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Multivariate Discrete Choice with Rational Inattention: Model Development, Application, and 

Calibration 

Abstract 

The recent application of the rational inattention (RI) theory in transportation has shed light on a 

promising alternative way of understanding how information influences the travel choices of 

passengers. However, existing RI literature has not yet addressed the discrete choice problem with 

multiple variates. Thus, this study develops a multivariate rational inattention (MRI) discrete choice 

model. This assumes that acquiring information is costly and the unit information cost varies among 

variates, so decision-makers rationally choose the amount of information to acquire for each variate. 

We demonstrate that the MRI discrete choice model results in a probabilistic formulation similar to the 

logit model, but with the superiority of integrating unit information costs and the prior knowledge of 

decision-makers. Furthermore, we apply the MRI discrete choice model to the metro route choice 

problem and calibrate the model based on the revealed preference (RP) data collected from the 

Chengdu metro. It is found that the proposed model has satisfactory accuracy with better 

interpretability than the logit model and univariate rational inattention discrete choice model. 

Keywords 

Multivariate Discrete Choice; Rational Inattention; Model Calibration; Route Choice 



 

2 

1 Introduction 1 

Understanding and modeling the route choice preferences of passengers is essential to refining supply 2 

decisions that affect public transport planning and operations (Amirgholy et al., 2017, Huang et al., 3 

2016, Tirachini et al., 2010). It is also the foundation for the transit assignment problem and the 4 

valuation of transit attributes such as time and crowding (Björklund and Swärdh, 2017, Wardman and 5 

Whelan, 2011).  6 

Advancements in technology, including smartphone applications, mapping software, and social 7 

media, have significantly reshaped route choice preferences by providing multiple information sources 8 

to passengers. The role of information in modeling route choice preferences has thus gained significant 9 

research interest (Ben-Elia and Avineri, 2015; Chorus et al., 2006, De Palma et al., 2012). This 10 

particularly underscores the influence of information acquisition on passenger perceptions. A variety 11 

of research questions have been proposed, including the estimation of information confidence intervals 12 

(Ettema and Timmermans, 2006), the optimization of information releasing rates (Yin et al., 2019), the 13 

categorization of information types (De Palma et al., 2012), and the classification of traveler 14 

sensitivities to information provision (Zhu et al., 2019). 15 

Considering the variety of information sources, full comprehension of the information that 16 

passengers acquire and the impact of this information on passenger perceptions is almost impossible. 17 

The finite capacity of human information processing leads decision-makers (DM) to consider 18 

information selectively (Hogarth and Wiley, 1980). This implies that the acquisition of all available 19 

information is unlikely for DMs. In such a context, the theory of rational inattention (RI) (Maćkowiak 20 

et al., 2020, Sims, 2003, 2010) offers a novel perspective to model the mechanism of information 21 

selective behavior by considering the cost of information acquisition within the framework of utility-22 

maximizing behaviors of DMs, wherein the costs may arise from time or cognitive efforts. This theory 23 

has been applied across various domains, such as a linear-quadratic-Gaussian control setup (Miao et 24 

al., 2019), static finance models (Kacperczyk et al., 2016), and discrete choice preference analysis 25 

(Matějka and McKay, 2015). 26 

According to a review by Maćkowiak et al. (2020), previous RI studies have predominantly 27 
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addressed discrete choices featuring only a single influence variate. Matějka and McKay (2015), 28 

henceforth referred to as MM, initially proposed the univariate RI (URI) discrete choice model, 29 

drawing upon the difference between unconditional and conditional choice probability to ascertain the 30 

amount of information that DMs acquire. Following their work, Caplin et al. (2019) introduced an 31 

iterative method to calculate the unconditional choice probability and derived necessary and sufficient 32 

conditions to solve the URI discrete choice model. Fosgerau et al. (2020) extended the previous model 33 

by providing a general equivalence between the additive random utility discrete choice and RI-based 34 

models. 35 

Nevertheless, discrete choices (for example, route choices) in the transportation domain are 36 

commonly affected by a multivariate situation, where each variate potentially presents disparate 37 

information acquisition difficulty and affects choice quality. Consequently, DMs may exhibit varying 38 

preferences regarding information pertinent to different variates, which the URI discrete model by MM 39 

fails to capture. Recently, Habib (2023) extended and calibrated the URI discrete model for the 40 

multivariate influenced commuting mode choice problem. However, Habib (2023) did not distinguish 41 

the DM’s preference difference among variates and used actual market share to measure the 42 

unconditional choice probability, which may not always be available. 43 

Prior research into the DMs’ varying information preferences has been informed by studies on 44 

attribute non-attention (ANA) (Hensher, 2014, Hensher and Greene, 2010, Hensher and Rose, 2009). 45 

These studies drew on data from stated preference surveys and offered the DMs all information about 46 

the choice directly. Therefore, the studies did not involve the information-seeking process in practice. 47 

Nevertheless, they showed that the DMs could disregard certain variates during decision-making. This 48 

finding inspired our investigation into how information from various sources shapes the preferences 49 

of the DMs for different variates during the discrete decision-making processes in actual practice, such 50 

as when choosing a travel route. 51 

To model the aforementioned information preference among different variates, we formulate a 52 

multivariate (MRI) discrete choice model by factoring in the distinct information costs with different 53 

variates. Furthermore, we calibrate the developed MRI discrete choice model with metro data to 54 

understand the route choice preferences of travelers. To be more specific, we utilize the revealed 55 
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preference (RP) data from the Chengdu metro, a collection informed by inferred passenger time-space 56 

trajectories from our earlier work (Chen et al., 2023). The findings from our research not only 57 

underscore the significant variations in information preference among different variates but also 58 

demonstrate the superiority of the MRI discrete choice model over the conventional generalized 59 

multinomial logit (MNL) model, offering enhanced interpretability and maintaining an equivalent level 60 

of predictive fidelity. 61 

To summarize, the contributions of this study are threefold. 1) The multivariate discrete choice is 62 

modeled with rational inattention theory, which can capture the influence of information on different 63 

variates without assuming the source or content of information. 2) The proposed model is applied to 64 

the metro route choice problem, revealing the behavioral patterns of metro passengers with imperfect 65 

information. 3) The rational inattention theory is calibrated with a real case study. 66 

The remainder of this paper is structured as follows. Section 2 revisits the URI discrete choice 67 

model. Section 3 presents the modeling of the MRI discrete choice problem. Section 4 presents the 68 

applications of the MRI discrete choice model for the metro route choice problem and develops the 69 

methodology for the calibration of the model. Section 5 discusses the result of the real-case study using 70 

Chengdu Metro data. Finally, Section 5.2.4 discusses and concludes the study.  71 

2 Revisiting the Univariate Rational Inattention Discrete Choice Model 72 

Before introducing the MRI discrete choice problem, this section revisits the URI discrete choice 73 

model with MM as a prerequisite. The section commences with a conceptual review of the URI discrete 74 

choice problem, followed by the modeling method and solution method. Interested readers are referred 75 

to the full paper for a complete description (Matějka and McKay, 2015). 76 

2.1 The URI discrete choice problem 77 

The URI discrete choice problem describes a scenario where a DM selects from a set of alternatives 78 

 1,2,... = . Each alternative   can offer a DM a unique utility payoff v . Consequently, the utility 79 

payoffs of the alternative set form a vector 1

T

v v =  v . The DM’s objective is to choose 80 

the alternative with the highest utility payoff. 81 
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The state of v   belongs to a finite set with a corresponding probability distribution. 82 

Correspondingly, the DM is not sure about the true state of v  but does possess knowledge about the 83 

distribution of v . This knowledge is named prior knowledge, is denoted by ( )p v , is derived from the 84 

DM’s experience, and remains consistent regardless of the realized state for a specific choice. However, 85 

this prior knowledge may not be sufficient for identifying the alternative with the highest utility payoff 86 

for each state. 87 

To mitigate this uncertainty, the DM can seek additional information, defined as signals, to update 88 

their prior knowledge to posterior knowledge. Benefiting from the information provided by signals, 89 

the posterior knowledge is more exact than the prior knowledge. A signal, denoted as a vector s , is a 90 

random variable that carries information about the state. For convenience, see the study of MM 91 

(Matějka and McKay, 2015) for the details of this signal. 92 

However, seeking information incurs costs, with more informative signals generally being more 93 

expensive in terms of time and cognitive effort. Conversely, a more informative signal leads to more 94 

precise knowledge about the state of the utility payoff vector v  , aiding in decision-making. 95 

