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Abstract. We show that the problem of finding the barycenter in the Hellinger—Kantorovich
setting admits a least-cost soft multi-marginal formulation, provided that a one-sided hard marginal
constraint is introduced. The constrained approach is then shown to admit a conic multi-marginal
reformulation based on defining a single joint multi-marginal perspective cost function in the conic
multi-marginal formulation, as opposed to separate two-marginal perspective cost functions for each
two-marginal problem in the coupled-two-marginal formulation, as was studied previously in litera-
ture. We further establish that, as in the Wasserstein metric, the recently introduced framework of
unbalanced multi-marginal optimal transport can be reformulated using the notion of the least cost.
Subsequently, we discuss an example when input measures are Dirac masses and numerically solve
an example for Gaussian measures. Finally, we also explore why the constrained approach can be
seen as a natural extension of a Wasserstein space barycenter to the unbalanced setting.
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1. Introduction. The theory of optimal transportation, dating back to Gaspard
Monge’s work in 1781 [20], continues to develop at pace as one of the fundamental
mathematical theories with an ever-growing list of diverse applications in fields such as
economics, computer vision, image processing and machine learning – see monographs
in [28, 26, 25] for a broad overview.

A central challenge in many applications concerns finding a representative, or
barycentric (probability) distribution, which provides some average description of a
given set of distributions. The basic optimal transport approach to this problem is to
find the barycenter by minimizing the sum of weighted two-marginal optimal transport
costs between the barycenter and each input distributions. It was subsequently shown
that an equivalent and computationally favourable approach is to instead solve a single
least-cost multi-marginal optimal transport problem [9, 1].

If the input distributions do not all have equal mass, an unbalanced barycenter can
be found via a recourse to the emerging theory of unbalanced optimal transportation
[10, 17, 18, 19]. This however, can be done in a number of ways, depending on how one
penalises mass deviations, what cost function is employed and whether one wishes to
consider the conic formulation. Recent important contributions in this area concern:
(HKB): the study of coupled-two-marginal Hellinger-Kantorovich barycenter

and its equivalence to a conic least-cost multi-marginal formulation,
as well as the non-existence of an equivalent soft multi-marginal for-
mulation [13, 11, 5];

(UMOTε): the study of entropy-regularised unbalanced multi-marginal optimal
transport and its equivalence to the entropy regularised coupled-two-
marginal formulation where the second marginal is fixed [4] – notably,
this is done in an extended space setting, as opposed to the least-cost
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setting known from the balanced case.
In particular, apart from the explicitly different starting coupled-two-marginal

formulation for (HKB) and (UMOTε) (putting aside the question of entropic regu-
larisation), the relation between the two frameworks, especially with regards to their
multi-marginal reformulations, has not been thoroughly explored. At the same time,
multi-marginal approaches to (unbalanced) optimal transport continue to attract con-
siderable attention both from a theoretical point of view and for applications, c.f.,
among many others, [23, 16, 3, 14, 2, 27, 24], so it is vital to study the mathematical
underpinning of its unbalanced variant.

1.1. Outline of the paper and its contributions. In this paper we introduce
and discuss the notion of a constrained Hellinger-Kantorovich barycenter, which, in its
basic form and similarly to (UMOTε), concerns a coupled-two-marginal formulation
of the unbalanced barycenter problem where the cost function and the first marginal
entropy functional are chosen as in the Hellinger-Kantorovich (HK) metric, but the
second marginal entropy functional is replaced with a hard constraint — the marginal
has to match the barycenter exactly.

Concretely, we seek to find a barycenter ν ∈M(X) (a set of finite positive Radon
measures on X, which for simplicity we take to be a compact subset of Rd) of a set
of N measures

~µ = (µ1, . . . , µN ), µi ∈M(X)

with weights ~λ = (λ1, . . . , λN ), λi ≥ 0, adding to one, by solving a constrained coupled
two-marginal problem (CC2M, see Table 1 for more details on the subscript notation
being used)

HKCC2M(~µ) = inf
ν∈M(X)

{
N∑
i=1

λiHK
2
(µi, ν)

}
,

where

HK
2
(µi, ν) = inf

γ∈M(X×X)

{∫
X×X

c(x1, x2)dγ(x1, x2) + F(γ1 | µi) + F(γ2 | ν)
}
.

Here γi := (πi)#γ is the ith marginal, the cost function c and entropy functional F
are as is the HK metric (see Section 2.1 for details), but F(γ2 | ν) vanishes if γ2 = ν
and is equal to +∞ otherwise.

Complimentary to (UMOTε), we consider the unregularised problem and fur-
thermore show that a natural least-cost soft multi-marginal (SMM) reformulation
exists and is given by

HKSMM(~µ) := inf
γ∈M(XN )

{∫
XN

c̃(~x)dγ(~x) +
∑
i

λiF(γi | µi)

}
,

where ~x := (x1, . . . , xN ) and the least cost c̃ is given by

(1.1) c̃(~x) = inf
x∈X

N∑
i=1

λic(xi, x).

To deepen the connection with (HKB), we in fact begin the analysis by defining
and studying a new conic multi-marginal problem (CMM), given by

HKCMM(~µ) = inf
α∈M(Y N )

{∫
Y N

HCMM(~x,~s)α(~x,~s) | (πxi)#(siα) = µi

}
,
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where Y := X × R+ is the cone space (up to an equivalence relation for all
y = (x, s) ∈ Y with s = 0), and ~s = (s1, . . . , sN ) ∈ RN+ are the mass variables. The
new multi-marginal perspective cost function HCMM : Y N → R is given by

HCMM(~x,~s) = inf
(x,s)∈Y

inf
t>0

N∑
i=1

{
tλic(xi, x) + λisiF

(
t
si

)
+ λisF

(
t
s

)}
,

where F is the entropy function in the definition of the functional F , (see Section 2.1)
and, as will be discussed in Section 3.1, is fundamentally different from the two-
marginal perspective cost function approach from (HKB).

The central result of the paper is the establishing of a three-way equality

HKCC2M(~µ) = HKSMM(~µ) = HKCMM(~µ).

While for simplicity we only consider X to be a compact subset of Rd and, to connect
with (HKB), we only focus on the HK setting, it is expected that the same equality
should hold for the class of cost functions and entropy functionals covered by the
theory of optimal entropy-transport problems developed in [18, Part I], provided that
in (1.1) a unique minimizer exists or the infimum is given by +∞.

The paper is organised as follows. In Section 2 we discuss the preliminaries, which
includes a reminder on the Hellinger-Kantorovich distance and its conic formulation,
followed by a brief account of the theory of (unconstrained) HK barycenters (HKB).

The main results of the paper are presented in Section 3. We begin with analysis of
the new conic multi-marginal problem HKCMM(~µ) in Section 3.1, followed by showing
in Section 3.2 that it is equivalent to the soft multi-marginal formulation HKSMM(~µ),
for which existence of solutions is established (and hence also for the CMM formula-
tion). Finally, in Section 3.3 we discuss the constrained coupled-two-marginal problem
HKCC2M(~µ), show that it admits a solution and establish its equivalence with the soft
multi-marginal formulation.

