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Ἡμεῖς ἐσμέν ὅ,τι ἐπαναλαμβάνομεν. Ἐξαίρεσις οὖν οὐκ ἔστιν ἔργον, ἀλλὰ

ἕξις.

We are what we repeatedly do. Excellence, then, is not an act, but a habit.

— Aristotle



Abstract

This thesis explores innovative approaches to factor investing by examining the dy-

namics of factor portfolios and introducing novel methodologies for constructing and uti-

lizing characteristic-based equity factors. Chapter 1 addresses the predictability of factor

portfolios within the context of factor timing. This is achieved by extending stock return

predictability to a portfolio level and using various dimension reduction techniques in both

the characteristics and returns space. The analysis demonstrates that factor portfolios are

predictable based not only on their own but also on other characteristics, highlighting the

significant potential for asset return prediction. This finding also suggests that different

portfolios share similarities in terms of signal sources or underlying factors.

Chapter 2 introduces a new technique for constructing characteristic-based equity

factors, termed “power sorting”. This method leverages the non-linearities and asym-

metries inherent in characteristic-return relationships while maintaining computational

simplicity and avoiding excessive weighting. Empirical analysis shows that power sorting

consistently delivers superior out-of-sample performance compared to traditional quan-

tile sorting and other factor portfolio construction methods. The approach proves robust

across different factors and time periods, with its effectiveness not attributable to in-

creased turnover or tail risk. Moreover, power-sorted versions of well-known asset pricing

factor models outperform their original counterparts.

Extending the power sorting methodology to the multivariate level, Chapter 3 in-

vestigates the evolution of portfolio dynamics when multiple characteristics are jointly

considered. While Chapter 2 shows that, in a univariate context, individual characteris-

tics drive portfolio performance primarily through the short side, the analysis in Chapter

3 reveals a shift in importance to the long side when characteristics are jointly analyzed.

The multivariate power sorting approach achieves two key objectives: the development

of multifactor strategies with significantly enhanced risk-adjusted performance, and the

construction of a six-factor model that effectively spans the tangency portfolio.
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Introduction

The empirical asset pricing literature suggests that firm characteristics contain valu-

able information about future stock returns. This relationship is typically examined by

constructing portfolios sorted by these characteristics, commonly referred to as factor

portfolios or simply factors. This approach was popularized by Fama and French (1992)

and Jegadeesh and Titman (1993), and these factor portfolios are widely used by aca-

demics for various asset pricing applications, as well as by investment professionals seeking

systematic exposure to rewarded factors. However, the effectiveness of the standard proce-

dure in efficiently extracting the risk premium from these characteristics remains unclear.

Furthermore, with the growing number of identified characteristics—often referred to as

the “factor zoo” (Cochrane 2011)—it becomes increasingly challenging to discern which

characteristics provide unique information and which are merely different manifestations

of the same underlying return driver. Additionally, these portfolios can exhibit significant

time variation in performance and are susceptible to crashes (e.g. Daniel and Moskowitz

2016). These challenges naturally call for solutions that involve improving upon the

ad-hoc, static factor approach, either through dynamic factor allocation or by refining

portfolio construction techniques.

The aim of this dissertation is to address these challenges and explore innovative

approaches to factor investing. By examining the dynamics of factor portfolios and in-

troducing novel methodologies for constructing and utilizing characteristic-based equity

factors, this work seeks to enhance our understanding of the relevance of firm character-

istics in predicting asset returns and solving optimal portfolio construction problems.
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First, we investigate return predictability from observable characteristics at the port-

folio level and predict factor portfolio returns using a collection of portfolio characteristics.

In doing so, we employ various combinations of dimension reduction techniques that have

gained popularity in recent asset pricing applications to reduce both the number of predic-

tors and the portfolios to predict. We observe significant benefits from timing factor port-

folio returns using observed characteristics, which surpass existing methods documented

in the literature. Our analysis also highlights the importance of focusing on the main

sources of variation in factor portfolio returns, which are ultimately the most predictable,

allowing for the detection of robust predictive patterns across factors. This chapter also

implicitly conducts an indirect comparative analysis across different dimension reduction

techniques, offering a reference point for future applications.

Second, we address the limitations of the conventional quantile approach in capturing

premiums across various characteristics. Specifically, we develop a simple, data-oriented

procedure called power sorting, which allows for characteristic-specific treatment and

captures asymmetries and non-linearities in returns, thereby providing a deeper under-

standing of the drivers of factor premia. In our empirical application, we demonstrate

that power sorting consistently achieves superior out-of-sample performance compared

to traditional quantile sorting and other factor portfolio construction methods, both at

the single-factor and multi-factor levels. We also document several important findings,

including the existence of asymmetric and non-linear patterns between characteristics

and returns, and the critical role of the short side in driving portfolio performance at a

univariate level.

Third, we explore how portfolio dynamics change when various characteristics are

considered jointly, enabling the examination of potential interaction effects. We extend

the power sorting methodology from Chapter 2 to a multivariate level by focusing on

maximizing the squared Sharpe ratio of the collection of factors, rather than the Sharpe

ratios of individual factors. This multivariate extension significantly improves the risk-

adjusted performance of multi-factor strategies proposed in Chapter 2 and facilitates the

13



construction of a six-factor model that spans the tangent portfolio, ultimately addressing

which characteristics are most important. Importantly, our analysis in Chapter 3 reveals a

shift in importance from the short side to the long side when characteristics are considered

jointly. This suggests that while different characteristics on the short side capture similar

effects, those on the long side provide more complementary information.

The remainder of this dissertation is structured as follows. Chapter 1 is based on

the research paper titled Factor Timing with Portfolio Characteristics,” which has been

published in the Review of Asset Pricing Studies. This chapter utilizes portfolio char-

acteristics and various combinations of dimensionr reduction techniques to effectively

predict factor portfolio performance and construct factor timing strategies. Chapter 2

is drawn from the research paper Power Sorting,” which won first place in the Chicago

Quantitative Alliance 30th Annual Academic Competition. In this chapter, we develop

a data-oriented power sorting procedure that directly models factor portfolio weights as

a function of firm characteristics. Chapter 3 is based on the paper titled “Multi-Factor

Power Sorting,” which extends the power sorting method to a multivariate setting and ex-

plores interesting asset pricing and investment applications. The final chapter concludes

this dissertation, summarizing the key findings and implications.
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Chapter 1

Factor Timing with Portfolio

Characteristics

This project is a joint work with Anastasios Kagkadis, Ingmar Nolte, and Sandra Nolte. It is
published in the Review of Asset Pricing Studies (Volume 14, Issue 1, pages 84–118). We would like
to thank Jeffrey Pontiff (the Editor), an anonymous referee, David Buckle, Amit Goyal, Harald Lohre,
Alejandro Lopez-Lira, Robert Macrae, Winfried Pohlmeier, as well as participants at the INQUIRE UK
Spring 2022 Residential Seminar, the 11th International Conference of the Financial Engineering and
Banking Society, the QFFE 2022 International Conference, the 2022 EFMA Annual Meeting, the 3rd
Frontiers of Factor Investing Conference, and the 2022 FMA Annual Meeting for their valuable comments
and suggestions.
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1.1 Introduction

The asset pricing literature has long been shaped by the idea that observable firm

characteristics convey information about the cross-section of expected stock returns. A

common practice in the literature is to extract the risk premium associated with these

characteristics by constructing long-short (LS) factor portfolios (Fama and French 1993).

Such zero-investment, market-neutral portfolios have given rise to so-called factor in-

vesting. Yet, there are benefits over and above static factor investing. Studies such as

Stambaugh, Yu, and Yuan (2012), Jacobs (2015), Akbas et al. (2016), and Keloharju, Lin-

nainmaa, and Nyberg (2016) show that the performance of LS portfolios, and therefore

the benefits from factor investing, are significantly time-varying. More importantly, such

time variation in performance is not harmonious across portfolios, allowing for substan-

tial investment gains from timing factor portfolio returns.1 As such, from an investor’s

perspective, timing is important, and an active factor allocation is needed in order to

capitalize on the fluctuations in LS portfolio returns.

In a factor timing context, several studies have emerged utilizing a variety of predic-

tive signals as a way to improve upon static factor investing. Valuation ratios, investor

sentiment, issuer-repurchaser spread, and technical indicators, such as factor momentum,

are the most prominent examples, among others. In this paper, we create an optimal fac-

tor timing strategy, going over and above existing methods for predicting factor portfolio

returns. In doing so, we extend the predictability of stock returns from observable firm

characteristics to a portfolio level and predict factor portfolio returns using a collection

of portfolio characteristics. Specifically, the characteristics used to sort stocks into port-

folios are subsequently aggregated into portfolio characteristics and used as predictive

variables to forecast future factor portfolio returns. The use of multiple characteristics

to predict individual factor portfolio returns is motivated by the fact that many stocks

coexist in different factor portfolio legs simultaneously.2 Hence, it is sensible to assess the
1For example, Haddad, Kozak, and Santosh (2020) find that the loadings of a size portfolio on the

optimal factor timing portfolio are procyclical while those of a momentum portfolio are countercyclical.
2For example, the stocks with the highest asset growth are also the ones with the lowest book-to-market
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joint predictability that arises from characteristics at a portfolio level and examine the

possibility that factor portfolios are predictable by characteristics other than their own. A

comparison of the collective characteristic-based predictability against alternative sets of

predictors documented in the literature highlights the joint importance of characteristics

in explaining the dynamics of factor portfolios.

A key aspect of our methodology is the use of different dimension reduction tech-

niques to reduce the dimensions of both sides of the predictability problem. In line with

Haddad, Kozak, and Santosh (2020), we begin by reducing the number of forecasting

targets, recognizing the underlying factor structure in factor portfolio returns. Instead

of independently predicting individual anomalies, we focus our attention on the main

sources of return variation by isolating the first five principal components (PCs). These

PCs capture around 67% of the variation in factor portfolio returns (see Figure A.1 in the

Appendix), allowing us to greatly reduce the dimensions of the problem at the expense

of little return variation foregone. Since the dominant PCs capture common variation in

the underlying risk premia, being able to accurately predict their performance leads to

the detection of robust predictive patterns across individual anomalies.3 In addition, PCs

are not just statistical factors but have an investable interpretation as well. As each PC

is a linear combination of the underlying variables, PC portfolios are portfolios of factor

portfolios, meaning that their returns and characteristics are calculable. To construct

the PC portfolios, we use conventional principal component analysis (PCA), as well as

the risk premium PCA (RPPCA) proposed by Lettau and Pelger (2020a).4 Unlike PCA,

RPPCA utilizes information of the mean returns of the factor portfolios in addition to

their variances and leads to the extraction of factors that may explain a smaller part of

the time-series variation but are important in pricing the cross-section. The resulting

PCs have higher Sharpe ratios and in our context help guide the forecasting study around

ratio, the highest return on assets, and the highest accruals (Cooper, Gulen, and Schill 2008).
3Applying principal component analysis to a set of factor portfolio returns in order to achieve dimension

reduction has recently gained a lot of attention in asset pricing. For example, Haddad, Kozak, and Santosh
(2020) form PC portfolios by running PCA on a set of 50 anomalies and use their own book-to-market
ratio to predict their performance.

4Henceforth, “PC portfolios” refers to the estimation of the principal component portfolios using either
PCA or RPPCA.
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factor portfolios with higher average returns.

We then proceed by compressing the predictive information from the characteristics

of the PC portfolios. To achieve this, we not only rely on PCA, but employ methods that

account for the covariance structure between predictors and forecasting targets, such as

partial least squares (PLS) (Wold et al. 1984). Conventional PCA focuses on the variance

within the predictors and can lead to components that mix return-relevant and -irrelevant

variation. By using PLS we aim to capture only the variation in the characteristics that is

relevant in predicting returns, potentially resulting in sparser and more accurate models.

After rotating characteristics in space using PCA or PLS, we either use the first

characteristic component in standard predictive regressions or apply lasso on the whole

set of characteristic components to identify the relevant subset of features.5 The first case

is used to investigate the predictability in the simplest case of a single predictive factor,

while the use of lasso allows for successive components to be included in the surviving

subset of predictors, with the importance of each characteristic component being assessed

based on its contribution to minimizing the forecasting error rather than the magnitude

of its eigenvalue. Our procedure is implemented recursively, and the optimal degree

of coefficient shrinkage is identified separately for each PC portfolio based on a cross-

validation step. This approach has two important implications. First, the number of

factors can be different across PC portfolios, allowing for different sources of variation

in factor portfolio returns to be approximated by models of different complexity. For

instance, many characteristic components may be required to predict the first PC portfolio

but only a few for the second. Second, allowing for different values for the level of

coefficient shrinkage across time allows us to examine the time variation in the strength

of the characteristic signal overall.

In our empirical analysis, we use a collection of 72 anomalies spanning the period

from 1970 to 2019 and find that characteristics are particularly useful for factor timing
5The combination of lasso with PCA or PLS is particularly suitable in this case because the PC

portfolios are by construction orthogonal.
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purposes. We distinguish factor portfolio predictability in terms of exact predictive accu-

racy (comparing predicted with future realized returns) and ability to predict the cross-

sectional dispersion in returns (differentiating winners from losers). The characteristic-

based models that incorporate lasso are the most successful and consistently outperform

existing methods in both terms as they deliver smaller forecasting errors and higher cross-

sectional correlations between forecasted and realized returns. They also deliver average

monthly returns of up to 1.47% and annualized Sharpe ratios of up to 0.73, while the best

benchmark model delivers 1.06% and 0.55, respectively. Importantly, our factor tim-

ing strategies show no decay in return performance over time, although many individual

anomalies have been found empirically to do so (McLean and Pontiff 2016).

In terms of the different methods used, the implications of using PCA or RPPCA to

reduce the number of portfolios to predict are minimal. Yet, when it comes to reducing the

number of predictors down to a single predictive factor, the dimension reduction technique

matters. In particular, PCA delivers slightly better exact predictability but severely

underperforms PLS in terms of ranking the anomaly portfolios successfully. Essentially,

when a single-factor model is used, it is better to condense the information from the

predictors using a tool that is specifically designed for forecasting purposes.

Nonetheless, the difference between PCA and PLS disappears when multiple char-

acteristic components are considered in conjunction with lasso, suggesting that the exact

rotation method of the predictors is less important once we account for the whole in-

formation set. After employing lasso, results improve uniformly across models reflecting

the importance of accounting for further components and the benefits of regularization in

dealing with overfitting. Furthermore, the cross-validation step reveals that the required

number of features varies significantly across time for all the PC portfolios. This implies

that characteristics work better in predicting returns in certain periods than others, which

is expected given the time variation in factor risk premia. Our lasso-based factor timing

strategies are flexible enough to downgrade (upgrade) information in the characteristics

when their informativeness is low (high).
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1.2 Literature Review

Our paper is related to several strands of the literature. Without attempting a full-

scale review, we discuss briefly how we contribute to two main categories, namely studies

that utilize dimension reduction techniques in the context of asset pricing and studies

that explore factor portfolio predictability.