Consequently, the DM must balance the cost of information against the benefits of an informed 96 

decision by determining a preference among signals. The URI discrete choice framework is depicted 97 

below. 98 

  99 

Fig. 1 Decision process for URI discrete choice problem 100 

As depicted in Fig. 1, the MM divided the URI discrete choice decision process into two sub-101 
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decisions: The decision of information strategy and the decision of alternatives. 102 

i. The Decision of Information Strategy: As indicated by the orange arrow, the DM determines their 103 

preference among signals based on prior knowledge. This is referred to as the information strategy, 104 

which is a joint distribution of utility payoff and signals, denoted by . 105 

ii. The Decision of Alternatives: As indicated by the green arrow, the DM seeks information for the 106 

chosen strategy and updates the prior knowledge to the posterior knowledge. As indicated by the 107 

purple arrow, the DM makes a decision based on the posterior knowledge. 108 

The key elements in these two sub-decisions, i.e., prior knowledge, information strategy, and 109 

posterior knowledge, are highly interrelated. The marginal distribution of the information strategy 110 

equals the prior knowledge, as shown in Eq. (1), ensuring that the DM’s posterior knowledge is 111 

consistent with their prior knowledge. 112 

 ( ) ( ),F d p= v s s v . (1) 113 

Given this mathematical hold, the DM chooses the probabilistic characteristics of the conditional 114 

distribution ( )|F s v
 
in the information decision. In contrast, ( )|F v s  is the posterior knowledge after 115 

receiving signals. 116 

Given the above-defined relations, the decision of the first sub-decision influences that of the 117 

second sub-decision. The decision target of the first sub-decision should account for that of the second 118 

sub-decision accordingly. The goals of this are twofold: To maximize the ex ante expected utility 119 

payoff and to minimize the information cost. The ex ante expected utility payoff measures the indirect 120 

impact of the information strategy on the alternative decision target as it influences the posterior 121 

knowledge. The decision target of the second sub-decision is intended to maximize the expected utility 122 

payoff according to the posterior knowledge. The modeling of the decision process is as follows. 123 

i. This study denotes the maximized expected utility payoff corresponding to a posterior knowledge 124 

in the alternative decision as ( )A    and denotes the decision result as ( )a   , which can be 125 

calculated as follows: 126 

 ( )( ) ( )( )ax| |m |A F FE v


=v s v s , (2) 127 

( ),F v s
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 ( )( ) ( )( )argmax| | |a EF Fv


=v s v s . (3) 128 

ii. This study denotes the ex ante expected utility payoff corresponding to an information strategy 129 

as a function , which can be calculated as follows: 130 

 ( )( ) ( )( ) ( )( ) ( ), | |FU F A F d p d=  v s v s s v s v v . (4) 131 

iii. The information cost for an information strategy decision is the product of the unit information 132 

cost  and the difference (mutual information) between the Shannon entropy of prior knowledge 133 

and the expected Shannon entropy of posterior knowledge. This study denotes the Shannon 134 

entropy function as ( )H  , the expected Shannon entropy of posterior knowledge corresponding 135 

to an information strategy as ( )HE  , and the information cost function as , which can be 136 

calculated as follows: 137 

 ( )( ) ( ) log ( )H f f x f x dx= − , (5) 138 

 ( )( ) ( )( ) ( )( ) ( ), | |HE F H F F d p d  =  v s v s s v s v v , (6) 139 

 ( )( ) ( ) ( )( )( )ˆ , ( ) ,Hc F H p E F= −v s v v s . (7) 140 

iv. The decision target of the information strategy can then be formulated as follows: 141 

 ( )( )
( )

( )( ) ( )( )( )
,
x, , ,ˆma

F
I F cF U F= −

V S
v s v s v s . (8) 142 

2.2 The solution method of the URI discrete choice model 143 

The goal for solving the URI discrete choice model is the derivation of the probability of the DM 144 

choosing each alternative that is conditional on the utility vector (denoted by ( )|P  v ). Considering 145 

the diversity of information, solving Eqs. (4)–(8) by enumerating the signal and posterior knowledge 146 

is impractical for real-life problems. MM demonstrated that solving these equations could be 147 

accomplished without explicitly investigating signals and posterior knowledge. This subsection briefly 148 

reviews MM’s method. 149 

MM handled the signal and the posterior knowledge implicitly by proving a lemma: Each 150 

( )U 

( )ĉ 
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alternative is selected in at most one posterior knowledge under an optimal information strategy, 151 

which is indexed as LEMMA 1 by MM. LEMMA 1 indicates that a certain alternative decision only 152 

corresponds to one unique posterior knowledge. Accordingly, MM derived equivalent transformations 153 

for Eq. (4) and Eq. (7) when the information strategy was optimal. Specifically, 154 

i. Representing Eq. (4) with the choice probabilities ( )|P  v   conditional on the utility payoff 155 

vector v  and prior knowledge ( )p v . 156 

 

( )( ) ( )( )( ) ( )

( ) ( )

( |

|

, | )U F A F F d p d

v p dP





= 

=

 



v s s s v s v v

v v v
. (9) 157 

ii. Representing Eq. (7) with the mutual information for the unconditional probabilities ( )P   and 158 

conditional probabilities ( )|P  v  . The unconditional probabilities are the integral of the 159 

conditional probabilities over the utility payoff vector . 160 

 
( )( ) ( ) ( )( )( )

( )( ) ( )( ) ( )( )

ˆ , ( ) |

|

c F H p H F

H P H P p d



  

= −

= − + 

v v v

v v v

s s

. (10) 161 

Based on the transformations above, MM solved the analytical solution for the choice probabilities 162 

conditional on the utility payoff vector  as: 163 

 ( )
( ) ( )

( )''

exp
|

exp

P v
P

v





 





=


v . (11) 164 

Eq. (11) does not give a fully explicit expression for the choice probabilities because it depends on 165 

unconditional choice probabilities ( )P   . To solve for ( )P   , Caplin et al. (2019) developed an 166 

iteratively updated method based on LEMMA 2 proved by MM: The collection of ( )|P  v 1,2, =  167 

satisfies the optimal information if and only if the following formulation holds. 168 

 
( )

( ) ( )
1

ex
(

p

ex
)

p

v

P
d

v
p







 


=

 v v . (12) 169 

In summary, the key points of the URI discrete choice model created by MM can be stated as 170 

v

v
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follows: 1) The model considers the influence of information-seeking behavior on the DM’s decision 171 

result by considering the information cost. 2) The information cost is modeled by the unit information 172 

cost and the mutual information between the DM’s knowledge about the problem before and after 173 

seeking information, i.e., prior knowledge and posterior knowledge. 3) The mutual information 174 

between the prior and the posterior knowledge is represented by that between the DM’s unconditional 175 

and conditional choice probability distribution. 176 

3 Modeling Multivariate Rational Inattention Discrete Choice 177 

This section explores the MRI discrete choice problem and extends the methodology established in the 178 

URI to formulate choice probabilities for the MRI context. The MRI discrete choice problem extends 179 

from the URI by incorporating multiple variates that influence decision-making. In contrast to the 180 

modeling of URI, the modeling of the MRI discrete choice problem should consider the information 181 

cost corresponding to each variate. Correspondingly, the method to represent the amount of 182 

information that the DM acquires for each method should be developed to solve the MRI discrete 183 

choice model. 184 

3.1 Problem description 185 

In the MRI discrete choice problem, the DM must select from a set of alternatives, for which the utility 186 

payoff of each alternative is specified by a set of variates. The utility vector v  is a linear function of 187 

the variates with the coefficient vector 1
T  =  β . Letting 1

T

x x  


 =   x  be 188 

the vector of  -th variate that specific the utility vector v , and denoting 1ˆ   =x x x , the 189 

utility vector v  can then be calculated as . 190 

To identify the utility payoff of each alternative, the DM must determine the state of the variate 191 

vectors. Similar to the URI discrete choice problem, the DM is not sure of the true state of any variate 192 

vector 
x   but does have prior knowledge about variate vectors. Additionally, the DM can seek 193 

information to update these prior knowledge distributions. The information sources and the content for 194 

different variates may vary, leading to different levels of difficulty in acquiring information among 195 

variates. Additionally, each variate may affect the utility value differently. Given these facts, the DM 196 

ˆ=v xβ



 

10 

may exhibit varying preferences regarding information about different variates. To capture these 197 

varying preferences, this study distinguishes the signal, unit information cost, information strategy, 198 

prior knowledge, and posterior knowledge for each variate in the modeling. The symbols of these 199 

elements in the MRI discrete choice problem are adapted from those of the URI, as follows. 200 

i. Signal: Represents the signal about 
x  and x̂  with 

s  and ŝ . 201 

ii. Unit information cost: Represents the unit information cost corresponding to the  -th variate 202 

with . 203 

iii. Prior knowledge: Represents the prior knowledge about 
x   and x̂   with ( )p 

x   and ( )ˆp x  . 204 

( )p 
x  is the marginal distribution of ( )ˆp x  about 

x . 205 

iv. Information strategy: Represents the information strategy about 
s   and ŝ   with ( ),F  

x s   and 206 

( )ˆˆ ,F x s . ( ),F  
x s  is the marginal distribution of ( )ˆˆ ,F x s  about . 207 

v. Posterior knowledge: Represents the posterior knowledge about 
x  and x̂  with ( )|F  

x s  and 208 

( )ˆˆ |F x s . 209 

In the context of metro transportation, a DM signifies a metro passenger, with the alternatives set 210 

embodying the routes available to choose from. x 

  can represent the variates corresponding to the 211 

passenger’s  -th available route, such as the number of transfer times, the length of waiting and sitting 212 

time, and the level of crowding. To illustrate the MRI discrete choice concept, we present a simplified 213 

scenario in which a passenger must choose between two routes. The utility of each route is determined 214 

by two variates, which can represent the factors mentioned. Each variate has two equally probable 215 

states, as shown in Table 1. The passenger is aware of these states and their possibilities, representing 216 

prior knowledge. An in-depth discussion of the metro route choice problem is covered in Section 4. 217 