Section 4 is devoted to a discussion about the obtained results. In Section 4.1 we
discuss the relation of our results to (UMOTε). This includes a numerical example
in which we reproduce an example from [4] using our least-cost approach. This is
followed by a discussion about different ways of characterising the difference between
the constrained approach and (HKB) and includes an example about Dirac masses.
Finally, in Section 4.3, we formally discuss the general idea of trying to extend the
notion of a Wasserstein barycenter to the unbalanced setting and argue that the
constrained approach might be a more natural one.

The paper finishes with Section 6, where proofs are gathered.

Notation. The theory developed in this paper necessitates a heavy use of the
subscript notation to concisely distinguish between different barycenter and multi-
marginal problems being considered. Table 1 will hopefully help readers navigate
this.

2. Preliminaries.

2.1. The Hellinger-Kantorovich distance. The Hellinger-Kantorovich (HK)
distance between two finite positive Radon measures µ1, µ2 ∈M(X) on a Hausdorff
topological space X endowed with an extended distance function
d : X ×X → [0,+∞], introduced independently by three different groups [10, 17, 18],
is given by

(2.1) HK2(µ1, µ2) = inf
γ∈M(X×X)

{
(c, γ) +

∑
i=1,2

F(γi | µi)
}
,
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Table 1: The subscript notation used throughout the paper.

Notation Full name Defined in

HKC2M(~µ)
The coupled two-marginal (C2M)

Hellinger-Kantorovich barycenter problem (2.14)

HKCMM(~µ)
The conic multi-marginal (CMM) formulation of

the Hellinger-Kantorovich barycenter problem (2.15)

HKCC2M(~µ)
The constrained coupled two-marginal (CC2M)

Hellinger-Kantorovich barycenter problem (3.6)

HKSMM(~µ)
The soft multi-marginal (SMM) formulation of

the constrained Hellinger-Kantorovich barycenter problem (3.4)

HKCMM(~µ)
The conic multi-marginal (CMM) formulation of

the constrained Hellinger-Kantorovich barycenter problem (3.1)

where
(c, γ) :=

∫
X×X

c(x1, x2)dγ(x1, x2)

and the cost function c is given by

(2.2) c(x1, x2) :=

{
− log(cos2(d(x1, x2))) if d(x1, x2) < π/2

+∞ otherwise.

As will become apparent in (2.10), in the classical metric framework this choice of
the cost function is special, as it gives rise to the conic distance over the cone space
Y = X × R+. The entropy functional F is given by

(2.3) F(γi | µi) :=

∫
X

F (σi)dµi + F ′∞γ
⊥
i (X), γi := (πi)#γ, π

i(x1, x2) = xi.

In this definition we have used the Lebesgue decomposition (see e.g. [18, Lemma 2.3])

(2.4) γi = σiµi + γ⊥i , µi = ρiγi + µ⊥i .

and we further note that the function F : [0,+∞)→ [0,+∞) is the relative entropy
function, also known as Kullback-Leibler (KL) divergence, and is given by

(2.5) F (s) := s log s− s+ 1,
(

=⇒ F ′∞ := lim
s→∞

F (s)

s
= +∞

)
,

thus enforcing γi � µi for any feasible plan γ in (2.1).

2.2. Reverse formulation and lifting to the cone. The HK distance admits
several useful reformulations, with two of them particularly relevant to the present
work. Given the entropy function F defined in (2.5), the corresponding reverse entropy
function R : [0,∞)→ [0,∞], defined as

(2.6) R(s) :=

{
sF (1/s) if s > 0,

F ′∞ if s = 0,

is in fact given by

(2.7) R(s) = s− log s− 1.
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One can then show [18, Theorem 3.11] that

HK2(µ1, µ2) = inf
γ∈M(X×X)

{∫
X×X

c(x1, x2) +R(ρ1(x1)) +R(ρ2(x2))dγ(2.8)

+
∑
i=1,2

R′∞(µi − ρiγi)(X)
}
,

where R′∞ = F (0) = 1 and ρ1, ρ2 are defined through the Lebesgue decomposition
(2.4).

This sets the scene for the lifting to the cone space Y := X × R+ (up to an
equivalence relation for all y = (x, s) ∈ Y with s = 0), which is facilitated by the
introduction of the marginal perspective cost function,

H : X × R+ ×X × R+ → [0,+∞],

given by

(2.9) H(x1, s1, x2, s2) := inf
t>0

{
tc(x1, x2) + tR

(s1

t

)
+ tR

(s2

t

)}
.

A direct computation shows that, for R given by (2.7), H admits an explicit formu-
lation given by

(2.10) H(x1, s1, x2, s2) = s1 + s2 − 2s
1/2
1 s

1/2
2 exp

(
−c(x1, x2)

2

)
.

It can then be shown [18, Theorem 5.8] that, after lifting to the cone space Y , we
have

(2.11) HK2(µ1, µ2) = inf
α∈S(µ1,µ2)

(H,α),

where
(H,α) =

∫
Y×Y

H(x1, s1, x2, s2)dα(x1, s1, x2, s2)

and
S(µ1, µ2) = {α ∈M(Y × Y ) | hiα = µi} ,

where the homogeneous marginal hi : M(Y × Y )→M(X) is defined as

(2.12) hiα := πxi# (siα).

Note that hiα = µi ensures that the lifted counterpart to the singular part in (2.8)
satisfies

(2.13)
∑
i=1,2

R′∞(µi − hiα)(X) = 0.

2.3. Unconstrained barycenters for the Hellinger-Kantorovich
distance. In what follows, for simplicity, we focus on the case when X is a com-
pact subset of Rn with the distance d given by the Euclidean distance. We further
suppose we are given N measures

~µ = (µ1, . . . , µN ), µi ∈M(X)
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and N weights

~λ = (λ1, . . . , λN ), λi ∈ R+,

N∑
i=1

λi = 1.

We will now briefly recall relevant known results about the HK barycenter prob-
lem, as studied in [13, 11]. We will aim to follow the presentation in [13], with a few
relevant notational changes.

2.3.1. Coupled two-marginal formulation. The unconstrained
Hellinger-Kantorovich barycenter problem is given by

(2.14) HKC2M(~µ) = inf
ν∈M(X)

{
N∑
i=1

λiHK2(µi, ν)

}
,

where we have used the convention employed in [13] to use the subscript C2M to
emphasise that this is the coupled two-marginal formulation. We refer to this formu-
lation as unconstrained because, in contrast to the new approach to be introduced
in Section 3, the second marginals of optimal plans minimising HK2(µi, ν) are not
constrained to be equal to ν.