1.2.1 Dimension reduction in asset pricing

Machine learning has surfaced in recent years in various asset pricing applications due

to the limitations of standard methodologies in a high-dimensional setting. Gu, Kelly, and

Xiu (2020) compare various machine learning techniques in their effort to forecast stock

returns using a large collection of stock characteristics. Similarly, numerous studies at-

tempt to identify the extent to which characteristics are associated with expected returns

by regularizing the cross-sectional regressions or the characteristic-based portfolio sorts

used in the estimation of risk premia. For instance, DeMiguel et al. (2020), Freyberger,

Neuhierl, and Weber (2020), and Feng, Giglio, and Xiu (2020) employ lasso regularization

to create a stochastic discount factor (SDF) with sparse characteristic exposure. However,

imposing sparsity in the number of return predictors under a lasso approach may not be

a realistic assumption after all due to the diverse characteristic space (Kozak, Nagel, and

Santosh 2020). Nevertheless, sparse models allow for a parsimonious representation of

the cross-section of expected stock returns and an easier interpretation and link to eco-

nomic theories. In our empirical application, we apply lasso on a set of characteristic PCs

instead of raw characteristics. Hence, our approach still encourages a sparse factor struc-

ture, while allowing multiple characteristics to have an effect on expected factor portfolio

returns through their exposure to the characteristic PCs.

Another strand of the literature applies PCA on a set of stock or portfolio returns

to reduce their dimensions. Examples of PCA applications in asset pricing include Con-

nor and Korajczyk 1988, who apply asymptotic PCA on asset returns to extract latent

factors, and Kozak, Nagel, and Santosh (2018), who form a low-dimensional SDF using
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the first few PCs of anomaly returns. Kozak, Nagel, and Santosh (2020) also find that a

low-dimensional specification in terms of PC portfolios is feasible due to the high degree of

common variation in factor portfolio returns. In general, the use of PCA in this context is

both economically and empirically motivated. Economically, the existence of arbitrageurs

in the economy implies that near-arbitrage opportunities, meaning extremely high Sharpe

ratios, are implausible to achieve. Hence, high Sharpe ratios associated with low eigen-

value PCs should make no contribution to explaining returns (Kozak, Nagel, and Santosh

2018).6 Empirically, returns possess a spiked covariance structure, meaning the variance-

covariance matrix is dominated by a small number of large eigenvalues, separated from

the rest. Combining these facts implies that asset returns should be adequately explained

by a small number of dominant PCs. We contribute to this literature by constructing PC

portfolios of LS portfolios and examining their predictability.

Several recent studies also focus on modifying conventional PCA with the purpose of

making it more suitable for asset pricing applications. Kelly, Pruitt, and Su (2019) pro-

pose a new method of instrumental principal components, allowing latent factor loadings

to be time-varying and partially dependent on firm characteristics.7 They find that only a

small number of characteristic-based factors are important for identifying a successful la-

tent factor model. Lettau and Pelger (2020a) augment standard PCA by a cross-sectional

pricing error in order to extract factors that can simultaneously explain the time-series

variation and the cross-section of asset returns, and Lettau and Pelger (2020b) demon-

strate the superiority of the estimator compared to standard PCA on a set of 37 factor

portfolios. Finally, Giglio and Xiu (2021) account for omitted factors in the estimation

of risk premia by combining PCA with two-pass cross-sectional regressions. We exploit

the recent advancements in the literature by also using the RPPCA of Lettau and Pelger

(2020a) to extract factors from LS portfolio returns.
6Still, this argument does not explicate whether high eigenvalue PCs reflect risk or mispricing.
7The method is an extension of the projected PCA by Fan, Liao, and Wang (2016) and can be thought

of as standard PCA on characteristic sorted portfolios.
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1.2.2 Factor portfolio predictability

In a factor timing context, factor momentum has emerged as a mechanism to time

factor portfolio returns. Early contributors to this literature include Grundy and Martin

(2001), who document a momentum effect in the factor component of stock returns. The

momentum effect in factor portfolio returns is strong and has its own distinctive behavior,

different from that of stock momentum. For example, Arnott et al. (2021) and Gupta and

Kelly (2019) find that the effect is the strongest at the one-month horizon, even though

stocks exhibit reversals in such short intervals. Nonetheless, factor momentum captures

the effect at its purest form as it subsumes stock, industry momentum, as well as momen-

tum found in other well-diversified portfolios (Arnott et al. 2021). Furthermore, factor

momentum is concentrated in the highest eigenvalue PCs of factor portfolio returns, which

implies that momentum is intertwined with the covariance structure of factor portfolios

(Ehsani and Linnainmaa 2022). Whether looking at PC portfolios or individual factors,

factor momentum can accommodate factor timing simply by buying (selling) portfolios

that have performed well (poorly) in the recent past or relative to their peers. Such

strategies deliver strong return performance and are not susceptible to crashes, as stock

momentum (Gupta and Kelly 2019). Nevertheless, using exactly the same investment

rule, we show that characteristic-based forecasts provide superior information and result

in more profitable investment strategies compared to factor momentum.

Outside factor momentum, numerous studies attempt to predict the performance

of individual factor portfolios using a collection of potential predictors. Daniel and

Moskowitz (2016) forecast stock momentum using market indicators and volatility prox-

ies in an effort to explain momentum crashes. Similarly, Huang (2022) finds that the

return spread between winners and losers negatively predicts stock momentum returns.

Baba-Yara, Boons, and Tamoni (2021) analyze the ability of the value spread to forecast

the returns of the value-minus-growth portfolio across asset classes. They find that the

first principal component of the value spread captures most of the variation in expected

value returns. In a similar manner, we also use the first principal component of multiple
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characteristics to predict PC portfolio returns, even though we examine the possibility

that further characteristic components are required. In contrast to previous studies tar-

geting only specific anomalies, we examine factor portfolio predictability across a large

set of factor portfolios.

Other studies also examine the predictability of multiple portfolios at once, using

either a single or multiple predictors. Asness et al. (2017) use the value spread to construct

timing strategies for value, momentum, and betting-against-beta portfolios, though they

observe little improvement upon a constant multi-style strategy. Greenwood and Hanson

(2012) show that corporate share issuance can be used to forecast the performance of

factor portfolios related to size and value. Stambaugh, Yu, and Yuan (2012) find that LS

strategies appear to be stronger following periods of high investor sentiment. They find

the sentiment effect to be concentrated on the short leg of anomalies, which they base

on the short-sale impediments that results in relatively higher overpricing compared to

underpricing. On a much larger scale, Jacobs (2015) confirms the findings of Stambaugh,

Yu, and Yuan (2012) by examining the role of sentiment in a large set of 100 anomalies.

Kelly and Pruitt (2013) forecast four sets of characteristic-sorted portfolios using the cross-

section of book-to-market ratios and observe higher predictability at lower frequencies.

Dichtl et al. (2019) attempt to predict 20 equity factors using fundamental and technical

indicators. They distinguish between cross-sectional and time-series predictability, which

results in factor-tilting and factor timing portfolio allocations, respectively. Haddad,

Kozak, and Santosh (2020) construct PC portfolios by running PCA on the time series of

50 anomalies and find that the largest eigenvalue PCs are the most predictable by their

own book-to-market ratio.

We extend Haddad, Kozak, and Santosh’s (2020) framework by incorporating in-

formation across a large set of observable characteristics to predict a large set of factor

portfolio returns. Furthermore, we allow the effect of characteristics to be independently

identified for every PC portfolio, examining the possibility that different characteristics

affect different sources of variation in factor portfolio returns.
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1.3 Methodology

This section begins by setting out the general framework, followed by our forecasting

procedure and the benchmark models employed. Section A.2.2 of the Appendix introduces

the statistical methods used in this study and provides a comprehensive overview of their

functional form and statistical properties.

1.3.1 General framework

The main objective is to predict a large set of factor portfolio returns using a large

set of portfolio characteristics. Let R be a (T ×N) matrix of N factor portfolio returns

for T periods. Equivalently, let Rt,. = (Rt,1, . . . , Rt,N) be a (1 × N) vector of portfolio

returns at time t and Ct, a (N×M) matrix of M characteristics for N factor portfolios at

time t. The base case arises from a conditional version of Cochrane’s (2011) framework

for modeling returns as a function of characteristics:

Rt+1,n = at,n +
M∑

m=1

bmt,nC
m
t,n + εt+1,n, (1.1)

where at,n and bmt,n denote the conditional alpha and beta at time t, and εt+1,n is the

pricing error at time t + 1. Entertaining time variation in bmt,n and at,n due to changes

in portfolio attributes is the essence of factor timing.8 By combining different dimension

reduction techniques, we essentially investigate the possibility that the conditional alphas

and betas are a function of the covariance of returns, the covariance of the characteristics,

or even the covariance of returns with the characteristics. The covariance of returns comes

into play by focusing on the dominant components of factor portfolio returns instead of

predicting each factor portfolio separately. More concretely, assuming a linear latent

factor specification, excess asset returns can be expressed as:
8Cochrane (2011) uses the formulation in Equation (1.1) to model the returns of an individual stock

in excess of the risk-free rate. In our setting, we model factor returns, i.e., the returns of a long port-
folio in excess of the returns of a short portfolio. Getting from individual stocks to factor portfolios is
straightforward, and hence we focus directly on the latter to simplify the exposition of our framework.
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Rt+1,. = Zt+1,.W
′
t +Θt+1, (1.2)

where Zt+1,. = (zt+1,1, zt+1,2, . . . , zt+1,K) is a (1×K) vector of factor returns withK << N ,

Wt = (wt,1, wt,2, . . . , wt,K) is a (N ×K) matrix of factor loadings and Θt+1 is a (1 × N)

vector of idiosyncratic errors. The time dimension in this context arises by the recursive

estimation of eigenvectors and principal components. The first term of the right-hand

side reflects compensation for the exposure on systematic risk factors while the second

term reflects asset-specific risk. Under the assumption that the factors and the errors are

uncorrelated, the variance-covariance matrix of asset returns can be decomposed into a

systematic and idiosyncratic part. A common practice is to estimate Zt+1,. andWt directly,

by applying PCA on the variance-covariance matrix of R and retaining the dominant

components (e.g., Connor and Korajczyk [1986] and Kozak, Nagel, and Santosh [2018]).

Provided that time variation in asset risk premia is driven by exposure to time-varying

aggregate risk, being able to accurately predict the dominant components Zt+1,. allows

us to form forecasts for individual anomalies through Wt. By only focusing on Zt+1,.,

we isolate common sources of predictability across factor portfolios and ignore spurious

predictability associated with smaller PCs.

In order to forecast Zt+1,., we model PC portfolio returns as a function of observable

characteristics. Specifically, lagged characteristics are used to predict next-period PC

portfolio returns. The characteristics of the PC portfolios are computed by combining

factor portfolio characteristics according to their weights given by the ith eigenvector wt,i.

The cross-section of characteristics for the ith i = (1, . . . , K) PC portfolio is calculated as

Ht,i = w′
t,iCt. Repeating the process for every t and every i results in a (T ×M) matrix

Hi of characteristics for each PC portfolio.

However, using raw characteristics as inputs in standard predictive regressions would

be suboptimal due to high correlations and lack of predictive information for some of

them. Therefore, we transform the characteristics of PC portfolios into scores by using

PCA and PLS. This is achieved by multiplying the matrix of characteristics Hi with a

25



matrix of eigenvectors, such as:

Xi = HiQt,i, (1.3)

whereXi is a (T×M)matrix of component scores, or linear combinations of the underlying

characteristics, of the ith PC portfolio. Similarly, Qt,i = (q1t,i, q
2
t,i, . . . , q

M
t,i ) is an (M ×M)

matrix of eigenvectors estimated at time t and sorted by their corresponding eigenvalues.

For PCA, Qt,i is estimated based on the eigenvalue decomposition of V ar(Hi), while for

PLS it is based on the eigendecomposition of cov(Z.,i, Hi); more information on how to

obtain Qt,i and Xi under the different methods is provided in the Appendix. Dominant

PCA components capture most of the variation within the characteristics, while dominant

PLS components capture most of the covariation between lagged characteristics and next-

period returns. Making a connection to the conditional betas, the use of PCA for the

characteristics introduces their covariance into the conditional beta function, while the

use of PLS introduces the covariance of PC portfolio returns with their characteristics.

Next, we model PC portfolio returns using the characteristic components:

zt+1,i = β0
t,i +

M∑
m=1

βm
t,iX

m
t,i + ϵt+1,i, (1.4)

where Xm
t,i is the mth characteristic component of the ith PC portfolio at time t, and zt+1,i

is the one-month-ahead return of the same portfolio. Equations (1.1) to (1.4) lead to:

Rt+1,. =
K∑
i=1

w′
t,iβ

0
t,i +

K∑
i=1

M∑
m=1

w′
t,i(β

m
t,iw

′
t,iCtq

m
t,i) + ηt+1,., (1.5)

where ηt+1,. is a (1×N) vector of composite errors capturing both the unexplained return

variation from the characteristics as well as the variation from potentially omitting higher-

order PC components. Equation (1.5) shows that at,n and bmt,n from Equation (1.1) end up

being functions of the eigenvectors of the covariance of factor portfolio returns, wt,i, the

eigenvectors of the covariance of characteristics, qmt,i, and the betas, βm
t,i, from regressing

PC portfolio returns on their characteristic components. Specifically, multiplying the

(1 × N) vector w′
t,i with the (N × M) matrix Ct gives the cross-section of PC portfolio
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characteristics, while multiplying that product with the (M × 1) vector qmt,i gives the mth

characteristic component of the ith PC portfolio. Further multiplying that new product

with βm
t,i and summing over M gives the value for the ith PC. Finally, multiplication with

w′
t,i and summation over K generates a return vector for the whole cross-section of factor

portfolio returns. Note that all the objects have time t subscripts since they can be

estimated recursively.

1.3.2 Forecasting procedure

We use at least 20 years (240 months) of information to estimate the PC portfolios

and their characteristics to then make return predictions at t + 1. Our forecasts employ

an expanding estimation window, with the estimation sample always starting at the be-

ginning of the sample period and incorporating additional observations as they become

available. PC portfolios are recursively reestimated at each point in time, using an up-

dated wt,i with i = 1, . . . , K based on the in-sample variance-covariance matrix of factor

portfolio returns.9 Notice that PC portfolio characteristics Hi change not only because of

the change in the underlying factor portfolio characteristics Ct, but because of the change

in the weighting vectors wt,i as well. Overall, our approach is flexible enough to account

for a potentially unstable correlation structure in the factor portfolio returns.

In a similar fashion, the matrix of characteristic components is obtained as follows: for

PCA, which only utilizes information contained in the characteristics to extract the latent

factors, characteristics up to t are used to estimate Xi. For PLS, which uses information

in both characteristics and returns, characteristics up to t−1 and PC portfolio returns up

to t are used to estimate Xi. The βs in Equation (1.4) are always estimated using returns

up to t and values in Xi up to t − 1. Values of Xi at t are then plugged into Equation

(1.4) to obtain forecasts for each PC portfolio return at t + 1. Hence, our forecasts are

completely out of sample and do not suffer from any look-ahead bias.

Another subtle but important detail is the cross-sectional standardization of Ct to
9When RPPCA is used for the left-hand side, we use a constant value of γ = 10 for the weight on the

cross-sectional pricing error.
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account for the difference in the scale of the characteristics. Running raw PCA or PLS

on Ct would tilt the PCs toward the larger characteristics, as those will have significantly

higher variance. For this reason, we standardize the matrix of factor portfolio charac-

teristics Ct cross-sectionally before calculating Hi and ultimately Xi by subtracting the

cross-sectional characteristic mean and dividing by the cross-sectional characteristic stan-

dard deviation at each time t. Apart from ensuring a reasonable covariance matrix for

the characteristics, such an approach allows us to focus on the cross-sectional differences

in the data. As long as factor portfolio characteristics coincide with factor portfolio re-

turns in cross-sectional terms, PC portfolio characteristics should coincide with returns

across time, as they are both linear combinations of the cross-section, and thus making a

predictive regression approach sensible.10

The first decision being made is on the optimal number of factors in Equation (1.2).