Table 1 Illustration of the choice situation 218 

Alternative Alternative-1 Alternative-2 

Variate 
1

1x
 

2

1x
 

1

2x
 

2

2x
 

State 1/Possibility 20/0.5 10/0.5 10/0.5 20/0.5 

State 2/Possibility 50/0.5 20/0.5 20/0.5 55/0.5 



   x s
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Given that each variate has two states, 
1 1 1

1 2

T

x x =  x   and 
2 2 2

1 2

T

x x =  x   together have four 219 

combined states. This results in 16 possible states for x̂  when considering two routes, as shown in 220 

Table 2. 221 

Table 2 Enumeration of the possible state of 1
x , 2

x , and  222 

x̂  

1
x  

[20 10]T

 
[20 20]T

 
[50 10]T

 
[50 20]T

 

2
x  

20

55

 
 
   

20 20

10 55

 
 
   

20 20

20 55

 
 
   

50 20

10 55

 
 
   

50 20

20 55

 
 
   

20

20

 
 
   

20 20

10 20

 
 
   

20 20

20 20

 
 
   

50 20

10 20

 
 
   

50 20

20 20

 
 
   

10

55

 
 
   

20 10

10 55

 
 
   

20 10

20 55

 
 
   

50 10

10 55

 
 
   

50 10

20 55

 
 
   

10

20

 
 
   

20 10

10 20

 
 
   

20 10

20 20

 
 
   

50 10

10 20

 
 
   

50 10

20 20

 
 
   

3.2 Modeling of the MRI discrete choice problem 223 

Similar to the URI discrete choice problem, the decision of the DM in the MRI discrete choice problem 224 

has two stages: the information strategy decision and the alternative decision. The difference is that 225 

the DM should determine the optimal amount of information to acquire for each variate to maximize 226 

the expected utility while minimizing costs in the information strategy. The modeling of the decision 227 

process for the MRI discrete choice problem is updated from that of URI by redefining the ex ante 228 

expected utility payoff function and the information cost function. 229 

i. The ex ante expected utility payoff function: 230 

 ( )( ) ( )( ) ( )( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, | |U F A F F d p d=  x s s s x s x x . (13) 231 

ii. The information cost function: 232 

 ( )( ) ( ) ( )( )( )ˆ (ˆ ,)ˆ, Hc H pF FE  






= −x xxs s . (14) 233 

3.3 Solving the choice probability to the MRI discrete choice problem 234 

x̂
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This subsection presents the expansion and modification of the URI discrete choice model to resolve 235 

the MRI discrete choice problem. 236 

The primary distinction between the URI and MRI discrete choice models is the fact that the MRI 237 

discrete choice model considers the amount of information obtained by the DM for each variate 238 

individually. This introduces a complexity that is not faced by the URI discrete choice model. In the 239 

URI discrete choice model, the key to deriving the choice probability formulation is solving for the 240 

information cost. This involves transforming the amount of information that the DM acquires for a 241 

univariate scenario into mutual information between the conditional and unconditional choice 242 

probabilities. However, the approach of the URI discrete choice model cannot be directly applied to 243 

the MRI discrete choice model. The challenge lies in 1) Proving that the primary lemmas still hold in 244 

the MRI discrete choice problem and 2) The fact that mutual information between the conditional and 245 

unconditional choice probabilities is insufficient to quantitatively represent the information that the 246 

DM acquires for multiple variates. The MRI discrete choice model must consider the interaction and 247 

the cumulative effect of information across multiple variates, making the problem significantly more 248 

complex. 249 

3.3.1 Information decision target transformation 250 

This study proves that LEMMA 1 by MM is still valid in the MRI discrete choice problem, which lays 251 

the groundwork for implicitly handling the signal and posterior knowledge. Specifically, by defining 252 

S =   ( )( ) ˆ ˆ: ˆ |a F =s x s   as the set of signals that lead to the DM choosing alternative   , the 253 

probability of the DM choosing the alternative   conditional to x̂  can be denoted by: 254 

 ( ) ( )
ˆ S

ˆ ˆ| = ˆ ˆ|P F d



sx sxs . (15) 255 

Then, the MRI version of LEMMA 1 can be described as follows. 256 

LEMMA 1: If ( )F    is the optimal information strategy for the DM, then the posterior knowledge 257 

( )ˆˆ |F x s  are the same for all . 258 

Proof. See Appendix B. 259 

ˆ Ss
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Based on LEMMA 1, the Eq. (13) can be transferred as follows when ( )F    is optimal. The 260 

derivation is outlined in Appendix C. 261 

 

( )( ) ( )( ) ( )( ) ( )

( ) ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, |

ˆ|

|

ˆ ˆ

U F A F F d p

P

d

pv d





= 

=

 



x s s s x s x x

x x x
. (16) 262 

The transformation of Eq. (14) is achieved by considering the partial conditional probabilities that 263 

are the integral of the conditional probabilities ( )| ˆP  x  over the variate vectors 
x . By defining ˆ  =x  264 

1 1 1 − +  x x x , the partial conditional probabilities can be denoted as ( )ˆ|P  x , and this 265 

can be calculated as: 266 

 ( ) ( )ˆ ˆ| | ( )P P p d  = x x x x .  (17) 267 

Based on LEMMA 1, this study proves that the mutual information for the DM’s prior and posterior 268 

knowledge for a variate vector 
x  can be equivalently transformed to the mutual between ( )ˆ|P  x  269 

and ( )ˆ|P  x  with the optimal information strategy. Eq. (14) can then be transferred as follows. See 270 

Appendix D for details. 271 

 ( )( ) ( ) ( )( ) ( )( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) | |d dc F H P p H P p  



  


+= −  x x xx x x . (18) 272 

3.3.2 Choice probability formulation 273 

The MRI version of Eq. (8) can then be formed. Because both the ex ante expected utility and 274 

information cost can be denoted by the choice probabilities, only the choice probabilities ( )ˆ| ,P  x  275 

are taken as independent variables. See Appendix E for the proof. The formulation of ( )ˆ|P  x  can 276 

then be derived with the following optimization model. 277 

 
( )

( )( ) ( )( )( )
ˆ|

ˆ ˆmax ,ˆ ˆ ˆ,
P

U F Fc


−
x

sx x s  (19) 278 

Subject to 279 

 : ( )ˆ| 0P  x  (20) 280 
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 ( )ˆ| 1P





= x . (21) 281 

By using the Lagrange multiplier method presented in Appendix E to solve the above problem and 282 

letting , the formulation of the conditional choice probability is as follows: 283 

 ( )
( ) ( )

( ) ( )'

'

ˆexp |

ˆ|

ˆe 'xp |

v P

P

v P















 


 





 










 



=









 










x

x

x

. (22) 284 

Based on Eq. (22), the following properties of the MRI discrete choice model can be derived: 285 

i. When the partial-conditional probabilities ( )ˆ|P  x   are uniform, Eq. (22) reduces to the 286 

multinomial logit model. 287 

ii. The bigger the value of   is, the less influence the variates have on the DM’s decision. 288 

iii. The bigger the value of   is, the more influence the partial conditional probabilities ( )ˆ|P  x  289 

have and the less influence the  -th variate has on the DM’s decision. 290 

iv. Eq. (22) can be used to derive the choice probability formulation of the URI discrete choice model, 291 

i.e. Eq. (11), because partial conditional probabilities ( )ˆ|P  x  are equivalent to unconditional 292 

probabilities ( )P   when the utilities of alternatives only depend on one variate. 293 

3.3.3 Solving the partial-conditional probability 294 

Eq. (22) does not explicitly express the choice probabilities because it depends on ( )ˆ|P  x  . By 295 

substituting Eq. (22) into the objective function Eq. (19), the MRI version of LEMMA 2 can be 296 

obtained, which can be used to solve for . 297 

LEMMA 2: When ( )ˆ| 0: P  x  and the strategy ( )ˆˆ ,F X S  is optimal, Eq. (23) holds. 298 




 


 =

( )ˆ|P  x
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 


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





x x

x x
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.  (23) 299 

For the proof, see Appendix F. 300 

Eq. (23) is easy to understand by multiplying ( )ˆ|P  x  by both sides of the expression. The result 301 

ensures that the conditional probability integrates with the partial-conditional probability, as shown in 302 

Eq. (17). One can begin with an initial guess of these probabilities and iteratively update them to 303 

acquire the vector of partial-conditional probabilities  =P ( ) ( )1 ~2

,
ˆ ˆ| nP P 

 
 

x x  according 304 

to: 305 

 ( ) ( )( ) ( )
new old old

L  =P P P ,  (24) 306 

where ( )L   is defined as: 307 
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


