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Abstract

The rise of precision medicine has ushered in the development of innovative clinical trial

designs, notably basket trials, which assess the efficacy of a single therapeutic treatment

across multiple disease types simultaneously, with each disease group forming a ‘basket’.

Basket trials are advantageous as they allow testing of treatments on rare disease types

which do not typically warrant their own investigation due to limited sample sizes.

Small sample sizes can result in a lack of statistical power and precision of estimates.

Bayesian information borrowing models can be implemented to improve inference by

leveraging information from one basket when making inference in another. This thesis

develops novel information borrowing methodology to improve power and reduce the

type I error rate under various settings.

This thesis first explores several existing Bayesian information borrowing models

and proposes a novel data-driven adaptation. The models are investigated through

simulation studies under numerous settings, including the often-overlooked unequal

sample size case. Results indicate that the proposed approach better controls for a

type I error, whilst yielding improved power.

Approaches for the addition of new baskets to an ongoing trial are also proposed.

Our findings demonstrate a substantial improvement in power in new baskets when

information borrowing is utilised, though this comes with the risk of error inflation.

We propose a novel calibration of efficacy criteria to mitigate this inflation. Simulation

results show that implementing this calibration reduces error rates, with only a small
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loss in power in a few cases.

Within the literature there are typically two avenues for information borrowing:

borrowing between baskets on a trial or borrowing from historic data. We develop

models that amalgamate both forms of borrowing. We show that the incorporation of

historic data can improve power of estimates, whilst maintaining similar error rates to

a method that ignores historic data.
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Chapter 1

Introduction

1.1 The Drug Development Process

In a world prevalent with disease, there is a continual need for the development of

new treatments for human health conditions. These treatments can vary from diets

and therapies to drugs and surgeries, however, their development is not an easy one.

Any new remedies must undergo rigorous testing in order to assess safety, efficacy and

dosage before they are made available to the general population. This is a lengthy and

costly process. Although it varies based on therapeutic area, Turner (2010) states that

drug development could take anywhere from 10 to 15 years and, according to Rosier

et al. (2014), cost anywhere from 800 million to 1 billion US dollars.

The US food and drug administration (FDA) and other regulatory authorities im-

pose strict regulations on the drug development process in order to protect public

health (Fleming et al., 2017), balancing provision of effective treatments to those in

need and minimising potential dangers. The FDA split the drug development process

into several stages beginning with discovery and development in which potential candi-

date treatments are identified and the molecular compounds tested. The second stage

is pre-clinical development, where the treatment is tested on animals to identify the

1
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pharmacokinetic profile (Steinmetz and Spack, 2009) and to screen for safety issues

(Bravo et al., 2022). Should treatments be deemed safe for human testing, the next

stage is clinical research in which the treatment is tested on humans via clinical trials.

These clinical trials themselves consist of several phases: identifying safety concerns,

exploring dosages and comparing treatments to a placebo or current standard therapy

in order to assess efficacy. A success at this stage leads to review by the regulatory

authorities for approval for administration to the general population.

Due to the strict nature of this process, only 10-20% of treatments that entered

the clinical phase are eventually approved after the regulatory review. According to

Yamaguchi et al. (2021), this approval rate has not changed in the past few decades

despite advances in science. This motivates the need for improvement in clinical trial

design and analysis in order to speed up the process and get the right treatments to the

right patients in a more efficient manner. Thorough research into efficient clinical trials

has led to advancement in trial designs that expedite the drug development process,

however, there is still a long way to go, particularly when it comes to implementing

such efficient trial designs in practice.

1.2 Clinical Trials

Whilst the concept of clinical trials dates back to “The Book of Daniel” in the Bible,

the first recorded controlled clinical trial was conducted by James Lind in 1747 who

conducted a comparative trial for several treatments for scurvy, a prominent issue for

sailors on board the HMS Salisbury at sea (Bhatt, 2010). The conclusion of the trial

was that oranges and lemons provided the best outcomes, a finding that lines up with

what we know today to be the cause of scurvy: a lack of vitamin C. This milestone

in the history of clinical trials was followed up by the first placebo-controlled trial in

1863, where a dummy treatment (placebo) was compared to a herbal extract for the
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treatment of patients suffering with rheumatism.

Randomisation was first used by Fisher (1926) in the design and analysis of experi-

ments, focusing on application to the agricultural setting. However, randomisation did

not become common practice in clinical trials until post World War II. A Randomised

controlled trial (RCT) involves randomising patients onto one of two or more treat-

ment arms. Patients on the control arm receive either the current standard treatment

or a placebo, while the rest are given new experimental treatments. The purpose of

randomisation is to create a balance of patient characteristics across treatment arms

(Hariton and Locascio, 2018). Without this balance, bias may be introduced as the dif-

ferences between the treatment effects cannot be distinguished from the effect driven by

differences in patient characteristics. The first RCT was conducted by Sir Bradford Hill

with the medical research council in 1946, studying streptomycin on patients with pul-

monary tuberculosis (Crofton, 2006). This ground-breaking work continues to influence

the field of clinical trial design and analysis to this date. That being said, according

to Jones and Podolsky (2015), the RCT was not actually stated as gold-standard until

1982 (Feinstein and Horwitz, 1982). However, back in 1962, the FDA did mandate a

“well-controlled” study to demonstrate efficacy as an update to the federal food, drug

and cosmetic act (Meadows, 2006).

Although RCTs are still considered the gold standard to this date - promoting

rigorous testing - they do come with limitations. The biggest concern comes back to

their cost and duration, but they also pose ethical concerns. For instance, it is not

considered ethical to set up a trial in which evidence suggests that patients in the

control arm of the study will likely to benefit from the experimental treatment, yet still

receive a placebo (Stolberg et al., 2004). To add to this, RCTs often require large sample

sizes in order to assess efficacy, something infeasible for trials considering rare diseases

or conditions. These deficiencies promote the investigation of more advanced trial

designs, with the use of ‘adaptive’ clinical trials significantly increasing in popularity
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and implementation in recent years. In fact, the FDA published guidelines in 2019 for

the implementation of these adaptive designs in clinical trials (Kaizer et al., 2023a).

Modern clinical trials tend to involve a treatment passing through the following four

stages (Sedgwick, 2011):

• Phase I - a small trial consisting of a handful of volunteers. Its goal is to test

the safety of the treatment, observe major side effects and examine how the body

interacts with the treatment (pharmacokinetics),

• Phase II - involves a larger group of patients who often suffer from the targeted

condition. It concerns finding a safe dose and observes the effectiveness of the

treatment,

• Phase III - compares the new experimental treatment to the current standard

therapy or a placebo. This stage can involve hundreds to thousands of patients,

• Phase IV - observes the long term effect and rare side effects of the treatment

once it has been released to the market This stage can also involve thousands of

patients.

Adaptive trial designs provide more flexibility compared to RCTs, with some allowing

a treatment to move between these phases under a single protocol (Lang, 2011). This

efficient design significantly decreases the duration of a trial and allows for changes to

the study based on analysis conducted at interim time points.

FDA guidelines were published in December 2023 for the use of master protocols

in drug development (U.S Food and Drug Administration, 2023b). Master protocols

utilise a single overarching trial protocol to address multiple hypotheses simultaneously.

This can consist of multiple disease types under investigation, multiple treatments or

both (Woodcock and LaVange, 2017). Master protocols share trial procedures including

patient enrolment/selection, analysis and data management, improving the efficiency

of the study (Hirakawa et al., 2018).
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There are three main branches of master protocol: platform trials, umbrella trials,

and as is the focus of this thesis, basket trials. Platform trials allow multiple treatments

to be evaluated for a single disease simultaneously, whilst allowing treatments to be

added or dropped in an adaptive manner. Platform trials played a vital role in the global

effort to tackle the COVID-19 pandemic, rapidly identifying effective treatments. The

most well known of these COVID-19 platform trials was the RECOVERY trial which

was conducted in the United Kingdom. The RECOVERY trial launched in early 2020

with the emergence of the virus and identified several effective treatments, one of which

was identified within 100 days of the trial opening (Pessoa-Amorim et al., 2021). This

study redefined the potential of streamlined and efficient clinical trial design, which is

further supported by the regulatory guidance provided by the FDA in 2023.

1.3 Personalised Medicine & Master Protocols

All three of the main branches of master protocol are in the realm of personalised

medicine. Personalised medicine refers to treatments that are targeted to an individuals

specific characteristics, as opposed to a disease type on a whole. This tailors treatments

to a patients intrinsic factors such as genetic make-up, environmental exposures and

lifestyle choices. The need for personalised medicine arises due to individual variability

between patients suffering from the same condition, resulting in inevitable heterogeneity

in patients responses to treatments (Goetz and Schork, 2018). Therefore, the key

question in personalised medicine trials is whether the treatment works uniformly across

all patients, across all disease sub-types or are responses patient specific?

The feasibility of a personalised approach has improved with recent advancements in

genetic screening and diagnostic techniques. Differences between patient characteristics

are typically detected through biomarkers, which are measurable indicators of biological

conditions/processes. These biomarkers are often used to identify target populations
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within clinical trials (Atkinson et al., 2001).

Biomarkers play a key role in selecting patient populations in the previously dis-

cussed platform trials, whilst forming the core rational for the two other branches of

master protocol, umbrella and basket trials. Umbrella trials refer to studies in which

multiple treatments are tested in parallel on patients who share a single disease type

but are characterised by different biomarkers (Di Liello et al., 2021). In contrast, basket

trials test a single treatment on multiple patient populations suffering from different con-

ditions, where patients form sub-groups (also called ‘baskets’) based on their condition.

Patients within each basket share a common biomarker (Park et al., 2019). Whilst these

trials have been implemented in the full range of drug development process, through

phases I-IV, they are most common in early phase trials in which determining efficacy

is the primary objective (Ouma et al., 2022b).

Personalised medicine is fundamental in the field of oncology. Sargent and Renfro

(2017) discuss how, in previous designs, all cancers were considered as homogeneous

and thus all received the same treatment. However, with the development and inclusion

of biomarkers in study designs, it is now possible to stratify patients into separate

treatment groups based on their biomarker status. Each biomarker sub-group could be

considered in independent two-arm studies, each with their own study protocol. This

is extremely time consuming, ineffective and requires a large trial infrastructure.

Master protocols are key to clinical trials in a personalised medicine setting as they

are designed to test a treatment on small groups of patients in parallel. However, as dis-

cussed by Strzebonska and Waligora (2019), some limitations still remain. For example,

some may question the scientific validity of results based on biomarker stratification in

the case of umbrella trials. In practice, patients will likely present one or more of the

biomarkers in question, therefore the question surrounds how they are then allocated to

biomarker group and hence a treatment. Should this issue not be addressed, clinicians

may induce bias by favouring one treatment over another. Strzebonska and Waligora
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(2019) also discuss the use of surrogate endpoints (substitutes for clinically meaningful

outcomes) in basket and umbrella trials, where the focus is often overall survival or tu-

mour shrinkage. According to Kemp and Prasad (2017), 66% of oncology trials between

2009 and 2014 were approved based on surrogate endpoints. The advantage of this is

that their outcome is observed a lot quicker than the long-term outcome, speeding up

the trial process. However, Kemp and Prasad (2017) claim that the use of surrogate

endpoints may fall short when there is a level of uncertainty in their correlation to the

original endpoint of interest. A final disadvantage in master protocols and precision

medicine in particular is the issue of informed consent. Throughout recruitment, the

use of the terminology ‘personalised medicine’ may be misinterpreted by patients as a

trial to provide them personalised care with respect to their best interest, rather than

the actual purpose of finding scientific knowledge of a treatments efficacy.

1.4 Basket Trials

The work in this thesis focuses solely on basket clinical trials, considering various aspects

of their design and analysis. Basket trials have been rapidly increasing in popularity

amongst the rise of master protocol designs. A systematic review conducted by Park

et al. (2019) found that the number of basket trials rose from just one prior to 2009, up

to 49 by 2019. This rise has only continued since then. Of these 49 studies conducted

by 2019, Park et al. (2019) found that 47 of them were in the oncology setting and 48

involved a drug investigation (the one exception was a trial for a vaccination against

metastatic cancer). To add to this, 47 were exploratory phase I or phase II studies

and only five contained a control group. A single control group in a basket trial can

often be a difficult choice due to the range of disease types contained in a trial, with

Park et al. (2020) stating that finding a common control arm across baskets may be

infeasible. Therefore, to incorporate control groups in a basket trial, each basket would
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have its own corresponding control arm with randomisation occurring within baskets,

however, this is rarely seen implemented.

Basket trials have the practical advantage of containing several sub-studies under

one protocol, which allows testing of treatments on rare conditions that would not

typically warrant their own investigation due to their limited sample size and financial

and time constraints that come along with RCTs. This is particularly important within

cancer trials, as the number of different types of rare cancers is significant. Christyani

et al. (2024) state that (as of publication in 2024) there are 230 distinct rare cancers.

This further motivates the need for such basket trial designs in the oncology setting.

There are several prominent basket trials that have been implemented since 2009,

one of which is the phase II VE-BASKET trial which tested Vemurafenib on cancers

with the BRAF V600 mutation (Hyman et al., 2015). This genetic mutation is found

across several tumour types including: non-small cell lung cancer, hairy-cell leukaemia,

colorectal cancer and many more. The VE-BASKET trial ran from April 2012 to June

2014 and began with six cohorts of patients with various tumour types, whilst a seventh

‘all other’ cohort was also included, consisting of patients harbouring the BRAF V600

mutation but of a different disease type to the six established baskets. Later in the

trial two new baskets were formed from the ‘all other’ sub-group based on sufficient

enrolment for Erdhiem-Chester disease/Langerahan’s cell histoctosis and anaplastic

thyroid cancer, with the two groups warranting their own baskets. In contrast, three

of the original six baskets were dropped due to a lack of enrolment, with patients then

moved to the ‘all other’ group. Sample sizes across the baskets ranged from 7 to 27

patients, so even in the fastest recruiting basket, sample sizes were still limited. This

comes down to the rarity of some cancer types, a common theme in basket trials but

one that distinguishes itself from other study designs. The addition and closure of

baskets in this VE-BASKET trial highlight the flexible nature of these studies. The

VE-BASKET trial is referred back to and used as a motivating example throughout
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this thesis, forming a basis for several simulation studies across Chapters 2-4.

Other examples of the implementation of basket trials is the MyPathway study

(Hainsworth et al., 2018), which ran for 2014-2023. This trial consisted of multiple non-

randomised basket trials under one overarching protocol, with each branch consisting

of a basket trial based on a different genetic marker for metastatic solid tumours. One

branch of this study looked at the combination of Vemurafenib on cancers with the

BRAF V600 mutation, the same combination considered in the VE-BASKET trial. A

further example of a phase II basket trial is the SUMMIT basket trial, which tested

neratinib in patients with solid tumours harbouring a HER mutation (Hyman et al.,

2018). Baskets included several tumour types including breast cancer, cervical cancer,

non-small cell lung cancer and salivary gland cancer.

1.4.1 Hypotheses & Error Rates

As basket trials tend to be implemented in the early phases of drug development, the

goal is often to test efficacy of the experimental treatment on each of the individual

baskets on the trial. Throughout this thesis, binary responses are assumed and as such

each patient either responds positively to the treatment or does not. That being said,

the work throughout can be easily extended to continuous endpoints.

As responses are binary, they are modelled through a Binomial distribution with

sample size, nk, and unknown response rate, pk, for basket k. Interest lies in the

inference of these unknown response rates, thus the following family of hypotheses are

tested:

H0 : pk ≤ q0 vs. H1 : pk > q0, for k = 1, . . . , K,

where K is the total number of baskets on the trial and q0 is the null response rate

indicating a treatment is ineffective in a basket.

A Bayesian framework is often used in basket trials as it allows for incorporation of

prior information which is combined with the observed response data, D, to produce a
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posterior density (Muehlemann et al., 2023). From this posterior, probabilities can be

computed, where a treatment is deemed effective in basket k if

P(pk > q0|D) > ∆.

The efficacy decision criteria, ∆, is calibrated to control some operating characteristic

to a desirable level. This may be the basket-wise type I error rate (the probability of

rejecting the null in a truly ineffective basket), the family-wise error rate (the probability

of making at least one type I error across the K baskets) or the statistical power (the

probability of rejecting the null in a truly effective basket). The calibration of such

decision criteria is further explored in Chapter 3.

A common issue throughout all multi-arm studies, including basket trials, is the

maintenance of both error rates and statistical power. When testing a family of hy-

potheses, the issue of multiplicity arises. Given stratified analysis of baskets, if a basket

trial consists of K baskets with independent hypotheses and significance level α, then

the FWER is given by:

FWER = 1− P(No true null hypotheses are rejected)

= 1− (1− α)K .

As such, the FWER rises to an unacceptable level as the number of baskets increases,

this is highlighted in Figure 1.4.1. Several multiplicity correction methods exist to limit

this inflation in FWER, these include Bonferroni correction, Dunnett’s t-test and many

others (Streiner, 2015).

The control of error rates to an appropriate level is vital for ensuring the validity of

trial results. When baskets are analysed independently within a basket trial, indepen-

dent hypothesis testing occurs and thus Howard et al. (2018) argue that no multiplicity

corrections need to be implemented in order to maintain nominal error rates. However,
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Figure 1.4.1: Inflation of the FWER as the number of baskets increase, with significance
level α = 0.05.

arguments are made against this throughout the literature. Cunanan et al. (2017) argue

that even if baskets could be considered independent, they receive the same treatment

and thus carry some form of correlation. Due to this relationship, they argue for the

use of multiplicity corrections. Other design features such as the presence of a com-

mon control group, interim analysis, and early stopping for efficacy/futility need to

be considered when making a decision on whether to correct or not. Throughout this

thesis, no common control or interim analysis are conducted, therefore, the calibration

of efficacy decision criteria are used for maintaining error rates.

Power is particularly difficult to maintain in basket trials, with the presence of small

sample sizes causing uncertainty and increased variability in observed responses (Qin

et al., 2019). This also results in potential biases and a lack of precision of treatment

effect estimates. Other design characteristics can also have an impact on statistical

power including the effect size, i.e. the difference between the null and target response
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rate, and the significance level used. In the cases of rare disease it is often impossible

to reach the level of recruitment required to maintain a sufficient level of power, thus

creative Bayesian techniques are implemented in order to boost power (Kaizer et al.,

2022).

1.4.2 Bayesian Information Borrowing

Extensive research has been conducted into the use of Bayesian methodology in basket

trial designs. The goal of implementing such a framework is to improve power and

precision of treatment effect estimates in the presence of small sample sizes. The basis

of these methods revolve around the shared genetic component across all patients in

a basket trial. This common genetic aberration leads to an ‘exchangeability’ assump-

tion being made, which assumes a homogeneous response to treatment in all patients.

Patients being ‘exchangeable’ means they can be moved between treatment baskets

without changing the overall response rate estimates in each basket (Oakes, 2013) and

as such, one can draw on information from one basket when making inference in another.

This is known as Bayesian information borrowing.

As all baskets are assumed exchangeable, an extreme form of information borrowing

is complete pooling of results. This combines results from all baskets and inference is

made based on a single response rate, p, representing the probability of success for all

baskets. This has the obvious disadvantage of losing any benefits gained from strati-

fying patients by disease group. In cases of homogeneity between all baskets, there is

little issue with pooling, however in the presence of heterogeneity, as Neuenschwander

et al. (2016) states, pooling bears the danger of overlooking baskets with interesting

results. A basket trial testing the efficacy of Larotrectinib in patients with TRK Fu-

sion–Positive Cancers (Drilon et al., 2018) took the approach of pooling response data

from three phase I/II trials. This risked deeming the treatment effective in all three sub-

groups despite the possibility of the treatment being ineffective in one sub-study. This
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could negatively impact patients, providing them treatment that may not be efficacious

against their condition.

On the other end of the spectrum, although stratified analysis of baskets reduces

the risk of heterogeneity between baskets, this form of analysis will lead to a lack

of statistical power and precision in the presence of small sample sizes, as previously

stated. Therefore an ideal analysis model falls between pooled and stratified analysis,

adaptively borrowing between baskets based on the homogeneity of the response data.

There have been various Bayesian information borrowing methods proposed for the

use in the basket trial setting, all of which involve an adaptive borrowing approach.

Chapter 2 of this thesis provides an in depth comparison of several prominent ap-

proaches, exploring their characteristics through thorough simulation studies.

Although previously discussed in other areas of clinical trials, Berry et al. (2013) was

the first to propose the use of Bayesian hierarchical models within phase II personalized

medicine trials, of which basket trials are included. A Bayesian hierarchical model allows

adaptive borrowing of information between sub-groups in a trial, with the amount of

borrowing controlled by the degree of homogeneity of the observed data. A Bayesian

hierarchical model (BHM) has the following form:

θk ∼ N(µ, σ2), k = 1, . . . , K,

µ ∼ N(mµ, νµ),

σ2 ∼ g(·), (1.4.1)

where θk could be the treatment effect in a controlled trial or the logit-transformed

response rate. The common hyper-priors on the unknown mean and variance µ and

σ2 are shared amongst all baskets. Response rate estimates for each basket are shrunk

towards their common mean, µ, with the degree of shrinkage controlled by the so called

‘borrowing’ parameter σ which reflects the heterogeneity between baskets. As σ2 tends
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to zero, borrowing moves towards complete pooling across baskets, whereas, as it tends

to infinity borrowing becomes akin to stratified analysis. Although the model updates

σ2 based on the observed data, due to the small number of baskets often present,

accurate estimation of between basket variation is challenging and, as stated by Berry

et al. (2013), results in a high level of sensitivity to the choice of prior distribution,

g(·). Gelman (2006) discussed prior options for σ2, concluding that an Inverse-Gamma

distribution as suggested by Berry et al. (2013), had poor behaviour around 0 and thus

suggested a half-Cauchy prior on σ with a moderately large scale. In addition, sub-

groups with smaller sample sizes are expected to experience greater shrinkage to the

mean, a particular issue in basket trials studying rare diseases.
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Figure 1.4.2: Mean posterior response rates of four basket with varying observed re-
sponses. Three models are fit to the data: an independent analysis (IND), a Bayesian
hierarchical model (BHM) and a pooled analysis (Pooled).

The shrinkage towards the common mean can result in biased estimates and inflation
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in error rates in cases of heterogeneity between baskets responses. This is highlighted

in Figure 1.4.2, in which the BHM was applied to four baskets consisting of 12 patients

each. The number of responses observed were 1, 4, 8 and 10 across the four baskets.

Results under an independent analysis and complete pooling approach are also pre-

sented for comparison. The BHM shrinks the estimates towards the pooled estimate

and away from those given by stratified analysis. For instance, basket 4 observed 10

responses out of 12 patients. Under an independent analysis this led to a posterior

mean response rate for basket 4 of 0.83, whereas this was shrunk down to 0.73 under

the BHM and 0.48 under a pooled analysis.

The issue of heterogeneity in information borrowing models is a well studied topic

and various adaptations to the BHM have been made to better handle heterogeneous

response data in basket trials. These methods include the calibrated Bayesian hierar-

chical model (CBMH, Chu and Yuan, 2018) and the exchangeability-nonexchangeability

model (EXNEX, Neuenschwander et al., 2016). Alternative approaches include a Bayesian

model averaging approach (BMA, Psioda et al., 2021) and Fujikawa’s design (Fujikawa

et al., 2020), all of which are discussed in depth in Chapters 2 and 4. Alternative op-

tions are the commensurate predictive prior approach (CPP, Zheng and Wason, 2022),

a Bayesian hierarchical classification and information sharing approach (BaCIS, Chen

and Lee, 2019), a multiple cohort expansion approach (MUCE, Lyu et al., 2023), robust

Bayesian hypothesis testing (RoBoT, Zhou and Ji, 2020), Liu’s two-path approach (Liu

et al., 2017) and the Bayesian cluster hierarchical model (BCHM, Chen and Lee, 2020)

to name a few.

1.4.3 Historic Information Borrowing

An alternative approach to improving power in trials with small sample size is to draw

on information from historic or external data. As stated by van Rosmalen et al. (2018),

a clinical trial is rarely performed in isolation, and in many cases, data from previous
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studies are readily available. To utilise this historic information within a current trial,

response data from the experimental treatment must be available, or alternatively,

response information in a standard of care or control group from the patient population

under investigation may also be used. It is historic control groups that are most readily

available from previous studies. The use of historical control groups goes back decades.

Kaizer et al. (2023b) discuss the use of historical controls in RCTs and state that the

use of such controls was first introduced by Pocock (1976). However, official guidance

by the FDA for the use of external controls was not published until February 2023 (U.S

Food and Drug Administration, 2023a). Hall et al. (2021) discuss how in modern RCTs

for rare diseases, the use of historical controls is an accepted practice.

Using historic data is particularly important when considering ethical implications

of recruiting patients into control arms, for instance when a comparison to a placebo

is desired but a more effective standard of care already exists (Marion and Althouse,

2023) or in cases with severe outcomes such as death, where no alternative treatment

is available to the experimental treatment under investigation. They are also beneficial

in cases of rare diseases, in which recruitment is difficult and it is impractical to enrol

to a control arm within a current trial.

On the other hand, the use of historic control data does come with risks. Historic

data is a potential source of bias should the patient population within the historic study

differ inherently from the current patient population. This could be due to different

evolution of diseases or illness, such as the change in variants throughout the COVID-19

pandemic (Marion and Althouse, 2023), or differing guidelines for treatment over time.

Other sources of bias could be in the study design itself, which could include differ-

ences in inclusion/exclusion criteria, measurements of endpoints or treatment blinding

approach.

Historic data is often used for designing a new study (Ghadessi et al., 2020), in-

forming sample calculations, choosing endpoints and the null and target response rates
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(Bennett, 2018). Under a Bayesian framework, the historic information is often incorpo-

rated into the prior distributions that are applied in a current trial. Several approaches

have been used to define such prior distributions, with most involving down-weighting

the information from the historical data, to account for heterogeneity between current

and historic data sources (van Rosmalen et al., 2018). Several Bayesian approaches for

borrowing information from historic controls are discussed in Chapter 4. Banbeta et al.

(2019) and Bennett et al. (2021) also provide detailed comparisons of several historic

information borrowing methods. The foundation of most of these methods is the power

prior (PP), first introduced by Ibrahim and Chen (2000). This method raises the likeli-

hood of the historical data to a fixed power, α. The power parameter, bound between 0

and 1, reflects the expected homogeneity between the historic and current data. Given

that historic responses for basket k are denoted by yk∗ , the power prior has the form:

π(pk|yk∗ , α) ∝ L(pk|yk∗)απ0(pk),

where π0(pk) is a vague prior on pk before historic data is observed. There have been

numerous extensions to this approach including, but not limited to: the modified power

prior (MPP, Duan et al., 2006), the calibrated power prior (Pan et al., 2017), the meta-

analytic-predictive prior (MAP, Zhang et al., 2021), a commensurate prior (Hobbs et al.,

2011), the robust mixture prior (Schmidli et al., 2014) and a self-adapting mixture prior

(SAM, Yang et al., 2023).

Su et al. (2022) discuss the implementation of such historic information borrowing in

the precision medicine setting, particularly in the field of oncology trials. Su et al. (2022)

compare such historic information borrowing to the approaches outlined in Section 2,

borrowing information between current baskets on a trial. Baumann et al. (2023)

applied the historic borrowing methods directly in the basket trial setting.
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1.4.4 Adding Treatment Arms

The use of adaptive trial designs and master protocols allows modifications to the trial

design while the study is still ongoing. Such modifications include interim analysis with

futility and efficacy stopping, sample size adjustment or, as is investigated in this thesis,

the addition of new treatment arms to an ongoing trial.

The addition of treatment arms was a critical component on the RECOVERY trial

for treatments against the COVID-19 virus. In this trial, treatment arms were added or

removed according to emerging evidence, whilst additional sub-studies were also added

to provide more in depth information on secondary endpoints. Similarly, the I-SPY 2

trial, which is an ongoing adaptive platform trial investigating neoadjuvant therapy for

patients with stage 2-3 breast cancer, allowed new treatments to be added to the trial

at any interim time points (Wang and Yee, 2019).

The main benefit of adding treatment arms to an existing trial is the expedited trial

process. Arms added under the current master protocol will benefit from the existing

trial infrastructure and patient populations, which is a far more efficient approach

then conducting separate trials for each new arm (Cohen et al., 2015). This will also

prove beneficial for patients, speeding up how fast they receive potentially effective

treatments. On the other hand, as we saw in Section 1.4.1, error rates only increase as

the number of sub-groups grow, so any new groups added will bring another source of

error and bias, making type I error rates more difficult to control. Korn and Freidlin

(2017) discuss the practical difficulties of adding a treatment arm, stating that ‘it

is no minor undertaking’ despite its efficiency. It brings along extra challenges such

as regulatory complexity, the requirement of additional resources and the impact of

staggered enrolment on the statistical analysis.

Although the addition of treatment arms has been a key feature of many platform

trials, there is little mention of their use in the basket trial setting. This may be

due to the rarity of the diseases typically under investigation in a basket clinical trial.
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Assuming equal recruitment rates across baskets, any basket added at a later time point

in the trial will suffer from even smaller sample sizes thus making inference challenging.

1.5 Thesis Outline

This thesis consists of three main content chapters. The overarching theme across

chapters is the implementation of Bayesian information borrowing techniques in the

basket trial setting. The first content chapter, Chapter 2 considers and compares ex-

isting Bayesian information borrowing models in basket trials, as well as, a proposal

of an adaptation to one of these approaches. Chapter 3 investigates how to add new

baskets to an ongoing basket trial with information borrowing applied. This chapter

also explores the calibration of efficacy decision criteria, detailing the deficiencies in the

traditional approach and outlining a novel robust procedure for calibrating these cut-

off values. In Chapter 4, we investigate the use of historic information in basket trials

and develop novel information borrowing models that incorporate borrowing from both

historic and current baskets under one framework. Finally, in Chapter 5 we present a

summary of our findings, make concluding remarks and outline several areas for future

research. An overview of each chapter is provided below:

Chapter 2: A Comparison of Bayesian Information Borrowing Meth-

ods in Basket Trials and a Proposal of Modified EXNEX Method. In this

chapter we review and compare the performance of several Bayesian borrowing meth-

ods, namely: the Bayesian hierarchical model (BHM), calibrated Bayesian hierarchical

model (CBHM), exchangeability-nonexchangeability (EXNEX) model and a Bayesian

model averaging (BMA) procedure. A generalisation of the CBHM is made to account

for unequal sample sizes across baskets. We also propose a modification of the EXNEX

model that allows for better control of a type I error. The proposed method uses a

data-driven approach to account for the homogeneity of the response data, measured
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through Hellinger distances. Through an extensive simulation study motivated by a

real basket trial, for both equal and unequal sample sizes across baskets, we show that

in the presence of a basket with a heterogeneous response, unlike the other methods

discussed, this model can control type I error rates to a nominal level whilst yielding

improved power.

Chapter 3: How to Add Baskets to an Ongoing Basket Trial with In-

formation Borrowing. In this chapter, we explore approaches for adding baskets

to an ongoing basket trial under Bayesian information borrowing and highlight when

it is beneficial to add a basket compared to running a separate investigation for new

baskets. We also propose a novel calibration approach for the decision criteria that is

more robust to false decision making. Simulation studies are conducted to assess the

performance of approaches which is monitored primarily through type I error control

and precision of estimates. Results display a substantial improvement in power for a

new basket when information borrowing is utilised, however, this comes with potential

inflation of error rates which can be shown to be reduced under the proposed calibration

procedure.

Chapter 4: Incorporating Historic Information to Further Improve Power

When Conducting Bayesian Information Borrowing in Basket Trials. In this

chapter we propose novel Bayesian methodology for incorporating historic or external

data into a basket trial. It is well known that Bayesian information borrowing models

can improve power and precision of estimates, however, an alternative approach is to

incorporate any historical information available. This chapter considers models that

amalgamate both forms of information borrowing, allowing borrowing between baskets

in the ongoing trial whilst also drawing on response data from historical sources, with

the aim to further improve treatment effect estimates. These models are data-driven,

updating the degree of borrowing based on the level of homogeneity between information

sources. A thorough simulation study is presented to draw comparisons between the
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proposed approaches. We show that the incorporation of historic data under the novel

approaches can lead to a substantial improvement in power of estimates when such data

is homogeneous to the responses in the ongoing trial. Under some approaches, in cases

of heterogeneity, this came alongside an inflation in type I error rate. However, the use

of a power prior in the EXNEX model is shown to increase power and precision, whilst

maintaining similar error rates to the standard EXNEX model in which no historic data

is included.

Chapter 5: Conclusions and Further Work. This chapter provides an overview

of the work presented in this thesis, summarising the key contributions and any limi-

tations. In addition, this chapter highlights several areas of potential future research

into the use of Bayesian methods in basket clinical trials.



Chapter 2

A Comparison of Bayesian

Information Borrowing Methods in

Basket Trials and a Proposal of

Modified EXNEX Method

2.1 Introduction

Over the past decade there have been advancements in cancer genomics and refinement

in diagnostic techniques, leading to the increased interest in the field of personalized

medicine in which treatments are targeted to a specific genetic makeup (Lu et al., 2021).

It would be infeasible to test these treatments on each of their targeted biomarkers in

individual studies due to financial and time constraints. Master protocols have been

proposed to tackle this problem. This term refers to trial designs that allow the testing

of multiple treatments and/or multiple disease types in parallel under a single protocol

(Bogin, 2020).

Basket trials are a form of master protocol that are usually implemented in phase II

22
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of the drug development process within which a small number of patients are recruited

to the study to determine efficacy of a treatment. Such a trial tests a single therapeu-

tic treatment on several patient population sub-groups, each of which form a basket.

Commonly, patients across all baskets share a genetic change/biomarker but each bas-

ket consists of patients with different diseases. One benefit of this trial design is its

ability to test treatments which would traditionally not warrant their own investigation

for their targeted patient population, due to their rarity and limited sample size.

As various groups in a basket trial share a common genetic aberration, a reasonable

assumption can be made - known as the exchangeability assumption - that sub-groups

may have a homogeneous response to the treatment (Jin et al., 2020). Specifically, the

exchangeability assumption means that patients may be switched between exchangeable

baskets without changing the overall value of the estimated basket treatment effects

(Oakes, 2013). This exchangeability of patients across baskets implies that the response

rates in all baskets can be viewed as random samples from the same model (Bernardo,

1996; Bernardo and Smith, 2009). There is some uncertainty surrounding the definition

of nonexchangeability, in this thesis it is utilised to describe baskets between which no

information is shared (usually due to heterogeneity in treatment effects). With this

exchangeability assumption in mind, a concept known as ‘information borrowing’ can

be used to draw on information regarding the response in one basket when estimating

the response rate in others. This has the potential to increase power and precision of

estimates, especially in the presence of small basket sample sizes. A desirable feature

of such information borrowing methods is the ability to solely borrow between baskets

with similar treatment effects, but not from those which are heterogeneous, as it may

bias estimates and inflate the error rate resulting in a higher chance of a misleading

conclusion. One would therefore like a method that has the ability to improve the power

and precision of estimates while having control over error rates through only borrowing

between homogeneous baskets.



CHAPTER 2. BAYESIAN INFORMATION BORROWING METHODS 24

Recently, numerous methods for information borrowing within the analysis of bas-

ket trials have been proposed. These methods either borrow information across all

baskets such as the Bayesian hierarchical model (BHM, Berry et al., 2013) and the

calibrated Bayesian hierarchical model (CBHM, Chu and Yuan, 2018), while others

borrow between subsets of baskets, for example, the exchangeability nonexchangeabil-

ity model (EXNEX, Neuenschwander et al., 2016) and a Bayesian model averaging

approach (BMA, Psioda et al., 2021). This chapter provides a summary, alongside an

extensive comparison of each method through simulation studies motivated by the VE-

BASKET study, which consider both equal and unequal sample sizes across baskets.

The consideration of unequal sample sizes is rare within the literature but an important

aspect that needs to be considered when applying the models to clinical trial data.

We also propose an extension to the EXNEX model, which takes into account pair-

wise similarity between baskets’ response rates through Hellinger distances in order to

update the borrowing probability in the EXNEX model. The extension also involves

excluding baskets with sufficiently heterogeneous responses to be treated as indepen-

dent. In comparison to the EXNEX model, this method increases the sensitivity to the

level of similarity between responses in order to borrow between homogeneous baskets

with higher probabilities, whilst reducing the chance of borrowing from baskets with

heterogeneous response rates in order to control the type I error rate to an appropri-

ate level. We show that this proposed extension has the ability to increase power and

precision of estimates compared to an independent/stratified analysis whilst controlling

the type I error rate in some scenarios or performing similarly to the standard EXNEX

model in others.

Although it may be clear that the performance of said information borrowing meth-

ods will depend on the homogeneity of the data, with methods that borrow information

across all baskets outperforming those which borrow to a lesser extent in cases of homo-

geneity in response rates (and vice-versa under cases of heterogeneity), it is less clear
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the impact this will have on certain operating characteristics such as error control. It

is also a challenge to quantify the ‘strength’ of borrowing. The focus on this chapter

is to monitor how certain metrics (primarily the type I error rate) are affected based

on method used and homogeneity/heterogeneity of response data. This is explored

through thorough simulation studies.

This chapter will be outlined as follows. In Section 2.1.1 we will introduce the setting

of a motivating trial, the VE-BASKET study, that forms a basis for the comparison

setting. In Section 2.2 we describe information borrowing models and propose the

extension to the exchangalitiy-nonexchangibility model. In Section 2.3 we conduct

a simulation study and then re-analyse the results of the VE-BASKET study using

borrowing methods in Section 2.4.

2.1.1 Motivating Trial: VE-BASKET Study

This chapter is motivated by the VE-BASKET trial (Hyman et al., 2015) which ex-

plored the effect of Vemurafenib on multiple cancer types with the BRAFV600 muta-

tion. From 2012 to 2014, 63 patients with the BRAFV600 mutation were enrolled and

divided into baskets based on cancer types. The baskets included were non-small-cell

lung cancer (NSCLC), Erdheim-Chester disease (ECD)/Langerhans’-cell histiocytosis

(LCH), cholangiocarcinoma, colorectal cancer, anaplastic thyroid cancer and an ‘all-

other’ group consisting of patients of different disease types with the BRAFV600 mu-

tation. For the purpose of this work, baskets were only considered if they received the

same treatment (Vemurafenib), with the same tumour criterion (solid tumour types)

and thus the ‘all-other’ basket was excluded. The arms of the trial are summarised in

Figure 2.1.1.

The primary endpoint of this study was the overall response rate (ORR) with a null

response rate of 15% indicating inactivity. The target response rate was 45% while a

response of 35% was considered low but still indicative of a response. For a stratified



CHAPTER 2. BAYESIAN INFORMATION BORROWING METHODS 26

analysis of baskets, the planned sample size, obtained through a Simon’s two-stage

design (Simon, 1989), was 13 per basket based on 80% power and 10% type I error

rate. However, different sample sizes were realised with the Thyroid cancer basket,

for example, consisting of just 7 patients. This limited sample size causes issues when

drawing inference from trial results as estimation of treatment effects will lack precision

and thus any conclusions made regarding the effect of Vemurafenib on thyroid cancer

may be questionable. However, due to baskets sharing a common genetic aberration

one can utilise information borrowing techniques.

Figure 2.1.1: VE-BASKET trial design: the 5 baskets included in the study alongside
their observed sample sizes.

2.2 Methods

2.2.1 Setting

Consider a basket trial consisting of K baskets. This chapter focuses on a single treat-

ment arm setting and a primary binary endpoint, in which a patient either responds

positively to a treatment or does not. Denote the responses in basket k (k = 1, . . . , K)

by Yk, which follows a binomial distribution, Yk ∼ Bin(nk, pk), with nk and pk indicating

the sample size and response rate in basket k respectively. Interest lies in estimating

the unknown response rate, pk. Denote q0 as the null response rate which indicates

inactivity and q1 as the target response rate. The objective is to test the family of
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hypotheses:

H0 : pk ≤ q0 vs. H1 : pk > q0, k = 1, . . . , K.

To test these hypotheses a Bayesian framework is used. Having observed data D, at the

conclusion of the trial the treatment is deemed effective in basket k if P(pk > q0|D) >

∆α.

The decision cut-off, ∆α, is typically calibrated under a null scenario in which the

treatment effect is homogeneous and ineffective across baskets, to control error rates

at a nominal level, α. This chapter utilises calibration in order to control a basket

specific type I error at the nominal level under a null scenario, however, as an alterna-

tive approach Psioda et al. (2021) instead calibrated to control the family-wise error

rate across all baskets in the trial. Despite this calibration, methods that borrow in-

formation from heterogeneous baskets are expected to have error rates greater than α.

Borrowing causes a shift in the posterior density of pk towards a common mean and

thus, when borrowing from a basket with a larger heterogeneous response, the point

estimate obtained tends to increase, as does the probability P(pk > q0|D), so more

baskets are erroneously deemed sensitive to treatment. When no borrowing occurs this

shift is not present as the level of heterogeneity is irrelevant, so the same inflation is

not expected.

2.2.2 Independent Model

Independent analysis is an approach that does not borrow information between baskets

and instead conducts stratified analysis for each. As such, for each basket, only data

observed from its set of patients is considered when estimating its treatment effect. For
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each basket k in 1, . . . , K

Yk ∼ Binomial(nk, pk),

θk = log

(
pk

1− pk

)
,

θk ∼ N(logit(q0k), νk), (2.2.1)

where q0k denotes the null response rate in basket k. The logit transformation of the

response rates is taken to avoid boundary issues when pk is close to 0 or 1 and to align

with the borrowing models to allow for a fair comparison. A slightly informative normal

prior is placed on this transformed parameter, with mean based on the null response

rate but with a large variance, νk. This method controls the type I error rate as the

response rates do not depend on the level of heterogeneity across baskets, but estimates

lack statistical power and suffer lower precision when a basket has a small sample size

(Cunanan et al., 2018).

2.2.3 Bayesian Hierarchical Model

The Bayesian hierarchical model (BHM), proposed by Berry et al. (2013), utilises the

full exchangeability assumption as all baskets share a common genetic change. With

this assumption in mind, each basket’s response to a treatment can be expected to be

homogeneous and thus information can be shared between all baskets in the trial. The

BHM is specified such that the log-odds of the response rate for each basket follows a

normal distribution, centred around a common mean µ with variance σ2. Hyper-priors
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are placed on the parameters µ and σ2.

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log

(
pk

1− pk

)
∼ N(µ, σ2),

µ ∼ N(logit(q0), νµ), σ ∼ g(·). (2.2.2)

The hyper-prior on µ is suggested to be slightly informative (Berry et al., 2013) based

on the average null response rate across the baskets, with a large variance. The choice

of hyper-prior on σ, g(·), is widely debated with Inverse-Gamma, Half-Normal or Half-

Cauchy densities commonly used. An Inverse-Gamma prior on σ2 was utilised in the

original paper, however, as stated by Gelman (2006), this has poor behaviour when

σ2 is close to 0 and thus a half-Cauchy prior on σ with a moderately large scale was

suggested instead.

Under the BHM, borrowing occurs between all baskets and as a result, the esti-

mates of the response rates for each basket are shrunk towards the common mean with

the degree of shrinkage controlled by the so called shrinkage/borrowing parameter, σ2.

When σ2 tends to 0, borrowing moves towards the complete pooling approach in which

the results of all baskets are combined and inference is made based on a single response

rate. At the other extreme, when σ2 tends to infinity, inference is akin to an indepen-

dent analysis. This pull towards the common mean can result in a basket’s treatment

effect estimate being pulled away from the true value, particularly in the presence of a

heterogeneous basket.

2.2.4 Calibrated Bayesian Hierarchical Model

The calibrated Bayesian hierarchical model (CBHM), proposed by Chu and Yuan (2018)

is an extension of the BHM and as such also makes the full exchangeability assumption.

The CBHM has the same form as Model (2.2.2), but rather than placing a prior on



CHAPTER 2. BAYESIAN INFORMATION BORROWING METHODS 30

σ directly, it is defined as a function of a measure of homogeneity across baskets:

σ2 = exp{a+ b log(T )}, where T is the chi-squared test statistic for homogeneity:

T =
K∑
k=1

(O0k − E0k)
2

E0k

+
K∑
k=1

(O1k − E1k)
2

E1k

, (2.2.3)

where O0k and O1k are the observed failures and responses in basket k respectively,

while E0k and E1k are the expected failures and responses in basket k.

The parameters a and b are tuned to calibrate the function to ensure strong bor-

rowing through hierarchical modelling when all baskets have a homogeneous response

and treat baskets as independent otherwise. The calibration procedure is outlined by

Chu and Yuan (2018) as follows:

1. Generate W simulated data sets in which the treatment is effective in all baskets’

with response rate q1, for each computing T as in (2.2.3). Let HB be the median

of these T values.

2. Simulate the case in which the treatment effect is heterogeneous across baskets.

To do so, let q(j) = (q1, . . . , q1, q0, . . . , q0) be the scenario in which the treatment

is effective in the first j baskets but not effective in baskets j + 1 to K. For each

value of j ∈ {1, . . . , K − 1} generate W simulations of data, calculating the test

statistic T for each. Denote HB̄j as the median value of T for each value of j.

Finally, define HB̄ = minj(HB̄j).

3. A small value of σ2
B is chosen to reflect strong information borrowing when the re-

sponses are homogeneous across the baskets and a large value σ2
B̄
is also selected to

reflect weak information borrowing when the responses are heterogeneous across

all/some baskets. As suggested by Chu and Yuan (2018), these values could

be σ2
B = 1 and σ2

B̄
= 80. These values are then used to solve for a and b for

σ2
B = g(HB) and σ

2
B̄
= g(HB̄), where σ

2 = g(T ) = exp{a+ b log(T )}. This results
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in:

a = log(σ2
B)−

log(σ2
B̄
)− log(σ2

B)

log(HB̄)− log(HB)
log(HB), b =

log(σ2
B̄
)− log(σ2

B)

log(HB̄)− log(HB)
.

A benefit of such a tuning procedure is the increased certainty in estimates produced

by the CBHM in comparison to the BHM in the case where all baskets are homogeneous.

However, with a and b tuned in this way, the method takes on a ‘strong’ definition of

heterogeneity such that if the response rate in one basket is heterogeneous, then all

baskets are deemed heterogeneous, and as a result no borrowing occurs. The ‘strong’

definition of heterogeneity can be relaxed through a less stringent tuning procedure but

this comes at the cost of the error control.

Note that Chu and Yuan (2018) explored the sensitivity of results to the choice of

σ2
B and σ2

B̄
to reflect weak and strong borrowing in step 3 of the calibration procedure.

They found that as long as the choices were reasonably small and large respectively,

the choice of values had little impact on performance.

The original calibration procedure for the CBHM, proposed by Chu and Yuan (2018)

was based on equal sample sizes for each basket. In practice it is unlikely that all baskets

will recruit exactly the same number of patients, so the calibration outlined above may

not be adequate. When the sample sizes differ, step 2 in the calibration does not cover

all possibilities of heterogeneity as the ordering of response rates matter. We propose

altering this step for unequal sample sizes to consider all permutations of q1 and q0 in

which at least one basket has response rate q0 and at least one has response rate q1.

2.2.5 Exchangeability-Nonexchangeability Model

The full exchangeability assumption is often violated in the presence of heterogeneous

baskets. The exchangeability-nonexchangeability (EXNEX) model, proposed by Neuen-

schwander et al. (2016) incorporates a nonexchangeability component to the standard
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Bayesian hierarchical model, within which no borrowing occurs. The model then has

two components:

1. EX (exchangeable component): with prior probability πk, basket k is exchangeable

and a Bayesian hierarchical model as in model (2.2.2) is applied. Information

borrowing is therefore conducted between all baskets assigned to the exchangeable

component.

2. NEX (nonexchangeable component): with prior probability 1 − πk, θk is nonex-

changeable with any other basket, and as a result, basket k is treated indepen-

dently.

Yk ∼ Binomial(nk, pk),

θk = log
( pk
1− pk

)
,

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

M1k ∼ N(µ, σ2), (EX)

µ ∼ N(logit(q0), νµ),

σ ∼ g(·),

M2k ∼ N(mk, νk). (NEX) (2.2.4)

As information is borrowed only between baskets assigned to the EX component but

not from those in the NEX component, this model provides more flexibility compared to

the previous methods as information can be borrowed between just some of the baskets

and not all of them.

Careful consideration is needed in this model when it comes to the selection of

πk values. It is uncommon to have strong prior information on the probability of

exchangeability, so it is suggested to fix these prior to the trial at πk = 0.5 for all

baskets. This prior probability is updated to some degree based on the homogeneity of

the data but is not sensitive enough to the heterogeneity/homogeneity of responses and

thus it is anticipated that the probability of borrowing from a heterogeneous basket will

be too high, which in turn will inflate the type I error rate. Ideally the prior probability

of assigning homogeneous baskets to the exchangeability component should increase,
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while those for heterogeneous baskets decreases as opposed to fixing these probabilities

at 0.5 each.

Note that a Dirichlet prior could be placed on πk, however, as stated by Neuen-

schwander et al. (2016) this does not have a substantial effect on inference in compar-

ison to fixing the weights a priori. The EXNEX model can also be easily extended to

have more than one exchangeability component, allowing us to borrow between different

subsets of baskets.

2.2.6 Proposed Modified EXNEX Model

In the original EXNEX model, the prior probability values, πk, do not depend on the

similarity of the data. We propose a modification to the EXNEX model, denoted

mEXNEXc, which sets these πk values to account for the homogeneity of the response

in basket k compared to that in all other baskets. A similar concept of updating prior

weights based on homogeneity of responses was proposed by Zheng and Hampson (2020)

but in the dose-finding setting. The purpose of this is to increase the sensitivity to the

heterogeneity of response data compared to the EXNEX model.

The Hellinger distance is an ideal metric that quantifies the similarity between

two probability distributions parameterised by probability density functions. In the

mEXNEXc model it is used to compare the distance in responses between baskets. The

Hellinger distance gives values on the [0, 1] range, equating to 0 when densities are

identical and increasing values as the distance between the densities becomes greater

and as such, they can be easily translated into probability values.

The mEXNEXc model is a two-step procedure, the first step removes baskets with

a clearly heterogeneous response rate. A pre-specified cut-off value, c, is chosen to

indicate that a basket is sufficiently heterogeneous to exclude from borrowing and treat

as independent. Denote p̂k = Yk/nk. If the minimum pairwise difference in response
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rate between basket k and all other baskets is greater than c,

min
k′

{ |p̂k − p̂k′| } > c, k ̸= k′,

then basket k is treated as independent and its mixture weight, πk, in the EXNEX

model is set to 0.

In the second step, denote S as the set of all baskets not excluded for heterogeneity.

For all baskets in S, produce posterior densities for pk by fitting a beta-binomial model

with prior pk ∼ Beta(1, 1), which has form pk|Yk ∼ Beta(ak, bk) where ak = Yk + 1

and bk = nk − Yk + 1. The Hellinger distance between posteriors of basket k and k′ is

computed as

hk,k′ =

√√√√1−
B
(ak+ak′

2
,
bk+bk′

2

)√
B(ak, bk)B(ak′ , bk′)

, (k, k′ ∈ S) (2.2.5)

where B(·, ·) is the Beta function. The probability, πk, is then calculated as

πk =
∑
k′

1− hk,k′

|S| − 1
for k, k′ ∈ S, k ̸= k′.

Once obtained, these πk values are used as the prior borrowing probabilities in model

(2.2.4). For the mEXNEXc model, a slight alteration is made to model (2.2.4), in that,

a prior is placed on σ2 as opposed to σ in order to have less mass concentrated around

0.

This method is expected to reduce the probability of heterogeneous baskets being

assigned to the EX component as a heterogeneous basket will have larger Hellinger

distances and thus lower πk values. As such, the mEXNEXc model is expected to

possess better error control than the standard EXNEX model that assigns fixed πk

values irrespective of the homogeneity of responses.

The specification of the cut-off c to define a basket as sufficiently heterogeneous
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to remove requires careful consideration. When defining c prior to the trial, the clin-

ician must weigh up the trade-off between achieving higher power of estimates while

maintaining an adequate error rate. A larger c value will result in higher power at the

cost of inflation of error rates, whilst lower, more conservative values control error rates

but provide a smaller increase in power. A cut-off is chosen such that this trade-off is

considered acceptable.

A proposed method for this specification is through a pre-trial simulation study in

which the null and target response rate and planned samples sizes are used to compute

operating characteristics for different values of c, with ∆α re-calibrated for each. The

planned sample sizes are obtained as in the trial protocol, using a Simon two-stage

design based on stratified analysis on each basket for a targeted type I error rate and

power. Generally, consider cut-off values of c = i/maxnk for i = 0, 1, 2, . . . , nk and k =

1, . . . , K to reflect all possible differences in point estimates (ranging from 0 responses

out of a sample nk up to all nk patients responding). Also, it is important to include

data scenarios that cover all combination of insensitive and sensitive baskets.

A utility function is provided in order to guide the selection of c based on the

pre-trial simulation results:

c = argmax
c

{ xPowerc + (1− x)(1− Errorc) }, x ∈ [0, 1], (2.2.6)

where Powerc and Errorc are the mean power and type I error rate for cut-off c across

all considered scenarios. The value of x is chosen subjectively by a clinician to reflect

the importance of type I error-rate control or power improvement in the specific basket

trial application. A larger value of x would place more emphasis on power improvement

and less on type I error control, whilst smaller values of x would place more emphasis

on error control than power improvement. Due to the trade-off of power and error rate,

if x is chosen to be too large, the type I error will likely inflate over the nominal level

in order to maximise the power. Similarly, if x is chosen to be too small, the borrowing
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would be overly conservative and thus power may not reach the targeted value.

2.2.7 Bayesian Model Averaging

Psioda et al. (2021) proposed a Bayesian model averaging (BMA) approach that allows

for both exchangeability and nonexchangeability, but in place of applying a single model

to the data, an average is taken over all of the considered models. To do so one averages

over the posterior distribution under each model, weighted by their posterior model

probability (Hoeting et al., 1999).

Consider the case where only a single exchangeability component is allowed. Define

Mj as model j representing a permutation of basket allocation to the EX group or

NEX group. Rather than applying a hierarchical model to borrow between baskets in

the EX group, results are pooled and baskets have one shared response rate pSi,j
, where

Si,j is a subset i of the baskets’ given model Mj. Therefore, pk = pSi,j
when k ∈ Si,j.

A weakly informative Beta prior is placed on the response rates, while a prior

on each model, f(Mj), is also required. The posteriors f(pk|Mj) and f(Mj|D) are

computed after observing response data D and are used to implement a BMA procedure

to obtain the efficacy decision for basket k at the conclusion of a trial by computing

P(pk > x|D) =
∑

j P(pk > x|Mj, D)f(Mj|D).

This method is potentially advantageous as it accounts for all possible borrowing

subsets in place of applying a single model. This allows for uncertainty in the model

selection, as the specification of an incorrect model may lead to misleading inference.

Also, as a result of pooling within exchangeability groups, closed-form solutions of

posteriors can be found. This is computationally appealing as it can be implemented

quickly even for a large number of baskets.
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2.3 Simulation Study

In order to assess the performance of the described methods in terms of estimation, type

I error and power, a simulation study was conducted. Motivated by the VE-BASKET

trial, the conducted simulation study consists of 5 baskets. Two settings are considered:

(i) Sample size in each basket being equal to the planned sample size of 13 patients,

(ii) Sample sizes in the baskets being the realised sample sizes in the trial (i.e. 20, 10,

8, 18 and 7).

Set q0 = 0.15 and q1 = 0.45 as the null and target response rates respectively. A

basket is deemed sensitive to a treatment at the conclusion of a trial, having observed

data D, if P(pk ≥ 0.15|D) > ∆α, where ∆α is calibrated to obtain a type I error rate of

α = 10% under the null scenario. Note that ∆α is calibrated for each method separately

and follows the same procedure for both the proposed and existing methods - for the

mEXNEXc model, c is selected through calibration but is then taken as fixed when

calibrating ∆α. This is done based on the planned sample size nk = 13 for all baskets

k and the null response rate q0 = 0.15. The calibrated ∆α values for each method are

given in Table A.1.1 in the Supporting Information.

Several scenarios with varying numbers of baskets sensitive to treatment are con-

sidered and displayed in Table 2.3.1. Scenario 1 is the null case in which all baskets

are insensitive. Scenarios 2-5 cover different combinations of insensitive and sensitive

treatment baskets while scenario 6 is the case where all baskets are homogeneous and

sensitive. This will highlight the benefits, if any, the borrowing methods provide in

terms of power improvement. Scenarios 7-10 consist of cases where some baskets have

a marginally effective response rate at 35%. For the realised sample size case, a further

6 data scenarios are considered to account for the fact that ordering of response rate

now matters.

For each method and scenario the following operating characteristics are computed:
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Table 2.3.1: True response rate data scenarios for comparison of information borrowing
models. For the planned sample size simulation, scenarios 1-10 are considered, whereas,
for the realised sample size simulation all scenarios 1-16 are considered.

p1 p2 p3 p4 p5

Scenario 1 0.15 0.15 0.15 0.15 0.15
Scenario 2 0.45 0.15 0.15 0.15 0.15
Scenario 3 0.45 0.45 0.15 0.15 0.15
Scenario 4 0.45 0.45 0.45 0.15 0.15
Scenario 5 0.45 0.45 0.45 0.45 0.15
Scenario 6 0.45 0.45 0.45 0.45 0.45
Scenario 7 0.35 0.15 0.15 0.15 0.15
Scenario 8 0.35 0.35 0.35 0.15 0.15
Scenario 9 0.45 0.35 0.35 0.15 0.15
Scenario 10 0.45 0.45 0.35 0.35 0.15
Scenario 11 0.15 0.15 0.15 0.15 0.45
Scenario 12 0.15 0.15 0.45 0.15 0.45
Scenario 13 0.15 0.45 0.45 0.15 0.45
Scenario 14 0.15 0.45 0.45 0.45 0.45
Scenario 15 0.45 0.15 0.15 0.15 0.45
Scenario 16 0.45 0.15 0.45 0.15 0.45

• % Reject: the percentage of simulated data sets in which the null hypothesis is

rejected. If the null is true then this value is the type I error rate, else it is the

power.

• % All Correct: the percentage of simulated data sets in which the correct conclu-

sions are made across all baskets.

• FWER (family-wise error rate): the percentage of simulated data sets in which

at least one null basket is deemed sensitive to treatment.

• Mean point estimate of the response rate in each basket and the standard devia-

tion of said estimate across the simulations.

The results presented focus on the first three of these, with results for the mean point

estimates provided in Section A.3 of the Supporting Information.

For the following analysis, prior and parameter choices for each model are sum-
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Table 2.3.2: Model prior and parameter specification for the simulation study to com-
pare information borrowing methods.

Model Prior & Parameter Specification

Independent θk ∼ N(logit(0.15), 102)

BHM µ ∼ N(logit(0.15), 102), σ ∼ Half-Cauchy(0, 25)

CBHM µ ∼ N(logit(0.15), 102), σ2 = exp{−7.25 + 5.86 log(T )}

EXNEX µ ∼ N(logit(0.15), 102), σ ∼ Half-Normal(0, 1), M2k ∼ N(−0.62, 4.42),

δk ∼ Bernoulli(0.5)

mEXNEXc µ ∼ N(logit(0.15), 102), σ2 ∼ Half-Normal(0, 1), M2k ∼ N(−0.62, 4.42),

δk ∼ Bernoulli(πk)

BMA PSj
|Mj ∼ Beta(0.45, 0.55), f(Mj) ∼ P 2

j

marised in Table 2.3.2 with full model specification provided in Appendix 2.6.1. Priors

on µ are centred around the null response rate of 0.15 with a large variance. Priors on

σ2 are chosen to be consistent with those used in the literature. The EXNEX model

has prior borrowing probabilities fixed at 0.5. The prior parameters for the mEXNEXc

model are kept the same as the standard EXNEX model to allow for fairer comparison.