Specifying the optimal number of PCs is ultimately an empirical question, as it depends on

the underlying factor structure. Bai and Ng (2002), Onatski (2010), and Haddad, Kozak,

and Santosh (2020) all develop critical value thresholds for determining the number of

factors. We follow a simple approach and focus on the first five PCs, as they capture about

67% of the variation in factor portfolio returns. Selecting the first five PC portfolios is

also consistent with similar studies performing PCA on a set of factor portfolios—for

example, Haddad, Kozak, and Santosh (2020) and Lettau and Pelger (2020b). Hence, let

Zt,5 = (zt,1, zt,2, . . . , zt,5) and Wt,5 = (wt,1, wt,2, . . . , wt,5) be the set of the five largest PC

portfolios and eigenvectors.

The second decision to be made is on how to estimate βm
t,i in Equation (1.4). Here,

we examine two different cases, one that imposes sparsity and one that is data-driven. In

the first case, we only use the first characteristic component of each PC portfolio (i.e.,

the first column of Xi) in standard bivariate predictive regressions. Although this is the

sparsest specification possible, multiple characteristics can have an effect on PC portfolio

returns through their weights on the first characteristic PC. As an alternative, we apply
10In Section A.2.3 of the Appendix, we provide a detailed description of the standardization approach

and explain the drivers of variation in the PC characteristics across time.
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lasso on the whole set of characteristic components for each PC portfolio (i.e., the whole

matrix Xi) to identify a subset that is useful for our forecasting objective. Hence, βs in

Equation (1.4) for the first case are obtained through OLS for a single predictive factor

(m = 1), and in the second case the βs are obtained through lasso for m = 1, . . . ,M .

When performing lasso the optimal amount of coefficient shrinkage is selected by

conducting cross-validation on a rolling basis. In particular, before every forecasting step

we separate the in-sample period into a training and a validation sample. The training

sample is used to estimate the PC portfolios and characteristic PCs, and the validation

sample is used to identify the degree of model complexity that delivers reliable out-of-

sample performance.11 At the start, the training sample is used to forecast the first period

in the validation sample subject to a geometric sequence of shrinkage values.12 The actual

value of the forecasted data point is then used as part of the next training set to forecast

the subsequent point in the validation sample. After repeating this procedure for every

period in the validation sample, we pick the level of shrinkage that minimizes the mean-

squared error. We then reestimate the PC portfolios and characteristic PCs using the

whole in-sample period (training and validation) and apply lasso using the fixed value for

the shrinkage parameter to estimate βm
t,i and predict PC portfolios at t+1. Depending on

the magnitude of the shrinkage, our approach examines the possibility that none of the

characteristic components are relevant in predicting PC portfolio returns, in which case

returns forecasts shrink down to a constant term.

As already discussed, lasso is applied separately on each PC portfolio, meaning that

the number of features can be different across PC portfolios. Essentially, our method

allows for different sources of variation in factor portfolio returns to be approximated by

models of different complexity, examining the possibility that characteristic importance

varies across the main sources of return variation. Furthermore, since lasso is applied

iteratively, the number of features can also vary across time for each PC portfolio de-
11The validation sample covers the last five years (60 months) of the in-sample period, while the training

sample increases by one at each forecasting step.
12The sequence of shrinkage values is strictly positive and terminates at a value for which all coefficients

are equal to zero.
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pending on how strong the characteristic signal has been in the recent past. Lastly, it is

important to highlight that lasso can select low eigenvalue characteristic PCs, as long as

they contribute to minimizing the forecasting error in the validation period.

To summarize, we attempt to regularize both the left-hand-side (LHS) and the right-

hand side (RHS) of the predictability problem by combining different dimension reduction

techniques. Regularization in the number of forecasting targets is achieved with the use of

PCA or RPPCA and in the number of predictors with the use of PCA or PLS, resulting in

four base models that we define as PCA, RPPCA, PCA-PLS, and RPPCA-PLS.13 Figure

1.1 provides a visual depiction of our procedure that can be summarized in the following

steps:

1. Reduce a set of factor portfolios to their first five components using PCA or RPPCA.

2. Estimate the characteristics of the PC portfolios using their loadings from the first

step.

3. Rotate PC portfolio characteristics using either PCA or PLS.

4. Either select the first characteristic PC or apply lasso on the whole set of charac-

teristic PCs of each PC portfolio.

5. Produce separate forecasts for each PC portfolio using the selected number of fea-

tures.

6. Expand these forecasts to individual factor portfolios using their loadings on each

PC portfolio.
13All models are estimated using either single or multiple predictors (via lasso), resulting in a total of

eight forecasting models. Panel A of Table A.3 includes the listing of the four main models, which are
estimated using either a single predictor or multiple predictors in combination with lasso.
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Figure 1.1: Visual depiction of our modeling procedure. The figure presents the
process of forecasting factor portfolio returns using their portfolio characteristics. PC portfo-
lios are calculated as linear combinations of factor portfolios. The same weighting vectors are
used to decompose the three-dimensional set of characteristics into five independent matrices
of characteristics (one for each PC portfolio). The matrices of predictors are transformed to
components, and either the first component is retained or lasso is applied on the whole set of
components to pick those that are the most informative. Individual forecasts for each PC port-
folio are produced, and those forecasts are aggregated into factor portfolio return forecasts using
the weighting vectors that were used to aggregate factor portfolios into PC portfolios.

1.3.3 Benchmark models

To examine whether characteristic-based models provide superior information com-

pared to different approaches, we employ alternative information sets to predict factor

portfolio returns. Panel B of Table A.3 includes a list of all the benchmark models used.

In a general setting, we form the baseline benchmark models following the methodological

framework proposed by the original authors. Section 1.5 modifies the original models in

various ways in order to examine the robustness of our results.
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2.3.1 Factor momentum. The first benchmark is the one-month momentum strategy

(1mMOM), which forms the momentum signal based on a look-back window of one month.

Essentially, the return at time t becomes the prediction for the return at time t + 1.

The second benchmark is the 12-month momentum strategy (12mMOM), which forms

the momentum signal based on a look-back window of 12 months. In this case, the

prediction for the return at time t + 1 is the average monthly return of the previous 12

months. In order to improve consistency across characteristic and momentum models,

in Section 1.5 we also apply both momentum strategies to the PC portfolios and then

extend the forecasts to individual anomalies as in Equation (1.5). Hence, we also examine

the possibility of a stronger momentum effect on the main sources of variation of factor

portfolio returns.14

2.3.2 Valuation ratios. As a third benchmark, we use only the book-to-market ratio

of factor portfolios as a return predictor. Specifically, we follow Haddad, Kozak, and

Santosh (2020) in predicting the first five PCs by their own book-to-market ratio and

then extending the forecasts to individual anomalies. In order to keep things consistent

with our framework, we estimate the PC portfolios recursively rather than using the first

half of the sample. In Section 1.5, we simultaneously use the book-to-market ratio of all

dominant PC portfolios in combination with lasso as an alternative to the baseline model.

2.3.3 Issuer-repurchaser spread. Following Greenwood and Hanson (2012), we es-

timate the issuer-repurchaser spread of each portfolio and use it to predict next-period

factor portfolio returns. The issuer-repurchaser spread is defined as the average char-

acteristic decile difference between issuers and repurchasers. Repurchasers are defined

as firms that have reduced their shares outstanding by more than 0.5% during the fiscal

year, and issuers are firms that have increased their shares outstanding by more than 10%

during the fiscal year. The metric can take values from −9 to 9, with low values implying

that issuers are located in the low leg and repurchasers in the high leg of each factor

portfolio (and vice versa). In Section 1.5, we generalize this approach by considering the
14For instance, Ehsani and Linnainmaa (2022) observe that momentum is highly concentrated among

the first five PC portfolios.
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issuer-repurchaser spreads of the PC portfolios.

2.3.4 Investor sentiment. We explore the role of investor sentiment in predicting

factor portfolio returns. Stambaugh, Yu, and Yuan (2012) and Jacobs (2015) find that

anomaly performance is stronger following periods of high sentiment. To examine the

effect of sentiment, we use the investor sentiment index of Baker and Wurgler (2006),

which captures the common component in five sentiment proxies, with each proxy being

orthogonalized with respect to six macroeconomic indicators. Specifically, next-period

factor portfolio returns are regressed on the lagged values of the index, and forecasts for

individual anomalies are formed based on a standard regression setting. In Section 1.5,

we also form forecasts for individual PC portfolios and employ lasso to examine potential

time variability in the sentiment signal.

2.3.5 Historical sample mean. Finally, we use the in-sample average of factor port-

folio returns as a forecast for the next period, as in Campbell and Thompson (2008).

Such a simple nonparametric technique utilizes information in the returns only, allowing

us to examine the incremental effect of sophisticated statistical techniques and different

information sets.

1.4 Empirical Results

1.4.1 Data

We replicate a large set of 72 characteristics, also considered by Green, Hand, and

Zhang (2017). The characteristics are calculated using data from the Center of Research

in Securities Pricing (CRSP) and Compustat. Our dataset covers the 50-year period from

January 1970 to December 2019. The stock universe includes common stocks listed on

NYSE, AMEX, and NASDAQ that have a record of month-end market capitalization

on CRSP and a nonmissing and non-negative common value of equity on Compustat.

Additional information about the characteristics, including origination and characteristic

description, can be found in Table A.1 of the Appendix.

33



For every month in our sample, stock returns at month t are matched against their

respective characteristics at month t − 1. For accounting data, we allow at least six

months to pass from the firms’ fiscal year end before they become available and at least

four months to pass for quarterly data. We also winsorize characteristics cross-sectionally

at a 99% confidence level to account for extreme outliers. Finally, to isolate the effect of

microcaps, we remove stocks with price below $5 at the portfolio formation period and use

NYSE breakpoints to split stocks into deciles, following Fama and French (2008). These

adjustments help us robustify our inferences, since many anomalies have been found to

work better on small stocks (Fama and French 2008).

We then move to the construction of the factor portfolios. For each anomaly, we

first group stocks into value-weighted deciles based on their characteristic exposure in the

previous month and then go long decile 10 and short decile 1,15 even if the characteristic

is negatively related to future returns. Such an approach requires no ex ante information

about the relationship between characteristics and returns, and results in the highest dis-

persion in factor portfolio returns. Furthermore, given that factor timing strategies can

take long and short positions on factors, the sign of factor portfolio returns is irrelevant.16

Similarly to computing factor portfolio returns, the characteristics of factor portfolios

can be computed by value-weighting characteristics of stocks within each decile portfo-

lio and then subtracting the value of the bottom from the top decile. Notice that the

portfolio constructed based on a particular characteristic sort will also have the highest

characteristic score by construction.17

Figure 1.2 displays the average monthly returns of the factor portfolios together
15In the early years of the sample period, there are few characteristics, such as characteristics based

on research and development expenses, which do not have enough variation in order to form 10 separate
portfolios. To account for this, we allow the number of quantiles to be less than 10 for months in which
the required number of cutoff points is not reached. In other words, LS portfolio returns are calculated
as long as there are at least two different values for the same characteristic in a particular month.

16Hence, strategies with a negative risk premium, such as asset growth, should on average be allocated
in the short side of our factor timing portfolio.

17For example, the momentum portfolio will always have the highest momentum score compared to all
the other factor portfolios.
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with the 95% confidence intervals. Out of all the factor portfolios, 12-month momentum

(mom12m) has the highest average return, followed by 6-month momentum (mom6m).

Out of the 72 portfolios, only 22 have significant average returns, confirming a high

degree of redundancy among the documented factors (Hou, Xue, and Zhang 2020). When

we focus on the out-of-sample period only, this number goes down to 10, reflecting the

decay in the performance of the anomalies over time (McLean and Pontiff 2016). Further

descriptive statistics for the factor portfolios can be found in Table A.4 in the Appendix.

Figure 1.2: Average monthly returns of factor portfolios with 95% confidence
intervals for the period January 1970 to December 2019.
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As already discussed, we proceed by constructing recursively five PC portfolios—

that is, linear combinations of the 72 factor portfolios using either PCA or RPPCA.

These PC portfolios are by construction affected by all factor portfolios in a time-varying

fashion; as a result, at a first glance they might look as if they do not have any economic

interpretation. In order to tackle this, we recursively regress each PC portfolio return

on each of the 72 anomalies and estimate the monthly time series of R2 values for each

anomaly. The analysis, which is detailed in Section A.2.6 of the Appendix, shows that
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the constructed PC portfolios have in fact a quite clear economic interpretation. For

example, the first PC portfolio (based on PCA) loads heavily on volatility characteristics,

the second one loads more on value characteristics, while the third one is driven mostly

by momentum characteristics. Moreover, despite the recursive construction procedure of

the PC portfolios, these economic relations are very stable over time.

1.4.2 Predictive performance

We examine the out-of-sample performance of our predictive models using standard

forecast evaluation measures and a monthly holding period as in Campbell and Thompson

(2008). We use an in-sample window of at least 240 months, with the initial in-sample

period covering the period January 1970 to December 1989 and forecasts being obtained

out-of-sample for the period January 1990 to December 2019. As a first indication of the

out-of-sample fit of our models, we estimate the out-of-sample R2 for each individual PC

portfolio as:

OOS R2 = 1−
∑T−1

t=240 (zi,t+1 − ẑi,t+1)
2∑T−1

t=240 (zi,t+1 − z̄i,t+1)
2
, (1.6)

where ẑi,t+1 is the PC portfolio return forecast at time t+ 1 and z̄i,t+1 is the average PC

portfolio return using information up to period t. We also estimate a total OOS R2, which

pools squared errors across factor portfolios and across time:

Total OOS R2 = 1−

∑N
i=1

∑T−1
t=240

(
Ri,t+1 − R̂i,t+1

)2
∑N

i=1

∑T−1
t=240

(
Ri,t+1 − R̄i,t+1

)2 . (1.7)

Total OOS R2 assesses the predictive ability of each model under a grand panel

framework and therefore is a bulk measure of the accuracy of the model-based predictions

of future factor portfolio returns. Table 1.1 presents the OOS R2 results for individual

PC portfolios, as well as the total OOS R2 under the various models. Apropos panel

A, characteristic-based models with one predictive factor deliver negative OOS R2, with

only the second PC portfolio being predictable. With regards to the different dimension
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reduction techniques used, models that use PCA for the RHS outperform their PLS

counterparts in terms of total OOS R2, although someone would expect the opposite

given that PCA factors capture variation among returns-related and unrelated variables.

Table 1.1: OOS R2 for PC portfolios and total OOS R2 across all anomalies for
the period January 1990 to December 2019 in percentage terms.Panel A displays
results using a single latent factor to predict PC portfolio returns. Panel B shows the results
where the optimal number of factors is selected by applying lasso on the set of latent factors.
Panel C displays results for the benchmark models.

