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Abstract: Dynamical theories of speech use computational models of articulatory control to generate quantitative predictions
and advance understanding of speech dynamics. The addition of a nonlinear restoring force to task dynamic models is a sig-
nificant improvement over linear models, but nonlinearity introduces challenges with parameterization and interpretability.
We illustrate these problems through numerical simulations and introduce solutions in the form of scaling laws. We apply the
scaling laws to a cubic model and show how they facilitate interpretable simulations of articulatory dynamics and can be theo-
retically interpreted as imposing physical and cognitive constraints on models of speech movement dynamics. VC 2025
Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creative-
commons.org/licenses/by/4.0/).
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1. Introduction

The task dynamic model of speech production is a theoretical and mathematical model of how movement goals are
controlled in speech (Browman and Goldstein, 1992; Fowler, 1980; Iskarous, 2017; Saltzman and Munhall, 1989). The
standard model of task dynamics uses the critically damped harmonic oscillator in Eq. (1) as a model of the articulatory
gesture, where x is the position of the system, _x is velocity, €x is acceleration, m is mass, b is a damping coefficient, k is a
stiffness coefficient, and T is the target or equilibrium position [see Iskarous (2017) for a tutorial introduction]. The initial
conditions are defined as xð0Þ ¼ x0 and _xð0Þ ¼ _x0 . The damping coefficient b in a critically damped harmonic oscillator is
defined as b ¼ 2

ffiffiffiffiffiffi
mk
p

, where m ¼ 1 in most formulations, but see �Simko and Cummins (2010) for an embodied task
dynamics where dynamics are defined over physical masses,

m€x þ b _x þ kðx � TÞ ¼ 0: (1)

The linear dynamical model fails to predict characteristics of empirical velocity trajectories, because it signifi-
cantly underestimates time-to-peak velocity with unrealistically early and narrow velocity peaks compared with those seen
in empirical data (Byrd and Saltzman, 1998). One solution, which forms the subject of the current study, is the addition
of a nonlinear restoring force (Sorensen and Gafos, 2016), such as the term dx3 in Eq. (2),

m€x þ b _x þ kðx � TÞ � dðx � TÞ3 ¼ 0: (2)

The left panel in Fig. 1 visualizes the linear �kx and cubic dx3 restoring forces, in addition to the sum of linear
and cubic forces �kx þ dx3.1 The right panel in Fig. 1 shows a comparison between time-varying position and velocity
trajectories generated by the linear and nonlinear models, with identical parameters except d (k ¼ 2000, x0 ¼ 1, _x0 ¼ 0,
T ¼ 0). A value of d ¼ 0 is equivalent to a linear model that cancels out the dx3 term, thus representing the linear model,
while d ¼ 0:95k produces a quasi-symmetrical velocity shape under these specific conditions.2

A symmetrical velocity trajectory is outside the scope of the standard linear model in Eq. (1), but the use of a
nonlinear model is not the only solution. The first approach is the use of a different activation function. In Saltzman and
Munhall (1989) gestural activation is governed by an on/off step function, with instantaneous changes in the target value.
Byrd and Saltzman (1998) instead propose ramped activation, where the parameters of the dynamical system explicitly
depend on time, allowing for empirically-realistic time-to-peak velocity. A further development is the use of arbitrary ges-
tural activation functions, which can be learned from data (Tilsen, 2020). It must be stressed that the idea of continuous
gestural activation is fundamentally different from the Sorensen and Gafos (2016) model, which retains step function ges-
tural activation and instead achieves appropriate velocity characteristics via intrinsic nonlinear gestural dynamics. The dis-
tinction here is between autonomous dynamics during the period in which gestural activation is constant [as in Saltzman
and Munhall (1989) and Sorensen and Gafos (2016)] vs non-autonomous dynamics during activation with time-varying
parameter values [as in Byrd and Saltzman (1998) and Tilsen (2020)]. A second approach is to relax the critical damping
constraint entirely and recast the gesture as an under-damped half-cycle linear oscillator (Kirkham, 2024). This improves
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on the standard linear model in generating symmetrical velocity trajectories and appropriate time-to-peak velocities but
introduces the need for an extrinsic mechanism to avoid target overshoot and unintended oscillation.