These parameters are selected by the recommendation of Neuenschwander et al. (2016)

with the prior for the NEX component in both the EXNEX and the mEXNEXc model

centred around a plausible guess of pk of 0.35. In the BMA only a single EX group is

implemented and the priors are consistent with those suggested by Psioda et al. (2021).

The prior placed on model Mj is f(Mj) ∝ P 2
j , where P

2
j is the total number of dis-

tinct response rates in model Mj (the EX component has a shared response rate and

all baskets in the NEX component have a distinct response rate, thus Pj is the number

of baskets in the NEX component plus 1).

The specification of the cut-off value, c, in the mEXNEXc model is chosen through

a pre-trial simulation as outlined in Section 2.2.6. Cut-off values of c = i/13 were

considered where i = 0, 1, 2, 3, 4. For each value of c, 10,000 simulated data sets were
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used to compute the type I error rate and power across the 6 scenarios in Table 2.3.1,

with the results shown in Figure 2.3.1.

Figure 2.3.1: Pre-trial simulation results for type I error rate and power across the data
scenarios under the mEXNEXc model for different cut-off values, c.

Within Equation (2.2.6) two cases were considered: when x = 0.4 a higher emphasis

is placed on error control over power improvement resulting in the choice c = 0. This

is a more conservative value as it only allows for borrowing when a basket has an

identical response rate to at least one other basket. However, despite this conservative

nature, from Figure 2.3.1, we observe that this specification shows control of the type

I error rate close to the nominal 10% level under scenarios 1-4, whilst improving power

under scenarios 2, 4, 5 and 6 in comparison to an independent model. Denote this

model as mEXNEX0. The second choice is x = 0.6 which puts greater weight on power

improvement whilst relaxing the degree of error control, resulting in the choice c = 1/13.

Denote this model as mEXNEX1/13. Both choices of x, 0.4 and 0.6, are selected to be

close to 0.5 in order to avoid imbalance in power improvement and type I error inflation.
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A total of 10,000 simulations were run using the ‘rjags’ package v 4.12, (Plummer,

2023) within RStudio v 1.1.453 (R Core Team, 2020) for each of the 6 data scenarios

in Table 2.3.1.

2.3.1 Simulation Results: Planned Sample Sizes

The results for power and type I error rate under the planned sample size are presented

in Figure 2.3.2 which shows the percentage of simulated data sets in which the null

hypothesis was rejected for each method and scenario. Full results are also provided in

Table A.1.2 and A.1.3 in the Supporting Information.

The rejection percentages are calibrated under scenario 1 to achieve a 10% type I

error rate for each method separately and hence all rejections are approximately 10%.

However, in the presence of a single heterogeneous effective basket, i.e. scenario 2,

the mEXNEX0 model gives the best performance with error control at 10% whilst

achieving the greatest power (88%). The CBHM also controls the type I error rate

but only achieves 81.1% power due to the level of heterogeneity and the nature of the

calibration procedure. The BHM, BMA and EXNEX model all have raised error rates

at approximately 16.9%, 13.2% and 11.8% respectively. The mEXNEX1/13 model gives

power that is increased by 0.8 compared to the EXNEX model with a slightly lower

type I error rate of 11.5%.

Across scenarios 3, 4 and 5 there is a mix of sensitive and insensitive treatment

baskets. These scenarios show the benefits in terms of power gain through information

borrowing techniques compared to an independent analysis. Again in these cases the

CBHM lacks power due to the heterogeneity of the data, giving consistently lower power

than an independent analysis, whilst the BHM and BMA procedure give hugely inflated

error rates. The BHM gives type I error rates ranging from 21.6% to 42.1% across these

three scenarios.

The mEXNEX1/13 model leads to similar results to the standard EXNEX model
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Figure 2.3.2: Percentage of rejections of the null hypothesis for each information bor-
rowing method and data scenario based on a planned sample size of 13 patients per
basket.
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in these scenarios due to its inability to detect clusters of responses, which leads to

increased probability values for EX assignment for all baskets. In scenario 4 this results

in a greater type I error rate for the mEXNEX1/13 compared to the EXNEX model (15%

vs. 13.1%), however, under scenario 5 the mEXNEX1/13 model gives a 1.3 decrease in

the type I error rate. Under a more conservative cut-off, the mEXNEX0 model keeps

the type I error rate at an acceptable level with the worst case occurring under scenario

5 in which the error rate is just 11.2%, which is much lower than the 16.1% error rate of

the EXNEX model. This is all whilst also increasing power over an independent model

by 1.4%.

In scenario 6, when all baskets are sensitive to treatment, the BHM followed by the

BMA procedure give the greatest power at the cost of inflated error rates across the

other scenarios. The mEXNEX1/13 model has similar power to the standard EXNEX

model with mean power 91.9% compared to 92.2%, whereas the mEXNEX0 model, has

lower average power at 89.8% but still an improvement over the independent model at

88.0%.

Now consider the cases where some baskets are marginally effective with a true

response rate of 35%. In particular one can draw comparisons between scenario 2 and

7 as in both cases just a single basket is heterogeneous and effective to some degree.

Under both scenarios the same patterns of results are observed, but due to the lower

true response rate under scenario 7, the difference in power and error rates between

methods has been amplified. As expected, the error rates tend to be lower under

scenario 7 compared to 2, as the pull upwards towards the heterogeneous basket will

be less extreme as it has a true response rate closer to that under the null. In this case,

both mEXNEXc models give the joint highest power at 68.3%, with the mEXNEX0

model again controlling error rates at the 10% level, while only minimal inflation is

observed under the mEXNEX1/13 model at 11.1% (a value very similar to that of the

standard EXNEX model). The BHM, CBHM and BMA approach all give lower power
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than an independent analysis with clearly inflated error rates in the BHM and BMA

cases. Similar connections can be made between scenarios 4 and 8, with the same

conclusions drawn from each.

Under both scenarios 9 and 10, baskets have a combination of effective, marginally

effective and ineffective response rates. Predictably, the BHM and BMA approach give

the greatest power but with this have inflated error rates, just as in scenarios 4 and 5.

All of these scenarios 7-10 demonstrate the ability of the mEXNEXc model to control

error rates when c = 0 whilst improving power over an independent analysis anywhere

from 1.8-3% for effective baskets and 3.3-4.5% for marginally effective baskets.

Looking now at the percentage of data sets in which the correct inference was made

across all baskets, alongside the family-wise error rates (where ∆α was now calibrated

under scenario 1 to achieve 25% FWER - full results provided in the Supporting In-

formation (Section A.1)). All methods gave similar values for correct inference under

the null scenario. However, under both scenarios 2 and 7, the independent model pro-

duced the greatest values, closely followed by the mEXNEXc models. Across scenarios

3-6 both metrics simultaneously decrease for the independent model, and also demon-

strates lowest percentage of correct inference compared to all other methods in scenarios

8-10. The mEXNEX1/13 model has similar or lower percentage of correct inference in

comparison to the EXNEX model but with consistently lower FWER values, while the

mEXNEX0 method has greater proportions of correct inference in scenario 3 compared

to the standard EXNEX model (54.0% compared to 51.8%) but a 14% decrease under

scenario 5. This reduction came with a 3.3% decrease in FWER. Under scenario 6,

the methods shown to have higher power in Figure 2.3.2, also gave greater proportion

of correct inference made across all baskets. Considering scenarios 8-10, the standard

EXNEX model gives the best percentage of all correct inference with lower FWER than

the BHM, CBHM and BMA approach in all cases. This is most prominent in scenario

9 where in 37.1% of simulation, the EXNEX model made correct conclusions in all 5



CHAPTER 2. BAYESIAN INFORMATION BORROWING METHODS 45

baskets, whereas, under the same scenario the mEXNEX1/13 had a smaller value at

30.2% but with a 2% lower FWER.

In view of these results, when the sample size is fixed across baskets, the proposed

mEXNEX0 model controls error rates to a nominal level whilst also improving power

over implementing an independent model. Improvements are also observed over the

EXNEX model with consistently lower type I error rates but reduced power. Should

interest lie more heavily on improving power over the control of error rates, the cut-off

value for exclusion of heterogeneous baskets could be increased. Both cut-off values of 0

and 1/13 produce a model that either exceeds all other considered borrowing methods

in performance or acts similarly to the standard EXNEX model.

Varying the True Response Rate Vector, p

There are an infinite number of data scenarios one could fall in when conducting clinical

trial analysis, the scenarios listed in Table 2.3.1 are only a subset of these feasible cases.

The data scenarios implemented above were selected to cover a wide range of cases,

however, some important cases may not have been investigated.

To overcome this, a further simulation study was conducted within which, rather

than fixing the true probability of success parameter prior to the study, for ever sim-

ulation run a new random truth vector, p, was generated with uniform probability

across the ranges [0,0.15] and [0.35,0.5] (these ranges were set to ensure equal chances

of lying in the null and non-null case respectively). Once p was generated, it was used

to simulate data from a Binomial distribution. The goal of such a simulation study

is to determine the operating characteristics on average over many different truth vec-

tors in hope to capture what would occur in cases not investigated within the previous

simulation study.

A total of 20,000 simulations for each borrowing method were run under the planned

sample size case of 13 patients in each basket. Results are provided in Table 2.3.3,
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with further descriptions and results for the realised sample size case provided in the

Supporting Information (Section A.4).

Table 2.3.3: Operating characteristics of the information borrowing models in which
the truth vector was randomly generated. This is conducted under the planned sample
sizes.

Method Type I Error Rate Power % All Correct FWER

Independent 2.25 81.48 57.63 5.68
BHM 5.00 87.51 63.07 11.68
CBHM 2.27 79.21 54.21 5.48
BMA 4.51 86.87 62.57 10.62
EXNEX 3.15 86.01 63.64 7.86
mEXNEX0 2.68 83.89 61.19 6.77
mEXNEX1/13 3.16 85.97 63.78 7.80

Similar to the fixed scenario cases described above, the BHM and BMA have the

highest error rates, but all methods have mean type I error rate less than the nominal

10% level. The reduced error rates come from, in some cases, the true response rate lying

well below the null 15% level under which the ∆α value was calibrated. The CBHM

continues to behave similarly to an independent approach but with lower power.

The standard EXNEX model and mEXNEX1/13 model behave very similarly in this

study, both with type I error rate of 3.2% and power of 86.0%. This is not unexpected,

as like in the previous study, when clusters of responses are present, the less conservative

mEXNEXc model begins to perform similarly to the standard EXNEX model due to

it’s inability to detect clusters of responses. When c = 0, error rates are far closer to the

independent model at 2.7% (2.3% under an independent analysis) with 83.9% power,

which although lower than the standard EXNEX model, is an increase of 2.4% over an

independent analysis.

In terms of percentage of simulation runs in which the correct conclusion was made

in all 5 of the baskets, both the standard EXNEX and mEXNEX1/13 models have the

highest value of around 63.7%. The BHM and BMA approach have similar but slightly

smaller values compared to both methods but have 2.8-3.9% increase in FWER. The
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mEXNEX0 model gives both reduced percentage of all correct conclusions and FWER

compared to all the aforementioned methods but does possess a 3.6% increase in all

correct inference compared to an independent analysis.

To summarise, in the planned sample size case when the true response rate is var-

ied, the BHM and BMA continue to display the most undesirable error rates whilst

the independent analysis and CBHM lack power. The modified EXNEX model with

c = 1/13 performs almost identically to the standard EXNEX model. When a more

conservative cut-off value c = 0 is implemented, error rates are reduced by 0.5% com-

pared to the standard EXNEX model but with a 2.1% reduction in power (but still a

2.4% improvement over an independent analysis.

2.3.2 Simulation Results: Realised Sample Sizes

Although the protocol planned for 13 patients per basket, 20, 10, 8, 18 and 7 patients

were enrolled across the 5 baskets. The thresholds for efficacy, ∆α, were calibrated

based on the planned sample size of 13 per basket and was not re-calibrated based on

these observed sample sizes. Similarly, the cut-off values c in the mEXNEXc model

were not adjusted and were based on the planned equal sample size.

Percentage of rejection plots are provided in Figures 2.3.3 and 2.3.4 with full results

in Tables A.1.4, A.1.5 and A.1.6 in the Supporting Information (Section A.1).

The calibration procedure for the CBHM needs more careful consideration here,

as the previous calibration was based on equal sample sizes across baskets. A slight

modification to step 2 of the process was made to cover all permutations of hetero-

geneity. Even with this adaption, when sample sizes are unequal, the calibrated values

of a and b are much larger in magnitude than in the equal sample case. This leads

to stronger borrowing where baskets are at least fairly homogeneous, producing much

narrower posterior densities. These narrow posteriors, in some cases, have their mass

lying entirely above q0 and thus ∆α is close to 1. This can cause a lack of power as it
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Figure 2.3.3: Percentage of rejections of the null hypothesis for each information bor-
rowing method under data scenarios 1-10 based on realised sample sizes of 20, 10, 8,
18 and 7 across the 5 baskets.
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Figure 2.3.4: Percentage of rejections of the null hypothesis for each information bor-
rowing method under data scenarios 11-16 based on realised sample sizes of 20, 10, 8,
18 and 7 across the 5 baskets.
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makes it incredibly difficult to reject a hypothesis. To overcome this, we recommend

calibrating a and b with the sample size fixed and equal for each basket at the averaged

basket sample size. Analysis is then conducted using these tuned parameters with the

observed unequal sample sizes. In this case, the average sample size across the baskets

happens to be 13 patients per basket (with rounding) and thus, the a and b values used

are the same as in the planned sample size case.

The type I error rate in scenario 1 lies below the nominal 10% level for all methods

with the independent and mEXNEX0 models giving the lowest values, whilst the BHM,

BMA and EXNEX model are greater but are still approximately at or below 10%.

Under scenario 2, in which the first basket is effective to treatment, the BHM,

EXNEX, mEXNEX1/13 and BMA methods produce higher power than the indepen-

dent analysis, at the cost of inflated error rates at 18.4%, 14.8%, 12.0% and 14.1%

respectively. The CBHM and mEXNEX0 model gives almost identical power values

to the independent model (94.6% and 94.3% compared to 94.6%) but the mEXNEX0

model gives error rates no greater than 10.5%. Similar results are also seen in scenario

7 in which the first basket is marginally effective. Now consider scenario 11 in which,

like scenario 2 only one basket has an effective response rate but this is now the fifth

basket as opposed to the first. This basket has a smaller sample size than that of the

first basket at just 7 patients and thus, the power is uniformly lower for all methods,

however, patterns of results remain the same in terms of method performance. Under

this scenario, all methods (with the exception of the BHM) produce very similar power

values ranging from 68.7%-70.2% but all have varying error rates. All borrowing meth-

ods have a higher error rate than that of an independent model, with inflation above the

nominal 10% level present under the BHM, BMA, EXNEX and mEXNEX1/13 model.

The BHM has a much lower power in this case at 63.7%.

Across scenarios 3, 4 and 8, the mEXNEX1/13 model gives similar/lower error rates

compared to the EXNEX model and generally higher power values in baskets with
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a small sample size i.e. baskets 2 and 3, with up to an increase of 2.4%. Similar

power values are observed in basket 1 where the sample size is larger. The mEXNEX0

model continues to control error rates at or below the 10% level but provides little

to no improvement in terms of power over an independent approach. This is due to

the conservative nature of this c value. When c = 0, under unequal sample sizes it is

likely that all baskets will be treated as independent, as in the binary response setting,

achieving identical response rates in baskets of different sizes is often impossible.

Scenario 5 again displays the improvement in power through using the borrowing

techniques, with the exception of the mEXNEX0 model for the aforementioned conser-

vative nature. Ignoring the independent and mEXNEX0 models for lack of power, the

mEXNEX1/13 model displays the lowest type I error rate of 17.9% which, although in-

flated, is considerably lower than the other borrowing methods, including the EXNEX

model which has an error rate of 27.6%.

Similar to the planned sample size simulation, the BHM and BMA approach give

greatest power in scenario 6 but at the cost of high error rates elsewhere. Across all

baskets, the mEXNEX1/13 model improves in power over the independent model by up

to 16.51% but also at the cost of inflated error rates. However, this inflation occurs to

a lesser extent than the EXNEX model across scenarios 2-5 with a maximum difference

in error rates for the two methods at 9.7% which could be viewed as a highly significant

margin.

Under scenarios 9 and 10, those baskets that have a marginally effective treatment

effect show markedly improved power when information borrowing methods are imple-

mented, with the mEXNEX1/13 model obtaining up to a 20% improvement in power

compared to an independent analysis under scenario 9 - note this comes with roughly a

3% inflation in error rate, but such inflation is less than the other borrowing methods.

Now consider the cases when the ordering of response rates is altered, under scenario

12 the two smallest baskets have the effective response rates whilst the larger baskets are
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insensitive to treatment, the mEXNEX1/13 model gives the greatest power for basket

3 at 78.5% (whilst the EXNEX model has power 78.1%) as well as improved power

over the standard EXNEX model for basket 5 also (69.7% compared to 69.2%). This

is alongside having a lower average type I error rate of 12.7% under mEXNEX1/13

compared to 13.1% under the EXNEX model. In comparison to scenario 3, when the

basket size is smaller, the performance of the BHM and a BMA approach worsens with

higher errors and lower power values, whilst the performance of the mEXNEX1/13 over

other methods improves. The same conclusions can be drawn from scenarios 13-16 also.

Considering family-wise error rate and percentage of all correct conclusions across

the 5 baskets, if the ∆α values were calibrated to control FWER at 25% under the

planned sample size and then applied to the realised sample size case, all methods

give slightly inflated FWER values of over 25% under scenario 1 (see the Supporting

Information, Section A, for full results). There is a 1-1 relation between low FWER

and high percentage of cases where correct inference is made across all baskets with

those showing the highest family-wise error rate also presenting lower percentages of

correct inference.

The BHM and BMA approach give the highest FWER and lowest percentage of

correct inference in all baskets across scenarios 2-16. Under scenarios 2 and 3 the

mEXNEX1/13 model has a FWER 5% smaller than the EXNEX model, producing

similar values to the independent approach but with an improvement in power. Scenario

6 shows that models which typically inflate the error rate give the best proportions of

correct inference across all baskets. The mEXNEX1/13 model provides an increase

of over 6% in comparison to an independent model. The percentage of all correct

inference is smaller across scenarios where there are a few marginally effective baskets,

i.e. scenarios 8-10 and this lines up with larger inflation in error rates.

Similarly to the planned sample size case, these results confirm that the choice of

c value makes a big impact in the performance of the mEXNEXc model. The c values
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were selected based on the planned sample size of 13 per basket and thus increments

corresponding to 1 response were considered (i.e. 0, 1/13, 2/13,...), however, when

sample sizes are unequal it would be beneficial to look at other potential values such as

0, 0.05, 0.1, etc.. A cut-off of 0.05 can be shown to perform well in this unequal sample

size scenario, whereas the choice of c = 0 is far too conservative. In practice, when

this occurs analysis can be conducted as specified in the trial protocol with the use of c

based on planned sample sizes. Alternatively, one can re-calibrate based on the realised

sample sizes and compare to original analysis to determine if there are any significant

differences. It would be recommended to include instructions within the trial protocol

on how to adjust the cut-off value for the mEXNEXc model once the realised sample

sizes are known.

If the calibration of ∆α accounted for unequal sample sizes, similar patterns in

performance of each method is observed but with the impact of small sample sizes

particularly evident. Results from a further simulation under the realised sample size

with re-calibrated ∆α based on the unequal nature are provided in the Supporting

Information (Section A.2).

2.4 Analysis of VE-BASKET Results Using Infor-

mation Borrowing Models

This section revisits the analysis of the VE-BASKET results using the described and

proposed information borrowing methods. The data observed in the trial, and the pos-

terior means for the response rate in each basket (and standard deviations) obtained

by each method is given in Table 2.4.1. Also provided are the posterior probabilities of

the response rate being greater than the null for each basket under each method, i.e.

the decision making probability used at the conclusion of the trial. For this analysis,

prior and parameter choices are provided in Table 2.3.2. Within the modified EXNEX
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procedure, cut-off values, c, are chosen from c = 0, 0.05, 0.1, 0.15, . . .. Through a simu-

lation akin to that in Section 2.3, cut-off values of c = 0.05 and c = 0.1 were chosen,

denoted mEXNEX0.05 and mEXNEX0.1 respectively.

For the EXNEX and mEXNEXc models, specification of a prior probability vector,

π, for assignment to the EX component is required. For each model, both the prior

probability used and the posterior probabilities produced after model fit are listed

below:

Prior probability vectors: Posterior probability vectors:

EXNEX: π = (0.50, 0.50, 0.50, 0.50, 0.50), π = (0.36, 0.50, 0.42, 0.39, 0.41).

mEXNEX0.1: π = (0.74, 0.00, 0.00, 0.79, 0.74), π = (0.81, 0.00, 0.00, 0.85, 0.80).

mEXNEX0.05: π = (0.00, 0.00, 0.00, 0.79, 0.79), π = (0.00, 0.00, 0.00, 0.74, 0.75).

The posterior probabilities for the EXNEX model decrease for all baskets compared to

the prior values despite baskets 4 and 5 having homogeneous responses. In contrast,

the mEXNEX0.1 model increases between the prior and posterior probabilities which

reflects the homogeneity of the response data. When c = 0.05, we observe a decrease in

posterior probabilities from the prior values, however, they are still greater than in the

EXNEX model, which suggests greater sensitivity to the presence of both homogeneous

and heterogeneous baskets.
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Table 2.4.1: Data summary of the VE-Basket trial with posterior means of the response rates obtained using the various
information borrowing models alongside their standard deviations in brackets, as well as the posterior probability that the
response rate is greater than the null.

Trial Data NSCLC Colorectal Cancer Cholangiocarcinoma ECD/LCH Thyroid Cancer

Sample Size 20 10 8 18 7
ORR 0.40 0.00 0.13 0.33 0.29

Basket 1 2 3 4 5

Independent p̂k 0.399 (0.11) 0.009 (0.03) 0.126 (0.11) 0.333 (0.11) 0.285 (0.16)
P(pk > 0.15|D) 0.996 0.008 0.325 0.968 0.777

BHM p̂k 0.362 (0.10) 0.097 (0.09) 0.170 (0.11) 0.309 (0.10) 0.267 (0.13)
P(pk > 0.15|D) 0.994 0.259 0.518 0.966 0.809

CBHM p̂k 0.398 (0.11) 0.012 (0.03) 0.125 (0.11) 0.331 (0.11) 0.281 (0.16)
P(pk > 0.15|D) 0.996 0.012 0.320 0.970 0.770

BMA p̂k 0.368 (0.09) 0.058 (0.08) 0.213 (0.09) 0.331 (0.09) 0.309 (0.12)
P(pk > 0.15|D) 0.997 0.120 0.648 0.981 0.899

EXNEX p̂k 0.384 (0.10) 0.059 (0.07) 0.171 (0.12) 0.326 (0.10) 0.288 (0.14)
P(pk > 0.15|D) 0.996 0.113 0.501 0.971 0.825

mEXNEX0.1 p̂k 0.384 (0.10) 0.061 (0.06) 0.162 (0.11) 0.338 (0.10) 0.318 (0.13)
P(pk > 0.15|D) 0.997 0.089 0.454 0.983 0.904

mEXNEX0.05 p̂k 0.398 (0.10) 0.061 (0.06) 0.162 (0.11) 0.328 (0.10) 0.301 (0.14)
P(pk > 0.15|D) 0.996 0.088 0.455 0.973 0.857
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The mEXNEX0.05 model, only allows borrowing between baskets 4 and 5 with prob-

ability 0.79. This results in standard deviations lower in these baskets compared to

the independent model. When c = 0.1, the NSCLC basket is now included in the bor-

rowing component with probability 0.74. This results in the estimated response rate

in the first basket being pulled down as information is borrowed from baskets 4 and

5. The estimates and standard deviations for baskets 2 and 3 are identical for both

c values as they are assigned to the NEX component. The mEXNEX0.1 model has

marginally smaller standard deviations compared to the EXNEX model with similar

point estimates.

The results in Table 2.4.1 also demonstrate that using the independent model on

baskets with small sample sizes leads to estimates with less precision due to the lack of

borrowing. The CBHM results match that of the independent model due to the ‘strong’

definition of heterogeneity in it’s calibration procedure. There is clear heterogeneity

between basket’s 1 and 2 in which the ORR is 0.4 and 0 respectively and thus the

CBHM treats all baskets as being independent with σ2 ≈ 383.

The estimates using the BHM are pulled towards the common mean so the values

are different to the ORR values, this is most evident in the second basket where the

BHM estimates p̂2 = 0.1 while the ORR is 0. This is a direct result of the pull

towards the common mean. A similar pattern is observed under the BMA method as

the averaging procedure puts some weight on models that borrow between all baskets

despite heterogeneity.

Focusing on the posterior probabilities of exceeding the null response rates, all

methods give similar values for basket 1 which has a larger sample size and ORR value.

This will likely lead to the treatment being deemed effective in basket 1 regardless of

the method. However, the same can’t be said for basket 2 in which these probabilities

vary across all methods, giving a value of approximately 0.01 under a stratified analysis,

compared to 0.25 under the BHM. This could lead to potentially differing conclusions
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regarding the efficacy of a treatment based on the method used to analyse the results.

Methods that borrow information between all baskets tend to have higher posterior

probabilities when basket sample size is small compared to an independent analysis

and methods such as the CBHM and mEXNEXc which borrow information to a lesser

extent.

These results highlight that, as expected, the choice of borrowing method can impact

inference made at the conclusion of a trial, especially in the case of heterogeneity across

baskets. Heterogeneity causes a pull towards the common mean under most borrowing

methods resulting in estimates different to the ORR values whilst having an even bigger

impact on the decision probabilities used at the conclusion of the trial. However, the

results also demonstrate benefits of borrowing in terms of increase in precision of point

estimates, particularly when the sample size is small such as in the Thyroid cancer

basket which has just 7 patients. From these differences in results, we would promote

careful planning and pre-trial evaluations to ensure that the borrowing method used is

appropriate for the study.

2.5 Discussion

Presented here were several Bayesian information borrowing techniques within a basket

trial setting, alongside a proposed modification to the EXNEX model. Through simula-

tion, the BHM, EXNEX model and a BMA approach were shown to have inflated error

rates in the presence of baskets with heterogeneous response rates, while the CBHM

lacks power in such a scenario.

Exploration of the methods applied to unequal sample sizes across baskets high-

lighted the inadequacy of the current calibration procedure in the CBHM which only

previously considered equal sample sizes across baskets. A generalisation of this calibra-

tion is made to handle the presence of unequal sample sizes, a situation that commonly
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arises in the clinical setting.

The proposed method has been shown to improve error control while increasing

power over an independent analysis. This proposed method is robust to the presence

of a heterogeneous basket as it is able to identify its difference in response and thus

does not borrow information from it, while still retaining borrowing between homoge-

neous baskets with a probability determined by similarity in response through Hellinger

distances.

The use of Hellinger distances has already been proposed for use in information

borrowing in the basket trial setting by Zheng and Wason (2022). However, they

utilise the metric on data with continuous endpoints and a control arm, to stipulate a

commensurate prior based on pairwise Hellinger distances. The mEXNEXc model uses

averaged Hellinger distances to compute the prior probability of borrowing within the

EXNEX model. Alternative distance metrics were considered but were shown to have

less error control to that proposed in this chapter and are hence omitted.

The mEXNEXc model has been specified as a two-step procedure, within which

we first remove heterogeneous baskets to treat as independent and then utilise these

Hellinger distances to specify the prior borrowing probabilities between the remaining

baskets. In Section A.5 of the Supporting Information, explanation is provided as to

why both of these steps are utilised in place of making just one of these modifications.

Justifications are provided based on several thorough simulation studies, the first of

which explored the performance of the one 1-step vs. 2-step methods under the sim-

ulation setting outlined in Section 2.3 which highlighted the need for the first step -

i.e. removal of heterogeneous baskets - in order to control the type I error rate. We

then continued exploration of the differences in approaches through a further simulation

study that varied one design parameter at a time, i.e. changed the number of baskets

(of which further simulation studies under K = 3 and K = 10 baskets are presented in

Section A.6), changed the sample size or changed the target response rate. From this
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we concluded that the 2-step mEXNEXc model as proposed in this chapter performs

more favourably over a 1-step modified EXNEX model when the sample size is very

small or large, when we have a smaller number of baskets and when the target response

rate is closer to the null response rate. This is a more realistic trial setting and hence

why the 2-step mEXNEXc model has been proposed, although an argument could be

made in some cases to use just a 1-step procedure in which heterogeneous baskets are

removed and the remaining borrowing probabilities are fixed at 0.5.

The performance of the modified EXNEX model is reliant on the cut-off specification

for assigning a basket for independent analysis, which is selected to balance the trade-

off between power improvement and control of type I error rate. When chosen to

favour power improvement, the proposed method reduces error rates in the presence

of a single heterogeneous basket and improves power when all baskets are sensitive

to treatment. However, when clusters of responses are observed, the proposed method

increases the probability of borrowing between all baskets and hence error rates increase

and the method performs similarly to the standard EXNEX model. Whereas, if the

cut-off is chosen to control error rates this inflation is not present across any of the

simulation scenarios considered and power is improved in comparison to an independent

analysis. As a result, implementing this newly proposed modified EXNEX model with a

suitable cut-off value, produces a model that either exceeds all other borrowing methods

considered here in terms of performance or acts similarly to the standard EXNEX

model.

A draw towards the standard EXNEX model is it’s ability to borrow between multi-

ple subsets of baskets by incorporating more than one exchangeability component in its

mixture distribution in Model 2.2.4. The mEXNEXc model could benefit from exten-

sion to allow for this feature. This would lead to better handling of borrowing within

clusters of homogeneous responses.

Other alternative approaches for information borrowing in the basket trial setting
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are outlined in the literature, these include the MUCE design (Lyu et al., 2023), Liu’s

two-path approach (Liu et al., 2017) and the RoBoT design (Zhou and Ji, 2020) to name

a few. Comparisons between the proposed mEXNEXc model and the above methods

have not yet been made.

Adaptive design features such as interim analyses with futility/efficacy stopping are

desirable in most clinical trials and has been considered in the work by Jin et al. (2020),

Berry et al. (2013), Chu and Yuan (2018) and Psioda et al. (2021). However, no such

adaptive design features were considered in this chapter which could be considered a

limitation. The methodology described here could be extended to incorporate such

features and future work into this aspect is being conducted.

2.6 Appendix

2.6.1 Simulation Prior and Parameter Specification

For the simulation study in Section 2.3, priors are chosen to match those suggested in

the models literature. The following priors are used for the Simulation study:

• Independent model:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log

(
pk

1− pk

)
,

θk ∼ N(logit(0.15), 102),
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• Bayesian Hierarchical model:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log

(
pk

1− pk

)
∼ N(µ, σ2),

µ ∼ N(logit(0.15), 102),

σ ∼ Half-Cauchy(0, 25).

• Calibrated Bayesian hierarchical model:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log

(
pk

1− pk

)
∼ N(µ, σ2),

µ ∼ N(logit(0.15), 102),

σ2 = exp{a+ b log(T )},

where, through tuning, a = −7.25 and b = 5.86 based on a sample size of 13 per

basket. The chi-squared test statistic is used to compute T as in Equation 2.2.3.

• Bayesian model averaging: A weakly informative Beta prior is placed on the

response rates so pSj
|Mj ∼ Beta(a0, b0) where a0 = q1 = 0.45 and b0 = 1− q1 =

0.55. The prior f(M|) ∼ P 2
j is placed on the models, where Pj is the number of

distinct response rates in model j.

• EXNEX: For the standard EXNEX model equal prior mixture weights for the

EX/NEX components are used and thus πk = 0.5 for all k baskets. A plausible

guess of the true response rate is chosen to be ρk = 0.35 (a value that is considered

low but still indicative of a response) for all k baskets:
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Yk ∼ Binomial(nk, pk),

θk = log
( pk
1− pk

)
,

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(0.5),

M1k ∼ N(µ, σ2), (EX)

µ ∼ N(logit(0.15), 102),

σ ∼ Half-Normal(0, 1),

M2k ∼ N(−0.62, 4.42), (NEX)

with the parameters of the NEX component computed through the following

Neuenschwander et al. (2016):

mk = log

(
ρk

1− ρk

)
, νk =

1

ρk
+

1

1− ρk
. (2.6.1)

• Modified EXNEX: The same structure and prior choices as the standard EXNEX

model with the exception of the prior on σ. Rather than applying the prior

σ ∼ Half-Normal(0, 1) the prior is placed on σ2, i.e. σ2 ∼ Half-Normal(0, 1). The

mixture weights have a Bernoulli prior with prior parameter of success, πk, which

are calculated via the Hellinger distance with cut-off c chosen to be 0 and 1/13.



Chapter 3

How to Add Baskets to an Ongoing

Basket Trial with Information

Borrowing

3.1 Introduction

In the oncology setting, significant research into cancer genomics and understanding the

underlying genetic cause of disease has catapulted the field of personalised medicine,

within which treatments are targeted to a specific genetic makeup, to the forefront of

clinical trial design (Simon and Roychowdhury, 2013). This shift away from disease

specific treatments towards genetically targeted treatments has led to the development

of basket clinical trials.

Basket trials are a form of master protocol in which a single treatment is adminis-

tered to patients across different disease types, all of whom possess the same genetic

aberration. Different disease type sub-populations form their own treatment basket

(Sargent and Renfro, 2017). Typically, basket trials are implemented in early stages of

the drug development process in order to determine if a treatment is efficacious against

63
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each of the individual baskets on the trial (Park et al., 2019). They often consist of a

single treatment arm using a small number of patients.

One of the main benefits of basket trials is that they allow for testing of treatments

on rare diseases that would not traditionally warrant their own investigation due to

their limited sample size (Chu and Yuan, 2018) and financial and time constraints. By

allowing for testing on multiple disease types in a single study, the drug development

process is substantially expedited. These basket trials also provide flexibility by utilising

adaptive design features, which allow for modification of the design and analysis while

the study is still ongoing. Such modifications include interim analysis with futility and

efficacy stopping, sample size adjustment, or as is the focus of this work, the addition

of a single or multiple baskets to an ongoing trial. This situation arises when it is

identified that a new group of patients may benefit from the treatment, where these

patients harbour the genetic aberration under investigation but suffer from a different

disease type.

Several prominent clinical trials have utilised the addition of a treatment arm/basket.

The VE-BASKET trial (Hyman et al., 2015), exploring the effect of Vemurafeib on can-

cers with the BRAFV600 mutation, is an example of such a study in which two new

baskets were formed of patients on the trial due to sufficient accrual rates of patients of

two cancer types. Likewise, the basket trial looking at the treatment of tucatinib and

trastuzab on solid tumours with the HER2 alteration (Reck et al., 2021) allowed the

opening of disease-specific cohorts during the trial as a part of the trial protocol. These

examples act as motivation of the work presented in this chapter, with the purpose to

explore methodology for handling such additions of treatment groups.

Although basket trials are desirable as they allow the testing of rare diseases, this

does introduce challenges in cases where sample sizes are limited. In such situations,

issues such as lack of statistical power and precision of estimates arise. This can be

amplified in baskets that are added part-way through an ongoing trial. The combination
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of reduced recruitment rate (when the new disease type is rare) and shorter recruitment

time due to the late addition to the trial, can result in a further reduction in sample

sizes compared to baskets that opened at the beginning of the trial. To tackle the issue

of small sample sizes within baskets, Bayesian information borrowing methods were

proposed for use in basket trials. These methods utilise the assumption that, as patients

across baskets share the same genetic mutation, they will have a similar response to

the treatment. As such, patients are ‘exchangeable’ between baskets, meaning patients

can be moved between treatment baskets without changing the overall treatment effect

estimates (Oakes, 2013). One can use this assumption to draw on information from

one basket when making inference in another. This has the potential to improve power

and precision of estimates, particularly in the presence of small sample sizes. However,

when the exchangeability assumption is violated, and there is heterogeneity amongst

baskets’ responses, any information borrowing has the potential to inflate the type I

error rate. This trade-off between power improvement and error rate inflation amongst

heterogeneous baskets is a well known issue and has been observed in several simulation

studies throughout the literature including that by Chu and Yuan (2018), Jin et al.

(2020) and the work outlined in Chapter 2.

Over recent years, several prominent methods for information borrowing in basket

trials have been proposed. These include the Bayesian hierarchical model (BHM, Berry

et al., 2013) and several adaptations to this method, such as the calibrated Bayesian

hierarchical model (CBHM, Chu and Yuan, 2018) which defines the prior on the bor-

rowing parameter as a function of homogeneity, the exchangeability-nonexchangeability

model (EXNEX, Neuenschwander et al., 2016) which allows for flexible borrowing be-

tween subsets of baskets and the modified exchangeability-nonexchangeability model

outlined in Chapter 2 which modifies the EXNEX model to account for homogene-

ity/heterogeneity between baskets.

This chapter proposes and investigates different approaches for the analysis of newly
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added baskets under an information borrowing structure, which primarily utilises the

EXNEX model. To identify when and which approach is deemed appropriate for use,

thorough simulation studies under a variety of setting were conducted, monitoring the

type I error rate and power. The simplest approach to such an addition would be to

analyse the new baskets akin to baskets that were already in the trial at the start, a

problem which is mathematically equivalent to a case of unequal sample sizes. This

chapter also explores additional methodology, motivated by the concern that new bas-

kets could negatively impact the type I error rate and power of existing baskets should

results be heterogeneous. However, substantial power can be gained by borrowing from

new baskets in cases of homogeneity. Error control in the the new basket must also

be considered. Results of thorough simulation studies are provided to compare such

approaches in order to identify when and how it can be beneficial to add a new basket

to an ongoing trial as opposed to running a separate investigation for the new basket(s).

The second novel aspect of this chapter regards the calibration of efficacy criteria.

When implementing Bayesian borrowing models, posterior probabilities are computed

and compared to some pre-defined cut-off value in order to determine whether or not

a treatment is efficacious in each of the baskets. Traditionally, these cut-off values are

calibrated through simulation studies under a global null scenario, where all baskets

have a truly ineffective response rate. This calibration aims to control the basket specific

type I error rate to a nominal level. However, when the cut-off value is applied to cases

where at least one basket is non-null, it is not guaranteed that error rates will remain

controlled at the nominal level when information borrowing is utilised (Kopp-Schneider

et al., 2020). In fact, inflation in error rates often occurs in cases of heterogeneity,

as borrowing information causes shifts in the posterior probabilities away from the

true treatment effect. This brings into question whether calibrating under the global

null is sufficient, as more often than not, there is an expectation that the treatment

is efficacious in at least one basket. In this chapter we propose a novel calibration
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technique, called the Robust Calibration Procedure (RCaP), which controls the type I

error rate on average across several possible true response rate data scenarios, with the

potential to weight scenarios based on importance and prior likelihood of occurring in

the trial. Presented in this chapter is a comparison between operating characteristics

under the traditional approach of calibrating under the global null and under this novel

procedure.

This chapter is structured as follows, we begin in Section 3.1.1 with introducing a

motivating example, the VE-BASKET study. In Section 3.2 we then describe analysis

models, approaches for the analysis of newly added baskets, and outline the novel

calibration procedure, RCaP. Results of several simulation are presented in Section 3.3

starting with a comparison of calibration techniques, followed by results of simulation

studies to compare performance of approaches for the addition of a newly identified

basket.

3.1.1 Motivating Trial: The VE-BASKET Study

The VE-BASKET trial was a phase II basket trial, investigating the effect of Vemurafeib

on several cancer types possessing the BRAFV600 mutation (Hyman et al., 2015). A

total of 122 patients were enrolled across all baskets, with efficacy evaluated after eight

weeks of treatment. The primary endpoint was the overall response rate (ORR) with

a null response rate of 15% indicating inactivity and target response rate of 45%. A

response rate of 35% was considered low but still indicative of a response. Sample sizes

of 13 patients per basket were obtained through a Simon’s two stage design (Simon,

1989) based on 80% power and 10% type I error rate.

The trial opened with six disease specific baskets: non-small-cell lung cancer (NSCLC),

ovarian cancer, colorectal cancer, cholangiocarcinoma, breast cancer and multiple myeloma.

Also present was an ‘all other’ basket consisting of patients with different disease types

with the BRAFV600 mutation. This initial trial structure was adapted based on re-
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Figure 3.1.1: VE-BASKET Trial Design. Vemurafenib is tested on several cancer types,
with two new baskets formed from the ‘all other’ group in the trial.

cruitment rates, with the breast cancer, ovarian cancer and multiple myeloma baskets

closing due to insufficient accrual. Patients were moved from these baskets to the ‘all

other’ basket for analysis. Due to sufficient number of patients in the ‘all other’ group,

two new baskets were formed and added to the trial: an Edrheim-Chester disease or

Langerhans’-cell histiocytosis (ECD/LCH) basket and a anaplastic thyroid cancer bas-

ket. Figure 3.1.1 displays the general trial schematic.

This highlights the flexible nature of a basket trial. Although not newly identified

baskets, with new disease groups forming from patients already on the trial, the VE-

BASKET trial demonstrates the addition of baskets, hence bringing about the question
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on how to conduct analysis in such a setting.

3.2 Methodology

3.2.1 Setting

This chapter focuses on a single treatment arm within each basket and considers binary

endpoints, in which a patient either responds positively to a treatment or does not.

Consider a basket trial with a total of K baskets. Denote the number of responses

in basket k by Yk, which follows a binomial distribution, Yk ∼ Binomial(nk, pk), with

nk and pk indicating the sample size and response rate in basket k. Interest lies in

estimating the unknown response rate pk. Denote q0 and q1 as the null and target

response rate respectively.

Now consider a case where baskets of patients are added to an ongoing trial and

thus split the K baskets into two sets. Let K0 be the total number of existing baskets

that began the trial, thus having K ′ = K−K0 new baskets added part way through the

study. Existing baskets are indexed k0 = 1, . . . , K0 and new baskets k′ = K0+1, . . . , K.

Note that a new basket, k′, may be added at any time during the study and it is not

required that all new baskets be added at the same time.

The objective is to test the family of hypotheses:

H0 : pk0 ≤ q0 vs. Ha : pk0 > q0, k0 = 1, . . . , K0,

H0 : pk′ ≤ q0 vs. Ha : pk′ > q0, k′ = K0 + 1, . . . , K.

To test these hypotheses, a Bayesian framework is utilised. Posterior probabilities

are used to determine the efficacy of the treatment on each of the individual baskets in

the trial. As such, given observed response data D, the treatment is deemed effective

in an existing basket k0 if P(pk0 > q0|D) > ∆k0 and effective in a new basket k′ if
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P(pk′ > q0|D) > ∆k′ . Both cut-off values ∆k0 and ∆k′ are typically determined through

calibration in order to control some metric, often related to false decision making, at

a nominal level. Traditionally this calibration is done under a global null scenario in

which all baskets are ineffective to treatment, in order to control the basket-specific

type I error rate to a nominal level (Kaizer et al., 2022; Hobbs and Landin, 2018; Jin

et al., 2020).

Note that calibration of these cut-off values mostly occurs prior to the trial com-

mencing, and hence before observed sample sizes are known. Due to this uncertainty,

assumptions must be made for the sample sizes in both existing and new baskets in or-

der to conduct calibration. Should the impact of much greater or much smaller sample

sizes than planned be of concern, one could calibrate based on the ‘worst case scenario’

for the sample sizes (i.e. the sample size which is expected to observe the greatest type

I error rate for instance).

3.2.2 The Exchangeability-Nonexchangeability Model

Information borrowing models utilise the exchangeability assumption, which states that

as patients across all baskets share a common genetic component, their response to

treatment will be similar. Thus information can be shared between baskets in order

to improve inference. The Bayesian hierarchical model (BHM) first outlined by Berry

et al. (2013) is a key basis for many information borrowing models, one of which is

the exchangeability-nonexchangeability (EXNEX) model proposed by Neuenschwander

et al. (2016). The EXNEX model consists of two components:

1. EX (exchangeable component): with prior probability πk, basket k is exchangeable

and a Bayesian hierarchical model is applied. Information borrowing is therefore

conducted between all baskets assigned to the exchangeable component.

2. NEX (nonexchangeable component): with prior probability 1 − πk, basket k is
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nonexchangeable with any other basket, and as a result is analysed independently.

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log
( pk
1− pk

)
,

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

M1k ∼ N(µ, σ2), (EX)

µ ∼ N(logit(q0), νµ),

σ ∼ g(·),

M2k ∼ N(mk, νk). (NEX) (3.2.1)

As outlined in the model specification (3.2.1), the EX component has the form of a BHM

with the log-odds of the response rates for each basket following a normal distribution,

centred around a common mean µ with variance σ2. Borrowing occurs between baskets

in the EX component where estimates of response rates are shrunk towards the common

mean µ with the degree of shrinkage controlled by σ2. As σ2 tends to zero, borrowing

moves towards complete pooling of results, however, as it tends to infinity a stratified

analysis is conducted on each basket. The prior on µ is centred around the average null

response rate across the baskets with a large variance, whilst the prior on σ, g(·), is more

widely debated with Inverse-Gamma, Half-Normal or Half-Cauchy priors implemented

across the literature (Gelman, 2006). It is suggested that a Half-Normal(0,1) prior is

to be placed on σ as this allows for anywhere between a small and very large amount

of heterogeneity between baskets (Neuenschwander et al., 2016).

Issues arise in a BHM when the exchangeability assumption is violated, which occurs

in the presence of heterogeneous baskets. In such cases, when information is borrowed

between all baskets, the type I error rate is likely to inflate as the posterior proba-

bilities are pulled towards the common mean, µ, and away from the true treatment

effect. The EXNEX model relaxes the full exchangeability assumption, allowing for

some heterogeneity between treatment effects (thereby reducing type I error rate in-

flation) through the incorporation of the NEX component within which baskets are

analysed independently, with basket-specific priors on the logit transformed response
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rates. Neuenschwander et al. (2016) propose setting the parameters as follows:

mk = log

(
ρk

1− ρk

)
, νk =

1

ρk
+

1

1− ρk
, (3.2.2)

where ρk is a plausible guess for the true response rate in basket k.

The prior probabilities, πk, for assignment to the EX/NEX component are selected

prior to the trial. There is often little to no information available on the probability

of exchangeability of baskets before the trial, so it is suggested to fix πk = 0.5 for all

k baskets. Alternatively, a Dirichlet prior could be placed on these values, however,

Neuenschwander et al. (2023) prove that only the mean of the weight distribution affects

inference in this case.

3.2.3 Approaches for Adding A Basket

We now propose four different approaches for the calibration and analysis of newly

added baskets to an ongoing basket trial. In all four cases existing baskets are analysed

through an EXNEX model, however, treatment of the new basket varies. Approaches

are outlined below, as well as, summarised in Table 3.2.1.

1. IND - INDependent analysis of the new basket.

Analyse the K0 existing baskets by applying an EXNEX model (as in Model

(3.2.1)) and calibrate ∆k0 based on the same model. Analyse the K ′ new baskets

independently (modelled as in the NEX component in Model (3.2.1)) to existing

baskets and calibrate ∆k′ based on the same model.

Analysing the new basket as independent may be considered desirable as it elimi-

nates potential negative effects of smaller sample sizes in new baskets on inference

in existing baskets.

2. UNPL - UNPLanned addition of a new basket.
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Calibrate ∆k0 based on an EXNEX model applied to the K0 existing baskets.

When conducting analysis borrow between all K baskets through an EXNEX

model. For cases of equal sample size set ∆k′ = ∆k0 for the new basket. If the

sample size is unequal for the K ′ new baskets compared to the K existing baskets,

set ∆k′ = ∆i0 where existing basket i has sample size ni closest to the sample size

of the new basket k′, i.e. i = argmini{|ni − nk′ |}.

This is a naive analysis in that cut-off values are not adjusted despite the addi-

tional baskets. This may occur when an addition is not planned for, but once it

occurs it is believed that borrowing from a new basket will improve inference for

both existing and new baskets due to the extra information gained.

3. PL1 - PLanned addition of a new basket in which a single EXNEX model is

applied.

Calibrate ∆k0 and ∆k′ assuming that new baskets will be added during the

study. To calibrate and analyse, borrow between all K baskets (new and ex-

isting) through an EXNEX model. Effectively, this equates to calibration under

unequal sample sizes and has two subsets:

(a) The time of addition of the new basket(s) is known. In this case, the sample

sizes, nk, for each of the k = 1, . . . , K baskets are known and fixed in the cal-

ibration procedure. The new baskets are assumed to have equal recruitment

rates to the existing baskets unless evidence exists to the contrary.

(b) The time of addition of the new basket(s) is unknown. In this case fur-

ther simulation studies are required to explore the effect of sample size on

operating characteristics. Based on these exploratory simulation studies, it

may be desirable to calibrate based on the sample size which produced the

highest type I error rate inflation. Utilising this cut-off value will ensure bet-

ter error control, however may come at the cost of reduced power if overly
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conservative.

The situation in which it is known for certain that new baskets will be added

may occur if it is apparent that a basket of patients will benefit from the study,

however, is not ready in time for the commencement of the trial, whether this is

due to logistical issues or diagnostic techniques or some other factor. Thus it is

planned to add the basket at a later time. This time of addition may be fixed as

in PL1(a) but it may be desirable to add a basket as soon as it is available, thus

falling into the case of PL1(b) when timing of addition is unknown.

4. PL2 - PLanned addition of a new basket in which two EXNEXmodels are applied.

Calibrate ∆k0 based on an EXNEX model applied to just the K0 existing bas-

kets and thus, when analysing the existing baskets, do not borrow from any new

baskets. Calibrate ∆k′ based on an EXNEX model applied to all K baskets.

Therefore, when analysing new baskets, information is borrowed between all bas-

kets, new and existing. This results in two EXNEX models and, like PL1, consists

of two subsets: (a) Timing of addition is known and fixed and (b) Timing of ad-

dition is unknown.

As in IND, analysing baskets in this way will eliminate the effect of reduced sample

sizes in new baskets on estimation of response rates in existing baskets. However,

by allowing full information borrowing between all baskets when analysing the

new baskets, one may combat the issue of lack of statistical power and precision

of estimates that arises due to the limited sample size.

Under both IND and PL2, the calibration and analysis for existing baskets are

equivalent, with an EXNEX model applied to all K0 existing baskets, independent of

any new baskets. Similarly, for new baskets, PL1 and PL2 are equivalent as under both,

when calibrating and analysing any of the K ′ new baskets, information is borrowed

between allK baskets in the trial by fitting an EXNEX model. Full model specifications
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Table 3.2.1: Summary of approaches for analysis and calibration when adding a basket
where k0 denotes existing baskets and k′ denotes new baskets.

Approach Calibration Analysis
∆k0 ∆k′ Existing Baskets New Baskets

IND EXNEX on all k0 Independent on all k′ EXNEX on all k0 Independent on all k′

UNPL EXNEX on all k0 ∆k0 = ∆k′ EXNEX on all k
PL1 EXNEX on all k EXNEX on all k
PL2 EXNEX on all k0 EXNEX on all k EXNEX on all k0 EXNEX on all k

and a further table summary are provided in Table 3.5.1 in Appendix 3.5.

3.2.4 RCaP: Robust Calibration Procedure

A treatment is deemed effective in basket k if the posterior probability that the response

rate, pk, is greater than q0, exceeds a cut-off value ∆k. In a few basket trial cases, such

as the work by Zheng and Wason (2022) and Ouma et al. (2022a), these ∆k values are

fixed at some value, i.e. 0.975, however, an alternative is to calibrate the cut-off value

in order to control some operating characteristic to a desirable level.

This was implemented by Kaizer et al. (2022), Hobbs and Landin (2018), Chu and

Yuan (2018), Jin et al. (2020) and Berry et al. (2013), who followed a conventional

approach where ∆k was calibrated under a single simulation scenario (i.e. a vector of

probabilities that reflect response rates in each of the baskets in the trial), typically

this is the global null scenario in which the treatment is ineffective across all baskets.

In each of these cases ∆k was calibrated to achieve an 100α% type I error rate in each

basket under the global null. However, this type of calibration does not guarantee

error rate control across other scenarios when information borrowing is implemented.

When borrowing information from heterogeneous and effective baskets, the posterior

probabilities are pulled upwards for baskets with an ineffective response rate compared

to that under the global null scenario, thus increasing the probability of exceeding the

calibrated value, ∆k. Therefore, error control is only guaranteed in the global scenario in

which ∆k was calibrated under, with other scenarios likely to demonstrate undesirable
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error rate inflation. This is observed in the simulation study conducted in Chapter 2,

with the EXNEX model, in the worst case, producing a relative increase in type I error

rate of 72.5% compared to the nominal 10% level. Similar findings are presented by

Jin et al. (2020) (236% relative increase) and Chen and Hsiao (2023) (135% relative

increase). Although ∆k is typically calibrated to control the type I error rate, the

calibration procedure remains the same for the control of any metric obtained from the

posterior density such as the family-wise error rate or power.

We propose a novel calibration procedure, the Robust Calibration Procedure (RCaP),

where as opposed to calibrating under a single global null scenario (which we refer to as

the ‘calibration under the global null approach’), ∆k is calibrated across numerous po-

tential scenarios so that some metric, Q, is controlled on average across potential trial

outcomes. Simulation scenarios may be weighted in importance by their probability of

occurring in the trial, or if no information is provided on potential outcomes, scenarios

can be equally weighted.

Consider a case with M simulation scenarios p1, . . . ,pM one wishes to calibrate

across. Denote the sample size and true response rate of basket k under scenario m

as nmk and pmk respectively with k = 1, . . . , K and m = 1, . . . ,M . The simulation

scenarios are represented by vectors consisting of these true response rate probabilities

for each of the K baskets, i.e. pm = (pm1, . . . , pmK) for all m = 1, . . . ,M . These

scenarios are used in each of the simulation runs for the calibration alongside the basket

sample sizes, nm = (nm1, . . . , nmK) in order to generate data X from X ∼ F (pm,nm).

Each of these simulation scenarios may be weighted to reflect importance or like-

lihood of them actually occurring in the trial. Thus define weights ωm ∈ N for each

scenario m = 1, . . . ,M . If no weight is required, set ωm = 1 for all m = 1, . . . ,M .

These weights are integer values, with larger values increasing the number of posterior

probabilities that contribute to the calibration process for that scenario, thus increasing

the scenarios importance in the calibration relative to other scenarios. If required, these
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weights can be normalised to sum to one, i.e. ωm/(
∑M

i=1 ωi), however, integer values

must be used in Algorithm 1.

Algorithm 1 RCaP - Calibrate ∆k across several simulation scenarios for any metric,
Q.

Data: Total number of simulation scenarios,M , scenarios p1, . . . ,pM , basket sample
sizes n, number of simulation runs for each scenario, R, and integer weights for the
scenarios, ω1, . . . , ωM ;
Initialisation: Q1, . . . ,QK empty vectors for storing Q
for m = 1 to M do

for r = 1 to R do
Generate data X ∼ F (pm,n)
Fit information borrowing model to obtain posterior densities
Compute a quantity, Q, obtained from the posterior required for the metric

of interest
for k = 1 to K do

if Basket k satisfies the basket specific criterion, T (·) then
for j = 1 to ωm do

Qk = Qk ∪Q
end for

end if
end for

end for
end for
∆k = 100(1− α)% quantile of Qk for each basket k.
return Cut-off values ∆k for each basket k;

The generalised novel Robust calibration procedure is described in Algorithm 1,

which takes into account the calibration of any metric. The algorithm requires the

specification of sample sizes and the definition of all M simulation scenarios under

consideration, alongside their weights of importance, ωm for m = 1, . . . ,M . For a

simulation scenario, pm, a total of R data sets are generated from F (pm,n). A model

is then fit to each of these R data sets to obtain posterior densities. From these

posteriors, a quantity Q is computed, where Q is required to compute the metric of

interest. A binary basket-specific condition, T (·) is introduced which takes value one

when satisfied and zero otherwise. Weights ωm are utilised in the following step: if

basket k satisfies T (·), then ωm copies of Q under each of the 1, . . . , K baskets are
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stored in vectors Q1, . . . ,QK . All preceding steps are repeated under each of the M

simulation scenarios, thus the higher the weight ωm, the more scenario m contributes

to the vectors Q1, . . . ,QK . To compute cut-off values, ∆k, the appropriate quantile is

taken within each of the Qk vectors. As such, ∆k will be the quantile of the combined

quantities across all M scenarios that satisfy the basket-specific criterion (weighted by

importance through ωm), thereby controlling the metric across all scenarios combined.

When the metric of interest is the type I error rate, the quantity computed is

Q = P(pmk > q0|X). The probability of a type I error can only be computed when a

basket is null, thus the basket-specific condition requires that the true response rate

pmk is null. If non-null a type I error cannot occur. When calibrating for type I error

control, as is the focus in this chapter, it is therefore important to require that in each

of the M simulation scenarios, at least one basket has a null response rate to satisfy

the basket specific criterion. The full algorithm applied to control the type I error rate

is provided in Section 3.5.3 in Appendix 3.5.

When sample sizes are equal across all or a number of baskets, the ∆k values will

also be equal. In this case, define the set of baskets with equal sample size as E. Of

baskets in E, select the basket which satisfies T (·) across the greatest number of the

M scenarios. Denote this basket as ϵ, then set ∆k = ∆ϵ for all k ∈ E. The RCaP will

then maximise the number of simulation scenarios that contribute to the calibration.

Under RCaP in order to control for a type I error, one would expect superior error

rate control across non-null cases compared to calibration under the global null, as

the ∆k values obtained will likely be more conservative to ensure error control across

multiple scenarios. With the increased conservative nature, it becomes more difficult for

the posterior probability P(pk > q0|X) to exceed ∆k and deem the treatment effective.

As such, a decrease in power is also likely.
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3.3 Simulation Study

3.3.1 General Setting

In order to explore and compare operating characteristics of the proposed approaches

for handling the addition of a new basket to an ongoing trial, numerous simulation

studies have been conducted. Simulation studies are split into two categories with

the first exploring the case in which vectors of response rates per basket are fixed

within the simulation to pre-defined values and secondly, a simulation study in which

vectors of response rates are randomly generated within simulation runs. Two lines of

comparison are then made within these simulation studies: the calibration under the

global null approach is compared to the RCaP followed by a comparison between the

approaches for adding a basket to an ongoing trial. In both of these simulations, only

subset (a) of PL1 and PL2 in which time of addition is known are considered. However,

an exploration into the effect of timing of addition is provided in Section B.6 of the

Supporting Information, to assess the performance of PL1(b) and PL2(b).

We consider the following trial setting. There are K0 = 4 existing baskets with

K ′ = 1 new basket added part-way through the study. Let the null and target response

rates be q0 = 0.2 and q1 = 0.4 respectively. For existing baskets, sample sizes were

fixed at nk0 = 24 for k0 = 1, . . . , 4. For the new basket, as the timing of addition is

for now assumed as known, assume equal accrual rates across all K baskets and set

the sample size as nk′ = 14 for k′ = 5. These sample sizes are obtained by a Simon

two-stage design (Simon, 1989) with a nominal targeted type I error rate and power of

10% and 80% respectively.

Within each simulation study, the percentage of simulated data sets in which the

null hypothesis is rejected in each basket (% Reject) is computed. If the true response

rate is q0, then this value is the type I error rate, otherwise it is the power. Further

operating characteristics are presented in Supporting Information B which includes the
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family wise error rate, mean point estimates and their standard deviations, as well

as the percentage of simulated data sets in which the correct conclusion regarding

accepting/rejecting the null was made across all K baskets (% All Correct).

All simulations are conducted using the ‘rjags’ package v 4.13 (Plummer, 2023)

within RStudio v 1.1.453 (R Core Team, 2020), with R v 4.1.2. Simulations consist of

10,000 simulation runs for each data scenario and approach considered.