PC1 PC2 PC3 PC4 PC5 Total

A. Single factor
PCA −1.00 0.24 −1.33 0.36 0.28 −0.55

PCA-PLS −3.29 0.76 −2.89 0.60 −0.95 −1.55

RPPCA −0.75 0.90 −0.13 −1.15 −0.74 −0.38

RPPCA-PLS −3.00 1.80 −3.28 −3.94 −1.60 −1.54

B. Time-varying number of factors using lasso
PCA 2.71 2.85 1.23 3.24 −0.78 1.46

PCA-PLS 1.70 5.34 1.78 3.87 3.75 1.53

RPPCA 0.80 0.60 1.71 0.41 2.64 0.52

RPPCA-PLS 1.17 6.97 0.92 0.20 2.30 1.17

C. Benchmark models
1mMOM −88.98

12mMOM −6.61

PCA-BM 0.40 3.47 −0.20 0.89 −0.62 0.43

IR spread 0.13

Sentiment 0.42

Moving to panel B, the combination of dimension reduction techniques with lasso

significantly improves results for all models delivering positive total OOS R2s. The predic-

tive performance improves almost uniformly across all PCs, highlighting the importance

of accounting for further characteristic components and the benefits of regularization on

out-of-sample performance. The use of lasso in particular allows the models to under-

weight (overweight) information in the characteristics in periods where the characteristic

signal diminishes (becomes stronger).18 Overall, results in panel B confirm that imposing
18It is also important to highlight that lasso may select characteristic components other than the first,
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a sparse or constant factor structure may not be a realistic assumption in the context of

asset return prediction.

Finally, panel C displays the total OOS R2 for the benchmark models.19 With regards

to factor momentum, previous month returns provide unreliable forecasts in exact terms,

as implied by the highly negative total OOS R2. When returns are averaged over the

past 12 months, results improve significantly, although the total OOS R2 remains on the

negative side. Conversely, models based on the book-to-market ratio, issuer-repurchaser

spread, and investor sentiment deliver positive total OOS R2, though they still fall behind

the characteristic-based models that employ lasso.

Ultimately, we are interested in the predictability of individual factor portfolios based

on PC portfolio forecasts. As a measure of individual factor portfolio predictability, we

estimate the individual OOS R2 for all anomalies under the different models. Apropos

Figure 1.3, expanding PC portfolio return forecasts to individual anomalies reveals pre-

dictive patterns in a robust and systematic way. In line with Haddad, Kozak, and Santosh

(2020), we observe substantial anomaly predictability and find many predominant anoma-

lies, such as value (bm) and sales-to-price ratio (sp) to be highly predictable by observed

characteristics. However, almost all characteristic-based models fail to predict anomalies

that are based on a % change in accounting variables, such as % change in sales minus

% change receivables (pchsale_pchrect) and % change in the current ratio (pchcurrat)

among others, located in the lower half of the heat map. These portfolios have returns

statistically indistinguishable from zero and low covariance with the rest of the anomaly

universe. As a result, they do not load heavily on the first five components, and their

performance is not adequately captured by PC portfolio forecasts. With regard to the

benchmark models, only factor momentum results in high forecasting errors and therefore

negative OOS R2 for almost all anomalies. The remaining benchmark models perform

sufficiently well, delivering positive OOS R2 for the majority of the anomaly universe.

potentially resulting in considerably different forecasts compared to the single-factor case.
19The historical sample mean is not included as it has a zero total OOS R2 by construction.
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Figure 1.3: OOS R2 for individual anomalies under the characteristic-based
models that employ lasso and benchmark models (historical sample mean is inferred
by the R2 metric). Negative values (in red) show lack of exact predictive ability, while positive
values (in green) show exact predictive ability of the underlying model for a given factor portfolio.
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Whereas OOS R2 accommodates a general quantitative comparison of the predictive

performance of the various models, it is also important to assess the statistical significance

of the differences among model forecasts. To make pairwise comparisons of the out-of-

sample predictive accuracy, we use the modified Diebold and Mariano (DM) test by

Gu, Kelly, and Xiu (2020), which compares the cross-sectional average error differential

between two models. The DM test statistic between two models (1) and (2) is defined as

DM1,2 = d̄1,2/σ̂d̄1,2 , where d̄1,2 and σ̂d̄1,2 are the mean and standard deviation of the error

differential, defined as:

d1,2;t+1 =
1

N

N∑
n=1

((
ê
(1)
n,t+1

)2
−
(
ê
(2)
n,t+1

)2)
, (1.8)
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where
(
ê
(1)
n,t+1

)2
and

(
ê
(2)
n,t+1

)2
denote the prediction error of factor portfolio return n at

time t+ 1 under models (1) and (2), respectively.

Table 1.2: Modified Diebold-Mariano test for models that employ lasso and
benchmark models. The table displays the modified DM statistic that compares the pre-
dictive performance of the column model with the row model. A positive value indicates that
the column model outperforms the row model. The asterisks indicate statistical significance at
a 10% (single), 5% (double), and 1% (triple) level.

PCA PCA-PLS RPPCA RPPCA-PLS 1mMOM 12mMOM PCA-BM IR spread Sentiment

PCA-PLS −0.10

RPPCA 1.35* 1.26

RPPCA-PLS 0.34 0.61 −0.93

1mMOM 7.05*** 7.19*** 6.94*** 7.17***
12mMOM 2.73*** 2.99*** 2.40*** 2.93*** −6.73

PCA-BM 1.17 1.06 0.13 0.78 −6.88 −2.21

IR spread 1.40* 1.32* 0.56 1.25 −6.85 −2.32 0.39

Sentiment 1.16 1.08 0.19 0.94 −6.72 −2.30 0.02 −0.74

Historical sample mean 1.75** 1.56* 0.89 1.35* −6.83 −2.08 1.65* 0.31 0.94

Table 1.2 reports the results from the DM test for pairwise comparisons between

the different models. For conciseness, we consider only the characteristic-based models

that employ lasso as they outperform the single-factor models in terms of total OOS R2.

A positive value for the DM test statistic indicates that the column model outperforms

the row model, and the asterisks indicate statistical significance at a 10% (single), 5%

(double), and 1% (triple) level, respectively. We observe that the characteristic-based

models provide significantly higher predictive accuracy than the factor momentum models

and the historical sample mean model, even though the results are less strong in the latter

case. In contrast, the higher predictive accuracy compared to the other benchmark model

is not translated into statistical significance.

Nevertheless, predicting anomaly returns is of interest as long as it accommodates

the construction of a profitable investment strategy. Specifically, in asset pricing the

focus of interest is not so much on obtaining accurate predictions for individual returns,

but rather on constructing portfolios with good risk-return properties (Nagel 2021). Put

differently, we are more interested in predicting cross-sectional differences in returns than

in predicting individual returns in exact terms. In that sense, total OOS R2 is just a
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distance measure that does not reflect whether models can distinguish strong from weak

performers. Consider, for example, a stylized hypothetical scenario with three factor

portfolios and a forecasting period of only one month. If the realized returns of the

portfolios are 3%, 2%, and 1%, the estimated historical samples means are 0%, 1%,

and 2%, and the model-implied predictions are 6%, 5%, and 4%, respectively, then the

predictive model will end up having a very negative OOS R2 (–145.45%) even though it

will be able to rank the portfolios perfectly. Consequently, models that yield higher total

OOS R2 do not necessarily yield better portfolios in terms of average returns or Sharpe

ratios. This argument explains, for example, why the one-month factor momentum has

been found empirically to be particularly profitable even though our results show that

it has a very negative total OOS R2. The disconnect between OOS R2 and investment

performance is discussed in detail both theoretically and empirically in Kelly, Malamud,

and Zhou (forthcoming).

Given that predictive accuracy in relative terms might be more important than pre-

dictive accuracy in exact terms, we proceed by exploring two alternative measures—

namely, the percentage of times that the sign of future factor portfolio returns is identi-

fied correctly and the average cross-sectional correlation between forecasted and realized

returns. The former measure examines the ability of the models to predict the direction

of individual factor portfolio returns, and the latter measure examines whether model-

based forecasts capture the cross-sectional dispersion in factor portfolio returns. Table

1.3 presents the results.

When considering the single-factor predictive models in panel A, we observe that the

models that use PLS for the RHS are far superior to the models that use PCA for the RHS,

even though Table 1.1 shows that they exhibit worse OOS R2. In order to understand

this discrepancy, we can take the example of the PCA-PLS model. This model has a

forecasting error that is lower than that of the historical sample mean model in 54% of
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Table 1.3: Percentage of correct sign identifications and average cross-sectional
correlation. Panel A displays results using a single latent factor to predict PC portfolio
returns. Panel B shows the results where the optimal number of factors is selected by applying
lasso on the set of latent factors. Panel C displays results for the different benchmark models.

Proportion of Average cross-sectional
correct sign (%) correlation (%)

A. Single factor
PCA 49.90 0.70

PCA-PLS 52.74 9.12

RPPCA 50.40 2.31

RPPCA-PLS 52.75 9.17

B. Time-varying number of factors using lasso
PCA 52.19 7.83

PCA-PLS 51.95 9.04

RPPCA 52.23 7.74

RPPCA-PLS 52.24 8.51

C. Benchmark models
1mMOM 51.88 5.98

12mMOM 52.40 5.43

PCA-BM 51.45 5.81

IR spread 51.22 4.26

Sentiment 51.27 4.71

Historical sample mean 50.50 3.24

the times. In those cases, it exhibits an OOS R2 of 12.24% and an average cross-sectional

correlation of 41%. In the remaining 46% of the cases, it exhibits an OOS R2 of –17.17%

and an average cross-sectional correlation of –28%. This means that, while the model’s low

overall OOS R2 is driven by some large forecasting errors, its high overall cross-sectional

correlation is due to the fact that in the majority of the cases it is particularly informa-

tive for the ranking of next-period portfolio returns. Importantly, panel B reveals that

accounting for further components under a lasso approach harmonizes the performance

across all four characteristic-based models. Finally, panel C shows that the benchmark

models display slightly lower proportions of correct sign and markedly lower average
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cross-sectional correlations compared to the models in panel B.20 Overall, results confirm

that characteristic-based models can better distinguish anomaly performance compared

to alternative approaches.

Recall from Section 1.3.2 that our predictive approach entails cross-sectional stan-

dardization of each characteristic in each month. Therefore, given the success of the

approach, a natural question that arises is what is the source of variation in the char-

acteristics of the factor portfolios that leads to predictability. This issue is discussed in

detail in Section A.2.3 of the Appendix. We show that the main source of time variation

comes from the higher moments of the cross-sectional distribution of the characteristics.

This is intuitive given that the literature with respect to stock return predictability al-

ready establishes that the predictive power of several characteristics is closely related to

their non-normal distribution. For example, Cooper, Gulen, and Schill (2008) show that

asset growth is highly positively skewed, and accordingly, its predictive power is mainly

driven by the high- rather than the low-asset growth stocks. Another source of variation

comes from the time-varying correlations across the different characteristics. For example,

it is possible that for a given month the correlation between stock momentum and value

is high and hence the standardized momentum score of the respective factor portfolios is

similar, while in another month the correlation might be low and hence the momentum

score of the respective factor portfolios will be completely different. In the latter case,

there is additional information content that can be exploited.21

Finally, we examine the implications of applying lasso on the sets of characteristic

components in terms of model complexity. Our approach allows for the number of features

to vary across factor portfolios and across time, enabling us to see when the character-
20It is noteworthy that, similar to the case of the PLS single-factor models, the factor momentum models

perform reasonably well despite their negative OOS R2 values. In fact, the one-month factor momentum
has a forecasting error that is lower than that of the historical sample mean model in only 20% of the
times. In those cases, it exhibits an OOS R2 of 38.93% and an average cross-sectional correlation of 60%.
In the remaining 80% of the cases, it exhibits an OOS R2 of –153.32% and an average cross-sectional
correlation of –7%. This means that the good overall performance of the one-month factor momentum
is driven by only a small subsample of observations during which it can predict future factor portfolio
returns particularly well in terms of both exact and relative terms.

21Obviously, another source of variation stems from the recursively estimated weighting vector wi,t.
However, we show that this vector remains relatively stable across time.
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istic signal is strong and when it diminishes. Figure 1.4 displays the number of nonzero

coefficients for the characteristic PCs of each anomaly PC portfolio when PCA and PLS

are used for the RHS in the out-of-sample period. Each line chart shows the number of

characteristic-based components that minimize the mean-squared error in the validation

period.

Figure 1.4: Number of features for each PC portfolio under the different mod-
els. The number of features is identified by recursively applying lasso on the set of components
and picking the penalty factor that minimizes the mean-squared-error in the validation period.
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Results from Figure 1.4 confirm the existence of significant time variability in the

required number of features across time and across PC portfolios. The time variation

in the number of features by itself implies that the predictive ability of characteristics

is not constant, something that is expected given the time variation in factor portfolio

risk premia. Interestingly, at certain periods the number of features falls down to zero,
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implying that at times characteristics provide no predictive information at all and the

PC return forecasts shrink down to an intercept term. Conversely, a high number of

features implies that a lot of the variation in the characteristics is useful in predicting

PC portfolio returns. Such peaks and troughs in the number of features are observed at

different points in time for the different PC portfolios, which implies that the importance

of characteristics is also unstable across the main sources of variation and that each source

should be approached independently in terms of model specification. Finally, with regards

to the different methods used for the RHS, it is evident that PCA uses on average more

features and has higher variability in the number of features across time compared to PLS.

PCA components mix return-relevant and irrelevant information, making the selection of

the optimal number of features more sensitive to the validation sample and as a result

less stable. PLS condenses the characteristic information into fewer PCs than PCA and

is more stable over time, although there is still significant time variability in the number

of components being used.

1.4.3 Investment performance

In this section, we assess the performance of each model in terms of economic rather

than statistical contribution and examine how return forecasts can be translated into

factor timing strategies. We construct three different strategies and assess their perfor-

mance using a monthly holding period and standard portfolio evaluation measures. The

first strategy is a simple long-short strategy (LSS), or an LS portfolio of factor portfolios.

Factor portfolios are grouped into equally-weighted deciles based on their return forecasts

and a long-short strategy is constructed that goes long the top 10% and short the bottom

10% of the anomalies. Such a strategy focuses on the extremes of the conditional returns

distribution and neglects factor portfolios that lie in the middle. Hence, LSS will work

well as long as the models can identify anomalies with very high or very low expected re-

turns at each period, even if they are indecisive about anomalies with conditional returns

close to zero.
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The second investment strategy is similar to the time-series factor momentum (TSFM)

strategy by Gupta and Kelly (2019). TSFM scales factor portfolio returns Rt+1,. according

to return forecasts R̂t+1,.. The scaling vector st,n is obtained by dividing return forecasts

by individual factor in-sample monthly volatility and capping them at ±2, as shown here:

st,n = min
(
max

(
1

σt,n

R̂t+1,n,−2

)
, 2

)
. (1.9)

The strategy goes long in factors with positive scores and short in factors with nega-

tive scores. The scores are rescaled to form unit dollar weights for the long and the short

leg.22 Multiplying next-period factor portfolio returns by their respective weights reveals

the return of the strategy:

TSFMt+1 =

∑
n 1{st,n>0}Rt+1,n × st,n∑

n 1{st,n>0}st,n
−
∑

n 1{st,n≤0}Rt+1,n × st,n∑
n 1{st,n≤0}st,n

. (1.10)

The main difference between LSS and TSFM is that, while both are technically long-

short, TSFM invests in the whole universe of factor portfolios and not in factor portfolios

with extreme return forecasts only. Furthermore, the number of factor portfolios in each

leg, as well as the relative weights, can differ for TSFM while remaining constant under

LSS. More concretely, the sign of the return forecast determines whether the anomaly

will be bought or sold, while the magnitude of the forecast determines the relative weight.