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 






P P P

x x

P x x

x

. (25) 308 

According to the Blahut–Arimoto algorithm (Cover, 1999), the iteration based on Eq. (24) converges 309 

when the condition in Eq. (23) holds for all 
x . In each iteration, the terms in ( )( )

old
L P  indicate 310 

whether the terms in P  need to be raised or dropped. 311 

3.4 Illustrating the properties of the MRI discrete choice model 312 

This section presents the numerical result for the example in Subsection 3.1 to illustrate the properties 313 

of the MRI discrete choice model. According to Eq. (22), the choice probabilities for the DM depend 314 

on the unit information costs 1 2,    and the utility coefficients 1 2,   . To illustrate the impact of 315 

1 2,  , it is assumed that 1 2,   are given as 1 20.1, 0.1 = − = − . 316 
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This study uses the format illustrated in Fig. 2 to present the value of conditional probability, 317 

particle-conditional probability, and state of variate vectors for a certain unit information value. Fig. 2 318 

presents a dual-modal representation. The bar chart displays the particle-conditional probability 319 

( ) ( )1 2ˆ| |P P =x x  and the pie charts illustrate the conditional probability ( )ˆ|P  x  that shares the 320 

axis that represents the state of 2
x . Similarly, the bar charts for the particle-conditional probability 321 

( ) ( )2 1ˆ| |P P =x x   and the pie charts share the axis that represents the state of 1
x  . The serial 322 

numbers in the pie chart footnotes aid in identification of pie charts. 323 

 324 

Fig. 2 Chart format showing conditional and particle-conditional probability distributions 325 

Error! Reference source not found. depicts the choice probability distributions for different 326 

information costs, based on which the key properties of the MRI discrete choice model are determined. 327 
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328 

329 

 330 

Fig. 3 Probability distributions for alternatives with different information costs 331 

i. The states of the variates influence the choice probabilities. In the scenario depicted, for example, 332 

a unit information cost below the threshold of 13 means that any reduction in the state value of a 333 

given variate for any alternative heightens the related choice probability. This effect arises 334 

because the benefit of information in decision quality improvement can cover the information 335 

cost. 336 



 

18 

ii. As the unit information cost escalates, the influence of the true states of the attributes on the 337 

choice probabilities diminishes. To illustrate this, consider the pie charts labeled 6 and 14, for 338 

which the values of 1

1x  stand at 20 and 50, respectively. While the discrepancy in the choice 339 

probability for selecting an alternative between these charts is substantial at 0.4458, it plummets 340 

to a marginal 0.0498 when 1 2,    shifts from 1 and 7 to 7 and 7. The rationale for this is 341 

straightforward. The higher the unit information cost, the scantier the information the DM 342 

acquires, which diminishes the DM’s responsiveness to the actual state of the attribute. 343 

iii. The prior knowledge influences the choice probabilities. Taking pie chart labeled 1 as an 344 

illustration, two alternatives offer identical utility to the DM. However, the choice probabilities 345 

for the two alternatives differ significantly when 1 21, 13 = = . This discrepancy stems from the 346 

DM’s certainty that alternative 1 is at least as good as alternative 2, given the following: 1) The 347 

DM is aware of the inferiority of 1x  for alternative 1 relative to alternative 2, due to the smaller 348 

value of 1 , 2) The state of 2
x  is unknown to the DM, which is attributed to the larger value of 349 

2 , and 3) The DM possesses prior knowledge that there is a potential for the 2x  of alternative 350 

2 to be significantly inferior to that of alternative 1. A similar result can be found when 351 

1 213, 1 = = , which shows a contrary numerical result. 352 

iv. As the unit information cost escalates, so does the influence of the prior knowledge on decision-353 

making, and the probability of choosing an alternative with more potential to yield a higher utility 354 

increases. For example, the prospect that alternative 1 delivers a higher utility supersedes that of 355 

alternative 2. Subsequently, the probability of the DM selecting alternative 1 rises when 1 2,   356 

shifts from 1 and 1 to 13 and 13, indicating a preference for options with a perceived higher 357 

benefit potential amidst rising information costs. 358 

Fig. 4 depicts the average probability of the DM choosing the optimal alternative (a) and the 359 

average total information cost (b) aggregated from all potential states across varying unit information 360 

costs. An analysis of Fig. 4 reveals several key insights, which are listed below. 361 
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 362 

(a) (b) 

Fig. 4 Average probability of choosing the best alternative (first) and total information cost (second) 363 

for different unit information costs 364 

i. There is an inverse relationship between the unit cost of information and the propensity to choose 365 

the optimal alternative. As depicted in Fig. 4 (a), the average probability of choosing the best 366 

alternative approach, 1, when the value of unit information cost is small (such as 1 20, 0 → → ), 367 

is much higher than that when the information is expensive ( )1 213, 13 = = . 368 

ii. A discernible decline in the average probability of choosing the best option occurs abruptly as 369 

1 2,   increases, and the probability thereafter moderates its descent when 1 22, 2   . This 370 

phenomenon suggests that the marginal impact of the unit information cost wanes as information 371 

becomes more expensive. The primary reason for this is that the changes in the mutual 372 

information are not sensitive to the changes in the unit information cost when the information 373 

cost is expensive. Moreover, the information cost reaches its maximum at 1 22, 2 = =  and then 374 

decreases, as shown in Fig. 4(b). This finding aligns with previous URI discrete choice model 375 

analyses conducted by Jiang et al. (2020) and Fosgerau and Jiang (2019). The cause for this may 376 

be that mutual information and unit information costs are inversely proportional if the total 377 

information cost is constant. 378 
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4 Application and Calibration 379 

In this section, we explore the application of the MRI discrete choice model to characterize the route 380 

choice preferences of metro passengers. We begin by specifying the utility function, the prior 381 

knowledge, and the unit information cost, followed by a description of the devising of the calibration 382 

method. To facilitate clarity, Appendix G recapitulates the notations utilized herein, excepting the 383 

notations adapted and extended from Section 3. For example, to distinguish the choice situation among 384 

different passengers, the subscript n is added to the alternative route notation  . 385 

4.1 Metro route choice 386 

4.1.1 Utility function 387 

When a passenger-n is planning to travel from the origin station (O) to the destination station (D) via 388 

a metro network, he/she can chooses one route from a set of available routes. When they travel via 389 

route  , the passenger may use a set of metro lines  L | 1,2,n nl  = =  , and traverse a set of metro 390 

sections  K | 1,2,n nk  = =  , which differentiates the available routes. Following Hörcher and 391 

Tirachini (2021), the utility associated with route   is defined by the following variates: 392 

i. Number of transfers. For passenger-n traveling via route  , the number of transfers is denoted as393 

trans

nx  . 394 

ii. Waiting time. The waiting time for passenger-n to board line 
nl 

 is denoted by wait

nx  , and this 395 

waiting time is influenced by headways and delayed-boarding probability (Yap and Cats, 2021). 396 

Therefore, the total waiting time across all lines in route   is given by . 397 

iii. Walking time. The walking time before passenger-n boards line 
nl 

 is denoted by walk

nx  , and this 398 

walking time is influenced by the distance between platforms or gate machines. Therefore, the 399 

total walking time across all lines in route in route   is given by . 400 

iv. Travel time. The travel time for passenger-n in section 
nk 

 is denoted by travel

nx  , and this travel 401 

Lwait wait

1

n

n nx x


  =
=

Lwalk walk

1

n

n nx x


  =
=
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time is determined by the train operation schedule. Therefore, the total travel time across all 402 

sections in route   is given by . 403 

v. Expected standing time. The expected standing time for passenger-n on section 
nk 

 is denoted 404 

by stand

nx  , as they may not occupy a seat in section 
nk 

. Therefore, the total expected standing 405 

time across all sections in route   is given by . 406 

vi. Crowding level. The crowding level for line section 
nk 

 is represented by the product of the 407 

standing passenger density 
nD 

  and the expected standing time stand

nx    (Hörcher et al., 2017). 408 

Therefore, the crowding level on route   is given by
Kcrowd stand

1

n

n n nx D x


   =
= . 409 

By using trans

nx  , wait

nx  , walk

nx  , travel

nx  , stand

nx  , and  to form the variate vectors n


x  and variate matrix ˆ

nx , 410 

and using trans wait walk travel stand crowd          to form the linear utility payoff coefficient 411 

vector β , the utility vector 
nv  corresponding to the route set of passenger-n can be denoted with Eq. 412 

(26). 413 

 
trans wait walk travel stand crowd trans wait walk travel stand crowd

ˆ T

n n

T

n n n n n n      

=

   =    

v x β

x x x x x x
(26) 414 

4.1.2 Prior knowledge 415 

Implementing the MRI discrete choice model necessitates defining the DM’s prior knowledge. In the 416 

context of the metro route choice problem, the prior knowledge of passengers can be inferred from the 417 

raw distributions that reflect real-world conditions. This premise follows an approach previously 418 

validated by Jiang et al. (2020). Furthermore, this study assumes that the variates mentioned in Section 419 

4.1 are independent of each other. This assumption is consistent with those made in MRI models 420 

applied to other problems. (e.g., Miao et al. (2022), Peng and Xiong (2006), Van Nieuwerburgh and 421 