3.3.2 Prior Specification

Throughout the simulations an independent analysis model is specified such that the

prior placed on the logit transformation of the response rate pk follows a Normal dis-

tribution: θk ∼ N(logit(0.2), 102) and is therefore centred around the null response rate

with a large variance. The same prior is placed on µ in the exchangeability component

of the EXNEX model with a Half-Normal(0, 1) prior placed on σ2. The prior on the

NEX component is specified as in Equation (3.2.2) as suggested by Neuenschwander

et al. (2016), where ρk (a plausible guess for the true response rate, pk) is set at a

response rate considered as a marginally effective response to treatment, lying between

the null and target response rate, ρk = 0.3. The prior probabilities for assignment to

the EX/NEX component are fixed at πk = 0.5 for all baskets. Full model specifications

are provided in Section 3.5.2 in Appendix 3.5.

3.3.3 Description of the Fixed Data Scenarios Simulation Study

The first simulation study considered is one in which true response rates in scenarios are

fixed with each basket having either a null response rate (pk = 0.2) or effective response

rate (pk = 0.4). The data scenarios considered are presented in Table 3.3.1. Scenario

1 is the global null state under which all baskets are ineffective to treatment, whereas,

scenario 4 is the case where all baskets are truly effective to treatment. Scenarios 2 and

3 are cases in which the new basket is ineffective with a varying number of effective
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existing baskets. Similarly, scenarios 5 and 6 are cases in which the new basket is

effective to treatment, again with a varying number of effective existing baskets. Results

under several other simulation scenarios are presented in Section B.1 of Supporting

Information B which covers all global and partial null scenarios, as well as, cases where

a varying number of baskets have a marginally effective response to treatment.

Table 3.3.1: Simulation study scenarios: Vectors of true response rates used within the
simulation study to compare calibration techniques and approaches for adding a basket.

p1 p2 p3 p4 p5

Scenario 1 0.2 0.2 0.2 0.2 0.2
Scenario 2 0.4 0.2 0.2 0.2 0.2
Scenario 3 0.4 0.4 0.4 0.4 0.2
Scenario 4 0.4 0.4 0.4 0.4 0.4
Scenario 5 0.2 0.2 0.2 0.2 0.4
Scenario 6 0.4 0.2 0.2 0.2 0.4

The cut-off values ∆k0 and ∆k′ are calibrated for each approach separately as de-

scribed in Table 3.2.1. The calibration under the global null approach means that

∆k0 and ∆k′ are calibrated under scenario 1 to achieve 10% type I error rate. Under

RCaP, an average 10% type I error rate is achieved across a number of scenarios. When

implementing the RCaP procedure, consideration must be taken into which scenarios

to include in the calibration. For the IND, PL1(a) and PL2(a) approaches, an addi-

tional two scenarios were incorporated into RCaP alongside those presented in Table

3.3.1: scenario 7 with true response rates pk = (0.4, 0.4, 0.2, 0.2, 0.2) and scenario 8

with pk = (0.4, 0.4, 0.4, 0.2, 0.2). With these two scenarios implemented in the RCaP

alongside scenarios 1-3 in Table 3.3.1, all global and partial null cases are considered

given the new basket has a null response rate. An alternative option is to include all

global and partial nulls, taking into account the unequal sample sizes. This would

involve including scenarios 1-6 from Table 3.3.1 alongside scenarios 7 and 8 with two

further partial nulls: scenario 9 with pk = (0.4, 0.4, 0.2, 0.2, 0.4) and scenario 10 with

pk = (0.4, 0.4, 0.4, 0.2, 0.4). A simulation study is presented in Section B.2 of Supporting
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Information B that compares these two options. Results indicated minimal differences

in power and error rates and thus calibration across fewer scenarios is preferred due to

the lower computational cost. For the simulation study presented in this chapter, all

scenarios carry the same importance and thus weights were set as ωm = 1 for all sce-

narios, however, included in Section B.3 of Supporting Information B is an exploration

of these weights, demonstrating how operating characteristics changed based on their

choice.

Note that calibration under the UNPL approach differs from the other three ap-

proaches as its calibration only takes into account the K0 = 4 existing baskets, with

the new basket being an unplanned addition. Thus calibration will occur given the

following four scenarios: pk = (0.2, 0.2, 0.2, 0.2) corresponding to scenarios 1 and 5,

pk = (0.4, 0.2, 0.2, 0.2) corresponding to scenarios 2 and 6, pk = (0.4, 0.4, 0.2, 0.2) corre-

sponding to scenarios 7 and 9 and pk = (0.4, 0.4, 0.4, 0.2) corresponding to scenarios 8

and 10. These scenarios cover all global and partial nulls given K = 4 baskets of equal

sample size.

Table 3.3.2: Calibrated ∆k0 and ∆k′ values for IND, UNPL, PL1(a) and PL2(a) under
the two separate calibration methods: calibration under the global null and the RCaP.

Calibration under the global null RCaP
∆k0 ∆k′ ∆k0 ∆k′

IND 0.8599 0.8998 0.9030 0.8989
UNPL 0.8599 0.8599 0.9056 0.9056
PL1(a) 0.8566 0.8409 0.9034 0.9021
PL2(a) 0.8599 0.8409 0.9030 0.9021

Due to the unequal sample sizes across the new and existing baskets, for IND, PL1

and PL2, following Algorithm 1, ∆k0 is selected as the 90% quantile of the posterior

probabilities in basket 4 across the implemented scenarios in which its true response is

q0, with ∆k′ selected based on all scenarios considered in the RCaP. Cut-off values for

calibration approaches are presented in Table 3.3.2.
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3.3.4 Results of the Fixed Data Scenarios Simulation Study

A Comparison of Calibration Approach

Taking this fixed data scenario simulation setting in which six fixed response rate data

scenarios were considered, comparisons are first drawn between the two approaches for

calibrating ∆k0 and ∆k′ : the RCaP and calibrating under the global null. For each of

the six fixed scenarios presented in Table 3.3.1 and four approaches for the addition of a

basket, the relative difference between the observed type I error rate/power and targeted

level (10% and 80% respectively) are measured under each calibration approach. These

relative differences are presented in Figure 3.3.1.

First consider the global null scenario, scenario 1, presented in Figure 3.3.1. The

calibration under the global null approach achieves exactly the nominal 10% type I

error rate, whilst the RCaP reduces the error rate up to 42.5% of the nominal level in

existing baskets and 47.4% in the new basket. Under scenario 2, RCaP results in an

under-powered study, with up to a 7.8% reduction of the nominal 80% level, however,

this came with a 20.1% decrease in type I error rate from the targeted value in existing

baskets and 29.3% in the new. Whereas, calibrating under the global null inflates the

error rate by up to 30.1% and 36.8% in existing and new baskets respectively with a

fairly similar power to the RCaP, although slightly over the nominal level.

The most blatant benefit of the RCaP is observed under scenario 3 in which the

new basket is the only one with an ineffective response rate. For this basket, when

calibrating under the global null, error rates are almost tripled with values inflated by

up to 186.1% of the nominal 10% level, compared to just 31.7% under the RCaP. Under

both calibrations, the study is slightly over-powered.

In cases where the new basket is effective (scenarios 4-6), both calibration approaches

tend to lead to under-powered estimates in the new basket with the exception of scenario

4, where the power in the new baskets is increased up to 8% of the 80% targeted value

across the IND, PL1(a) and PL2(a) approaches when calibrating under the global null.
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Calibration RCaP Global Null Method IND UNPL PL1(a) PL2(a)
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Figure 3.3.1: The relative difference in type I error rate and power compared to the
targeted values of 10% and 80% respectively. This is given for all four approaches for
adding a basket under the two different calibration schemes, the calibration under the
global null and the RCaP. Results are split into 3 categories: mean error in which
the percentage of data sets within which the null was rejected is averaged across all
ineffective existing baskets; mean power as above but for all effective existing baskets
and new basket error/power in which results are the percentage of data sets within
which the null was rejected just in the new basket.

For this scenario, RCaP leads to under-powered estimates in the new basket for all four

approaches. Power in existing baskets exceeds the nominal 80% value in scenario 4, with

slightly higher power observed when calibrating under the global null. Under scenarios
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5 and 6, RCaP reduces the type I error rate compared to the nominal level, with a

relative difference of up to 36% and 14% reduction in scenarios 5 and 6 respectively.

In scenario 6, power in existing baskets is up to a 5.4% reduction of the nominal level

using the RCaP compared to an increase of 3.2% under a calibration under the global

null approach.

Across the scenarios presented in Figure 3.3.1, estimates in existing baskets are

under-powered in two cases (scenarios 2 and 6) with a maximum reduction in power of

7.8% using RCaP. Power in the new basket tends to lie below the nominal 80% level

under both calibration approaches. This is due to the smaller sample size of just 14

patients. The new baskets’ power is reduced by up to 33.2% under the RCaP compared

to 23.2% under the calibration under the global null. However, this comes alongside

far superior control of the type I error rate across all baskets on the trial using RCaP.

For existing baskets, when calibrating under the global null, the type I error rate has

up to a 53.8% increase over the nominal 10% level. Whereas, RCaP controls the type I

error rate at or below the nominal level across all considered scenarios for the existing

baskets, whilst demonstrating a substantially lower type I error rate in the new basket

across all scenarios.

Considering the trade-off observed between error rate control and power improve-

ment under the two calibration approaches, further results presented in this chapter

utilises the RCaP to calibrate ∆k0 and ∆k′ in order to provide type I error control.

Results for simulation studies in which efficacy criteria are calibrated under the global

null are provided in Section B.4 of Supporting Information B.

A Comparison of Approaches for Adding a Basket

Now consider the four approaches for the addition of a basket to an ongoing study

under the fixed data scenario setting. The results for power and type I error rate for

each approach under the six fixed data scenarios are presented in Figure 3.3.2, which
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show the percentage of simulated data sets in which the null hypothesis was rejected.

Dashed lines represent both the nominal 10% type I error rate and 80% power. Results

for a further ten data scenarios are presented in Section B.1 of Supporting Information

B, covering different combinations of effective and ineffective baskets alongside cases in

which some baskets have marginally effective response rates.
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Figure 3.3.2: Fixed scenario simulation study results: The percentage of data sets
within which the null hypothesis was rejected, where ∆k0 and ∆k′ were calibrated with
RCaP to achieve a 10% type I error rate on average. This is plotted for each of the
four approaches for adding a basket in all five baskets.

As ∆k0 and ∆k′ are calibrated using RCaP to achieve an average 10% type I error

rate, in some scenarios - including the global null case - the type I error rate lies
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below the nominal level. However, under IND, the new basket is always analysed

independently and as such, the error rate will remain at the nominal 10% level across all

scenarios. Under the global null, for existing baskets, the UNPL and PL1(a) approach

in which information is borrowed between all K = 5 baskets, results in slightly lower

type I error rates in existing baskets compared to other approaches at approximately

5.8%. UNPL, PL1(a) and PL2(a) all have similar error rates in the new basket at

around 5.3%.

When analysing existing baskets, IND and PL2(a) are equivalent as they both bor-

row via the EXNEX model between just the four existing baskets. This is observed

in scenario 2 with both approaches giving the highest power at 75.7%, which does lie

below the targeted 80% value, but is higher than UNPL and PL1(a) with power of

73.7% and 74.1% respectively. Both UNPL and PL1(a) borrow from the new basket

when analysing the existing and hence, as the new basket has a null response rate, the

posterior probabilities are pulled down towards the common mean, resulting in lower

power. Error rates for all baskets are consistent across approaches with the exception

of the IND approach where the new basket type I error is approximately 3% higher.

Scenario 3 shows consistent power in all non-null existing baskets across all four

approaches, all above the targeted 80% level. The UNPL approach demonstrates

marginally lower power than other methods. The average power under UNPL is 85.7%

compared to 86.2% under PL1(a). Both approaches analyse baskets in the same way,

borrowing between all K baskets via the EXNEX model, the only difference being the

calibration approach. ∆k0 is more conservative under UNPL compared to PL1(a), lead-

ing to fewer rejections of the null hypothesis and lower power/error rates. PL1(a) and

PL2(a) have marginally higher error rates in the new basket at 13.1% under scenario

3. As ∆k′ is higher under UNPL compared to PL1(a), error is lower at 12.8%.

Under scenario 4, substantial improvements in power is observed in the new basket

when information borrowing is utilised. In this scenario, PL1(a) gives the greatest



CHAPTER 3. ADDING BASKETS TO AN ONGOING TRIAL 88

power for all baskets, with 72.3% power in the new basket. The reduced sample size in

basket 5 results in substantially lower power at 65% under an IND approach. A lack of

power is also evident for the new basket in scenario 5, however, due the heterogeneity

across new and existing baskets, an IND approach gives greatest power at 65%. This is

a substantial improvement over the PL1(a) and PL2(a) approaches with power of just

53.8%. Similar findings are present in scenario 6 in terms of the new basket, however

both an UNPL and PL1(a) approach give higher power in the existing baskets at 77.7%

compared to 75.7% under an IND and PL2(a) analysis.

Overall, the largest difference in power across approaches in all scenarios is just 2%.

In the presented scenarios, for existing baskets, the type I error rate is always controlled

at or below the nominal level across all approaches. Differences in the type I error rate

are observed in the new basket, where the IND approach always controls the type I

error rate to the nominal level, whilst error inflation is present under the other three

approaches in scenario 3 (type I error rate of around 13%).

3.3.5 Description of the Random Data Scenarios Simulation

Study

Based on the results presented in the previous study, no one approach is clearly the

most appropriate for use, with little differences observed. Therefore a further simula-

tion study was conducted to distinguish where discrepancies between approaches arise.

Within this study, rather than fixing the true response rate for the new basket prior to

the trial, it is randomly generated within each trial run of the simulation.

Following the same set-up as the fixed data scenario case, four settings were con-

sidered. In each setting the response rates for existing baskets are fixed while the

response rate for the new basket is randomly selected with uniform probability across

an interval. Three sub-cases are considered in each setting, varying the interval from

which p5 is sampled: sub-case (a) in which the new basket is ineffective to treatment
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so p5 ∈ [0.1, 0.2], sub-case (b) in which the new basket has an effective response rate so

p5 ∈ [0.4, 0.5] and finally sub-case (c) in which the new basket is marginally effective to

treatment so p5 ∈ [0.2, 0.3]. The four settings are:

1. Fix the response rate in all the existing baskets as ineffective, i.e. p1,2,3,4 = 0.2,

with p5 varied across one of the 3 intervals (a), (b) or (c).

2. Fix the response rate in all the existing baskets as effective, i.e. p1,2,3,4 = 0.4, with

p5 varied across one of the 3 intervals (a), (b) or (c).

3. Fix the response rate in two of the existing baskets as effective, i.e. p1,2 = 0.4 and

two ineffective, i.e. p3,4 = 0.2, with p5 varied across one of the three intervals (a),

(b) or (c).

4. Fix the response rate in one existing baskets as effective i.e. p1 = 0.4, two as

marginally effective i.e. p2,3 = 0.3 and one as ineffective i.e. p4 = 0.2, with p5

varied across one of the 3 intervals (a), (b) or (c).

Calibrated ∆k0 and ∆k′ values in Table 3.3.2 are utilised, where calibration is con-

ducted using the RCaP. A total of 12 simulation settings were considered (the four

settings outlined above under each of the three sub-cases for sampling p5) with 10,000

randomly generated data scenarios within each. In each sub-case of the four settings,

pair-wise discrepancies between approaches were identified in terms of differing deci-

sions regarding the rejection of the null hypothesis in a basket (and hence differing

efficacy conclusions).

3.3.6 Results of the Random Data Scenarios Simulation Study

Results of the 72 pair-wise comparisons across the 12 simulation settings are plotted

as several heat maps and presented in Figure 3.3.3. The metric presented is the dif-

ference in proportion of correct conclusions made where discrepancies between the two
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approaches arose. As an example of a discrepancy, consider setting 1 sub-case (a)

in which existing baskets are null, p1,2,3,4 = 0.2 and the new basket is also null with

response rate randomly generated from the interval p5 ∈ [0.1, 0.2]. A pair-wise dis-

crepancy arises when two approaches give a different conclusion regarding whether or

not a basket is effective to treatment, for instance when the IND approach states the

treatment is effective in basket five but UNPL states it is ineffective. In this case as the

treatment is in-fact ineffective, UNPL led to the correct conclusion thus outperforming

IND in this simulation run. Discrepancies are detected across every basket in each of

the 10,000 simulation settings and approach which gave the correct inference recorded.

Proportions are then taken of correct conclusions in these discrepancies for both ap-

proaches under comparison. Each sub-plot within Figure 3.3.3 represents a comparison

between two approaches for each of the 12 simulation settings. A negative propor-

tion implies the approach corresponding to the column outperformed the competitor

approach in the corresponding row in terms of correct conclusions drawn where dis-

crepancies occur. Within each heat map, the colour of the cell represents the superior

approach with brighter colours depicting a greater degree of difference in proportion

between the two approaches under comparison.

Consider the pair-wise comparison between IND and UNPL. The IND approach

outperforms UNPL by making more correct conclusions in cases of discrepancies in 8

of the 12 simulations. In setting 1 where the existing baskets are null, the difference

in approaches is substantial. For example, when the new basket is effective, IND is

preferred giving the correct conclusion in 80.9-97% of cases, but when ineffective, UNPL

gives correct conclusions in 95.4% of cases where discrepancies lie. Other cases where

UNPL is preferred over IND is when there is again homogeneity between existing and

new baskets, i.e. in setting 2 where both new and existing baskets are effective. When

there is heterogeneity between all baskets, IND in which the new basket is analysed

independently tends to outperform the approach that utilises an unplanned addition of
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Figure 3.3.3: Pair-wise comparison between approaches in each of the 12 simulation
settings within which the true response rate in the new basket is varied. The heat map
presents the difference in proportion of times the approach corresponding to rows out-
performed the approach corresponding to the column (with negative values indicating
the approach in the column gave more correct conclusions over the approach in the row
where discrepancies between the two approaches arise). The colour in the heat map
represents which approach gave superior correct conclusion, with shade representing
the amount of difference between approaches. Blue represents IND giving more correct
conclusions where discrepancies lie, Purple for UNPL, Red for PL1(a) and Green for
PL2(b).

a basket.

The analysis approach in UNPL is identical to that in PL1(a), the only difference

being the calibrated ∆k0 and ∆k′ values. As such, a similar pattern in results to
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the IND/UNPL pair-wise comparison are obtained in the comparison between IND

and PL1(a). Under UNPL, these cut-off values are more conservative, leading to fewer

rejections of the null compared to PL1(a) regardless of whether a basket is truly effective

or not. In all cases except setting 1, PL1(a) outperforms UNPL in terms of correct

conclusions made. Under setting 1, when the existing baskets are all null, the ideal is

for the hypothesis not to be rejected and thus the more conservative ∆k0 value leads to

more correct conclusions being made. Breaking down these results further and looking

specifically at the new basket only, UNPL leads to correct conclusions in only 3.6-5.4%

of discrepancies under setting 1 when the new basket is effective. When ineffective, in all

simulation runs, UNPL led to the correct conclusion when discrepancies were identified

between the two approaches. So the superior performance in the existing baskets (81.3-

85% of correct conclusions) for UNPL in setting 1 overrides the poor performance in

the new basket when it is effective. However, in cases where at least one existing basket

is effective, PL1(a) gives better correct conclusions over UNPL. This will come from

the less conservative cut-off values, leading to more correct rejections and hence higher

power.

Under the IND and PL2(a) approaches, analysis for existing baskets is equal and

leads to the same conclusions, so the only discrepancies between rejections of the null

will occur in the new basket. In settings 2-4 when at least one existing basket is effective,

approaches are fairly equal in terms of difference in correct conclusions, with IND

performing best when there is heterogeneity between all baskets, with the new basket

effective (61.3-65.6% simulation discrepancies where IND gave the correct conclusion

over PL2(a)). The Pl2(a) approach has superior performance compared to IND when

all baskets are homogeneous.

Similarly, under PL1(a) and PL2(a) analysis for the new basket is equal and thus

differences only lie in existing baskets. In cases of complete homogeneity between

existing baskets with homogeneity also between the new basket, PL1(a) is the clear
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winner as power can be gained through borrowing between all baskets. However, in

cases where heterogeneity is observed such as when the new basket is effective and

existing ineffective and vice-versa, PL2(a) is superior as it does not draw on information

from these heterogeneous baskets when analysing existing baskets. The comparisons

between UNPL and PL2(a) result in the same conclusions.

In summary, the IND approach outperforms its competitor approach in 22 out of 36

comparisons, but in particular when heterogeneity is observed. The PL1(a) outperforms

IND in the same cases in which PL1(a) also outperforms PL2(a) (i.e. homogeneity

between new and existing baskets). In cases where PL2(a) outperforms PL1(a), IND

outperformed or performed similarly to PL2(a).

3.4 Discussion

In this chapter, we present four approaches for calibration and analysis of trials when

a new basket is added part-way through. Approaches utilise the EXNEX Bayesian

information borrowing model which was selected for its flexible borrowing between

subsets of baskets.

Through the thorough simulation studies presented, no one of the outlined ap-

proaches for adding outperforms its competitors across all cases. An approach which

analyses new baskets as independent whilst retaining information borrowing between

existing baskets understandably has better error control and power in cases of hetero-

geneity between new and existing baskets. However, significant power can be gained

via information borrowing between all baskets when the new basket is homogeneous to

existing ones. This is supported by results from the fixed and random data scenarios.

The fixed data scenario simulation results demonstrated that, when the treatment is

effective for the population in the new basket, performance of all approaches vary based

on the number of effective existing baskets. In our simulation, when at least half of
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the existing baskets were effective, higher power was observed in the new basket for

the three approaches that implemented information borrowing. However, when very

few existing baskets are effective, borrowing information reduces power, thus an inde-

pendent approach is more appropriate. A key finding was also drawn from the random

data scenario simulation study, in that a planned addition of a new basket outperforms

an unplanned addition in almost all settings. The exception being the case where all

existing baskets are null.

Throughout the simulation studies in this chapter, an assumption is made that the

timing of addition of a new basket is known, and thus we assume a fixed sample size

in each basket. In practice the calibration of efficacy criteria mostly occurs prior to

the trial commencing, and hence before observed sample sizes are available. Due to

uncertainty in the observed sample sizes the assumption of fixed sample size has been

used to conduct calibration. However, simulation studies in Section B.6 of Supporting

Information B explored the case where the timing of addition (and the sample size in the

new basket) are unknown. In these simulations, the impact of sample size uncertainty

is explored through the monitoring of type I error rate and power as the number of

patients in the new basket ranged from 1 up to the sample size of the existing baskets.

It is shown that results are fairly robust to the timing of addition, with increased power

in new baskets when sample sizes are larger but consistent error and power in existing

baskets. This implies the size of the new basket has no detrimental effect on baskets

that opened at the commencement of the trial, therefore it is deduced that the main

driver of error inflation in the existing baskets, is heterogeneity between the new and

existing baskets rather than the sample size. As the sample size increases, the difference

in error rates/power between analysing the new basket as independent and conducting

information borrowing will decrease, and thus in such a case it may be beneficial to

always analyse as independent to avoid issues when heterogeneity arises. In addition,

should the impact of much greater or much smaller sample sizes than planned be of
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concern, an alternative approach could be to calibrate based on the ‘worst case scenario’

for the sample sizes (i.e. the sample size which is expected to observe the greatest type

I error rate for instance).

Although all simulation studies conducted consisted of a single basket being added

alongside four existing baskets, a further simulation study with two existing and two

new baskets is presented in Section B.7 of Supporting Information B. Results imply the

same conclusions as drawn in the simulation studies presented in this chapter, but with

an unplanned addition performing significantly worse than other approaches due to the

lack of certainty in the calibration process with only two relatively small baskets being

used. It is believed that as the ratio of existing to new baskets increases, the power

gained through information borrowing in the new basket further improves due to the

gain in certainty around point estimates.

We have also promoted a transition away from the traditional calibration approach

in which the type I error rate is controlled under a global null scenario, towards the

novel calibration technique, RCaP, presented in this chapter in which the type I error

rate is controlled on average across several plausible data scenarios. The concept of

calibration across several scenarios is not a wholly new concept and has been imple-

mented extensively in the dose-finding setting for the Continual Reassessment Method

(CRM, Lee and Cheung, 2009, 2011). Best et al. (2024), in a similar concept, argued

for the use of average type I error rate in the pivotal study setting. Best et al. utilise

average type I error rate in order to assess Bayesian designs in which information is

borrowed from control or historical data, primarily through informative prior distribu-

tions. However, to the best of our knowledge the concept not been implemented in the

basket trial setting.

The proposed RCaP provides flexibility by allowing the clinician to specify potential

outcomes of the trial in which one would like to control the error rate across, whilst

specifying weights to these outcomes to highlight how likely they are to occur and
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their importance in the calibration. Throughout the simulation studies presented, equal

weights across all scenarios were used. A further exploration of these weights is provided

in Section B.3 of Supporting Information B which demonstrates the important role

weights play in the RCaP. To summarise the key findings, placing more weight on

scenarios with fewer ineffective baskets will produce more conservative cut-off values

and with that an improvement in error control but a loss in power, whilst putting more

weight on scenarios with mostly ineffective baskets gives less conservative cut-off values

and thus higher power.

The advantages of using RCaP over the calibration under the global null approach

is not uniform across the scenarios and method of addition implemented. As expected,

RCaP is more advantageous over calibrating under just the global null when the scenario

differs more substantially from the global null scenario. However, the advantage of

superior error control compared to the calibration under the global null approach is

consistent across all scenarios, with impact on power varied based on the number of

effective baskets, showing a small loss in power relative to the targeted value in a handful

of cases.

Other adaptive design features such as interim analyses with futility/efficacy stop-

ping are desirable in clinical trials and have been considered across the literature around

information borrowing in basket trials including in the work by Jin et al. (2020), Berry

et al. (2013), Chu and Yuan (2018) and Psioda et al. (2021). No such design features

were included in this chapter. However, the methodology described here could be ex-

tended to incorporate such features and future work into this aspect is being conducted.

In addition, only a single treatment arm was considered in this work but the methodol-

ogy can be easily extended to the multi-arm setting in which the treatment is compared

to a control group. Similarly, although only a Binomial model is considered within this

chapter for modelling response data, more complex models such as an overdispersion

model be considered. The goal of implementing such a model would be to control for
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heterogeneity within baskets. The impact of using an alternative model hasn’t been

considered, however, it is believed that the comparison between approaches of addition

of a new baskets and comparison between calibration approaches will remain similar,

as information borrowing can still be implemented between baskets.

3.5 Appendix

3.5.1 Summary of Approaches for Adding a Basket

Table 3.5.1: Summary of the IND and UNPL approaches for analysis and calibration
when adding a basket.

Approach Description Calibration Analysis

IND Treat the new and existing

baskets separately and

independent of one another.

Analysing the new basket as

independent of existing

baskets eliminates the

potential negative effects of

reduced information in the

new baskets on existing

baskets.

Calibrate ∆k0 based on an

EXNEX model applied to the

K0 existing baskets. For new

baskets, calibrate ∆k′ based

on either: (a) independent

analysis conducted for each of

the K′ new baskets or (b)

borrow information between

all K′ new baskets through a

separate EXNEX model.

Analyse in the same way as

calibration, with an EXNEX

fitted to existing baskets and

new baskets analysed with an

independent model.

UNPL Naive approach in which an

unplanned addition of new

baskets is made and not

considered in the calibration

procedure. This occurs when

it is unknown a basket will be

added but it is then believed

that borrowing information

between all baskets, new and

old, can improve inference.

Calibrate ∆k0 based on an

EXNEX model applied to the

K0 existing baskets. Fix

∆k′ = ∆k0 once new baskets

are added.

Analyse by borrowing

information between all K

baskets through an EXNEX

model.
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Table 3.5.2: Summary of the PL1 and PL2 approaches for analysis and calibration
when adding a basket.

Approach Description Calibration Analysis

PL1 It is known that a basket will

be added during the study

and information will be

borrowed between all baskets

new and existing. This may

occur when it is apparent

that a basket of patients will

benefit from the study,

however is not ready in time

for the commencement of the

trial and thus is planned to

be added at a later time.

Calibrate ∆k0 and ∆k′ based

on an EXNEX model applied

to all K baskets. When (a)

timing of addition is known:

the sample sizes nk for all K

baskets are known and fixed

in the EXNEX model. When

(b) timing of addition is

unknown: further simulation

studies are required to

explore the effect of nk′ on

operating characteristics, one

could calibrate based on the

least favourable

configuration.

Analyse in the same way as

calibration, with an EXNEX

model fitted to all K baskets.

PL2 It is known that a basket will

be added during the study

but when conducting

inference on existing baskets

only information from other

existing baskets is utilised,

whereas for inference on new

baskets, information is

borrowed between all baskets

in the trial. This will

eliminate the effect of reduced

sample sizes in new baskets

on estimation of response

rates in existing baskets

whilst improving power and

precision in the new basket.

Calibrate ∆k0 based on an

EXNEX model applied to

just the K0 existing baskets.

Calibrate ∆k′ based on an

EXNEX model applied to all

K baskets. When (a) the

timing of addition is known,

sample sizes, nk, for all

baskets are fixed in the

calibration procedure. When

(b) the timing of addition is

unknown, further simulation

studies would be required to

explore the effect of nk′ on

operating characteristics and

adjust calibration

accordingly.

Analyse in the same way as

calibration with an EXNEX

model fitted to just the K0

existing baskets when

analysing existing baskets

and with an EXNEX model

fitted to all K baskets when

analysing the new basket(s).
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3.5.2 Model Specification

The trial consists of a total of K baskets, divided into K0 existing baskets and K′ new

baskets. Parameter choices are those implemented throughout the simulation studies

presented in the main text.

IND Calibrate and analyse based on the following model:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log
( pk
1− pk

)
,

θk′ ∼ N(−1.39, 102), k′ = K0 + 1, . . . , K

θk0 = δk0M1k0 + (1− δk0)M2k0 , k0 = 1, . . . , K0

δk0 ∼ Bernoulli(πk0),

M1k0 ∼ N(µ, σ2),

µ ∼ N(−1.39, 102),

σ ∼ Half-Normal(0, 1),

M2k0 ∼ N(−0.85, 4.76),

with πk0 = 0.5 for all k0 = 1, . . . , K0.

UNPL Calibrate based on the following model:

Yk0 ∼ Binomial(nk0 , pk0), k0 = 1, . . . , K0

θk0 = log
( pk0
1− pk0

)
,

θk0 = δk0M1k0 + (1− δk0)M2k0 ,

δk0 ∼ Bernoulli(πk0),

M1k0 ∼ N(µ, σ2),

µ ∼ N(−1.39, 102),

σ ∼ Half-Normal(0, 1),

M2k0 ∼ N(−0.85, 4.76),

with πk0 = 0.5 for all k0 = 1, . . . , K0. Analyse based on the following model:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log
( pk
1− pk

)
,

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

M1k ∼ N(µ, σ2),

µ ∼ N(−1.39, 102),

σ ∼ Half-Normal(0, 1),

M2k ∼ N(−0.85, 4.76),

with πk = 0.5 for all k = 1, . . . , K.

PL1 Calibrate and analyse based on the following model:
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Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log
( pk
1− pk

)
,

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

M1k ∼ N(µ, σ2),

µ ∼ N(−1.39, 102),

σ ∼ Half-Normal(0, 1),

M2k ∼ N(−0.85, 4.76),

with πk = 0.5 for all k = 1, . . . , K.

PL2 Calibrate and analyse existing baskets based on the following model:

Yk0 ∼ Binomial(nk0 , pk0), k0 = 1, . . . , K0

θk0 = log
( pk0
1− pk0

)
,

θk0 = δk0M1k0 + (1− δk0)M2k0 ,

δk0 ∼ Bernoulli(πk0),

M1k0 ∼ N(µ, σ2),

µ ∼ N(−1.39, 102),

σ ∼ Half-Normal(0, 1),

M2k0 ∼ N(−0.85, 4.76),

with πk0 = 0.5 for all k0 = 1, . . . , K0. Calibrate and analyse new baskets based on the

following model:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

θk = log
( pk
1− pk

)
,

θk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

M1k ∼ N(µ, σ2),

µ ∼ N(−1.39, 102),

σ ∼ Half-Normal(0, 1),

M2k ∼ N(−0.85, 4.76),

with πk = 0.5 for all k = 1, . . . , K.
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3.5.3 RCaP: Robust Calibration Procedure for Type I Error

Control

Algorithm 2 describes the RCaP specifically for the control of the type I error rate.

Algorithm 2 RCaP - Calibrate ∆k across several simulation scenarios for type I error
rate control

Data: Total number of simulation scenarios,M , scenarios p1, . . . ,pM , basket sample
sizes nm, number of simulation runs for each scenario, R, null response rate, q0 and
integer weights for the scenarios, ω1, . . . , ωM ;
Initialisation: Q1, . . . ,QK empty vectors for storing Q
for m = 1 to M do

for r = 1 to R do
Generate data X ∼ Binomial(pm,nm)
Fit information borrowing model to obtain posterior densities
for k = 1 to K do

Compute the posterior probability of a type I error P(pmk > q0|X), in
basket k

if T (pmk ≤ q0) then
for j = 1 to ωm do

Qk = Qk ∪ P(pmk > q0|X)
end for

end if
end for

end for
end for
∆k = 100(1− α)% quantile of Qk for each basket k.
return Cut-off values ∆k for each basket k;



Chapter 4

Incorporating Historic Information

to Further Improve Power When

Conducting Bayesian Information

Borrowing in Basket Trials

4.1 Introduction

Basket trials have been developed as a form of precision medicine in which an experi-

mental treatment is targeted to a specific genetic make-up rather than a disease type

as a whole. This acknowledges that not all patients with the same disease will benefit

from a treatment in the same way. This may be due to individual variability in genetics

alongside other environmental causes (Ginsburg and Phillips, 2018). Within a basket

trial a single treatment is tested on multiple disease types under one master protocol.

Each disease type forms a ‘basket’, with patients across all baskets harbouring the same

genetic mutation (Park et al., 2019). Typically such basket trials are implemented in

the early stage of the drug development process to assess the efficacy of a treatment on

102
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each of the individual baskets (Tao et al., 2018).

A major advantage of basket trials is the flexibility to test treatments on patients

with rare diseases that would not typically warrant their own investigation due to

financial and time constraints. However, the small basket sample size that results

may cause issues when making inference on treatment effects, particularly in terms of

statistical power and precision. Bayesian methodology has been utilised throughout the

literature to try and tackle the problem of small sample sizes in basket trials through

information borrowing.

Information borrowing utilises an exchangeability concept in that, as all patients

in the trial share a common genetic mutation, they will respond homogeneously to

the treatment. Prominent methods in the literature implement Bayesian hierarchical

models to conduct information borrowing. These methods include the Bayesian hierar-

chical model (BHM, Berry et al., 2013), calibrated Bayesian hierarchical model (CBHM,

Chu and Yuan, 2018), the exchangeability-nonexchangeability model (EXNEX, Neuen-

schwander et al., 2016) and the modified exchangeability-nonexchangeability model

(mEXNEXc, Daniells et al., 2023) to name a few. Empirical Bayesian approaches have

also been suggested such as a Bayesian model averaging approach (BMA, Psioda et al.,

2021), Fujikawa’s design (Fujikawa et al., 2020) and power prior approaches first pro-

posed by Ibrahim and Chen (2000). Such empirical methods have the advantage of

analytical posteriors and thus are computationally a lot less intensive.

An alternative approach to improve power and precision is to draw on information

from historical or external data sources. Often historical or external information is

available for some or all baskets in a trial, where in previous studies the experimental

treatment was tested in a similar patient population (Hobbs et al., 2011). An example

of such a scenario is the MyPathway study (Hainsworth et al., 2018) which investigated

the use Vemurafenib of in BRAFV600 mutation cancers, with the VE-BASKET study

(Hyman et al., 2015) also examining the same combination. The two trials had three
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baskets (i.e. disease groups) in common. In the wider clinical trial setting, often this

historic data is used to inform the control group in a ongoing trial to reduce the number

of patients required (Pocock, 1976) or to inform prior distributions (Psioda and Ibrahim,

2019).

Bayesian methods have been used to approach borrowing from historic sources,

which typically incorporate historic data into the prior distribution used in the ongoing

trial. Most methods down-weight historical data depending on heterogeneity to the

current data in the ongoing trial (Bennett et al., 2021). Bennett et al. (2021) and

Banbeta et al. (2019) outline a detailed comparison of several methods utilised for

the borrowing of historical control data, these include the power prior (PP, Ibrahim

and Chen, 2000), modified power prior (MPP, Duan et al., 2006), commensurate prior

(Hobbs et al., 2011), robust mixture prior (Schmidli et al., 2014) with the self-adapting

mixture prior (SAM Prior, Yang et al., 2023) also an option.

The methods listed above either borrow within a trial or from historic sources but,

to the best of our knowledge, none do both simultaneously. It is well known that infor-

mation borrowing from any source can increase the power and precision of treatment

effect estimates, thus incorporating both forms of borrowing at once is expected to

further benefit power due to the information gained. However, this may come with

an inflation in the type I error rate when the assumption of exchangeability between

baskets is broken. This occurs when there is heterogeneity between baskets’ observed

responses. Type I error inflation could also be a result of heterogeneity between cur-

rent and historic data sources (Kopp-Schneider et al., 2020). To add to this, one must

be wary of concerns of bias in historical sources which may arise due to differences in

patient populations over time and differing trial conditions (van Rosmalen et al., 2018).

We therefore consider it desirable to prioritise and put more weight on borrowing within

an ongoing trial than from historic baskets in order to minimise these potential biases.

In this chapter we propose several Bayesian approaches for borrowing between both
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current baskets and historic sources under one framework. Note that current baskets

refers to baskets that form the ongoing study and historic baskets refers to baskets

from historical/external data sources. The proposed approaches include: an EXNEX

model where a baskets’ probability of exchangeability is determined by the homogene-

ity between historic baskets; an EXNEX model with a power prior placed on the NEX

component; a multi-level mixture model consisting of two EXNEX models (one with

historic information and one without); an EXNEX model with pooled historic and cur-

rent data and a Fujikawa’s design which has been adapted to incorporate historic data.

Approaches are explored through a simulation study which focuses on binary response

data and monitors primarily both basket-wise power and the type I error rate. Simu-

lations are motivated by the MyPathway and VE-BASKET trials presented in Section

4.2. Results display the clear benefit of incorporating the historic information alongside

borrowing between current baskets in terms of power gain compared to analysing cur-

rent data independent of historic data. The results also show a trade-off of this power

gain with a slight inflation of error rates, with some approaches demonstrating more

inflation than others.

The chapter will be structured as follows: in Section 4.2 we describe a motivating

example. In Section 4.3 the novel approaches for historic information borrowing are

outlined. A simulation study is presented in Section 4.4.

4.2 Motivating Example

The MyPathway trial (Hainsworth et al., 2018) commenced in 2014 with completion

occurring in 2023. This trial consists of multiple non-randomised basket trials under

one master protocol. One branch of this trial looked at applying the drug Vemurafenib

in patients with solid tumors harbouring the BRAFV600 mutation. Patients with the

BRAFV600E-mutated cancers were enrolled across the following baskets: non-small-
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cell lung cancer (NSCLC), ovarian cancer, colorectal cancer, anaplastic thyroid cancer

and head/neck (larynx) cancer.

Cancer types were classified as either treatment resistant or non-resistant by a steer-

ing committee and a Simon’s two-stage design (Simon, 1989) for 10% type I error rate

and 80% power was used to determine planned sample sizes, with the null and target

responses set dependent on the classification of treatment resistance:

• Treatment resistant cancers (e.g. NSCLC): null response rate of 5% and target

response rate of 20%, resulting in a sample size of 21 patients per basket.

• Non-treatment resistant cancers (e.g. colorectal or ovarian cancer): null response

rate of 10% and target response rate of 25%, resulting in a sample size of 34

patients per basket.

The identical combination of Vemurafenib on patients with BRAFV600 mutation

cancers was also studied in the earlier VE-BASKET trial (Hyman et al., 2015) which

ran from 2012 to 2014. Both the MyPathway and VE-BASKET trials shared three

baskets is common: NSCLC, colorectal cancer and anaplastic thyroid cancer. In the

VE-BASKET trial a smaller sample size of 13 patients per basket was planned via a

Simon’s two-stage design based again on 10% type I error rate and 80% power but with

a null and target response rate of 15% and 45% respectively. Observed sample sizes

and total responses (both complete and partial) of both the MyPathway and relevant

baskets from the VE-BASKET trial are presented in Table 4.2.1.

It appears that both trials were conducted distinctly, with information from the VE-

BASKET trial not incorporated into the design or analysis of the MyPathway study.

One could argue that the information from the three baskets of common interest could

have been utilised in the MyPathway study to inform analysis in some meaningful way,

particularly as observed sample sizes were substantially larger. This provides motivation

for a trial design that can incorporate borrowing from both current and historic baskets.
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Table 4.2.1: Total responses observed (y) and observed sample sizes (n) for baskets in
the MyPathway trial and the total responses observed (y∗) and observed sample sizes
(n∗) for baskets in the earlier VE-BASKET trial.

Basket MyPathway VE-BAKSET
Current Historic

y n y∗ n∗

NSCLC 6 14 8 20
Colorectal Cancer 1 2 0 10
Anaplastic Thyroid Cancer 1 1 2 7
Ovarian Cancer 2 4 0 0
Head/Neck (Larynx) Cancer) 1 1 0 0

4.3 Methods

4.3.1 Setting

This chapter focuses on non-randomised basket trials with a single treatment arm and

binary endpoint, in which a patient either responds to the treatment or does not. Let

there be at least one historic basket trial of interest, investigating the same treatment

on the same genetic aberration with some baskets in common with the current trial.

Consider a basket trial consisting ofK baskets with historic information available for

K∗ ∈ 1, . . . , K of them. For current basket k, there are a total of Hk historic sources of

data, where in each past study patients of the same disease type as in basket k received

the experimental treatment under investigation. Without loss of generality, assume

the first 1, 2, . . . , K∗ current baskets have historic information and that current baskets

K∗+1, . . . , K do not. Responses in a current basket k are denoted by Yk which follows

a Binomial distribution: Yk ∼ Binomial(nk, pk) with sample size nk and the unknown

response rate, pk, which is the parameter of interest. Similarly, the historic responses

also each follow a Binomial distribution. Given that current basket k has historic data

from Hk previous studies, denote the basket from historic study j (j ∈ {1, . . . , Hk})

associated with current basket k as k∗
(j)
, the responses in basket k∗

(j)
are distributed

Y
k∗

(j) ∼ Binomial(n
k∗

(j) , p
k∗

(j) ) with sample size n
k∗

(j) and response rate p
k∗

(j) . Should
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only one historic study exist, the superscript (j) is removed and historic data is simply

denoted k∗ for basket k.

Denote the null response rate in the current trial as q0. The objective is to test the

family of hypotheses:

H0 : pk ≤ q0 vs. H1 : pk > q0 k = 1, . . . , K

which is done under a Bayesian framework. In this setting where historic data, Dh,

is available, having observed response data D for the current trial, the treatment is

deemed effective in basket k if P(pk > q0|D,Dh) > ∆k. The decision criteria ∆k is

typically determined through calibration in order to control some metric to a nominal

level, which is often the basket-wise type I error rate.

4.3.2 Exchangeability-Nonexchangeability (EXNEX) Model

An approach for information borrowing between baskets on a current trial is the

exchangeability-nonexchangeability (EXNEX, Neuenschwander et al., 2016) model. This

model provides flexible borrowing between a subset of baskets on the trial, thus not

requiring a full exchangeability assumption, allowing for some heterogeneity between

baskets. This model does not take into account any historic or external data and

considers current baskets only.

The EXNEX model consists of a mixture of two components:

1. Exchangeable (EX) component: Baskets are considered exchangeable within this

component and therefore, information borrowing is conducted between them using

a Bayesian hierarchical model (BHM, Berry et al., 2013). Basket k is assigned to

the EX component with prior probability πk.

2. Nonexchangeable (NEX) component: Baskets are analysed independently in this

component and are considered nonexchangeable with other baskets on the trial.
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As such, basket specific priors are placed on the response rate and no information

drawn from the other baskets. Baskets are assigned to the NEX component with

prior probability 1− πk.

The model is presented below, with the log-odds of the response rates modelled as a

mixture distribution consisting of the EX and NEX components.

Yk ∼ Binomial(nk, pk), k = 1, . . . , K (4.3.1)

pk = δkM1k + (1− δk)M2k, (4.3.2)

δk ∼ Bernoulli(πk), (4.3.3)

θ1k = logit(M1k) ∼ N(µ, σ2), (EX) (4.3.4)

µ ∼ N(mµ, νµ), (4.3.5)

σ ∼ g(·), (4.3.6)

θ2k = logit(M2k) ∼ N(mk, νk). (NEX) (4.3.7)

As the EX component is a BHM, response rate estimates within this component

are shrunk towards the common mean, µ, with the degree of shrinkage controlled by

σ2. As σ2 tends to 0, borrowing becomes akin to complete pooling of results, however,

as it tends to infinity, stratified analysis of each basket is conducted. Typically it is

suggested that a slightly informative prior is placed on µ, for instance by setting mµ

in (4.3.5) to logit(q0) with a large variance νµ. Several arguments have been made

around the choice of prior on σ, with a Half-Normal, Inverse-Gamma or Half-Cauchy

density among those suggested. Gelman (2006) argued that the original suggestion of

an Inverse-Gamma prior by Berry et al. (2013) had poor behaviour when σ2 is too close

to 0, thus suggested a Half-Cauchy prior instead. Values for the mk and νk parameters

in (4.3.7) were suggested by Neuenschwander et al. (2016) as:

mk = log

(
ρk

1− ρk

)
, νk =

1

ρk
+

1

1− ρk
, (4.3.8)
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where ρk is a plausible guess for pk.

The prior mixture weights, πk, are often set a priori at πk = 0.5 for all k baskets

as, ignoring historic information, little to no prior knowledge of the probability of

exchangeability is known. Alternatively a Dirichlet prior could be placed on πk but

as stated by Neuenschwander et al. (2016) this has little to no effect on operating

characteristics.

4.3.3 EXNEX with a Power Prior in the NEX Component

(EXppNEX)

Considering the EXNEX model, homogeneous baskets are assigned to the EX com-

ponent and information is borrowed between them using a hierarchical model. Power

improvement is expected in these baskets due to this borrowing, however, baskets as-

signed to the NEX component are analysed independently and thus still suffer from the

lack of statistical power and precision previously discussed due to their limited sam-

ple size. Therefore, it is likely that baskets in the NEX component will benefit more

substantially from borrowing from historical data than those already implementing in-

formation borrowing in the EX component.

To incorporate historical information into this NEX component when it is available,

as opposed to the independent uninformative normal prior being placed on the NEX

mixture component (as in (4.3.7)), a power prior can be placed directly on the response

rate itself.

A power prior (PP) was first introduced by Ibrahim and Chen (2000) in order to

incorporate historical information into a current trial. This is achieved by raising the

likelihood of the historical data for each of the j = 1, . . . , Hk studies to a fixed power,

αj. The power prior for basket k, having observed historic response data yk∗(j) for each
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of the j = 1, . . . , Hk historic studies, has the following form:

π(pk|yk∗ ,α) ∝
Hk∏
j=1

L(pk|yk∗(j) )
αj × π0(pk), (4.3.9)

where π0(pk) is an initial vague prior on pk, defined before looking at any historic data

and yk∗ is the set of historic responses for basket k, whilst α is the set of αj power

values associated with studies j = 1, . . . , Hk. The power values, αj, are typically bound

between 0 and 1 and reflects the expected homogeneity between historic and current

data. These αj parameters are trial specific, allowing some historical studies to carry

more weight than others. The selection of a αj value closer to 0 will move borrowing

towards an independent analysis, whilst values close to 1 induce full borrowing. Given

the form of (4.3.9), the power parameter, αj, controls the amount of borrowing as it

weights the contribution of the historic data in the posterior parameters (Baumann

et al., 2023).

To incorporate this PP into the EXNEX model, the NEX component in (4.3.7) is

replaced with a prior which is dependent on the presence of historical data: M2k =

IkP1k + (1 − Ik)P0k, where Ik = 1 if historic data y
k∗

(j) exists for basket k for some

j ≥ 1, and 0 should no historic information be available for basket k. Now P1k takes

the form of the PP, and as such, given an initial Beta(ak, bk) prior on pk for current

basket k:

P1k ∼ Beta

(
ak +

Hk∑
j=1

αjyk∗(j) , bk +

Hk∑
j=1

αj(nk∗
(j) − y

k∗
(j) )

)
. (4.3.10)

The use of the PP in this way incorporates the historic information, when available,

into the model but does not induce borrowing between other baskets on the current

trial within the PP itself. To allow for unavailable historic information, P0k is an
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uninformative normal distribution placed on the logit-transformed parameter:

θ2k = logit(P0k) ∼ N(mk, νk),

as in (4.3.7) of the EXNEXmodel. The full model specification is presented in Appendix

4.6.1.

4.3.4 A Multi-Level Mixture Model (MLMixture)

The proposed EXppNEX approach presented in Section 4.3.3 only incorporates his-

toric information in the nonexchangeability component of the EXNEX model and thus

baskets assigned to the exchangeable component do not benefit in any way from the

historic data. Should all baskets be homogeneous and exchangeable, this historic infor-

mation is completely disregarded, therefore any potential power gain is wasted. This

motivates the need to also incorporate historical information into the EX component

to some degree.

One could argue for including historic baskets as distinct baskets in the current

trial when conducting analysis, treating them identically to baskets in the ongoing

study. When applying the EXNEX model to such a scenario, the historic baskets

could be included in the EX’s Bayesian hierarchical model, thus inducing borrowing

directly from the historic information. However, this ignores the fact that historic

baskets correspond to specific baskets in the current trial, inducing the same level of

borrowing between a basket and its own historic information as it does between this

historic basket and other non-corresponding baskets on the trial. It also puts equal

importance of borrowing from historic and current baskets. On the other hand, due to

the exchangeability assumption it is assumed a priori that all baskets are exchangeable

due to the shared genetic component, thus a basket borrowing from its own historic

information should be just as acceptable as borrowing from another baskets’ historic
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data. The mixture weights, πk, within the EXNEX model should update to assign

any heterogeneous historic information into the NEX component in order to restrict

borrowing and limit error inflation. However, it is known that the EXNEX model is

not sensitive enough to the presence of heterogeneity and thus weights are set too high

in this case, inducing too much borrowing resulting in error inflation. This approach

would be seen as a more ‘extreme’ method for borrowing from historic information,

which in cases of homogeneity will give substantial improvements in power, but as

stated, will likely observe unacceptable error inflation in cases of heterogeneity.

We take this concept of an EXNEX model consisting of all current and historic

information and extend it to better handle cases of heterogeneity between current and

historic data sources. This is achieved by taking a mixture of such an EXNEX model

with a standard EXNEX model that disregards historic information. The mixture

weights between these two models will reflect the degree of conflict between the current

and historic data. In cases of homogeneity between a current basket and the historic

information, mixture weights will shift and put a higher weight on the EXNEX model

consisting of historic data, and in cases of heterogeneity, put more weight on the stan-

dard EXNEX model, which disregards the heterogeneous historic data. The mixture

weights can also be adjusted to put a heavier emphasis on borrowing between baskets

on the current trial.

First, to re-emphasise, all baskets current and historic are modelled in the MLMix-

ture model:

Yi ∼ Binomial(ni, pi) i = 1, . . . , K, 1∗
(1)

, . . . , 1∗
(H1) , . . . , K∗(1) , . . . , K∗(HK∗ )

,

however, interest lies only in the estimation of the response rates in the current baskets

1, . . . , K. Note the subscript has been altered to i as opposed to k in order to distinguish

that all current and historic baskets are modelled within this MLMixture model, as

historic baskets are treated akin to current baskets in the ongoing trial. We also define
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an indicator

ψi =


1 if basket i is a historic basket,

0 otherwise.

which specifies whether a basket is historic or current.

As stated, the MLMixture model comprises of two EXNEX models, the first of

which is denoted EXNEXall,i which models all current and historic baskets through

an EXNEX model, treating historic in the same way as current. The EX component,

EXall,i, therefore will consist of a subset of current and historic baskets within which

information is shared through a Bayesian hierarchical model. In EXNEXall,i, the NEX

component, NEXall,i is an informative prior based on the observed historic data. If

basket i is historic and therefore ψi = 1, this prior is just an uninformative Beta(ai, bi)

prior. As such, the EXNEXall,i component has the following form:

γall,i = ϵall,iEXall,i + (1− ϵall,i)NEXall,i,

ϵall,i ∼ Bernoulli(πall,i),

EXall,i ∼ N(µall, σ
2
all),

µall ∼ N(mµall
, νµall

),

σall ∼ g(·)

Nall,i ∼ Beta

(
ai + (1− ψi)

Hi∑
t=1

y
i∗

(t) , bi + (1− ψi)

Hi∑
t=1

(n
i∗

(t) − y
i∗

(t) )

)
,

NEXall,i = logit(Nall,i),

EXNEXall,i = exp(γall,i)/(1 + exp(γall,i)),

where the mixture weights, ϵall,i, are updated by the data to reflect the degree of homo-

geneity between the current and historic baskets. These mixture weights are sampled

from a Bernoulli distribution, with the posterior mean close to 1 when basket i is homo-

geneous to other current and historic baskets, thereby increasing the degree of borrowing
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by placing a greater weight on the exchangeability component. As πall,i move towards

0, more weight is placed on the nonexchangeability component, which borrows from

the historic information but does not borrow information from current baskets. In this

first EXNEX model, the historic information appears twice: once in the EX component

and once in the NEX component. However, as the weights are binary, each basket is

assigned to either the EX or NEX component, therefore the historic information is used

only once for each basket.

The second EXNEX model, denoted EXNEXcurr,i, does not induce any borrowing

from historic data. This model has a very similar form to the EXNEXall,i model,

however, historic baskets are forced into the nonexchangeability component, NEXcurr,i,

thereby not allowing these baskets into the hierarchy. The response rates in the historic

baskets in the second EXNEX model can be estimated through stratified analysis,

however, as interest lies only in estimating the response rate in the current baskets, this

is ignored as the current baskets do not depend on the historic information in either

the EX or the NEX component. The EX component consists of a subset of the current

baskets and the NEXcurr,i component is an uninformative Beta(ai, bi) prior, therefore,

also ignores historic data. The EXNEXcurr,i model has the following form:

γcurr,i = ϵcurr,iEXcurr,i + (1− ϵcurr,i)NEXcurr,i,

ϵcurr,i ∼ Bernoulli((1− ψi)πcurr,i),

EXcurr,i ∼ N(µcurr, σ
2
curr),

µcurr ∼ N(mµcurr , νµcurr),

σcurr ∼ f(·)

Ncurr,i ∼ Beta(ai, bi),

NEXcurr,i = logit(Ncurr,i),

EXNEXcurr,i = exp(γcurr,i)/(1 + exp(γcurr,i)),
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where mixture weights, ϵcurr,i are set to 0 for all historic baskets

i = K, 1∗
(1)

, . . . , 1∗
(H1) , . . . , K∗(1) , . . . , K∗(HK∗ )

.

For current baskets 1, . . . , K, these mixture weights now only reflect the level of homo-

geneity between itself and all other current baskets.

To fit the MLMixture model, both EXNEXall,i and EXNEXcurr,i are fit distinctly.

The posterior for basket k is then a mixture of the posteriors obtained under both

models:

pk = λkEXNEXall,k + (1− λk)EXNEXcurr,k,

λk ∼ Bernoulli(πλ,k),

where λk reflects the degree of homogeneity between a current basket k and its own

historic baskets’ k∗
(j)
, as well as, the homogeneity to other baskets’ historic data. Values

of πλ,k close to 1 can induce a higher level of borrowing from historic baskets, whilst

values close to 0 analyse current baskets as independent from any historic data. This

λk value will not measure the degree of homogeneity between current baskets as there

is potential to borrow between these baskets in both sides of the mixture.

This model form provides flexibility, allowing baskets with historic sources to bor-

row between both current baskets and all historic data, whilst letting baskets without

historic information to also gain from the historic information of other exchangeable

baskets. Similarly, should data be heterogeneous, the model has the option of analysing

as completely independent. A downside of this approach is its computational intensity

as the extra layers of mixture and increased number of variables increases the model

complexity. The models were fit using the ‘rjags’ package v 4.12, (Plummer, 2023)

within RStudio v 1.1.453 (R Core Team, 2020) and required each basket to be mod-

elled separately, thus computation time will further grow as both K and K∗ increase.
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A further discussion on computation time and a comparison between approaches is

provided in the Section C.3 of Supporting Information C.

4.4 Simulation Study

Two approaches for incorporating historic information have been proposed and outlined

in Section 4.3, in this section we aim to explore the operating characteristics of each

model to compare performance. Performance of approaches are assessed using extensive

simulation studies motivated by the MyPathway and VE-BASKET trials as described

in Section 4.2. As such, in the simulation study there are a total of K = 5 current

baskets with historical information for the first K∗ = 3, also assume that Hk = 1 for

k = 1, 2, 3 so that when historic information is available, there is only a single source of

historic data, thus any superscripts (j) may be dropped for notation sake. Sample sizes

are fixed and equal across the current baskets k = 1, . . . , K at nk = 34, with a null and

target response rate of q0 = 0.1 and q1 = 0.25 respectively. Sample sizes for each of the

historic baskets are nk∗ = 13. As in the MyPathway study, the target/nominal type I

error rate and power are 10% and 80% respectively.

Within the simulation study, responses are randomly sampled based on a true re-

sponse rate, whilst historic data is fixed. This is done to mimic a trial setting where

simulation studies are conducted prior the current trial, at which time the historic infor-

mation has already been observed. A total of 8 true response rate data scenarios were

considered for the current data and are presented in Table 4.4.1. Scenario 1 represents

the global null in which all baskets are ineffective against the treatment, whereas, sce-

nario 6 is the global alternative under which all are effective. Scenarios 2-5 cover partial

nulls in which an increasing number of baskets are effective to treatment. Scenarios

7 and 8 both consider cases where one of the baskets without historic information is

effective and varied the effectiveness in baskets with historic information.
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Table 4.4.1: True response rate data scenarios considered in the simulation study for
comparison of novel approaches to historic information borrowing.

Scenario p1 p2 p3 p4 p5
1 0.10 0.10 0.10 0.10 0.10
2 0.25 0.10 0.10 0.10 0.10
3 0.25 0.25 0.10 0.10 0.10
4 0.25 0.25 0.25 0.10 0.10
5 0.25 0.25 0.25 0.25 0.10
6 0.25 0.25 0.25 0.25 0.25
7 0.10 0.10 0.10 0.25 0.10
8 0.25 0.10 0.10 0.25 0.10

Each of these 8 data scenarios are split into four sub-cases consisting of four different

historic data settings, resulting in a total of 32 simulation scenarios. Each setting differs

the number of effective historic baskets from 0 up to all three effective and are presented

in Table 4.4.2

Table 4.4.2: Historic data settings considered in the simulation study for comparison
of novel approaches to historic information borrowing.

Sub-case y1∗ y2∗ y3∗

(a) 1 1 1
(b) 3 1 1
(c) 3 3 1
(d) 3 3 3

Efficacy is determined using posterior distributions, so having observed current data

D and historic data Dh, basket k is deemed sensitive to the treatment if P(pk ≥

0.1|D,Dh) ≥ ∆k. Traditionally this efficacy cut-off ∆k would be calibrated under

the global null scenario in which all baskets have a true null response rate in order to

control the basket-wise type I error. However, this simulation study implements the

Robust Calibration Procedure (RCaP) as outlined in Chapter 3, in order to achieve an

average basket-wise type I error rate of 10% across a number of scenarios as opposed

to under just the null. RCaP is taken across all 8 scenarios presented in Table 4.4.1 to

produce cut-off values ∆k. Note that ∆k values are calibrated separately for each of
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the four sub-scenarios, i.e. for each of the four observed historical data settings and for

each of the six approaches. The calibrated ∆k values are presented in Table 4.6.1 in

Appendix 4.6.2, and a description of the RCaP procedure implemented in this study is

provided in Section C.1 of Supporting Information C.