Hence, under TSFM the long and the short legs can have a disproportional number of

constituents, and in extreme cases, the strategy can converge to long or short only.

The last strategy, also in Gupta and Kelly (2019), is the cross-sectional version of

TSFM (CSFM). The main difference between CSFM and TSFM is that the cross-sectional

median is subtracted from the return forecasts before scaling with volatility. This strategy

takes positions in factor portfolios that have outperformed or underperformed relative to

their peers. For example, if return forecasts are positive for all factor portfolios, then
22Specifically, positive scores are divided by the sum of the positive scores, and the negative scores are

divided by the sum of negative scores.
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TSFM will take a long position in all of them, while CSFM will go long only in those

with above-median return forecasts and short the rest. Hence, even if the models cannot

identify the sign correctly, this strategy will still be profitable if forecasts are consistent

in relative terms, similarly to LSS:

st,n = min
(
max

(
1

σt,n

R̂t+1,n −median(R̂t+1,.),−2

)
, 2

)
. (1.11)

Table 1.4 presents the portfolio evaluation measures for the various models under

the three strategies. First, we find that LSS delivers the highest average return among

the three strategies across almost all the models, while CSFM and TSFM tend to have

higher Sharpe ratios. Turning to panel A, results confirm the superiority of PLS over PCA

for the RHS in the single-factor case, as also presented in Table 1.3. Evidently, models

based on a single factor that concentrates the variation among multiple characteristics

are unable to predict the cross-sectional dispersion of factor portfolio returns, implying

again that a lot of variation in the characteristics is irrelevant in asset return prediction.

As a result, strategies based on PCA and RPPCA deliver returns indistinguishable from

zero, with returns for PCA even becoming negative. Conversely, when PLS is used for

the RHS, all strategies deliver positive and significant returns, reflecting the ability of the

method to concentrate return-relevant variation into a single predictor.

Panel C displays the results for the benchmark models. In line with prior litera-

ture (e.g., Gupta and Kelly 2019), factor momentum using a one-month formation period

achieves the highest return among the benchmark models for the LSS strategy, while the

12-month signal delivers higher returns for TFSM and CFSM. Using the book-to-market

ratio, issuer-repurchaser spread, or investor sentiment as predictors results in strategies

with moderate return performance and Sharpe ratios. The historical sample average strat-

egy delivers low average returns, albeit statistically significant. Such a strategy produces

conservative return forecasts and, as a result, takes more static positions compared to the
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Table 1.4: Portfolio evaluation measures for long-short (LSS), time-series (TSFM), and cross-sectional (CSFM) strate-
gies under the different models for the sample period January 1990 to December 2019.Panel A displays results using a single
latent factor to predict PC portfolio returns. Panel B shows the results where the optimal number of factors is selected by applying lasso on the
whole set of latent factors. Panel C displays results for the benchmark models. Average return: average monthly return; Standard deviation:
monthly standard deviation; Sharpe ratio: monthly Sharpe ratio; t-statistic: t-statistic on H0: Average return = 0; Hit-rate: percentage of the total
number of occasions that the strategy resulted in positive returns; Max drawdown: maximum cumulative loss. The best-performing model for each
metric under each strategy is highlighted in bold.

Average return (%) Standard deviation (%) Sharpe ratio t-statistic Hit-rate (%) Max drawdown (%)
LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM

A. Single factor
PCA -0.10 -0.03 -0.01 7.23 4.14 4.09 -0.01 -0.01 -0.00 -0.26 -0.13 -0.02 52.37 52.92 52.65 80.99 47.64 43.94
PCA-PLS 1.16 0.74 0.76 8.57 5.27 5.25 0.13 0.14 0.14 2.55 2.65 2.75 57.66 59.05 59.61 41.09 33.83 33.01
RPPCA 0.20 0.20 0.21 5.64 3.11 3.15 0.03 0.06 0.07 0.66 1.21 1.29 54.32 54.32 56.55 46.54 27.73 26.68
RPPCA-PLS 1.12 0.73 0.74 8.28 4.81 4.81 0.13 0.15 0.15 2.55 2.87 2.93 55.15 58.22 60.17 37.46 30.31 29.79

B. Time-varying number of factors using lasso
PCA 1.47 0.97 0.95 8.16 5.01 4.96 0.18 0.19 0.19 3.40 3.65 3.64 55.71 56.82 55.99 16.76 13.93 12.16
PCA-PLS 1.38 0.96 0.97 8.22 4.99 4.98 0.17 0.19 0.19 3.18 3.66 3.68 61.00 62.67 61.56 15.00 13.19 12.70
RPPCA 1.21 0.84 0.83 7.06 4.01 4.00 0.17 0.21 0.21 3.26 3.99 3.93 57.66 60.72 59.89 38.11 22.24 22.25
RPPCA-PLS 1.23 0.84 0.86 6.89 4.04 4.09 0.18 0.21 0.21 3.39 3.96 3.98 60.72 61.84 61.00 26.77 17.26 17.16

C. Benchmark models
1mMOM 1.06 0.56 0.58 8.81 4.95 4.96 0.12 0.11 0.12 2.28 2.13 2.22 57.10 56.82 57.10 18.45 16.94 17.32
12mMOM 0.84 0.67 0.67 8.69 5.08 5.12 0.10 0.13 0.13 1.84 2.51 2.48 55.43 55.99 56.82 25.96 17.89 18.28
PCA-BM 0.79 0.59 0.61 6.16 3.79 3.79 0.13 0.16 0.16 2.43 2.96 3.03 57.10 57.66 57.66 31.65 21.59 20.61
IR spread 0.87 0.54 0.54 6.49 3.92 3.92 0.13 0.14 0.14 2.49 2.63 2.61 52.87 52.65 52.92 34.74 25.51 25.71
Sentiment 0.74 0.47 0.46 5.29 3.13 3.22 0.14 0.15 0.14 2.60 2.82 2.72 56.32 53.48 52.92 21.80 20.15 19.80
Historical sample mean 0.48 0.35 0.35 3.47 2.59 2.61 0.14 0.14 0.13 2.64 2.59 2.56 58.22 57.94 58.22 19.19 19.22 19.03
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rest of the models. Comparing results across panels, characteristic-based models that

employ lasso outperform all benchmark models under all three strategies, demonstrating

the benefits of conditioning factor portfolio returns on observable characteristics under a

regularized framework.

In order to compare the performance of the various models across time, Figure 1.5

presents the cumulative return performance of the factor timing portfolios under the

three investment strategies. For conciseness, we only display the performance for the

characteristic-based models employing lasso together with the benchmark models. Graphs

to the left show the cumulative performance over the whole out-of-sample period, and

graphs to the right focus on the past 10 years. As it can be seen from the graphs, the

one-month factor momentum outperforms the characteristic-based models in the early

years of the out-of-sample period, up until the late 1990s. A spike in performance oc-

curs for all strategies around 2000—that is, during the buildup of the dot-com bubble.

Unlike the majority of the benchmarks, characteristic-based models do not plummet af-

ter the burst and continue to outperform thereafter. Furthermore, the performance of

the characteristic-based models is relatively unaffected by the 2008 financial crisis, and

a second spike in performance is observed as the economy enters the recovery phase in

2009. Hence, our strategies work well in periods of financial turmoil while still enjoying

the upside potential of a bull market.

Finally, factor timing portfolios based on characteristics exhibit strong return per-

formance in the post-2010 period. Looking at the graphs in the right panel of Figure

1.5, characteristic-based models display a positive trend in later years, while strategies

based on issuer-repurchaser spread, investor sentiment, factor momentum, and in-sample

average remain relatively stagnant. Out of all benchmark models, the historical sample

mean remains the most stagnant, especially throughout the later years. Both approaches

isolate the first five PCs of factor portfolio returns and use a characteristic-based measure

to create forecasts.
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Figure 1.5: Cumulative return performance of factor timing strategies. The figure displays the performance of LSS, TSFM, and
CSFM for characteristic-based models using lasso and the benchmark models. Graphs to the left display the cumulative return performance over
the whole sample period (January 1990 to December 2019), and graphs to the right display the cumulative performance over the past 10 years of
the sample period (January 2010 to December 2019). All strategies begin with a zero dollar investment.
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Notably, the book-to-market approach works equally well with the characteristic-

based models in later years. As such, results highlight the importance of focusing on the

main sources of variation and the ability of characteristics to explain the dynamics of fac-

tor portfolios. Characteristic-based models outperform the rest of the benchmarks under

all three strategies, with the difference being more pronounced for the LSS strategy, as it

focuses solely on the most prominent subset of factor portfolios. Overall, the profitabil-

ity of the benchmark strategies erodes significantly in later years, suggesting that the

informativeness of alternative predictors about future factor portfolio returns has faded.

It is also important to note that factor timing strategies based on observed charac-

teristics yield positive returns in the most recent period, even though most factors have

been found empirically to die out over time (Chordia, Subrahmanyam, and Tong 2014;

Green, Hand, and Zhang 2017; McLean and Pontiff 2016). Corroborating this evidence,

a comparison between Table 1.4 and Table A.4 reveals that characteristic-based factor

timing strategies exhibit investment performance superior to that of unconditional factor

portfolios. In that sense, our paper acknowledges the fact that unconditional risk premia

lack robustness and shows that focusing on the predictability of conditional risk premia

can help an investor expand her investment opportunity set. In a similar vein, Had-

dad, Kozak, and Santosh (2020) find that strong factor portfolio predictability implies a

stochastic discount factor that is much more volatile than previously thought.

Lastly, a question that arises is what are the trading positions that our characteristic-

based models take over time. The analysis presented in Section A.2.7 of the Appendix pro-

vides some interesting insights. First, even though prominent anomalies such as mom12m

and retvol are heavily traded, the factor timing strategies rotate among multiple anoma-

lies and do not focus on only a small subset with high unconditional returns. Second,

several anomalies appear almost equally often in the long and the short legs. Finally,

anomalies that have only a small impact on the PC portfolios are hardly considered by

our factor timing strategies, which is expected given that their return forecasts are by

construction tilted toward zero.
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1.5 Alternative Approaches

In this section, we examine different estimation approaches. Our method uses a large

collection of characteristics and combines different dimension reduction and regularization

techniques to achieve robust out-of-sample predictability. As such, it is important to

examine where the predictability stems from by evaluating the incremental effect of each

contributor on the out-of-sample performance. Furthermore, it is important to assess

whether the benchmark models can beat our characteristic-based models once dimension

reduction and regularization techniques are also used in their cases.

Starting with the characteristics, the simplest approach is to forecast each anomaly

using the time series of its own characteristic spread. Alternatively, one can forecast

each anomaly individually using the whole collection of characteristics and can further

employ a dimension reduction technique, such as PLS, or a regularization technique, such

as lasso, for the RHS. Finally, one can create PC portfolios on the LHS without using any

dimension reduction technique (but potentially using lasso) for the RHS. Moreover, the

benchmark models can also be modified in various ways. For instance, factor momentum,

issuer-repurchaser spread, and investor sentiment can be applied to the PC portfolios.

For book-to-market ratio and issuer-repurchaser spread, the dataset can be expanded by

using all the ratios and spreads simultaneously to predict each PC portfolio or individual

anomaly. Finally, lasso can be applied to these richer information sets to account for

overfitting. A detailed description of the models discussed in this section can be found in

panel C of Table A.3.

Table 1.5 reports the total OOS R2 and average cross-sectional correlation for the

modified forecasting methods. Panel A shows that, in line with Haddad, Kozak, and

Santosh (2020), predicting each anomaly by its own spread is not particularly successful,

as it provides negative OOS R2 and relatively low average cross-sectional correlation.

When we incorporate the full set of characteristics for each anomaly, the OOS R2 metric

worsens possibly due to overfitting, but the average cross-sectional correlation improves
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Table 1.5: Total OOS R2 and average cross-sectional correlation of factor
portfolio return forecasts based on various forecasting methods

Average
Total OOS R2 cross-sectional correlation (%)

A. Modified characteristic-based models
Anom-Own characteristic -0.78 3.77
Anom-1 PLS -2.51 2.94
Anom-All characteristics -93.60 4.48
Anom-All characteristics lasso -2.09 5.82
5 PCs-All characteristics -53.93 6.19
5 PCs-All characteristics lasso -1.14 6.26

B. Modified benchmark models
5 PCs-1mMOM -57.99 5.77
5 PCs-12mMOM -4.72 3.73
5 PCs-5 BMs -0.75 2.61
5 PCs-5 BMs lasso -0.44 1.97
Anom-Own BM 0.20 4.29
Anom-All IR spreads -31.73 7.11
Anom-All IR spreads lasso -2.91 3.06
5 PCs-IR spread -3.04 0.91
5 PCs-All IR spreads -1.19 2.31
5 PCs-Sentiment 0.39 3.55
Sentiment-lasso 0.27 4.70

in two out of the three cases (the exception being the model that uses PLS on the RHS).

When we further condense the information content of the anomalies into five PC portfolios,

the average cross-sectional correlation increases even more. Nevertheless, the OOS R2

remains negative and the cross-sectional correlation is still at the levels of 6%, clearly lower

than the 8%–9% provided by our main models using dimension reduction also on the RHS

(panel B of Table 1.3). Overall, the results of panel A corroborate the importance of using

the full set of characteristics for factor timing purposes, while they further highlight the
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additional benefits that arise when incorporating dimension reduction and regularization

techniques on both sides of the forecasting exercise.

Panel B shows the results for the alternative specifications of the benchmark mod-

els. Applying the momentum signal on the PCs instead of individual anomalies has an

inconsistent effect on forecasting performance as it improves the OOS R2 but reduces the

cross-sectional correlation. Using the book-to-market ratios of all PC portfolios to predict

each single one of them individually is not particularly fruitful, with both performance

measures worsening compared to the main PCA-BM model. Predicting each anomaly by

its own book-to-market ratio delivers a positive OOS R2 and higher cross-sectional corre-

lation, but it still falls behind the baseline BM model. In terms of the issuer-repurchaser

spread, using the spreads of all portfolios instead of the spread of each individual portfo-

lio, as in the baseline IR spread model, reduces the OOS R2 but improves considerably

the cross-sectional correlation.23 Nevertheless, the use of lasso does not make any sub-

stantial contribution in this case, with the OOS R2 still being on the negative side and

the cross-sectional correlation decreasing. Finally, using the investor sentiment index to

predict the PC portfolios or in combination with lasso to predict individual anomalies has

little effect compared to the baseline Sentiment model. Overall, we find mixed results for

the modified benchmark models, with the dimension reduction and regularization addi-

tions improving the models only occasionally. In any case, even the best modified models

exhibit clearly worse performance than our main characteristic-based models.