2.3.2. Multi-marginal formulation. In analogy with the Wasserstein distance
barycenters [1], it is of considerable interest to study whether the HK barycenter
problem defined in (2.14) admits a multi-marginal reformulation. As established in
[13, 11] and further studied in [5], this is possible starting from the cone formulation
described in Section 2.2, treating the marginal perspective cost function H defined
in (2.9) as a given cost function. In particular, in [13], the authors consider a conic
multi-marginal (CMM) formulation, which, using the notation

XN := X × · · · ×X︸ ︷︷ ︸
N times

, ~x = (x1, . . . , xN ) ∈ XN , ~s = (s1, . . . , sN ) ∈ RN+ ,

is given by

(2.15) HKCMM(~µ) = inf
α∈S(~µ)

(HCMM, α),

where
(HCMM, α) =

∫
Y N

HCMM(~x,~s)dα(~x,~s),

and the cost function is given by

(2.16) HCMM(~x,~s) = inf
(x,s)∈Y

N∑
i=1

λiH(xi, si, x, s),

where H is given by (2.9). The infimum in (2.15) is taken over the set

(2.17) S(~µ) := {α ∈M(Y N ) | hiα = µi},

where the homogeneous marginal hi : M(Y N ) → M(X) is as in (2.12), up to an
obvious adjustment from Y × Y to Y N , and the space Y N is defined as

Y N := Y × · · · × Y︸ ︷︷ ︸
N times

.

Among other results, the following is proven.
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Theorem 2.1 ([13, Theorem 5.13]). It holds that

HKCMM(~µ) = HKC2M(~µ).

The result is very difficult to obtain because the minimisation in (2.16) does not ad-
mit an explicit solution and thus a convex relaxation of the perspective cost function
HCMM needs to be introduced and the associated dual problems considered. Fur-
thermore, it is shown in [13, Section 8], that the unconstrained Hellinger-Kantorovich
barycenter problem HKC2M(~µ) does not admit an original space -based multi-marginal
formulation (the so-called soft multi-marginal formulation). This is a significant de-
viation from the Wasserstein barycenters (see Section 4.3 for an extended discussion
on this). It is thus of considerable interest to explore what, ideally minimal, changes
are needed to “simplify” the framework developed in [13, 11, 5] and e.g. relate it to
the recently explored idea of unbalanced multi-marginal optimal transport [4] (see
Section 4.1 for an extended discussion). This is what we will discuss now.

3. Main results.

3.1. Conic multi-marginal formulation. The starting point of the present
work is a new conic multi-marginal formulation of, what will turn out to be, the
constrained HK barycenter problem. In contrast to (2.15), we introduce it as

(3.1) HKCMM(~µ) := inf
α∈S(~µ)

(HCMM, α),

where the new multi-marginal perspective cost function is given by

(3.2) HCMM(~x,~s) := inf
(x,s)∈Y

inf
t>0

N∑
i=1

{
t
(
λic(xi, x) + λiR

(
si
t

)
+ λiR

(
s
t

) )}
and the set S(~µ) is as in (2.17).

The initial idea behind defining such a cost was to look back at the two-marginal
formulation and, using the reverse formulation from (2.8), rewrite it, as much as pos-
sible, as a collection of integrals with respect to two-marginal plans γi ∈M(X ×X),
namely

HKC2M(~µ) = inf
ν∈M(X)

N∑
i=1

inf
γi∈M(X×X)

(
λi(µi − ρi,1γi,1)(X) + λi(ν − ρi,2γi,2)(X)

+

∫
X×X

λic(x1, x2) + λiR(ρi,1(x1) + λiR(ρi,2(x2)))dγi

)
where, similarly to (2.4), we have used the Lebesgue decomposition

γi,1 = σi,1µi + γ⊥i,1, µi = ρi,1γi,1 + µ⊥i(3.3a)

γi,2 = σi,2ν + γ⊥i,2, ν = ρi,2γi,2 + ν⊥.(3.3b)

Remark 3.1 (Potential notational confusion). To avoid notation becoming too
cumbersome, in the coupled-two-marginal formulations, we use γi ∈ M(X × X) to
denote the ith two-marginal plan and γi,j ∈M(X) to denote the jth marginal of the
ith plan. In contrast, in the multi-marginal formulation, we have a multi-marginal
plan γ ∈ M(XN ) and γi ∈ M(X) denotes its ith marginal. This can be particularly
confusing when N = 2 and we will try to always indicate the space to which γi belongs
to minimise potential confusion.
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As first attempt, by trying to mimic the Wasserstein barycenters theory, a can-
didate for a multi-marginal cost function is given by

inf
(x,s)∈Y

N∑
i=1

{(
λic(xi, x) + λiR (si) + λiR (s)

)}
.

Secondly, to mimic the lifting to the cone strategy developed in [18] and recalled
in Section 2.2, to arrive at a multi-marginal perspective cost function, we further
introduce an extra infimization over t > 0,

HCMM(~x,~s) = inf
(x,s)∈Y

inf
t>0

N∑
i=1

{
t
(
λic(xi, x) + λiR

(
si
t

)
+ λiR

(
s
t

) )}
.

To directly compare with the cost function HCMM considered in [13], we recall
that it is given by

HCMM(~x,~s) = inf
(x,s)∈Y

N∑
i=1

inf
ti>0

{
ti
(
λic(xi, x) + λiR

(
si
ti

)
+ λiR

(
s
ti

) )}
.

The difference is thus that in the known multi-marginal formulation, the extra in-
fimization over ti > 0 is introduced separately for each two-marginal problem. The
key distinction is that in the new approach, we “exchange” the order of taking the
infimum over ti > 0 and the summation in i and as a result only infimize over a joint
multi-marginal t > 0. The idea of a multi-marginal perspective function is adapted
from [8], where a similar notion was used to study the entropic regularisation of the
unbalanced optimal transport problems.

We begin by proving the following.

Lemma 3.2. The multi-marginal perspective cost function HCMM defined in (3.2)
can be equivalently written as

HCMM(~x,~s) = inf
(x,s)∈Y

 N∑
i=1

λisi + s− 2s
1
2

 N∏
j=1

s
λj
2
j

 exp

(
−
∑N
k=1 λkc(xk, x)

2

)
= inf
s∈R+

 N∑
i=1

λisi + s− 2s
1
2

 N∏
j=1

s
λj
2
j

 exp

(
−1

2
inf
x∈X

N∑
k=1

λkc(xk, x)

)
=

N∑
i=1

λisi −
N∏
j=1

s
λj
j exp

(
− inf
x∈X

N∑
k=1

λkc(xk, x)

)
.

For proof, see Section 6.1. The key point here is that the minimizer in s has an explicit
formula, hence allowing us to obtain the last equality.

3.2. Soft multi-marginal formulation. The result of Lemma 3.2 allows us to
characterise the new conic multi-marginal problem as a soft multi-marginal (SMM)
problem on the space XN , which is given by

(3.4) HKSMM(~µ) := inf
γ∈M(XN )

{
(c̃, γ) +

∑
i

λiF(γi | µi)

}
,
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where the cost function c̃ : XN → R is given by

(3.5) c̃(~x) = inf
x∈X

N∑
i=1

λic(xi, x).