For all 32 scenarios considered, the following operating characteristics were com-

puted:

• % Reject: the percentage of simulated data sets in which the null hypothesis was

rejected. If the true response rate is null, this is the basket-wise type I error rate,

else it is the power.

• Family-wise error rate (FWER): the percentage of simulated data sets in which

at least one truly null basket was deemed sensitive to treatment.

• % All correct: the percentage of simulated data sets in which the correct efficacy

conclusion was made across all K baskets.

• Mean of the response rate point estimate across all simulated data sets. The

standard deviation of these point estimates across data sets is also provided.

Results in the main text focus on the type I error and power, i.e the % Reject values,

however, results of the other metrics listed above are provided in Supporting Informa-

tion C.

A total of 5,000 simulations were run for each of the 32 scenarios using the ‘rjags’

package v 4.12, (Plummer, 2023) within RStudio v 1.1.453 (R Core Team, 2020). For

each simulation run, for methods that utilise an MCMC approach, the MCMC was

conducted with 100,000 iterations.

4.4.1 Adapted Fujikawa’s Design (histFujikawa)

For comparison within the simulation study, an alternative empirical approach is also

considered. Fujikawa et al. (2020) developed a closed-form Beta posterior for each
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basket, within which the parameters incorporate the response data of other baskets

in the trial in order to borrow information. Fujikawa’s design first fits independent

Beta-Binomial models to the response rates, pk, with a Beta(ak, bk) prior used. This

results in the following posterior: π(pk|Yk = yk) = Beta(ak+ yk, bk+nk− yk) for basket

k. Fujikawa proposed borrowing of information by taking the weighted sum of these

posterior parameters with weight, ωk,i representing the degree of homogeneity between

baskets k and i. The posterior of the response rate given observed data D for all baskets

is then

π(pk|D) = Beta

(
K∑
i=1

I(ωϵ
k,i > τ)ωϵ

k,i(ak + yi),
K∑
i=1

I(ωϵ
k,i > τ)ωϵ

k,i(bk + ni − yi)

)
,

(4.4.1)

where ϵ ≥ 1 and τ ∈ [0, 1] are tuning parameters. ϵ controls how quickly the weights

move to 0 to discourage borrowing as baskets become increasingly heterogeneous to

one another, whilst τ acts as a cut-off which sets the weights to 0 should heterogeneity

cross the threshold, τ .

Fujikawa suggested setting the weights ωk,i based on 1 minus the pair-wise Jensen-

Shannon divergence (JSD) between the Beta-Binomial posteriors for baskets k and i:

ωk,i = 1− JSD(π(pk|Yk = yk), π(pi|Yi = yi)), (4.4.2)

where the JSD between two distributions P and Q is

JSD(P,Q) = 1/2(KL(P ||M) +DL(Q||M))

with M = 1/2(P +Q) (Fuglede and Topsoe, 2004).

KL(P ||M) =
∑
x

P (x) log(P (x)/M(x))
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is the Kullback-Leibler Divergence (KLD). In order to obtain weights bounded between

0 and 1, KLD is used with base 2 logarithm (Baumann et al., 2023).

A similar approach can be used to also incorporate historical information, with the

parameters of the Beta posterior now including both a weighted sum of current data and

a weighted sum of historic data, with weights determined as a function of homogeneity

between baskets:

π(pk|D,Dh) = Beta

(
ak +

K∑
i=1

(
I{ωϵ

k,i > τ}ωϵ
k,iyi + ζk

Hk∑
j=1

(
I{ωϵ

k,i∗
(j) > τ}ω∗ϵ

k,i∗
(j)yi∗(j)

))
,

bk +
K∑
i=1

(
I{ωϵ

k,i > τ}ωϵ
k,i(ni − yi) + ζk

Hk∑
j=1

(
I{ω∗ϵ

k,i∗
(j) > τ}ω∗ϵ

k,i∗
(j)

(
n
i∗

(j) − y
i∗

(j)

))))
,

(4.4.3)

where weights between current data sources, ωk,i are computed as in (4.4.2) using the

JSD. Weights between a current basket k and a historic basket associated with basket

i from one of the Hi previous studies are also computed using JSD but are set to 0

should no historic information be available for basket i:

ω
k,i∗

(j) =


1− JSD

(
π(pk|Yk = yk), π(pi∗(j) |Yi∗(j) = y

i∗
(j) )
)

If historic information

is available for basket i

,

0 Otherwise.

Note that unlike in Fujikawa’s design, information is not shared between the prior

distributions, with the prior parameters moved outside of the sum. The tuning param-

eters ϵ and τ are still defined in the same way as in Fujikawa’s design, with ϵ defining

the degree of decline of weights with heterogeneity and τ as a cut-off for borrowing

when the degree of heterogeneity becomes too large. This approach has a computa-

tional advantage over the other methods proposed due to the closed form solution of
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posteriors it provides.

4.4.2 Other Competing Approaches

An alternative approach to integrate historic information into a borrowing model be-

tween current baskets, is one in which the historic data is used to define the probabilities

of exchangeability prior to observing data from the current baskets. These prior proba-

bilities, πk, are then used as mixture weights in (4.3.3) in the EXNEX model to analyse

data from the current baskets. Therefore, within this approach, denoted mEXNEXhist,

historical information is not borrowed from directly, and data is not used in the analysis

model itself beyond updating the mixture weights.

This can be viewed as a version of the modified exchangeability-nonexchangeability

(mEXNEXc, Daniells et al., 2023) model, within which a baskets’ exchangeability weight

is computed using a data-driven approach. The original mEXNEXc approach first ap-

plies simple independent Beta-Binomial models to each basket, then utilises the average

Hellinger distance between the resulting posteriors in order to compute πk. For this

approach, rather than computing the Hellinger distance between current baskets, it

is computed for posteriors of pooled historic response data. To find such posteriors,

for each of the K∗ historic baskets, pool the results of all Hk studies associated with

basket k and define ŷk∗ =
∑Hk

j=1 yk∗(j) and n̂k∗ =
∑Hk

j=1 nk∗
(j) . Simple Beta-Binomial

models are fit to each of the historic responses ŷk∗ with an uninformative Beta(1,1)

prior implemented.

For baskets with historic information, the probability of exchangeability is set as

the average Hellinger distance between all historic baskets:

πk =
K∗∑

i∗=1,i∗ ̸=k∗

1− hi∗,k∗

K∗ − 1
for k = 1, . . . , K∗, (4.4.4)

where hi∗,k∗ is the Hellinger distance between the historic baskets (consisting of pooled
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data) for two current baskets i and k. For baskets without historic information, define

their probabilities of exchangeability as:

πk = ζk

K∗∑
i=1

πi
K∗ for k = K∗ + 1, . . . , K, (4.4.5)

i.e. as the average probability of exchangeability of those baskets that do have historic

data available, down-weighted by a scalar, ζk ∈ [0, 1]. The purpose of this ζk is to

account for uncertainty in the probability of exchangeability in baskets in which there

is no previously observed data. Due to the exchangeability assumption, a priori it is

believed that those with and without historic data are exchangeable and thus in this

approach it is assumed the πk values will be similar for those without historic data.

However, this assumption may not hold, in which case the exchangeability for these

baskets without previous data may not equate to those with historic data. The scalar

ζk limits the potential impact this could have on inflated error rates.

This model is also included in the simulation study alongside histFujikawa for com-

parison purposes.

4.4.3 Prior and Parameter Choices

The models for comparison are as follows:

1. EXNEX: the EXNEX model independent of any historic information as de-

scribed in Section 4.3.2.

2. EXNEXpool: an EXNEX model which incorporates historic information by pool-

ing the results of basket k and all results from the Hk previous studies. An

EXNEX model as described in Section 4.3.2 is applied to the pooled responses.

This takes into account that the historic baskets are associated with a specific

basket on the current trial.
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3. mEXNEXhist: a modified EXNEX approach with data-driven exchangeability

weights based on the historic data as described in Section 4.4.2.

4. EXppNEX: an EXNEX model with a power prior placed on the NEX component

as in Section 4.3.3.

5. MLMixture: a multi-level mixture model consisting of two EXNEX models as

in Section 4.3.4.

6. histFujikawa: an adapted Fujikawa’s design as outlined in Section 4.4.1 in which

the closed-form posterior incorporates information from both current and historic

data.

All six methods explored in the simulation study have several prior and parameter

choices. Table 4.4.3 summarises such choices for all methods. Full model outlines are

given in Appendix 4.6.1. For the EXNEX, EXNEXpool, EXppNEX and the MLMixture

models equal mixture weights of 0.5 were utilised throughout to fully allow the model to

update the weights based on homogeneity/heterogeneity. Other values of πλk
, πall,i and

πcurr,i were considered for the MLMixture model and further discussed in Section 4.4.5,

however, the choice of equal weights throughout demonstrated a good balance between

error control and power improvement. A weight metric based on JSD as in Fujikawa’s

design was considered to shift these weights in the EXppNEX and the MLMixture

models, based on homogeneity of response data, but this inflated error and decreased

power in some cases, thus fixing the weights proved superior, whilst also reducing the

model complexity. For EXppNEX the power prior parameter, α, was set at 0.5 in order

to discount the historical information in the informative prior. Alternative α values of

0.25 and 1 were also considered and are discussed in Section 4.4.5, the findings of which

suggest setting α = 0.5 as a reasonable choice.

For all methods bar histFujikawa, a hierarchy is placed on an EX component

within which hyper-priors are placed on the common mean µ and borrowing parame-
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Table 4.4.3: Prior and parameter choice for the simulation study for comparison of
novel approaches to historic information borrowing.

Model Parameters and Priors

EXNEX πk = 0.5 for k = 1, . . .,K, mµ = logit(0.1), νµ = 102,
g(·)=Half-Normal(0,1), mk and νk are computed as in (4.3.8) with
ρk = 0.2.

EXNEXpool πk = 0.5 for k = 1, . . .,K, mµ = logit(0.1), νµ = 102,
g(·)=Half-Normal(0,1), mk and νk are computed as in (4.3.8) with
ρk = 0.2.

mEXNEXhist mµ = logit(0.1), νµ = 102, g(·)=Half-Normal(0,1), mk and νk are
computed as in (4.3.8) with ρk = 0.2, ζk=0.8.

EXppNEX πk = 0.5 for k = 1, . . .,K, mµ = logit(0.1), νµ = 102,
g(·)=Half-Normal(0,1), mk and νk are computed as in (4.3.8) with
ρk = 0.2, ak = bk = 1, αj = 0.5 for j = 1, . . . , Hk for all k.

MLMixture πλ,k = 0.5 for k = 1, . . . , K, πall,i = πcurr,i = 0.5 and ai = bi = 1 for
i = 1, . . . , K, 1∗, . . . , K∗, mµall

= mµcurr = logit(0.1),
νµall

= νµcurr = 102, g(·)=f(·)=Half-Normal(0,1).

histFujikawa ak = bk = 1 for k = 1, . . . , K, ϵ = 2, τ = 0.2, ζk = 0.8, weights ωk,i

and ωk,i∗ are determined using JSD.

ter σ. For each of the approaches which possess an EX component, the hyper-priors

µ ∼ N(logit(q0), 10
2) and σ ∼ Half-Normal(0, 1) are applied. For both histFujikawa

and mEXNEXhist, a historic scalar of ζk = 0.8 is implemented to down-weight the con-

tribution of historic data to borrowing in the former and to reduce the prior borrowing

probability for baskets with unobserved historic data in the latter. The tuning param-

eters in histFujikawa are set at ϵ = 2 to provide moderate reduction in weights when

posteriors become increasingly dissimilar and τ is set at 0.2.

4.4.4 Simulation Results

The results under four of the eight scenarios are presented in Figures 4.4.1 and 4.4.2,

which show the type I error rate and power for each of the five baskets under all six

information borrowing approaches. Dashed lines are provided on each plot to highlight
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the nominal 10% type error rate and 80% power. A dashed line is also placed on a

value of 90% in order to distinguish power improvement between approaches when the

nominal level is exceeded. Scenarios 2 and 5 were selected as they demonstrate the

more ‘extreme’ cases wherein just a single baskets is effective or ineffective respectively.

These two scenarios tend to give the lowest power and highest error inflation respectively

and thus assessment of the performance of the approaches under these two ‘extreme’

cases is most compelling. Scenario 6 is the global alternative and will best demonstrate

power improvement across the approaches. Scenario 8 differs as it consists of a basket

without historic information being effective to the treatment alongside just a single

effective basket with historic information. Thus this scenario allows a comparison in

power dependent on whether or not a basket has historic information. The plotted

results of the remaining four scenarios are given in Appendix 4.6.3.

Beginning with scenario 2 (presented in the top half of Figure 4.4.1), the EXNEX

model demonstrates sub-par power for the one effective basket, lying below the nominal

level at 78.9%. Both the mEXNEXhist and histFujikawa methods also fail to reach the

nominal level in almost all cases with power as little as 66.9% and 70.2% respectively.

In cases (a) and (d), responses in historic baskets are completely homogeneous, thus

in the mEXNEXhist approach, the probabilities of exchangeability πk are set at 1 for

baskets with historic information and πk = 0.8 in baskets 4 and 5. This results in

strong borrowing, thus the posterior for the one and only effective basket is pulled

down towards those 4 ineffective baskets, resulting in a loss in power. Similarly, the

histFujikawa design lacks power in this case due to level of heterogeneity observed

between basket 1 and other current baskets on the trial, causing weights ωk,i to be

at or close to 0, moving analysis to an independent analysis taking the form of an

uninformative Beta-Binomial model.

All approaches under scenario 2 have type I errors at or below the nominal 10% level.

Only minute differences are observed between the EXNEXpool, EXppNEX, and MLMix-
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Figure 4.4.1: Type I error rate and power under each of the 6 approaches for historic
information borrowing for scenarios 2 and 5 cases (a)-(d).

ture approaches in terms of power. Both the MLMixture and EXppNEX approaches

have a maximum difference in power of 0.6% across the four sub-cases. However, at

power of 81.2% under scenario 2(a), the EXppNEX approach is marginally better than
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the EXNEX model which fails to reach the nominal level at 78.9%. In cases of homo-

geneity to the current data, the MLMixture and EXppNEX methods give up to a 4.2%

increase in power over an EXNEX model, whilst still maintaining error control at or be-

low the nominal value. In fact, the MLMixture model has consistently lower type I error

rate than EXppNEX under scenario 2. EXNEXpool gives very biased point estimates

for the response rates when the historic and current baskets don’t align. For instance in

scenario 2(a), for basket 1, the current basket is effective to treatment and the historic is

not. Under EXNEXpool, the results are pooled regardless of heterogeneity, resulting in

a point estimate of 0.187 when the true response rate is 0.25. A table of point estimates

under each method and scenario are provided in Supporting Information C.

Under scenario 5 (presented in the bottom half of Figure 4.4.1), one basket is inef-

fective against the treatment. This basket has no historic information available. Again,

the EXNEX model demonstrates the lowest power as it does not utilise the additional

historic information available. For baskets 1-3 with historic information available, the

mEXNEXhist approach has the highest power in all 4 sub-cases ranging from 90.7-94.4%

depending on homogeneity amongst the historic sources with power greater under sub-

cases (a) and (d) in which all historic baskets are completely homogeneous. However,

this also came with the greatest type I errors in these two sub-cases at around 22%.

Inflation in error rates is also an issue in the MLMixture model. The type I error

rate across the four sub-cases ranges from 18.2-19.8% under the MLMixture model, a

substantial inflation over the nominal 10% level and a substantial increase from the

standard EXNEX model whose error rate is 14.5%. In contrast, the EXppNEX ap-

proach has reduced error rates compared to the standard EXNEX model ranging from

12.4-14.1% but only shows improvement in power for some baskets, for instance sub-

case 5(b) shows the EXppNEX model has an improvement in power in basket 1 at

91.7% compared to 88.5% under the EXNEX model. For the EXNEXpool approach,

the error rate reduce as the number of effective historic baskets increases, resulting in
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a type I error 2.6% lower than the standard EXNEX model under scenario 5(d).
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Figure 4.4.2: Type I error rate and power under each of the 6 approaches for historic
information borrowing for scenarios 6 and 8 cases (a)-(d).

Figure 4.4.2 presents the results under scenarios 6 and 8. Under scenario 6 all

current baskets are homogeneous and effective to treatment. Under sub-case (a) in
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which the historic responses are all heterogeneous to the current baskets, it is observed

that the EXNEXpool gives power of approximately 93.1% for baskets 1-3 with historic

information and 91.2% for baskets 4 and 5. However, under sub-case (d) where all

historic responses are homogeneous to the current response data, these power values

actually decrease to around 92.4% and 88.2% for baskets with and without historic

information respectively. This may seem counter intuitive given that the EXNEXpool

approach borrows fully from the historic information by pooling the results within

baskets, so in cases of homogeneity one would expect a further increase in power.

However, this is not observed due to the calibration of the efficacy decision criteria.

Under sub-case (a), the cut-off value for baskets 1-3 is 0.826 which is far less conservative

than the calibrated value obtained under sub-case (d) at 0.966. This is due to the

pooling itself, under sub-case (a), the three ineffective historic baskets will always pull

the posteriors down in the EXNEXpool model, reducing the chance of a type I error,

therefore requiring a less stringent cut-off value. This lower ∆k value also makes it

easier to reject the null, thus improving the power. The higher ∆k value in sub-case

(d) results in a reduction of power. This highlights the importance of calibration and

how, if done correctly, it can drastically change results of any studies.

Both mEXNEXhist and histFujikawa demonstrate the greatest power under scenario

6. For example, under sub-case (d), the mEXNEXhist approach has average power of

96.7% for baskets with historic information and 93.7% for those without. This compares

to an average power of 90.1% under the EXNEX model. The MLMixture appears to

handle heterogeneity between historic sources better than the EXppNEX model in

terms of power, giving values consistently above 90% in all sub-cases. The EXppNEX

approach has lower power than the EXNEX model under (a) at around 88.5%. This

reduction is maintained for all baskets and sub-cases in which the historic and current

data are in conflict. However, in cases of homogeneity, power can be substantially

increased, for instance under 6(b) EXppNEX has power 94.88% for basket 1.
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Table 4.4.4: The average power and maximum type I error rate, computed across the 8 scenarios under all 4 historic data
sub-cases. Note that the average is only taken across baskets of the same type i.e. with or without historic baskets and only
between baskets with an identical number of responses in the historic basket.

Average Power
Sub-Case Basket(s) EXNEX EXNEXpool mEXNEXhist EXppNEX MLMixture histFujikawa

(a) 1,2,3 86.65 88.53 88.44 87.20 88.53 87.66
4,5 86.28 86.28 83.56 85.79 86.81 81.74

(b) 1 85.05 89.64 89.99 89.24 88.82 87.65
2,3 88.03 89.00 91.00 88.25 89.57 89.96
4,5 86.28 86.03 86.04 85.90 86.37 82.37

(c) 1,2 86.00 89.07 88.60 88.21 88.91 87.27
3 88.83 88.08 90.99 88.89 89.87 91.53
4,5 86.28 85.89 85.52 86.15 86.24 83.61

(d) 1,2,3 86.65 88.11 88.69 88.91 88.59 87.77
4,5 86.28 86.23 84.17 86.02 86.10 83.04

Maximum Type I Error Rate

(a) 1,2,3 12.32 13.66 16.02 12.08 12.26 14.18
4,5 14.48 17.64 22.08 12.42 18.34 20.46

(b) 1 7.08 11.88 11.62 11.58 11.26 12.90
2,3 12.32 12.72 13.78 11.76 12.52 14.34
4,5 14.48 15.84 17.04 13.04 18.58 20.16

(c) 1,2 12.32 13.04 15.24 12.40 13.22 15.22
3 11.44 12.04 13.76 11.76 12.64 14.42
4,5 14.48 14.10 16.28 13.70 19.78 19.10

(d) 1,2,3 12.32 12.42 16.34 12.26 12.68 13.76
4,5 14.48 11.84 22.00 14.10 18.16 19.66



CHAPTER 4. HISTORIC INFORMATION BORROWING 132

The benefits of utilizing information borrowing from both current and historic

sources are highlighted in scenario 6(d) in which all current and historic baskets are

homogeneous and effective to the treatment. In this case, all of the proposed methods

demonstrate substantial power gain compared to the EXNEX model.

Finally, in scenario 8 one basket without historic information is effective whilst one

basket with historic information is also effective, with the rest ineffective to treatment.

The results in Figure 4.4.2 show similar findings to those in scenarios 2, 5 and 6 as pre-

viously discussed. Across all four sub-cases, of the proposed approaches, the EXppNEX

model has highest power for both baskets 2 and 4 whilst maintaining a type I error

rate close to that of the EXNEX model. The MLMixture model achieves similar power

to the EXppNEX model, however demonstrates greater error inflation with maximum

error of 13.2%. For comparison the EXNEX model has maximum error of 12.3%. The

EXNEXpool model provides reasonable power, however, in cases (a), (b) and (c), this

power is reduced compared to the EXNEX model for basket 4. This approach also

demonstrates error inflation particularly in the cases in which the historic information

is heterogeneous to the current data.

Table 4.4.4 presents the maximum type I error rate across the 8 data scenarios for

each approach, split by sub-case and by basket alongside the average power across the

data scenarios. It is first observed that type I error inflation is far more substantial

in baskets without historic information under both the mEXNEXhist and histFujikawa

approaches, as well as the MLMixture model. The EXppNEX has far better error

control across all five baskets in the trial with a maximum of just 14.1% which occurs

in sub-case (d) for baskets 4 and 5. Under this sub-case, the MLMixture model gives

maximum error of 18.2%, mEXNEXhist 22% and histFujikawa 19.7%. This reduction

in error rate under the EXppNEX approach does come alongside a reduction in power

compared to the EXNEX model in a handful of cases, however, this reduction does

not exceed 0.5%. That being said, power is improved in several cases, with power
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improving up to 4.2% over the EXNEX model. The MLMixture model produces similar

average power to the EXppNEX approach, improving over the EXNEX model by up

to 3.8%, however, has substantially increased error rates in baskets 4 and 5. From

these tables, we also observe that the performance of mEXNEXhist and histFujikawa

fluctuated substantially between baskets and sub-cases, with mEXNEXhist giving the

highest average power under sub-case (b) but substantially reduced power for baskets 4

and 5 under sub-case (d). The EXNEXpool model presented similar average power values

to the EXppNEX approach, with a higher power in a number of sub-cases, however,

error rates were consistently higher.

To summarise, given these results, the EXppNEX model would be recommended

due to its superior error control compared to the other approaches considered in this

chapter, including the standard EXNEX model. The EXppNEX model also substan-

tially improves power in cases of homogeneity between historic and current data sources

compared to the EXNEX model. However, only a single value of power parameter α

was considered above. As stated throughout the literature, there is difficulty surround-

ing the selection of α, as operating characteristics can be highly dependent on the value

(Duan et al., 2006). A sensitivity analysis on the α parameter is presented in Section

4.4.5. Both the mEXNEXhist and histFujikawa models are not recommended due to

their inconsistent performance, showing substantially decreased power compared to the

nominal level under several scenarios. The MLMixture is far more computationally

intensive without substantially improving performance in both power and type I error

rate compared to the alternative approaches. Although results were only presented here

for half of the 32 total scenarios considered, results of the remaining 16 proved similar.

4.4.5 Sensitivity

Although the results in Section 4.4.4 highlighted fairly substantial error inflation under

the MLMixture compared to the standard EXNEX model, this error inflation can be



CHAPTER 4. HISTORIC INFORMATION BORROWING 134

shown to be limited by adjusting the mixture weights πλ,k, πcurr,i and πall,i. Table 4.4.5

summarises the operating characteristics across the 8 scenarios under several combi-

nations of mixture weights, with πλ,k, πcurr,i and πall,i taking values 0.25, 0.5 or 0.75.

Several settings of these mixture weights were considered and the maximum type I error

rate and average power was taken across all 8 scenarios split by basket and by historic

sub-case. Both πcurr,i and πall,i are set as equal, thus the mixture weights in the two

EXNEX models in the MLMixture model follow the same distribution.

Setting all mixture weights to 0.25 showed a reduction in maximum type I error rate

(maximum error rate is 12.5%) in all baskets and historic sub-cases compared to both

settings in which πcurr,i and πall,i are set to 0.75 (maximum type I error rates of 22.6%

and 23.3%). Placing a πcurr,i = πall,i = 0.75 weight increases the probabilities of being

in both EX components, therefore encouraging borrowing between baskets. In cases of

heterogeneity this increased borrowing results in more substantial error inflation over

the nominal level. A lower maximum error rate is also observed when using 0.25 for

all mixture weights compared to when mixture weights are set to 0.5 (maximum type

I error rate of 19.8%) in all bar one setting .

Using equal weights of 0.25 across all mixtures gives a reduction in power compared

to the setting where πλ,k = 0.25 and πcurr,i = πall,i = 0.75. The maximum difference in

power is a reduction of 3.4%, however an increase of up to 2.4% in power is observed

in some baskets. Both cases in which πcurr,i = πall,i = 0.25 produce similar maximum

type I error rate and average power regardless of the choice of πλ,k.

Using equal weights of 0.5 for all mixtures balances the error control observed under

the equal mixture weights of 0.25 with the improved power of setting πcurr,i = πall,i =

0.75. Results of the full simulation study exploring weights in the MLMixture model

are presented in Section C.6 of the Supporting Information C.
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Table 4.4.5: A comparison of operating characteristics where weights πλ,k, πcurr,j and πall,j are altered to either 0.25, 0.5 or 0.75.
Each setting is labelled as x, y which correspond to a setting of MLMixture weights where x is the value of πλ,k (set at 0.25,
0.5 or 0.75) and y are the values of πcurr,j and πall,j which are set as equal and to either 0.25, 0.5 or 0.75. The maximum type
I error rate (E) and average power (P) are computed across the 8 scenarios under all 4 historic data sub-cases. Note that the
maximum/average is only taken across baskets of the same type i.e. with or without historic baskets and only between baskets
with an identical number of responses in the historic basket.

Weights
Sub-Case Basket(s) 0.25,0.25 0.25,0.75 0.75,0.25 0.75,0.75 0.50,0.50

E P E P E P E P E P

(a) yk∗ = (1, 1, 1) 1,2,3 12.12 87.33 14.06 88.34 12.00 86.73 13.48 88.72 12.26 88.53
4,5 11.86 86.04 22.40 84.43 11.74 86.35 22.86 84.61 18.34 86.81

(b) yk∗ = (3, 1, 1) 1 11.46 87.70 12.56 89.77 11.36 87.17 12.19 89.46 11.26 88.12
2,3 11.84 88.30 13.74 90.41 12.10 87.12 13.56 90.32 12.52 89.57
4,5 11.72 87.00 22.60 84.69 12.14 85.43 23.34 84.42 18.58 86.37

(c) yk∗ = (3, 3, 1) 1,2 11.82 87.05 14.20 88.48 12.44 87.20 15.02 88.24 13.22 88.91
3 12.46 88.49 13.90 91.86 10.74 88.55 15.56 92.16 13.28 90.69
4,5 12.16 86.22 23.26 83.78 12.52 86.24 21.60 84.65 19.78 86.24

(d) yk∗ = (3, 3, 3) 1,2,3 12.36 87.88 14.02 88.61 12.18 87.49 13.72 88.65 12.58 88.59
4,5 12.04 85.58 22.26 84.62 12.00 86.06 22.06 83.98 18.16 86.10
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Table 4.4.6: A comparison of operating characteristics where power parameter, α, are
altered to either 0.25, 0.5 or 1 in the EXppNEX approach. The maximum type I
error rate (E) and average power (P) are computed across the 8 scenarios under all 4
historic data sub-cases. Note that the maximum/average is only taken across baskets
of the same type i.e. with or without historic baskets and only between baskets with
an identical number of responses in the historic basket.

α

Sub-Case Basket(s) 0.25 0.5 1

E P E P E P

(a) yk∗ = (1, 1, 1) 1,2,3 11.92 87.49 12.08 87.20 11.98 87.18

4,5 13.12 86.17 12.42 85.79 12.44 85.88

(b) yk∗ = (3, 1, 1) 1 11.84 88.25 11.58 89.24 11.86 88.49

2,3 12.04 88.48 11.76 88.25 12.14 87.77

4,5 14.32 86.18 13.04 85.90 13.16 85.66

(c) yk∗ = (3, 3, 1) 1,2 12.84 88.40 12.40 88.21 12.26 88.69

3 12.12 89.12 11.76 88.89 11.76 88.60

4,5 13.64 86.37 13.70 86.15 12.92 86.05

(d) yk∗ = (3, 3, 3) 1,2,3 12.52 88.84 12.26 88.91 12.38 88.68

4,5 14.32 86.39 14.10 86.02 13.52 86.31

Similarly, alternative choices for the power, α, in the EXppNEX approach were

also explored. In the simulation study presented in Section 4.4, α is set to allow for a

moderate amount of borrowing. Three alternative values of α were considered: 0.25,

0.5 and 1. A choice of α = 1 encourages full borrowing from the historic data in the

NEX component, whilst 0.25 discounts the historic data heavily. This simulation study

has the same setting as in Section 4.4, with only the power parameter varied. The

maximum type I error rate and average power across the 8 scenarios are presented in

Table 4.4.6, split by historic sub-case and basket. All power values are consistent across

all choices of α, ranging by no more than 1%. Slightly more variation is observed in
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the maximum type I error rate, with α = 0.25 giving marginally higher error rates

in almost all baskets and sub-cases. A choice of α = 0.5 results in the smallest error

in almost all cases, with an improvement in power compared to α = 1 in most cases

too. Full results of this simulation study are presented in Section C.5 in Supporting

Information C.

4.5 Discussion

In this chapter, we present several approaches for borrowing from both historic and cur-

rent baskets under one framework. Most proposed approaches built on the exchangeability-

nonexchangeability model which has previously been implemented to borrow informa-

tion between baskets on the current trial. This model was used as a basis due to its

popularity in the field of basket trials and due to its flexible structure in terms of al-

lowing both borrowing and an independent analysis in one model. The other proposed

method utilised Fujikawa’s design and the simple adaptation of incorporating the his-

toric data alongside current data in the posterior parameters proved advantageous due

to its reduced computation time. A comparison of computational time of all proposed

approaches is presented in the Section C.3 of Supporting Information C, which shows

how much more computationally intensive the hierarchical modelling approaches are,

while demonstrating that the MLMixture model becomes quickly infeasible to conduct

large-scale simulations as the number of current and historic baskets increases.

The conclusion of the simulation study presented in this chapter favoured the use

of the EXppNEX approach, however, it is stated throughout the literature that the

performance of a power prior is sensitive to the choice of power parameter, α. This was

explored in another simulation study with results provided in Section 4.4.5 and in Sup-

porting Information C, where results demonstrated that in this simulation setting, the

choice of power parameter had minimal effect on operating characteristics. Alternative
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approaches such as the modified power prior (Duan et al., 2006), calibrated power prior

(Zheng and Wason, 2022) or the commensurate prior (Hobbs et al., 2011) could also

be implemented in place of the power prior in the EXppNEX approach, however, were

not considered in this chapter.

Throughout all simulation studies presented in this chapter, the Robust calibration

procedure (RCaP) was implemented in order to calibrate efficacy cut-off values. Should

calibration have been conducted under the traditional approach of calibrating under

the null, more substantial error inflation would have been observed and with that

a greater improvement in power would also be present, however, the comparison of

approaches remained the same, with differences between their performance slightly more

pronounced. The calibration of these efficacy cut-off values is a key component to any

simulation study and heavily impact operating characteristics. This is evident in some

of the results observed in this chapter, particularly when comparing the EXNEX and

EXNEXpool approaches as their cut-off values, ∆k, varied so much in their conservative

nature.

This work could be extended further to increase the sensitivity of each of the pro-

posed approaches to the presence of heterogeneity between current baskets but also

heterogeneity to the historic data sources. This would hopefully improve the inflation

of error rates under some approaches. In particular, the MLMixture as it stands does

not control error rates to the nominal level in cases of heterogeneity across all baskets

current and historic. Simulation studies found that more weight was placed on the in-

formative NEX prior than was desirable, so altering the form of this prior or adjusting

mixture weights could potentially prove beneficial for error control. The simulation

study presented in this chapter assumed equal sample sizes for both current and his-

toric studies, as well as, only a single source of historic information for three of the five

baskets. Further simulations could be conducted to alter these design parameters to

investigate the performance in the case of variability between baskets.
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Finally, this chapter focused on a simulation setting motivated by the MyPathway

and VE-BASKET trials, with sample sizes of 34 and 13 used in the current and historic

baskets respectively. These were based on the planned sample sizes for both studies. A

sample size of 34 patients is rather large for a basket trial which typically studies rare

diseases. In fact, in the MyPathway study, in the BRAFV600 mutation branch of the

trial, not a single basket achieved this planned sample size, with the greatest observed

in the NSCLC basket consisting of 14 patients. The use of the larger sample size in the

simulation study down-plays the benefits of borrowing from the historic information,

as smaller baskets benefit more greatly from this additional source of information. To

address this, a further simulation study was conducted with the sample size in the

current study reduced from 34 to 20 patients with all other design parameters kept the

same. Results demonstrate comparable findings between the performance of methods

as presented in this chapter, however, due to the smaller sample size, the nominal power

value is rarely reached. In fact, the nominal power of 80% is not achieved using the

standard EXNEX model in which historic data is ignored, thus encouraging the use of

the proposed historical borrowing techniques.

4.6 Appendix

4.6.1 Models

Presented below are the full model specifications for the simulation study presented in

Section 4.4, including all parameter choices and prior specifications. Note that for this

simulation study Hk = 1 for k = 1, 2, 3 and Hk = 0 for k = 4, 5 and thus only one

source of historic information was included, allowing the superscript j to distinguish

the historical study, to be dropped.
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1. EXNEX:

Yk ∼ Binomial(nk, pk), k = 1, 2, 3, 4, 5,

pk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

θ1k = logit(M1k) ∼ N(µ, σ2), (EX)

µ ∼ N(logit(0.1), 102),

σ ∼ Half-Normal(0, 1),

θ2k = logit(M2k) ∼ N(−1.386, 6.252). (NEX)

with πk = 0.5 for k = 1, 2, 3, 4, 5.

2. EXNEXpool:

Yk = yk + yk∗ ∼ Binomial(nk + nk∗ , pk), k = 1, 2, 3, 4, 5,

pk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

θ1k = logit(M1k) ∼ N(µ, σ2), (EX)

µ ∼ N(logit(0.1), 102),

σ ∼ Half-Normal(0, 1),

θ2k = logit(M2k) ∼ N(−1.386, 6.252). (NEX)

where yk∗ = nk∗ = 0 for k = 4, 5, i.e. in baskets without historic information

available. Mixture weights are πk = 0.5 for k = 1, 2, 3, 4, 5.

3. mEXNEXhist: same as the EXNEX model above but with

πk =
3∑

i∗=1,i∗ ̸=k∗

1− hi∗,k∗

3− 1
for k = 1, 2, 3, then πk = 0.8

3∑
i=1

πi
3

for k = 4, 5,
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where hi∗,k∗ is the Hellinger distance between the posteriors of two historic baskets

i∗ and k∗.

4. Fujikawahist: Each basket has the following closed form posterior

π(pk|D,Dh) =Beta

(
1 +

5∑
i=1

(I{ωϵ
k,i > τ}ωϵ

k,iyi + 0.8I{ω∗ϵ
k,i∗ > τ}ω∗ϵ

k,i∗yi∗),

1 +
5∑

i=1

(I{ωϵ
k,i > τ}ωϵ

k,i(ni − yi) + 0.8I{ω∗ϵ
k,i∗ > τ}ω∗ϵ

k,i∗(ni∗ − yi∗))

)

where ωk,i = 1− JSD(π(pk|Yk = yk), π(pi|Yi = yi)) and

ω
k,i∗

(j) =


1− JSD

(
π(pk|Yk = yk), π(p

(j)
i∗ |Y

(j)
i∗ = y

(j)
i∗ )
)

If historic information

is available for basket i

,

0 Otherwise.

with ϵ = 2 and τ = 0.2.

5. EXppNEX:

Yk ∼ Binomial(nk, pk), k = 1, 2, 3, 4, 5,

pk = δkM1k + (1− δk)M2k,

δk ∼ Bernoulli(πk),

Ik = 1 if yk∗ exists for basket k,

θ1k = logit(M1k) ∼ N(µ, σ2), (EX)

µ ∼ N(logit(0.1), 102),

σ ∼ Half-Normal(0, 1),

M2k = IkP1k + (1− Ik)P0k,

P1k ∼ Beta(1 + αyk∗ , 1 + α(nk∗ − yk∗)),

θ2k = logit(P0k) ∼ N(−1.386, 6.252),
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with πk = 0.5 for k = 1, 2, 3, 4, 5 and α = 0.5 for all baskets.

6. MLMixture:

Yi ∼ Binomial(ni, pi) i = 1, 2, 3, 4, 5, 1∗, 2∗, 3∗,

ψi =


1 if basket i is a historic basket,

0 otherwise.

γall,i = ϵall,iEXall,i + (1− ϵall,i)NEXall,i,

ϵall,i ∼ Bernoulli(πall,i),

EXall,i ∼ N(µall, σ
2
all),

µall ∼ N(mµall
, νµall

),

σall ∼ g(·)

Nall,i ∼ Beta

(
ai + (1− ψi)

Hi∑
t=1

y
i∗

(t) , bi + (1− ψi)

Hi∑
t=1

(n
i∗

(t) − y
i∗

(t) )

)
,

NEXall,i = logit(Nall,i),

EXNEXall,i = exp(γall,i)/(1 + exp(γall,i)),

γcurr,i = ϵcurr,iEXcurr,i + (1− ϵcurr,i)NEXcurr,i,

ϵcurr,i ∼ Bernoulli((1− ψi)πcurr,i),

EXcurr,i ∼ N(µcurr, σ
2
curr),

µcurr ∼ N(mµcurr , νµcurr),

σcurr ∼ f(·)

Ncurr,i ∼ Beta(ai, bi),

NEXcurr,i = logit(Ncurr,i),

EXNEXcurr,i = exp(γcurr,i)/(1 + exp(γcurr,i)),
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pk = λkEXNEXall,k + (1− λk)EXNEXcurr,k, k = 1, 2, 3, 4, 5, (4.6.1)

λk ∼ Bernoulli(πλ,k). (4.6.2)

All mixture weights are set equal such that πλ,k = 0.5 for all k = 1, 2, 3, 4, 5 and

πcurr,i = πall,i = 0.5 for all i = 1, 2, 3, 4, 5, 1∗, 2∗, 3∗.
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4.6.2 Calibrated ∆k Values under the RCaP

Table 4.6.1: Calibrated ∆k values obtained using the RCaP procedure across the 8
scenarios presented in Table 4.4.1. This is conducted under each of the four historic
data settings separately.

Method p1 p2 p3 p4 p5

yk∗ 1 1 1
EXNEX 0.900 0.900 0.900 0.900 0.900
EXNEXpool 0.826 0.826 0.826 0.902 0.902
mEXNEXhist 0.914 0.914 0.914 0.935 0.935
histFujikawa 0.967 0.967 0.967 0.985 0.985
EXppNEX 0.897 0.897 0.897 0.889 0.889
MLMixture 0.863 0.863 0.863 0.899 0.899

yk∗ 3 1 1
EXNEX 0.900 0.900 0.900 0.900 0.900
EXNEXpool 0.944 0.838 0.838 0.905 0.905
mEXNEXhist 0.857 0.894 0.894 0.909 0.909
histFujikawa 0.972 0.984 0.984 0.993 0.993
EXppNEX 0.909 0.895 0.896 0.890 0.890
MLMixture 0.895 0.875 0.875 0.911 0.911

yk∗ 3 3 1
EXNEX 0.900 0.900 0.900 0.900 0.900
EXNEXpool 0.955 0.955 0.851 0.912 0.912
mEXNEXhist 0.891 0.891 0.891 0.912 0.912
histFujikawa 0.991 0.991 0.992 0.997 0.997
EXppNEX 0.917 0.917 0.889 0.884 0.884
MLMixture 0.917 0.917 0.885 0.921 0.921
yk∗ 3 3 3
EXNEX 0.900 0.900 0.900 0.900 0.900
EXNEXpool 0.966 0.966 0.966 0.918 0.918
mEXNEXhist 0.912 0.912 0.912 0.933 0.933
histFujikawa 0.996 0.996 0.996 0.999 0.999
EXppNEX 0.916 0.916 0.916 0.879 0.879
MLMixture 0.930 0.930 0.930 0.930 0.930

4.6.3 Simulation Results
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Figure 4.6.1: Type I error rate and power under each of the 6 approaches for historic
information borrowing for scenarios 1 and 3 cases (a)-(d).
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Figure 4.6.2: Type I error rate and power under each of the 6 approaches for historic
information borrowing for scenarios 4 and 7 cases (a)-(d).



Chapter 5

Conclusions & Further Research

5.1 Conclusion

This thesis has explored the use of Bayesian methodology in the design and analysis

of basket clinical trials in order to aide inference on the efficacy of treatments. Such

trials play a key role in the development of treatments for rare conditions, particularly

in the oncology setting where sample sizes tend to be limited. The methods proposed

in this thesis addresses the issue of a lack of statistical power and precision of estimates

in cases where the sample sizes are small. This is achieved through the use of Bayesian

information borrowing models, however, as shown throughout this work, such methods

come at the risk of an inflation in the basket-wise type I error rate. This thesis ex-

plores current literature on the use of Bayesian information borrowing methods in the

basket trial setting, proposing novel methodology that improves power and precision

of estimates over a stratified analysis of each basket, whilst focusing on type I error

control.

In Chapter 2, a detailed comparison is made between various approaches for Bayesian

information borrowing in the basket trial setting. This is conducted through exten-

sive simulation studies motivated by the VE-BASKET trial. This study was carried

147
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out under both an equal sample size setting across sub-groups but also considered a

more realistic case of unequal sample sizes. These simulation results demonstrated

that a Bayesian hierarchical model, an exchangeability-nonexchangeability model and

a Bayesian model averaging approach substantially inflate the type I error rate in cases

of heterogeneity between baskets responses. The calibrated Bayesian hierarchical model

lacks power in such a scenario. This chapter also highlights the inadequacy of the cali-

bration procedure of the CBHM when applied to unequal sample sizes, thus a general-

isation of this calibration was made to handle such a setting. To combat the observed

type I error inflation, we proposed an adaptation to the EXNEX model, mEXNEXc,

which utilises a data-driven approach to set the prior probabilities of exchangeability

in the EXNEX model, making it more robust to the presence of heterogeneity. In fact,

simulation results demonstrated that, given a suitable choice of tuning parameter, the

proposed model possesses better control of the type I error rate, alongside improved

power.

Chapter 3 considers two aspects of the design and analysis of basket trials, the first

being the addition of baskets to an ongoing trial. In cases of rare diseases, any basket

added at a later time will suffer from even smaller sample sizes, thus the role of infor-

mation borrowing becomes more prominent. Chapter 3 utilises the EXNEX model to

propose several approaches for the analysis of new baskets added to the trial. Simu-

lation studies found that no one of the outlined approaches for adding outperformed

its competitors across all scenarios. However, as expected, in cases of homogeneity be-

tween the new and existing baskets, using stronger information borrowing yields better

results, but in cases of heterogeneity to the new basket, analysing it as independent

limits error inflation and loss in power. Further simulation studies demonstrated that

all approaches are fairly robust to the timing of addition of new baskets, therefore de-

termining that the size of the new basket has no detrimental effect on power and error

of baskets that commenced enrolment at the start of the trial.
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The second aspect of Chapter 3 is the development of a novel approach for the

calibration of efficacy decision criteria. In a basket trial, posterior probabilities are

compared to a cut-off value and an efficacy conclusion made. Typically this cut-off

value is calibrated under a global null data scenario to control error rates to a nominal

level. However, when applied to a non-null scenario, this traditional approach is shown

through simulation studies to be inadequate in controlling error inflation when infor-

mation borrowing methods are used. Thus, an alternative approach is proposed: the

robust calibration procedure; which controls for error rates on average across several

scenarios. This is a flexible approach, allowing clinicians to specify potential outcomes

of the trial in which one would like to control the error rate across, with the ability to

weight scenarios that have a higher likelihood of occurring. Compared to the traditional

approach, this novel proposal demonstrates superior error control with only a small loss

in power relative to the targeted value in a handful of cases.

In Chapter 4, the use of historical or external data is explored to further improve

power and precision of estimates. Various approaches are explored for the combination

of two forms of information borrowing: borrowing between current baskets and bor-

rowing from historic data under a single analysis framework. Most approaches build on

the EXNEX model, with one updating the mixture weights based on the homogeneity

between historic baskets, with another incorporating a power prior in the nonexchange-

ability component to directly borrow from the historic data. A more computationally

expensive approach is the proposed multi-level mixture model which consists of a mix-

ture of two EXNEX models, with one containing the historic data. The rationale behind

all proposed approaches was to create a data-driven approach which adapts borrowing

based not only homogeneity between current baskets but also the homogeneity to his-

toric data. Although all approaches considered demonstrated an improvement in power

compared to an EXNEX model which ignores any external data sources, results demon-

strate that the addition of the power prior into the nonexchangeability component of
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the EXNEX model provided a superior balance of type I error control and improvement

in power.

Overall, this thesis has proposed various methods to improve inference within basket

trials. The focus was on improving power and precision of estimates whilst pursuing

error control. Results of thorough simulation studies have been presented throughout

this thesis to demonstrate operating characteristics such as error and power of all dis-

cussed methods under a variety of settings and scenarios. All simulation studies have

been based on real-life basket trials, most notably the VE-BASKET study, motivat-

ing the need for such novel methodology. As stated by Kopp-Schneider et al. (2020),

when implementing information borrowing in the case of heterogeneity between data

sources, there will be a trade-off of inflation in error and bias along with any potential

gain in power. The proposed methods aim to minimise this trade off, using adaptive

data-driven techniques for borrowing, as well as, the proposed approach for calibrating

efficacy decision criteria. The overall contributions of this thesis is the improvement of

inference in basket trials for rare condition, providing patients beneficial treatments in

a shorter time frame, as well as, limiting exposure to potentially ineffective treatments.

5.2 Further Work

There are multiple potential areas for further research in the topic of Bayesian methods

in basket trials, some of which focuses on the limitations of the models already proposed

in this thesis, while others could contribute to the wider field of basket trials.

Chapter 4 explored approaches for utilising historic information in an information

borrowing model to further improve power and precision of estimates. One approach

outlined was the multi-level mixture model, consisting of a mixture of two EXNEX

models, one containing current and historic information and one containing just current

baskets. The first component of this model contained an informative prior based on
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the historic data. However, through simulation studies it was found that more weight

was placed on this component than desirable in the case of heterogeneity between

baskets’ observed responses. This contributed to some of the observed error inflation.

In order to limit the contribution of the historic data within this component in cases of

heterogeneity, a power prior or an alternative adaptive approach (such as the calibrated

power prior, a robust mixture prior of a meta-analytic prior) could be implemented in

the hope to better control error rates.

Furthermore, mixture weights for all methods described in Chapters 3 and 4 could

be explored in more depth. As discussed in Chapter 1, the prior probability of exchange-

ability in the EXNEX model is updated to some degree based on the homogeneity of the

data but is not sensitive enough to the heterogeneity of responses. If mixture weights

are set at 0.5, as done throughout Chapter 4, it is anticipated that the probability of

borrowing from a heterogeneous basket will be too high, which in turn will inflate the

type I error rate. Therefore, for all methods in Chapter 4, future work could be con-

ducted to define mixture weights using a data-driven approach to increase them in cases

of homogeneity to encourage borrowing and decrease them in cases of heterogeneity,

with the goal to further improve error control. This could similarly be explored in the

approaches for the addition of a basket as discussed in Chapter 3.

Throughout this thesis adaptive design features such as interim analyses with fu-

tility/efficacy stopping have not been considered or incorporated into the simulation

studies or methodology. It has been considered in the work by Berry et al. (2013), Chu

and Yuan (2018), Jin et al. (2020), and Psioda et al. (2021) and is a key aspect of many

modern clinical trials. Such features are desirable as they allow a trial to end earlier

should treatments show efficacy, allowing the treatment to be moved to the next stage

of drug development at a much quicker rate whilst reducing the number of patients

required. Additionally, futility analysis allows treatment arms to be dropped if not

showing sufficient efficacy, reducing the number of patients exposed to a potentially
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harmful or non-effective treatment. Futility/efficacy stopping could be implemented

throughout the simulation settings explored in this thesis and the effect of their inclu-

sion explored. Due to the multiple looks at the data, it is likely that an increase in

error rates would occur, however, this could be limited using multiple comparison cor-

rection techniques. When incorporating interim analyses, whether to use information

borrowing to determine efficacy/futility could be explored as one could debate either

for or against its implementation. Another issue to consider is the timing of interim

analyses when sample sizes are limited. For example, the VE-BASKET trial consisted

of a basket of just 7 patients, therefore, would an interim and decision making be suit-

able in this case based on just a handful of patients? Similarly, the case of unequal

sample sizes and recruitment rates needs to be considered when setting the timing of

an interim analysis.

In addition, there is a potential to use data observed at the interim to update the

degree of borrowing in the final analysis based on the observed level of heterogeneity.

This could be incorporated into prior distributions or the probability of exchangeability

in the EXNEX model. Similarly, the degree of heterogeneity between baskets could be

used to adjust sample sizes based on interim data. In cases of homogeneity between

baskets’ response data, it is likely that when using information borrowing, a smaller

sample size would be required to achieve the same statistical power as baskets with

a larger sample size but with heterogeneity amongst baskets. Similarly, the required

sample size could be increased in cases of heterogeneity in order to meet the required

power given that information borrowing methods will not increase power in this case.

Sample size re-estimation can have a significant impact on the cost and duration of

studies (Mano et al., 2023). However, the use in basket trials for rare disease types may

be challenging due to the already small sample sizes. Zheng et al. (2023) proposed an

approach for determining sample sizes in basket trials where information borrowing is

utilised but the inclusion of an interim to adjust these sample sizes was not considered.
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Another area for further consideration is a patients basket assignment. Multiple

primary cancers occurs when an individual has more than one cancer in the same or

different organ (not including cases of metastasis) (Okeke et al., 2023). As discussed by

Vogt et al. (2017), the fact that a patient can present with multiple cancers simultane-

ously is not a new concept but one that is rarely discussed. The challenge in this setting

is identifying a treatment strategy that targets both cancer types. To our knowledge,

cases of multiple primary cancers within patients have not been discussed in the bas-

ket trial setting. This poses a problem as a patients basket assignment is no longer

straightforward and a choice must be made to sort the patient into a sub-group. As all

patients receive the same treatment, it is unlikely that bias from the choice of basket

assignment would be an issue, however, confounding bias may occur. The presence of

a secondary cancer may act as a confounding variable when assessing the efficacy of

a treatment on the primary cancer, thus treatment responses may differ from patients

with a single cancer type. Similarly, the presence of multiple disease types within a

patient may create a stronger correlation in responses between baskets, potentially in-

creasing the probability of exchangeability. However, this correlation may not occur

between all patients, so one could argue the degree of exchangeability between baskets

would decrease. This brings into question how information borrowing would occur in

such a scenario and how to determine the degree of borrowing that is implemented.

Note, although the above discussed the presence of multiple cancers, the concept can

be applied outside of the oncology setting with patients suffering from comorbidities.

This thesis focused solely on binary endpoints, where patients either respond pos-

itively to the treatment or not. Interest lay in estimating the response rate in each

basket. A natural extension of this is to consider non-binary endpoints, for example

a continuous endpoint following a normal distribution, or in the case of randomised

basket trials, the treatment effect, i.e. the difference between the experimental and

control arms. As stated by Shahapur et al. (2022), in oncology trials, the primary
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endpoint of interest is often the overall survival rate (time from enrolment to death)

with secondary endpoints including quality of life and tumour-specific endpoints. Sha-

hapur et al. (2022) provide a summary of endpoints used in the oncology setting. The

drawback of using overall survival as the primary endpoint is the sheer length of time

it takes to observe survival particularly in slow progressing conditions, thus surrogate

endpoints are often used in their place such as progression-free survival, which assesses

time from enrolment to the first evidence of disease progression. This can be observed

quicker than overall survival.

In a single trial several endpoints may be of interest in order to determine a treat-

ments efficacy. The use of multiple endpoints within basket trials, and in particu-

lar Bayesian information borrowing frameworks requires further research. Compos-

ite endpoints combine several endpoints of interest into a single quantity (Baracaldo-

Santamaŕıa et al., 2023) and are typically implemented to reduce follow-up periods and

cost. As they are a single quantity, information borrowing between such endpoints

is fairly straightforward to implement, however interpretation may be challenging. In

particular, some endpoints may have higher importance than others and when making

inference it may be of interest to determine the contribution of these endpoints to the

overall conclusion. In an information borrowing structure, the exchangeability between

different endpoints may vary. Thus, it could be beneficial to develop methodology which

can incorporate several endpoints into a single model with varying degrees of borrowing

implemented for each based on observed heterogeneity. It may also be feasible to weight

endpoints based on importance to the overall efficacy conclusion.

Finally, in order for the work in this thesis to be implemented in real-life trials,

it is vital that clinicians have access to the resources to implement the methodology

outlined. Several R packages have been produced for basket trial analyses, one of which

is the ‘bhmbasket’ package (Wojciekowski, 2022) which evaluates binary response data

from basket trials under several information borrowing models including the BHM and
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EXNEX models. Exploratory simulation studies can be conducted within the package

to explore operating characteristics. The development of a similar package could be

done to ease the implementation of the approaches outlined in this thesis, in particular,

in the work outlined in Chapter 4 where historical information is incorporated through

more complex methodology.

The work in this thesis covers a single area of the vast field of adaptive clinical

trials and personalised medicine. There has been, and will continue to be evolution

in clinical trial designs to keep up with the developing needs for efficient studies for a

variety of health conditions. This was particularly evident in the COVID-19 pandemic,

which will continue to shape and influence the implementation of master protocols in

clinical trials. With the rapid increase in popularity in basket trials, further interesting

statistical challenges are likely to arise, however, we hope that this thesis will aide in

promoting the use of Bayesian methodology in such studies to improve trial outcomes.
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A.1 Simulation Results for Section 2.3

Table A.1.1: Calibrated ∆α values for the simulation study in Chapter 2 based on a
planned sample size of 13 per basket. These cut-offs are also applied to the realised
sample size scenario without re-calibration.

∆α

Independent 0.905

BHM 0.831

CBHM 0.907

BMA 0.871

EXNEX 0.868

mEXNEX1/13 0.880

mEXNEX0 0.920

Figure A.1.1: Simulation results for Chapter 2: The family-wise error rate (FWER)
and percentage of simulated data sets within which correct inference is made across all
baskets (% All Correct) for each method under each data scenario based on a planned
sample size of 13 patients per basket.
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Figure A.1.2: Simulation results for Chapter 2: The family-wise error rate (FWER)
and percentage of simulated datasets in which the correct inference is made across all
baskets (% All Correct) for each method under each data scenario based on realised
sample sizes of 20, 10, 8, 18 and 7 across the 5 baskets.
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Table A.1.2: Simulation results for Chapter 2: Operating characteristics for a simulation
based on the planned sample size of 13 per basket for scenarios 1-6

.
% Reject % All Correct FWER

Sample Size 13 13 13 13 13

Scenario 1 0.15 0.15 0.15 0.15 0.15
Independent 9.72 9.67 10.04 10.22 10.44 58.73 0.413
BHM 9.42 9.52 9.52 9.29 9.51 72.23 0.278
CBHM 9.77 9.93 9.60 9.65 9.90 76.63 0.234
BMA 10.07 10.04 9.78 10.21 9.73 68.05 0.320
EXNEX 10.35 9.95 10.17 9.97 10.35 62.69 0.373
mEXNEX1/13 9.78 10.05 10.40 10.00 10.09 61.18 0.388
mEXNEX0 9.57 10.06 9.18 9.84 9.61 60.04 0.400
Scenario 2 0.45 0.15 0.15 0.15 0.15
Independent 87.34 10.41 10.61 10.08 10.08 56.79 0.351
BHM 85.51 16.53 16.82 17.16 17.12 45.72 0.419
CBHM 81.13 9.68 9.86 9.82 9.57 56.15 0.275
BMA 86.40 13.16 12.98 12.92 13.59 53.25 0.356
EXNEX 86.89 11.36 12.04 11.99 11.71 51.47 0.387
mEXNEX1/13 87.81 11.37 11.83 11.27 11.67 54.37 0.369
mEXNEX0 87.97 10.35 10.39 10.17 10.63 56.29 0.352
Scenario 3 0.45 0.45 0.15 0.15 0.15
Independent 88.36 88.67 10.24 9.80 9.97 57.35 0.271
BHM 91.62 91.56 21.70 21.59 22.32 45.96 0.428
CBHM 84.63 84.38 10.44 10.79 10.66 52.99 0.246
BMA 89.93 89.67 17.96 18.33 18.66 49.36 0.358
EXNEX 89.92 90.00 12.55 12.97 12.79 55.04 0.321
mEXNEX1/13 89.53 89.20 12.56 12.41 12.59 54.24 0.316
mEXNEX0 88.39 88.69 10.44 10.59 10.92 55.60 0.282
Scenario 4 0.45 0.45 0.45 0.15 0.15
Independent 88.37 87.95 88.29 10.37 9.62 56.03 0.189
BHM 94.19 94.03 93.90 29.67 30.44 41.43 0.458
CBHM 85.94 86.48 86.22 12.29 12.06 49.82 0.200
BMA 92.38 92.72 93.09 23.80 23.24 44.18 0.390
EXNEX 91.13 91.08 90.96 13.12 13.13 57.75 0.230
mEXNEX1/13 90.98 90.78 90.68 13.84 14.05 56.37 0.243
mEXNEX0 89.48 89.20 88.89 10.61 10.86 56.53 0.204
Scenario 5 0.45 0.45 0.45 0.45 0.15
Independent 88.30 87.81 87.46 88.51 10.10 54.14 0.101
BHM 96.55 96.13 96.44 96.04 42.11 47.17 0.421
CBHM 87.99 87.94 87.89 88.19 16.65 47.18 0.167
BMA 94.69 94.44 94.92 94.62 24.01 60.37 0.240
EXNEX 91.28 91.14 91.70 90.91 16.12 56.87 0.161
mEXNEX1/13 91.43 91.72 91.63 91.52 14.86 58.60 0.149
mEXNEX0 89.54 89.44 89.40 89.19 11.20 56.54 0.112
Scenario 6 0.45 0.45 0.45 0.45 0.45
Independent 88.28 87.66 88.16 88.09 87.95 52.77
BHM 97.94 98.28 98.13 98.23 97.87 91.53
CBHM 91.28 91.48 91.06 91.16 91.48 66.72
BMA 95.24 95.49 95.62 95.30 95.84 79.88
EXNEX 92.42 92.61 91.98 91.96 91.98 68.39
mEXNEX1/13 91.64 92.13 92.06 91.60 91.94 66.38
mEXNEX0 89.78 89.57 89.65 89.92 89.92 58.38
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Table A.1.3: Simulation results for Chapter 2: Operating characteristics for a simulation
based on the planned sample size of 13 per basket for scenarios 7-10

.
% Reject % All Correct FWER

Sample Size 13 13 13 13 13

Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 66.04 9.11 9.06 9.03 9.21 45.47 0.317
BHM 63.60 15.13 15.31 15.17 15.16 32.43 0.375
CBHM 55.78 9.13 9.22 8.96 9.26 38.29 0.234
BMA 65.20 13.14 13.37 12.89 13.26 37.72 0.353
EXNEX 67.77 11.27 11.46 11.25 11.31 40.06 0.371
mEXNEX1/13 68.34 11.23 11.02 10.90 11.17 42.22 0.353
mEXNEX0 68.34 10.12 9.84 9.85 10.16 44.90 0.353
Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 66.80 64.94 65.95 9.15 9.32 23.70 0.177
BHM 80.04 79.02 80.02 28.93 28.91 24.22 0.426
CBHM 66.33 65.28 65.86 16.20 16.22 20.62 0.225
BMA 77.39 76.45 77.23 23.73 23.78 19.52 0.391
EXNEX 73.23 71.79 73.12 13.39 13.71 28.66 0.231
mEXNEX1/13 72.98 71.60 72.82 14.40 14.43 27.53 0.245
mEXNEX0 69.35 67.97 69.41 10.73 10.84 26.76 0.203
Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 86.79 65.64 66.13 9.18 8.98 31.18 0.173
BHM 93.78 79.49 80.73 29.23 29.07 28.67 0.435
CBHM 86.56 65.29 66.40 14.29 14.42 27.79 0.213
BMA 92.90 76.68 77.27 24.01 24.15 25.25 0.395
EXNEX 90.94 71.88 73.18 13.35 13.39 36.03 0.230
mEXNEX1/13 90.71 71.74 73.02 13.83 13.85 35.40 0.238
mEXNEX0 88.57 68.31 70.05 10.96 10.86 34.07 0.205
Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 87.23 86.71 66.48 66.23 9.11 30.24 0.091
BHM 95.87 95.57 86.07 86.09 40.76 35.86 0.408
CBHM 88.69 87.89 69.31 69.35 18.48 26.39 0.185
BMA 94.97 94.81 83.30 83.24 27.25 46.40 0.273
EXNEX 91.56 90.86 74.23 74.02 17.25 34.31 0.173
mEXNEX1/13 91.59 91.10 74.52 74.30 16.00 36.47 0.160
mEXNEX0 89.72 89.26 70.92 70.69 11.19 35.71 0.112
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Table A.1.4: Simulation results for Chapter 2: Operating characteristics for a simulation
based on the realised sample size of 20, 10, 8, 18 and 7 across the 5 baskets for scenarios
1-6.

