model shows ✗. Although the CCC mechanism is
based on phase-aware spectrogram, we use a single diffusion
model to generate speech spectra as presented in Figure 4 for
the combination of (diffusion model: ✓, phase-aware: ✗, and
CCC: ✓).

Figure 4: The pipeline of (diffusion model: ✓, phase-aware:
✗, and CCC: ✓). The clean speech spectra and the corre-
sponding reconstruction are only converted into magnitude
and phase components before CCC module.

The models are trained and tested on the IEEE dataset as
in Section . Ablation study results are showed in Table 5.

Table 5: Ablation study of the three contributions in the pro-
posed method.

Ablation Settings PESQDiffusion Model Phase-Aware CCC
✗ ✗ ✗ 2.21
✓ ✗ ✗ 2.43
✗ ✓ ✗ 2.33
✗ ✓ ✓ 2.60
✓ ✓ ✗ 2.55
✓ ✓ ✓ 2.75

Initially, we evaluate the effectiveness of diffusion model,
which plays a pivotal role in learning desired features from



Figure 5: IEEE dataset visualization with diffusion t-SNE for different numbers of embeddings N.

noisy speech spectra. Diffusion model demonstrates a re-
markable performance improvement from an initial PESQ of
2.21 to 2.43. This improvement can be attributed to the abil-
ity to effectively capture and model the temporal dynamics
and dependencies present in speech signals.

Moreover, speech enhancement experiences a relatively
slight improvement by exploiting phase information (i.e.,
2.21→2.33). In the baselines, the speech signal is recon-
structed by using the noisy phase and the estimated mag-
nitude, which causes a phase loss between the clean speech
signal and the corresponding reconstruction. However, the
proposed phase-aware method utilizes θA and θP to estimate
the phase of the target speech signal and noisy mixture, re-
spectively, and thus improves the accuracy of estimation.

The final experiment in the ablation study involves the
addition of CCC. As demonstrated in the appendix, the po-
tential association between the magnitude and phase plays
an important role in improving speech enhancement perfor-
mance. With the proposed CCC mechanism, the magnitude
and phase are estimated with the updated reconstruction of
noisy speech features, which are better preserved in the esti-
mated features.

Visualization of Learned Representation
As qualitative analysis, Figure 6 presents the t-distributed
stochastic neighbour embedding (t-SNE) visualisation of the
proposed model against different numbers of embeddings N
using the SEDM family with C=128 and K=3 on IEEE.

Figure 6 shows the t-SNE visualisation using different
perplexity settings. For small values of N, we observe that
the feature embeddings are not quite separable for separa-
tion of clean speech (blue) and noise interference (red). For
large perplexity values, the features representation from the
SEDM-L is better separated. These t-SNE visualization re-
sults demonstrate that proposed methods are able to better
learn discriminative feature representations with 50 embed-
ding steps.

Noise Embeddings
In this section, we compare the proposed model trained with
real-world noises to same backbones with Gaussian noise.
Moreover, we evaluate the proposed model over both seen
and unseen noise types in the test stage. The experimental
setting is similar to Section , but we generate the test data
using the remaining 5 out of 15 noise types for the unseen
noise type scenario. Figure 5 presents the results.

Figure 6: Speech enhancement performance over VCTK
dataset (left) and DNS challenge (right). The blue bars indi-
cate models trained with Gaussian noise and evaluated with
5 of 15 noise types from DEMAND. Both red and yellow
bars show models trained with real-world noise, but evalu-
ated with seen and unseen noise types, respectively.

Figure 5 shows speech enhancement performance of
SEDM models against seen and unseen noise interferences
in the test stage. We can observe that: (1) SEDM models
trained with real-world noises suffer a performance degra-
dation with unseen noise interferences due to noise do-
main mismatch. (2) SEDM-L demonstrates greater robust-
ness compared to competitors across all noise interferences.
(3) SEDM models trained with real-world noises are initially
inferior to models trained with Gaussian noise in shallower
networks. However, as the network depth increases, the pro-
posed real-world noise-based models become more compet-
itive, and in some cases, even surpass models trained with
Gaussian noise.