Veldkamp (2010), and Zorn (2020)). In the following discussion, we elaborate on how the raw 422 

distributions for different variates are obtained. 423 

The raw distributions for the number of transfers, walking time, and travel time represent the 424 

Ktravel travel

1

n

n nx x


 =
=

Kstand stand

1

n

n nx x


  =
=
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variation in each of these attributes across different OD pairs. The raw distribution captures two key 425 

components: the state space (all possible variate combinations) and the probability assigned to each 426 

state. The state space is constructed by enumerating all possible combinations of the variate levels 427 

across the various routes for each OD pair. For the probability, each combination is assigned a 428 

probability based on its frequency of occurrence across all possible routes. 429 

The raw distributions of waiting time, standing time, and crowding levels capture the variations 430 

in each of these factors throughout the daily operation of the metro system. These distributions are 431 

derived by evaluating the states of the route set between any given origin-destination (OD) pair through 432 

the following procedure: 1) Compilation of State Combinations: For each variate, the state 433 

combinations, representing the varying states across different routes in the route set, are collected at 434 

different times during operational hours. 2) Discretization of State Space: The state space for each 435 

variate is discretized into uniform intervals. The intervals corresponding to the states at various times 436 

are then identified for each variate. 3) Median State Assignment: The actual state of each route for each 437 

variate is replaced by the median state within each identified interval. 4) Probability Assignment: A 438 

probability is assigned to each combination of discrete states for each variate, proportional to its 439 

frequency of occurrence. 440 

4.1.3 Unit information cost 441 

Before reaching a decision, passengers have different ways to acquire information about variates, 442 

including network schematic diagrams, passenger information systems, social media, and real-time 443 

information apps. The difficulty of seeking and understanding information with different variates 444 

varies. For example, the number of transfers is easily identifiable and understandable from network 445 

schematic diagrams, whereas crowding levels are typically retrieved from real-time information apps. 446 

Additionally, the challenge of seeking and processing information for a specific variate may differ 447 

among different OD pairs. In attempting to seek information about walking, waiting, travel, standing 448 

time, and crowding level, a passenger must process this information in an integrated manner for each 449 

transit line or section. Consequently, the greater the number of lines and sections encompassing an OD 450 

pair, the more effort is required for a passenger to acquire the information. Hence, it is proposed that 451 

the unit information costs associated with these factors are proportional to the number of transit lines 452 
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or segments, as follows: 453 
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, (27) 454 

where walk

n  , wait

n  , travel

n  , stand

n  , and crowd

n   represent the unit information cost for the 455 

corresponding variates of passenger-n, and walk , wait , travel , stand , and crowd  represent the basic 456 

unit information cost associated with corresponding variates when L 1n
=  and K 1n

= . 457 

4.2 Model calibration 458 

For the observed choice ny   , the states of variates ˆ
nx   and the distribution of the prior knowledge 459 

distribution ( )ˆ
np x   can be ascertained from a sample of N passengers for the purpose of model 460 

calibration. Then a maximum likelihood estimation technique can be employed to estimate the utility 461 

coefficient vector β   and the basic unit information cost vector 462 

. 463 

The probability of passenger-n choosing the route they have observed can be expressed as 464 

( )( )ˆ|
ny

nP





 x  , where 1ny  =   denotes passenger-n’s chosen route   , and otherwise 0ny  =  . 465 

With the assumption that the route choice of each passenger is independent, the probability of every 466 

individual in the sample opting for their observed route is computed as: 467 

 ( )( )
1

ˆ|
n

n

n

N
y

P






=

 x . (28) 468 

Then the log-likelihood function of β  and λ  is specified by: 469 

trans wait travel stand ca rowdw lk, , , , ,      =  λ
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 ( )( ),

1

ˆ|( , ) ln n

N

n

n

PLL y 



= 

=β λ x . (29) 470 

The unknown parameters in Eq. (29) are the utility coefficient vector β , the base unit information cost 471 

vector λ , and the partial conditional probabilities ( )ˆ| nP  x . According to subsection 3.3.3, the partial 472 

conditional probabilities ( )ˆ| nP  x  can be determined by iteration using Eq. (25) according to β , λ , 473 

and ( )ˆ
np x . Thus, the calibration problem is a bilevel optimization problem. The goal for the upper 474 

level is to maximize Eq. (29) by optimizing β , λ , while the lower level is utilized to compute the 475 

partial conditional probabilities ( )ˆ
np x  corresponding to the β , λ  given from the upper level. This 476 

optimization problem can be solved using the Optimization Toolbox in MATLAB. 477 

5 Case Study 478 

5.1 Data Description 479 

The case study is set against the backdrop of the Chengdu metro. At the time the case data were 480 

collected, the Chengdu metro comprised six lines and 136 stations, offering passengers multiple route 481 

alternatives. Passengers can access information about the routes through various means, including real-482 

time map apps (e.g., Amap, Baidu Map), passenger information boards, and network schematic 483 

diagrams. 484 

The observed choices of passengers, the states of the route set, and the raw distribution for each 485 

variate were collected from Chengdu Metro by Chen et al. (2023). This collection was based on an 486 

itinerary estimation method that inferred passenger space-time trajectories using smart card data. The 487 

data set contains 980,787 alternatives for 370,937 passengers. 488 

The sample exhibits an uneven distribution across different origin-destination (OD) pairs, which 489 

may introduce potential biases into the analysis. Additionally, the large dataset of 370,937 records 490 

would compromise computational efficiency. To address these issues, we select a subset of records by 491 

prioritizing orthogonality and balance in the attribute levels. The data screening was conducted for 492 

origin-destination (OD) pairs with three alternative routes, because most OD pairs in the dataset have 493 
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two or three available routes. Additionally, the study by Rolfe and Bennett (2009) suggests that a three-494 

alternative choice problem provides a more robust model. The goal of this approach is to enhance the 495 

representativeness and analytical manageability of the sample while mitigating computational 496 

constraints. The screened sample includes 22,342 passengers who travel between 455 OD pairs. 497 

498 

499 
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 500 

Fig. 5 presents a series of six bar plots that illustrate the distribution of various route variates across 501 

three different routes. In each plot, the yellow, green and orange bars represent the distribution 502 

associated with the first, second, and third route, respectively. The three routes are ordered by length, 503 

facilitating a clear comparison of the distribution of each variate across the different routes. 504 
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505 

 506 

Fig. 5 Distribution of variate levels for different routes 507 

Following the procedure outlined in sub-section 4.1.2, the raw distributions for various route 508 

variates were calculated. For the number of transfers, walking time, travel time, there are 24, 56, 123 509 

distinct combinations. For waiting time, standing time and crowding level, the length of uniform 510 

intervals for each variate are 0.5 minutes, 4 minutes, and 4 (minPass/m²), and the maximum number 511 

of combinations among the sample OD pairs are 85, 129 and 151. 512 

5.2 Calibration results 513 

This section presents the calibration results from the MRI discrete choice model and the benchmarking 514 

for the results based on the results obtained from the URI, MNL and ANA models. The MNL model is 515 

selected because it is currently the mainstream model for studying the route choice preference of metro 516 
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passengers (Hörcher et al., 2017, Li and Hensher, 2011, Yap et al., 2018), and this model assumes that 517 

the DMs are fully informed. In addition, based on the calibration results shown in Table 3, we also 518 

calculate the willingness to pay (WTP) associated with different travel time components. This is 519 

presented in Table 4. 520 

Table 3 Calibration results for the MRI, URI, MNL, and ANA discrete choice model 521 

MRI URI MNL ANA 
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−0.4035 
*** 

(0.0026) 

trans  

0.0073 
*** 

(0.0003) 

trans
 

−7.9768 

(0.7513) 

  
3.7913 
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trans
 

−0.7466 
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trans
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trans  
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(0.0144) 

crowd
 

9.3183 

(0.9593) 
crowd

 

0.0174 

*** 
(0.0016) 

crowd
 

0.0220 

*** 
(0.0062) 

crowd  
0.4115 

(0.1219) 

LL −13,535.9432 −91,564.2164 −13,721.8724 −14398.5027 

R2 0.4434 −2.7304 0.4358 0.4134 

Note: Std. errors in brackets ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01; LL for log-likelihood; R2 for McFadden’s pseudo-R2 522 

Table 4 Willingness to pay (WTP) 523 

 
Utility for MRI 

(minute/minute) 

Unit information cost 

for MRI (bit/minute) 

Utility 

for MNL (minute/minute) 

Number of transfers 5.3515 0.0968 3.0300 

Walking time 4.6790 28.8470 1.7110 

Travel time 1.0000 0.0225 1.0000 

Standing time 0.1910 3.0040 0.0552 

Crowding level 0.0570 4.4085 −0.0706 

Note: WTP is computed as the ratio of travel time coefficient for MRI and MNL 524 