We first prove that the soft multi-marginal problem has a solution.

Proposition 3.3. There exists γ̄ ∈M(XN ) such that

HKSMM(~µ) = (c̃, γ̄) +
∑
i

λiF(γ̄i | µi).

For proof, see Section 6.2. The result follows from simple adjustments to the argument
in [18, Theorem 3.3], which concerns the case N = 2.

This brings us to the first main result of the paper.

Theorem 3.4. The conic multi-marginal formulation of the barycenter problem
HKCMM(~µ) defined in (3.1) admits a soft multi-marginal reformulation given by (3.4).
In other words,

HKCMM(~µ) = HKSMM(~µ).

Furthermore, if γ̄ ∈M(XN ) is a solution to HKSMM(~µ), then ᾱ ∈M(Y N ) given by

ᾱ := (x1, ρ̄1(x1), . . . , xN , ρN (xN ))#γ̄,

where
µi = ρ̄iγ̄i + µ⊥i ,

is a solution to HKCMM(~µ).

For proof, see Section 6.3.

3.3. Constrained coupled two-marginal formulation. It is perhaps tempt-
ing to think that the new conic multi-marginal formulation HKCMM(~µ) defined in
(3.1) simply coincides with the unconstrained coupled two-marginal barycenter prob-
lem HKC2M(~µ) introduced in (2.14). This cannot be the case, however, since, on the
one hand, through Theorem 3.4 we know that HKCMM(~µ) is equivalent to the soft
multi-marginal reformulation HKSMM(~µ), and on the other, through [13, Section 8],
we know that the unconstrained problem HKC2M(~µ) is not equivalent to it. It turns
out, however, that the difference between HKCMM(~µ) and HKC2M(~µ) can be described
quite explicitly, namely it lies in introducing an extra constraint in the coupled two-
marginal formulation. We define a constrained coupled two-marginal (CC2M) HK
barycenter problem, given by

(3.6) HKCC2M(~µ) := inf
ν∈M(X)

{
N∑
i=1

λiHK
2
(µi, ν)

}
,

where, in contrast to the usual formulation of the HK distance defined in (2.1), we
have

HK
2
(µi, ν) := inf

γ∈M(X×X)

{
(c, γ) + F(γ1 | µi) + F(γ2 | ν)

}
,

and, reusing the general entropy functional notation (2.3),

(3.7) F(γi | µi) :=

∫
X

F (σi)dµi + F
′
∞γ
⊥
i (X), F (s) =

{
0, if s = 1,

+∞, otherwise.
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In other words, F is the convex indicator ι{1} and thus we impose a hard constraint
on the second marginal of γ to exactly coincide with ν. This of course implies that
HK is no longer a metric, but nonetheless retains some features of the HK distance,
as we still use the same cost function and the entropy functional for the first marginal
remains the same. In particular, the one-sided hard-constraint setup is covered by
the general theory of optimal entropy-transport problems developed in [18, Part I] –
see Example E.8 in Section 3.3 therein. As a result, we can show that HKCC2M(~µ)
admits at least one solution.

Proposition 3.5. There exists ν̄ ∈M(X) such that

HKCC2M(~µ) =

N∑
i=1

λiHK
2
(µi, ν̄).

For proof, see Section 6.4.
We further note that the idea of a one-sided hard constraint was pioneered in [4],

albeit in a slightly different context (see Section 4.1 for an extended discussion).
This brings us to the second main result of the paper.

Theorem 3.6. The constrained coupled two-marginal formulation of the barycen-
ter problem HKCC2M(~µ) defined in (3.6) admits a soft multi-marginal reformulation
given by (3.4). In other words,

HKCC2M(~µ) = HKSMM(~µ).

Furthermore, if γ̄ ∈M(XN ) is a solution to HKSMM(~µ), then either
(i) γ̄ is the zero measure on XN , in which case the zero measure on X is a solution
to HKCC2M(~µ); or
(ii) γ̄ is not the zero measure on XN , in which case ν̄ = T#γ̄ is a solution to
HKCC2M(~µ). Here T : A→ X is a mapping from

A :=

{
~x = (x1, . . . , xN ) ∈ XN |

N⋂
i=1

Bπ
2 (xi) 6= ∅

}

to the unique solution to

inf
x∈X

N∑
i=1

λic(xi, x),

which exists for all ~x ∈ A.

For proof, see Section 6.5.
We note that by combining Theorem 3.4 and Theorem 3.6 we thus obtain a three-

way equality
HKCC2M(~µ) = HKCMM(~µ) = HKSMM(~µ),

as opposed to the two-way equality for the unconstrained HK barycenter framework
for which we have

HKC2M(~µ) = HKCMM(~µ).

See Section 4.2 for an extended discussion on how the two approaches differ.
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4. Discussion. Before we proceed to the details of proofs, we finish the main
part of the paper by discussing how problems HKCC2M(~µ) and HKSMM(~µ) relate to
the recently studied theory of unbalanced multi-marginal optimal transport [4] and
also how the constrained framework compares with the unconstrained one. We finally
also informally examine whether the constrained setup can be seen as a more natural
extension of the Wasserstein barycenter problem to the unbalanced setting.

4.1. Relation to the unbalanced multi-marginal optimal transport the-
ory. A result complimentary to Theorem 3.6 is proven in [4, Theorem 5.2] in the case
when both problems are additionally entropy-regularised and for a much wider class of
cost functions and entropy functionals. The key difference is that (a non-regularised
counterpart to) the soft multi-marginal formulation considered therein is given by

(4.1) ĤKSMM(~µ) := inf
γ∈M(XN×X)

(ĉ, γ) +

N∑
i=1

λiF(γi | µi),

where

ĉ(~x, xN+1) :=

N∑
i=1

λic(xi, xN+1),

meaning that an extra X space is introduced and the cost function is not defined
as an infimum. Putting aside entropic regularisation, formally the non-regularised
version of their result is that in fact

ĤKSMM(~µ) = HKCC2M(~µ).

In [4, Remark 5.5] and closing remarks the authors identify a result as in Theo-
rem 3.6 as something desirable, as it would establish sparsity of the optimal plan in
(4.1) in its last component. More broadly, such a result fits with wider literature on
studying the sparsity of optimal plans in multi-marginal problems [15, 21, 22, 7, 6].
We show that, at least in the HK-related setting, it can be done. Our proof, which will
be presented in Section 6.5, relies merely on using the reverse formulation to obtain
the inequality HKCC2M(~µ) ≥ HKSMM(~µ) and, at least on the face of it, should apply
to a wide class of entropy functions and cost functions (provided that the infimization
in (3.5) admits a unique minimizer, or the infimum is equal to +∞).

We further note that our new conic multi-marginal formulation provides an ex-
plicit link between the results of [4] and the work on HK barycenters in [13, 11], which,
to the best of our knowledge, is new.