Table 1.6 presents the portfolio evaluation results for the modified models. Starting

with panel A, the investment performance of the modified characteristic-based models

is broadly in line with the cross-sectional correlations from Table 1.5. In particular, all

strategies exhibit good investment performance, while the average returns and Sharpe

ratios tend to improve when, on top of using the whole set of portfolio characteristics, we

further incorporate PCA and/or lasso in the forecasting exercise. Still, even the best-
23Using the collection of issuer-repurchaser spreads can be justified by considering the different factor

portfolios as substitutes for the same investor. In that sense, time-varying characteristic mispricing can
propagate from one factor to the rest due to changes in demand and supply for the different factors,
making the issuer-repurchaser spreads of other factors important.
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Table 1.6: Portfolio evaluation measures for long-short (LSS), time-series (TSFM), and cross-sectional (CSFM) strate-
gies under the alternative specifications for the sample period January 1990 to December 2019. Average return: average
monthly return; Standard deviation: monthly standard deviation; Sharpe ratio: monthly Sharpe ratio; t-statistic: t-statistic on H0: Average return
= 0; Hit-rate: percentage of the total number of occasions that the strategy resulted in positive returns; Max drawdown: maximum cumulative loss.

Average return (%) Standard deviation (%) Sharpe ratio t-statistic Hit-rate (%) Max drawdown (%)
LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM LSS TSFM CSFM

A. Modified characteristic-based models
Anom-Own characteristic 0.46 0.34 0.32 4.04 2.48 2.53 0.11 0.14 0.13 2.17 2.57 2.40 60.72 60.72 61.00 33.44 21.02 21.76
Anom-1 PLS 0.46 0.30 0.30 4.33 2.96 2.97 0.11 0.10 0.10 2.03 1.95 1.93 56.82 57.66 58.50 29.95 25.56 25.41
Anom-All characteristics 0.74 0.52 0.51 4.71 2.76 2.77 0.16 0.19 0.18 2.98 3.54 3.49 57.38 58.77 59.05 11.65 8.74 9.16
Anom-All characteristics lasso 1.02 0.81 0.81 5.54 4.05 4.06 0.18 0.20 0.20 3.49 3.78 3.79 58.77 59.05 57.38 19.40 16.62 16.50
5 PCs-All characteristics 1.02 0.67 0.65 7.98 4.65 4.72 0.13 0.14 0.14 2.42 2.72 2.60 54.04 54.60 54.60 33.36 25.60 26.61
5 PCs-All characteristics lasso 1.09 0.70 0.72 7.59 4.64 4.63 0.14 0.15 0.16 2.71 2.88 2.95 54.60 55.99 55.99 19.23 16.62 16.32

B. Modified benchmark models
5 PCs-1mMOM 1.13 0.64 0.65 9.24 5.52 5.54 0.12 0.12 0.12 2.32 2.20 2.22 57.38 55.71 54.60 25.74 19.89 19.82
5 PCs-12mMOM 0.76 0.58 0.58 9.40 5.90 5.85 0.08 0.10 0.10 1.53 1.88 1.89 52.65 53.76 53.20 36.46 28.19 27.61
5 PCs-5 BMs 0.28 0.22 0.25 7.37 4.86 4.81 0.04 0.05 0.05 0.73 0.86 0.98 55.99 52.37 55.15 47.72 37.71 36.62
5 PCs-5 BMs lasso 0.35 0.26 0.27 7.85 5.01 5.00 0.04 0.05 0.05 0.85 0.99 1.03 53.76 53.48 53.76 46.79 37.78 37.21
Anom-Own BM 0.70 0.48 0.48 4.37 2.60 2.69 0.16 0.18 0.18 3.05 3.50 3.37 57.10 56.27 55.99 28.28 21.53 21.61
Anom-All IR spreads 1.24 0.80 0.81 7.70 4.47 4.49 0.16 0.18 0.18 3.06 3.38 3.43 60.17 58.22 59.33 21.60 14.53 14.61
Anom-All IR spreads lasso 0.67 0.50 0.51 6.88 4.85 4.87 0.10 0.10 0.10 1.84 1.95 1.98 56.27 55.99 56.27 24.21 20.57 20.46
5 PCs-IR spread 0.07 -0.14 -0.09 6.28 4.52 4.22 0.01 -0.03 -0.02 0.22 -0.59 -0.39 48.19 47.08 47.08 77.69 99.97 87.40
5 PCs-All IR spreads 0.51 0.29 0.28 7.99 4.89 4.82 0.06 0.06 0.06 1.20 1.12 1.11 52.65 52.65 52.65 57.43 33.41 32.55
5 PCs-Sentiment 0.56 0.35 0.33 6.86 3.89 3.97 0.08 0.09 0.08 1.54 1.70 1.59 54.87 53.76 52.37 57.10 27.64 29.55
Sentiment-lasso 0.67 0.46 0.46 5.37 3.22 3.25 0.12 0.14 0.14 2.35 2.72 2.69 55.15 56.27 56.55 17.90 19.22 19.13
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performing modified models fall behind the main ones presented in panel B of Table

1.4. Therefore, it is confirmed again that using multiple portfolio characteristics is indis-

pensable for forming a successful factor timing strategy, but the dimension reduction and

regularization techniques provide additional benefits. Turning to panel B, the PCA-based

momentum models, the model that uses all issuer-repurchaser spreads, the model that

uses each portfolio’s book-to-market ratio, and the model that employs lasso together

with market sentiment appear to be the strongest ones. This is unsurprising given that

these models also deliver the highest cross-sectional correlations in Table 1.5. Impor-

tantly, even these alternative benchmark models exhibit weaker investment performance

than our preferred characteristic-based models in panel B of Table 1.4. Overall, the alter-

native information sets have lower factor timing ability compared to the set of portfolio

characteristics even if they are enhanced by employing dimension reduction or lasso.

1.6 Conclusion

We investigate the predictability of factor portfolios from their own portfolio char-

acteristics, going over and above existing methods for predicting factor portfolio returns

and examining the possibility that factor portfolios are predictable by characteristics

other than their own. Our approach offers a natural continuation to the stock return

predictability problem, and our findings shed light on the evolution of the underlying

return drivers over time. Under our empirical framework, a large collection of stock char-

acteristics is used to initially construct the LS portfolios and subsequently predict their

performance. A key aspect of our methodology is the reduction of the dimensions of the

predictability problem, which we achieve by independently shrinking the number of pre-

dictors and forecasting targets. Our approach provides a new framework for dealing with

panel data, allowing each source of variation to be approximated by models of different

complexity. By using a flexible model specification that combines lasso with dimension

reduction techniques, we allow the number of predictors to vary across PC portfolios and

over time. We find this approach to be especially fruitful, as it considerably improves

results over a static single latent factor model.
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In terms of factor portfolio predictability, we observe significant benefits from timing

factor portfolio returns using observed characteristics. These benefits go over and above

existing methods documented in the literature, highlighting the importance of consider-

ing the information in the characteristics in a collective way. Specifically, the dominant

PC portfolios are highly predictable by the information contained in their characteristics,

and this predictability can be easily extended to individual anomalies. In that sense,

dimension reduction techniques not only accommodate the computational tractability of

the estimation problem, but also improve forecasting and investment performance by en-

abling us to focus on the sources of variation that are most predictable. The performance

of our factor timing strategies is superior to that of any individual anomaly and persistent

over the later years of the sample period, demonstrating the benefits of timing over static

factor investing. Hence, in the context of anomaly return prediction it is important to (i)

account for the information contained in multiple characteristics, (ii) focus on the main

sources of variation in factor portfolio returns since those are the most predictable, and

(iii) apply some kind of time-varying regularization on the set of predictors to account

for the time variability in characteristic informativeness. Overall, our findings have im-

portant implications for the use of machine learning methods in asset pricing applications

and help justify the importance of observable characteristics in explaining the dynamics

of factor portfolios.
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Chapter 2

Power Sorting

This paper is a joint work with Anastasios Kagkadis, Harald Lohre, Ingmar Nolte, and Sandra Nolte.
It was awarded first place in the Chicago Quantitative Alliance 30th Annual Academic Competition. We
would like to thank Vikas Agarwal, Pedro Barroso, David Blitz, Amit Goyal, Foort Hamelink, Matthias
Hanauer, Clint Howard, Illia Kovalenko, Gianluca De Nard, Peter Pope, Konark Saxena, Paul Schneider,
Laurens Swinkels, Ruslan Tuneshev, Steven Young, as well as the participants at the CQA 2023 Fall
Conference, the Inquire UK Autumn 2023 Webinar, the 2024 FMA Europe Conference, the 2024 EFMA
Conference, the Robeco research seminar and the seminars at Lancaster University and University of St
Andrews for their valuable comments and suggestions. The views and opinions expressed in this paper
are solely those of the authors and may not necessarily align with those of Robeco or Ultramarin.

58



2.1 Introduction

When associating observable firm characteristics with equity returns, the classic ap-

proach in empirical asset pricing is to construct characteristic-sorted portfolios, commonly

referred to as factor portfolios or simply, factors. Such factor portfolios have been widely

used by academics to identify asset pricing anomalies and construct asset pricing mod-

els. They are also used by investment practitioners who look for systematic exposure

to rewarded factors, provided these are investable. The conventional procedure for con-

structing factor portfolios involves ranking the stock universe by a characteristic, creating

quantile portfolios, and analyzing the long-short portfolio of the two extreme quantile

portfolios. Despite its popularity and intuitive appeal, this conventional approach has

its limitations. First, it lacks an objective criterion for choosing the number of quan-

tile portfolios, with that number usually remaining invariant for the characteristic at

hand. Usually, ten portfolios are considered, even though there is little motivation behind

such choice apart from ensuring a decent characteristic spread. Second, the conventional

method cannot address variation in characteristics within quantile portfolios, as these

are usually either equal or value-weighted.1 In that respect, it also cannot account for

potential non-linearities in the characteristic-return relations.2 Third, the conventional

weighting scheme is symmetric, implicitly assuming equal pricing ability of the charac-

teristic on the long and the short side, while disregarding stocks in the middle. In that

sense, it fails to explore the existence of monotonic patterns between returns and economic

variables that are implied by finance theories (Patton and Timmermann 2010).

To illustrate the limitations of conventional factor portfolio construction, Figure 2.1

plots the return for selected factors across the full spectrum of the respective character-

istic, using 100 quantile bins. The main insight from Figure 2.1 is that characteristics

can relate to average returns in non-trivial ways and decile sorting provides a simplistic
1Such fixed weighting schemes introduce other factor exposures and can thus have a confounding effect

on factor return inference (Swade et al. 2023).
2Note that numerous leading finance theories predict that expected returns are highly non-linear

functions of the underlying characteristics or state variables (e.g., Campbell and Shiller, 1988; Campbell
and Cochrane, 1999; Bansal and Yaron, 2004; He and Krishnamurthy, 2013).
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perspective to a more complex set of patterns between the two. One such pattern is

the inverted “smile” shape, where both stocks with very high and very low characteris-

tics underperform (e.g., beta), resulting in insignificant return differences across the two

legs. In this case, investing in the corner decile portfolios delivers an insignificant long-

short spread, implicitly declaring the characteristic as an unimportant return predictor.

Another common pattern is the inverted “smirk” shape, where stocks on the short side

underperform, but stocks on the long side display no significant outperformance (e.g.,

asset growth and volatility). In that case, the factor portfolio spread is primarily driven

by the short side. Lastly, average returns in the tails of the characteristics can drift in

opposite directions. That is, they might drift in the intended direction as implied by

the overall relationship, leading to an amplified effect in the extreme quantile portfolios

(e.g., short-term reversal), but they might also turn in the opposite direction, reducing

the return spread (e.g., book-to-market). Regardless of the underlying pattern, Figure 2.1

suggests that the extreme quantiles shall be treated differently and stocks in between the

two extremes are also worth of consideration in the construction of factors. Nonetheless,

any potential weighting scheme should be economically sound and theoretically motivated

to ensure that the resulting portfolios retain the underlying factor structure and avoid

overfitting and data mining concerns. Put differently, allowing the weight vector to vary

freely without imposing any structure or economic prior could lead to overfitted factor

portfolios that are based on return patterns alone and therefore unable to capture the

underlying economic driver.

In this paper, we develop a data-oriented power sorting procedure to directly model

factor portfolio weights as a function of firm characteristics. This procedure extends to

conventional long-short factor portfolios by allocating some weight to all assets, while still

allowing to tilt more towards stocks with extreme characteristics if deemed appropriate.

Unlike conventional sorting, power sorting does not require manual selection of quantile

breakpoints and seeks to exploit variation in characteristics across the full characteristic

spectrum rather than overlaying fixed-weighting schemes that could mask the factor’s

nature. Importantly, power sorting can capture asymmetries and non-linearities from
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Figure 2.1: Conditional monthly returns and conventional equal-weighted
decile-sorted factor portfolio weights for six characteristics.Characteristics are
standardized in the [−1, 1] range. The conditional returns are estimated by ranking stocks
based on their underlying characteristic in the previous period and splitting them into 100
equal-weighted quantile portfolios. The blue line shows the average monthly return across port-
folio groups. The dashed orange line shows the weight function for the factor portfolio that
invests in the corner decile portfolios based on the underlying characteristic. The sample in-
cludes all common shares on NYSE, AMEX, and NASDAQ exchanges and covers the period
from January 1980 to December 2021.
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characteristics to returns, allowing for tailored treatment on the long and the short side

and a deeper understanding of the behavior of the two complementary drivers of factor

premia.

The power sorting procedure is based on the assumption of monotonicity between

characteristic and return and is flexible enough to extract optimal performance from the

underlying characteristic, while still creating portfolios that are theoretically guided and

economically meaningful. Specifically, the cross-sectional weight vector for any given

factor is obtained by expressing portfolio weights as a power series of the underlying

characteristic rank. This formulation presents a tightly parameterized problem that ac-

commodates a variety of monotonic weighting schemes based on just two parameters,

one for the long and one for the short leg of the factor portfolio. The two parameters
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determine the concentration of the power factor portfolio on stocks with extreme char-

acteristic scores and can be estimated based on any arbitrary objective function, such

as maximizing the Sharpe ratio of the factor portfolio. Importantly, unlike conventional

optimization routines, our approach achieves this without explicitly requiring the use of

a variance-covariance matrix, thus avoiding associated estimation challenges. Higher pa-

rameter values lead to portfolios that are more concentrated in stocks with characteristic

extremes, while lower values lead to a more diversified factor exposure by spreading port-

folio weights more evenly across stocks. Additionally, differences in the two parameters

allow for capturing asymmetries and non-linearities in the weight function; for instance,

one may construct factors that take an aggressive stance on one leg and a more passive

stance on the other.

Our primary objective is to establish a framework for factor portfolio construction

that accommodates characteristic-specific treatment of the various characteristics with

clear interpretability of the underlying model parameters. Regarding the characteristics,

several studies have consistently emphasized the asymmetric impact of the long and the

short side on factor portfolio performance (Ang et al., 2006; Stambaugh, Yu, and Yuan,

2012; Blitz, Baltussen, and van Vliet, 2020; Leung et al., 2021). Furthermore, many

characteristics documented in the literature have been found to yield insignificant perfor-

mance, when the portfolio construction method is taken as given (Hou, Xue, and Zhang,

2015; Green, Hand, and Zhang, 2017; Hou, Xue, and Zhang, 2020). It is worth noting,

however, that slight modifications in factor construction can lead to significantly different

conclusions about factor significance (Jensen, Kelly, and Pedersen, 2023; Soebhag, van

Vliet, and Verwijmeren, 2023). Consequently, the conventional portfolio construction

technique cannot efficiently extract the underlying risk premium for the vast majority of

characteristics, and can yield misleading conclusions about their economic and statistical

significance.