% Reject % All Correct FWER
Sample Size 20 10 8 18 7

Scenario 1 0.15 0.15 0.15 0.15 0.15
Independent 6.36 4.83 10.47 6.14 7.39 69.49 0.305
BHM 11.15 9.11 8.46 11.07 8.59 70.66 0.293
CBHM 8.49 7.28 9.9 6.86 9.22 72.28 0.277
BMA 10.41 9.21 9.37 10.34 9.75 65.99 0.340
EXNEX 9.22 7.42 10.33 10.56 7.19 65.56 0.344
mEXNEX1/13 9.48 12.30 10.31 11.70 8.04 58.98 0.410
mEXNEX0 6.85 4.79 10.83 6.04 7.42 68.61 0.314
Scenario 2 0.45 0.15 0.15 0.15 0.15
Independent 94.61 4.83 10.40 5.91 7.67 70.02 0.261
BHM 95.61 18.43 16.32 17.29 15.18 53.00 0.434
CBHM 94.60 7.75 12.19 7.72 10.26 68.58 0.272
BMA 96.05 13.74 13.66 14.82 13.16 59.76 0.373
EXNEX 95.28 12.00 10.77 11.68 8.80 61.92 0.346
mEXNEX1/13 95.40 14.13 10.76 11.75 8.51 60.60 0.361
mEXNEX0 94.27 4.93 10.45 5.85 7.47 69.97 0.258
Scenario 3 0.45 0.45 0.15 0.15 0.15
Independent 94.14 73.33 10.92 5.57 7.83 54.14 0.222
BHM 97.62 87.94 21.31 21.56 22.44 47.25 0.431
CBHM 94.83 75.62 12.32 7.75 10.15 53.96 0.232
BMA 96.46 84.12 17.93 17.97 19.00 47.87 0.372
EXNEX 96.27 82.59 11.05 12.31 11.54 54.81 0.287
mEXNEX1/13 95.90 84.97 11.49 12.36 11.09 57.33 0.290
mEXNEX0 94.70 73.27 10.49 5.86 7.45 54.22 0.219
Scenario 4 0.45 0.45 0.45 0.15 0.15
Independent 94.12 73.39 78.11 5.53 7.61 47.24 0.127
BHM 98.10 91.41 86.00 28.53 30.15 39.06 0.447
CBHM 95.20 75.65 79.04 9.27 10.93 45.85 0.157
BMA 97.09 88.34 82.69 21.92 25.58 37.73 0.410
EXNEX 96.70 87.15 78.40 13.43 17.31 47.47 0.267
mEXNEX1/13 96.25 87.37 78.90 12.15 14.16 50.08 0.234
mEXNEX0 94.70 73.44 77.75 5.89 7.30 47.11 0.128
Scenario 5 0.45 0.45 0.45 0.45 0.15
Independent 94.92 73.29 78.10 90.83 7.96 45.46 0.080
BHM 98.72 94.08 90.92 98.39 51.36 35.06 0.514
CBHM 95.16 79.55 81.27 92.30 24.01 36.52 0.240
BMA 98.06 89.68 90.46 97.36 28.21 56.25 0.282
EXNEX 98.03 89.88 79.65 95.84 27.58 46.83 0.276
mEXNEX1/13 96.27 88.98 80.34 95.95 17.93 53.30 0.179
mEXNEX0 94.57 73.22 78.47 90.93 7.23 45.79 0.723
Scenario 6 0.45 0.45 0.45 0.45 0.45
Independent 94.37 73.47 77.77 90.76 68.12 33.05
BHM 99.39 96.97 94.72 99.01 94.80 87.29
CBHM 95.70 84.24 84.82 94.06 80.99 59.07
BMA 98.16 90.15 90.92 97.59 89.61 70.66
EXNEX 98.29 89.75 83.66 96.37 88.21 64.59
mEXNEX1/13 96.77 89.98 79.90 95.60 78.18 52.27
mEXNEX0 94.57 73.11 77.92 90.90 69.20 33.54
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Table A.1.5: Simulation results for Chapter 2: Operating characteristics for a simulation
based on the realised sample size of 20, 10, 8, 18 and 7 across the 5 baskets for scenarios
7-12.

% Reject % All Correct FWER
Sample Size 20 10 8 18 7

Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 76.02 4.94 10.40 4.99 7.20 57.36 0.249
BHM 80.18 17.27 15.52 17.46 14.69 43.94 0.399
CBHM 75.84 9.30 13.08 8.98 11.39 53.72 0.267
BMA 80.10 13.81 13.52 15.06 13.48 48.14 0.371
EXNEX 78.75 12.00 10.56 11.91 8.77 50.38 0.341
mEXNEX1/13 79.25 13.25 11.01 11.77 9.68 50.38 0.357
mEXNEX0 76.02 4.94 10.40 5.90 7.20 56.84 0.257
Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 76.02 47.90 57.64 4.86 7.20 19.18 0.118
BHM 88.00 74.06 68.46 27.85 27.75 22.18 0.414
CBHM 78.39 54.96 60.62 14.03 15.81 18.10 0.202
BMA 85.28 69.90 65.30 22.84 23.12 19.26 0.389
EXNEX 83.73 67.45 58.24 13.66 15.33 24.78 0.246
mEXNEX1/13 81.89 66.64 59.23 12.33 14.58 23.85 0.238
mEXNEX0 76.02 47.93 57.64 5.76 7.20 18.99 0.126
Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 94.36 47.90 57.64 5.22 7.20 23.37 0.121
BHM 97.99 75.36 68.87 27.28 27.86 24.42 0.420
CBHM 95.02 52.26 60.02 10.73 12.31 22.56 0.171
BMA 97.25 69.49 64.70 21.19 23.47 22.24 0.379
EXNEX 96.76 68.53 58.20 13.04 15.93 28.11 0.249
mEXNEX1/13 96.12 67.52 59.08 12.31 13.79 28.57 0.230
mEXNEX0 94.36 47.90 57.64 5.86 7.20 23.21 0.127
Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 94.36 72.77 57.64 67.87 7.20 24.85 0.072
BHM 98.87 93.39 79.56 90.52 46.96 28.35 0.496
CBHM 95.57 79.91 64.17 74.09 24.04 20.08 0.240
BMA 98.03 89.48 78.91 87.79 27.76 45.58 0.278
EXNEX 97.94 89.39 61.24 82.50 25.36 30.02 0.254
mEXNEX1/13 96.66 88.21 61.64 82.01 18.18 33.81 0.182
mEXNEX0 94.36 72.83 57.64 69.63 7.20 25.39 0.072
Scenario 11 0.15 0.15 0.15 0.15 0.45
Independent 6.75 4.94 10.40 4.91 68.65 51.58 0.244
BHM 15.60 14.74 13.30 15.13 63.74 31.89 0.384
CBHM 8.47 7.22 11.26 6.76 68.78 49.76 0.248
BMA 12.07 10.87 10.99 12.22 70.21 45.60 0.328
EXNEX 10.71 9.97 10.36 11.60 68.89 44.60 0.335
mEXNEX1/13 10.22 12.99 10.52 11.36 69.15 41.90 0.328
mEXNEX0 6.75 4.94 10.40 5.90 68.65 51.06 0.253
Scenario 12 0.15 0.15 0.45 0.15 0.45
Independent 6.75 4.94 78.46 5.19 68.65 45.88 0.160
BHM 19.81 19.69 77.71 19.10 72.94 30.79 0.416
CBHM 8.45 71.40 76.84 7.07 69.58 45.28 0.176
BMA 14.06 13.59 76.02 15.03 72.10 32.99 0.328
EXNEX 13.61 13.76 78.05 12.07 69.18 35.06 0.326
mEXNEX1/13 12.05 14.42 78.53 11.57 69.70 35.86 0.319
mEXNEX0 6.75 4.94 78.46 5.77 68.65 45.49 0.166
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Table A.1.6: Simulation results for Chapter 2: Operating characteristics for a simulation
based on the realised sample size of 20, 10, 8, 18 and 7 across the 5 baskets for scenarios
13-16.

% Reject % All Correct FWER
Sample Size 20 10 8 18 7

Scenario 13 0.15 0.45 0.45 0.15 0.45
Independent 6.75 72.77 78.46 4.87 68.65 35.11 0.113
BHM 24.43 88.84 83.42 24.96 80.68 33.21 0.393
CBHM 8.80 74.51 78.85 7.73 69.96 34.72 0.138
BMA 16.49 84.14 80.71 18.01 76.41 32.74 0.301
EXNEX 16.08 84.34 78.56 12.59 70.79 34.35 0.262
mEXNEX1/13 12.96 85.24 78.71 11.93 70.96 36.75 0.230
mEXNEX0 6.75 72.77 78.46 5.93 68.65 34.77 0.123
Scenario 14 0.15 0.45 0.45 0.45 0.45
Independent 6.75 72.77 78.46 90.51 68.65 33.62 0.068
BHM 33.15 92.31 89.48 98.17 88.46 45.93 0.332
CBHM 10.60 75.58 79.79 91.72 71.10 33.01 0.106
BMA 16.88 89.36 86.45 97.33 87.04 56.35 0.169
EXNEX 16.72 89.33 79.41 96.53 79.03 45.97 0.167
mEXNEX1/13 13.64 88.06 79.75 96.36 73.96 44.16 0.136
mEXNEX0 6.75 72.82 78.46 91.20 68.65 33.72 0.068
Scenario 15 0.45 0.15 0.15 0.15 0.45
Independent 94.36 4.94 10.40 5.05 68.65 52.35 0.191
BHM 97.24 22.52 20.75 21.14 76.40 38.11 0.433
CBHM 94.60 7.75 12.61 7.88 70.05 51.10 0.213
BMA 96.31 16.60 16.98 17.12 74.34 41.21 0.364
EXNEX 95.90 16.22 10.77 12.33 70.05 42.54 0.336
mEXNEX1/13 95.77 15.27 11.14 11.85 70.29 43.45 0.325
mEXNEX0 94.36 4.95 10.40 5.83 68.65 51.79 0.198
Scenario 16 0.45 0.15 0.45 0.15 0.45
Independent 94.36 4.94 78.46 4.91 68.65 46.49 0.097
BHM 98.25 27.38 84.74 25.99 82.68 37.57 0.402
CBHM 94.71 8.36 79.27 8.70 70.39 44.99 0.134
BMA 97.20 17.75 82.49 20.40 79.90 38.51 0.338
EXNEX 97.15 17.80 78.74 12.98 72.42 38.90 0.278
mEXNEX1/13 96.39 17.06 79.08 11.88 72.42 39.00 0.268
mEXNEX0 94.36 4.94 78.46 6.00 68.65 45.88 0.107
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A.2 Simulation Study for Realised Sample Size With

Re-Calibrated ∆α Values

In addition to those in the Chapter 2, a further simulation study was conducted on

the realised sample size case of 20, 10, 8, 18 and 7 patients across the five baskets. In

the previous study, the decision cut-off, ∆α, was calibrated under a null scenario based

on nk = 13 patients in each basket and applied to the realised sample sizes. In this

simulation, the ∆α values are re-calibrated based on the unequal sample sizes to again

achieve a basket specific type I error rate of 10% under the null scenario.

Table A.2.1: Re-calibrated ∆α values for a simulation study comparing information
borrowing methods based on realised sample sizes of 20, 10, 8, 18 and 7 across the five
baskets as opposed to the planned sample size.

∆α1 ∆α2 ∆α3 ∆α4 ∆α5

Independent 0.859 0.862 0.922 0.899 0.786

BHM 0.852 0.811 0.806 0.844 0.806

CBHM 0.962 0.912 0.855 0.964 0.820

BMA 0.876 0.856 0.865 0.876 0.863

EXNEX 0.861 0.849 0.868 0.875 0.822

mEXNEX1/13 0.877 0.887 0.907 0.903 0.836

mEXNEX0 0.880 0.888 0.937 0.916 0.831
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Table A.2.2: Operating characteristics for a simulation study to compare information
borrowing models based on the realised sample size of 20, 10, 8, 18 and 7 across the
baskets under data scenarios 1-6, with re-calibration of ∆α to take into account the
unequal sample sizes.

% Reject % All Correct FWER
Sample Size 20 10 8 18 7

Scenario 1 0.15 0.15 0.15 0.15 0.15
Independent 10.45 10.75 9.81 9.38 9.39 59.19 0.408
BHM 9.34 10.17 10.18 9.62 10.48 69.84 0.316
CBHM 10.21 10.11 10.21 10.62 10.05 68.36 0.316
BMA 10.15 9.47 10.17 9.62 9.92 65.69 0.343
EXNEX 10.16 9.99 9.76 9.55 9.68 64.33 0.357
mEXNEX1/13 10.14 9.12 9.98 9.52 9.54 62.45 0.376
mEXNEX0 9.72 9.88 9.20 9.93 10.21 59.77 0.402
Scenario 2 0.45 0.15 0.15 0.15 0.15
Independent 95.51 10.35 10.18 10.42 9.57 62.38 0.348
BHM 94.78 20.90 18.29 17.02 19.00 49.18 0.467
CBHM 94.92 13.37 12.04 13.12 9.97 60.71 35.23
BMA 95.62 13.87 13.23 13.57 13.62 60.06 0.366
EXNEX 95.52 15.93 10.54 11.64 14.32 57.48 0.392
mEXNEX1/13 95.67 10.76 10.49 11.29 13.01 62.12 0.348
mEXNEX0 95.22 10.53 8.94 9.51 9.86 63.11 0.398
Scenario 3 0.45 0.45 0.15 0.15 0.15
Independent 95.75 80.2 10.07 9.91 9.35 56.38 0.266
BHM 96.58 89.87 24.72 19.78 25.81 44.34 0.468
CBHM 94.88 82.90 12.75 13.39 10.27 55.66 0.281
BMA 96.45 84.45 19.17 16.82 20.09 47.48 0.379
EXNEX 96.27 87.40 10.89 12.53 22.49 50.69 0.373
mEXNEX1/13 96.36 81.36 10.74 11.47 15.13 51.41 0.315
mEXNEX0 95.48 79.57 9.10 9.89 9.34 56.30 0.258
Scenario 4 0.45 0.45 0.45 0.15 0.15
Independent 95.99 80.41 75.40 9.93 9.26 47.03 0.184
BHM 97.93 92.13 87.46 25.06 32.78 41.31 0.434
CBHM 95.66 84.73 78.77 14.29 11.27 49.50 0.205
BMA 97.23 89.25 82.89 19.95 25.72 39.84 0.395
EXNEX 97.41 89.41 78.13 12.79 26.96 43.29 0.356
mEXNEX1/13 96.62 84.43 77.87 11.92 17.84 45.91 0.265
mEXNEX0 95.36 79.89 74.86 9.58 10.11 46.68 0.189
Scenario 5 0.45 0.45 0.45 0.45 0.15
Independent 95.65 79.53 75.31 94.53 9.14 48.92 0.091
BHM 98.77 94.74 93.09 98.14 56.04 32.36 0.560
CBHM 95.80 86.36 80.95 95.93 24.02 43.59 0.240
BMA 98.11 89.33 91.39 97.80 27.96 56.46 0.280
EXNEX 98.11 90.17 80.77 95.75 28.48 47.97 0.285
mEXNEX1/13 97.47 86.96 77.82 96.32 19.48 51.70 0.195
mEXNEX0 95.56 79.96 75.49 93.87 9.98 49.22 0.098
Scenario 6 0.45 0.45 0.45 0.45 0.45
Independent 95.75 79.81 75.37 94.22 71.10 38.88
BHM 99.11 97.17 96.10 98.86 95.87 89.11
CBHM 96.18 91.23 85.48 96.36 82.04 64.41
BMA 97.79 90.15 92.17 97.53 89.91 71.44
EXNEX 98.10 90.30 83.96 96.19 89.55 65.24
mEXNEX1/13 97.50 87.58 78.17 95.73 80.25 50.10
mEXNEX0 95.82 79.31 74.10 93.79 70.47 37.04
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Table A.2.3: Operating characteristics for a simulation study to compare information
borrowing models based on the realised sample size of 20, 10, 8, 18 and 7 across the
baskets under data scenarios 7-12, with re-calibration of ∆α to take into account the
unequal sample sizes.

% Reject % All Correct FWER
Sample Size 20 10 8 18 7

Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 78.83 8.21 9.13 8.93 7.84 55.53 0.301
BHM 78.00 19.50 17.96 16.31 17.63 40.12 0.428
CBHM 60.63 10.06 16.72 6.66 15.74 42.67 0.297
BMA 79.81 14.83 14.57 14.46 14.35 47.13 0.382
EXNEX 79.02 13.78 8.98 10.96 7.50 49.89 0.337
mEXNEX1/13 80.24 11.12 10.11 10.42 13.19 51.91 0.342
mEXNEX0 79.68 10.70 9.35 9.65 9.67 52.75 0.340
Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 78.90 54.35 53.30 9.02 8.06 19.57 0.165
BHM 86.15 76.36 71.75 25.51 31.72 23.43 0.421
CBHM 62.79 55.41 62.90 10.38 20.11 14.05 0.222
BMA 84.68 71.07 66.84 21.77 24.01 20.14 0.389
EXNEX 84.09 69.48 55.88 11.64 10.13 28.66 0.196
mEXNEX1/13 82.72 63.68 57.25 11.49 19.66 21.76 0.280
mEXNEX0 79.86 59.62 54.05 9.56 9.77 21.98 0.184
Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 95.38 54.25 53.27 9.16 7.85 23.28 0.163
BHM 97.38 77.04 72.24 25.19 31.62 26.40 0.426
CBHM 88.33 52.07 61.30 8.06 15.46 20.90 0.179
BMA 97.04 70.87 66.15 20.11 24.20 23.53 0.378
EXNEX 96.96 70.47 56.85 11.73 10.24 32.29 0.197
mEXNEX1/13 96.43 63.35 57.48 11.54 17.70 26.03 0.261
mEXNEX0 95.28 57.62 54.19 9.42 9.70 24.48 0.182
Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 95.24 77.09 53.15 76.13 7.90 27.07 0.079
BHM 98.66 93.97 82.81 89.51 51.73 25.62 0.517
CBHM 89.02 78.64 64.80 67.77 27.64 15.17 0.276
BMA 98.01 89.56 79.79 86.92 27.83 45.37 0.278
EXNEX 98.01 89.60 57.61 81.70 20.38 30.05 0.204
mEXNEX1/13 97.07 86.30 58.17 81.43 21.49 31.68 0.215
mEXNEX0 95.42 79.57 53.87 77.13 9.61 28.49 0.096
Scenario 11 0.15 0.15 0.15 0.15 0.45
Independent 9.17 8.21 8.99 8.97 69.47 47.74 0.309
BHM 13.40 16.85 15.25 13.73 67.61 34.84 0.388
CBHM 4.43 8.21 14.34 5.60 72.15 53.70 0.232
BMA 11.72 12.01 11.74 11.83 70.62 44.75 0.336
EXNEX 10.96 11.43 7.49 9.76 68.84 46.29 0.301
mEXNEX1/13 10.99 10.20 10.10 9.99 70.76 44.71 0.336
mEXNEX0 9.74 9.60 9.23 9.40 71.35 47.65 0.326
Scenario 12 0.15 0.15 0.45 0.15 0.45
Independent 9.18 8.21 74.48 9.15 69.43 39.71 0.243
BHM 17.76 21.71 79.62 17.42 76.08 33.29 0.404
CBHM 3.92 7.67 79.50 5.28 71.84 49.32 0.131
BMA 13.61 14.94 77.06 14.58 72.83 33.63 0.337
EXNEX 14.02 15.26 69.33 11.24 68.75 29.17 0.338
mEXNEX1/13 12.97 12.04 77.20 10.84 72.08 35.89 0.299
mEXNEX0 10.20 10.19 74.94 9.72 71.25 39.35 0.268
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Table A.2.4: Operating characteristics for a simulation study to compare information
borrowing models based on the realised sample size of 20, 10, 8, 18 and 7 across the
baskets under data scenarios 13-16, with re-calibration of ∆α to take into account the
unequal sample sizes.

% Reject % All Correct FWER
Sample Size 20 10 8 18 7

Scenario 13 0.15 0.45 0.45 0.15 0.45
Independent 9.14 76.96 74.06 9.09 69.41 33.02 0.175
BHM 21.90 89.88 85.67 23.05 84.44 39.16 0.362
CBHM 4.29 74.62 79.71 5.77 71.35 37.84 0.080
BMA 16.20 85.69 81.50 16.87 77.37 35.37 0.289
EXNEX 16.27 86.11 76.40 11.70 69.08 35.04 0.261
mEXNEX1/13 14.06 81.32 77.90 11.55 74.14 34.28 0.239
mEXNEX0 10.31 79.30 75.32 9.46 71.20 34.64 0.189
Scenario 14 0.15 0.45 0.45 0.45 0.45
Independent 9.26 77.06 74.50 93.93 69.29 34.41 0.093
BHM 31.41 93.18 91.31 97.98 89.91 48.62 0.314
CBHM 6.85 75.15 80.19 89.48 72.20 34.61 0.069
BMA 16.75 89.55 87.46 97.15 87.68 57.31 0.168
EXNEX 16.73 89.50 78.43 96.35 71.87 40.29 0.167
mEXNEX1/13 14.73 85.30 78.49 96.17 77.37 42.06 0.147
mEXNEX0 9.80 78.84 75.07 94.37 71.28 35.87 0.098
Scenario 15 0.45 0.15 0.15 0.15 0.45
Independent 95.18 8.24 9.07 9.29 69.31 49.74 0.243
BHM 96.52 24.35 23.96 19.89 79.27 37.98 0.451
CBHM 87.52 7.87 13.46 5.75 71.08 48.10 0.256
BMA 96.23 17.26 17.89 16.21 75.09 41.05 0.371
EXNEX 96.06 17.08 10.26 11.73 69.01 42.27 0.342
mEXNEX1/13 96.13 12.46 10.38 11.20 73.12 46.82 0.294
mEXNEX0 95.48 9.86 9.38 9.68 71.24 49.98 0.263
Scenario 16 0.45 0.15 0.45 0.15 0.45
Independent 95.31 8.03 74.65 8.94 69.44 41.92 0.163
BHM 97.69 30.04 86.54 24.47 85.75 39.04 0.417
CBHM 87.95 8.95 79.80 6.54 71.74 43.14 0.117
BMA 97.06 18.03 83.23 19.08 81.00 40.45 0.329
EXNEX 97.16 17.94 77.80 11.81 69.59 38.52 0.276
mEXNEX1/13 96.83 14.61 78.28 11.65 76.06 42.30 0.242
mEXNEX0 95.47 9.97 75.02 9.58 71.18 42.06 0.186
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Scenario 1: p=(0.15,0.15,0.15,0.15,0.15)
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Scenario 2: p=(0.45,0.15,0.15,0.15,0.15)
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Scenario 3: p=(0.45,0.45,0.15,0.15,0.15)

0

25

50

75

100

Ind BHM CBHM BMA EXNEX mEXNEX1 13 mEXNEX0

Method

%
 R

e
je

c
t

Scenario 4: p=(0.45,0.45,0.45,0.15,0.15)
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Scenario 5: p=(0.45,0.45,0.45,0.45,0.15)
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Scenario 6: p=(0.45,0.45,0.45,0.45,0.45)
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Scenario 7: p=(0.35,0.15,0.15,0.15,0.15)
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Figure A.2.1: Percentage of rejections of the null hypothesis for each information bor-
rowing method under data scenarios 1-10, based on the realised sample sizes of 20, 10,
8, 18 and 7, with re-calibration of ∆α to take into account unequal sample sizes.
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Scenario 11: p=(0.15,0.15,0.15,0.15,0.45)
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Scenario 12: p=(0.15,0.15,0.45,0.15,0.45)
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Scenario 13: p=(0.15,0.45,0.45,0.15,0.45)
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Scenario 14: p=(0.15,0.45,0.45,0.45,0.45)
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Scenario 15: p=(0.45,0.15,0.15,0.15,0.45)
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Scenario 16: p=(0.45,0.15,0.45,0.15,0.45)
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Figure A.2.2: Percentage of rejections of the null hypothesis for each information bor-
rowing method under data scenarios 11-16, based on the realised sample sizes of 20, 10,
8, 18 and 7, with re-calibration of ∆α to take into account unequal sample sizes.
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Figure A.2.3: The family-wise error rate (FWER) and percentage of times correct
inference is made across all baskets (% All Correct) for each information borrowing
method under each data scenario based on realised sample sizes of 20, 10, 8, 18 and 7,
with re-calibration of ∆α to take into account unequal sample sizes.

A.3 Estimation Ability of Information Borrowing

Models

Provided in Tables A.3.1, A.3.2 (planned sample size scenario), A.3.3, A.3.4, A.3.5

(realised sample size scenario), A.3.6, A.3.7 and A.3.8 (realised sample size scenario

with re-calibrated ∆α) are the mean posterior point estimates of pk across the 10,000

simulations in the simulation studies presented in 2. In brackets are the standard

deviation of these mean estimates.



APPENDIX A. SUPPORTING INFORMATION: CHAPTER 2 171

Table A.3.1: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on a planned sample size of 13 per basket under
scenarios 1-6.

Mean Point Estimate (standard deviation)
Sample Size 13 13 13 13 13

Scenario 1 0.15 0.15 0.15 0.15 0.15
Independent 0.151 (0.097) 0.150 (0.096) 0.151 (0.098) 0.151 (0.098) 0.153 (0.098)
BHM 0.150 (0.067) 0.149 (0.066) 0.149 (0.068) 0.150 (0.067) 0.151 (0.068)
CBHM 0.149 (0.084) 0.149 (0.085) 0.149 (0.084) 0.151 (0.086) 0.149 (0.085)
BMA 0.165 (0.074) 0.164 (0.073) 0.164 (0.074) 0.163 (0.074) 0.164 (0.075)
EXNEX 0.160 (0.079) 0.159 (0.079) 0.159 (0.080) 0.157 (0.078) 0.159 (0.089)
mEXNEX1/13 0.157 (0.083) 0.157 (0.082) 0.156 (0.083) 0.156 (0.082) 0.154 (0.081)
mEXNEX0 0.160 (0.090) 0.160 (0.089) 0.160 (0.089) 0.161 (0.090) 0.159 (0.079)
Scenario 2 0.45 0.15 0.15 0.15 0.15
Independent 0.459 (0.137) 0.150 (0.097) 0.151 (0.098) 0.151 (0.098) 0.151 (0.097)
BHM 0.381 (0.132) 0.167 (0.077) 0.167 (0.078) 0.169 (0.078) 0.167 (0.078)
CBHM 0.441 (0.147) 0.152 (0.095) 0.154 (0.096) 0.154 (0.096) 0.150 (0.095)
BMA 0.418 (0.137) 0.172 (0.079) 0.174 (0.079) 0.174 (0.079) 0.172 (0.078)
EXNEX 0.422 (0.132) 0.164 (0.081) 0.166 (0.082) 0.166 (0.082) 0.164 (0.082)
mEXNEX1/13 0.432 (0.135) 0.158 (0.084) 0.156 (0.083) 0.158 (0.084) 0.157 (0.084)
mEXNEX0 0.442 (0.132) 0.161 (0.091) 0.160 (0.090) 0.161 (0.090) 0.161 (0.089)
Scenario 3 0.45 0.45 0.15 0.15 0.15
Independent 0.446 (0.137) 0.452 (0.138) 0.150 (0.096) 0.151 (0.098) 0.151 (0.098)
BHM 0.404 (0.124) 0.402 (0.124) 0.180 (0.084) 0.182 (0.084) 0.182 (0.084)
CBHM 0.445 (0.142) 0.445 (0.142) 0.154 (0.099) 0.152 (0.098) 0.154 (0.099)
BMA 0.418 (0.127) 0.420 (0.129) 0.185 (0.087) 0.186 (0.088) 0.185 (0.087)
EXNEX 0.425 (0.127) 0.424 (0.129) 0.175 (0.086) 0.175 (0.085) 0.173 (0.086)
mEXNEX1/13 0.432 (0.134) 0.430 (0.134) 0.168 (0.088) 0.166 (0.088) 0.167 (0.088)
mEXNEX0 0.443 (0.130) 0.431 (0.129) 0.163 (0.089) 0.165 (0.089) 0.164 (0.090)
Scenario 4 0.45 0.45 0.45 0.15 0.15
Independent 0.449 (0.138) 0.449 (0.138) 0.448 (0.138) 0.152 (0.098) 0.153 (0.098)
BHM 0.415 (0.117) 0.416 (0.116) 0.416 (0.117) 0.200 (0.090) 0.203 (0.088)
CBHM 0.447 (0.139) 0.445 (0.137) 0.444 (0.137) 0.155 (0.101) 0.157 (0.102)
BMA 0.431 (0.117) 0.428 (0.116) 0.429 (0.117) 0.196 (0.096) 0.197 (0.096)
EXNEX 0.433 (0.123) 0.431 (0.120) 0.430 (0.123) 0.183 (0.091) 0.184 (0.090)
mEXNEX1/13 0.437 (0.130) 0.437 (0.129) 0.436 (0.130) 0.177 (0.092) 0.176 (0.090)
mEXNEX0 0.443 (0.128) 0.442 (0.130) 0.444 (0.130) 0.171 (0.089) 0.170 (0.088)
Scenario 5 0.45 0.45 0.45 0.45 0.15
Independent 0.449 (0.137) 0.448 (0.138) 0.449 (0.138) 0.450 (0.137) 0.152 (0.098)
BHM 0.428 (0.106) 0.427 (0.107) 0.427 (0.107) 0.427 (0.106) 0.238 (0.097)
CBHM 0.446 (0.135) 0.445 (0.135) 0.445 (0.135) 0.447 (0.137) 0.164 (0.112)
BMA 0.440 (0.108) 0.443 (0.108) 0.443 (0.108) 0.441 (0.107) 0.203 (0.102)
EXNEX 0.439 (0.116) 0.440 (0.116) 0.439 (0.117) 0.441 (0.114) 0.193 (0.095)
mEXNEX1/13 0.444 (0.124) 0.443 (0.124) 0.444 (0.124) 0.446 (0.126) 0.180 (0.092)
mEXNEX0 0.444 (0.129) 0.446 (0.130) 0.446 (0.128) 0.446 (0.129) 0.173 (0.088)
Scenario 6 0.45 0.45 0.45 0.45 0.45
Independent 0.447 (0.138) 0.450 (0.138) 0.448 (0.138) 0.450 (0.137) 0.450 (0.139)
BHM 0.451 (0.088) 0.450 (0.089) 0.451 (0.091) 0.449 (0.089) 0.449 (0.089)
CBHM 0.449 (0.124) 0.450 (0.123) 0.451 (0.122) 0.450 (0.123) 0.450 (0.123)
BMA 0.450 (0.104) 0.449 (0.103) 0.449 (0.100) 0.450 (0.104) 0.448 (0.103)
EXNEX 0.449 (0.107) 0.450 (0.109) 0.448 (0.110) 0.450 (0.110) 0.449 (0.109)
mEXNEX1/13 0.448 (0.118) 0.448 (0.120) 0.450 (0.120) 0.447 (0.119) 0.446 (0.119)
mEXNEX0 0.444 (0.127) 0.447 (0.128) 0.444 (0.127) 0.448 (0.126) 0.448 (0.127)
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Table A.3.2: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on a planned sample size of 13 per basket under
scenarios 7-10.

Mean Point Estimate (standard deviation)
Sample Size 13 13 13 13 13

Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 0.350 (0.131) 0.159 (0.098) 0.151 (0.096) 0.151 (0.096) 0.151 (0.097)
BHM 0.294 (0.112) 0.164 (0.072) 0.164 (0.072) 0.164 (0.071) 0.164 (0.072)
CBHM 0.335 (0.138) 0.153 (0.092) 0.154 (0.091) 0.154 (0.090) 0.154 (0.092)
BMA 0.324 (0.119) 0.171 (0.077) 0.172 (0.076) 0.172 (0.076) 0.171 (0.076)
EXNEX 0.329 (0.120) 0.164 (0.081) 0.165 (0.080) 0.165 (0.079) 0.165 (0.080)
mEXNEX1/13 0.337 (0.129) 0.150 (0.083) 0.159 (0.082) 0.159 (0.082) 0.159 (0.083)
mEXNEX0 0.348 (0.126) 0.161 (0.090) 0.161 (0.089) 0.162 (0.088) 0.161 (0.090)
Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 0.350 (0.131) 0.348 (0.132) 0.350 (0.131) 0.151 (0.096) 0.151 (0.097)
BHM 0.320 (0.102) 0.319 (0.103) 0.320 (0.101) 0.195 (0.078) 0.195 (0.079)
CBHM 0.344 (0.130) 0.342 (0.131) 0.344 (0.129) 0.160 (0.098) 0.160 (0.099)
BMA 0.337 (0.106) 0.335 (0.107) 0.336 (0.106) 0.192 (0.085) 0.192 (0.086)
EXNEX 0.338 (0.113) 0.336 (0.114) 0.337 (0.113) 0.181 (0.084) 0.180 (0.084)
mEXNEX1/13 0.340 (0.121) 0.338 (0.122) 0.340 (0.121) 0.176 (0.085) 0.175 (0.086)
mEXNEX0 0.348 (0.123) 0.346 (0.124) 0.348 (0.123) 0.169 (0.086) 0.169 (0.087)
Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 0.449 (0.137) 0.348 (0.132) 0.350 (0.131) 0.151 (0.096) 0.151 (0.097)
BHM 0.399 (0.117) 0.328 (0.104) 0.329 (0.103) 0.197 (0.082) 0.197 (0.083)
CBHM 0.443 (0.141) 0.345 (0.131) 0.347 (0.129) 0.158 (0.099) 0.157 (0.100)
BMA 0.420 (0.121) 0.340 (0.108) 0.342 (0.107) 0.194 (0.088) 0.193 (0.089)
EXNEX 0.425 (0.124) 0.340 (0.114) 0.341 (0.113) 0.182 (0.086) 0.181 (0.086)
mEXNEX1/13 0.434 (0.132) 0.340 (0.122) 0.342 (0.121) 0.176 (0.087) 0.175 (0.088)
mEXNEX0 0.442 (0.130) 0.347 (0.124) 0.349 (0.123) 0.169 (0.087) 0.169 (0.088)
Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 0.449 (0.137) 0.448 (0.138) 0.350 (0.131) 0.350 (0.130) 0.151 (0.097)
BHM 0.413 (0.107) 0.412 (0.108) 0.348 (0.098) 0.349 (0.096) 0.227 (0.090)
CBHM 0.444 (0.137) 0.442 (0.138) 0.349 (0.096) 0.350 (0.126) 0.164 (0.109)
BMA 0.429 (0.111) 0.438 (0.111) 0.359 (0.103) 0.359 (0.101) 0.200 (0.096)
EXNEX 0.432 (0.117) 0.430 (0.118) 0.352 (0.110) 0.353 (0.108) 0.191 (0.091)
mEXNEX1/13 0.438 (0.126) 0.437 (0.127) 0.353 (0.117) 0.353 (0.116) 0.180 (0.091)
mEXNEX0 0.444 (0.129) 0.442 (0.130) 0.352 (0.122) 0.352 (0.121) 0.172 (0.087)
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Table A.3.3: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on realised sample sizes for scenarios 1-6.

Mean Point Estimate (standard deviation)
Sample Size 20 10 8 18 7

Scenario 1 0.15 0.15 0.15 0.15 0.15
Independent 0.151 (0.078) 0.154 (0.110) 0.152 (0.123) 0.151 (0.083) 0.153 (0.131)
BHM 0.149 (0.061) 0.150 (0.074) 0.151 (0.077) 0.149 (0.064) 0.151 (0.079)
CBHM 0.148 (0.071) 0.152 (0.094) 0.153 (0.101) 0.149 (0.075) 0.151 (0.079)
BMA 0.160 (0.065) 0.167 (0.082) 0.171 (0.088) 0.161 (0.067) 0.174 (0.094)
EXNEX 0.156 (0.068) 0.161 (0.087) 0.166 (0.096) 0.157 (0.072) 0.167 (0.098)
mEXNEX1/13 0.153 (0.072) 0.160 (0.096) 0.166 (0.106) 0.153 (0.076) 0.168 (0.112)
mEXNEX0 0.162 (0.074) 0.169 (0.103) 0.178 (0.112) 0.165 (0.078) 0.183 (0.120)
Scenario 2 0.45 0.15 0.15 0.15 0.15
Independent 0.449 (0.111) 0.151 (0.111) 0.154 (0.124) 0.151 (0.083) 0.152 (0.131)
BHM 0.408 (0.110) 0.172 (0.090) 0.173 (0.096) 0.165 (0.075) 0.175 (0.099)
CBHM 0.445 (0.119) 0.153 (0.110) 0.153 (0.120) 0.153 (0.084) 0.155 (0.129)
BMA 0.427 (0.112) 0.178 (0.090) 0.183 (0.096) 0.170 (0.075) 0.185 (0.098)
EXNEX 0.432 (0.109) 0.170 (0.096) 0.173 (0.101) 0.164 (0.077) 0.177 (0.105)
mEXNEX1/13 0.440 (0.109) 0.163 (0.100) 0.167 (0.109) 0.158 (0.079) 0.171 (0.116)
mEXNEX0 0.446 (0.106) 0.172 (0.102) 0.179 (0.115) 0.164 (0.078) 0.177 (0.105)
Scenario 3 0.45 0.45 0.15 0.15 0.15
Independent 0.448 (0.111) 0.450 (0.157) 0.154 (0.124) 0.151 (0.082) 0.155 (0.132)
BHM 0.415 (0.105) 0.403 (0.134) 0.190 (0.099) 0.178 (0.079) 0.194 (0.103)
CBHM 0.446 (0.114) 0.443 (0.159) 0.155 (0.124) 0.151 (0.084) 0.157 (0.131)
BMA 0.429 (0.107) 0.418 (0.137) 0.198 (0.105) 0.179 (0.081) 0.204 (0.107)
EXNEX 0.434 (0.107) 0.422 (0.140) 0.184 (0.105) 0.169 (0.078) 0.188 (0.109)
mEXNEX1/13 0.443 (0.108) 0.437 (0.145) 0.175 (0.111) 0.163 (0.079) 0.179 (0.116)
mEXNEX0 0.447 (0.106) 0.445 (0.142) 0.180 (0.110) 0.167 (0.078) 0.186 (0.116)
Scenario 4 0.45 0.45 0.45 0.15 0.15
Independent 0.450 (0.110) 0.451 (0.156) 0.447 (0.176) 0.149 (0.083) 0.155 (0.129)
BHM 0.424 (0.101) 0.414 (0.128) 0.410 (0.137) 0.192 (0.084) 0.218 (0.104)
CBHM 0.447 (0.113) 0.445 (0.157) 0.443 (0.176) 0.155 (0.088) 0.157 (0.132)
BMA 0.433 (0.101) 0.428 (0.127) 0.425 (0.137) 0.185 (0.085) 0.217 (0.113)
EXNEX 0.435 (0.105) 0.430 (0.135) 0.426 (0.145) 0.176 (0.081) 0.201 (0.110)
mEXNEX1/13 0.444 (0.109) 0.442 (0.145) 0.440 (0.159) 0.165 (0.078) 0.190 (0.114)
mEXNEX0 0.446 (0.107) 0.443 (0.142) 0.443 (0.154) 0.166 (0.077) 0.191 (0.109)
Scenario 5 0.45 0.45 0.45 0.45 0.15
Independent 0.448 (0.112) 0.448 (0.157) 0.448 (0.175) 0.449 (0.117) 0.153 (0.131)
BHM 0.436 (0.091) 0.432 (0.111) 0.429 (0.117) 0.435 (0.094) 0.277 (0.106)
CBHM 0.445 (0.108) 0.446 (0.151) 0.444 (0.167) 0.444 (0.114) 0.187 (0.152)
BMA 0.443 (0.091) 0.443 (0.114) 0.443 (0.124) 0.446 (0.095) 0.226 (0.123)
EXNEX 0.445 (0.098) 0.440 (0.127) 0.437 (0.135) 0.445 (0.101) 0.219 (0.116)
mEXNEX1/13 0.448 (0.106) 0.446 (0.139) 0.445 (0.153) 0.448 (0.109) 0.198 (0.113)
mEXNEX0 0.445 (0.106) 0.444 (0.143) 0.441 (0.154) 0.445 (0.111) 0.190 (0.106)
Scenario 6 0.45 0.45 0.45 0.45 0.45
Independent 0.450 (0.110) 0.449 (0.158) 0.449 (0.175) 0.450 (0.116) 0.447 (0.184)
BHM 0.451 (0.083) 0.449 (0.099) 0.449 (0.103) 0.450 (0.086) 0.451 (0.105)
CBHM 0.450 (0.104) 0.448 (0.138) 0.448 (0.154) 0.451 (0.107) 0.451 (0.161)
BMA 0.450 (0.090) 0.451 (0.113) 0.449 (0.124) 0.449 (0.091) 0.448 (0.127)
EXNEX 0.451 (0.094) 0.449 (0.121) 0.445 (0.129) 0.449 (0.098) 0.448 (0.134)
mEXNEX1/13 0.446 (0.104) 0.448 (0.138) 0.446 (0.149) 0.449 (0.091) 0.448 (0.127)
mEXNEX0 0.447 (0.106) 0.443 (0.141) 0.444 (0.154) 0.445 (0.112) 0.442 (0.161)
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Table A.3.4: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on realised sample sizes of 20, 10, 8, 18 and 7
patients across the 5 baskets for scenarios 7-12.

Mean Point Estimate (standard deviation)
Sample Size 20 10 8 18 7

Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 0.350 (0.106) 0.151 (0.111) 0.153 (0.121) 0.151 (0.082) 0.154 (0.130)
BHM 0.312 (0.098) 0.168 (0.083) 0.171 (0.086) 0.165 (0.069) 0.172 (0.090)
CBHM 0.339 (0.113) 0.155 (0.105) 0.158 (0.113) 0.154 (0.080) 0.160 (0.121)
BMA 0.330 (0.100) 0.178 (0.087) 0.183 (0.090) 0.172 (0.072) 0.185 (0.095)
EXNEX 0.336 (0.102) 0.169 (0.092) 0.173 (0.097) 0.163 (0.073) 0.176 (0.102)
mEXNEX1/13 0.344 (0.106) 0.163 (0.098) 0.167 (0.106) 0.158 (0.076) 0.171 (0.113)
mEXNEX0 0.351 (0.102) 0.173 (0.103) 0.178 (0.112) 0.165 (0.076) 0.181 (0.120)
Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 0.350 (0.106) 0.347 (0.150) 0.349 (0.165) 0.151 (0.082) 0.154 (0.130)
BHM 0.326 (0.091) 0.138 (0.112) 0.316 (0.118) 0.188 (0.074) 0.206 (0.089)
CBHM 0.344 (0.107) 0.341 (0.147) 0.342 (0.160) 0.158 (0.086) 0.167 (0.126)
BMA 0.339 (0.094) 0.336 (0.117) 0.337 (0.125) 0.185 (0.078) 0.206 (0.101)
EXNEX 0.340 (0.097) 0.336 (0.125) 0.336 (0.134) 0.174 (0.075) 0.194 (0.102)
mEXNEX1/13 0.346 (0.103) 0.344 (0.137) 0.345 (0.148) 0.166 (0.076) 0.186 (0.109)
mEXNEX0 0.351 (0.102) 0.351 (0.136) 0.354 (0.146) 0.166 (0.075) 0.190 (0.109)
Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 0.450 (0.111) 0.347 (0.150) 0.349 (0.165) 0.151 (0.082) 0.154 (0.130)
BHM 0.413 (0.103) 0.329 (0.115) 0.328 (0.122) 0.189 (0.078) 0.209 (0.097)
CBHM 0.445 (0.115) 0.349 (0.148) 0.347 (0.162) 0.155 (0.086) 0.161 (0.131)
BMA 0.428 (0.104) 0.344 (0.119) 0.345 (0.126) 0.185 (0.081) 0.210 (0.106)
EXNEX 0.433 (0.105) 0.341 (0.127) 0.342 (0.135) 0.174 (0.077) 0.196 (0.106)
mEXNEX1/13 0.442 (0.109) 0.345 (0.138) 0.347 (0.149) 0.165 (0.077) 0.186 (0.110)
mEXNEX0 0.446 (0.106) 0.352 (0.136) 0.354 (0.146) 0.166 (0.075) 0.190 (0.109)
Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 0.450 (0.111) 0.446 (0.157) 0.349 (0.165) 0.350 (0.110) 0.154 (0.130)
BHM 0.423 (0.092) 0.414 (0.113) 0.355 (0.111) 0.355 (0.087) 0.258 (0.100)
CBHM 0.443 (0.111) 0.438 (0.152) 0.351 (0.155) 0.350 (0.106) 0.185 (0.142)
BMA 0.434 (0.093) 0.429 (0.118) 0.365 (0.119) 0.363 (0.090) 0.223 (0.115)
EXNEX 0.437 (0.099) 0.429 (0.128) 0.356 (0.129) 0.355 (0.097) 0.212 (0.110)
mEXNEX1/13 0.444 (0.106) 0.439 (0.142) 0.356 (0.144) 0.353 (0.104) 0.194 (0.110)
mEXNEX0 0.446 (0.106) 0.442 (0.142) 0.355 (0.146) 0.352 (0.104) 0.191 (0.108)
Scenario 11 0.15 0.15 0.15 0.15 0.45
Independent 0.150 (0.079) 0.151 (0.111) 0.153 (0.121) 0.151 (0.082) 0.449 (0.186)
BHM 0.160 (0.066) 0.165 (0.081) 0.168 (0.084) 0.161 (0.067) 0.352 (0.161)
CBHM 0.152 (0.077) 0.154 (0.105) 0.157 (0.114) 0.152 (0.079) 0.429 (0.201)
BMA 0.165 (0.066) 0.172 (0.083) 0.177 (0.087) 0.166 (0.068) 0.406 (0.170)
EXNEX 0.160 (0.069) 0.167 (0.089) 0.171 (0.094) 0.161 (0.071) 0.408 (0.166)
mEXNEX1/13 0.155 (0.073) 0.162 (0.096) 0.167 (0.103) 0.156 (0.075) 0.432 (0.170)
mEXNEX0 0.162 (0.074) 0.172 (0.101) 0.181 (0.107) 0.166 (0.076) 0.440 (0.161)
Scenario 12 0.15 0.15 0.45 0.15 0.45
Independent 0.150 (0.079) 0.151 (0.110) 0.449 (0.173) 0.151 (0.082) 0.449 (0.186)
BHM 0.170 (0.069) 0.179 (0.086) 0.381 (0.149) 0.171 (0.071) 0.378 (0.156)
CBHM 0.152 (0.079) 0.154 (0.110) 0.442 (0.179) 0.153 (0.082) 0.442 (0.192)
BMA 0.172 (0.070) 0.182 (0.088) 0.410 (0.156) 0.174 (0.072) 0.408 (0.164)
EXNEX 0.165 (0.071) 0.175 (0.091) 0.415 (0.154) 0.166 (0.075) 0.441 (0.161)
mEXNEX1/13 0.159 (0.074) 0.169 (0.097) 0.431 (0.160) 0.160 (0.076) 0.430 (0.168)
mEXNEX0 0.162 (0.074) 0.175 (0.097) 0.441 (0.152) 0.166 (0.075) 0.441 (0.161)
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Table A.3.5: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on realised sample sizes of 20, 10, 8, 18 and 7
patients across the 5 baskets for scenarios 13-16.

Mean Point Estimate (standard deviation)
Sample Size 20 10 8 18 7

Scenario 13 0.15 0.45 0.45 0.15 0.15
Independent 0.150 (0.079) 0.446 (0.157) 0.449 (0.173) 0.151 (0.082) 0.449 (0.186)
BHM 0.181 (0.073) 0.402 (0.134) 0.400 (0.142) 0.184 (0.075) 0.397 (0.149)
CBHM 0.152 (0.080) 0.444 (0.159) 0.447 (0.175) 0.153 (0.084) 0.446 (0.188)
BMA 0.179 (0.076) 0.421 (0.139) 0.420 (0.147) 0.182 (0.078) 0.419 (0.154)
EXNEX 0.171 (0.074) 0.424 (0.140) 0.422 (0.149) 0.173 (0.076) 0.421 (0.157)
mEXNEX1/13 0.163 (0.074) 0.435 (0.147) 0.436 (0.158) 0.165 (0.076) 0.434 (0.167)
mEXNEX0 0.164 (0.072) 0.441 (0.143) 0.442 (0.152) 0.166 (0.075) 0.441 (0.160)
Scenario 14 0.15 0.45 0.45 0.45 0.45
Independent 0.150 (0.079) 0.446 (0.157) 0.449 (0.173) 0.450 (0.115) 0.449 (0.186)
BHM 0.206 (0.083) 0.421 (0.122) 0.420 (0.129) 0.429 (0.100) 0.419 (0.135)
CBHM 0.155 (0.086) 0.445 (0.156) 0.448 (0.172) 0.448 (0.116) 0.448 (0.185)
BMA 0.185 (0.084) 0.437 (0.123) 0.438 (0.130) 0.442 (0.101) 0.438 (0.137)
EXNEX 0.178 (0.078) 0.435 (0.131) 0.435 (0.140) 0.441 (0.105) 0.435 (0.147)
mEXNEX1/13 0.166 (0.075) 0.442 (0.143) 0.444 (0.153) 0.446 (0.110) 0.443 (0.162)
mEXNEX0 0.164 (0.072) 0.441 (0.143) 0.443 (0.152) 0.446 (0.109) 0.441 (0.160)
Scenario 15 0.45 0.15 0.15 0.15 0.45
Independent 0.450 (0.111) 0.151 (0.111) 0.153 (0.121) 0.151 (0.082) 0.149 (0.186)
BHM 0.415 (0.107) 0.184 (0.093) 0.189 (0.097) 0.176 (0.076) 0.392 (0.153)
CBHM 0.447 (0.115) 0.153 (0.112) 0.155 (0.122) 0.153 (0.083) 0.449 (0.189)
BMA 0.428 (0.109) 0.189 (0.095) 0.196 (0.099) 0.178 (0.078) 0.412 (0.156)
EXNEX 0.433 (0.107) 0.177 (0.096) 0.183 (0.102) 0.169 (0.076) 0.417 (0.159)
mEXNEX1/13 0.442 (0.109) 0.168 (0.100) 0.175 (0.107) 0.161 (0.077) 0.431 (0.168)
mEXNEX0 0.446 (0.106) 0.175 (0.100) 0.182 (0.107) 0.161 (0.077) 0.431 (0.158)
Scenario 16 0.45 0.15 0.45 0.15 0.45
Independent 0.450 (0.111) 0.151 (0.110) 0.449 (0.173) 0.151 (0.082) 0.449 (0.186)
BHM 0.422 (0.102) 0.202 (0.095) 0.407 (0.139) 0.189 (0.080) 0.405 (0.146)
CBHM 0.448 (0.113) 0.155 (0.114) 0.447 (0.174) 0.154 (0.085) 0.447 (0.187)
BMA 0.434 (0.104) 0.201 (0.102) 0.424 (0.138) 0.185 (0.083) 0.423 (0.146)
EXNEX 0.436 (0.105) 0.188 (0.098) 0.426 (0.146) 0.175 (0.078) 0.425 (0.154)
mEXNEX1/13 0.443 (0.108) 0.177 (0.099) 0.437 (0.156) 0.166 (0.077) 0.436 (0.165)
mEXNEX0 0.446 (0.106) 0.178 (0.099) 0.437 (0.156) 0.166 (0.077) 0.436 (0.165)
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Table A.3.6: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on realised sample sizes of 20, 10, 8, 18 and 7
patients with re-calibration of ∆α under scenarios 1-6.

Mean Point Estimate (standard deviation)
Sample Size 20 10 8 18 7

Scenario 1 0.15 0.15 0.15 0.15 0.15
Independent 0.150 (0.079) 0.153 (0.111) 0.153 (0.122) 0.150 (0.084) 0.153 (0.132)
BHM 0.149 (0.062) 0.149 (0.074) 0.151 (0.078) 0.149 (0.064) 0.151 (0.079)
CBHM 0.148 (0.071) 0.150 (0.092) 0.152 (0.099) 0.147 (0.074) 0.156 (0.107)
BMA 0.158 (0.065) 0.165 (0.081) 0.171 (0.087) 0.161 (0.068) 0.173 (0.091)
EXNEX 0.156 (0.069) 0.162 (0.089) 0.165 (0.096) 0.156 (0.071) 0.169 (0.098)
mEXNEX1/13 0.153 (0.073) 0.160 (0.096) 0.165 (0.105) 0.155 (0.076) 0.168 (0.112)
mEXNEX0 0.162 (0.075) 0.170 (0.104) 0.176 (0.112) 0.165 (0.078) 0.182 (0.121)
Scenario 2 0.45 0.15 0.15 0.15 0.15
Independent 0.448 (0.110) 0.152 (0.109) 0.153 (0.122) 0.150 (0.083) 0.151 (0.129)
BHM 0.409 (0.112) 0.171 (0.091) 0.172 (0.095) 0.165 (0.074) 0.175 (0.099)
CBHM 0.445 (0.118) 0.154 (0.110) 0.154 (0.119) 0.152 (0.084) 0.156 (0.129)
BMA 0.426 (0.112) 0.177 (0.089) 0.183 (0.095) 0.171 (0.075) 0.187 (0.098)
EXNEX 0.432 (0.110) )0.172 (0.095) 0.175 (0.101) 0.163 (0.076) 0.176 (0.104)
mEXNEX1/13 0.444 (0.111) 0.161 (0.097) 0.168 (0.111) 0.160 (0.079) 0.169 (0.113)
mEXNEX0 0.446 (0.106) 0.175 (0.103) 0.179 (0.114) 0.164 (0.078) 0.181 (0.119)
Scenario 3 0.45 0.45 0.15 0.15 0.15
Independent 0.452 (0.113) 0.448 (0.157) 0.152 (0.123) 0.150 (0.083) 0.152 (0.128)
BHM 0.417 (0.106) 0.401 (0.136) 0.192 (0.100) 0.177 (0.078) 0.196 (0.103)
CBHM 0.448 (0.116) 0.446 (0.160) 0.156 (0.125) 0.152 (0.085) 0.156 (0.133)
BMA 0.427 (0.106) 0.416 (0.136) 0.201 (0.104) 0.181 (0.081) 0.205 (0.106)
EXNEX 0.434 (0.107) 0.425 (0.140) 0.186 (0.104) 0.169 (0.078) 0.189 (0.108)
mEXNEX1/13 0.443 (0.107) 0.436 (0.145) 0.176 (0.109) 0.162 (0.079) 0.178 (0.115)
mEXNEX0 0.448 (0.106) 0.440 (0.140) 0.181 (0.110) 0.167 (0.078) 0.186 (0.117)
Scenario 4 0.45 0.45 0.45 0.15 0.15
Independent 0.449 (0.112) 0.446 (0.157) 0.449 (0.176) 0.152 (0.084) 0.156 (0.132)
BHM 0.424 (0.102) 0.412 (0.129) 0.410 (0.139) 0.192 (0.084) 0.216 (0.104)
CBHM 0.448 (0.114) 0.447 (0.157) 0.445 (0.175) 0.154 (0.087) 0.159 (0.134)
BMA 0.435 (0.102) 0.431 (0.128) 0.428 (0.136) 0.187 (0.087) 0.215 (0.113)
EXNEX 0.438 (0.104) 0.429 (0.136) 0.428 (0.146) 0.176 (0.081) 0.200 (0.110)
mEXNEX1/13 0.444 (0.109) 0.436 (0.144) 0.439 (0.157) 0.165 (0.077) 0.190 (0.112)
mEXNEX0 0.445 (0.106) 0.445 (0.143) 0.444 (0.156) 0.165 (0.077) 0.192 (0.108)
Scenario 5 0.45 0.45 0.45 0.45 0.15
Independent 0.449 (0.110) 0.449 (0.156) 0.450 (0.173) 0.448 (0.117) 0.154 (0.130)
BHM 0.435 (0.090) 0.432 (0.112) 0.431 (0.119) 0.435 (0.092) 0.278 (0.106)
CBHM 0.446 (0.109) 0.445 (0.151) 0.443 (0.168) 0.445 (0.114) 0.187 (0.151)
BMA 0.445 (0.090) 0.444 (0.114) 0.443 (0.124) 0.444 (0.094) 0.227 (0.123)
EXNEX 0.443 (0.099) 0.439 (0.128) 0.437 (0.138) 0.442 (0.102) 0.218 (0.115)
mEXNEX1/13 0.447 (0.106) 0.447 (0.140) 0.444 (0.151) 0.444 (0.111) 0.197 (0.112)
mEXNEX0 0.446 (0.107) 0.445 (0.142) 0.441 (0.155) 0.446 (0.112) 0.192 (0.107)
Scenario 6 0.45 0.45 0.45 0.45 0.45
Independent 0.451 (0.110) 0.445 (0.158) 0.450 (0.175) 0.449 (0.118) 0.450 (0.187)
BHM 0.449 (0.082) 0.449 (0.097) 0.449 (0.101) 0.451 (0.085) 0.450 (0.104)
CBHM 0.449 (0.104) 0.449 (0.138) 0.450 (0.151) 0.449 (0.107) 0.452 (0.159)
BMA 0.451 (0.090) 0.451 (0.113) 0.448 (0.122) 0.449 (0.092) 0.447 (0.130)
EXNEX 0.449 (0.094) 0.445 (0.120) 0.449 (0.130) 0.447 (0.099) 0.443 (0.135)
mEXNEX1/13 0.448 (0.104) 0.446 (0.137) 0.446 (0.148) 0.449 (0.108) 0.445 (0.158)
mEXNEX0 0.447 (0.105) 0.440 (0.142) 0.443 (0.153) 0.446 (0.110) 0.435 (0.159)
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Table A.3.7: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on realised sample sizes of 20, 10, 8, 18 and 7
patients across the 5 baskets with re-calibration of ∆α under scenarios 7-12.