The aim of the present study is to explore the numerical parameterization of the nonlinear term in the Sorensen
and Gafos (2016) model specifically, as well as in nonlinear task dynamic models more generally. One issue we address
below is that the effect of any nonlinear term, such as dx3, inherently depends on the distance between the initial position
and the target. While an inherent feature of such models, this presents some practical considerations when (i) simulating
similar velocity trajectories across articulators or tract variables with varying movement distances; (ii) achieving numerical
stability when fitting the model to empirical data; (iii) interpreting parameter values when estimated from empirical data.
We first illustrate the problem and then introduce simple numerical methods for examining the relation between nonline-
arity and movement distance. We offer two simple solutions based on the same idea: local normalization around an equi-
librium point relative to initial position, and global normalization relative to the potential movement range for a given
articulator or tract variable. PYTHON code is provided for reproducing all simulations in this article at https://osf.io/nrxz5/.

2. Parameters in nonlinear dynamical models

2.1 Stiffness and temporal variation

Before outlining the mechanics of the nonlinear term in the Sorensen and Gafos (2016) model, we first illustrate the
behaviour of the other parameters, which is important for understanding the nonlinear forces. To re-cap, the model is

m€x þ b _x þ kðx � TÞ � dðx � TÞ3 ¼ 0; (3)

where m ¼ 1 and b ¼ 2
ffiffiffi
k
p

in critically damped versions of the model. As a result, we focus on the effects of k on move-
ment characteristics and how it interacts with d. The stiffness coefficient k governs the strength of the restoring force; in
other words, how quickly the system reaches its equilibrium position. Higher stiffness values result in faster time-to-peak
velocity, where the relationship between k and time-to-peak velocity follows a power law ak�1=2, with a being larger for
larger values of d. For example, when d ¼ 0k, a ¼ 1 and when d ¼ 0:95k, a ¼ 5:4. The qualitative relationship between
stiffness and time-to-peak velocity is the same across different values of d, such that the effects of k on time-to-peak veloc-
ity follow the same law irrespective of the value of d, but the specific quantitative values do vary for the same value of k
across different values of d. The same is true of the relationship between k and the amplitude of peak velocity, which fol-
lows the power law ak1=2, where a scales inversely with the value of d. For example, when d ¼ 0k, a ¼ 0:37 and for
d ¼ 0:95k, a ¼ 0:19. These relations are visualized in the bottom left of Fig. 1, which shows the effect of variation in k on

Fig. 1. Top left: Stiffness functions of the linear, cubic and summed restoring forces, where k ¼ 1 and F refers to the forces specified in the leg-
end as a function of x. Top right: A comparison of position and velocity trajectories generated by the linear (d ¼ 0) and nonlinear (d ¼ 0:95)
models, where x0 ¼ 1; _x0 ¼ 1;T ¼ 0; k ¼ 2000. Bottom left: Power function of k against time-to-peak velocity (top) and peak velocity (bot-
tom). Bottom right: Power function of the natural logarithms of k against time-to-peak velocity (top) and peak velocity (bottom).
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peak velocity and time-to-peak velocity at five selected values of d, where x0 ¼ 1, T ¼ 0. The bottom right panel shows
the natural logarithms of the same variables, with a linear relationship in the log-log plot indicating a power law.

2.2 Nonlinear cubic term

Sorensen and Gafos (2016) introduced the nonlinear cubic term dx3 in order to make the strength of the restoring force
nonlinearly dependent on movement distance. This is what allows for quasi-symmetrical velocity trajectories when
d � 0:95k. In this model, the linear kx and nonlinear dx3 terms are proportionally scaled as in Eq. (4). When the absolute
movement distance between the initial position and target jx0 � Tj ¼ 1, d ¼ 0:95 will produce a quasi-symmetrical veloc-
ity trajectory,

d0 ¼ dk: (4)

Figure 2 (left) shows that for jx0 � Tj ¼ 1 then d ¼ 0:95k produces a symmetrical velocity profile, while lower
values of d result in earlier time-to-peak velocities and higher peak velocity. This is exactly the scenario described by
Sorensen and Gafos (2016). When jx0 � Tj 6¼ 1 the same value of d will produce differently shaped velocity trajectories
for different movement distances, which increasingly diverge as jx0 � Tj gets further from 1. Figure 2 (right) shows this
via simulations (x0 ¼ 1, _x0 ¼ 0, k ¼ 2000, d ¼ 0:95k) where the target varies across T ¼ 0:0; 0:2;…; 0:8f g. As movement
distance decreases, time-to-peak velocity decreases and velocity amplitude decreases nonlinearly. The model can, therefore,
capture observed nonlinear relations between movement distance and time-to-peak velocity (Munhall et al., 1985; Ostry
et al., 1987), as described by Sorensen and Gafos (2016).