5.2.1 Calibration results for the MRI discrete choice model 525 

The results in Table 3 and Table 4 from the MRI discrete choice model substantiate the following 526 

expectations. 527 

i. The negative signs of the estimated coefficients reveal that the number of transfers, walking time, 528 

waiting time, travel time, standing time, and crowding all contribute negatively to utility. 529 

ii. The coefficient and the unit information cost for the waiting time are insignificant. The reason 530 
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for this could be that short waiting times have a minor impact on utility (Nielsen et al., 2021). 531 

iii. The WTP of the walking time is 4.6790, which means that one unit of walking time brings the 532 

same disutility as that of 4.6790 units of travel time. The result accords with the reality that 533 

passengers dislike spending time walking more than spending time traveling. 534 

iv. The WTP of the standing time is 0.1910, indicating that one unit of standing time is equivalent to 535 

an additional disutility of 0.1910 units of travel time. This value is notably lower than the 536 

previously reported figures based on stated preference data, such as the 1.53 value measured by 537 

Whelan and Crockett (2009). This discrepancy may be attributed to the differences between stated 538 

choices and actual behavior, which could lead to an overestimation of coefficient values when 539 

using stated preference data (Yap et al., 2018). 540 

v. The WTP of the crowding level is 0.0570, which means that an additional passenger per square 541 

meter on average adds the additional disutility of 0.0570 units of travel time. This value is also 542 

lower than the previously reported figures based on stated preference data, such as the 0.085 543 

measured by Whelan and Crockett (2009). The reasons for this discrepancy are similar to those 544 

discussed regarding the standing time.  545 

vi. The basic unit information cost varies significantly across different variates, emphasizing the 546 

need to distinguish between the difficulties of information acquisition among these variates. 547 

However, this measure alone cannot reliably compare the overall difficulty of information 548 

acquisition across variables. For example, passengers may need to acquire only a small amount 549 

of information for some variables due to the low entropy of their raw distribution, e.g., the number 550 

of transfers. Consequently, a variable that has a high unit information cost but requires minimal 551 

information could result in a lower total information acquisition cost for passengers. 552 

5.2.2 Calibration results for the URI discrete choice model 553 

To conduct a comparative analysis, we calibrate the URI discrete choice model. We treat the utility for 554 

each alternative as univariate, following the method in Habib (2023), but we use the iterative method 555 

of Caplin et al. (2019) to obtain the unconditional choice probability. Since the method in Habib (2023) 556 

relies on market share to represent the unconditional choice probability, it may not be applicable in 557 
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some cases, such as transit assignment. In Table 3, trans , 
wait , walk , 

travel , 
stand , and crowd  in the 558 

URI discrete choice model are utility coefficients associated with different variates, and   represents 559 

the unit information cost for the utility.  560 

The results show that the likelihood value of the URI discrete choice model is −91,564.2164, with 561 

all variates statistically insignificant, which is significantly worse than that for the MRI discrete choice 562 

model. This performance issue arises because the URI model does not account for differences in the 563 

information acquisition difficulty among variates, which inherently means that it also fails to account 564 

for differences in the information acquisition difficulty among different OD pairs. The unit information 565 

cost that is suitable for some OD pairs may be either too high or too low for other OD pairs, leading 566 

to unconditional and conditional choice probabilities similar to those observed in Jiang et al. (2020) 567 

(see Fig. 7 in their paper). This suggests that passengers may only choose the route with the highest 568 

potential to be optimal when the unit information cost is high or may only select the optimal route 569 

when the unit information cost is low. Intuitively, as the number of metro lines or sections affecting a 570 

variate increases, the difficulty for passengers to acquire information for that variate rises, resulting in 571 

a higher unit information cost. 572 

5.2.3 Calibration results for the MNL model 573 

Table 3 and Table 4 also list the results for the MNL model. Drawing on Hensher et al. (2005), a 574 

pseudo-R2 of 0.3 is deemed to be indicative of a respectable fit within the context of discrete choice 575 

models. The values of R2 for the MNL and MRI discrete choice models are similar and much bigger 576 

than 0.3, indicating a similar fitness level. 577 

However, the coefficient of the crowding level for the MNL model is positive, which means that 578 

the worse the crowding level of a route is, the more the passengers prefer it. The result is biased from 579 

intuition and thus lacks interpretability. The reason for this is that the MNL model mentioned above 580 

assumes that the DMs are fully informed of each variate (Hörcher et al., 2017, Li and Hensher, 2011, 581 

Wardman and Whelan, 2011, Yap and Cats, 2021, Yap et al., 2018). 582 

Table 5 An example alternative route set 583 

,ny   ,nr   
trans

,nx   
walk

,nx   
wait

,nx   
travel

,nx   
stand

,nx   
crowd

,nx   
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1 1 1 3.9101 5.6467 42.6998 29.3999 39.5427 

0 2 3 9.2849 11.2200 43.5998 16.6045 14.8116 

0 3 2 7.2782 8.5537 45.8498 11.2888 3.4219 

We then demonstrate how the fully informed assumption leads to biased coefficient results. Table 584 

5 shows passenger choices and the states of variates in a typical scenario from the Chengdu Metro 585 

dataset. The table reveals that passengers prefer the shortest route, despite its long standing duration 586 

and unfavorable congestion levels, to alternatives. This type of scenario is not isolated. Similar 587 

scenarios account for 12.7520% of our dataset. 588 

Observations from Table 5 indicate that increasing the utility coefficient for crowding raises the 589 

utility of the first route, thereby increasing the probability of choosing this route (as detailed in the 590 

study by Hensher et al. (2005)). Consequently, this adjustment tends to produce a larger crowding level 591 

coefficient in the likelihood estimation. 592 

However, for passengers similar to those in Table 5, who may be unaware of crowding levels and 593 

standing time due to the difficulty of seeking information, the increase of the utility coefficient for 594 

crowding does not effectively explain passenger behavior. This highlights the fact that the fully 595 

informed assumption fails to account for the actual decision-making process of passengers, leading to 596 

biased results. 597 

Analogous trends are observed for other variates as well, including the number of transfers, 598 

standing time, and crowding levels, revealing relative disparities in the utility WTP of 38.9642%, 599 

69.5364%, and 240.3579%, respectively, between the MNL and MRI discrete choice models. Notably, 600 

a surge in the WTP associated with the basic unit of information amplifies these discrepancies because 601 

higher information costs tend to reduce passenger consideration for a given variate. 602 

5.2.4 Calibration results for the ANA model 603 

This section presents the calibration results for the ANA model. The ANA model used in this study 604 

follows(Hensher and Rose, 2009), which combines a discrete choice model with a non-attendance 605 

parameter to account for the possibility that some passengers may ignore certain attributes when 606 

making decisions. This model was applied to our RP dataset in contrast to the SP data used in their 607 

study. The model incorporates both the utility coefficients ( trans , 
wait , walk , 

travel , 
stand , crowd ) 608 

for each attribute and the non-attendance parameters (
trans , 

wait , 
walk , 

travel , 
stand , 

crowd ), which 609 
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represent the probability that a DM does not consider a particular attribute. The following analysis 610 

discusses the calibration results and compares the ANA model to other models in the study. 611 

i. The calibration results presented in Table 3 show that the ANA model has a likelihood value of 612 

−14,398.5027, which indicates a lower fit compared to the MNL model. This suggests that the 613 

ANA model is less effective in explaining the observed choices in our dataset. Compared to 614 

(Hensher and Rose, 2009), where the ANA model provided a better fit than the MNL model, our 615 

results indicate a notable difference in the model performance. The discrepancy may stem from 616 

the data type used in our study—RP data—while (Hensher and Rose, 2009) used SP data. Each 617 

passenger in the SP survey could contribute a series of observations. In contrast, in our dataset, 618 

each passenger contributes only one observation, which may limit the ability of the ANA model 619 

to capture the probability of non-attendance for each attribute accurately. 620 

ii. The fit of the ANA model is lower than that of the MRI model. One possible reason is that the 621 

ANA model assumes that DMs either attend to or ignore specific attributes entirely, simplifying 622 

the decision-making process. However, in real-world scenarios, passengers' awareness of 623 

attributes often falls into an imperfect state, where they may have partial knowledge of an 624 

attribute, influenced by factors such as prior experience, imperfect information, or biases. Such a 625 

nuanced state of partial awareness is difficult for the ANA model to capture, as it does not account 626 

for intermediate levels of attribute attention. This limitation may reduce the model's ability to 627 

fully represent passenger behavior, particularly in situations where information is incomplete or 628 

imprecise. As pointed out by (Kravchenko, 2014), while the ANA model offers valuable insights, 629 

it may fall short in accurately modeling DMs' information seeking processes in more complex, 630 

real-world contexts. 631 

iii. As observed in the ANA model, the positive utility coefficient for crowding implies that 632 

passengers may prefer routes with higher levels of crowding, which contradicts intuitive 633 

expectations. The reason for this is likely the same as in the MNL model: the increasing utility 634 

coefficient for crowding raises the utility of the first route, thereby inflating the probability of 635 

choosing that route. 636 
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6 Concluding Remarks 637 

In this study, a model is devised to tackle the multivariate discrete choice with rational inattention, and 638 

this model is named the MRI discrete choice model. The MRI discrete choice model considers 639 

decision-makers to be uncertain about each alternative’s state and to have access to the information to 640 

support their decision. The influence of information on choice preference is incorporated in the model 641 

by considering the information cost for each variate. The information cost is measured using the 642 