Mean Point Estimate (standard deviation)
Sample Size 20 10 8 18 7

Scenario 7 0.35 0.15 0.15 0.15 0.15
Independent 0.350 (0.106) 0.151 (0.111) 0.153 (0.121) 0.151 (0.082) 0.154 (0.130)
BHM 0.312 (0.098) 0.168 (0.083) 0.171 (0.086) 0.165 (0.069) 0.172 (0.090)
CBHM 0.337 (0.116) 0.153 (0.106) 0.155 (0.115) 0.152 (0.080) 0.157 (0.123)
BMA 0.330 (0.100) 0.178 (0.087) 0.183 (0.090) 0.172 (0.072) 0.185 (0.095)
EXNEX 0.336 (0.102) 0.169 (0.092) 0.173 (0.097) 0.163 (0.073) 0.176 (0.102)
mEXNEX1/13 0.344 (0.106) 0.163 (0.098) 0.167 (0.106) 0.158 (0.076) 0.171 (0.113)
mEXNEX0 0.351 (0.102) 0.173 (0.103) 0.178 (0.112) 0.165 (0.076) 0.181 (0.120)
Scenario 8 0.35 0.35 0.35 0.15 0.15
Independent 0.350 (0.106) 0.347 (0.150) 0.349 (0.165) 0.151 (0.082) 0.154 (0.130)
BHM 0.326 (0.091) 0.138 (0.112) 0.316 (0.118) 0.188 (0.074) 0.206 (0.089)
CBHM 0.341 (0.111) 0.338 (0.150) 0.340 (0.164) 0.156 (0.085) 0.162 (0.128)
BMA 0.339 (0.094) 0.336 (0.117) 0.337 (0.125) 0.185 (0.078) 0.206 (0.101)
EXNEX 0.340 (0.097) 0.336 (0.125) 0.336 (0.134) 0.174 (0.075) 0.194 (0.102)
mEXNEX1/13 0.346 (0.103) 0.344 (0.137) 0.345 (0.148) 0.166 (0.076) 0.186 (0.109)
mEXNEX0 0.351 (0.102) 0.351 (0.136) 0.354 (0.146) 0.166 (0.075) 0.190 (0.109)
Scenario 9 0.45 0.35 0.35 0.15 0.15
Independent 0.450 (0.111) 0.347 (0.150) 0.349 (0.165) 0.151 (0.082) 0.154 (0.130)
BHM 0.413 (0.103) 0.329 (0.115) 0.328 (0.122) 0.189 (0.078) 0.209 (0.097)
CBHM 0.443 (0.118) 0.344 (0.149) 0.346 (0.164) 0.154 (0.086) 0.157 (0.133)
BMA 0.428 (0.104) 0.344 (0.119) 0.345 (0.126) 0.185 (0.081) 0.210 (0.106)
EXNEX 0.433 (0.105) 0.341 (0.127) 0.342 (0.135) 0.174 (0.077) 0.196 (0.106)
mEXNEX1/13 0.442 (0.109) 0.345 (0.138) 0.347 (0.149) 0.165 (0.077) 0.186 (0.110)
mEXNEX0 0.446 (0.106) 0.352 (0.136) 0.354 (0.146) 0.166 (0.075) 0.190 (0.109)
Scenario 10 0.45 0.45 0.35 0.35 0.15
Independent 0.450 (0.111) 0.446 (0.157) 0.349 (0.165) 0.350 (0.110) 0.154 (0.130)
BHM 0.423 (0.092) 0.414 (0.113) 0.355 (0.111) 0.355 (0.087) 0.258 (0.100)
CBHM 0.434 (0.121) 0.431 (0.160) 0.343 (0.160) 0.343 (0.111) 0.174 (0.142)
BMA 0.434 (0.093) 0.429 (0.118) 0.365 (0.119) 0.363 (0.090) 0.223 (0.115)
EXNEX 0.437 (0.099) 0.429 (0.128) 0.356 (0.129) 0.355 (0.097) 0.212 (0.110)
mEXNEX1/13 0.444 (0.106) 0.439 (0.142) 0.356 (0.144) 0.353 (0.104) 0.194 (0.110)
mEXNEX0 0.446 (0.106) 0.442 (0.142) 0.355 (0.146) 0.352 (0.104) 0.191 (0.108)
Scenario 11 0.15 0.15 0.15 0.15 0.45
Independent 0.150 (0.079) 0.151 (0.111) 0.153 (0.121) 0.151 (0.082) 0.449 (0.186)
BHM 0.160 (0.066) 0.165 (0.081) 0.168 (0.084) 0.161 (0.067) 0.352 (0.161)
CBHM 0.151 (0.077) 0.152 (0.106) 0.155 (0.116) 0.151 (0.080) 0.430 (0.203)
BMA 0.165 (0.066) 0.172 (0.083) 0.177 (0.087) 0.166 (0.068) 0.406 (0.170)
EXNEX 0.160 (0.069) 0.167 (0.089) 0.171 (0.094) 0.161 (0.071) 0.408 (0.166)
mEXNEX1/13 0.155 (0.073) 0.162 (0.096) 0.167 (0.103) 0.156 (0.075) 0.432 (0.170)
mEXNEX0 0.162 (0.074) 0.172 (0.101) 0.181 (0.107) 0.166 (0.076) 0.440 (0.161)
Scenario 12 0.15 0.15 0.45 0.15 0.45
Independent 0.150 (0.079) 0.151 (0.110) 0.449 (0.173) 0.151 (0.082) 0.449 (0.186)
BHM 0.170 (0.069) 0.179 (0.086) 0.381 (0.149) 0.171 (0.071) 0.378 (0.156)
CBHM 0.151 (0.079) 0.152 (0.111) 0.442 (0.180) 0.152 (0.082) 0.442 (0.193)
BMA 0.172 (0.070) 0.182 (0.088) 0.410 (0.156) 0.174 (0.072) 0.408 (0.164)
EXNEX 0.165 (0.071) 0.175 (0.091) 0.415 (0.154) 0.166 (0.075) 0.441 (0.161)
mEXNEX1/13 0.159 (0.074) 0.169 (0.097) 0.431 (0.160) 0.160 (0.076) 0.430 (0.168)
mEXNEX0 0.162 (0.074) 0.175 (0.097) 0.441 (0.152) 0.166 (0.075) 0.441 (0.161)
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Table A.3.8: Simulation results for Chapter 2: Mean point estimates of pk across the
simulations (standard deviations) based on realised sample sizes of 20, 10, 8, 18 and 7
patients across the 5 baskets with re-calibration of ∆α under scenarios 13-16.

Mean Point Estimate (standard deviation)
Sample Size 20 10 8 18 7

Scenario 13 0.15 0.45 0.45 0.15 0.15
Independent 0.150 (0.079) 0.446 (0.157) 0.449 (0.173) 0.151 (0.082) 0.449 (0.186)
BHM 0.181 (0.073) 0.402 (0.134) 0.400 (0.142) 0.184 (0.075) 0.397 (0.149)
CBHM 0.152 (0.081) 0.444 (0.159) 0.447 (0.175) 0.153 (0.084) 0.446 (0.188)
BMA 0.179 (0.076) 0.421 (0.139) 0.420 (0.147) 0.182 (0.078) 0.419 (0.154)
EXNEX 0.171 (0.074) 0.424 (0.140) 0.422 (0.149) 0.173 (0.076) 0.421 (0.157)
mEXNEX1/13 0.163 (0.074) 0.435 (0.147) 0.436 (0.158) 0.165 (0.076) 0.434 (0.167)
mEXNEX0 0.164 (0.072) 0.441 (0.143) 0.442 (0.152) 0.166 (0.075) 0.441 (0.160)
Scenario 14 0.15 0.45 0.45 0.45 0.45
Independent 0.150 (0.079) 0.446 (0.157) 0.449 (0.173) 0.450 (0.115) 0.449 (0.186)
BHM 0.206 (0.083) 0.421 (0.122) 0.420 (0.129) 0.429 (0.100) 0.419 (0.135)
CBHM 0.154 (0.086) 0.444 (0.158) 0.446 (0.174) 0.446 (0.119) 0.447 (0.187)
BMA 0.185 (0.084) 0.437 (0.123) 0.438 (0.130) 0.442 (0.101) 0.438 (0.137)
EXNEX 0.178 (0.078) 0.435 (0.131) 0.435 (0.140) 0.441 (0.105) 0.435 (0.147)
mEXNEX1/13 0.166 (0.075) 0.442 (0.143) 0.444 (0.153) 0.446 (0.110) 0.443 (0.162)
mEXNEX0 0.164 (0.072) 0.441 (0.143) 0.443 (0.152) 0.446 (0.109) 0.441 (0.160)
Scenario 15 0.45 0.15 0.15 0.15 0.45
Independent 0.450 (0.111) 0.151 (0.111) 0.153 (0.121) 0.151 (0.082) 0.149 (0.186)
BHM 0.415 (0.107) 0.184 (0.093) 0.189 (0.097) 0.176 (0.076) 0.392 (0.153)
CBHM 0.446 (0.116) 0.151 (0.113) 0.153 (0.123) 0.152 (0.083) 0.445 (0.190)
BMA 0.428 (0.109) 0.189 (0.095) 0.196 (0.099) 0.178 (0.078) 0.412 (0.156)
EXNEX 0.433 (0.107) 0.177 (0.096) 0.183 (0.102) 0.169 (0.076) 0.417 (0.159)
mEXNEX1/13 0.442 (0.109) 0.168 (0.100) 0.175 (0.107) 0.161 (0.077) 0.431 (0.168)
mEXNEX0 0.446 (0.106) 0.175 (0.100) 0.182 (0.107) 0.161 (0.077) 0.431 (0.158)
Scenario 16 0.45 0.15 0.45 0.15 0.45
Independent 0.450 (0.111) 0.151 (0.110) 0.449 (0.173) 0.151 (0.082) 0.449 (0.186)
BHM 0.422 (0.102) 0.202 (0.095) 0.407 (0.139) 0.189 (0.080) 0.405 (0.146)
CBHM 0.447 (0.114) 0.153 (0.114) 0.447 (0.175) 0.153 (0.085) 0.447 (0.188)
BMA 0.434 (0.104) 0.201 (0.102) 0.424 (0.138) 0.185 (0.083) 0.423 (0.146)
EXNEX 0.436 (0.105) 0.188 (0.098) 0.426 (0.146) 0.175 (0.078) 0.425 (0.154)
mEXNEX1/13 0.443 (0.108) 0.177 (0.099) 0.437 (0.156) 0.166 (0.077) 0.436 (0.165)
mEXNEX0 0.446 (0.106) 0.178 (0.099) 0.437 (0.156) 0.166 (0.077) 0.436 (0.165)
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A.4 Simulation Study in Which the Truth Vector,

p, is Varied

There are an infinite number of data scenarios one could fall in when conducting clinical

trial analysis, the results presented in the previously mentioned simulation studies in

Chapter 2 are only a subset of these feasible possible data scenarios. The data scenarios

used in the simulation studies were selected to cover a wide range of cases, however,

some important cases may have not been investigated.

To overcome this, a further simulation study was conducted within which, rather

than fixing the true probability of success parameter prior to the study, for every sim-

ulation run a new random truth vector, p, was generated and data simulated from a

Binomial distribution using these p values. In order to ensure equal chances of lying in

the null and non-null case, p was selected with uniform probability across the ranges

[0,0.15] and [0.35,0.5].

A total of 20,000 simulations for each borrowing method was run under the three

simulation cases: planned sample size of nk = 13 in each basket, realised sample sizes

of 20, 10, 8, 18 and 7 without re-calibration of ∆α and the realised sample size case

with re-calibration. For each method and setting, we find the following operating

characteristics:

• Type I error rate - the percentage of times the null was rejected out of the cases

where the null was in fact true. This is computed for each basket.

• Power - the percentage of times the null was rejected out of the cases where the

true response rate was non-null. This is also computed for each basket.

• Percentage of all correct inference (% Correct) - the percentage of times the correct

decision regarding whether to accept/reject the null was made across all 5 baskets.

• Family-wise error rate (FWER) - the percentage of times at least one type I error
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was made across the 5 baskets (excluding the global alternative cases where pk is

non-null in all k baskets.

A.4.1 Planned Sample Size

Figure A.4.1 presents results for the planned sample size case in which 13 patients were

observed in each of the 5 baskets. The top section of the figure demonstrates the type

I error rate under each of the 7 methods. Similar to results presented in the planned

sample size simulation in Chapter 2, the BHM and BMA have the highest error rates

at approximately 5.0% and 4.51% respectively. All methods have errors less than or

equal to the nominal 10% level. The reduced error rates comes from, in some cases,

the true response rate lying well below the null level of 15%. The cut-off value ∆α

was calibrated for each method under a null scenario where the true response rate is

0.15. When a basket has a true response rate less than 0.15, the ∆α value becomes

conservative as it is easier to correctly identify that the treatment is ineffective. Under

each of the borrowing models there is some degree of pull towards the common mean,

which is most evident in the BHM and BMA case, and thus all have a higher error rate

than under an independent analysis. Both the standard EXNEX and mEXNEX1/13

model have almost identical rates both at around 3.2% each, whilst the mEXNEX0 has

a lower error rate of 2.7%.

When considering power, those methods with higher error rates also demonstrate the

greatest power. The BHM has a power value increased 6% to that of the independent

model but that came with the inflation of error as mentioned above. Again both the

EXNEX model and mEXNEX1/13 model perform almost identically with a power of

86%. The mEXNEX0 model has lower power at 83.9% but this is still a 2% improvement

over the independent model. The CBHM has very similar power and error rate to the

independent analysis.

The percentage of times correct conclusion was made across all 5 baskets is presented
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Figure A.4.1: Operating characteristics under varied truths for the planned sample size
case presented in Chapter 2 where 13 patients are observed in each basket.

in the bottom left of Figure A.4.1. The BMA approach alongside the BHM, EXNEX

and mEXNEX1/13 model all make the correct conclusion across baskets in 63% of the

simulations. However, the modified EXNEX approach with c = 0 makes slightly fewer

all correction conclusions at 61.2% but this is still greater than an independent analysis

which has a value of 57.6%.

A more substantial difference in methods is observed when looking at the family-

wise error rate. Methods that demonstrated lower type I error rate also present lower

FWERs, with the independent analysis giving the lowest error alongside the CBHM.

This must be weighed up with the lower percentage of all correct inference and power

that these two methods possess. The BHM and BMA have much larger FWER values,

as expected based on the inflated type I error rate.

To summarise, in the planned sample size case when the true response rate is varied,

the BHM and BMA continue to display undesirable error rates whilst the independent
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analysis and CBHM lack power. The modified EXNEX model with c = 1/13 performs

almost identically to the standard EXNEX model, whereas, when a more conservative

cut-off value c = 0 is implemented, error rates are reduced by 0.5% from the standard

EXNEX model but with a 2.1% reduction in power (but still a 2.4% improvement over

an independent analysis).

A.4.2 Realised Sample Size

In the realised sample size case, basket sample sizes are equal to 20, 10, 8, 18 and 7 and

∆α is calibrated based on the planned sample size of nk = 13 in each of the k baskets.

Results are presented in Figure A.4.2. Similar error rates are observed as in the planned

sample size case, with the BHM and BMA approach having inflated error rates with

higher errors in baskets where the sample size is small. In this case the mEXNEX0

model performs almost identically to an independent analysis due to the discreetness

of the data making it impossible for a basket to not be analysed as independent in first

step of the mEXNEXc procedure.

The EXNEX and mEXNEX1/13 again behave similarly in all metrics, thus little

would be gained by using the modified EXNEX approach in this case (particularly for

the choice of c made). The mEXNEX1/13 does generate a 0.3% higher probability of all

correct inference across the baskets compared to the EXNEX model whilst giving the

same FWER.

Looking at the percentage of all correct inference across the 5 baskets and the family-

wise error rates on a whole, performance of methods are very similar to the planned

sample size case but with uniformly lower values for the first metric. The exception

is the mEXNEX0 model, which now is identical to the independent approach for the

aforementioned reasons.

Overall, we conclude from these results that again a cut-off of c = 0 is not appro-

priate in the realised sample size case, however, performance when c = 1/13 is selected
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Figure A.4.2: Operating characteristics under varied truths for the realised sample size
case presented in Chapter 2 where 20, 10, 8, 18 and 7 patients are observed in the 5
baskets and ∆α is not re-calibrated

produces very similar results to the standard EXNEX model. Other values of c could

be beneficial here but this was calibrated based on the planned sample size case. Power

for smaller basket sizes tend to be considerably lower, so methods that borrow more

strongly show clear benefits in power improvement. For example, the BHM improves

power over an independent analysis by 7.2% in basket 5 when the sample size is just 7.

The mEXNEX1/13 model also demonstrates power improvement over an independent

analysis by 2.8%.

A.4.3 Realised Sample Size with Re-Calibrated ∆α

The above took the decision cut-off value ∆α calibrated based on the planned sample

size of 13 patients in each basket applied to the realised sample sizes of 20, 10, 8, 18

and 7 for the 5 baskets. In this section these ∆α values are re-calibrated based on the
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realised sample sizes. Results are akin to the realised sample size without re-calibration

case and hence discussion is omitted.
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Figure A.4.3: Operating characteristics under varied truths for the realised sample size
case presented in Chapter 2 where 20, 10, 8, 18 and 7 patients are observed in the 5
baskets and ∆α is re-calibrated

A.5 Evaluation of the 1-step mEXNEXc Models Com-

pared to the Proposed 2-step mEXNEXc Model

The specification of the mEXNEXc model outlined in Section 2.2.6 of Chapter 2, re-

quires a two step procedure:

• Step 1: Remove clearly heterogeneous baskets to be analysed independently, set-

ting πk = 0 in the EXNEX model. This is conducted based on some pre-defined

cut-off value c which is compared to the minimum pair-wise difference in responses.

• Step 2: Of remaining baskets, compute pairwise Hellinger distances and set the
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prior borrowing probability πk, to be the average of these distances (excluding

the distance to itself).

Here we explore why the use of both of these steps is advantageous compared to making

just one of these alterations to the standard EXNEX model. We consider four model

settings:

1. The standard EXNEX model where πk = 0.5 for all K baskets.

2. The EXNEX model with just step 2 i.e. no removal of heterogeneous baskets but

Hellinger distances used to define the πk values. Denote this as EXNEXHell.

3. The EXNEX model with just step 1, i.e. removing heterogeneous baskets and as-

signing remaining baskets a borrowing probability of 0.5. Denote this as EXNEXRc.

4. The mEXNEXc model as outlined in Section 2.2.6 which implements both steps.

A.5.1 Simulation Study Based on the Motivating VE-BASKET

trial

To make such a comparison we initially consider the simulation setting outlined in

Section 2.3 of Chapter 2 which is based on the motivating VE-BASKET trial. Results

presented in Figure A.5.1 are based on a planned and equal sample size of nk = 13

patients in each of the k baskets and a cut-off of c = 0 implemented for the methods

that require removal of heterogeneous baskets. Figure A.5.1 displays the percentage of

simulated data sets in which the null hypothesis is rejected for each basket and model

setting under the data scenarios outlined in Table 2.3.1 in Chapter 2. When the null is

true, the bars represent the basket’s type I error rate, else it is the power.

From Figure A.5.1 one can clearly see that when heterogeneous baskets are not

removed from the borrowing component (i.e. in the EXNEX and EXNEXHell models)

an inflation in error rate is evident. Whereas, models that take this removal step
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Figure A.5.1: The percentage of simulated data sets in which the null hypothesis was
rejected in each basket under the four model settings outlined to compare the 1-step
vs. 2-step mEXNEXc across the simulation settings provided in Table 2.3.1 in Chapter
2.

have far better error control at the cost of slightly lower statistical power. We would

therefore not recommend the EXNEXHell for use as it’s performance is inferior to the

other proposed modifications.

Only minimal differences in the mEXNEXc and EXNEXRc are observed here with

the mEXNEXc method giving consistently greater power compared to the EXNEXRc

method but only up to an increase of 0.5%. This increase occurs alongside insubstantial

inflation in error rates. Although the difference in these two methods is only slight in

this single study, we explore further trial settings to investigate the differences between

the two proposals.

A.5.2 Varying the Study Design

When conducting simulation studies there are a few design parameters to consider,

these include:

• The number of baskets, K, included in the study.
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• The sample size, nk, within the k baskets.

• The null and target response rate.

In the simulation study in Section A.5.1, the design parameters are specified to have

K = 5 baskets with nk = 13 patients in each of the k = 1, . . . , K baskets, while the

null and target response rates are fixed at q0 = 0.15 and q1 = 0.45 respectively. These

design parameters are in line with those of the VE-BASKET trial, which the simulation

is motivated by. We now use this simulation as a reference setting, while we vary one of

the three design parameters at a time to determine where differences in the mEXNEXc

and EXNEXRc, becomes more prominent. The different settings of design parameter

alterations are provided in Table A.5.1.

Table A.5.1: Simulation settings for comparing the modified EXNEX models where we
vary a single design parameter at a time.

Setting No. Baskets (K) Sample Size (nk) q0 q1

Reference 5 13 0.15 0.45
1 3 13 0.15 0.45
2 10 13 0.15 0.45
3 5 5 0.15 0.45
4 5 30 0.15 0.45
5 5 100 0.15 0.45
6 5 13 0.15 0.3
7 3 13 0.15 0.7

For the comparison of the design settings, the EXNEXHell model was excluded due

to it’s inferior performance in the previous simulations. For both models that remove

heterogeneous baskets we opt for two values of c, c = 0.05 and c = 0.1. The data

scenario applied is one in which we have a ratio of two baskets with a response rate of

q1 to three baskets with a response rate of q0.

Plotted in Figure A.5.2 are the rejection percentages for each basket and model

under the 8 different simulation settings outlined in Table A.5.1. The first two of these

settings vary the number of baskets from a very small number to moderately large,
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whilst settings 3-5 cover different possible sample sizes per basket, a case where the

number of patients is very small, a moderate number and then in setting 5 a larger

number of patients. The final two settings vary the target response rate with one value

being close to the null response rate and the second being fairly different from q0.

Looking first at the reference model, an average of 0.7% increase in power is observed

with just a 0.3% increase in type I error when using mEXNEXc over EXNEXRc when

c = 0.05. However, as the number of baskets, K, increases, the difference in type I

error rate is more evident. The increased inflation in error rates across all methods as

K increases comes about as less baskets are being treated independent at the removal

step. To treat a basket as independent we compute all pairwise difference in response

rates, i.e. for basket i, we treat it as independent if |Xi − Xj| > c for all i ̸= j

where Xi = Yi/ni, with Yi being the number of responses observed in basket i which

consists of ni patients. If we consider the case where the response rates are IID, then

the probability a basket is treated as independent is P(|X1 − X2| > c)K−1 which is

decreasing as K increases. As a result, when K = 10, borrowing will occur more

frequently between heterogeneous baskets and hence the error rates inflate to anywhere

between 12 and 18% dependent on method chosen (compared to 10.5 to 12.4% when

K = 5). When K = 3, more baskets are treated as independent and thus differences in

error rate and power are minimal.

More error rate inflation is observed when using mEXNEXc compared to EXNEXRc

when K = 10 (up to a 2% increase when c = 0.05 and 3% when c = 0.1). This again

comes down to fewer baskets being treated independently as despite this, the EXNEXRc

model limits borrowing by fixing the prior probabilities at πk = 0.5, whereas under the

mEXNEXc model, these probabilities tend to be higher resulting in more borrowing

from heterogeneous baskets and hence higher type I error rates.
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Figure A.5.2: The percentage of simulated data sets in which the null hypothesis was
rejected in each basket under the eight trial design settings outlined in Table A.5.1,
comparing the 1-step vs. 2-step mEXNEXc model.
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Looking at the effect of sample size, we note that as the sample size increases, the

Hellinger distance between two baskets decreases. These reduced Hellinger distances

for both homogeneous and heterogeneous baskets, when averaged, result in smaller πk

values and hence less borrowing. In fact, as nk increases to 100, these probabilities

can actually fall below 0.5, so we therefore have a lower chance of borrowing between

homogeneous baskets under the mEXNEXc model compared to the EXNEXRc model,

and hence we observe better error control (11.45% compared to 12.48%). However, as

the sample size increases, the increased certainty in estimates results in power tending

towards 100% regardless of method and hence no improvement in power is observed.

Even when nk is small at just 5 patients in each basket, the difference in error rates is

also relatively small at a 0.8% increase under the mEXNEXc model, whilst gaining on

average 1.2% power when c = 0.05.

The final varied design parameter considered is the target response rate, q1. When

q1 is closer to the null response rate, we observe minimal change in the type I error

rate from the nominal 10% level, whereas, when q1 = 0.7 this error rate rises to above

11% for both methods. Inflation in error rates is caused by a pull away from the true

mean towards the common mean. When the target response rate is close to the null,

this pull is less substantial compared to larger q1 values, hence explaining the minimal

difference in type I error rate when q1 = 0.3. Similar error rates are observed under

both methods, however the gain in power is greater under the mEXNEXc model at

53.2% compared to 52.5% under the EXNEXR0.05 model when q1 is closer to the null

response rate. This is due to the Hellinger distance, and hence πk values, being closer

to 1 under the mEXNEXc model whereas under the EXNEXRc model these are fixed

at 0.5.

From the above we conclude that, in general, the mEXNEXc model performs more

favourably than EXNEXRc when the sample size is very small or very large and when

the target response rate is closer to the null response rate. Whereas, the EXNEXRc
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model is preferred when the number of baskets increases and when the target response

rate is very different to the null response rate. Overall, we would recommend the two-

stage mEXNEXc method over the EXNEXRc model as a trial with fewer baskets and

a target response rate closer to the null is more realistic. Although an argument could

be made in some cases to use just the removal of heterogeneous baskets step.

A.6 Simulation Study for a Varied Number Baskets

In Section A.5.2 a simulation study was conducted with one parameter varied at a time,

this section now focuses in on just one of those parameters: the number of baskets,

denoted K. Two values of K are considered - K = 3 and K = 10 - with full simulation

results for several data scenarios and under each of the borrowing methods provided in

Sections A.6.1 and A.6.2.

For both cases a total of 10,000 simulation runs were used for each method and

data scenario. The VE-BASKET trial remains as the motivating example, as such, the

sample size in each basket is fixed at nk = 13 for all k = 1, . . . , K with a null and

target response rate of q0 = 0.15 and q0 = 0.45 respectively. Model specifications are

consistent with those outlined in Appendix 2.6 of Chapter 2.

A.6.1 Simulation Study for K = 3 Baskets

Under K = 3 baskets, 8 data scenarios are considered and outlined in Table A.6.1. Sce-

narios 1-4 cover varying number of effective baskets from none to all 3, whilst scenarios

5-8 consist of cases where some baskets are marginally effective with a true response

rate of pk = 0.35.

The modified EXNEX model was calibrated as outlined in the procedure in Section

2.2.6 in Chapter 2 and results for two values, c = 1/13 and c = 4/13, are presented here.

The CBHM was also tuned to get parameters a = −1.390 and b = 3.674. Calibrated
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Table A.6.1: Simulation study scenarios for the K = 3 setting

p1 p2 p3

Scenario 1 0.15 0.15 0.15
Scenario 2 0.45 0.15 0.15
Scenario 3 0.45 0.45 0.15
Scenario 4 0.45 0.45 0.45
Scenario 5 0.35 0.15 0.15
Scenario 6 0.35 0.35 0.15
Scenario 7 0.45 0.35 0.15
Scenario 8 0.45 0.35 0.35

∆α values are provided in Table A.6.2. Simulation results are presented in table form

in Table A.6.3, with rejection percentages also displayed in Figure A.6.1.

Table A.6.2: Calibrated ∆α values for the K = 3 basket simulation.

∆α

Independent 0.904
BHM 0.862
CBHM 0.895
BMA 0.873
EXNEX 0.894
mEXNEX1/13 0.916
mEXNEX4/13 0.891

Under data scenario 2, all methods give reasonably similar power values ranging

from 86.9% to 88.4%. Both the BHM and BMA approach give the smallest power

in this case with the mEXNEX1/14 model presenting the highest. Error rates tend

to be significantly smaller in the 3 basket case compared to the previous 5 basket

simulation, as does the difference in performance between all methods. The BHM and

BMA approach have inflated error rates at around 13%. Almost identical inflation is

observed under the EXNEX and mEXNEX4/14 model but the modified EXNEX model

with c = 1/13 has lower error rates at 10.8% (compared to 11.5%). So the mEXNEX1/13

model is appealing here for both it’s error control and superior power value.

Across all scenarios 1-8 the standard EXNEX model and mEXNEX4/14 model con-
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tinue to perform almost identically with only marginal differences observed in terms of

the type I error rate, power, FWER and percentage of all correct conclusions. How-

ever, when the cut-off is reduced to become more conservative at a value of c = 1/13,

noticeable differences arise, including a slight reduction in error rates with a slight loss

in power.

As in the previous simulation studies, the BHM and BMA procedure continue to

inflate the type I error rate to an unacceptable level but in the 3 basket case, unlike

the 5 basket case, tends to do little in terms of power improvement compared to the

EXNEX models which possess superior error control. For example, under scenario 3 in

which 2 of the 3 baskets are effective to treatment, power under the BHM is averaging

at 90.9% with a type I error rate of 21.8%, whereas, under the EXNEX model power

is 90.5% with a type I error rate of 11.6%. Therefore, one could argue that the minute

power improvement can not justify the 10% increase in type I error rate. However,

more improvement in power for the methods that borrow more strongly is observed in

baskets with marginally effective response rates, most notably seen in scenario 8.

In a simulation akin to that in Section A.4, a further study was conducted within

which the true response rate, p, was randomly generated within each simulation run.

Results of this is presented in Figure A.6.2. Again, the standard EXNEX model and

mEXNEX4/13 model produce very similar results where both have type I error rate of

2.8%, but the mEXNEX1/14 model has a slightly higher power at 85.9% compared to

85.7% under the EXNEX model. However, if the cut-off value c is reduced to 1/13 the

error rate then becomes 2.7%, so a marginal decrease, with power 85.4%. Weighing up

error control and power improvement one would favour the less conservative modified

EXNEX approach or the standard EXNEX model as the error rates are all relatively

similar but with power improvement over an independent analysis of about 2.5%.

All methods bar an independent analysis give approximately a 76% chance of mak-

ing the correct conclusions across all baskets however, family-wise error rates vary.



APPENDIX A. SUPPORTING INFORMATION: CHAPTER 2 194

Table A.6.3: Operating characteristics for a simulation consisting of K = 3 baskets.

% Reject % All Correct FWER % Reject % All Correct FWER
Scenario 1 Scenario 2

0.15 0.15 0.15 0.45 0.15 0.15
Independent 9.83 9.84 9.76 73.40 26.60 87.55 9.90 9.54 71.43 18.57
BHM 9.52 9.60 9.41 76.18 23.82 86.99 13.00 12.95 67.10 21.75
CBHM 9.79 9.69 9.52 76.05 23.95 87.30 12.82 12.67 66.77 21.95
BMA 9.37 9.71 9.39 76.74 23.26 86.86 14.51 14.12 66.22 22.48
EXNEX 9.97 10.22 9.84 73.93 26.07 88.03 11.56 11.49 68.34 21.66
mEXNEX1/13 10.20 9.92 10.08 73.74 26.26 88.36 10.82 10.82 69.57 20.25
mEXNEX4/13 9.94 10.14 9.84 74.04 25.96 88.31 11.52 11.42 68.62 21.55

Scenario 3 Scenario 4
0.45 0.45 0.15 0.45 0.45 0.45

Independent 87.78 87.44 9.77 69.27 9.77 87.94 87.21 87.84 67.97
BHM 91.13 90.75 21.75 62.66 21.75 94.33 94.34 94.26 85.48
CBHM 90.66 90.31 13.85 70.71 13.85 91.58 91.31 91.78 77.23
BMA 91.53 91.27 21.98 62.72 21.98 94.47 94.23 94.59 85.70
EXNEX 90.77 90.32 11.57 72.67 11.57 90.82 90.39 90.90 74.74
mEXNEX1/13 89.49 89.14 11.19 71.21 11.19 90.34 89.86 90.30 74.62
mEXNEX4/13 90.67 90.26 11.56 72.66 11.56 90.82 90.38 90.90 74.74

Scenario 5 Scenario 6
0.35 0.15 0.15 0.35 0.35 0.15

Independent 67.9 9.88 9.76 55.48 18.64 67.83 66.33 9.71 40.52 9.71
BHM 66.34 12.60 12.52 50.19 21.19 73.04 71.63 19.94 38.04 19.94
CBHM 66.82 12.53 12.34 50.00 20.92 71.70 70.51 15.86 42.60 15.86
BMA 66.24 13.86 13.66 49.26 21.88 74.14 72.57 21.67 37.14 21.67
EXNEX 68.11 11.26 11.26 52.46 21.13 72.20 70.78 11.52 46.23 11.52
mEXNEX1/13 68.80 10.69 10.41 53.66 19.73 70.06 68.63 11.06 45.09 11.06
mEXNEX4/13 68.29 11.24 11.30 52.64 21.15 72.19 70.77 11.50 46.23 11.50

Scenario 7 Scenario 8
0.45 0.35 0.15 0.45 0.45 0.35

Independent 87.88 66.50 9.64 52.69 9.64 87.96 66.43 67.84 39.71
BHM 90.64 72.50 20.68 48.48 20.68 93.59 79.47 80.26 65.73
CBHM 90.12 71.68 14.67 54.89 14.67 91.92 74.29 75.54 54.26
BMA 91.13 73.55 22.34 47.45 22.34 94.31 81.18 82.15 69.13
EXNEX 90.40 71.26 11.53 57.47 11.53 90.71 71.46 72.85 47.69
mEXNEX1/13 89.41 69.69 11.01 56.12 11.01 89.81 69.86 71.30 47.64
mEXNEX4/13 90.30 71.31 11.55 57.47 11.55 90.67 71.44 72.82 47.59
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Figure A.6.1: Percentage of rejections of the null hypothesis for each information bor-
rowing method under the K = 3 case.
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The BHM and BMA approach give FWER values of around 6.2% whilst the standard

EXNEX and mEXNEX4/13 models have a FWER of 4.7% with the mEXNEX0 model

slightly lower at 4.6%.
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Figure A.6.2: Operating characteristics under varied truths for each information bor-
rowing method for the K = 3 basket simulation study

To summarise, the effect of reducing the number of baskets is the slight reduction

in power alongside a smaller inflation in error rates particularly for the BHM and BMA

approach, however, the conclusions regarding method comparison appear to be very

similar to that in the planned sample size case with K = 5 baskets.
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A.6.2 Simulation Study for K = 10 Baskets

Under K = 10 baskets, 15 data scenarios are considered and outlined in Table A.6.4.

Scenarios 1-11 cover varying number of effective baskets from 1-10, whilst scenarios

12-15 consist of cases where some baskets are marginally effective with a true response

rate of pk = 0.35.

Table A.6.4: Simulation study scenarios for the K = 10 setting.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Scenario 1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Scenario 2 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Scenario 3 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Scenario 4 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Scenario 5 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15
Scenario 6 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15
Scenario 7 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15
Scenario 8 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15
Scenario 9 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15
Scenario 10 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15
Scenario 11 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Scenario 12 0.35 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Scenario 13 0.35 0.35 0.35 0.35 0.35 0.15 0.15 0.15 0.15 0.15
Scenario 14 0.45 0.45 0.45 0.35 0.35 0.35 0.15 0.15 0.15 0.15
Scenario 15 0.45 0.45 0.35 0.35 0.35 0.35 0.35 0.35 0.15 0.15

The modified EXNEX model was calibrated as outlined in the procedure in Section

2.2.6 in Chapter 2 and results of two calibrated cut-off values are presented here -

c = 0 and c = 1/13. The CBHM was also tuned to get parameters a = −23.475 and

b = 10.963. Calibrated ∆α values are provided in Table A.6.5.

Full results are presented in Tables A.6.6, A.6.7 and A.6.8, with the hypothesis

rejection percentages also displayed in Figures A.6.3 and A.6.4.

Consider scenario 2 where a single basket is heterogeneous and effective, the results

are similar to that in the K = 5 basket case. Again, substantial inflation in the type I

error rate is observed under the BHM and BMA approach, with an averaged error rate

of 17.2% and 12.7% respectively. Under the K = 5 basket case, a similar scenario with
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Table A.6.5: Calibrated ∆α values for the K = 10 basket simulation.

∆α

Independent 0.904
BHM 0.797
CBHM 0.896
BMA 0.844
EXNEX 0.833
mEXNEX0 0.868
mEXNEX1/13 0.841

a single heterogeneous basket resulted in an error rate of 16.9% and 13.2% respectively

- these values are very similar indicating that increasing the number of baskets does

little to eliminate error rate inflation under the two models that demonstrate the worst

performance, particularly as in these scenarios where the power is substantially lower

than an independent analysis (82.2% under the BHM compared to 88.3%).

Looking at other methods under the same scenario, the CBHM also has inflated error

rates at approximately 12%. This contradicts the calibration nature of this model that

takes a ‘strong’ definition of heterogeneity in that: if a single or multiple baskets have a

heterogeneous response, then all are deemed heterogeneous so analysed as independent.

In this scenario, there is clear heterogeneity thus it would be expected that the CBHM

performs similarly to the independent model. This is not the case, leading to the

conclusion that perhaps the calibration was slightly off.

The EXNEX model under scenario 2 also has fairly substantial error rates at 11.9%

with a power of 87%, whereas, under the more conservative modified EXNEX approach

with c = 0, error rates are around 10.5%, so close to the nominal level, with a power of

87.5% - an improvement over the standard EXNEX model. If the cut-off was increased

to c = 1/13, error rates increase to 11.3% with 87.4% power. Bringing together these

results, under scenario 2, of the borrowing models the mEXNEX0 model has both the

highest power and best error control.

Moving on to cases in which multiple baskets are effective to the treatment (as in
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scenarios 3-10), the pattern of results described above hold in that the BHM and BMA

inflate error rates, the mEXNEXc models have better error control than the standard

EXNEX model, particularly when c is more conservative, whilst still improving power

over an independent analysis. These are also the same conclusions drawn from the 5

basket simulation study presented in Chapter 2.

One can see that the error rate gets far more substantial across all methods as the

ratio of effective to ineffective baskets increases with the inflation greater than that in

the 5 basket case. For example, under K = 5 the maximum error rate for the BHM is

42.1%, whereas in the K = 10 case this is 76.8% which occurs under scenarios 5 and

10 respectively. In scenario 10 for K = 10, just one basket is ineffective with a true

response rate of 0.15 whilst the other 9 are effective with a higher response at 0.45. The

presence of 9 effective basket compared to just 4 in the K = 5 case causes a larger pull

up towards the common mean for the single heterogeneous basket, hence the greater

inflation. This holds for all methods, with maximum error rates uniformly increasing

from the K = 5 to K = 10 case. However, although this error inflation is observed,

power is improved across all methods, this is unsurprising due to the additional certainty

we gain from the extra 5 baskets included in the study.

Under the four scenarios in which a number of baskets have a marginally effective

response rate of 35%, all borrowing methods show a substantial gain in power com-

pared to an independent analysis, particularly for the marginally effective baskets. But

inflation in error rates continues to be an issue.

As in Section A.4, a further simulation was conducted within which the truth vector,

p, is varied within each simulation. The results are provided in Figure A.6.5. Unlike

in the K = 3 basket case, more substantial differences are observed in the standard

EXNEX model and the modified EXNEX approaches. The standard EXNEX model

has error rates and power of 4.6% and 88.3% respectively, the mEXNEX0 model has an

average error rate of 3.3% and power 86.2% whilst the mEXNEX1/13 model has 4.4%
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Figure A.6.3: Percentage of rejections of the null hypothesis for each information bor-
rowing method under the K = 10 case across scenarios 1-8.
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Figure A.6.4: Percentage of rejections of the null hypothesis for each information bor-
rowing method under the K = 10 case across scenarios 9-15.
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Figure A.6.5: Operating characteristics for comparison of information borrowing meth-
ods under varied truths for the K = 10 basket simulation study

error rate and 88.1% power. All have power improvement over an independent analysis

which has an average power of 83%, thus even under the most conservative modified

EXNEX approach, power is improved by around 6.2%.

Then looking at the percentage of times correct inference was made across all 10

baskets, highest values were observed under the EXNEX model, mEXNEX1/13 model,

a BMA approach and the BHM at around 42%. The mEXNEX0 model has value of

41.1% for all correct inference but the mEXNEX0 model had 5% lower family-wise

error rate compared to the standard EXNEX model. Weighing up both FWER and

all correct inference, the mEXNEX0 model appears optimal with FWER closer to that

of the independent analysis and CBHM, whilst giving 3% higher percentage of correct

inference compared to an independent analysis.

To summarise, this study confirms the conclusions drawn from the K = 5 basket

simulation study presented in Chapter 2 whilst also highlighting that the larger number
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of baskets, although improving certainty of estimates and power, causes an even less

favourable type I error rates.
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Table A.6.6: Operating characteristics for a simulation based on K = 10 baskets with
a sample size of nk = 13 in each (scenarios 1-6)

% Reject % All Correct FWER
Sample Size 13 13 13 13 13 13 13 13 13 13

Scenario 1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Independent 9.89 9.96 9.89 9.83 10.06 9.81 10.74 10.03 9.84 10.18 35.07 0.649
BHM 9.73 9.87 9.71 9.81 10.19 9.98 10.39 9.89 9.80 10.31 65.32 0.347
CBHM 10.21 10.14 9.88 9.91 10.19 9.80 10.55 10.14 9.75 10.09 59.35 0.407
BMA 10.08 10.17 9.99 10.14 10.39 10.16 10.85 9.91 10.06 10.51 54.78 0.452
EXNEX 9.67 9.59 9.71 9.74 9.78 9.60 10.62 9.53 9.50 10.18 49.15 0.509
mEXNEX1/13 9.94 9.92 9.81 9.82 9.95 9.73 10.79 9.59 9.76 10.40 44.86 0.551
mEXNEX0 10.05 9.81 9.95 9.81 9.97 9.60 10.82 9.96 9.87 10.25 36.39 0.636
Scenario 2 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Independent 88.34 9.80 9.84 9.88 9.97 9.65 10.71 9.85 9.51 10.40 34.97 0.608
BHM 82.15 16.95 16.85 17.12 17.17 16.77 17.67 17.45 16.90 17.78 25.42 0.596
CBHM 83.48 11.79 11.90 11.93 12.01 11.68 12.71 12.01 11.69 12.26 28.57 0.589
BMA 85.53 12.56 12.61 12.49 12.98 12.32 13.36 12.78 12.19 13.08 42.26 0.478
EXNEX 86.99 12.00 11.66 11.77 11.95 11.52 12.78 11.94 11.35 12.31 34.97 0.572
mEXNEX1/13 87.43 11.26 11.29 11.17 11.35 10.81 12.09 11.06 10.96 11.50 35.93 0.570
mEXNEX0 87.45 10.33 10.50 10.41 10.49 10.32 11.37 10.40 10.09 10.70 34.27 0.598
Scenario 3 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Independent 88.05 87.74 9.77 10.01 10.05 9.72 10.64 10.13 9.39 10.34 33.75 0.564
BHM 90.73 90.48 22.14 21.75 21.76 21.30 22.63 22.55 21.67 22.37 24.30 0.670
CBHM 89.05 88.74 12.24 12.00 12.23 12.01 13.15 12.26 11.84 12.58 29.69 0.606
BMA 87.82 86.99 15.79 16.05 16.28 15.75 16.84 16.34 15.51 16.49 31.44 0.528
EXNEX 89.52 88.72 13.87 13.80 14.18 13.59 14.99 14.28 13.51 14.28 28.73 0.605
mEXNEX1/13 89.12 88.22 13.01 12.83 13.21 12.77 13.75 13.14 12.50 13.39 29.01 0.595
mEXNEX0 88.35 87.56 11.26 11.07 11.24 10.91 11.97 11.22 11.06 11.43 32.04 0.563
Scenario 4 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Independent 88.05 87.51 87.87 9.69 9.88 9.67 10.77 9.91 9.63 10.01 32.76 0.518
BHM 93.52 93.02 93.48 26.27 25.73 25.61 26.74 26.51 25.85 26.35 21.91 0.696
CBHM 90.47 90.05 90.61 12.21 12.33 12.09 13.22 12.37 11.96 12.56 31.38 0.574
BMA 90.39 89.72 90.44 20.48 20.12 19.95 21.08 20.61 19.71 20.67 24.62 0.585
EXNEX 91.43 90.79 91.30 16.55 16.56 16.26 17.45 16.86 16.02 16.90 20.29 0.593
mEXNEX1/13 90.99 90.09 90.75 14.83 15.13 14.84 15.92 15.33 14.63 15.33 29.84 0.580
mEXNEX0 89.25 88.46 89.10 12.33 12.59 12.20 13.46 12.43 12.09 12.88 30.93 0.543
Scenario 5 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15
Independent 88.16 87.39 88.09 88.24 10.06 9.64 10.81 10.04 9.75 10.22 31.38 0.472
BHM 94.76 94.59 94.89 95.13 30.73 30.71 31.07 31.27 30.03 31.01 17.54 0.733
CBHM 90.79 90.37 90.99 91.13 12.18 11.83 13.11 12.11 11.81 12.36 31.92 0.524
BMA 92.98 92.45 93.12 93.10 24.87 24.51 25.38 25.02 24.58 24.81 19.50 0.655
EXNEX 92.50 92.23 92.51 92.80 20.40 19.92 20.99 20.53 20.02 20.43 27.11 0.587
mEXNEX1/13 91.90 91.45 91.83 92.08 18.18 17.99 19.14 18.30 17.86 18.39 29.14 0.557
mEXNEX0 90.16 89.77 90.19 90.22 14.41 13.90 15.27 14.02 13.72 14.56 29.98 0.520
Scenario 6 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15
Independent 88.44 87.38 88.15 88.38 88.49 9.61 10.79 10.05 9.63 10.37 31.21 0.413
BHM 96.04 96.06 96.16 96.34 95.88 35.96 36.30 36.24 35.57 35.98 15.50 0.766
CBHM 90.88 90.50 91.04 91.17 91.16 11.86 13.09 12.08 11.74 12.45 32.82 0.467
BMA 95.17 94.97 95.15 95.55 95.28 28.31 28.96 28.60 28.07 28.45 14.57 0.742
EXNEX 93.96 93.49 93.90 94.02 93.92 24.91 25.59 25.46 24.72 25.09 20.22 0.641
mEXNEX1/13 93.17 92.73 93.14 93.32 93.34 22.62 23.55 23.67 22.77 23.18 23.05 0.594
mEXNEX0 91.31 90.80 91.18 91.54 91.39 16.01 17.29 16.34 15.90 16.68 29.14 0.504
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Table A.6.7: Operating characteristics for a simulation based on K = 10 baskets with
a sample size of nk = 13 in each (scenarios 7-12)

% Reject % All Correct FWER
Sample Size 13 13 13 13 13 13 13 13 13 13

Scenario 7 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15
Independent 88.13 87.51 88.33 88.20 88.24 88.05 10.64 9.74 9.55 10.05 30.97 0.344
BHM 97.07 97.32 97.18 97.47 97.07 97.24 42.30 42.55 41.80 42.14 17.43 0.767
CBHM 90.89 90.51 90.98 91.23 91.09 91.06 13.47 12.55 12.14 12.80 33.58 0.399
BMA 96.49 96.42 96.55 96.99 96.45 96.67 30.74 30.14 29.75 29.86 18.46 0.746
EXNEX 95.59 95.23 95.33 95.82 95.38 95.67 29.66 29.26 28.63 28.88 16.83 0.709
mEXNEX1/13 94.84 94.69 94.61 95.19 94.85 95.02 28.09 27.61 27.38 27.64 17.91 0.667
mEXNEX0 92.19 92.06 92.15 92.59 92.48 92.43 19.17 18.41 18.00 18.46 29.39 0.478
Scenario 8 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15
Independent 88.06 87.51 87.95 88.20 88.48 87.99 87.06 9.92 9.52 10.28 29.76 0.268
BHM 97.80 98.00 97.94 98.19 97.78 98.00 97.65 50.60 50.32 50.04 20.19 0.737
CBHM 90.98 90.57 91.07 91.24 91.19 91.07 89.99 13.09 12.81 13.44 34.78 0.313
BMA 97.07 96.98 97.01 97.51 96.94 97.37 96.56 30.38 30.07 30.00 27.89 0.653
EXNEX 96.70 96.62 96.70 97.18 96.51 96.92 96.22 30.40 30.16 30.25 26.54 0.654
mEXNEX1/13 96.11 96.15 96.19 96.71 96.11 96.51 95.82 29.08 29.01 29.12 27.14 0.625
mEXNEX0 93.03 92.81 92.92 93.31 93.37 93.14 92.21 19.41 19.42 19.48 32.31 0.421
Scenario 9 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15
Independent 87.94 87.53 88.31 88.41 88.10 88.05 87.00 87.45 9.46 10.32 29.22 0.187
BHM 98.51 98.53 98.51 98.81 98.45 98.73 98.46 98.49 62.33 62.06 17.69 0.760
CBHM 91.08 90.69 91.28 91.32 91.34 91.34 90.24 90.46 15.04 15.44 34.04 0.242
BMA 97.13 97.11 97.16 97.69 96.99 97.51 96.69 97.19 29.99 29.95 39.12 0.506
EXNEX 97.20 97.11 97.21 97.70 97.08 97.50 96.78 97.21 30.40 30.50 38.78 0.515
mEXNEX1/13 96.70 96.67 96.83 97.38 96.70 97.14 96.30 96.79 28.86 28.90 39.34 0.487
mEXNEX0 93.20 92.98 93.48 93.86 93.47 93.50 92.88 93.00 19.38 19.45 36.18 0.327
Scenario 10 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15
Independent 88.19 87.37 88.26 88.59 88.25 88.15 87.13 87.59 87.74 10.23 28.38 0.102
BHM 99.18 99.24 99.31 99.28 99.26 99.28 99.20 99.21 99.34 76.82 18.83 0.768
CBHM 91.53 91.21 91.61 91.88 91.70 91.68 90.71 90.91 91.30 22.24 29.94 0.222
BMA 97.06 97.07 97.09 97.62 97.02 97.46 96.72 97.14 97.28 29.62 54.14 0.296
EXNEX 97.29 97.22 97.24 97.77 97.12 97.55 96.85 97.26 97.42 30.49 54.31 0.305
mEXNEX1/13 96.65 96.66 96.75 97.33 96.67 97.10 96.21 96.78 96.92 28.02 54.14 0.280
mEXNEX0 93.2 93.11 93.35 93.97 93.40 93.50 92.82 92.95 93.64 18.45 41.18 0.185
Scenario 11 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45
Independent 88.03 87.60 88.06 88.52 88.24 88.06 87.08 87.36 88.00 87.82 27.50
BHM 99.64 99.79 99.72 99.78 99.74 99.79 99.83 99.78 99.76 99.82 98.03
CBHM 91.72 91.70 91.84 92.38 91.84 92.12 91.19 91.27 91.67 91.95 57.50
BMA 96.88 97.00 96.97 97.50 96.95 97.41 96.56 97.05 97.22 97.03 74.24
EXNEX 97.26 97.21 97.27 97.77 97.13 97.56 96.85 97.28 97.43 97.20 76.07
mEXNEX1/13 96.27 96.35 96.45 96.96 96.35 96.83 95.97 96.43 96.70 96.40 68.66
mEXNEX0 92.96 92.85 93.19 93.58 93.49 93.36 92.57 92.69 93.41 93.11 46.12
Scenario 12 0.35 0.35 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Independent 68.34 66.92 9.82 9.89 9.87 9.79 10.72 9.94 9.69 10.25 20.25 0.567
BHM 70.88 69.50 21.52 21.58 21.51 21.13 21.84 21.79 21.11 21.91 13.30 0.609
CBHM 66.90 66.10 12.89 12.98 13.02 12.88 13.75 12.94 12.88 13.35 17.28 0.549
BMA 68.66 67.95 16.58 16.60 16.90 16.30 17.43 17.10 16.10 17.33 14.68 0.544
EXNEX 70.49 69.26 13.69 13.66 14.21 13.62 14.87 14.11 13.29 14.69 16.91 0.594
mEXNEX1/13 69.93 69.02 12.96 12.77 13.08 12.65 13.91 13.16 12.46 13.44 17.33 0.581
mEXNEX0 68.10 67.00 21.02 11.23 11.27 11.11 12.04 11.63 11.02 11.24 19.29 0.552
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Table A.6.8: Operating characteristics for a simulation based on K = 10 baskets with
a sample size of nk = 13 in each (scenarios 13-15)

% Reject % All Correct FWER
Sample Size 13 13 13 13 13 13 13 13 13 13

Scenario 13 0.35 0.35 0.35 0.35 0.35 0.15 0.15 0.15 0.15 0.15
Independent 68.46 67.02 67.76 68.16 67.79 9.53 10.74 9.87 9.62 10.05 8.82 0.410
BHM 86.13 85.42 85.97 86.07 86.36 39.53 39.31 39.61 39.25 39.33 6.42 0.750
CBHM 73.76 72.59 73.82 73.47 73.35 15.35 16.28 15.44 15.01 15.59 10.58 0.475
BMA 83.26 82.73 83.70 83.44 83.48 27.63 28.44 28.22 27.52 28.01 5.49 0.730
EXNEX 79.66 78.58 79.76 79.68 79.64 23.43 24.52 24.10 23.13 24.20 5.84 0.618
mEXNEX1/13 78.38 77.28 78.20 78.05 77.95 21.60 22.71 22.46 21.67 22.68 6.38 0.581
mEXNEX0 74.20 73.13 74.30 74.05 73.64 16.46 17.60 16.97 16.64 17.60 8.89 0.501
Scenario 14 0.45 0.45 0.45 0.35 0.35 0.35 0.15 0.15 0.15 0.15
Independent 88.42 87.47 88.13 68.06 67.87 66.54 9.44 10.03 9.82 10.06 13.82 0.339
BHM 96.94 96.99 97.14 88.71 89.20 88.28 43.01 43.03 43.09 42.93 11.64 0.754
CBHM 91.13 90.79 91.26 73.36 73.12 71.76 13.28 13.33 12.91 13.61 16.89 0.396
BMA 96.39 96.21 96.22 86.40 86.58 85.83 29.49 29.79 29.58 29.73 13.27 0.731
EXNEX 95.06 94.74 94.94 83.16 83.48 82.55 27.68 28.11 27.59 27.96 10.54 0.675
mEXNEX1/13 94.46 94.02 94.33 81.74 81.84 81.08 26.24 26.78 26.26 26.58 9.54 0.636
mEXNEX0 92.07 91.91 92.07 76.64 76.35 75.30 18.62 18.69 18.44 19.02 14.92 0.476
Scenario 15 0.45 0.45 0.35 0.35 0.35 0.35 0.35 0.35 0.15 0.15
Independent 88.02 87.77 68.18 67.92 67.62 67.49 66.63 67.74 9.54 10.20 6.58 0.187
BHM 98.58 98.62 93.90 94.20 93.70 93.88 93.34 93.64 61.48 61.00 9.95 0.746
CBHM 91.63 91.24 75.06 74.19 74.75 74.31 73.55 74.24 18.52 19.02 8.54 0.273
BMA 97.22 97.12 88.65 88.71 88.50 88.63 87.68 87.82 30.42 30.47 22.09 0.515
EXNEX 96.94 96.73 87.99 87.99 87.93 87.95 87.09 87.04 30.14 30.21 22.03 0.509
mEXNEX1/13 96.59 96.54 87.37 87.31 87.23 87.25 86.51 86.53 29.27 29.82 21.89 0.502
mEXNEX0 94.29 93.93 80.98 81.09 81.28 80.66 80.02 80.43 22.97 23.40 14.73 0.388



Appendix B

Supporting Information: How to

Add Baskets to an Ongoing Basket

Trial with Information Borrowing

B.1 Fixed Scenario Simulation Results Under the

RCaP

A further 10 scenarios were considered in the fixed scenario simulation study presented

in Chapter 3. All 16 scenarios considered are presented in Table B.1.1, where efficacy

criteria were calibrated using RCaP. Tables B.1.2-B.1.5 present full simulation results

with all operating characteristics. Figure B.1.1 plots the relative difference between

calibration approaches under the same scenarios and Figure B.1.2 plots the results of

the additional 10 data scenarios.

Comparing calibration approaches, scenarios 7 and 8 have similar findings to scenar-

ios 1 and 2 presented in Chapter 3, in terms of inflated error rates when efficacy criteria

are calibrated under the global null. However, error rates under the RCaP are also

inflated but to a much lesser extent (e.g. 42.4% compared to 84.7% in existing baskets

207
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Table B.1.1: Full list of 16 simulation study scenarios: Vectors of response rates used
within the simulation study to compare approaches for adding a basket..

p1 p2 p3 p4 p5 p1 p2 p3 p4 p5

Scenario 1 0.2 0.2 0.2 0.2 0.2 Scenario 9 0.4 0.4 0.2 0.2 0.4
Scenario 2 0.4 0.2 0.2 0.2 0.2 Scenario 10 0.4 0.4 0.4 0.2 0.4
Scenario 3 0.4 0.4 0.2 0.2 0.2 Scenario 11 0.3 0.2 0.2 0.2 0.2
Scenario 4 0.4 0.4 0.4 0.2 0.2 Scenario 12 0.3 0.3 0.2 0.2 0.2
Scenario 5 0.4 0.4 0.4 0.4 0.2 Scenario 13 0.3 0.2 0.2 0.2 0.3
Scenario 6 0.4 0.4 0.4 0.4 0.4 Scenario 14 0.3 0.3 0.2 0.2 0.3
Scenario 7 0.2 0.2 0.2 0.2 0.4 Scenario 15 0.4 0.3 0.2 0.2 0.3
Scenario 8 0.4 0.2 0.2 0.2 0.4 Scenario 16 0.4 0.3 0.3 0.2 0.3

under PL2(a)) compared to the calibration under the global null. Under scenario 9,

error rates are increased by up to 81.4% of the nominal 10% level compared to a 20.9%

increase under the RCaP.

Scenarios 11, 12, 13 and 14 are parallel to the results under scenarios 2, 7, 9 and 10

respectively. The main differences lying in the results of power, as the baskets now have

a marginally effective response rate, making it more difficult to distinguish between an

effective and ineffective treatment effect. In all cases, power under the RCaP is lower

due to the more conservative ∆k cut-off values, however, this came with a reduced

error rate across all 4 of these scenarios and 4 approaches. For instance, under scenario

14 error rates under the calibration under the global null have a relative increase of

54% over the nominal 10% level, compared to error rates controlled at or below 10%

under the RCaP. Similar results are found under scenarios 14-16 in which baskets are

a combination of effective, marginally effective and ineffective.

Comparing approaches for addition of a basket, under scenario 3, error in the new

basket under IND is the lowest, but the maximum inflation of the type I error rate over

the 10% nominal level is only 1.1% (under PL1(a) and PL2(a), which are equivalent

when analysing new baskets). Scenario 4 shows consistent power in all non-null existing

baskets across all 4 approaches, all above the targeted 80% level. The UNPL approach

demonstrates marginally lower power than other methods. Basket 4 has type I error
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rate which is slightly higher under IND and PL2(a). This is due to the common mean

across baskets 1-4 being higher than across all baskets, due to the new basket being

ineffective to treatment. Hence, fewer false rejections should be made under UNPL and

PL1(a).