Example 4.1. To showcase that the least-cost approach works in practice, we
reuse the setup of the example about computing the barycenters of 1D unbalanced
Gaussians presented in [4, Section 6.1]. We consider two empirical measures µ1 and µ2

obtained from sampling truncated normal distributionsN (0.2, 0.05) and 2N (0.8, 0.08)
on [0, 1] using a uniform grid with 200 points. To showcase the fact that the least-
cost unbalanced approach also makes sense for other cost functions, we use both the
quadratic cost and the HK cost in our tests.

To approximately solve the soft multi-marginal problem HKSMM(~µ), we use the
unbalanced Sinkhorn algorithm [10], as implemented in the POT (Python Optimal
Transport) toolbox [12]. We publish a Jupyter notebook detailing the computation1.

The results are presented in Figure 1 and clearly the barycenters computed are
qualitatively comparable the ones shown in the right column of [4, Figure 2].

1https://github.com/mbuze/CHK_barycenters

https://github.com/mbuze/CHK_barycenters
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Figure 1: Computation of the least-cost unbalanced barycenter between measures
µ1 and µ2 with weights λ1 and λ2 = 1 − λ1, obtained by approximately solving
HKSMM(~µ) defined in (3.4) using quadratic cost (left column) and HK cost (right
column). We plot the input measures, the marginals of the optimal plan γ̄ and the
resulting barycenter ν̄.
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4.2. Comparison with the unconstrained setting. In this section we will
gather several observations relating the constrained approach proposed in this paper
with previous work on the unconstrained HK barycenters in [13, 11, 5].

We start with presenting two ways in which the difference between the two ap-
proaches can be described.

Proposition 4.2. It holds that

HKC2M(~µ) ≤ HKCC2M(~µ).

The equality can only be achieved if the measures ~µ are such there exists minimiser
ν̄ of HKC2M(~µ) for which there exist minimizers γ̄i of HK2(µi, ν̄) for which γ̄i2 = ν̄
for each i.

Proof. This is an immediate consequence of the fact that any minimiser of
HKCC2M(~µ) is a competitor in the unconstrained problem and further that
F (s) ≥ F (1) = 0 for any s ∈ [0,+∞)].

A somewhat less trivial characterisation of the difference between the two ap-
proaches follows from the dual description of the conic cost functions.

Lemma 4.3. The joint multi-marginal perspective cost function HCMM defined
(3.2) admits a dual description

HCMM(~x,~s) = inf
x,s∈Y

sup
φ1,...,φN ,φN+1

{ N∑
i=1

−si(λiF )∗(−φi)− sF ∗(−φN+1)(4.2)

∣∣∣ N∑
i=1

φi + φN+1 ≤
N∑
i=1

λic(xi, x).
}
,

where φi ∈ R+. The dual description of the unconstrained multi-marginal cost func-
tion HCMM from (2.16) is on the other hand given by

HCMM(~x,~s) = inf
x,s∈Y

N∑
i=1

sup
φi,1,φi,2

{
− si(λiF )∗(−φi,1)− s(λiF )∗(−φi,2)∣∣∣ φi,1 + φi,2 ≤ λic(xi, x)

}
,

where φi,j ∈ R+.

Based on this result, we can establish the following.

Proposition 4.4. It holds that

HCMM(~x,~s) ≤ HCMM(~x,~s),

which, as already established in Proposition 4.2, implies that

HKCMM(~µ) ≤ HKCMM(~µ).

Proof. Fix (x, s) ∈ Y and suppose (φ̄i,1, φ̄i,2) ∈ R2 maximizes

sup
φi,1,φi,2

{
− si(λiF )∗(−φi,1)− s(λiF )∗(−φi,2)

∣∣∣ φi,1 + φi,2 ≤ λic(xi, x)
}
.



14 M. BUZE

We can then set φ̂i := φ̄i,1 and φ̂jN+1 :=
φ̄j,2
λj

for some j ∈ {1, . . . , N}, which defines
a competitor in (4.2) and thus

HCMM(~x,~s) ≥ inf
(x,s)∈Y

N∑
i=1

−si(λiF )∗(φ̂i)− sF ∗(−φ̂jN+1)

= inf
(x,s)∈Y

N∑
i=1

−si(λiF )∗(φ̄i,1)− sF ∗(−φ̄j,2/λj)

Since this holds for any particular choice of j, we can take a convex combination with
weights ~λ of the right-hand side and arrive at

HCMM(~x,~s) ≥ inf
(x,s)∈Y

N∑
j=1

λj

(
N∑
i=1

−si(λiF )∗(φ̄i,1)− sF ∗(−φ̄j,2/λj)

)

= inf
(x,s)∈Y

N∑
i=1

−si(λiF )∗(φ̄i,1) +

N∑
j=1

sλjF
∗(−φ̄j,2/λj)

= HCMM(~x,~s).

The last equality follows from the fact that, for any j,

−s(λjF )∗(−φj,2) = −sλjF ∗
(
−φj,2
λj

)
,

which is the standard scaling property of the Legendre transform.

We further discuss an explicit example to emphasise that, at least for Dirac
masses, the constrained approach differs from the unconstrained one quite consid-
erably.

Example 4.5 (Dirac masses). Consider N Dirac masses µi = δzi for zi ∈ X and
we recall that we assume that X is (a compact subset of) Rn. It readily follows from
the analysis of the cost function c̃ in Lemma 6.1 that if

(4.3)
N⋂
i=1

Bπ
2

(zi) 6= ∅,

then the barycenter ν̄ obtained by minimizing in HKCC2M(~µ) as in Proposition 3.5,
is given by a single Dirac mass

ν̄ = MδT (~z),

where T (~z) is the mapping

~z 7→ min
z∈X

N∑
i=1

λic(zi, z)

which is shown to exist in Lemma 6.1, provided that (4.3) holds. Furthermore, an
explicit calculation reveals that the mass M is given by the formula

(4.4) M =

N∏
i=1

mλi
i exp(−c̃(~z)) =

N∏
i=1

mλi
i exp

− N∑
j=1

λjc(zj , T (~z))

 ,
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which can be seen as a variant of a weighted geometric mean for masses of input
measures.

If, on the other hand, (4.3) does not hold, then the barycenter is given by the
zero measure. On an informal level this is consistent with (4.4), since

M → 0, as c̃(~z)→ +∞.

This example reveals that, for small distances between source points, the con-
strained HK barycenter behaves similarly to the Wasserstein barycenter and degener-
ates if the distance between the support of at least one of the input measures from the
supports of other measures is too large. As thoroughly discussed in [5], a radically
different, clustering behaviour can occur in the unconstrained setup. At the same
time, it is feasible to imagine a (perhaps not very efficient) clustering algorithm based
on the constrained approach, since we can interpret the barycenter being the zero
measure as an indication that there are at least two clusters in the data set and we
can tune what we consider a cluster by adjusting the length over which transport is
preferred over mass creation/annihilation.