A numerical problem with the parameterization of the nonlinear term arises when the movement distance is
greater than j1j. For example, d ¼ 0:95k when jx0 � Tj > 1 quickly becomes numerically unstable, as the cubic term pro-
duces increasingly large values when dkx3 > k. For this reason, the same value of d does not produce the same effects
across different movement scales. The differential effects of the same d value across different movement ranges is illus-
trated in the restoring forces in Fig. 2 (bottom right) over a range of ½�10; 10�. Once the cubic term acts on values above
j1j the resulting solution quickly goes to extreme values that are not physically possible for gestural systems. In this case,
the dx3 and �kx þ dx3 functions are near-identical due to the large nonlinear term relative to the linear term.

In practical terms, this is a problem if we want to use a numerical scale that extends beyond jx0 � Tj > 1, but
also maintain the same scaling of d in the case of jx0 � Tj � 1. For instance, tract variables in the Task Dynamic
Application are typically defined over a range of TBCD 2 ½�2; 10� mm and TBCL 2 ½�90�; 180�� (Nam et al., 2004). We

Fig. 2. Top left: Simulated position and velocity trajectories, with x0 ¼ 1, _x0 ¼ 0, k ¼ 2000, T ¼ 0:0 with varying values of d. Top right: The
same simulations but across varying values of T, where d ¼ 0:95k; k ¼ 2000. Bottom left: Nonlinear restoring force �kx þ dx3 (k ¼ 1) for val-
ues of d corresponding to top left plot, where F refers to the forces specified in the legend as a function of x. Bottom right: The restoring forces
for d ¼ 0:95k over the range ½�10; 10� without scaling.
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may wish to use physical measures for simulations, such as tongue tip location in mm, especially when fitting the model
to empirical data. One solution is to project the desired scale onto [0, 1], run the simulation, and then project back to the
original scale. However, it may also be the case that the relation between movement amplitude and time-to-peak velocity
is nonlinear in some regimes but not others, so how are we to capture this fact in order to reproduce the observed charac-
teristics in empirical data? We outline two related solutions below.

3. Scaling nonlinear terms

3.1 Local scaling for intrinsic movement range

We begin by normalizing the effects of movement distance on the shape of the velocity trajectory using the inverse square
law in Eq. (5). An inverse square law holds that a force is inversely proportional to the square of the distance between two
masses, as defined by Newton’s law of gravitation. In the present case, this has the effect of attenuating the nonlinear
term’s effect at larger movement amplitudes, such that the effects of nonlinearity are normalized relative to movement dis-
tance. Specifically, Eq. (5) scales dk by the inverse of the square of the absolute difference between initial position (x0) and
the target (T). d is bounded in the range d 2 R j 0 � d < 1f g, where d can be arbitrarily close to 1 given sufficient values
of k relative to duration,

d0 ¼ dk

jx0 � Tj2
: (5)

Figure 3 (top left) shows the required value of d to produce the same time-to-peak velocity across different
movement distances between 0:1 � jx0 � Tj � 1:0f g, where d ¼ 0:95 and k ¼ 1:3 The top right panel applies to this a
larger movement range, where x0 ¼ 10 and T ¼ 0 across different values of d. In this case, the movement range spans
0 � jx0 � Tj � 10f g. Scaling each trajectory by its intrinsic jx0 � Tj reproduces the exact same pattern as the left panel of

Fig. 2, preserving the nonlinear relationship between d and time-to-peak velocity, but over a wider parameter range. For
this local scaling, we scale by jx0 � Tj for each trajectory, not the possible movement range across all trajectories. The bot-
tom row in Fig. 3 shows the effects of unscaled and scaled versions of d in terms of the restoring forces. In the left panel,
the cubic term dominates and quickly goes to extreme values. In the right panel, the forces are equivalent to those in Fig.
1 but scaled for a range of x 2 ½�10; 10�.