When the new basket is effective, under scenarios 9 and 10, substantial improve-

ments in power are observed in the new basket when information borrowing is utilised.

In scenarios 9 and 10, as a number of existing baskets are also effective, borrowing

information between all baskets substantially improves power in the new. Under the

IND and PL1(a) approaches, error rates in the existing baskets are slightly higher at

around 12.5% in scenario 9 and 16.5% in scenario 10. Whereas, error rates in IND and

PL2(a) have an error rate of 14.3% at the cost of reduced power in other baskets.

Results of scenarios 11, 12 and 13 correlate to those of scenarios 2, 7 and 6 respec-

tively but with marginally effective rather than effective true response rates. This gives

lower power across baskets but similar patterns in results. Scenario 14 does differ from

the results of scenario 9, with IND now producing the highest power in the new basket.

Scenarios 15 and 16 have a combination of effective, marginally effective and inef-

fective baskets. For existing baskets, those that are marginally effective have similar

power values across all approaches under scenario 15 of around 42.7%, however, more

variation is observed under scenario 16, with PL1(a) producing a power of 47%, which is

higher than UNPL with power 46.1% and IND and PL2(a) at 44.7%. But for the single

effective basket all approaches give similar power values ranging from 78.7%-79.0% un-

der scenario 15 and 80.9%-81.8% under scenario 16. Error rates in the existing baskets

are higher under the IND and PL1(a) approaches for both scenarios as the posterior

probabilities are pulled up via borrowing from the effective new baskets. The maximum

error rate across both scenarios is 13.5%. For the new basket UNPL, PL1 and PL2 are

almost identical in power, with the IND approach giving lower power under scenario 16

due to the lack of borrowing from the mostly homogeneous existing baskets.
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Method IND UNPL PL1(a) PL2(a) Calibration RCaP Null

−100

0

100

200

Mean Error Mean Power New Basket Error

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 7 − (0.4,0.4,0.2,0.2,0.2)

−100

0

100

200

Mean Error Mean Power New Basket Error

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 8 − (0.4,0.4,0.4,0.2,0.2)

−100

0

100

200

Mean Error Mean Power New Basket Power

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 9 − (0.4,0.4,0.2,0.2,0.4)

−100

0

100

200

Mean Error Mean Power New Basket Power

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 10 − (0.4,0.4,0.4,0.2,0.4)

−100

0

100

200

Mean Error Mean Power New Basket Error

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 11 − (0.3,0.2,0.2,0.2,0.2)

−100

0

100

200

Mean Error Mean Power New Basket Error

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 12 − (0.3,0.3,0.2,0.2,0.2)

−100

0

100

200

Mean Error Mean Power New Basket Power

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 13 − (0.3,0.2,0.2,0.2,0.3)

−100

0

100

200

Mean Error Mean Power New Basket Power

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 14 − (0.3,0.3,0.2,0.2,0.3)

−100

0

100

200

Mean Error Mean Power New Basket Power

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 15 − (0.4,0.3,0.2,0.2,0.3)

−100

0

100

200

Mean Error Mean Power New Basket Power

R
e

la
ti
ve

 D
if
fe

re
n

c
e

Scenario 16 − (0.4,0.3,0.3,0.2,0.3)

Figure B.1.1: The relative difference in type I error rate and power compared to the
targeted values of 10% and 80% respectively. This is given for all four approaches
for adding a basket under the two different calibration schemes, calibration under the
global null and the RCaP. Results are split into 3 categories: mean error in which
the percentage of data sets within which the null was rejected is averaged across all
ineffective existing baskets; mean power as above but for all effective existing baskets
and new basket error/power in which results are the percentage of data sets within
which the null was rejected just in the new basket.
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Figure B.1.2: Fixed scenario simulation study results: The percentage of data sets
within which the null hypothesis was rejected, where ∆k0 and ∆k′ were calibrated with
RCaP to achieve a 10% type I error rate on average. This is plotted for each of the
four approaches for adding a basket in all five baskets.
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Table B.1.2: Operating characteristics for the fixed scenario simulation study in Chapter 3 under scenarios 1-4.

% Reject FWER % Correct Mean Point Estimate (Standard Deviation)

Sc 1 0.2 0.2 0.2 0.2 0.2

IND 6.33 6.52 6.42 6.46 9.82 29.37 70.63 0.202 (0.068) 0.202 (0.068) 0.202 (0.068) 0.203 (0.067) 0.200 (0.106)

UNPL 5.81 5.75 5.75 5.69 5.26 22.47 77.53 0.202 (0.065) 0.202 (0.066) 0.202 (0.065) 0.202 (0.064) 0.204 (0.079)

PL1(a) 5.73 5.92 5.89 5.78 5.45 22.82 77.18 0.202 (0.065) 0.202 (0.066) 0.202 (0.065) 0.202 (0.064) 0.204 (0.079)

PL2(a) 6.48 6.37 6.33 6.41 5.45 25.05 74.95 0.292 (0.068) 0.202 (0.068) 0.203 (0.068) 0.203 (0.067) 0.204 (0.079)

Sc 2 0.4 0.2 0.2 0.2 0.2

IND 75.68 8.58 8.87 8.62 9.82 30.51 51.11 0.380 (0.096) 0.208 (0.072) 0.209 (0.071) 0.209 (0.070) 0.200 (0.106)

UNPL 73.73 7.83 8.12 8.01 7.07 25.47 52.69 0.376 (0.096) 0.208 (0.069) 0.209 (0.069) 0.209 (0.068) 0.212 (0.083)

PL1(a) 74.11 8.11 8.35 8.32 7.51 26.19 52.35 0.376 (0.096) 0.208 (0.069) 0.209 (0.069) 0.209 (0.068) 0.212 (0.083)

PL2(a) 75.67 8.49 8.70 8.62 7.38 27.58 52.91 0.380 (0.096) 0.208 (0.072) 0.209 (0.071) 0.209 (0.070) 0.212 (0.083)

Sc 3 0.4 0.4 0.4 0.4 0.2

IND 86.74 86.06 86.86 86.85 9.82 9.82 54.18 0.399 (0.083) 0.398 (0.084) 0.399 (0.083) 0.399 (0.082) 0.200 (0.106)

UNPL 85.90 85.35 85.83 85.88 12.82 12.82 49.08 0.394 (0.082) 0.393 (0.083) 0.394 (0.082) 0.394 (0.081) 0.241 (0.096)

PL1(a) 86.45 85.92 86.12 86.42 13.00 13.00 50.33 0.394 (0.082) 0.393 (0.083) 0.394 (0.082) 0.394 (0.081) 0.241 (0.096)

PL2(a) 86.84 86.02 86.56 86.73 13.17 13.17 51.89 0.399 (0.083) 0.398 (0.084) 0.399 (0.083) 0.399 (0.082) 0.241 (0.096)

Sc 4 0.4 0.4 0.4 0.4 0.4

IND 86.74 86.06 86.86 86.85 65.03 39.58 0.399 (0.083) 0.398 (0.084) 0.399 (0.083) 0.399 (0.082) 0.400 (0.131)

UNPL 88.57 88.12 88.53 88.51 72.25 47.45 0.399 (0.080) 0.399 (0.080) 0.399 (0.080) 0.400 (0.078) 0.398 (0.098)

PL1(a) 88.71 88.41 88.97 88.99 72.52 48.03 0.399 (0.080) 0.398 (0.080) 0.399 (0.079) 0.399 (0.078) 0.398 (0.098)

PL2(a) 86.84 86.02 86.56 86.73 72.46 44.33 0.399 (0.083) 0.398 (0.084) 0.399 (0.083) 0.399 (0.082) 0.398 (0.098)
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Table B.1.3: Operating characteristics for the fixed scenario simulation study in Chapter 3 under scenarios 5-8.

% Reject FWER % Correct Mean Point Estimate (Standard Deviation)

Sc 5 0.2 0.2 0.2 0.2 0.4

IND 6.33 6.52 6.42 6.46 65.03 21.49 50.86 0.202 (0.068) 0.202 (0.068) 0.202 (0.068) 0.203 (0.067) 0.400 (0.131)

UNPL 7.16 7.28 7.51 7.31 53.41 24.19 38.22 0.207 (0.067) 0.206 (0.067) 0.207 (0.067) 0.207 (0.066) 0.365 (0.119)

PL1(a) 7.48 7.42 7.59 7.47 53.88 24.67 38.13 0.207 (0.067) 0.206 (0.067) 0.207 (0.067) 0.207 (0.066) 0.365 (0.119)

PL2(a) 6.48 6.37 6.33 6.41 53.84 21.29 40.94 0.202 (0.068) 0.202 (0.068) 0.203 (0.068) 0.203 (0.067) 0.365 (0.119)

Sc 6 0.4 0.2 0.2 0.2 0.4

IND 75.68 8.58 8.87 8.62 65.03 22.89 36.84 0.380 (0.096) 0.208 (0.072) 0.209 (0.071) 0.209 (0.070) 0.400 (0.131)

UNPL 77.61 9.43 9.53 9.61 58.07 23.97 32.17 0.379 (0.093) 0.213 (0.071) 0.214 (0.071) 0.214 (0.070) 0.372 (0.115)

PL1(a) 77.73 9.75 9.75 9.75 59.16 24.28 33.31 0.379 (0.093) 0.213 (0.071) 0.214 (0.071) 0.214 (0.070) 0.372 (0.115)

PL2(a) 75.67 8.49 8.70 8.62 59.00 22.81 32.46 0.380 (0.096) 0.208 (0.072) 0.209 (0.071) 0.209 (0.070) 0.372 (0.115)

Sc 7 0.4 0.4 0.2 0.2 0.2

IND 80.95 80.17 10.31 10.18 9.82 26.15 37.97 0.386 (0.092) 0.385 (0.093) 0.216 (0.075) 0.216 (0.074) 0.200 (0.106)

UNPL 79.17 78.44 10.46 10.06 10.74 26.14 44.87 0.381 (0.092) 0.380 (0.092) 0.216 (0.072) 0.216 (0.072) 0.221 (0.087)

PL1(a) 79.44 78.85 10.66 10.36 11.10 26.82 44.77 0.381 (0.092) 0.380 (0.092) 0.216 (0.072) 0.216 (0.072) 0.221 (0.087)

PL2(a) 80.95 80.15 10.34 10.04 11.18 27.06 46.64 0.386 (0.092) 0.385 (0.093) 0.216 (0.075) 0.216 (0.074) 0.221 (0.087)

Sc 8 0.4 0.4 0.4 0.2 0.2

IND 82.50 81.89 82.74 14.15 9.82 22.64 41.66 0.392 (0.088) 0.391 (0.089) 0.392 (0.087) 0.223 (0.078) 0.200 (0.106)

UNPL 82.34 81.77 82.57 13.62 12.57 23.99 40.52 0.387 (0.087) 0.386 (0.088) 0.387 (0.087) 0.224 (0.076) 0.231 (0.092)

PL1(a) 82.86 82.13 82.78 13.88 12.68 24.32 40.75 0.387 (0.087) 0.386 (0.088) 0.387 (0.087) 0.224 (0.076) 0.231 (0.092)

PL2(a) 82.68 82.04 82.66 14.24 12.69 25.18 40.15 0.392 (0.088) 0.391 (0.088) 0.392 (0.087) 0.224 (0.078) 0.231 (0.092)
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Table B.1.4: Operating characteristics for the fixed scenario simulation study in Chapter 3 under scenarios 9-12.

% Reject FWER % Correct Mean Point Estimate (Standard Deviation)

Sc 9 0.4 0.4 0.2 0.2 0.4

IND 80.91 80.19 10.3 10.12 64.80 18.17 34.09 0.385 (0.092) 0.385 (0.093) 0.216 (0.075) 0.216 (0.074) 0.399 (0.131)

UNPL 81.61 80.89 12.17 12.00 67.04 21.26 34.35 0.385 (0.089) 0.384 (0.089) 0.222 (0.075) 0.221 (0.074) 0.381 (0.109)

PL1(a) 81.86 81.04 12.78 12.3 67.93 22.05 34.41 0.385 (0.089) 0.384 (0.089) 0.222 (0.075) 0.222 (0.074) 0.381 (0.109)

PL2(a) 80.95 80.15 10.34 10.04 67.65 18.14 36.79 0.386 (0.092) 0.385 (0.093) 0.216 (0.075) 0.216 (0.074) 0.381 (0.109)

Sc 10 0.4 0.4 0.4 0.2 0.4

IND 82.68 82.04 82.78 14.37 64.80 14.37 30.36 0.392 (0.088) 0.391 (0.089) 0.392 (0.087) 0.223 (0.078) 0.399 (0.131)

UNPL 84.43 83.79 84.46 16.33 71.47 16.33 36.58 0.393 (0.084) 0.392 (0.085) 0.392 (0.084) 0.228 (0.078) 0.390 (0.104)

PL1(a) 84.83 84.30 84.90 16.67 71.77 16.67 37.28 0.393 (0.084) 0.392 (0.085) 0.392 (0.084) 0.228 (0.078) 0.390 (0.104)

PL2(a) 82.68 82.04 82.66 14.24 71.77 14.24 33.97 0.392 (0.088) 0.391 (0.088) 0.392 (0.087) 0.224 (0.078) 0.390 (0.104)

Sc 11 0.3 0.2 0.2 0.2 0.2

IND 36.38 7.73 7.98 7.84 9.83 28.40 23.71 0.287 (0.083) 0.206 (0.069) 0.207 (0.069) 0.207 (0.068) 0.200 (0.106)

UNPL 34.33 7.12 7.19 7.33 6.32 22.86 23.15 0.284 (0.081) 0.206 (0.067) 0.207 (0.066) 0.207 (0.065) 0.210 (0.080)

PL1(a) 34.77 7.29 7.38 7.39 6.63 23.42 23.22 0.284 (0.081) 0.206 (0.067) 0.207 (0.066) 0.207 (0.065) 0.210 (0.080)

PL2(a) 36.32 7.74 7.88 7.73 6.51 24.98 24.33 0.287 (0.083) 0.206 (0.069) 0.207 (0.069) 0.207 (0.068) 0.210 (0.080)

Sc 12 0.3 0.3 0.2 0.2 0.2

IND 40.65 40.61 9.20 8.87 9.83 24.55 13.63 0.291 (0.081) 0.291 (0.082) 0.212 (0.070) 0.212 (0.069) 0.200 (0.106)

UNPL 38.59 38.36 8.78 8.56 7.85 21.50 12.14 0.288 (0.079) 0.287 (0.080) 0.212 (0.067) 0.212 (0.067) 0.215 (0.082)

PL1(a) 39.15 38.87 8.95 8.78 8.38 22.16 12.23 0.288 (0.079) 0.287 (0.080) 0.212 (0.067) 0.212 (0.067) 0.215 (0.081)

PL2(a) 40.72 40.36 9.16 8.94 8.34 22.83 13.34 0.291 (0.081) 0.290 (0.082) 0.212 (0.070) 0.212 (0.069) 0.215 (0.081)
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Table B.1.5: Operating characteristics for the fixed scenario simulation study in Chapter 3 under scenarios 13-16.

% Reject FWER % Correct Mean Point Estimate (Standard Deviation)

Sc 13 0.3 0.2 0.2 0.2 0.3

IND 36.38 7.73 7.98 7.84 34.58 20.65 8.66 0.287 (0.083) 0.206 (0.069) 0.207 (0.069) 0.207 (0.068) 0.300 (0.122)

UNPL 36.70 8.00 8.26 8.05 26.43 20.68 7.47 0.287 (0.080) 0.209 (0.067) 0.210 (0.067) 0.210 (0.066) 0.285 (0.097)

PL1(a) 37.36 8.37 8.53 8.38 27.08 21.40 7.77 0.287 (0.080) 0.209 (0.067) 0.210 (0.067) 0.210 (0.066) 0.285 (0.097)

PL2(a) 36.32 7.74 7.88 7.73 27.16 20.54 7.18 0.287 (0.083) 0.206 (0.069) 0.207 (0.069) 0.207 (0.068) 0.285 (0.097)

Sc 14 0.3 0.3 0.2 0.2 0.3

IND 40.65 40.61 9.20 8.87 34.58 16.34 5.08 0.291 (0.081) 0.291 (0.082) 0.212 (0.070) 0.212 (0.069) 0.300 (0.122)

UNPL 40.97 40.71 9.93 9.58 30.72 17.53 5.32 0.291 (0.078) 0.290 (0.079) 0.215 (0.068) 0.215 (0.067) 0.290 (0.095)

PL1(a) 41.60 41.16 10.33 9.82 31.45 17.96 5.62 0.291 (0.078) 0.290 (0.079) 0.215 (0.068) 0.215 (0.067) 0.290 (0.095)

PL2(a) 40.72 40.36 9.16 8.94 31.36 16.37 5.79 0.291 (0.081) 0.290 (0.082) 0.212 (0.070) 0.212 (0.069) 0.290 (0.095)

Sc 15 0.4 0.3 0.2 0.2 0.3

IND 78.98 42.68 9.82 9.60 34.58 17.44 9.32 0.382 (0.093) 0.295 (0.083) 0.214 (0.072) 0.214 (0.072) 0.300 (0.122)

UNPL 78.74 42.73 10.77 10.45 33.14 18.92 9.94 0.378 (0.091) 0.295 (0.080) 0.217 (0.071) 0.217 (0.070) 0.295 (0.096)

PL1(a) 79.17 43.29 11.11 10.86 33.89 19.54 10.03 0.378 (0.091) 0.295 (0.080) 0.217 (0.071) 0.217 (0.070) 0.295 (0.096)

PL2(a) 78.84 42.72 9.79 9.61 34.00 17.46 10.98 0.382 (0.093) 0.295 (0.083) 0.214 (0.072) 0.214 (0.071) 0.295 (0.096)

Sc 16 0.4 0.3 0.3 0.2 0.3

IND 81.03 44.59 44.79 11.75 34.58 11.75 4.65 0.383 (0.090) 0.299 (0.081) 0.300 (0.080) 0.219 (0.073) 0.300 (0.122)

UNPL 81.36 45.96 46.39 13.08 37.22 13.08 7.89 0.390 (0.088) 0.299 (0.078) 0.300 (0.077) 0.222 (0.071) 0.301 (0.094)

PL1(a) 81.78 46.94 47.1 13.46 37.88 13.46 8.55 0.380 (0.088) 0.300 (0.078) 0.300 (0.077) 0.222 (0.071) 0.301 (0.094)

PL2(a) 80.93 44.52 44.87 11.83 37.84 11.83 5.69 0.383 (0.091) 0.299 (0.081) 0.300 (0.080) 0.219 (0.073) 0.301 (0.094)
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B.2 Comparison of Using Differing Number of Sce-

narios in the RCaP

Simulation studies in Chapter 3 were conducted under the novel robust calibration

procedure (RCaP) in order to achieve a 10% type I error rate on average across several

scenarios. RCaP was implemented under scenarios 1, 2, 3, 7 and 8 in Chapter 3.

These scenarios included all global and partial nulls assuming equal sample sizes across

baskets. However, due to the new basket having a reduced sample size, these scenarios

no longer cover all partial and global nulls. This is resolved by also including scenarios 5,

6, 9 and 10 in the calibration procedure. Exploration is now conducted into differences

in performance based on the number of scenarios incorporated into RCaP.

Note that under UNPL, calibration differs as it consists of just the four existing

baskets. The equal sample size across baskets, results in just 4 global and partial null

scenarios and thus ∆k0 is calibrated just across these four scenarios. Results presented

incorporate the irrelevant difference between calibration in UNPL, with absolute differ-

ence values given as 0 throughout.

For all approaches, ∆k′ values are equal under both calibrations. Under scenarios

5, 6, 9 and 10, the baskets response rate is effective and thus not included when taking

the quantile to obtain ∆k′, therefore, only including scenarios 1, 2, 3, 7 and 8 in the

calibration.

Figure B.2.1 presents the absolute difference in percentage rejections of the null

under an RCaP under scenarios 1, 2, 3, 7 and 8 and an RCaP under scenarios 1-10

(excluding the global alternative). In all bar a handful of cases, the percentage rejections

i.e. type I error rate and power are lower under an RCaP under 1-10 vs. the RCaP

with fewer scenarios.

Differences under IND and PL2 are always less than 1%, a negligible difference. This

is expected due to the very similar ∆k0 and ∆k′ values obtained under both calibration
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Figure B.2.1: Absolute difference in the number of simulated data sets within which
the null hypothesis is rejected between an RCaP under scenarios 1, 2, 3, 7 and 8 (RCaP
V1) and an RCaP under scenarios 1-10 (RCaP V2), excluding the global alternative.
This is split by approach and basket.
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Table B.2.1: Calibrated ∆k0 and ∆k′ values for each of the approaches for adding a
basket under an RCaP under scenarios 1, 2, 3, 7 and 8 and an RCaP under scenarios
1-10.

RCaP across 1-10 RCaP across 1,2,3,7,8
∆k0 ∆k′ ∆k0 ∆k′

IND 0.9044 0.8989 0.9030 0.8989
UNPL 0.9056 0.9056 0.9056 0.9056
PL1(a) 0.9101 0.9021 0.9034 0.9021
PL2(a) 0.9044 0.9021 0.9030 0.9021

cases (see Table B.2.1). However, more differences are observed under PL1(a), reaching

up to 2% (scenario 16 in a marginally effective basket). This is due to the more

conservative cut-off value. So even in the worst cases, differences between approaches

are rather small. Calibration across fewer scenarios is less computationally expensive

as it considers four fewer data scenarios compared to a calibration across scenarios 1-

10 (excluding scenario 4, the global alternative). Due to the very minute differences

between approaches, particularly in IND and PL2(a), a calibration across scenarios 1,

2, 3, 7 and 8 is recommended for it’s reduced computational time.

B.3 Simulation Results Using Different Scenario Weights

in the RCaP

In all simulation studies presented in Chapter 3, for the RCaP equal weights, ωi, for

each of the i scenarios are implemented in the procedure. Equal weights implies each

of the scenarios carries the same importance in the calibration, this may be the case if

each scenario is equally likely to occur in the trial. This section explores the effect of

altering these weights on the performance of the calibration procedure.

The simulation studies presented all implemented RCaP across the 5 scenarios pre-

sented in Table B.3.1, with equal weights ω1 = ω2 = ω3 = ω4 = ω5 = 1 implemented.

These weights are now varied to put more importance on certain scenarios relative to
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Table B.3.1: Simulation study scenarios included in the RCaP in Chapter 3.

p1 p2 p3 p4 p5

Scenario 1 0.2 0.2 0.2 0.2 0.2
Scenario 2 0.4 0.2 0.2 0.2 0.2
Scenario 3 0.4 0.4 0.2 0.2 0.2
Scenario 4 0.4 0.4 0.4 0.2 0.2
Scenario 5 0.4 0.4 0.4 0.4 0.2

others. Tables B.3.2, B.3.3, B.3.4 and B.3.5 summarise the operating characteristics

of each of the four approaches for adding: IND, UNPL, PL1 and PL2, under different

weight settings. Presented are the calibrated cut-off values obtained and the mean type

I error rate and power (split by new and existing baskets). Note that the mean is taken

across scenarios 1-10 presented in Table B.1.1 in which the basket has either an effective

or ineffective response rate.

Consider first the IND approach for adding a basket. As displayed in Table B.3.2,

cut-off values, mean error and mean power are identical for the new basket across all

weight combinations. Under the IND approach, new baskets are analysed as inde-

pendent, which guarantees error control to the nominal level in the new basket in all

scenarios in which the true response rate is q0. As such, the cut-off value obtained

under each of the 5 scenarios under considered will be equal, so altering the weight will

have no impact. However, operating characteristics in the existing baskets are affected

by the weight choice. As mentioned in the discussion of Chapter 3, the type I error

rate increases with the number of effective existing baskets, thus scenarios 3 and 4 will

display greater error rates than say scenarios 1 and 2. Placing more weight on the

scenarios with only 2 or 3 ineffective baskets (i.e. where error inflation is expected to

be the greatest) results in a more conservative cut-off value, ∆k0 , in order to ensure

error control. With this a reduction in power is observed compared to equal weights.

Under equal weights, the mean power is 83.2%, whereas placing double the weight on

scenario 4 results in a power of 82.1%. Placing 4 times the weight on this scenario
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decreases the power further to 81.2%. If more weight is placed on scenario 1 (where

the type I error rate is expected to be lowest due to all baskets being null), ∆k0 is less

conservative than equal weights, resulting in a higher mean error of 9.4% compared to

8.8% but with an increase in power of 84.2%.

Table B.3.2: IND: Summary of operating characteristics under several weight combina-
tions (ω = (ω1, ω2, ω3, ω4, ω5)) for the 5 scenarios included in the RCaP in Chapter 3.

IND Mean Error Mean Power
ω ∆k0 ∆k′ Existing New Existing New

(1,1,1,1,1) 0.902 0.899 8.75 9.97 83.18 65.19
(2,1,1,1,1) 0.896 0.899 9.39 9.97 84.15 65.19
(1,2,1,1,1) 0.900 0.899 8.99 9.97 83.54 65.19
(1,1,2,1,1) 0.902 0.899 8.73 9.97 83.15 65.19
(1,1,1,2,1) 0.908 0.899 8.12 9.97 82.12 65.19
(1,1,1,1,2) 0.902 0.899 8.75 9.97 83.18 65.19
(1,1,1,1,4) 0.902 0.899 8.75 9.97 83.18 65.19
(1,1,1,4,1) 0.913 0.899 7.64 9.97 81.20 65.19
(1,1,1,2,2) 0.908 0.899 8.12 9.97 82.12 65.19

Under an unplanned addition, the calibrated cut-off values for the UNPL approach

do vary based on the weights implemented in RCaP for all baskets existing and new.

Like in the IND approach, placing more weights on scenarios 1 and 2 gives less conserva-

tive cut-off values for all baskets resulting in higher error with higher power compared

to equal weights. Similarly, placing more weight on scenarios with fewer ineffective

baskets requires more conservative cut-off values to ensure error control with a lower

power also observed. As cut-off values are calibrated based on just the existing bas-

kets, any scenarios which put equal weight on existing baskets will be equivalent to the

ω = (1, 1, 1, 1, 1) case, regardless of the choice of ω5.

PL1(a) borrows information between all baskets therefore, changing the weights

in all scenarios will result in differing operating characteristics. Similar findings in

terms of conservative calibrated cut-offs to the IND and UNPL approach are drawn.

When ω5 is increased relative to the weights on other scenarios, the cut-off value is

again more conservative than an equal weight scenario, particularly for the new basket.
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Table B.3.3: UNPL: Summary of operating characteristics under several weight combi-
nations (ω = (ω1, ω2, ω3, ω4, ω5)) for the 5 scenarios included in the RCaP in Chapter
3.

UNPL Mean Error Mean Power
ω ∆k0 ∆k′ Existing New Existing New

(1,1,1,1,1) 0.900 0.900 9.63 10.09 84.33 65.38
(2,1,1,1,1) 0.893 0.893 10.40 10.88 85.30 66.62
(1,2,1,1,1) 0.897 0.897 9.89 10.34 84.69 65.80
(1,1,2,1,1) 0.901 0.901 9.47 9.99 84.13 65.16
(1,1,1,2,1) 0.907 0.907 8.87 9.59 83.23 64.32
(1,1,1,1,2) 0.900 0.900 9.63 10.09 84.33 65.38
(1,1,1,1,4) 0.900 0.900 9.63 10.09 84.33 65.38
(1,1,1,4,1) 0.912 0.912 8.23 9.22 82.20 63.40
(1,1,1,2,2) 0.907 0.907 8.87 9.59 83.23 64.32

In scenarios 5, only the new basket is ineffective, thus this scenario only contributes

to the calibration of ∆k′ and does not impact ∆k0 . Under ω = (1, 1, 1, 1, 2), ∆k′

increases to 0.909 compared to 0.901 under equal weights and further increases to

0.923 under ω = (1, 1, 1, 1, 4), resulting in a lower power in the new basket of 61.2%

compared to 65.17% under equal weights. The most conservative ∆k0 is observed under

ω = (1, 1, 1, 4, 1) in which ∆k0 = 0.912 resulting in 82.2% power in existing baskets

compared to 84.2% under equal weights. Identical conclusions are drawn for the PL2(a)

approach as displayed in Table B.3.5.

To summarise, weights do play an important role in the RCaP procedure and can

be utilised in order to influence error control and power improvement. As seen, placing

more weight on scenarios with fewer ineffective baskets will improve error control with

a cost of reduced power, whilst putting more weight on scenarios with mostly ineffective

baskets gives better power. Should information be available regarding which scenarios

are most likely to occur, these weights could be specified in order to improve trial

inference.
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Table B.3.4: PL1(a): Summary of operating characteristics under several weight com-
binations (ω = (ω1, ω2, ω3, ω4, ω5)) for the 5 scenarios included in the RCaP in Chapter
3.

PL1(a) Mean Error Mean Power
ω ∆k0 ∆k′ Existing New Existing New

(1,1,1,1,1) 0.900 0.901 9.57 9.99 84.22 65.17
(2,1,1,1,1) 0.894 0.894 10.37 10.83 85.24 66.48
(1,2,1,1,1) 0.898 0.897 9.87 10.42 84.62 65.84
(1,1,2,1,1) 0.901 0.903 9.46 9.80 84.08 64.82
(1,1,1,2,1) 0.907 0.908 8.51 9.50 83.19 64.08
(1,1,1,1,2) 0.901 0.909 9.57 9.45 84.22 63.95
(1,1,1,1,4) 0.901 0.923 9.57 8.41 84.22 61.20
(1,1,1,4,1) 0.912 0.919 8.19 8.76 82.20 62.09
(1,1,1,2,2) 0.907 0.916 8.85 9.00 83.29 62.73

Table B.3.5: PL2(a): Summary of operating characteristics under several weight com-
binations (ω = (ω1, ω2, ω3, ω4, ω5)) for the 5 scenarios included in the RCaP in Chapter
3.

PL2(a) Mean Error Mean Power
ω ∆k0 ∆k′ Existing New Existing New

(1,1,1,1,1) 0.902 0.901 8.71 10.00 83.14 65.17
(2,1,1,1,1) 0.896 0.893 9.36 10.83 84.11 66.60
(1,2,1,1,1) 0.900 0.897 8.96 10.41 83.54 65.82
(1,1,2,1,1) 0.903 0.903 8.67 9.81 83.09 64.88
(1,1,1,2,1) 0.908 0.908 8.15 9.49 82.14 64.02
(1,1,1,1,2) 0.902 0.909 8.71 9.44 83.14 63.85
(1,1,1,1,4) 0.902 0.924 8.71 8.40 83.14 62.74
(1,1,1,4,1) 0.913 0.919 7.63 8.76 81.22 62.08
(1,1,1,2,2) 0.908 0.916 8.15 9.00 82.14 62.74

B.4 Fixed Scenario Simulation Results For Calibra-

tion Under the Global Null

Results presented in Chapter 3 utilised the RCaP in which the type I error rate is

controlled on average across several data scenarios. The results under a traditional

calibration approach in which type I error rate is controlled under a global null scenario,

are presented here.
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Figure B.4.1: Fixed scenario simulation study results: The percentage of data sets
within which the null hypothesis was rejected, where ∆ was calibrated under the null
to achieve a 10% type I error rate on average. This is plotted for each of the four
approaches for adding a basket for all five baskets.
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Figure B.4.2: Fixed scenario simulation study results: The percentage of data sets
within which the null hypothesis was rejected, where ∆ was calibrated under the null
to achieve a 10% type I error rate on average. This is plotted for each of the four
approaches for adding a basket for all five baskets.
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B.5 Random Scenario Simulation

Results of pair-wise comparisons between approaches for the simulation study presented

in Section 3.3.5 of Chapter 3. Figures B.5.1 and B.5.2 present these pair-wise compar-

isons split into existing and new baskets respectively. Tables B.5.1 and B.5.2 display

full results for all 12 simulation study settings.

Figure B.5.1: Pair-wise comparison between approaches in each of the 12 simulation
settings within which the true response rate in the new basket is varied. The heat map
presents the difference in proportion of times the approach corresponding to row gave
a correct conclusion over the approach corresponding to column when discrepancies
between the two approaches arise in existing baskets only.
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First consider just existing baskets and the pair-wise comparisons. Note that IND

and PL2(a) are equivalent in these baskets, hence values in such a comparison are

centred around 0 with slight simulation error. Results for other comparisons are akin

to those presented in Chapter 3, indicating that the driving force behind the results

presented in Chapter 3 are the difference in proportion of correct conclusion when

discrepancies lie in existing baskets.

Then looking at pair-wise comparisons in just the singular new basket, in this case

PL1(a) and PL2(a) are equivalent and so results are centred around 0 but with rather

a lot of simulation noise. In the comparison between IND and UNPL, some cases result

in all correct conclusions occurring for just one of the two approaches in discrepancies.

For example, in the case where homogeneity between new and existing baskets with

all having a null response rate, UNPL in which information is borrowed between all

baskets leads to correct conclusions in all 309 cases of discrepancies. Whilst in the case

of heterogeneity when the existing baskets are effective with the new basket ineffective,

IND where the new is analysed independently leads to the correct conclusion in all 40

discrepancies. The number of cases where UNPL outperforms IND differs when looking

at just the new basket compared to all discrepancies, with simulations in which the new

basket is ineffective now often preferring UNPL.

Much more substantial differences are observed in the comparison between UNPL

and PL1(a) under just the new basket compared to overall discrepancies. Previously,

in all cases bar when the existing baskets are all null, PL1(a) outperformed UNPL,

i.e. a planned addition is preferred to unplanned. However, when considering just

the new basket this reverses with UNPL now only preferred when the new basket is

ineffective. This arises from the more conservative ∆k′ cut-off under UNPL compared to

PL1(a). Note that in most cases very few discrepancies between conclusions under both

approaches arise. For instance, when all existing baskets are effective no discrepancies

arise when the new basket is ineffective and only 1 or 2 discrepancies arising when it is
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either marginally effective or effective.

Similar comparisons between UNPL and PL2(a) can be drawn as between UNPL and

PL1(a) with cases in which UNPL outperforms PL1(a) also resulting in a conclusions

that UNPL outperformed PL2(a). Pair-wise comparisons between IND and PL1(a)

approaches and IND and PL2(a) approaches result in the same conclusions as those

made in Chapter 3.

Figure B.5.2: Pair-wise comparison between approaches in each of the 12 simulation
settings within which the true response rate in the new basket is varied. The heat map
presents the difference in proportion of times the approach corresponding to row gave
a correct conclusion over the approach corresponding to column when discrepancies
between the two approaches arise in the new basket only.
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Table B.5.1: Overall error rates and power for the varied truth simulation study in
which the truth in the new basket is varied with the response rate in existing baskets
fixed under settings 1 and 2.

% Reject FWER % All Correct

Setting 1(a) 0.2 0.2 0.2 0.2 [0.2,0.3]

IND 6.40 6.39 6.29 6.35 24.33 21.09 19.17

UNPL 5.94 6.09 5.99 6.19 12.97 19.96 8.79

PL1(a) 6.16 6.39 6.23 6.44 13.23 20.83 8.76

PL2(a) 6.36 6.41 6.29 6.33 13.19 21.12 9.49

Setting 1(b) 0.2 0.2 0.2 0.2 [0.4,0.5]

IND 6.40 6.39 6.29 6.35 80.73 21.08 63.45

UNPL 7.45 7.33 7.57 7.43 66.96 24.76 48.18

PL1(a) 7.67 7.52 7.77 7.65 67.33 25.43 47.88

PL2(a) 6.36 6.41 6.29 6.33 67.29 21.12 51.67

Setting 1(c) 0.2 0.2 0.2 0.2 [0.1,0.2]

IND 6.40 6.39 6.29 6.35 5.11 24.95 75.05

UNPL 5.45 5.34 5.29 5.33 2.02 19.05 80.95

PL1(a) 5.58 5.60 5.57 5.50 2.07 19.76 80.24

PL2(a) 6.36 6.41 6.29 6.33 2.06 22.41 77.59

Setting 2(a) 0.4 0.4 0.4 0.4 [0.2,0.3]

IND 88.86 86.00 86.81 86.87 24.33 0.02 15.24

UNPL 86.74 86.17 86.85 86.91 25.75 0.03 17.35

PL1(a) 87.24 86.82 87.44 87.54 25.76 0.03 17.51

PL2(a) 86.86 86.02 86.79 86.90 25.76 0.03 16.03

Setting 2(b) 0.4 0.4 0.4 0.4 [0.4,0.5]

IND 86.86 86.00 86.81 86.87 80.72 0.00 49.60

UNPL 88.73 88.26 88.92 88.85 82.49 0.00 53.85

PL1(a) 89.10 88.64 89.16 89.31 82.51 0.00 54.27

PL2(a) 86.86 86.02 86.79 86.90 82.51 0.00 50.58

Setting 2(c) 0.4 0.4 0.4 0.4 [0.1,0.2]

IND 86.86 86.00 86.81 86.87 5.11 5.11 58.09

UNPL 84.50 83.80 84.59 84.65 5.51 5.51 50.19

PL1(a) 84.86 84.33 85.02 85.21 5.51 5.51 51.76

PL2(a) 86.86 86.02 86.79 86.90 5.51 5.51 57.86
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Table B.5.2: Overall error rates and power for the varied truth simulation study in
which the truth in the new basket is varied with the response rate in existing baskets
fixed under settings 3 and 4.

% Reject FWER % All Correct

Setting 3(a) 0.4 0.4 0.2 0.2 [0.2,0.3]

IND 80.88 80.16 10.10 9.88 24.33 17.61 13.19

UNPL 80.02 79.26 10.79 10.48 22.24 18.82 12.08

PL1(a) 80.34 79.75 11.08 10.76 22.81 19.29 12.30

PL2(a) 80.87 80.15 10.20 9.88 22.79 17.68 13.37

Setting 3(b) 0.4 0.4 0.2 0.2 [0.4,0.5]

IND 80.88 80.16 10.10 9.88 80.72 17.59 43.16

UNPL 81.75 81.06 11.92 11.79 78.25 20.75 40.82

PL1(a) 82.04 81.30 12.35 12.32 79.08 21.59 40.72

PL2(a) 80.87 80.15 10.20 9.88 29.15 17.66 43.58

Setting 3(c) 0.4 0.4 0.2 0.2 [0.1,0.2]

IND 80.88 80.16 10.10 9.88 5.11 21.81 50.96

UNPL 78.84 77.95 9.62 9.25 4.47 20.55 48.73

PL1(a) 79.40 78.47 9.80 9.50 4.70 21.01 49.13

PL2(a) 80.87 80.15 10.20 9.88 4.71 21.44 50.91

Setting 4(a) 0.4 0.3 0.3 0.2 [0.2,0.3]

IND 80. 86.00 86.81 86.87 24.33 11.76 3.44

UNPL 80.80 44.94 44.94 12.18 22.76 12.21 4.89

PL1(a) 81.18 45.38 45.52 12.52 23.32 12.55 5.12

PL2(a) 80.77 44.42 44.57 11.89 23.22 11.92 3.69

Setting 4(b) 0.4 0.3 0.3 0.2 [0.4,0.5]

IND 80.91 44.39 44.46 11.74 80.72 11.74 10.95

UNPL 82.42 47.06 47.63 13.90 78.88 13.90 14.40

PL1(a) 82.81 47.66 48.22 14.26 79.46 14.26 15.13

PL2(a) 80.77 44.42 44.57 11.89 23.22 11.92 3.69

Setting 4(c) 0.4 0.3 0.3 0.2 [0.1,0.2]

IND 80.91 44.39 44.46 11.74 80.72 11.74 10.95

UNPL 82.42 47.06 47.63 13.90 78.88 13.90 14.40

PL1(a) 82.81 47.66 48.22 14.26 79.46 14.26 15.13

PL2(a) 80.77 44.42 44.57 11.89 79.46 11.89 11.11
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B.6 Investigating the Robustness to the Timing of

Addition

In previous simulation studies it is assumed that the timing of addition of a new basket

is known prior to the trial, however, this could easily not be the case. This section

explores the effect of timing of addition on the performance of analysis methods. Timing

of addition is explored by varying the sample size in the new basket. Baskets added

early in the trial have a larger sample size than those added at a later time point.
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Figure B.6.1: Type I error rate and power under each sample size of n5 from 1 to 24
by applying PL1(b), split by existing and new baskets.

When a basket is added later in the trial sample sizes may be smaller. This small

basket sample size will result in a lack of power and precision of treatment effect esti-

mates. Borrowing information from the larger existing baskets will prove more beneficial

in such a setting compared to when the new basket is larger and of similar size to ex-

isting baskets. Thus, methods that utilise information borrowing in the new basket
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become increasingly superior over the IND approach in which an independent analysis

is conducted. Improvements in performance in the new basket can still be obtained

via information borrowing regardless of timing of addition, however, it is those added

later in the trial that will benefit more substantially due to their reduced sample size.

Both PL1(a) and PL2(a) make a planned addition of a basket whilst utilising infor-

mation borrowing so timing of addition is taken into account in both the calibration

process and analysis. In the case that the sample size of the new baskets is unknown,

performance of these approaches is more liable to change and thus the robustness of

the approaches to the timing of addition is now explored.
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Figure B.6.2: Type I error rate and power under each sample size of n5 from 1 to 24
by applying PL2(b), split by existing and new baskets.

To do so, again consider the fixed data scenario simulations setting with four existing

and 1 new basket calibrated using the RCaP. In the previous simulation study, sample

size of the new basket is assumed as known, consisting of n5 = 14 patients, whilst

existing baskets had nk0 = 24 patients in each. Now assume n5 is unknown.
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First consider PL1(b) applied to all possible sample sizes from n5 = 1 up to the

full sample size of existing baskets, n5 = 24, with separate calibrations of ∆k0 and ∆k′

conducted for each value of n5. Figure B.6.1 presents the type I error rate and power

in new and existing baskets for each value of n5 = 1, . . . , 24 under scenarios 1-10 as

presented in Table B.1.1.

Error rates and power for existing baskets are fairly consistent across all sample

sizes, implying the time of addition of a new basket has little to no impact on the

performance in these existing baskets, obviously an ideal characteristic.

However, much more noticeable changes are observed in the new basket. Cyclic

fluctuations occur in both power and error rate due to the discreetness of data. As

expected, power in the new basket generally increases with the sample size as more

information is available. Across scenarios, power increases as the number of effective

existing baskets also increases. The targeted 80% level is only reached under scenario 6

when n5 = 18 and n5 = 21 under scenario 7. The nominal level is never achieved under

scenarios 7 and 8 in which there are none or just one effective existing basket.

In terms of error rates, more variation tends to occur when sample sizes are small,

with the greatest error occurring when there are just 2 patients in the new basket

(type I error rate of 23.8%) under scenario 5. As the number of effective existing

baskets increases, the error rates are uniformly higher, with scenario 5 as the ‘worst

case’ scenario where the only ineffective basket is the new basket. However, there is no

general increase or decrease as the sample size increases and thus one cannot make the

conclusion that any one sample size results in a more detrimental performance, at least

in terms of the type I error rate.

The same interpretations are drawn when looking at the timing of addition under

PL2(b) as plotted in Figure B.6.2. As PL1(b) and PL2(b) are equivalent for the new

basket, with information borrowed between all baskets, the plots for type I error rate

and power in the new basket are identical to that in Figure B.6.1. Again, little to no
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variation is present in error and power for existing baskets as n5 changes.

In summary, operating characteristics for PL1(b) and PL2(b) are fairly robust to

the timing of addition of the new basket, particularly in the case of existing baskets,

with little to no changes in power and error rate with the variation of sample sizes

in the new basket. Power in the new basket is obviously improved as the sample size

increases but no increase/decrease outside of the cyclic behaviour is observed in error

rates, implying the type I error rate will be fairly unaffected by the timing of addition.
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Figure B.6.3: Type I error rate and power under each sample size of n5 from 1 to 24
by applying IND, split by existing and new baskets.

Under IND, timing of addition will not have an impact on existing baskets due to

the independent analysis of new baskets. Thus, when sample sizes are smaller the only

effect will be reduced power in the new basket with increased power as sample sizes

grow. Under UNPL, the addition is not planned and so timing of addition has no

relevance to the calibration procedure.

Figure B.6.3 presents the change in type I error rate and power as the sample size
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in the new basket varies, split by new and existing baskets for an IND approach. As

the new basket is analysed independently, the impact of its sample size on existing

baskets is non-existent but also, as each sample size is calibrated to achieve 10% type I

error rate, the impact of change in n5 on error in the new basket is also null. The only

variation is in power in the new basket, with larger sample sizes obviously improving

power due to the increased certainty in posterior distributions from the added volume

of information obtained.
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Figure B.6.4: Type I error rate and power under each sample size of n5 from 1 to 24
by applying UNPL, split by existing and new baskets.

Now under UNPL, the new basket is an unplanned addition and thus the sample

size of new baskets has no influence on the calibration procedure. Figure B.6.4 again

presents change in type I error rate and power as n5 varies. Results again imply the

sample size in the new baskets has little to no impact on the performance in existing

baskets with fairly consistent type I error rates and power across all n5 values. Power

in the new basket increases with the sample size as expected and type I error rates form
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a cyclic pattern due to the discreetness of data. No general increase or decrease in type

I error rate is observed as the sample size changes.

B.7 Simulation Study - 2 Existing Baskets with 2

New Baskets Added

All simulation studies conducted so far consisted of four existing baskets opening the

trial with one additional basket added during the duration. Instead we now consider a

case in which there are two baskets starting the trial with a further two baskets added

at a later point.

Table B.7.1: Simulation study scenarios for the setting with 2 existing baskets with 2
new added.

p1 p2 p3 p4

Scenario 1 0.2 0.2 0.2 0.2
Scenario 2 0.4 0.2 0.2 0.2
Scenario 3 0.4 0.4 0.2 0.2
Scenario 4 0.4 0.4 0.4 0.2
Scenario 5 0.2 0.2 0.4 0.2
Scenario 6 0.4 0.2 0.4 0.2
Scenario 7 0.2 0.2 0.4 0.4
Scenario 8 0.4 0.2 0.4 0.4
Scenario 9 0.4 0.4 0.4 0.4

The same design parameters as previously implemented are used here with a null and

target response rate of q0 = 0.2 and q1 = 0.4 and a sample size of nk0 = 24 in existing

baskets and nk′ = 14 in newly added baskets. Models are specified as outlined in Section

3.5.2 and data scenarios considered are provided in Table B.7.1. Cut-off values ∆k0 and

∆k′ under the IND, PL1(a) and PL2(a) approaches, are calibrated across scenarios 1-8

with ∆k0 taken as the quantile of posterior probabilities across scenarios 1-2 and 5-8

for basket 2 and ∆k′ as the quantile across scenarios 1-6 of basket 4. For UNPL, the

cut-off value is calibrated across just two scenarios: p = (0.2, 0.2) and p = (0.4, 0.2).
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Now, as multiple baskets are added during the trial, the IND approach gives two

options: (a) analyse both new baskets as independent of existing baskets and one

another or (b) analyse both new baskets as independent of existing baskets but borrow

from each other using a second EXNEX model.
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Figure B.7.1: Percentage of data sets within which the null hypothesis was rejected
for a simulation study consisting of 2 existing baskets with 2 additional baskets added
part-way through the study.

Results for the percentage of data sets within which the null hypothesis was rejected,

i.e. type I error rate and power, are presented in Figure B.7.1. First, consider the

differences between IND(a) and IND(b). Under IND(a), due to independent analysis,

error rates in the new basket are always controlled to the 10% level but the same does

not hold for IND(b) in which an EXNEX model allows borrowing between both new

baskets. In cases where both new baskets are heterogeneous, this leads to reduced
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error rates lying below the nominal level (e.g. 7.6% under scenario 1) but in cases of

heterogeneity where one new basket is effective and the other ineffective, error rates

inflate to approximately 12%. In these scenarios, power is pulled down from 66.2%

to 60.1% when utilising information borrowing. However, significant power can be

gained over an independent analysis in cases where both new baskets are effective to

treatment (scenarios 7-9). Under IND(a) this power is 66.2% compared to IND(b) with

power 70.6%.

Under UNPL, ∆k0 = ∆k′ = 0.865 compared to 0.900 under PL1(a). This reduced

cut-off value leads to less conservative rejections under both new and existing baskets.

This results in higher power across all cases, with UNPL giving highest power in all

scenarios (e.g. UNPL has a power of 89.8% and 75.3% for existing and new baskets

respectively under data scenario 9, whereas, PL1(a) has power 84.9% and 72.4% re-

spectively). With this, UNPL also possesses the greatest error inflation up to 18.3%.

Approaches PL1(a) and PL2(a) are equivalent for the new baskets so results differ

only in existing baskets. Some cases with more noticeable differences are scenario 2 in

which power is increased significantly under PL2(a) at 81.3% compared to 78.1% under

PL1 with indistinguishable difference in error; scenario 8 in which both approaches give

similar power but PL1 has higher error rates at 12.6% compared to PL2(a) at 8.5% and

finally, scenario 9 in which power in existing baskets is greater under PL1(a) at 84.8%

compared to 80.9% under PL2(a).

To conclude, results in this simulation study present fairly similar results to the

previous case consisting of 4 existing and one new basket. One of the main differences

lies in the UNPL approach which has a far less conservative cut-off than any of the other

approaches. This occurs because there are only 2 existing baskets that can be used to

calibrate UNPL and as such, estimates lack certainty and only 2 data scenarios are

calibrated across. Also displayed in this case, is the potential losses one can make when

utilising IND(b) in all cases bar when both baskets are homogeneous to treatment.



Appendix C

Supporting Information:

Incorporating Historic Information

to Further Improve Power When

Conducting Bayesian Information

Borrowing in Basket Trials

C.1 Robust Calibration Procedure (RCaP)

Algorithm 3 describes the Robust Calibration Procedure used within Chapter 4, specif-

ically for the control of the type I error rate. Recall that in the simulation study in

Chapter 4, calibration of efficacy thresholds, ∆k, was conducted separately for the four

historical data settings: (a) yk∗ = (1, 1, 1), (b) yk∗ = (3, 1, 1), (c) yk∗ = (3, 3, 1) and

(d) yk∗ = (3, 3, 3). Therefore the RCaP was conducted four times with all 8 scenarios

listed in Table 4.4.1 in Chapter 4 included. As sample sizes were equal, for baskets with

identical historic data, ∆k’s are set as equal and to the basket whose RCaP calibrates

238
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across the most scenarios. For example, in historic setting (b) in which the 2nd and 3rd

baskets are identical, ∆2 is set as the value of ∆3 obtained from the RCaP procedure.

This is because basket 3 is calibrated across scenarios 1, 2, 3, 7 and 8 (i.e. cases where

the true response rate of p3 is null), whereas, basket 3 is only null under scenarios 1, 2,

7 and 8, thus better error control is expected if ∆3 is set as the efficacy cut-off for both

baskets 2 and 3.

Algorithm 3 RCaP - Calibrate ∆k across several simulation scenarios for type I error
rate control

Data: Total number of simulation scenarios,M , scenarios p1, . . . ,pM , basket sample
sizes nm, number of simulation runs for each scenario, R, null response rate, q0 and
integer weights for the scenarios, ω1, . . . , ωM ;
Initialisation: Q1, . . . ,QK empty vectors for storing Q
for m = 1 to M do

for r = 1 to R do
Generate data X ∼ Binomial(pm,nm)
Fit information borrowing model to obtain posterior densities
for k = 1 to K do

Compute the posterior probability of a type I error P(pmk > q0|X), in
basket k

if T (pmk ≤ q0) then
for j = 1 to ωm do

Qk = Qk ∪ P(pmk > q0|X)
end for

end if
end for

end for
end for
∆k = 100(1− α)% quantile of Qk for each basket k.
return Cut-off values ∆k for each basket k;
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C.2 An Alternative Approach: EXNEX With SAM

Prior in the NEX Component (EXsamNEX)

As described Chapter 4, selecting the power α in the power prior can be challenging and

significantly effect inference. In the EXppNEX approach this power prior was placed

on the NEX component in the EXNEX model. To avoid the specification of the power

α, the power prior can be replaced with a self-adaptive mixture (SAM) prior:

Yk ∼ Binomial(nk, pk), k = 1, . . . , K

pk = δkM1k + (1− δk)M2k

Ik = 1 if y
(j)
k∗ exists for basket k for some j ≥ 1,

δk ∼ Bernoulli(πk),

θk = logit(M1k) ∼ N(µ, σ2),

µ ∼ N(mµ, νµ),

σ ∼ g(·),

ω̃k ∼ Bernoulli(ϕk),

M2k = Ikω̃kπ1(pk) + (1− ω̃k)π0(pk).

(C.2.1)

Note that the parameters for the EX component remain unchanged compared to the

EXNEX and EXppNEX models. The SAM prior is placed on the NEX, M2k, com-

ponent consisting of a mixture of an informative prior, π1, and uninformative prior,

π0. The non-informative prior is simply π0(pk) = Beta(ak, bk) with values ak = bk = 1

recommended. The informative prior is a Meta-analytic predictive prior (Weber et al.,

2021). The MAP prior in not tractable and thus MCMC methods would need to be

utilised, however, it is approximated by a mixture of conjugate priors (Schmidli et al.,

2014):

π1(pk) =

Hk∑
i=1

κiBeta(ak + y
(i)
k∗ , bk + n

(i)
k∗ − y

(i)
k∗ ),

where the κi weights are positive and sum to one. Weights can be defined as fixed in

the model or can be updated in the posterior. Should there be a single source of historic

data, this weight is set at κk = 1 thus π1(pk) = Beta(ak + yk∗ , bk + nk∗ − yk∗).
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The SAM prior mixture weights follow a Bernoulli distribution with probability ϕk,

where ϕk is computed as guided by Yang et al. (2023), utilising the likelihood ratio test

statistic. Let p̂k∗ =
∫
pkπ1(pk)dpk be the expected value of pk based on π1. In cases

of a single source of historic data in a basket p̂k∗ = (ak + yk∗)/(ak + bk + nk∗) is the

estimate of pk∗ , so the likelihood ratio test statistic is then:

Rk =
p̂ykk∗(1− p̂k∗)

nk−yk

max{(p̂k∗ + Ω)yk(1− p̂k∗ − Ω)nk−yk , (p̂k∗ − Ω)yk(1− p̂k∗ + Ω)nk−yk}
, (C.2.2)

where ϕk is then set as ϕk = Rk/(1 +Rk).

C.2.1 Simulation Study Model Specification

Within the simulation results presented in this Appendix, results of the EXsamNEX

are also presented. The simulation setting is the same as that in Chapter 4, with 5

current baskets and historic information available for the first 3. The model applied is:

Yk ∼ Binomial(nk, pk), k = 1, 2, 3, 4, 5,

pk = δkM1k + (1− δk)M2k,

Ik = 1 if yk∗ exists for basket k,

δk ∼ Bernoulli(πk),

θk = logit(M1k) ∼ N(µ, σ2),

µ ∼ N(logit(0.1), 102),

σ ∼ Half-Normal(0, 1),

ω̃k ∼ Bernoulli(ϕk),

M2k = Ikω̃kπ1(pk) + (1− ω̃k)π0(pk),

π1(pk) = Beta(1 + yk∗ , 1 + nk∗ − yk∗),

π0(pk) = Beta(1, 1),

where πk = 0.5 for k = 1, 2, 3, 4, 5. Prior probabilities, ϕk are computed as follows: let

p̂k∗ = (1 + yk∗)/(1 + 1 + nk∗) and

Rk =
p̂ykk∗(1− p̂k∗)

nk−yk

max{(p̂∗k + 0.15)yk(1− p̂k∗ − 0.15)nk−yk , (p̂k∗ − 0.15)yk(1− p̂k∗ + 0.15)nk−yk}
,
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where 0.15 is the clinically relevant difference. ϕk = Rk/(1 +Rk).

C.3 Computational Time of Proposed Approaches

Each of the seven approaches explored in the simulation study vary in their model com-

plexity and thus have varying computational intensity. For example, the Fujikawahist

approach has an analytical form, therefore does not require MCMC methods, making

the model fit far quicker than all other approaches. In contrast the MLMixture model

requires the mixture of two EXNEX models under which each of the K baskets are

modelled separately, resulting in slow computation time. To add to this, the compu-

tation time will only increase as the total number of baskets on the trial increases (as

demonstrated in Figures C.3.1 and C.3.2). The MLMixture models’ computation time

is further increased with the number of historic baskets also present.

Table C.3.1 presents the average computation time for each approach for a several

fixed data sets. Each average is computed across 100 simulation runs for the same

data with the standard deviation also presented. This is considered for five separate

data sets, considering different combinations of effective/ineffective baskets and homo-

geneity/heterogeneity levels. From the results in Table C.3.1, it is clear that the data

scenario has little effect on the computation time and thus it is expected that the only

impacting factor will be the number of baskets present.

As expected, the histFujikawa approach takes a significantly shorter amount of time

to conduct the model fit, averaging around half a second for each data set with a small

standard deviation. At the opposite end of the spectrum, the MLMixture model takes

around 15 times longer to fit the model compared to the standard EXNEX model.

The EXNEX, EXNEXpool, mEXNEXhist and EXppNEX approaches all take a similar

amount of time, ranging from 10.8-12.1 seconds. The EXsamNEX model takes a couple

of seconds longer at around 15.9 seconds due to the computation of mixture weights.
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Table C.3.1: Computation time in seconds of all seven approaches for historic information borrowing measured in seconds. Each
model is fit 100 times to the same data and the average computational time is taken and presented alongside the standard
deviation. This is done for five different data sets (historic data available for the first three).