Conclusions
In this paper, we have presented a diffusion model-based
method to address the monaural speech enhancement prob-
lem. Different from the previous speech enhancement meth-
ods that ignore the intrinsic relationship between magnitude
and phase information, our method estimated both the mag-
nitude and phase information of the desired speech signal.
In addition, the proposed complex-cycle-consistent mecha-
nism provided mappings between the magnitude and phase
to update the combined losses and further refined the esti-
mation accuracy. The experimental results showed that the
proposed method outperforms the state-of-the-art speech en-
hancement approaches over different public datasets. Our
ablation experiments confirmed that real-world noise can, to
a certain extent, serve as a substitute for Gaussian noise.
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Quantitative Results
Intrinsic Relationship between Magnitude and
Phase
In the proposed method, the CCC mechanism is used to
minimize the differences between the reconstructed mag-
nitude/phase and the corresponding magnitude/phase from
clean speech signals. We also conduct experiments to evalu-
ate the CCC mechanism. The averaged experimental results
on IEEE and TIMIT as in Section 6.1 are shown in Table 1.

Table 6: Speech enhancement performance by estimating the
magnitude and phase by using their losses. The magnitude
and phase are represented as A and P, respectively.

STOI (%) PESQ fwSNRseg (dB)
Noisy A + Noisy P 42.3 1.52 3.11

Estimated A with P loss 49.4 1.68 5.62
Estimated P with A loss 44.6 1.59 3.75

Estimated A with P loss +
Estimated P with A loss 50.7 1.71 5.91

Table 1 shows that relationship between magnitude and
phase, as shown in (Shimauchlt et al. 2017), is beneficial for
further enhancing speech enhancement performance. This
seems to be aligned with the findings in (Shimauchlt et al.
2017) which shows that the magnitude and phase can be
linked through the group delay or instantaneous frequency
without making any assumptions on the phase property of
the target signals, e.g., minimum, maximum, or linear phase.

Benckmarks on TIMIT.
Furthermore, we compare the proposed models to the bench-
marks of all competitor models on TIMIT (Garofolo et al.
1993). The results are shown in Table 2.

Table 7: Comparison on TIMIT.

Model STOI PESQ fwSNRseg (dB)

DCTCRN 78.5 2.45 13.2
RemixIT 79.3 2.56 14.0
FRCRN 80.2 2.59 14.4
CMGAN 79.6 2.55 13.8
SCP-GAN 81.5 2.77 15.0
DDPM 73.6 2.20 11.1
NU-Wave 74.8 2.35 11.8
DiffuSE 74.7 2.32 12.2
CDiffuSE 78.6 2.53 13.5
SGMSE 77.4 2.49 12.9
NASE 81.0 2.69 14.6
SEDM-S 81.2 2.71 14.9
SEDM-M 81.7 2.81 15.2
SEDM-L 81.9 2.83 15.3

From Table 2, SEDM-L demonstrates the best overall per-
formance across the metrics, with the highest STOI of 81.9,
PESQ of 2.83, and fwSNRseg of 15.3. This indicates that
SEDM-L excels in improving speech enhancement perfor-
mance compared to other models.

Qualitative Results
In this section, we present qualitative results demonstrating
the enhancement performance of noisy speech samples. Par-
ticularly, we show the qualitative improvements of estimated
signal with our SEDM-L over noisy signal and SCP-GAN
(Yu et al. 2021) on TIMIT in Figure 1.

Figure 7: The spectra of different signals. The experiment
is implemented with driver and -5 dB SNR level. The pro-
posed SEDM model offers 0.11 and 0.20 improvements over
the best-performing baseline, i.e. SCP-GAN (Yu et al. 2021),
in terms of PESQ and STOI, respectively.

After comparing the estimated spectra with the spectro-
gram of target speech signal, it can be observed that the spec-
trogram obtained via the proposed SEDM-L is closer to the
clean speech signal, which again confirms that the proposed
method outperforms the competitors.