Fig. 3. Top left: The relationship between distance-to-target jx0 � Tj and d follows an inverse square law. Top right: The inverse square law
allows for appropriate scaling of larger movement distances, with x0 ¼ 10, T ¼ 0, k ¼ 2000 across varying values of d. Bottom left: The restor-
ing forces for d ¼ 0:95k over the range ½�10; 10� without scaling. Bottom right: The restoring forces for d ¼ 0:95k over the range ½�10; 10�
scaled by an inverse square law.
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This relation can be generalized for any polynomial term axn, where a is a scaling coefficient and n � 1 is the
exponent of xn; for example, ax1; ax2; ax3, etc. Note that in the case of ax1 the denominator will be raised to the power
1� 1 ¼ 0, where x0 ¼ 1, which means that for linear terms the equation simplifies to a0 ¼ ak,

a0 ¼ ak

jx0 � Tjn�1
: (6)

3.2 Global scaling for potential movement range

While the above formulation provides a principled method for normalizing the nonlinear cubic term, it fails to reproduce
nonlinear relations between movement amplitude and time-to-peak velocity, thus losing a key feature of the Sorensen and
Gafos (2016) model. For example, Fig. 4 (top left) shows the effect of d ¼ 0:95k across different movement distances with
power law scaling. The corresponding restoring functions dx3 for each movement distance are shown in Fig. 4 (top right).
As a consequence, movement duration is constant and time-to-peak velocity is identical. The only variation is in the
amplitude of peak velocity, showing that larger movements involve greater velocities and smaller movements involve
smaller velocities. Essentially, this reproduces the dynamics of a linear model across movement distances, but the scaled
nonlinear term allows for variation in the shape of the velocity trajectories. To re-state, in this instance, the nonlinear
restoring force has been scaled proportionally for each trajectory separately, based on the distance between its initial posi-
tion and target, but this has eliminated any relationship between movement distance and time-to-peak velocity.

We now introduce a small modification to the scaling law, which reintroduces nonlinearity across different
movement distances. We first define D as the total possible range for a given articulator or tract variable x0. Note that D
represents the lower and upper bounds of x0 across all possible movement trajectories for a given articulatory or tract vari-
able, whereas jx0 � Tj is the intrinsic movement distance for a particular trajectory,

D ¼ jx0max � x0minj: (7)

We then introduce a scaling factor k, which is defined as the ratio between a trajectory’s movement range
jx0 � Tj and the total possible movement range D. This ratio has an upper bound of 1, as defined in Eq. (8),

k ¼ min 1;
jx0 � Tj

D

� �
: (8)

Fig. 4. Top left: Cubic model with scaling across different targets in the range [0, 0.8] using an inverse square law. Top right: Forces
corresponding to the scaled cubic model in top left. Bottom left: Cubic model with parameter-range scaling across different targets in the
range [0, 8]. Bottom right: Cubic model with restricted parameter-range scaling to allow nonlinearity to only operate when jx0 � Tj < 8.

ARTICLE asa.scitation.org/journal/jel

JASA Express Lett. 5 (2), 025201 (2025) 5, 025201-5

https://scitation.org/journal/jel


We can therefore add k to the previous generalized Eq. (6) to arrive at Eq. (9), which allows for scaling the nor-
malized nonlinear coefficient within a global movement range. Figure 4 (bottom left) shows the use of the scaling law in
Eq. (9) when x0 2 ½0; 10� and T ¼ 1. In this case, a ¼ d ¼ 0:95, k ¼ 2000, and D ¼ 10 to reflect a possible movement
range of 10 units. This restores the nonlinear relation between movement distance and time-to-peak velocity,

a0 ¼ kak

jx0 � Tjn�1
: (9)