Method yk = (3, 3, 3, 3, 3) yk = (9, 9, 3, 3, 3) yk = (9, 9, 3, 3, 3) yk = (9, 9, 9, 9, 9) yk = (9, 9, 9, 9, 9)
yk∗ = (1, 1, 1, 0, 0) yk∗ = (3, 3, 1, 0, 0) yk∗ = (1, 1, 3, 0, 0) yk∗ = (3, 3, 3, 0, 0) yk∗ = (3, 1, 1, 0, 0)

EXNEX 11.556 (0.147) 11.279 (0.129) 11.012 (0.111) 11.024 (0.138) 11.105 (0.138)
EXNEXpool 11.083 (0.132) 11.145 (0.101) 10.861 (0.107) 11.011 (0.126) 11.067 (0.155)
mEXNEXhist 11.025 (0.128) 11.023 (0.110) 10.764 (0.101) 10.819 (0.103) 10.910 (0.140)
histFujikawa 0.538 (0.013) 0.468 (0.014) 0.481 (0.015) 0.444 (0.015) 0.471 (0.014)
EXppNEX 12.052 (0.126) 11.869 (0.151) 11.602 (0.137) 11.725 (0.160) 11.500 (0.129)
EXsamNEX 16.115 (0.160) 15.910 (0.147) 15.915 (0.111) 16.100 (0.157) 15.778 (0.110)
MLMixture 166.530 (1.380) 165.368 (0.641) 163.718 (1.315) 167.203 (1.793) 161.857 (0.684)



APPENDIX C. SUPPORTING INFORMATION: CHAPTER 4 244

2 4 6 8 10 12

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

Computational Time Under Homogeneous Data

K

C
o

m
p

u
ta

ti
o

n
a

l 
T

im
e

EXNEX

EXNEXpool

mEXNEXhist

histFujikawa

EXppNEX

EXsamNEX

MLMixture

(a)

2 4 6 8 10 12

0
1

0
2

0
3

0
4

0
5

0
6

0

Computational Time Under Homogeneous Data

K

C
o

m
p

u
ta

ti
o

n
a

l 
T

im
e

EXNEX

EXNEXpool

mEXNEXhist

histFujikawa

EXppNEX

EXsamNEX

MLMixture

(b)

Figure C.3.1: Average computational time of models fit on a fixed data set asK changes.
Figure (b) is a zoomed-in version of (a) in order to distinguish the differences between
methods. The fixed data set has all baskets homogeneous with current baskets each
having a sample size of 34 with a total of 3 responses observed. Historic baskets have a
sample size of 13 with 1 response observed. The number of historic baskets is ⌊K/2⌋.
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Figure C.3.2: Average computational time of models fit on a fixed data set asK changes.
Figure (b) is a zoomed-in version of (a) in order to distinguish the differences between
methods. The fixed data set has heterogeneity with even numbered baskets observing
9 responses and odd 3 responses. Historic baskets observe 1 response. Current baskets
have a sample size of 34 and historic baskets have a sample size of 13. The number of
historic baskets is ⌊K/2⌋.
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C.4 Simulation Results

Table C.4.1: Simulation Results for Chapter 4 for scenario 1 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 1 0.1 0.1 0.1 0.1 0.1
(a) (1,1,1)
EXNEX 5.26 6.26 5.92 5.50 5.46 22.66 77.34
EXNEXpool 6.10 6.20 6.42 5.44 5.40 23.12 76.88
mEXNEXhist 3.84 4.00 3.26 2.74 2.68 11.44 88.56
histFujikawa 4.42 4.08 4.42 1.90 2.04 10.66 89.34
EXppNEX 7.24 6.94 6.94 .30 6.46 25.72 74.28
EXsamNEX 7.70 7.48 7.34 5.82 5.80 26.96 73.04
MLMixture 6.82 6.86 7.12 5.16 5.48 24.70 75.30

(b) (3,1,1)
EXNEX 5.26 6.26 5.92 5.50 5.46 22.66 77.34
EXNEXpool 8.12 7.16 7.58 5.46 5.22 25.36 74.46
mEXNEXhist 8.38 5.48 5.28 4.74 4.40 21.08 78.92
histFujikawa 7.02 4.42 4.08 2.16 2.32 12.64 87.36
EXppNEX 8.42 6.80 7.58 5.74 6.30 27.10 72.90
EXsamNEX 7.96 7.44 7.82 5.10 5.46 26.18 73.82
MLMixture 8.74 7.30 7.36 5.26 5.28 26.12 73.88

(c) (3,3,1)
EXNEX 5.26 6.26 5.92 5.50 5.46 22.66 77.34
EXNEXpool 7.14 6.62 7.98 6.10 6.18 25.98 74.02
mEXNEXhist 5.62 5.28 5.94 4.66 4.80 19.52 80.48
histFujikawa 4.50 4.96 4.66 2.84 2.86 13.00 87.00
EXppNEX 7.20 7.44 7.84 6.28 6.60 26.98 73.02
EXsamNEX 7.98 7.42 7.10 5.28 5.50 26.32 73.68
MLMixture 7.52 7.08 7.36 5.56 4.86 25.14 74.86

(d) (3,3,3)
EXNEX 5.26 6.26 5.92 5.50 5.46 22.66 77.34
EXNEXpool 6.80 6.86 6.52 7.32 7.36 26.24 73.76
mEXNEXhist 3.32 3.80 3.70 2.96 2.54 10.96 89.04
histFujikawa 4.94 4.66 4.68 3.04 2.62 13.82 86.18
EXppNEX 7.34 7.08 6.82 5.40 6.90 25.78 74.22
EXsamNEX 6.42 6.94 7.18 5.78 6.26 24.98 75.02
MLMixture 6.86 6.88 6.36 5.08 4.68 23.36 76.64
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Table C.4.2: Simulation Results for Chapter 4 for scenario 2 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 2 0.25 0.1 0.1 0.1 0.1
(a) (1,1,1)
EXNEX 78.86 7.68 7.88 7.92 7.92 24.02 58.40
EXNEXpool 80.30 9.28 9.48 6.36 6.86 24.36 58.72
mEXNEXhist 66.92 8.84 9.12 6.30 5.80 21.8 47.04
histFujikawa 70.24 8.20 8.84 5.08 5.54 19.64 51.90
EXppNEX 81.24 9.52 9.68 8.32 7.96 27.78 56.92
EXsamNEX 83.00 10.32 9.48 6.88 7.02 26.96 58.82
MLMixture 81.12 9.42 9.52 6.02 6.68 25.42 58.88

(b) (3,1,1)
EXNEX 78.86 7.68 7.88 7.92 7.92 24.02 58.40
EXNEXpool 81.44 8.90 8.50 6.86 6.66 23.70 60.72
mEXNEXhist 82.96 8.02 8.32 6.70 6.80 22.18 62.74
histFujikawa 76.16 8.34 7.88 5.94 5.78 19.28 57.60
EXppNEX 83.68 9.66 9.44 8.10 7.70 27.46 59.36
EXsamNEX 82.76 9.24 8.82 7.40 6.74 25.96 59.54
MLMixture 83.06 9.30 9.04 6.90 6.56 25.40 60.74

(c) (3,3,1)
EXNEX 78.66 7.68 7.88 7.92 7.92 24.02 58.40
EXNEXpool 81.94 10.16 9.38 7.52 8.22 27.18 57.88
mEXNEXhist 77.62 10.82 9.28 8.46 7.44 27.50 52.90
histFujikawa 72.42 10.02 8.50 5.10 5.84 21.42 52.40
EXppNEX 81.76 10.28 9.10 8.10 7.56 28.28 56.40
EXsamNEX 82.08 9.18 10.26 6.70 6.46 26.32 58.80
MLMixture 82.02 9.40 8.72 6.90 6.92 24.86 60.04

(d) (3,3,3)
EXNEX 78.86 7.68 7.88 7.92 7.92 24.02 58.40
EXNEXpool 81.06 8.98 9.64 9.18 8.92 28.94 56.14
mEXNEXhist 68.06 9.38 8.48 5.80 6.48 21.60 48.44
histFujikawa 71.74 8.40 8.90 5.84 5.44 20.52 52.76
EXppNEX 81.70 9.68 9.48 8.88 7.68 28.18 56.78
EXsamNEX 80.84 9.22 8.82 6.74 6.80 24.74 59.52
MLMixture 81.10 8.60 9.26 6.54 7.10 24.96 59.54
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Table C.4.3: Simulation Results for Chapter 4 for scenario 3 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 3 0.25 0.25 0.1 0.1 0.1
(a) (1,1,1)
EXNEX 82.54 83.16 10.70 10.76 11.26 28.66 45.40
EXNEXpool 84.04 85.00 13.66 10.62 10.88 28.90 47.82
mEXNEXhist 81.92 82.90 16.02 9.36 10.22 27.38 48.04
histFujikawa 81.24 81.04 13.88 9.76 10.68 26.12 45.66
EXppNEX 85.48 84.7 12.08 10.90 11.80 30.02 48.64
EXsamNEX 84.96 84.70 11.90 10.34 9.44 27.22 50.68
MLMixture 85.26 86.02 11.76 9.56 9.26 25.46 52.62

(b) (3,1,1)
EXNEX 82.54 83.16 10.70 10.76 11.26 28.66 45.40
EXNEXpool 88.14 82.46 12.72 9.86 10.86 28.32 49.64
mEXNEXhist 88.28 82.44 13.72 10.42 10.20 27.88 49.88
histFujikawa 86.02 81.58 14.32 11.18 10.28 27.32 47.96
EXppNEX 87.14 85.08 11.52 10.82 10.94 29.26 50.82
EXsamNEX 86.30 85.26 12.00 9.96 9.66 27.04 51.54
MLMixture 85.82 85.18 12.52 8.84 9.74 25.46 52.62

(c) (3,3,1)
EXNEX 82.54 83.16 10.70 10.76 11.26 28.66 45.40
EXNEXpool 84.66 85.04 11.66 10.68 9.76 27.92 49.66
mEXNEXhist 85.38 84.90 13.76 10.96 11.58 30.26 48.56
histFujikawa 82.74 82.70 13.02 10.14 9.74 25.34 48.08
EXppNEX 85.78 85.72 11.56 10.98 10.92 29.62 50.42
EXsamNEX 85.82 85.74 11.64 9.16 9.76 26.60 52.56
MLMixture 84.96 84.92 12.64 9.92 9.50 26.26 50.36

(d) (3,3,3)
EXNEX 82.54 83.16 10.70 10.76 11.26 28.66 45.40
EXNEXpool 83.80 83.98 11.50 11.18 10.70 28.74 47.76
mEXNEXhist 82.38 82.58 16.34 10.52 10.04 28.88 46.72
histFujikawa 82.56 82.12 13.16 10.00 10.30 25.46 47.66
EXppNEX 84.94 84.90 11.44 11.72 10.70 28.42 50.10
EXsamNEX 83.18 83.82 11.78 8.70 9.56 25.04 49.80
MLMixture 83.64 84.04 12.68 9.74 9.72 25.78 49.78
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Table C.4.4: Simulation Results for Chapter 4 for scenario 4 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 4 0.25 0.25 0.25 0.1 0.1
(a) (1,1,1)
EXNEX 87.44 87.28 87.56 12.40 12.44 22.20 52.94
EXNEXpool 88.64 89.38 88.92 14.12 13.34 23.56 53.98
mEXNEXhist 89.52 89.26 89.52 15.38 14.86 25.26 52.86
histFujikawa 88.10 88.60 89.10 16.02 15.76 26.86 48.44
EXppNEX 88.02 87.36 88.08 11.26 11.62 21.36 54.08
EXsamNEX 88.34 88.18 88.28 12.36 12.28 21.44 54.38
MLMixture 88.64 88.42 88.68 13.30 13.34 22.86 53.66

(b) (3,1,1)
EXNEX 87.44 87.28 87.56 12.40 12.44 22.20 52.94
EXNEXpool 90.90 89.30 88.84 13.72 13.58 23.52 55.04
mEXNEXhist 92.30 89.76 89.08 13.28 13.94 23.70 56.26
histFujikawa 90.54 88.14 87.80 15.80 14.82 26.14 50.00
EXppNEX 89.46 88.26 88.40 11.84 12.60 23.00 53.90
EXsamNEX 88.30 87.84 88.18 12.78 12.92 22.24 53.14
MLMixture 89.46 88.56 88.56 12.98 13.22 21.80 54.08

(c) (3,3,1)
EXNEX 87.44 87.28 87.56 12.40 12.44 22.20 52.94
EXNEXpool 90.02 88.74 86.64 11.32 12.36 21.58 54.00
mEXNEXhist 90.52 89.58 89.16 12.84 13.08 22.92 54.74
histFujikawa 88.36 89.38 88.90 16.22 15.44 26.62 49.62
EXppNEX 88.28 87.50 88.70 11.60 12.00 21.46 53.94
EXsamNEX 88.58 88.24 88.94 13.14 12.68 22.34 53.68
MLMixture 88.78 89.60 87.98 13.48 12.02 22.08 53.96

(d) (3,3,3)
EXNEX 87.44 87.28 87.56 12.40 12.44 22.20 52.94
EXNEXpool 88.34 89.24 87.86 10.84 11.74 21.20 55.28
mEXNEXhist 89.20 90.00 89.46 15.74 14.92 25.86 51.82
histFujikawa 88.50 88.32 88.26 15.58 15.68 26.62 48.50
EXppNEX 88.82 87.62 87.70 12.22 12.26 21.14 54.02
EXsamNEX 88.80 87.62 87.70 12.22 12.26 21.14 54.02
MLMixture 87.86 87.38 88.84 12.86 13.04 21.92 53.14
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Table C.4.5: Simulation Results for Chapter 4 for scenario 5 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 5 0.25 0.25 0.25 0.25 0.1
(a) (1,1,1)
EXNEX 88.48 89.48 88.86 88.64 14.48 14.48 52.34
EXNEXpool 89.58 89.60 91.24 89.24 17.64 17.64 53.60
mEXNEXhist 94.10 93.40 93.50 90.16 22.08 22.08 56.82
histFujikawa 91.68 91.68 92.16 88.16 20.46 20.46 54.18
EXppNEX 88.90 88.94 89.40 88.48 12.42 12.42 54.14
EXsamNEX 88.24 88.82 88.66 88.28 17.40 17.40 49.02
MLMixture 90.20 89.72 89.72 89.16 18.34 18.34 50.40

(b) (3,1,1)
EXNEX 88.48 89.48 88.86 88.64 14.48 14.48 52.34
EXNEXpool 94.32 90.18 90.46 89.24 15.84 15.84 56.88
mEXNEXhist 94.42 92.36 93.24 89.60 17.04 17.04 60.56
histFujikawa 93.06 91.96 91.60 88.26 20.16 20.16 54.72
EXppNEX 91.74 89.08 88.96 89.44 13.04 13.04 56.86
EXsamNEX 90.96 87.96 88.90 88.54 17.22 17.22 50.30
MLMixture 92.44 89.76 89.62 88.92 18.58 18.58 51.68

(c) (3,3,1)
EXNEX 88.48 89.48 88.86 88.64 14.48 14.48 52.34
EXNEXpool 92.16 92.15 88.42 88.78 14.10 14.10 57.60
mEXNEXhist 93.00 92.78 90.68 89.48 16.28 16.28 58.14
histFujikawa 92.30 92.40 91.300 89.78 19.10 19.10 57.00
EXppNEX 89.54 89.52 89.20 88.50 13.70 13.70 54.00
EXsamNEX 90.36 90.84 88.90 88.50 17.94 17.94 50.80
MLMixture 91.88 91.94 89.82 89.18 19.78 19.78 51.94

(d) (3,3,3)
EXNEX 88.48 89.48 88.86 88.64 14.48 14.48 52.34
EXNEXpool 89.70 89.74 89.96 89.18 11.84 11.84 56.20
mEXNEXhist 94.12 93.82 94.20 90.64 22.20 22.20 57.86
histFujikawa 91.68 92.08 90.96 88.74 19.66 19.66 54.66
EXppNEX 89.94 90.90 90.32 88.46 14.10 14.10 54.76
EXsamNEX 90.56 89.48 90.56 88.26 17.54 17.54 51.38
MLMixture 91.09 90.02 89.78 89.16 18.16 18.16 51.60
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Table C.4.6: Simulation Results for Chapter 4 for scenario 6 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 6 0.25 0.25 0.25 0.25 0.25
(a) (1,1,1)
EXNEX 90.16 89.82 90.06 90.28 90.10 61.10
EXNEXpool 93.52 93.34 92.32 91.16 91.38 69.50
mEXNEXhist 96.54 96.92 96.58 93.46 93.40 72.42
histFujikawa 94.24 94.54 94.78 92.62 92.84 75.60
EXppNEX 87.56 88.54 88.62 88.64 89.10 54.56
EXsamNEX 89.70 88.42 88.30 91.40 91.72 60.94
MLMixture 92.40 92.36 92.28 91.70 91.88 69.98

(b) (3,1,1)
EXNEX 90.16 89.82 90.06 90.28 90.10 61.10
EXNEXpool 94.82 91.04 90.74 90.04 90.60 65.34
mEXNEXhist 95.28 94.68 95.46 91.90 9.146 73.60
histFujikawa 95.14 94.22 94.44 92.18 92.64 75.38
EXppNEX 94.88 89.36 88.58 89.04 88.44 59.60
EXsamNEX 94.16 89.70 88.28 90.96 91.88 64.98
MLMixture 94.96 92.66 92.68 92.58 92.48 72.62

(c) (3,3,1)
EXNEX 90.16 89.82 90.06 90.28 90.10 61.10
EXNEXpool 94.44 94.62 89.18 90.26 89.18 65.20
mEXNEXhist 94.92 94.30 93.14 90.26 90.44 69.86
histFujikawa 94.94 94.70 94.38 93.00 91.96 75.90
EXppNEX 93.86 93.96 88.76 89.58 89.28 64.82
EXsamNEX 94.44 93.86 88.90 91.86 91.48 68.70
MLMixture 94.28 94.86 91.80 92.48 91.66 72.80

(d) (3,3,3)
EXNEX 90.16 89.82 90.06 90.28 90.10 61.10
EXNEXpool 92.44 92.10 92.52 87.88 88.46 62.86
mEXNEXhist 96.52 96.58 96.98 96.36 93.84 81.90
histFujikawa 93.70 94.56 94.70 92.80 92.26 75.42
EXppNEX 93.52 93.90 93.74 89.72 89.48 69.52
EXsamNEX 93.38 93.80 93.14 91.62 90.90 71.68
MLMixture 94.30 94.50 94.38 91.52 92.00 73.84
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Table C.4.7: Simulation Results for Chapter 4 for scenario 7 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 6 0.1 0.1 0.1 0.25 0.1
(a) (1,1,1)
EXNEX 7.08 8.10 7.32 79.94 8.36 24.00 59.56
EXNEXpool 8.04 7.94 8.48 78.36 6.12 23.54 58.66
mEXNEXhist 7.18 7.04 7.66 63.84 5.42 18.90 48.12
histFujikawa 9.18 9.44 9.28 58.74 5.46 22.28 39.98
EXppNEX 10.40 10.58 10.70 80.00 8.76 32.58 51.68
EXsamNEX 10.84 10.76 10.24 77.74 7.40 32.12 51.40
MLMixture 9.58 9.80 9.34 79.20 6.88 28.06 55.80

(b) (3,1,1)
EXNEX 7.08 8.10 7.32 79.94 8.36 24.00 59.56
EXNEXpool 11.88 9.64 9.46 79.18 7.48 29.92 53.88
mEXNEXhist 11.62 9.14 9.74 78.90 7.24 27.24 53.00
histFujikawa 12.90 9.54 9.34 61.40 6.24 25.56 40.42
EXppNEX 11.58 10.24 9.92 79.32 8.12 32.80 51.42
EXsamNEX 12.04 10.76 9.54 79.64 7.54 32.04 52.34
MLMixture 11.26 9.28 9.36 77.82 7.50 29.18 53.48

(c) (3,3,1)
EXNEX 7.08 8.10 7.32 79.94 8.36 24.00 59.56
EXNEXpool 10.08 10.18 8.94 79.40 8.28 29.54 53.58
mEXNEXhist 8.46 8.66 8.58 75.92 7.16 24.36 54.94
histFujikawa 9.70 9.80 9.36 65.42 5.96 23.86 45.02
EXppNEX 10.22 9.88 9.74 79.88 8.62 30.90 53.08
EXsamNEX 10.70 10.76 9.60 79.60 7.12 30.24 54.04
MLMixture 10.58 10.30 9.62 77.08 7.00 28.74 53.06

(d) (3,3,3)
EXNEX 7.08 8.10 7.32 79.94 8.36 24.00 59.56
EXNEXpool 10.10 9.40 9.92 81.86 8.70 30.08 55.10
mEXNEXhist 71.80 7.18 7.32 65.44 4.78 18.42 49.54
histFujikawa 8.68 8.52 9.50 64.52 5.68 23.16 44.82
EXppNEX 9.70 10.22 10.00 80.36 8.52 30.90 53.78
EXsamNEX 9.70 9.44 9.14 80.08 7.34 27.80 56.70
MLMixture 9.26 10.06 9.08 77.36 7.36 27.10 54.34
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Table C.4.8: Simulation Results for Chapter 4 for scenario 8 under historic cases (a),
(b), (c) and (d).

yk∗ % Reject FWER % All Correct

Scenario 8 0.25 0.1 0.1 0.25 0.1
(a) (1,1,1)
EXNEX 82.80 12.32 11.44 82.42 10.08 29.02 45.22
EXNEXpool 83.06 12.02 11.96 81.24 9.76 27.74 45.14
mEXNEXhist 78.66 14.28 13.94 76.96 8.94 27.50 41.56
histFujikawa 82.22 14.18 13.52 76.32 10.02 27.98 42.86
EXppNEX 86.72 11.72 10.60 82.74 10.96 29.54 49.42
EXsamNEX 86.16 11.72 11.04 82.22 10.66 30.06 47.40
MLMixture 86.10 11.92 12.26 82.12 10.02 28.72 48.42

(b) (3,1,1)
EXNEX 82.80 12.32 11.44 82.42 10.08 29.02 45.22
EXNEXpool 88.20 12.22 11.72 81.10 10.36 29.22 48.08
mEXNEXhist 86.68 13.04 13.78 80.68 10.10 28.14 47.42
histFujikawa 84.96 13.98 14.34 77.36 10.36 28.40 44.32
EXppNEX 88.50 11.76 11.54 83.24 11.30 30.74 49.72
EXsamNEX 86.74 11.96 11.80 81.30 10.46 30.03 47.92
MLMixture 87.16 12.26 11.72 80.06 9.12 27.48 48.56

(c) (3,3,1)
EXNEX 82.80 12.32 11.44 82.42 10.08 29.02 45.22
EXNEXpool 86.94 13.04 12.04 81.82 11.10 30.18 47.26
mEXNEXhist 82.98 15.24 12.44 81.48 9.66 30.12 44.22
histFujikawa 82.74 15.22 14.42 77.88 11.06 30.20 41.90
EXppNEX 86.18 12.40 11.76 83.52 10.60 30.22 48.52
EXsamNEX 86.24 12.62 11.40 81.40 10.54 29.44 47.64
MLMixture 85.90 13.22 11.64 80.80 9.88 28.34 47.40

(d) (3,3,3)
EXNEX 82.80 12.32 11.44 82.42 10.08 29.02 45.22
EXNEXpool 84.66 12.12 12.42 83.94 10.74 29.94 47.96
mEXNEXhist 79.12 14.30 14.16 77.58 9.22 27.90 41.82
histFujikawa 81.82 13.68 13.76 76.90 10.62 28.22 42.22
EXppNEX 86.14 11.88 12.26 82.06 9.72 28.96 48.24
EXsamNEX 83.62 12.72 13.08 81.82 10.22 29.56 45.66
MLMixture 84.74 12.48 12.62 80.44 9.94 28.22 45.82
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Table C.4.9: Mean point estimate for the response rate (standard deviation) for scenario
1 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 1 0.1 0.1 0.1 0.1 0.1
(a) (1,1,1)
EXNEX 0.102 (0.039) 0.102 (0.041) 0.102 (0.040) 0.102 (0.039) 0.101 (0.040)
EXNEXpool 0.096 (0.029) 0.096 (0.029) 0.095 (0.028) 0.101 (0.039) 0.101 (0.039)
mEXNEXhist 0.100 (0.031) 0.100 (0.031) 0.100 (0.030) 0.101 (0.033) 0.101 (0.033)
histFujikawa 0.102 (0.029) 0.101 (0.030) 0.102 (0.030) 0.101 (0.029) 0.102 (0.030)
EXppNEX 0.107 (0.040) 0.108 (0.040) 0.107 (0.040) 0.101 (0.042) 0.101 (0.042)
EXsamNEX 0.104 (0.039) 0.104 (0.039) 0.105 (0.039) 0.105 (0.043) 0.105 (0.043)
MLMixture 0.103 (0.036) 0.104 (0.036) 0.104 (0.036) 0.103 (0.038) 0.103 (0.038)

(b) (3,1,1)
EXNEX 0.102 (0.039) 0.102 (0.041) 0.102 (0.040) 0.102 (0.039) 0.101 (0.040)
EXNEXpool 0.129 (0.031) 0.099 (0.029) 0.099 (0.029) 0.103 (0.038) 0.102 (0.038)
mEXNEXhist 0.102 (0.038) 0.101 (0.036) 0.101 (0.036) 0.102 (0.038) 0.102 (0.037)
histFujikawa 0.106 (0.033) 0.105 (0.032) 0.106 (0.032) 0.105 (0.032) 0.106 (0.033)
EXppNEX 0.113 (0.044) 0.107 (0.039) 0.107 (0.040) 0.100 (0.040) 0.102 (0.042)
EXsamNEX 0.107 (0.044) 0.104 (0.037) 0.104 (0.038) 0.104 (0.041) 0.104 (0.041)
MLMixture 0.113 (0.042) 0.105 (0.036) 0.105 (0.036) 0.105 (0.038) 0.105 (0.038)

(c) (3,3,1)
EXNEX 0.102 (0.039) 0.102 (0.041) 0.102 (0.040) 0.102 (0.039) 0.101 (0.040)
EXNEXpool 0.130 (0.030) 0.130 (0.029) 0.101 (0.029) 0.106 (0.038) 0.105 (0.039)
mEXNEXhist 0.101 (0.036) 0.100 (0.036) 0.101 (0.037) 0.101 (0.039) 0.101 (0.038)
histFujikawa 0.110 (0.036) 0.110 (0.036) 0.109 (0.037) 0.109 (0.036) 0.109 (0.036)
EXppNEX 0.113 (0.043) 0.113 (0.044) 0.107 (0.039) 0.100 (0.041) 0.101 (0.042)
EXsamNEX 0.107 (0.044) 0.107 (0.043) 0.104 (0.037) 0.103 (0.040) 0.104 (0.041)
MLMixture 0.114 (0.041) 0.114 (0.040) 0.107 (0.035) 0.107 (0.039) 0.107 (0.038)

(d) (3,3,3)
EXNEX 0.102 (0.039) 0.102 (0.041) 0.102 (0.040) 0.102 (0.039) 0.101 (0.040)
EXNEXpool 0.134 (0.028) 0.133 (0.028) 0.133 (0.029) 0.109 (0.039) 0.109 (0.038)
mEXNEXhist 0.100 (0.030) 0.100 (0.031) 0.100 (0.030) 0.100 (0.033) 0.100 (0.033)
histFujikawa 0.114 (0.040) 0.114 (0.039) 0.115 (0.040) 0.114 (0.040) 0.114 (0.039)
EXppNEX 0.113 (0.044) 0.113 (0.043) 0.112 (0.043) 0.099 (0.040) 0.100 (0.041)
EXsamNEX 0.106 (0.043) 0.107 (0.043) 0.107 (0.043) 0.104 (0.040) 0.105 (0.041)
MLMixture 0.115 (0.041) 0.116 (0.041) 0.115 (0.040) 0.109 (0.038) 0.109 (0.038)
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Table C.4.10: Mean point estimate for the response rate (standard deviation) for sce-
nario 2 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 2 0.25 0.1 0.1 0.1 0.1
(a) (1,1,1)
EXNEX 0.233 (0.074) 0.107 (0.043) 0.107 (0.043) 0.106 (0.043) 0.106 (0.043)
EXNEXpool 0.187 (0.052) 0.100 (0.031) 0.100 (0.031) 0.111 (0.040) 0.112 (0.040)
mEXNEXhist 0.202 (0.066) 0.112 (0.036) 0.114 (0.036) 0.112 (0.038) 0.111 (0.037)
histFujikawa 0.214 (0.083) 0.106 (0.034) 0.107 (0.035) 0.106 (0.034) 0.106 (0.034)
EXppNEX 0.229 (0.064) 0.110 (0.041) 0.110 (0.041) 0.104 (0.044) 0.104 (0.043)
EXsamNEX 0.239 (0.077) 0.108 (0.040) 0.107 (0.040) 0.110 (0.044) 0.110 (0.045)
MLMixture 0.224 (0.071) 0.106 (0.038) 0.106 (0.037) 0.106 (0.039) 0.106 (0.040)

(b) (3,1,1)
EXNEX 0.233 (0.074) 0.107 (0.043) 0.107 (0.043) 0.106 (0.043) 0.106 (0.043)
EXNEXpool 0.229 (0.055) 0.100 (0.032) 0.100 (0.032) 0.106 (0.042) 0.105 (0.042)
mEXNEXhist 0.230 (0.073) 0.106 (0.039) 0.106 (0.039) 0.106 (0.040) 0.105 (0.040)
histFujikawa 0.219 (0.076) 0.110 (0.037) 0.110 (0.037) 0.111 (0.037) 0.111 (0.037)
EXppNEX 0.246 (0.067) 0.110 (0.041) 0.109 (0.040) 0.104 (0.044) 0.104 (0.043)
EXsamNEX 0.243 (0.068) 0.107 (0.039) 0.106 (0.038) 0.109 (0.044) 0.108 (0.043)
MLMixture 0.239 (0.067) 0.108 (0.037) 0.107 (0.037) 0.109 (0.040) 0.110 (0.040)

(c) (3,3,1)
EXNEX 0.233 (0.074) 0.107 (0.043) 0.107 (0.043) 0.106 (0.043) 0.106 (0.043)
EXNEXpool 0.228 (0.053) 0.135 (0.032) 0.103 (0.032) 0.108 (0.042) 0.110 (0.043)
mEXNEXhist 0.220 (0.070) 0.111 (0.040) 0.109 (0.042) 0.109 (0.041) 0.108 (0.041)
histFujikawa 0.222 (0.068) 0.116 (0.040) 0.116 (0.039) 0.114 (0.039) 0.115 (0.040)
EXppNEX 0.246 (0.066) 0.118 (0.045) 0.109 (0.041) 0.104 (0.044) 0.103 (0.043)
EXsamNEX 0.244 (0.069) 0.109 (0.045) 0.108 (0.039) 0.107 (0.043) 0.107 (0.042)
MLMixture 0.241 (0.067) 0.117 (0.041) 0.109 (0.037) 0.111 (0.040) 0.112 (0.040)

(d) (3,3,3)
EXNEX 0.233 (0.074) 0.107 (0.043) 0.107 (0.043) 0.106 (0.043) 0.106 (0.043)
EXNEXpool 0.226 (0.052) 0.139 (0.031) 0.139 (0.031) 0.112 (0.042) 0.112 (0.042)
mEXNEXhist 0.202 (0.065) 0.114 (0.035) 0.113 (0.035) 0.111 (0.037) 0.111 (0.038)
histFujikawa 0.227 (0.063) 0.120 (0.043) 0.119 (0.044) 0.119 (0.043) 0.119 (0.042)
EXppNEX 0.245 (0.068) 0.117 (0.045) 0.116 (0.045) 0.104 (0.043) 0.102 (0.043)
EXsamNEX 0.242 (0.070) 0.110 (0.044) 0.111 (0.044) 0.107 (0.041) 0.108 (0.041)
MLMixture 0.239 (0.064) 0.120 (0.041) 0.121 (0.041) 0.114 (0.040) 0.115 (0.040)
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Table C.4.11: Mean point estimate for the response rate (standard deviation) for sce-
nario 3 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 3 0.25 0.25 0.1 0.1 0.1
(a) (1,1,1)
EXNEX 0.235 (0.069) 0.236 (0.069) 0.112 (0.046) 0.112 (0.046) 0.112 (0.046)
EXNEXpool 0.190 (0.052) 0.191 (0.049) 0.105 (0.033) 0.111 (0.043) 0.112 (0.043)
mEXNEXhist 0.218 (0.061) 0.218 (0.061) 0.126 (0.040) 0.120 (0.041) 0.120 (0.042)
histFujikawa 0.224 (0.075) 0.224 (0.075) 0.111 (0.039) 0.111 (0.038) 0.112 (0.039)
EXppNEX 0.232 (0.062) 0.230 (0.062) 0.114 (0.043) 0.108 (0.046) 0.109 (0.047)
EXsamNEX 0.239 (0.076) 0.238 (0.075) 0.113 (0.041) 0.116 (0.046) 0.116 (0.045)
MLMixture 0.228 (0.069) 0.228 (0.068) 0.110 (0.038) 0.113 (0.042) 0.112 (0.042)

(b) (3,1,1)
EXNEX 0.235 (0.069) 0.236 (0.069) 0.112 (0.046) 0.112 (0.046) 0.112 (0.046)
EXNEXpool 0.230 (0.052) 0.193 (0.049) 0.105 (0.035) 0.112 (0.044) 0.112 (0.044)
mEXNEXhist 0.230 (0.066) 0.226 (0.067) 0.118 (0.044) 0.114 (0.044) 0.114 (0.043)
histFujikawa 0.226 (0.067) 0.225 (0.068) 0.118 (0.041) 0.117 (0.041) 0.117 (0.040)
EXppNEX 0.247 (0.065) 0.230 (0.062) 0.113 (0.042) 0.108 (0.047) 0.108 (0.047)
EXsamNEX 0.245 (0.067) 0.240 (0.076) 0.110 (0.041) 0.114 (0.046) 0.114 (0.045)
MLMixture 0.239 (0.065) 0.228 (0.068) 0.112 (0.039) 0.114 (0.041) 0.116 (0.042)

(c) (3,3,1)
EXNEX 0.235 (0.069) 0.236 (0.069) 0.112 (0.046) 0.112 (0.046) 0.112 (0.046)
EXNEXpool 0.232 (0.052) 0.233 (0.051) 0.105 (0.036) 0.113 (0.046) 0.113 (0.045)
mEXNEXhist 0.228 (0.065) 0.228 (0.065) 0.116 (0.062) 0.116 (0.045) 0.117 (0.045)
histFujikawa 0.231 (0.064) 0.231 (0.064) 0.120 (0.044) 0.121 (0.044) 0.120 (0.044)
EXppNEX 0.248 (0.065) 0.248 (0.065) 0.112 (0.042) 0.107 (0.046) 0.107 (0.045)
EXsamNEX 0.244 (0.067) 0.246 (0.068) 0.109 (0.041) 0.112 (0.045) 0.113 (0.045)
MLMixture 0.240 (0.063) 0.241 (0.064) 0.115 (0.039) 0.117 (0.042) 0.117 (0.042)

(d) (3,3,3)
EXNEX 0.235 (0.069) 0.236 (0.069) 0.112 (0.046) 0.112 (0.046) 0.112 (0.046)
EXNEXpool 0.231 (0.051) 0.230 (0.050) 0.144 (0.032) 0.116 (0.046) 0.115 (0.045)
mEXNEXhist 0.217 (0.061) 0.219 (0.061) 0.126 (0.039) 0.121 (0.042) 0.121 (0.041)
histFujikawa 0.235 (0.059) 0.234 (0.058) 0.126 (0.048) 0.126 (0.048) 0.126 (0.048)
EXppNEX 0.246 (0.065) 0.247 (0.065) 0.120 (0.045) 0.107 (0.045) 0.106 (0.045)
EXsamNEX 0.243 (0.068) 0.243 (0.068) 0.115 (0.047) 0.111 (0.043) 0.113 (0.044)
MLMixture 0.241 (0.064) 0.241 (0.063) 0.125 (0.043) 0.121 (0.042) 0.119 (0.043)
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Table C.4.12: Mean point estimate for the response rate (standard deviation) for sce-
nario 4 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 4 0.25 0.25 0.25 0.1 0.1
(a) (1,1,1)
EXNEX 0.241 (0.067) 0.240 (0.066) 0.240 (0.065) 0.118 (0.047) 0.117 (0.049)
EXNEXpool 0.194 (0.046) 0.195 (0.046) 0.195 (0.046) 0.118 (0.046) 0.117 (0.046)
mEXNEXhist 0.230 (0.056) 0.229 (0.055) 0.230 (0.056) 0.131 (0.041) 0.131 (0.046)
histFujikawa 0.231 (0.068) 0.232 (0.068) 0.233 (0.068) 0.119 (0.043) 0.118 (0.042)
EXppNEX 0.234 (0.061) 0.233 (0.060) 0.233 (0.061) 0.112 (0.048) 0.113 (0.048)
EXsamNEX 0.240 (0.071) 0.241 (0.071) 0.240 (0.071) 0.121 (0.047) 0.121 (0.047)
MLMixture 0.229 (0.065) 0.229 (0.065) 0.230 (0.066) 0.119 (0.043) 0.119 (0.044)

(b) (3,1,1)
EXNEX 0.241 (0.067) 0.240 (0.066) 0.240 (0.065) 0.118 (0.047) 0.117 (0.049)
EXNEXpool 0.230 (0.048) 0.198 (0.046) 0.198 (0.045) 0.119 (0.047) 0.119 (0.047)
mEXNEXhist 0.240 (0.063) 0.235 (0.061) 0.235 (0.062) 0.122 (0.049) 0.123 (0.049)
histFujikawa 0.233 (0.063) 0.234 (0.062) 0.234 (0.063) 0.123 (0.046) 0.123 (0.045)
EXppNEX 0.250 (0.063) 0.233 (0.060) 0.234 (0.060) 0.113 (0.049) 0.113 (0.049)
EXsamNEX 0.245 (0.064) 0.240 (0.073) 0.240 (0.072) 0.121 (0.048) 0.121 (0.048)
MLMixture 0.243 (0.062) 0.230 (0.065) 0.230 (0.065) 0.122 (0.044) 0.122 (0.044)

(c) (3,3,1)
EXNEX 0.241 (0.067) 0.240 (0.066) 0.240 (0.065) 0.118 (0.047) 0.117 (0.049)
EXNEXpool 0.235 (0.048) 0.233 (0.048) 0.199 (0.046) 0.118 (0.048) 0.118 (0.048)
mEXNEXhist 0.237 (0.061) 0.235 (0.061) 0.239 (0.062) 0.122 (0.048) 0.123 (0.049)
histFujikawa 0.235 (0.058) 0.235 (0.057) 0.236 (0.057) 0.130 (0.048) 0.129 (0.048)
EXppNEX 0.248 (0.063) 0.248 (0.063) 0.233 (0.061) 0.111 (0.048) 0.111 (0.049)
EXsamNEX 0.246 (0.065) 0.245 (0.065) 0.242 (0.073) 0.120 (0.047) 0.120 (0.046)
MLMixture 0.242 (0.060) 0.244 (0.062) 0.232 (0.065) 0.126 (0.044) 0.124 (0.043)

(d) (3,3,3)
EXNEX 0.241 (0.067) 0.240 (0.066) 0.240 (0.065) 0.118 (0.047) 0.117 (0.049)
EXNEXpool 0.237 (0.047) 0.236 (0.046) 0.235 (0.046) 0.119 (0.049) 0.119 (0.050)
mEXNEXhist 0.229 (0.057) 0.230 (0.056) 0.228 (0.056) 0.132 (0.046) 0.139 (0.046)
histFujikawa 0.239 (0.053) 0.239 (0.052) 0.239 (0.053) 0.135 (0.052) 0.135 (0.052)
EXppNEX 0.250 (0.060) 0.250 (0.063) 0.247 (0.062) 0.111 (0.047) 0.111 (0.048)
EXsamNEX 0.247 (0.065) 0.245 (0.065) 0.245 (0.064) 0.118 (0.047) 0.118 (0.048)
MLMixture 0.244 (0.061) 0.243 (0.061) 0.243 (0.060) 0.127 (0.045) 0.128 (0.045)



APPENDIX C. SUPPORTING INFORMATION: CHAPTER 4 257

Table C.4.13: Mean point estimate for the response rate (standard deviation) for sce-
nario 5 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 5 0.25 0.25 0.25 0.25 0.1
(a) (1,1,1)
EXNEX 0.245 (0.062) 0.246 (0.062) 0.246 (0.062) 0.245 (0.062) 0.112 (0.053)
EXNEXpool 0.201 (0.044) 0.201 (0.043) 0.201 (0.044) 0.235 (0.061) 0.123 (0.048)
mEXNEXhist 0.241 (0.052) 0.239 (0.051) 0.240 (0.051) 0.241 (0.053) 0.140 (0.052)
histFujikawa 0.237 (0.063) 0.237 (0.064) 0.238 (0.064) 0.235 (0.063) 0.126 (0.046)
EXppNEX 0.240 (0.059) 0.238 (0.058) 0.239 (0.058) 0.246 (0.064) 0.119 (0.052)
EXsamNEX 0.244 (0.068) 0.244 (0.067) 0.244 (0.068) 0.250 (0.065) 0.131 (0.050)
MLMixture 0.235 (0.064) 0.235 (0.064) 0.234 (0.063) 0.245 (0.067) 0.128 (0.046)

(b) (3,1,1)
EXNEX 0.245 (0.062) 0.246 (0.062) 0.246 (0.062) 0.245 (0.062) 0.112 (0.053)
EXNEXpool 0.235 (0.045) 0.204 (0.044) 0.204 (0.043) 0.240 (0.061) 0.123 (0.050)
mEXNEXhist 0.245 (0.059) 0.242 (0.056) 0.244 (0.056) 0.244 (0.058) 0.126 (0.052)
histFujikawa 0.237 (0.058) 0.239 (0.058) 0.239 (0.058) 0.238 (0.058) 0.131 (0.049)
EXppNEX 0.253 (0.058) 0.239 (0.059) 0.239 (0.049) 0.247 (0.065) 0.119 (0.053)
EXsamNEX 0.253 (0.057) 0.250 (0.064) 0.248 (0.065) 0.255 (0.059) 0.256 (0.059)
MLMixture 0.244 (0.059) 0.234 (0.063) 0.234 (0.062) 0.246 (0.066) 0.129 (0.047)

(c) (3,3,1)
EXNEX 0.245 (0.062) 0.246 (0.062) 0.246 (0.062) 0.245 (0.062) 0.112 (0.053)
EXNEXpool 0.238 (0.045) 0.238 (0.044) 0.206 (0.044) 0.242 (0.060) 0.125 (0.052)
mEXNEXhist 0.242 (0.056) 0.242 (0.057) 0.242 (0.059) 0.245 (0.058) 0.126 (0.052)
histFujikawa 0.241 (0.054) 0.242 (0.053) 0.241 (0.054) 0.242 (0.053) 0.137 (0.052)
EXppNEX 0.251 (0.060) 0.251 (0.060) 0.238 (0.058) 0.243 (0.066) 0.119 (0.051)
EXsamNEX 0.249 (0.062) 0.250 (0.061) 0.245 (0.070) 0.249 (0.065) 0.129 (0.049)
MLMixture 0.246 (0.057) 0.246 (0.057) 0.235 (0.060) 0.247 (0.064) 0.135 (0.047)

(d) (3,3,3)
EXNEX 0.245 (0.062) 0.246 (0.062) 0.246 (0.062) 0.245 (0.062) 0.112 (0.053)
EXNEXpool 0.241 (0.044) 0.241 (0.043) 0.241 (0.044) 0.244 (0.058) 0.124 (0.053)
mEXNEXhist 0.241 (0.052) 0.240 (0.051) 0.240 (0.051) 0.242 (0.054) 0.139 (0.052)
histFujikawa 0.244 (0.050) 0.245 (0.049) 0.244 (0.050) 0.244 (0.049) 0.145 (0.055)
EXppNEX 0.252 (0.060) 0.252 (0.059) 0.253 (0.060) 0.243 (0.067) 0.116 (0.051)
EXsamNEX 0.250 (0.060) 0.249 (0.063) 0.249 (0.061) 0.250 (0.068) 0.128 (0.050)
MLMixture 0.248 (0.056) 0.246 (0.057) 0.246 (0.056) 0.248 (0.062) 0.135 (0.049)
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Table C.4.14: Mean point estimate for the response rate (standard deviation) for sce-
nario 6 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 6 0.25 0.25 0.25 0.25 0.25
(a) (1,1,1)
EXNEX 0.251 (0.058) 0.250 (0.058) 0.250 (0.057) 0.251 (0.058) 0.250 (0.058)
EXNEXpool 0.208 (0.042) 0.207 (0.042) 0.206 (0.043) 0.241 (0.058) 0.240 (0.057)
mEXNEXhist 0.250 (0.046) 0.250 (0.045) 0.251 (0.046) 0.250 (0.049) 0.249 (0.048)
histFujikawa 0.241 (0.057) 0.242 (0.058) 0.242 (0.057) 0.242 (0.057) 0.243 (0.057)
EXppNEX 0.242 (0.057) 0.243 (0.056) 0.243 (0.056) 0.252 (0.062) 0.251 (0.060)
EXsamNEX 0.250 (0.064) 0.247 (0.065) 0.247 (0.064) 0.256 (0.060) 0.256 (0.060)
MLMixture 0.238 (0.060) 0.239 (0.06) 0.238 (0.060) 0.248 (0.060) 0.250 (0.062)

(b) (3,1,1)
EXNEX 0.251 (0.058) 0.250 (0.058) 0.250 (0.057) 0.251 (0.058) 0.250 (0.058)
EXNEXpool 0.239 (0.042) 0.209 (0.043) 0.210 (0.043) 0.243 (0.057) 0.242 (0.057)
mEXNEXhist 0.250 (0.055) 0.248 (0.051) 0.250 (0.051) 0.250 (0.054) 0.249 (0.054)
histFujikawa 0.244 (0.053) 0.245 (0.052) 0.245 (0.053) 0.243 (0.053) 0.245 (0.053)
EXppNEX 0.255 (0.055) 0.243 (0.055) 0.243 (0.056) 0.250 (0.061) 0.104 (0.061)
EXsamNEX 0.114 (0.047) 0.108 (0.040) 0.108 (0.039) 0.224 (0.076) 0.110 (0.044)
MLMixture 0.250 (0.055) 0.239 (0.057) 0.239 (0.057) 0.248 (0.058) 0.250 (0.059)

(c) (3,3,1)
EXNEX 0.251 (0.058) 0.250 (0.058) 0.250 (0.057) 0.251 (0.058) 0.250 (0.058)
EXNEXpool 0.243 (0.042) 0.242 (0.042) 0.213 (0.043) 0.246 (0.054) 0.246 (0.056)
mEXNEXhist 0.251 (0.052) 0.250 (0.053) 0.250 (0.055) 0.250 (0.055) 0.251 (0.056)
histFujikawa 0.248 (0.048) 0.247 (0.048) 0.248 (0.050) 0.248 (0.049) 0.248 (0.049)
EXppNEX 0.255 (0.056) 0.256 (0.057) 0.243 (0.056) 0.250 (0.062) 0.250 (0.061)
EXsamNEX 0.254 (0.057) 0.254 (0.057) 0.250 (0.067) 0.255 (0.060) 0.255 (0.061)
MLMixture 0.251 (0.054) 0.252 (0.054) 0.241 (0.057) 0.252 (0.058) 0.251 (0.059)

(d) (3,3,3)
EXNEX 0.251 (0.058) 0.250 (0.058) 0.250 (0.057) 0.251 (0.058) 0.250 (0.058)
EXNEXpool 0.244 (0.041) 0.245 (0.041) 0.245 (0.040) 0.247 (0.056) 0.248 (0.055)
mEXNEXhist 0.248 (0.045) 0.249 (0.046) 0.249 (0.046) 0.248 (0.048) 0.249 (0.048)
histFujikawa 0.250 (0.045) 0.251 (0.045) 0.251 (0.045) 0.250 (0.044) 0.250 (0.045)
EXppNEX 0.254 (0.056) 0.254 (0.057) 0.255 (0.056) 0.249 (0.062) 0.248 (0.061)
EXsamNEX 0.253 (0.058) 0.253 (0.057) 0.252 (0.058) 0.255 (0.062) 0.254 (0.061)
MLMixture 0.252 (0.053) 0.253 (0.052) 0.252 (0.053) 0.254 (0.055) 0.254 (0.057)
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Table C.4.15: Mean point estimate for the response rate (standard deviation) for sce-
nario 7 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 7 0.1 0.1 0.1 0.25 0.1
(a) (1,1,1)
EXNEX 0.105 (0.042) 0.106 (0.043) 0.106 (0.042) 0.233 (0.073) 0.107 (0.043)
EXNEXpool 0.098 (0.030) 0.099 (0.030) 0.098 (0.031) 0.232 (0.074) 0.104 (0.040)
mEXNEXhist 0.109 (0.035) 0.109 (0.034) 0.110 (0.035) 0.213 (0.072) 0.108 (0.037)
histFujikawa 0.107 (0.034) 0.106 (0.034) 0.107 (0.034) 0.216 (0.084) 0.106 (0.034)
EXppNEX 0.111 (0.041) 0.112 (0.041) 0.112 (0.041) 0.235 (0.073) 0.105 (0.044)
EXsamNEX 0.108 (0.041) 0.109 (0.040) 0.107 (0.040) 0.242 (0.076) 0.110 (0.044)
MLMixture 0.107 (0.036) 0.106 (0.037) 0.107 (0.036) 0.240 (0.077) 0.107 (0.040)

(b) (3,1,1)
EXNEX 0.105 (0.042) 0.106 (0.043) 0.106 (0.042) 0.233 (0.073) 0.107 (0.043)
EXNEXpool 0.134 (0.032) 0.102 (0.031) 0.101 (0.031) 0.231 (0.073) 0.108 (0.041)
mEXNEXhist 0.107 (0.040) 0.107 (0.039) 0.107 (0.039) 0.228 (0.074) 0.107 (0.041)
histFujikawa 0.112 (0.037) 0.111 (0.037) 0.112 (0.037) 0.219 (0.075) 0.111 (0.038)
EXppNEX 0.119 (0.045) 0.111 (0.042) 0.110 (0.041) 0.234 (0.074) 0.104 (0.043)
EXsamNEX 0.245 (0.066) 0.110 (0.042) 0.111 (0.040) 0.246 (0.073) 0.116 (0.047)
MLMixture 0.116 (0.041) 0.109 (0.037) 0.108 (0.037) 0.240 (0.078) 0.111 (0.040)

(c) (3,3,1)
EXNEX 0.105 (0.042) 0.106 (0.043) 0.106 (0.042) 0.233 (0.073) 0.107 (0.043)
EXNEXpool 0.135 (0.030) 0.136 (0.031) 0.103 (0.031) 0.230 (0.072) 0.109 (0.041)
mEXNEXhist 0.106 (0.039) 0.107 (0.039) 0.106 (0.041) 0.230 (0.074) 0.107 (0.041)
histFujikawa 0.116 (0.040) 0.116 (0.040) 0.116 (0.041) 0.221 (0.068) 0.115 (0.040)
EXppNEX 0.117 (0.045) 0.117 (0.045) 0.110 (0.040) 0.233 (0.074) 0.105 (0.044)
EXsamNEX 0.111 (0.045) 0.112 (0.045) 0.108 (0.039) 0.242 (0.076) 0.109 (0.042)
MLMixture 0.118 (0.042) 0.118 (0.041) 0.110 (0.038) 0.238 (0.075) 0.112 (0.040)

(d) (3,3,3)
EXNEX 0.105 (0.042) 0.106 (0.043) 0.106 (0.042) 0.233 (0.073) 0.107 (0.043)
EXNEXpool 0.139 (0.030) 0.139 (0.029) 0.139 (0.030) 0.229 (0.070) 0.114 (0.040)
mEXNEXhist 0.109 (0.035) 0.109 (0.035) 0.109 (0.035) 0.214 (0.072) 0.108 (0.037)
histFujikawa 0.119 (0.044) 0.118 (0.043) 0.120 (0.043) 0.225 (0.061) 0.119 (0.043)
EXppNEX 0.116 (0.044) 0.117 (0.045) 0.118 (0.044) 0.234 (0.075) 0.104 (0.042)
EXsamNEX 0.111 (0.045) 0.111 (0.044) 0.111 (0.044) 0.243 (0.077) 0.108 (0.042)
MLMixture 0.121 (0.042) 0.121 (0.042) 0.120 (0.042) 0.238 (0.075) 0.114 (0.041)
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Table C.4.16: Mean point estimate for the response rate (standard deviation) for sce-
nario 8 under historic cases (a), (b), (c) and (d) for the simulation study in Chapter 4.

yk∗ Mean Point Estimate (Sd)

Scenario 8 0.25 0.1 0.1 0.25 0.1
(a) (1,1,1)
EXNEX 0.237 (0.070) 0.113 (0.046) 0.112 (0.046) 0.235 (0.069) 0.112 (0.045)
EXNEXpool 0.191 (0.051) 0.103 (0.033) 0.103 (0.033) 0.232 (0.070) 0.110 (0.043)
mEXNEXhist 0.214 (0.062) 0.123 (0.039) 0.122 (0.039) 0.222 (0.066) 0.118 (0.040)
histFujikawa 0.226 (0.076) 0.111 (0.038) 0.112 (0.034) 0.226 (0.075) 0.112 (0.038)
EXppNEX 0.233 (0.061) 0.114 (0.043) 0.114 (0.042) 0.238 (0.072) 0.109 (0.046)
EXsamNEX 0.241 (0.076) 0.112 (0.042) 0.110 (0.040) 0.247 (0.072) 0.117 (0.047)
MLMixture 0.227 (0.068) 0.111 (0.038) 0.110 (0.039) 0.241 (0.074) 0.113 (0.042)

(b) (3,1,1)
EXNEX 0.237 (0.070) 0.113 (0.046) 0.112 (0.046) 0.235 (0.069) 0.112 (0.045)
EXNEXpool 0.233 (0.052) 0.104 (0.034) 0.104 (0.034) 0.234 (0.070) 0.111 (0.044)
mEXNEXhist 0.232 (0.070) 0.115 (0.043) 0.115 (0.043) 0.230 (0.069) 0.112 (0.044)
histFujikawa 0.226 (0.068) 0.116 (0.041) 0.117 (0.041) 0.229 (0.069) 0.116 (0.041)
EXppNEX 0.249 (0.065) 0.114 (0.043) 0.114 (0.042) 0.239 (0.071) 0.110 (0.047)
EXsamNEX 0.244 (0.067) 0.116 (0.047) 0.110 (0.040) 0.245 (0.074) 0.115 (0.046)
MLMixture 0.241 (0.065) 0.112 (0.039) 0.112 (0.039) 0.240 (0.075) 0.115 (0.041)

(c) (3,3,1)
EXNEX 0.237 (0.070) 0.113 (0.046) 0.112 (0.046) 0.235 (0.069) 0.112 (0.045)
EXNEXpool 0.232 (0.051) 0.142 (0.033) 0.107 (0.035) 0.232 (0.068) 0.114 (0.045)
mEXNEXhist 0.226 (0.068) 0.118 (0.044) 0.114 (0.044) 0.232 (0.069) 0.113 (0.044)
histFujikawa 0.230 (0.063) 0.123 (0.044) 0.122 (0.044) 0.230 (0.063) 0.123 (0.044)
EXppNEX 0.248 (0.065) 0.124 (0.046) 0.114 (0.042) 0.237 (0.071) 0.108 (0.046)
EXsamNEX 0.244 (0.045) 0.116 (0.047) 0.110 (0.040) 0.245 (0.074) 0.115 (0.046)
MLMixture 0.241 (0.063) 0.124 (0.043) 0.114 (0.039) 0.239 (0.072) 0.117 (0.042)

(d) (3,3,3)
EXNEX 0.237 (0.070) 0.113 (0.046) 0.112 (0.046) 0.235 (0.069) 0.112 (0.045)
EXNEXpool 0.231 (0.051) 0.145 (0.032) 0.145 (0.032) 0.233 (0.067) 0.117 (0.045)
mEXNEXhist 0.214 (0.062) 0.123 (0.039) 0.123 (0.039) 0.223 (0.065) 0.118 (0.040)
histFujikawa 0.233 (0.057) 0.126 (0.048) 0.127 (0.047) 0.233 (0.057) 0.126 (0.048)
EXppNEX 0.246 (0.064) 0.123 (0.046) 0.123 (0.045) 0.235 (0.072) 0.106 (0.044)
EXsamNEX 0.243 (0.068) 0.116 (0.046) 0.116 (0.047) 0.243 (0.074) 0.114 (0.044)
MLMixture 0.241 (0.063) 0.126 (0.043) 0.126 (0.043) 0.238 (0.070) 0.121 (0.043)
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C.5 Exploring the Choice of Power, α, in the EXpp-

NEX Approach
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Figure C.5.1: The percentage of data sets where the null hypothesis were rejected per
baskets under the EXppNEX model for scenarios 1-4 and 4 historic sub-cases. This is
provided for three choices of α: 0.25, 0.5 and 1.
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Figure C.5.2: The percentage of data sets where the null hypothesis were rejected per
baskets under the EXppNEX model for scenarios 5-8 and 4 historic sub-cases. This is
provided for three choices of α: 0.25, 0.5 and 1.

C.6 Exploring the Choice of Weights in the MLMix-

ture Model
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Figure C.6.1: The percentage of data sets where the null hypothesis were rejected per
basket under the MLMixture model for scenarios 1-4 and 4 historic sub-cases. This is
provided for several choices of πλ,k and πcurr,i = πall,i. Each set of bars labelled x, y
correspond to a setting of MLMixture weights where x is the value of πλ,k (set at 0.25,
0.5 or 0.75) and y are the values of πcurr,i and πall,i which are set as equal and to either
0.25, 0.5 or 0.75.



APPENDIX C. SUPPORTING INFORMATION: CHAPTER 4 264

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc5(a) p=(0.25,0.25,0.25,0.25,0.1), Historic Responses=(1,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc5(b) p=(0.25,0.25,0.25,0.25,0.1), Historic Responses=(3,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc5(c) p=(0.25,0.25,0.25,0.25,0.1), Historic Responses=(3,3,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc5(d) p=(0.25,0.25,0.25,0.25,0.1), Historic Responses=(3,3,3)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc6(a) p=(0.25,0.25,0.25,0.25,0.25), Historic Responses=(1,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc6(b) p=(0.25,0.25,0.25,0.25,0.25), Historic Responses=(3,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc6(c) p=(0.25,0.25,0.25,0.25,0.25), Historic Responses=(3,3,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc6(d) p=(0.25,0.25,0.25,0.25,0.25), Historic Responses=(3,3,3)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc7(a) p=(0.1,0.1,0.1,0.25,0.1), Historic Responses=(1,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc7(b) p=(0.1,0.1,0.1,0.25,0.1), Historic Responses=(3,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc7(c) p=(0.1,0.1,0.1,0.25,0.1), Historic Responses=(3,3,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc7(d) p=(0.1,0.1,0.1,0.25,0.1), Historic Responses=(3,3,3)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc8(a) p=(0.25,0.1,0.1,0.25,0.1), Historic Responses=(1,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc8(b) p=(0.25,0.1,0.1,0.25,0.1), Historic Responses=(3,1,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc8(c) p=(0.25,0.1,0.1,0.25,0.1), Historic Responses=(3,3,1)

0

25

50

75

100

0.25,0.25 0.25,0.75 0.5,0.5 0.75,0.25 0.75,0.75

%
 R

e
je

c
t

Sc8(d) p=(0.25,0.1,0.1,0.25,0.1), Historic Responses=(3,3,3)

Figure C.6.2: The percentage of data sets where the null hypothesis were rejected per
basket under the MLMixture model for scenarios 5-8 and 4 historic sub-cases. This is
provided for several choices of πλ,k and πcurr,i = πall,i. Each set of bars labelled x, y
correspond to a setting of MLMixture weights where x is the value of πλ,k (set at 0.25,
0.5 or 0.75) and y are the values of πcurr,i and πall,i which are set as equal and to either
0.25, 0.5 or 0.75.
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C.7 Simulation Study with nk = 20 for All Current

Baskets, k

The simulation study in Chapter 4 set the sample size of current baskets to be nk = 34

for baskets k = 1, 2, 3, 4, 5. This is a particularly large sample size if you compare

to the motivating VE-BASKET and MYPathway trials. The large sample size could

potentially down-play the benefits of borrowing from the historic information, as baskets

with a smaller sample size will benefit more greatly from this additional source of

information. To address this, the same simulation study as in Chapter 4 is conducted

but the sample size of current baskets reduced to nk = 20 for baskets k = 1, 2, 3, 4, 5

(sample size of historic data is still 13 in each). Results are presented in Figures C.7.1-

C.7.4.

The comparison between methods holds the same in this study as in the study

presented in Chapter 4 with a larger sample size, with performances comparable. Due

to the small sample size, the nominal power of 80% is rarely achieved, and in fact,

is never achieved using the standard EXNEX model which doesn’t consider historical

data. The EXppNEX and EXsamNEX also fail to reach this nominal level, however,

do get closer. Both mEXNEXhist and histFujikawa achieve power above 80% under

scenarios 5 and 6.
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Figure C.7.1: Simulation results for the nk = 20 study: type I error rate and power
under each of the 8 approaches for historic information borrowing for scenarios 1 and
2 cases (a)-(d).
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Figure C.7.2: Simulation results for the nk = 20 study: type I error rate and power
under each of the 8 approaches for historic information borrowing for scenarios 3 and
4 cases (a)-(d).
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Figure C.7.3: Simulation results for the nk = 20 study: type I error rate and power
under each of the 8 approaches for historic information borrowing for scenarios 5 and
6 cases (a)-(d).
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Figure C.7.4: Simulation results for the nk = 20 study: type I error rate and power
under each of the 8 approaches for historic information borrowing for scenarios 7 and
8 cases (a)-(d).
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