Shannon entropy-based information quantization and unit information cost. It is determined that the 643 

MRI discrete choice model results in probabilistic choices that follow a logit format and capture the 644 

influence of each variate’s state and unit information cost corresponding to the prior knowledge of the 645 

DMs. At the same time, the unit information cost impacts the influence of the variate states and the 646 

prior knowledge of the DMs regarding choice probabilities. Specifically, the influence of a variate’s 647 

state on the choice probabilities increases as the corresponding unit information cost decreases. In 648 

contrast, the influence of the DM’s prior knowledge on the variate decreases with the corresponding 649 

unit information cost decreases.  650 

Furthermore, in this study, the MRI discrete choice model is applied to the metro route choice 651 

problem, and the model is calibrated with the revealed route choice preference data collected from 652 

Chengdu Metro. To the best of the authors' knowledge, our study is the first to calibrate a discrete 653 

choice model with the rational inattention theory using real case data. The calibration results show that: 654 

1) The willingness to pay for information varies significantly among different variates. 2) The number 655 

of transfers, walking time, waiting time, travel time, standing time, and crowding cause the disutility 656 

of passengers. 3) The influence of the utility coefficient and the unit information cost of waiting time 657 

is insignificant, which is in line with previous studies (e.g., Nielsen et al. (2021)). 658 

By comparing the proposed model result with that of the URI discrete choice model, it is found 659 

that the resulting goodness of fit for the URI discrete choice model is unsatisfactory when market share 660 

is unavailable because the model cannot distinguish the information cost for different variates and OD 661 

pairs.  662 

By comparing the results for the proposed model with those for the MNL model, it is found that: 663 

1) The MRI discrete choice model and the MNL model perform similarly in terms of fitness for our 664 
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data set. 2) The fully informed assumption in analyzing the revealed preference data via the MNL 665 

model may lead to an overestimation of the utility coefficients, which is avoided in the MRI discrete 666 

choice model.  667 

By comparing the results for the proposed model with those for the ANA model, it is found that 668 

the fit of the ANA model is lower than that of the MRI model, and the ANA model may fall short in 669 

accurately modeling DMs' information seeking processes in real-world contexts. 670 

There are a few limitations worth mentioning, and these are left for future research. First, similar 671 

to multivariate models with RI in other areas, such as Miao et al. (2022), Peng and Xiong (2006), Van 672 

Nieuwerburgh and Veldkamp (2010), Zorn (2020), we did not consider the variate dependence in the 673 

MRI discrete choice model. This type of simplification might lead to calibration bias, requiring future 674 

effort to resolve it. Second, the preference heterogeneity among the DMs is not considered in this study, 675 

but this could be settled by considering the parameters (that is, the utility coefficient and unit 676 

information cost) to be randomly distributed, similar to the mixed logit model. Third, due to the 677 

increased complexity of the proposed model, it requires significantly more computational time 678 

compared to the MNL model. For instance, calibration of the MRI dataset took 152,354 seconds for 679 

our data set, while MNL required only 378 seconds, highlighting the trade-off between interpretability 680 

and solution efficiency. Finally, this study only examines the model performance using metro data. The 681 

advantages of the model could be further explored using data from other transport systems such as 682 

buses, ride-sharing, or bicycles. 683 
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Appendix 774 

Appendix A: Notations in Section 2–3 775 


 Alternative of the DM, 1,2, =   

v  
Utility payoff of alternative   

v  1

T

v v =  v
 

s  Information signal correspond to v  

( )F 
 

Distribution that denotes the information strategy of the DM 

( )p 
 Distribution that denotes the prior knowledge of the DM 

( )A 
 

Function that denotes the maximized expected utility payoff corresponding to a posterior knowledge 

( )a 
 

Function that denotes the decision result of alternative decision corresponding to a posterior knowledge 

( )U 
 

Function that denotes the ex-ante expected utility payoff corresponding to an information strategy 

( )H 
 

Function that denotes the Shannon entropy corresponding to a probability distribution 

( )HE 
 

Function that denotes the expected Shannon entropy of posterior knowledge corresponding to an 

information strategy 

( )ĉ 
 

Function that denotes the information cost corresponding to an information strategy 

( )I 
 

Function that denotes the decision target of the information strategy 

( )|P  v
 

Function that denotes the probability of the DM choose alternative  conditional on v  

( )P 
 

Function that denotes the unconditional probability of the DM choose   

x

  
 -th variate of alternative   that influence the DM's decision, 1,2, , =   


x  1[ , , , ]Tx x  

= x
 

x̂  
1ˆ [ , , ]= x x x

 


 Linear utility payoff coefficient corresponding to 


x  

β
 

1
T  =  β

 


s , ŝ  Information signal corresponding to 


x  and x̂  

ˆ 
x  

ˆ  =x 1 1 1 − +  x x x  

( )ˆ|P  x
 Function that denotes the partial conditional probabilities that conditional on ˆ 

x  

  776 
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Appendix B: Proof for LEMMA 1 777 

LEMMA 1 can be proved by contradiction, considering its converse proposition can be proved 778 

false easily. 779 

For the optimal strategy ( ),F a , assuming there exist an alternative   such that ( ) 0P   , and 780 

there exist 21 ,  S  S    satisfy the following condition: ( )1 2  S  S S  =  ( )1 2 S  S   =781 

( )
ˆ

ˆ ˆˆ ˆ 0, 1,2,
kS
F d d k



   = 
 s x s s x  ( ) ( ) ( )( )1 1 2 2 1 2ˆ ˆ ˆ ˆˆ ˆ S |, S |F F     =s s x s x s . 782 

Based on 21 ,  S  S   we can construct another feasible strategy F , which can generate the same 783 

expected payoff from the strategy F  and at a lower information-processing cost. The new strategy F  784 

is generated from the original strategy by relocating the probability mass from 21  S S  ,. Intuitively, 785 

we are scrambling the signal so that the DM does not observe signals in 1  S  or 2S separately, but just 786 

observes them as one signal, denoted by ŝ . Thus, the following equations are satisfied.  787 

 ( ) ( )
ˆ ˆS S

ˆ ˆ ˆˆ ˆ| | ˆF d F d
  

 = s s
sx xs s s  (30) 788 

 ( ) ( ) ( ) ( )
ˆ ˆS S

ˆ ˆ ˆ|ˆ ˆ ˆ ˆ ˆ ˆ| | | ˆF F d F F d
  

 =  s s
s s s s sx sx x x  (31) 789 

Thus, the following Eq. holds:  790 

 

( ) ( )

( ) ( )

1 2S S

ˆ S

ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ| |

ˆ ˆ ˆ= ˆ| ˆ|

v F d F d

v F d F d

 

















  

 

 

S

s

s s s

s sx

x x x

x x s
,  . (32) 791 

The new action strategy satisfies ( )( )ˆ|ˆa F  =x s  by the law of iterated expectations: 792 

 
( ) ( )( )

( )( ) ( )

ˆ ˆ ˆ| | S |
, '

ˆ ˆ ˆ | S | |

E v E E v

E E v E v

  

  

 

 

 = 


   =

s s s

s s s
. (33) 793 

Hence, Eq. (34) holds. 794 
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( ) ( ) ( )

( ) ( ) ( )

1 2ˆ S S

ˆ S

m

ˆ

x ˆ ˆ ˆˆ ˆ ˆ ˆ|

ˆ ˆ ˆ

a | |

ma |ˆ ˆ ˆ| 'x |

U

U

F d F d

F d F d

 











 


=



  

 

 

s

s

x x s x s x s

x x s x s x s
 (34) 795 

The expected payoff of constructed strategy ( ),F a  can be written as: 796 

 

( ) ( ) ( )

( ) ( ) ( )

21ˆ S S

ˆ S

max | |

 

ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆm ˆax | ˆˆ ˆ ˆ ˆ' ' |

v F d F d d

v F d F d p d

p
 









 

 



+

 

  

 

  

s

s

x s X s x s x x

x s x s x s x x
, (35) 797 

there, the first term is unaffected by the change of strategy from F  to F , as ( ) ( )ˆ ˆˆ ˆ| |F F=x s x s  798 

and ( ) ( )ˆ ˆˆ| ˆ|F F=s x s x   when 1 2ˆ S S  s  . The second term is also unaffected because of Eq. (34). 799 

Therefore, the new strategy F  can generate the same expected payoff from the strategy F . 800 

As the entropy is a concave function of the distribution (Cover, 1999), and when 1 2ˆ S S  s  Eq. 801 

(31) holds, the cost of information for new strategy F  is lower than the original strategy F . Thus the 802 

new strategy F   can generate the same expected payoff from the strategy F   and at a lower 803 

information-processing cost. This means that strategy F   is not the optimal strategy, and the 804 

assumption that under the optimal strategy ( ),F a , the posterior knowledge led by different signals 805 

corresponding to the same alternative decision may different does not hold, meaning that LAMMA 1 806 

holds.   807 
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Appendix C: Derivation of Eq. (16) 808 