The conventional parameterization outlined above defines D as the limits of the potential movement range. In
practice, however, it can also be defined as the limit in which nonlinear relations between movement amplitude and
time-to-peak velocity are active. For example, imagine our possible movement range is x 2 ½0; 10� and we define D ¼ 8,
which is 80% of the possible movement range. In such a case, when jx0 � Tj � 8 then k ¼ 1 and all trajectories that
meet this condition will have the same time-to-peak velocity, but vary in the amplitude of peak velocity. In contrast,
when jx0 � Tj < 8 then k < 1 and time-to-peak velocity will vary nonlinearly across trajectories with different move-
ment distances. Figure 4 (bottom right) illustrates this example, where x0 ¼ 10; when T 2 ½0; 2� time-to-peak velocity is
constant and the trajectories only differ in the amplitude of the velocity peak, whereas when T > 2 there is a nonlinear
relation between distance and time-to-peak velocity. This represents one way of defining the nonlinear relation as oper-
ating within a particular part of the movement range. An alternative implementation is to define k nonlinearity across
the movement range using a trigonometric function, but we leave the exploration of such possibilities for future
research.

4. Conclusion

The scaling laws outlined in this article provide simple numerical methods for understanding how nonlinear parameters
relate to the intrinsic movement range of a given trajectory, as well as in terms of a potential movement range for a tract
variable or articulatory variable. The scaling laws act as principled physical constraints on the nonlinear restoring force
across different movement ranges and retain the intrinsic dynamics of the Sorensen and Gafos (2016) model, without any
explicit time-dependence during constant gestural activation. However, the scaled model does introduce some new theoret-
ical questions. First, the local trajectory-intrinsic scaling eliminates the dependency of nonlinearity on initial conditions
and linearizes the effect of the cubic term across varying movement distances, which is incompatible with empirical obser-
vations of nonlinear relations between movement amplitude and velocity (Sorensen and Gafos, 2016). This motivated a
global scaling method that expresses the scope of nonlinearity relative to the potential movement range for an articulator
or tract variable, which retains dependence on initial conditions within a restricted scope.

Global scaling effectively bounds nonlinearity at a given movement amplitude threshold, which lends itself to
two independent but compatible interpretations: (1) anatomic-motoric constraints; (2) cognitive constraints. The
anatomic-motoric interpretation holds that potential movement ranges are inherently bounded by the limits of the vocal
tract (e.g., different ranges for lip aperture vs tongue body constriction location), such that this parameter reflects a speak-
er’s proprioceptive knowledge of their vocal tract. The cognitive interpretation holds that the potential movement range
represents a window of gestural targets that correspond to a given phonological category. The potential movement range
will, therefore, vary between phonological categories, including when categories share the same tract variable. This variabil-
ity implied by the cognitive view is problematic for a model of invariant phonological targets, but is compatible with
dynamical models of speech planning where distributions of targets are defined over neural activation fields (Kirkham and
Strycharczuk, 2024; Roon and Gafos, 2016; Stern and Shaw, 2023; Tilsen, 2019). These two proposals are clearly compati-
ble, because anatomical and cognitive factors both constrain movement dynamics, but it remains possible to commit to an
anatomic-motoric interpretation without the cognitive interpretation.

In practical terms, the scaling laws have benefits for simulation, because they allow the simulation of comparable
(or identical) velocity profiles across different movement distances. This is particularly useful when simulating dynamics
across different articulatory variables that may be on different scales, such as lip aperture vs tongue dorsum constriction
degree vs tongue dorsum constriction location. If we assume that trajectories across all of these variables tend towards
symmetrical velocity profiles then the scaling laws provide a simple and principled way of selecting parameters, without
having to hand-tune parameters for each trajectory. The scaling laws also assist with model fitting. When fitting a model
to data, we usually aim to minimize an objective function, which typically involves having to define initial estimates for
parameters. Given the nonlinear dependence of the cubic coefficient on movement distance, it is challenging to provide
initial estimates that are robust to the wide range of movement variation in a data set. This increases the likelihood that
the model fails to converge or find an optimal solution. The use of scaled nonlinear coefficients in the target model allows
for a much narrower range of estimates, given that d in the cubic model outlined here can only take values between 0
and 1.

The introduction of nonlinear task dynamic models of the speech gesture was a major advance in the develop-
ment of dynamical theories of articulatory control. Despite this, it is still common for simulation research to use linear
models, partly because their parameterization is much simpler, despite the fact that they are often a poor fit with empirical
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data. The present study demonstrates that the parameterization of nonlinear models can be simplified via scaling laws.
The scaling laws also advance the development of dynamical phonological theory by providing physical and cognitive con-
straints on computational models of articulatory control.
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