4.3. Extending Wasserstein barycenters to the unbalanced setting. Us-
ing the hard-constraint entropy functional defined in (3.7), the multi-marginal for-
mulation of the Wasserstein barycenter problem, as studied in [1], can be formulated
as

WMM(~µ) = inf
γ∈M(XN )

{
(c̃, γ) +

N∑
i=1

λiF(γi | µi)

}
, c̃(~x) := inf

x∈X

N∑
i=1

λic(xi, x),

where now the masses of each µi have to coincide, and, canonically, we have
c(x, y) = |x− y|2. By comparing with the definition of HKSMM(~µ) in (3.4), the soft
multi-marginal formulation is a very intuitive extension of the Wasserstein barycenter
problem to the unbalanced setting – we replace N hard marginal functionals F(γi | µi)
with N soft functionals F(γi | µi) defined in (2.3).

Similarly, the coupled-two-marginal formulation of the Wasserstein barycenter
problem can be written as

WC2M(~µ) = inf
ν∈M(X)

{
N∑
i=1

λi inf
γi∈M(X×X)

{
(c, γi) + F(γi,1 | µi) + F(γi,2 | ν)

}}
.

By directly comparing with the corresponding unconstrained setting, given by
HKC2M(~µ) and defined in (2.14), we see that the difference lies in replacing 2N hard-
constraint entropy functionals, F(γi,1 | µi) and F(γi,2 | ν), with F(γi,1 | µi) and
F(γi,2 | ν).

On the other hand, in the constrained setting, given by HKCC2M(~µ) and de-
fined in (3.6), N hard-constraint entropy functionals F(γi,1 | µi) get replaced with
F(γi,1 | µi). In that sense the constrained setting can be seen as being half-way
between the Wasserstein barycenter problem and the unconstrained HK barycenter
problem. To a significant degree it is the hard constraint that γi,2 = ν, that ensures
the link between the multi-marginal and coupled-two-marginal formulations for both
the Wasserstein and constrained HK barycenter can be established. Our result indi-
cate that we thus retain more of the Wasserstein barycenter framework by using the
constrained approach.
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5. Conclusion. We have introduced a new conic multi-marginal barycenter
problem related to the Hellinger-Kantorovich metric, which admits a very natural
soft multi-marginal formulation which in its spirit exactly matches its Wasserstein
metric counterpart. Additionally, we have shown that it corresponds to a coupled-
two-marginal formulation with a one-sided hard marginal constraint, which can be
argued to be a more natural extension of the idea of a Wasserstein barycenter to the
unbalanced setting. Furthermore, our analysis of the conic multi-marginal formula-
tion has established an explicit link between the unbalanced multi-marignal optimal
transport framework studied in [4] and conic formulation of the HK barycenter prob-
lem studied in [13, 11, 5]. We further have extended the results of [4] by showing that,
as in the Wasserstein metric, the soft multi-marginal formulation can be posed over
the space XN with the cost function defined as "the least cost" [9].

In the future it would be very interesting to explore whether, based on the ideas
developed here (see especially Section 4.3), the unconstrained HK barycenter problem
admits a "generalised" soft-marginal formulation.

Acknowledgments. This work was inspired by a great talk on this topic given
by Bernhard Schmitzer at the ICMS Workshop: Optimal Transport and Calculus of
Variations in December 2023 in Edinburgh, whom I would like to sincerely thank for
bringing my attention to this problem and for the discussion we have had on related
topics.

6. Proofs.

6.1. Proof of Lemma 3.2.

Proof. Given the explicit form of R in (2.7), for a fixed x, ~x, s, and ~s, we can
solve

inf
t>0

N∑
i=1

{
t
(
λic(xi, x) + λiR

(
si
t

)
+ λiR

(
s
t

) )}
via a direct computation relying on differentiating in t. It readily follows that

HCMM(~x,~s) = inf
(x,s)∈Y

 N∑
i=1

λisi + s− 2s
1
2

 N∏
j=1

s
λj
2
j

 exp

(
−
∑N
k=1 λkc(xk, x)

2

) .

The next step is to recognise that since si ≥ 0 and s ≥ 0, the monotonicity of the
exponential function ensures that we also have
(6.1)

HCMM(~x,~s)= inf
s∈R+

 N∑
i=1

λisi + s− 2s
1
2

 N∏
j=1

s
λj
2
j

 exp

(
−1

2

N∑
k=1

λk inf
x∈X

c(xk, x)

) .

The infimum over s can then again be solved directly by differentiating in s and
recognising that the optimal s is given by

s =

 N∏
j=1

s
λj
2
j

 exp

(
− infx∈X

∑N
k=1 λkc(xk, x)

2

)2

.

By plugging this formula into (6.1) and simplifying, we arrive at the final reformula-
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tion, given by

HCMM(~x,~s) =

N∑
i=1

λisi −
N∏
j=1

s
λj
j exp

(
− inf
x∈X

N∑
k=1

λkc(xk, x)

)
.

6.2. Proof of Proposition 3.3.

Proof. Define E(· | ~µ) : M(XN )→ R as

E(γ | ~µ) := (c̃, γ) +

N∑
i=1

λiF(γi | µi).

The functional is feasible since when γ = 0 (the zero measure), we have

E(0 | ~µ) =

N∑
i=1

µi(X) <∞.

It is bounded below by zero, thus a minimising sequence (γk)k∈N exists. From the
inequality

E(γ | ~µ) ≥ γ(XN ) inf c̃+

N∑
i=1

µi(X)F

(
γ(XN )

µi(X)

)
≥

N∑
i=1

µi(X)F

(
γ(XN )

µi(X)

)
and the superlinearity of F , we can deduce that the masses of (γk)k∈N are bounded,
thus the sequence has a weak-* cluster point γ̄, meaning that, up to a subsequence,
for all continuous and bounded f ,∫

XN
f(~x)dγk(~x)→

∫
XN

f(~x)dγ̄(~x).

But it has to be a minimiser, since c̃ and F are both lower semi-continous.

6.3. Proof of Theorem 3.4.

Proof. The proof of this theorem closely resembles the results detailed in [8, Sec-
tion 3], which themselves are inspired by the results presented in [18, Section 3].
Recall from (3.4) that the proposed soft multi-marginal (SMM) formulation is given
by

HKSMM(~µ) = inf
γ∈M(XN )

{
(c̃, γ) +

∑
i

λiF(γi | µi)

}
.