To derive Eq. (16) we use the implication from LEMMA 1 that ( )|ˆ ˆF x s  are constant for all SS . 809 

The last step of Eq. (36) uses the relationship ( ) ( ) ( ) ( )| |P X Y P Y P Y X P X= . 810 

 

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )

( )

Sˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, | |

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆmax | |

ˆ ˆˆ ˆ ˆ ˆ ˆ| |

ˆ ˆ|

ˆ ˆ ˆ

S

S

| ( )

v

U F A F F d p d

F d F d p d

F d F d p d

F P d

p d

v

v

v P













 

 

















= 

   =  
 

  =

=

=

 

  

 





s

x s s s x s x x

x s x s x s x x

x x s x s x x

x x

x x x

 (36) 811 

  812 
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Appendix D: Derivation of Eq. (18) 813 

According to: (1) the additivity of mutual information, (2) the symmetry of mutual information, 814 

( ) ( ( | )) ( ) ( ( | ))Y XH X E H X Y H Y E H Y X− = − , and (3) the joint distribution for the signal and state is 815 

the same as that of the action and state (LEMMA 1, one posterior leads to each action), the difference 816 

(mutual information) between Shannon entropy of prior knowledge and expected Shannon entropy of 817 

posterior knowledge for each variate can be transformed as: 818 

 

( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )

( ) ( )( )

( ) ( )( )

( )( ) ( ) ( )( ) ( )

,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , ,

ˆ ˆˆ ˆ, ,

ˆ|

|

ˆ ˆ ˆ| |ˆ ˆ ˆ

H

H H H H

H H

H

H

H p E F

E E E F E

H

F F F

E E F

E F

H E F

H P p H P

F

d p d

  

    



 





 

  

−

= − − +

= −

−

= −

= −

=

 

x x s

x s x s x s x s

x s x s

s s x

s s x

xx x x xx

. (37) 819 
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Appendix E: Derivation of Eq. (22) 821 

We now present the derivation of Eq. (22). The Lagrangian of the problem can be formulated as  822 

 ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ˆˆ ˆ, | | 1U c P p d P p dF F 
 

   
 

 
− + − − 

 
  x x x x xs x xs x x x  (38) 823 

where ( )ˆ
 x   is the Lagrange multiplier associated with Eq. (20), and ( )ˆ x   is the multiplier 824 

associated with Eq. (21). The first-order condition concerning ( )ˆ|P  x  is: 825 

 ( ) ( ) ( )( ) ( )( )( )ˆ ˆ ˆ ˆlog | 1 log | 1 0v P P

 




    


+ −+ − =+ −x x x x . (39) 826 

Eq. (39) implies that if ( )ˆ| 0P  x  and v  − , then Eq. (20) holds. Then Eq. (39) can be 827 

transformed as: 828 

 

( )( ) ( ) ( )( )( )

( )( )
( ) ( )( )( )

( )
( )

( )( )
1

ˆ ˆ ˆlog | log |

ˆ ˆlog |

ˆlog |

ˆ
ˆ ˆ| exp |

P v P

v P

P

v
P P



  


 

 





 



    

  





 



 







−

=


  
= 

−

 


= +

+

−

  

 





x x x

x x

x

x
x x

. (40) 829 

Substituting Eq. (40) into Eq. (21) we can obtain: 830 

 

( )
( )( )

( )
( )( )

( )( )

( ) ( )( )

1

1 1

ˆ

e

1
ˆ

ˆexp |

xp
ˆ|

ˆex
1

p

ˆ|
v

v

v

e

P

P

e P
















 




 





























 














 
   
       

 

 
    
         
 

 
=  

−
=

 =


 












x

x
x

x
x

x

, (41) 831 

where 


 


= . By plugging Eq. (41) to Eq. (40), we can obtain Eq (22). 832 
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Appendix F:Proof for Eq. (23) 834 

( )ˆ|P  x  is defined as the partial conditional probability of choosing route   conditional on ˆ 
x  835 

is determined, which means any determined ˆ 
x  corresponds to a ( )ˆ|P  x . The objective function 836 

represented by Eq. (19) can be transformed as follows: 837 

 

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( )( )( ) ( )

( ) ( )( ) ( )

ˆ ˆ ˆ|

ˆ ˆ ˆ ˆ| log |

ˆ ˆ ˆ ˆ| log |

ˆ ˆ ˆ ˆ( | ) log |

ˆ ˆ ˆ ˆ| log |

v P p

P P p

P P p

P

d

P p

dP p

d

d

v

P

d

   





   



















 

 

  

  















 

+

 
 
  
 

=

 



−

−

−

+  

















x x x

x x x x

x x x x

x x x x

x x x x

. (42) 838 

The parentheses part in the integral term of the first term in Eq. (42) can be transformed by 839 

plugging the choice probability represented by Eq. (22) as: 840 

 

( )( )

( ) ( )

( ) ( )

( ) ( ) ( )

ˆlog |

ˆexp |

log

ˆexp |

ˆ ˆlog | log exp |

v P

v P

v

v P

P v P





 



















 

 







 









 







  











 







 





 
 

 =
  
   

  



−



−

     
= − −       

   











 





x

x

x

x x

 (43) 841 

Substituting Eq. (43) into Eq. (42), Eq. (42) can be transformed to: 842 
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( )

( )( ) ( ) ( )

( )

ˆ ˆ ˆ ˆlog | ( | ) ( )

ˆ ˆ ˆ ˆlog | |

ˆ ˆ ˆ ˆ( | ) log | ( )
v

P P p

P P

p

d

p

dP e P

d







 



 

 

 





    





  

  

  





 









  −   
  

 
 
 

  
+    

  

+

 

 









x x x x

x x x x

x x x x

， (44) 843 

where the first term can be transformed to : 844 

 

( )

( )( )

ˆ ˆ ˆ ˆlog | ( | ) ( )

ˆ ˆ ˆ ˆlog | ( | ) ( )

P P p

P P p

d

d







 



 





  

 











  −


= −

  
 



 

 



x x x x

x x x x

. (45) 845 

Eq. (45) is the opposite of the second term in Eq. (44). Thus, Eq. (42) equals Eq. (46); the 846 

optimization problem in sub-section 3.3.2 can be transformed as maximizing Eq. (46) constrained by 847 

Eq. (47). 848 

 ( )ˆ ˆ ˆlog | ( )
v

e P dp





 



 


 

  
    

  
  x x x , (46) 849 

 ( )ˆ| 1P





= x . (47) 850 

When ˆ 
x  is determined, maximize Eq. (46) with ( )ˆ|P  x  is equivalent to maximize Eq. (48). 851 

 ( ) ( )ˆlog |
v

e P p d



   







 




  
    

  
  x x x . (48) 852 

The Lagrangian of the problem can be formulated as  853 

 ( ) ( ) ( ) .ˆ ˆmax log | | 1
v

e P p d P



   

  

  



  


  

  
  −   

 

 
− 




 
  x x x x  (49) 854 

Here,    is the multiplier associated with Eq. (47). The first-order condition with respect to 855 

( )ˆ|P  x  is: 856 
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( ) ( )

( )
( )

1

'
ˆ ˆ| |

ˆ|

v

v

e P P
p d

e P






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

  
 

   

 





 






 



 −









 
 

 

=



 

x x
x x

x

. (50) 857 

Multiplying by ( )ˆ|P  x  to both sides of Eq. (50) gives:  = . Thereby, Eq. (23) holds. 858 
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Appendix G: Notation in Section 4 860 

Ln

 
An ordered set of lines for passenger-n travels via route 

 

nl 

 
 -th line used by passenger-n travels via route  , Ln nl   , 1,2, ,| L |n = 

 
trans

nx 

 
Number of transfer time when passenger-n travel via route  , = L -1trans

n nx    
wait

nx  ,
walk

nx 

 
Waiting and walking time before boarding line nl   

Kn

 
An order set of line sections passenger-n will traverse on line 

nl   

nk 

 
 -th line section used by passenger-n travels via route  , Kn nk   , 1,2, | K |n = 

 
travel

nx 

stand

nx 

crowd

nx   
Expected travel, standing time and crowding level in section nk   

nD   
Standing passenger density on section nk   

trans

nx 

wait

nx 

walk

nx 

travel

nx 

stand

nx 

crowd

nx   

Number of transfer times, waiting time, walking time, travel time, standing time, and crowding 

level when passenger-n travel via route   

trans

nx
 1 1= trans

T
trans

n n

trans

nx x  x , similar for 
wait

nx
walk

nx
travel

nx
stand

nx
crowd

nx
 

ˆ
nx
 

trans wait walk travel stand crowdˆ = n n n n n nn
  x xx x x x x

 

β
 

Set of coefficients for calculating utility,  trans wait stand cwalk trave dr wl o, , , , ,     =β  

λ  Set of basic unit information cost for different variates,  trans wait travel stand cr dwa olk w= , , , , ,     λ  

nλ  

Set of unit information cost for different variates of passenger-n 

 λ = , , , , ,trans walk wait travel stand crowd

n n n n n nn         

ny   
1ny  =  if passenger-n choose route   and zero otherwise. 
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