For example, Hou, Xue, and Zhang (2020) find that factor portfolios based on market

friction proxies exhibit insignificant performance under a conventional long-short quantile
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approach. This finding resonates with an inverted smirk pattern where the relationship

between market friction proxies and next-period returns is highly asymmetric and factor

performance is driven by the short side that contains the most illiquid stocks. Similar

conclusions can be drawn for inverted smile patterns observed in many accounting vari-

ables. Power sorting proves particularly effective in modeling such patterns and producing

weighting schemes that can exploit variation in the short leg while maintaining a more di-

versified stance in the long leg. Furthermore, power sorting can enhance the performance

of already successful monotonic factors by leveraging the variation on both sides.

With regard to the model parameters, several degrees of freedom are involved in

the construction of factor portfolios. For example, increasing the number of quantile

portfolios — from terciles to quintiles, deciles, or beyond — produces portfolios that are

concentrated in stocks with extreme characteristics. Additionally, researchers can affect

the weighting scheme through other construction choices, such as value- or equal-weighting

stocks in the selected quantile. Both schemes can introduce unwanted factor exposures

that may unduly confound the targeted characteristic. Equal-weighting amplifies the

effect of small stocks, while value-weighting results in portfolios that are heavily skewed

towards very large stocks, thereby masking factor behavior via size effects. To address

this issue, researchers can use NYSE breakpoints and winsorize market capitalizations.

Such choices are often framed as data pre-processing steps and their implicit effect on

portfolio performance is usually overlooked.

Ultimately, our approach constitutes a sample-efficient solution for deriving portfo-

lio weights in an objectively optimal way, thereby alleviating p-hacking concerns related

to subjective portfolio construction choices. Additionally, by explicitly parameterizing

weight concentration in the tails, our framework enables clear interpretability of the un-

derlying model parameters, thus bridging the gap between ad-hoc portfolio sorts and

black-box machine learning methods. Finally, one distinctive feature of our method is

the introduction of a hyper-parameter that controls for the impact of size in the con-

struction of factor portfolios. This parameter is determined in a robust and transparent
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manner based on specific criteria, such as the maximum weight assigned to any individual

stock. As a result, power factor portfolios are sufficiently diversified, easily interpretable,

and practically relevant, establishing a data-driven and discretion-free framework for con-

structing factor portfolios.

Our results demonstrate that power sorting outperforms conventional sorting in terms

of various portfolio metrics, using a set of 85 well-established characteristics in an out-

of-sample period from March 1980 to December 2021. For many factor portfolios, the

outperformance arises from adopting a more aggressive stance on the short leg and a

more conservative stance on the long leg. This in turn implies that the characteristic

signal is strong for underperforming stocks but it tends to be weaker for outperforming

stocks. In the case of equal-weighted portfolios, the average factor portfolio Sharpe ra-

tio increases by 57%, while for value-weighted portfolios, it doubles. Importantly, the

observed performance enhancement is highly statistically significant and cannot be at-

tributed to increased turnover or tail risk considerations. Furthermore, these economic

gains also carry important asset pricing implications, as they lead to the resurrection

of many documented factors that were previously deemed insignificant. Specifically, the

factor significance rate rises from 40% to 75.3% for equal-weighted portfolios, and from

18% to 55.3% for value-weighted portfolios, even when employing a strict t-stat threshold

of three (Harvey, Liu, and Zhu 2016). Finally, we show that power sorting outperforms

other sophisticated portfolio construction techniques that account for non-linearities such

as the parametric portfolio policy of Brandt, Santa-Clara, and Valkanov (2009) and the

efficient sorting approach of Ledoit, Wolf, and Zhao (2019).

Despite the univariate nature of the power sorting methodology, we provide evidence

of its effectiveness in a multi-factor context too. Adopting an asset pricing perspective,

we demonstrate that the incorporation of power factors into existing asset pricing models

consistently improves their pricing ability as evidenced by a significantly higher model

squared Sharpe ratio (Barillas et al. 2020). From an investment perspective, we highlight

the empirical relevance of power sorting in combining individual factors into multi-factor
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portfolios. Our approach explicitly considers the asymmetric pricing abilities of different

characteristics when combining signals, resulting in multi-factor portfolios with improved

investment performance. The performance enhancement achieved through power sorting

is substantial compared to single-characteristic strategies or equal weighted multi-factor

approaches, particularly after accounting for size effects.

The remainder of the paper is structured as follows: Section 2.2 introduces the power

sorting procedure and relates it to the conventional procedure and prior literature on

characteristic-based portfolio construction. Section 2.3 explores power factor portfolio

construction for a large set of characteristics and examines their out-of-sample perfor-

mance on an individual and aggregate factor level. Section 2.4 compares power sorting

to alternative methods proposed in the literature for factor construction and performs a

variety of robustness tests to corroborate the validity of power-sorted factor portfolios.

Section 2.5 concludes.

2.2 Power Sorting Methodology

The goal is to construct portfolios with exposure to some characteristic but in a way

that one can best exploit its relationship to future returns. We begin by explaining the

conventional portfolio construction technique, followed by the power sorting approach.

The conventional sorting procedure is to rank the cross-section of stock returns according

to a characteristic. The cross-sectional vector of characteristics, observable at the begin-

ning of month t is denoted by xt := (xt,1, . . . xt,Nt)
′, where Nt is the number of stocks

available at time t. The vector of stock returns at the beginning of month t + 1 is de-

noted by rt+1 := (rt+1, . . . , rt+1,Nt)
′. Finally, let {(1), (2), . . . , (Nt)} be a permutation of

{1, 2, . . . , Nt} that results in ordered factor scores (from smallest to largest):3

xt,(1) ≤ xt,(2) ≤ . . . ≤ xt,(Nt). (2.1)
3This is assuming a positive relation between the characteristic and returns; otherwise the character-

istic is inverted.
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The essence of factor investing is the estimation of a weight vector wt :=
(
wt,(1), . . . , wt,(Nt)

)′
for rt+1 based on xt. A typical long-short portfolio satisfies,

∑
wt,(n)<0

∣∣wt,(n)

∣∣ = ∑
wt,(n)>0

∣∣wt,(n)

∣∣ = 1, (2.2)

so that we have a unit dollar short leg and a unit dollar long leg.

2.2.1 Conventional long-short quantile factor portfolios

The standard procedure is based on partitioning the characteristic space into equal-

sized quantile bins. Let B be the number of quantile groups considered; for example,

B equals 5 for quintiles, or B equals 10 for deciles. Let d be the largest integer that

is smaller than or equal to N/B (the number of stocks in each quantile group). The

k-th quantile of xt, qt,k = 1, . . . , B − 1, is equal to xt,(k·d). The weighting vector under

a standard long-short decile portfolio scheme (i.e., B equals 10) is denoted as wLS
t . The

standard long-short portfolio allocates equal weight to stocks belonging to the two corner

portfolios and disregards the rest,

wLS
t,(1) = . . . = wLS

t,(d) = −1/d,

wLS
t,(d+1) = . . . = wLS

t,(Nt−d) = 0,

wLS
t,(Nt−d+1) = . . . = wLS

t,(Nt) = 1/d.

(2.3)

The resulting portfolio return at time t+1 is denoted by rLS
t+1 = r′t+1w

LS
t . Value-weighted

versions of those portfolios can be constructed by weighting stocks within each group

based on their market capitalization:

wLS
t,(n) =



−mcapt,(n)/
d∑

i=1

mcapt,(i), for n ≤ d

0, for d < n ≤ Nt − d

mcapt,(n)/
Nt∑

i=Nt−d+1

mcapt,(i) for n > Nt − d,

(2.4)
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where mcapt,(n) is the market capitalization of stock n at time t. Specifically, we construct

capped value-weighted versions of the factor portfolios, following Jensen, Kelly, and Ped-

ersen (2023b), such that we assign weights to stocks based on their market capitalization

winsorized at the 80th percentile of the NYSE.

Regardless of the underlying weighting scheme, this approach has some important

implications. First, the process is dependent on the specific choice of quantile breakpoints

(e.g., terciles, quantiles or deciles). In essence, B is a hyper-parameter that dictates the

concentration of the long-short factor portfolio. Although deciles are commonly used, it

is ultimately a choice parameter that can significantly affect inferences about the signif-

icance of factor premia (Soebhag, van Vliet, and Verwijmeren 2023). High values for B

can potentially improve return performance but lead to undiversified portfolios that are

less practical as they over-concentrate in a small number of stocks. Second, employing

equal- and value-weighted weighting schemes in portfolio construction introduces ad-hoc

variation that may obscure the underlying return signal. Third, the approach places

equal emphasis on the long and the short leg, while it disregards the information about

mid-rank stocks. This attribute renders the method inadequate to effectively capture

non-linearities and asymmetries in the underlying characteristic-return relationship.

2.2.2 Power sorting

Pure power-sorted portfolios

We propose power sorting that uses the underlying characteristic rank to determine

factor portfolio weights, but the weighting vector is directly derived for the whole cross-

section of stocks without requiring any grouping. In each period, we cross-sectionally

rank all stock characteristics and map them onto the interval [−1, 1] centered around

the median rank. As shown below, the standardized characteristic rank vector s̃t,(n) is

obtained as:

st,(n) =

⌊
rank(xt,(n))−

Nt + 1

2

⌉
(2.5)
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s̃t,(n) =


− st,(n)

st,(1)
for st,(n) < 0

0 for st,(n) = 0

st,(n)

st,(Nt)
for st,(n) > 0,

(2.6)

where rank(·) is the rank function and ⌊·⌉ is the function rounding to the nearest integer.

One advantage of using characteristic ranks rather than raw scores to derive the

weighting vector is that the former is unaffected by the distribution of the characteristics.

Next, we translate scores into weights by normalizing them based on the respective sums

of scores as outlined below in equation (2.7). Stocks with below median characteristic

rank are assigned negative weights and stocks with above median characteristic rank are

assigned positive weights. Specifically, positive scores are divided by the sum of all positive

scores and negative scores are divided by the sum of all negative scores, ensuring a unit

dollar investment for the long and the short side. Non-linearities and asymmetries in the

weight function are incorporated by introducing two parameters, one for the long (p) and

one for the short side (q). These two parameters are exponents that are applied to positive

and negative characteristic ranks before transforming them into portfolio weights. For

exposition purposes, we assume p and q to be constant across time, while in our empirical

investigation, we demonstrate how time-variability in p and q can impact the shape of

the factor portfolio weight function over time. Hence, we express positive and negative

scores as two independent power series and their scaling factors as their power sums. The

resulting weighting vector for the power sorting portfolio is given by:

wPS
t (s̃t,(n); p, q) = wPS

t,(n) =



− |s̃t,(n)|q∑
s̃t,(n)<0

|s̃t,(n)|q
for s̃t,(n) < 0

0 for s̃t,(n) = 0

s̃p
t,(n)∑

s̃t,(n)>0

s̃p
t,(n)

for s̃t,(n) > 0.

(2.7)

68



The two hyper-parameters p and q govern the concentration of the power sorting port-

folio weights. Higher parameter values lead to portfolios that are more concentrated in

the extreme ranks, as stocks with characteristic rank closer to the median shrink to-

wards zero faster due to the function’s exponential nature. Given that limp∧q→∞ wPS
t =

(−1, 0, . . . , 0, 1), all capital is allocated to the two stocks with the most extreme charac-

teristics. This formulation provides a natural way to capture weight concentration in the

tails and offers ample flexibility in modeling the underlying weighting function.

To illustrate, Figure 2.2 presents the resulting weighting function for various com-

binations of p and q, alongside the conventional long-short weighting scheme. When

p ∧ q = 0, the function evenly distributes weights between stocks above and below the

median, resembling a conventional long-short portfolio with two groups and reflecting a

passive factor approach. When p ∧ q = 1, the function aligns with a linear rank weight-

ing scheme, where absolute weights increase linearly for stocks with characteristic ranks

further from the median.

For values between 0 and 1 in p ∧ q, absolute weights increase at a marginally de-

creasing rate around the median, while for p∧ q > 1 the weights increase at a marginally

increasing rate, over-weighting the extreme ranks. Notice that when p ∧ q < 0, portfo-

lio weights concentrate towards the centre, resulting in lack of monotonicity. Therefore

p ∧ q = 0 constitutes a natural lower bound for the parameter space in the context of

factor portfolio construction.

In general, high values for p and q correspond to an aggressive factor stance, where

stocks with the most extreme characteristic ranks are expected to contribute most to

the factor premium. Importantly, differences in p and q introduce asymmetries in the

weighting scheme, allowing one leg to be more concentrated/less diversified than the

other.
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Figure 2.2: The opportunity set of power sorting. The top-left chart displays a
conventional equal-weighted decile-sorted long-short weighting scheme for a characteristic pos-
itively related to returns. The remaining charts display stock weights for different values of p
and q under the power sorting scheme.
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Value-weighted power factor portfolios

We next discuss the construction of value-weighted versions of the power factor port-

folios. The rationale to use market capitalization for weighting stocks within each factor

portfolio is to reflect the relative size of companies. Put differently, market capitalization

weighting is likely to give sector and industry exposures similar to the overall market.

However, under a conventional approach, such value-weighted factor portfolios tend to

overweight mega-cap stocks, resulting in less diversified portfolios that cannot robustly

capture the underlying factor premium. To this end, scholars have put forward ways to

control the effect of market capitalization on portfolio composition. A well-known exam-

ple is the Fama and French (1993) construction methodology, which gives half the weight

to small stocks and the other half to big stocks. Jensen, Kelly, and Pedersen (2023b)

winsorize market capitalizations at the NYSE 80th percentile before calculating factor

portfolio weights, which avoids excessive weights on mega-cap stocks while still emphasiz-

ing large stocks. These approaches, although masked as data pre-processing steps, allow
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for different degrees of freedom in the estimation of value-weighted portfolios and can

have a significant impact on portfolio outcomes (Soebhag, van Vliet, and Verwijmeren

2023). Furthermore, the effect of such modifications on portfolio composition is usually

unassessed. For this reason, we directly incorporate and parameterize the effect of size

on the estimation of portfolio weights by computing the capitalization-adjusted versions

of the power portfolio as:

wPS,cap
t,(n) =



−
|s̃t,(n)|q ·mcaph

t,(n)∑
s̃t,(n)<0

|s̃t,(n)|q ·mcaph
t,(n)

for s̃t,(n) < 0

0 for s̃t,n = 0

s̃p
t,(n)

·mcaph
t,(n)∑

s̃t,(n)>0
s̃p
t,(n)

·mcaph
t,(n)

for s̃t,(n) > 0,

(2.8)

where parameter h ∈ [0, 1] controls the concentration in mega-cap stocks. A value of h = 1

corresponds to the uncapped value-weighted versions, while a value of 0 corresponds to

the pure characteristic-weighted power portfolios. Values between 0 and 1 regulate the

effect of size in the estimation of weights and are crucial to avoiding corner allocations in

mega-cap stocks. The reason is that the vector of ordered market capitalizations behaves

as a power series with high exponential growth, as it is dominated by a handful of stocks

of exponentially larger size than their peers. Hence, presuming no shrinkage on market

caps (h = 1) means that the weighting vector of the value-weighted versions is the product

of two power curves. This can lead to extreme concentrations in mega-cap stocks in cases

where mega-cap stocks have extreme characteristic ranks and factor concentration (p∨ q)

is high. As such, it is key to moderate the market capitalization component to avoid

extreme mega-cap stock allocations.