Our aim is to establish that HKSMM(~µ) = HKCMM(~µ). Using the reverse entropies R
from (2.7) and the Lebesgue decomposition between γi and µi,

γi = σiµi + γ⊥i , µi = ρiγi + µ⊥i

it follows from an obvious adjustment of [18, Theorem 3.11] that the problem admits
a reverse formulation, given by

HKSMM(~µ) = inf
γ∈M(XN )

{∫
XN

(
c̃(~x) +

N∑
i=1

λiR(ρi(xi))

)
dγ +

N∑
i=1

λi(µi − ρiγi)(X)

}
︸ ︷︷ ︸

=:R(~µ,γ)

,
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where we have used the fact that R′∞ = F (0) = 1.
Likewise, we can replicate the argument in [18, Proposition 4.3, Theorem 4.11] to

conclude that the dual formulation is given by

HKSMM(~µ) = sup
~ψ∈Ψ

{
N∑
i=1

(ψi, µi)

}
= sup

~φ∈Φ

{
N∑
i=1

(−(λiF )∗(−φi), µi)

}
,

where
~ψ = (ψ1, . . . , ψN ), ~φ = (φ1, . . . , φN )

belong to

Ψ =

{
~ψ | ψi ∈ Cb(X), (λiR)∗(ψi) ∈ Cb(X),

N⊕
i=1

(λiR)∗(ψi) ≤ c̃

}
,

Φ =

{
~φ | φi ∈ Cb(X), −(λiF )∗(−φi) ∈ Cb(X),

N⊕
i=1

φi ≤ c̃

}
.

Note that (λiF )∗ is the Legendre dual of λiF , which is defined, for a generic scalar
function f , as

f∗(φ) := sup
s>0

(sφ− f(s)) =⇒ (λif)∗(φ) = λif
∗
(
φ

λi

)
.

In our specific case we have

F ∗(φ) = exp(φ)− 1, R∗(ψ) = − log(1− ψ)

and we note the change of variables relation

φi = (λiR)∗(ψi), ψi = −(λiF )∗(−φi).

Finally, we introduce the marginal perspective function

HSMM(~x,~s) := inf
t>0

{
t

(
N∑
i=1

λiR
(si
t

)
+ c̃(~x)

)}
,

which, by a direct calculation, admits a formula

HSMM(~x,~s) =

N∑
i=1

λisi −
N∏
j=1

s
λj
j exp (−c̃(~x)) .

In other words, since c̃(~x) = infx∈X
∑N
i=1 λic(xi, x), we have established that in fact

HSMM = HCMM from (3.2).
We also have a dual representation for HSMM, namely

HSMM(~x,~s) = sup
~ψ

{
N∑
i=1

siψi

∣∣∣ N∑
i=1

(λiR)∗(ψi) ≤ c̃(~x)

}

= sup
~φ

{
N∑
i−1

−si(λiF )∗(−φi)
∣∣∣ N∑
i=1

φi ≤ c̃(~x)

}
,
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where now φi and ψi are scalars.
We can thus introduce a homogeneous formulation, given by

(6.2) H(~µ | γ) :=

∫
XN

HSMM(~x, ρ1(x1), . . . , ρN (xN ))dγ +

N∑
i=1

λi(µi − ρiγi)(X)

and, using the strategy from [18, Theorem 5.5], it follows from the dual representation
for HSMM that

(6.3) sup
~φ∈Φ

{
N∑
i=1

(−(λiF )∗(−φi), µi)

}
︸ ︷︷ ︸

=HKSMM(~µ)

≤ inf
γ∈M(XN )

H(~µ | γ) ≤ inf
γ∈M(XN )

R(~µ | γ)︸ ︷︷ ︸
=HKSMM(~µ)

,

which of course imply that the middle term is equal to HKSMM(~µ) too.
The final step is to lift to the cone. This is done by defining

inf
α∈S(~µ)

(HSMM, α),

where we recall from (2.17) and (2.12) that

S(~µ) := {α ∈M(Y N ) | hiα = µi}, hiα = πxi# (siα).

This is the cone-equivalent of (6.2), especially since, as in (2.13), the singular part is
zero due to the constraint on the homogeneous marginal in the set S(~µ).

Obvious adjustments to the argument in [18, Theorem 5.8] allow us to conclude
that in fact the sandwich inequality in (6.3) holds for the cone formulation too. Since
we have already shown that HSMM = HCMM, we thus obtain that

HKSMM(~µ) = inf
α∈S(~µ)

(HCMM, α) = HKCMM(~µ),

which is what we set out to prove.
The fact that

ᾱ = (x1, ρ̄1(x1), . . . , xN , ρN (xN ))#γ̄,

where
µi = ρ̄iγ̄i + µ⊥i ,

is a minimiser of HKCMM(~µ) is an immediate extension of [18, Theorem 5.8].

6.4. Proof of Proposition 3.5.

Proof. The argument is similar to the proof in [13, Proposition 4.2]. Define

J : M(X)→ R

given by

J(ν) :=

N∑
i=1

λiHK
2
(µi, ν).

The functional J is feasible, that is infν∈M(X) J(ν) <∞. This follows naturally from
the fact that the zero measure is a competitor and

J(0) =

N∑
i=1

λiHK
2
(µi, 0) =

N∑
i=1

λiµi(X) <∞.
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The functional J is also bounded below. This follows from

J(v) =

N∑
i=1

λiHK
2
(µi, ν) ≥

N∑
i=1

λiHK2(µi, ν) ≥ 0,

where the last inequality holds since HK is a distance. The first inequality follows
from the fact that the minimizer of HK(νi, µ) is a competitor in HK(νi, µ) and further
that F (1) = 0.

Thus a minimising sequence (νk)k∈N exists and from the lower bound

HK
2
(µ, ν) ≥ HK2(µ, ν) ≥ (

√
µ(X)−

√
ν(X))2,

we can conclude that νk(X) is uniformly bounded, and hence the sequence has a
weak-* cluster point ν̄, meaning that, up to a subsequence, for all continuous and
bounded f , ∫

X

f(x)dνk(x)→
∫
X

f(x)dν̄(x).

At the same time, due to [18, Theorem 3.3], for each νk, there exists a collection
{γi,k}Ni=1 ⊂M(X ×X) of minimizers of HK

2
(µi, νk). Using the notation

E(γ | ν, µ) := (c, γ) + F(γ1 | µ) + F(γ2 | ν),

we thus have

J(νk) =

N∑
i=1

λiE(γi,k | µi, νk).

In particular, the hard-constraint entropy functional F(γi,k2 | νk) ensures that

γi,k(X ×X) = γi,k2 (X) = νk(X),

implying that the masses of {γi,k}k∈N are uniformly bounded, thus ensuring that the
sequence admits a weak-* cluster point γ̄i, meaning that, up to a subsequence, for all
continuous and bounded f ,∫

X×X
f(x1, x2)dγi,k(x1, x2)→

∫
X×X

f(x1, x2)dγ̄i(x1, x2).

The final step is to realise that, up to choosing a subsequence, we have

inf
ν∈M(X)

J(ν) = lim
k→∞

J(νk) = lim
k→∞

N∑
i=1

λiE(γi,k | µi, νk)

≥
N∑
i=1

λiE(γ̄i | µi, ν̄) ≥
N∑
i=1

λiHK
2
(µi, ν̄) ≥ inf

ν∈M(X)
J(ν).

The first inequality follows from the fact that the cost function (c, γi,k) and the
entropy functional F(γi,k1 | µi) are both lower semi-continuous, whereas F(γi,k2 | νk)
is (trivially) jointly lower semi-continuous in both variables, (c.f. [18, Corollary 2.9]).
The second inequality follows merely from the fact that γ̄i is a competitor. We have
thus established that ν̄ is a minimiser.
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6.5. Proof of Theorem 3.6. We begin by proving an auxiliary result concern-
ing the characterisation of the cost function

c̃(~x) = inf
x∈X

N∑
i=1

λic(xi, x),

defined in (3.5).

Lemma 6.1. The function c̃ attains a finite value only on the set

A :=

{
~x ∈ XN |

N⋂
i=1

Bπ
2 (xi) 6= ∅

}

and is identically +∞ otherwise. Furthermore, if ~x ∈ A, then there exists a unique
minimizer of

inf
x∈X

N∑
i=1

λic(xi, x)

and consequently there exists a map T : A→ X mapping ~x to the minimizer.

Proof. The fact that c̃(~x) < ∞ if and only if ~x ∈ A follows directly from the
definition of c and c̃. We note that A is convex. Now let us fix ~x ∈ A and define
f : B → R, where

B :=

N⋂
i=1

Bπ
2

(xi), f(x) :=

N∑
i=1

λic(xi, x).

By design, f is finite on its domain and B is a non-empty convex set, since it is a
finite intersection of balls. We can thus rewrite f as

f(x) = −
N∑
i=1

λi log(cos2(|xi − x|)) = − log

(
N∏
i=1

cos2λi(|xi − x|)

)

It can be readily shown that

g : Bπ
2

(0)→ R, g(x) = − log(cos2(|x|))

is strictly convex, and thus so is f , since it is a sum of convex functions and B is
convex. As a result, it has a unique minimiser, thus establishing existence of the
mapping T .

We can now proceed to proving the main theorem of this section.

Proof of Theorem 3.6. As in the corresponding proof in the Wasserstein metric
[1], we will proceed in two steps, but first, in light of Lemma 6.1, we discuss the special
case where

N⋂
i=1

Bπ
2

(suppµi) = ∅,

where we use the notation

Bπ
2

(A) :=
{
x ∈ X | d(x,A) <

π

2

}
, d(x,A) := inf

y∈A
|x− y|.
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This is the case where no transport of mass can occur. This is, on the one hand,
because the minimizer of HKCC2M(~µ) is the zero measure, that is ν̄ = 0, which is
the consequence of the hard marginal constraint γ̄i,2 = ν̄. As a result only the zero
measure ensures that HK

2
(µi, ν) is finite for all i. Consequently, each two-marginal

problem is minimized by the zero measure too, that is γ̄i = 0.
On the other hand, in the soft marginal formulation, the minimiser of HKSMM(~µ)

is given by γ̄ = 0, which follows from the fact that any feasible plan γ ∈ M(XN )
has to satisfy γi � µi, from which it follows that (c̃, γ) = +∞ unless γ = 0. In this
case the mapping T does not exist, but it does not need to be discussed since the
pushforward of the zero measure is always the zero measure.

In what follows we thus focus on the other case, namely that

(6.4)
N⋂
i=1

Bπ
2

(suppµi) 6= ∅.

Step 1: showing that HKCC2M(~µ) ≥ HKSMM(~µ). Let ν̄ ∈ M(X) be a mini-
mizer of HKCC2M(~µ) (proven to exist in Proposition 3.5) and γ̄i ∈ M(X ×X) be a
minimizer of HK

2
(µi, ν̄). By (γ̄x2

i )x2∈X we denote the disintegration of γ̄i with respect
to its second marginal, which, by construction, for each i is given by γ̄i,2 = ν̄.

This allows us to introduce γ̂ ∈M(XN ) via

∫
XN

φ(~x)dγ̂ :=

∫
XN+1

φ(~x)dγ̄y1 (x1), . . . , dγ̄yN (xN )dν̄(y).

We note that the ith marginal of γ̂i is given by γ̂i = γ̄i,1, which follows from observing
that

∫
X

φ(x)dγ̂i =

∫
XN

φ(πi(~x))dγ̂ =

∫
X×X

φ(xi)dγ̂
y
i (xi)dν̄ =

∫
X×X

φ(x1)dγ̄i

=

∫
X

φ(x)dγ̄i,1.

This in particular naturally implies that in the Lebesgue decomposition between γ̂i
and µi,

µi = ρ̂iγ̂i + µ⊥i ,
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we have ρ̂i = ρ̄i,1. As a result

HKSMM(~µ) ≤ (c̃, γ̂) +

N∑
i=1

λiF(γ̂i | µi)

=

∫
XN

(
c̃(~x) +

N∑
i=1

λiR(ρ̂i(xi))

)
dγ̂ +

N∑
i=1

λi(µi − ρ̂iγ̂i)(X)

=

∫
XN+1

(
inf
x∈X

N∑
i=1

λic(xi, x) +

N∑
i=1

λiR(ρ̄i,1(xi))

)
dγ̂ +

N∑
i=1

λi(µi − ρ̄i,1γ̄i,1)(X)

≤
∫
XN+1

(
N∑
i=1

λic(xi, y) +

N∑
i=1

λiR(ρ̄i,1(xi))

)
dγ̂ +

N∑
i=1

λi(µi − ρ̄i,1γ̄i,1)(X)

=

N∑
i=1

(
λi

∫
X×X

(c(xi, y) +R(ρ̄i,1(xi))) dγ̄
y
i (xi)dν̄(y)

)
+

N∑
i=1

λi(µi − ρ̄i,1γ̄i,1)(X)

=

N∑
i=1

(
λi

∫
X×X

c(xi, y) +R(ρ̄i,1(xi))dγ̄i + λi(µi − ρ̄i,1γ̄i,1)(X)

)

=

N∑
i=1

λi(c, γ̄i) + λiF(γ̄i | µi)

=

N∑
i=1

λiHK
2
(µi, ν̄) = HKCC2M(~µ).

Step 2: showing that HKCC2M(~µ) ≤ HKSMM(~µ). Let γ̄ ∈ M(XN ) be the
minimiser of HKSMM(~µ) and T : A→ X be the mapping to the infimum in the cost
function c̃, which exists due to the assumption on the support of measures µ1, . . . , µN
in (6.4), as detailed in Lemma 6.1. We thus have

c̃(~x) = inf
x∈X

N∑
i=1

λic(xi, x) =

N∑
i=1

λic(xi, T (~x)).

We can then set γ̂i := (πi, T )#γ̄ and ν̂ := T#γ̄. It readily follows that

γ̂i,1 = γ̄i, γ̂i,2 = ν̂,

which allows us to argue that

HKSMM(~µ) =

N∑
i=1

λi

(∫
XN

c(xi, T (~x))dγ̄ + F(γ̄i | µi)
)

=

N∑
i=1

λi
(
(c, γ̂i) + F(γ̂i,1 | µi) + F(γ̂i,2 | ν̂)

)
≥ HKCC2M(~µ),

where the second equality follows from the fact that by construction γ̂i,2 = ν̂ and thus
F (γ̂i,2 | ν̂) = 0. The final inequality follows from the fact that γ̂i and ν̂ are admissible
competitors.
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