Our approach allows for an efficient formulation of the weighting function and does

not require any data pre-processing/manipulation step to avoid overconcentration, such

as winsorization, NYSE breakpoints, grouping, or similar. The value of h can be either

calibrated based on the desired maximum portfolio weight or prespecified as a constant

value. To mitigate data mining concerns, we opt for a constant value of h = 0.5 for all
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power portfolios, which is equivalent to taking the square root of market capitalization.

As a benchmark, we estimate the value-weighted long-short portfolios using winsorized

market caps at the 80th NYSE breakpoints, as in Jensen, Kelly, and Pedersen (2023b).

Managing weight concentration over time

The presented power sorting framework can naturally be extended to deal with ex-

treme corner case allocations and account for time variation in p and q (i.e., consider pt

and qt). First, the maximum weight for each leg in each period is always allocated to

the stock with the maximum absolute standardized characteristic rank. To illustrate, the

maximum weight of the long leg portfolio is given by:

wPS
max,t = wPS

Nt
=

1

F (s̃t,(Nt), pt)
, (2.9)

where F (s̃t,(Nt), pt) =
∑

s̃t,(n)>0

s̃ptt,(n) is a power sum that can be efficiently computed using

Faulhaber’s formula (Knuth 1993). Hence, wPS
Nt

is decreasing in the number of available

assets and increasing in the value of the power pt, meaning that the effect of pt on wPS
Nt

is conditional on the number of available assets and therefore characteristic- and time-

dependent. Equation (2.9) highlights that finding a single optimal combination of p

and q over time would lead to inconsistent weight distributions due to the variation in

the size of the equity cross-section. In other words, imposing a single optimal power

exponent would yield a variety of maximum weights over time. This inconsistency poses

challenges when comparing different characteristics and determining the parameter values

that maximize in-sample performance.4 As the number of available assets is known at

time t, the maximum weight can be constrained by setting an upper threshold to the

maximum power. The threshold is calculated by solving:

1

F (s̃t,(Nt), pt)
− wceil = 0, (2.10)

4It should be noted that the optimal power exponents might not be directly compared across charac-
teristics since they correspond to different availability of characteristics data.
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where wceil is the targeted maximum weight. Depending on characteristic availability, the

value of pt solving equation (2.10) will vary. We opt for a maximum portfolio weight of 2%

when estimating the upper threshold for pt and qt (labeled pmax
t and qmax

t , t = 1, . . . , T )

to ensure healthy portfolio diversification. In Section 2.4.2, we check for robustness of

results with respect to the choice of maximum portfolio weight.

To ensure consistency in maximum weight concentration over time while still opti-

mizing with respect to a single set of parameters, we define the concentration ratios for

the two sides as p̃t = pt/p
max
t ∈ [0, 1] and q̃t = qt/q

max
t ∈ [0, 1], respectively. The con-

centration ratios correspond to the densities associated with the truncated distributions

of pt and qt and are essentially standardized metrics that allow for a clear and intuitive

interpretation. Specifically, a concentration ratio equal to one for either leg indicates

that power factor portfolio performance is optimized when the weights are concentrated

in the tail(s), with the maximum weight being no larger than wceil. Conversely, a value

of zero implies that factor performance is optimized when a diversified stance is taken,

equal-weighting stocks away from the median. This standardization allows for uniformity

in the behavior of the weight distribution across time and characteristics and, hence, in

the calibration of a single set of parameters. These optimal densities can then be mapped

out to every period based on pmax
t and qmax

t , allowing for the optimal pt and qt to be

time-varying.

2.2.3 Power sorting and related literature

Our paper contributes to the literature on characteristic-based portfolio choice for

asset pricing and investment applications. Conventional characteristic sorting has been

a workhorse in empirical asset pricing due to its simplicity and intuitive interpretation.

Early empirical contributors of portfolio characteristic sorts include Basu (1977) and Banz

(1981), while the approach was popularised by Fama and French (1992) and Jegadeesh

and Titman (1993). Despite its popularity, prior literature has identified some practical

and theoretical limitations of the conventional portfolio construction. Jacobs and Levy

(1993) raise various practical concerns that underline long-short strategies, while Pat-
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ton and Timmermann (2010) highlight the inability of long-short strategies to test for

monotonicity between characteristics and returns. In contrast to standard portfolio sorts,

power sorting imposes monotonicity in the characteristic-return relationship and leverages

variation across the characteristic spectrum to derive factor portfolio weights. Therefore,

it promises to align more closely with economic theory.

Alternative approaches to portfolio construction, like Frazzini and Pedersen (2014)

or Koijen et al. (2018), utilize rank portfolios. Rank portfolios assign progressively higher

weights to stocks as they deviate further from the characteristic median in a linear manner.

This method proves effective for characteristics that demonstrate a monotonic relation-

ship with returns, particularly when the effect is more pronounced for extreme values.5

Notably, power sorting encompasses rank portfolios, allowing for a linear weighting func-

tion based on the characteristic rank when the underlying relationship is linear. However,

power sorting goes beyond linear, enabling the incorporation of non-linear and asymmet-

ric weights, thus offering greater flexibility in portfolio construction. A comprehensive

comparison between rank portfolios and power portfolios is provided in Section 2.4.1.

Our study is also related to a strand of the literature that models portfolio weights as

a function of underlying firm characteristics and employs optimization-based approaches

for portfolio construction. Notable examples include Brandt (1999), Aït-Sahalia and

Brandt (2001), Brandt and Santa-Clara (2006), and Brandt, Santa-Clara, and Valkanov

(2009).6 The main difference between power sorting and the parametric portfolio policy

of Brandt, Santa-Clara, and Valkanov (2009) is that the former utilizes characteristic

ranks and obtains non-linear weights by the usage of powers, while the latter derives non-
5Novy-Marx and Velikov (2022) propose a rank- and capitalization-weighted scheme to account for

market capitalizations in rank portfolios.
6Building upon the parametric portfolio policy framework of Brandt, Santa-Clara, and Valkanov

(2009), Ammann, Coqueret, and Schade (2016) introduce leverage constraints, DeMiguel et al. (2020)
incorporate transaction costs, and Simon, Weibels, and Zimmermann (2023) integrate feed-forward neural
networks to capture non-linear and interaction characteristic effects. Hjalmarsson and Manchev (2012)
demonstrate that, within a mean-variance framework, the use of firm characteristics enables the reduction
of the asset space to a set of characteristic-based portfolios. In an alternative approach, McGee and Olmo
(2022) use non-parametric kernel methods to estimate the conditional moments of stock returns based
on stock characteristics in a cross-sectional setting. These estimated moments are then used within a
mean-variance objective function for portfolio construction.
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linear weights by scaling linearly the higher moments of the characteristic distribution. In

that respect, the success of Brandt, Santa-Clara, and Valkanov’s (2009) method relies on

whether the characteristic-return relation in the tails follows the shape of the underlying

characteristic’s distribution, while in ours this is not the case. Section 2.4.1 compares the

performance of the two methods and discusses thoroughly their conceptual differences.

More broadly, the limitations of conventional portfolio sorting have prompted re-

searchers to seek improvements in the construction of characteristic-based portfolios. Cat-

taneo et al. (2020) approach portfolio sorting as a non-parametric estimator, where the

number of portfolios serves as a hyper-parameter, while Zhang, Wu, and Chen (2022)

propose a listwise learn-to-rank loss function that sequentially selects pairs of stocks for

the long and the short leg. Closer to our study, Ledoit, Wolf, and Zhao (2019) utilize the

DCC-NL estimator developed by Engle, Ledoit, and Wolf (2019) to estimate “efficient”

factor portfolios. These portfolios aim to minimize variance while maintaining the overall

factor exposure of traditional long-short portfolios. To assess the impact of parameter

shrinkage resulting from power sorting, we compare our method with the efficient sorting

methodology of Ledoit, Wolf, and Zhao (2019) in Section 2.4.1.

Finally, our work relates to recent studies that construct characteristic-driven portfo-

lios but with different objectives compared to ours. For instance, Fama and French (2020)

utilize the cross-sectional regression approach of Fama and MacBeth (1973) to construct

factors based on standardized characteristics.7 Their findings reveal that these cross-

sectional factors are more effective at explaining average returns compared to the original

Fama-French-type factors. In a different context, Kim, Korajczyk, and Neuhierl (2021)

introduce portfolios that aim to exploit mispricing information in the characteristics while

hedging out systematic variation related to those characteristics. Similarly, Daniel et al.

(2020) construct “characteristic efficient portfolios” by hedging away variation associated

with unpriced risk using a hedge portfolio.
7The regression slopes correspond to the returns of the zero investment factor portfolios with unit

exposure to their characteristic and zero exposure to all the other characteristics.
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2.3 Optimal Power Sorting Portfolios

2.3.1 Characteristics and power thresholds

We replicate a large set of 85 characteristics that have been considered by Green,

Hand, and Zhang (2017). The characteristics are calculated using data from the Center

of Research on Securities (CRSP), Compustat, and the Institutional Brokers’ Estimate

System (I/B/E/S), covering the period from January 1980 to December 2021. The stock

universe includes common stocks listed on NYSE, AMEX, and NASDAQ that have a

record of month-end market capitalization on CRSP and a non-missing and non-negative

common value of equity on Compustat. Additional information about the characteristics,

including origination and characteristic description, can be found in Section A.1 of the

Appendix.

For every month, stock returns for month t+1 are matched against their respective

characteristics in month t. For accounting data, we allow at least six months to pass from

the firms’ fiscal year-end before they become available and at least four months to pass

for quarterly data. To mitigate the effect of microcaps, we remove stocks with a market

capitalization below the 10th percentile at the portfolio formation period.

For constructing conventional benchmark factor portfolios, we first group stocks into

equal-weighted deciles based on their characteristic scores in the previous month and then

go long and short in the two extreme deciles, depending on the prevailing characteristic-

return relationship. For value-weighted results, we use a “capped value-weighting” scheme

following Jensen, Kelly, and Pedersen (2023b). Factors are categorized into six groups

based on economic rationale, (Hou, Xue, and Zhang 2015), namely: Momentum, Value,

Investment, Profitability, Intangibles, and Trading Frictions.

A subtle but important detail is setting the maximum threshold for the hyper-

parameters pt and qt. This threshold depends on the targeted maximum portfolio weight

and the number of available assets. To ensure that the power portfolios are sufficiently
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diversified, we set the maximum weight to 2% and solve equation (2.9) for the values

of pmax
t and qmax

t . Figure A.11 in the Appendix displays the time-variation in the max-

imum powers for the long and the short leg of the different characteristics. Evidently,

those thresholds vary significantly across characteristics and time, further stressing the

importance of using a standardized measure for optimization purposes and for conducting

comparisons.

2.3.2 Estimation procedure

The construction of the power sorting portfolio for a given characteristic xt requires

an estimate of the powers pt ∈ [0, pmax
t ] and qt ∈ [0, qmax

t ] for each period t. To this end,

we solve for the respective concentration ratios p̃t and q̃t that maximize the power sorting

factor portfolio Sharpe ratio in the in-sample period and estimate the powers for the most

recent cross-section by multiplying the ratios with the maximum power thresholds for

the most recent period pmax
t and qmax

t . To mitigate data-mining concerns regarding the

selection of the estimation window, we adopt an expanding window approach and consider

the longest out-of-sample period possible. In particular, the out-of-sample period covers

March 1980 to December 2021, while different estimation windows are explored in Section

2.4.2. To illustrate, assuming a Sharpe ratio maximization objective and based on an

underlying rank-standardized characteristic s̃t := s̃t,1, . . . s̃t,Nt , the estimation problem at

each investment date can be formulated as follows:

{ ˆ̃pt, ˆ̃qt} = argmax
p̃t∧q̃t∈[0,1]

rt
PS√

var(rPS
t )

, (2.11)

rt
PS =

1

t− 1

t−1∑
i=1

Ni∑
j=1

ri+1,j · wPS
i (s̃i,(j); p

max
i · p̃t, qmax

i · q̃t), (2.12)

var(rPS
t ) =

1

t− 2

t−1∑
i=1

(
Ni∑
j=1

(
ri+1,j · wPS

i (s̃i,(j); p
max
i · p̃t, qmax

i · q̃t)
)
− rPS

)2

, (2.13)
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which is a constrained optimization problem that can be solved numerically.8 Notice that

under this formulation there is no need to estimate the variance-covariance matrix (VCV)

for individual stocks. Each combination of ˆ̃pt and ˆ̃qt practically corresponds to a set of

cross-sectional weight vectors, and hence to a power portfolio return time-series for which

the first and the second moments are computed directly. The out-of-sample power sorting

portfolio return at time t+ 1 is then estimated as:

rPS
t+1 = r′t+1 × wPS

t (s̃t; p
max
t · ˆ̃pt, qmax

t · ˆ̃qt). (2.14)

Value-weighted results for the power versions of each factor are estimated as in equation

(2.8), using the same maximum powers as in the pure characteristic weighted versions

and a value of h = 0.5.

2.3.3 Power-sorted portfolios and concentration ratios

First, we examine the underlying form of the weight function for various character-

istics. Power-sorted portfolios assign a portfolio weight to every stock that is uniquely

determined by the p̃t and q̃t parameters. The use of an expanding estimation window

implies that the out-of-sample parameters should gradually stabilize and converge to the

optimal in-sample parameters as the sample expands. To foster intuition with respect to

the underlying weight function, we present the average concentration ratios of each factor

in Figure 2.3. Blue-shaded bars represent the average concentration ratio for the long

side and red-shaded bars represent the average concentration ratio for the short side.

Figure 2.3 clearly illustrates that the optimal degree of concentration is highly asym-

metric and skewed towards the short side for the majority of characteristics. That is the

factor portfolio Sharpe ratio is maximized by adopting an aggressive stance on the short

side and a more conservative stance on the long side. This finding indicates that stocks

at the lower end of the conditional return distribution tend to perform very poorly, while
8In Section A.3.2 of the Appendix we report results under a return-spread maximization objective.

These results are similar to the ones presented in the main paper.
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stocks’ outperformance at the extreme upper end is less extreme. Nonetheless, lower val-

ues for p̃t compared to q̃t do not imply that the long leg is an insignificant contributor

to factor portfolio performance. In fact, as we show later in the analysis, the long leg of

the power sorting portfolios delivers positive and significant returns. Nevertheless, this

asymmetry suggests that conditional returns in the long tail either remain relatively flat

or that stocks in the corner of the long leg tend to underperform. Consequently, a lower

concentration ratio in the long leg helps to avoid overinvesting in corner stocks that are

likely to underperform when compared to their peers.

Figure 2.3: Average estimated concentration ratios ˆ̃p and ˆ̃q of each factor.
Blue-shaded bars show the average concentration ratio for the long side and red-shaded bars
show the average concentration ratio for the short side. Factors are sorted into six groups based
on their economic rationale. The sample period is from March 1980 to December 2021.
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To visualize the implications of the estimated concentration ratios in terms of port-

folio weights, Figure 2.4 depicts the average weight function resulting from the selected

values for ˆ̃pt and ˆ̃qt for the six factors presented in Figure 2.1. When compared to the
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conventional weighting scheme, power sorting is able to capture the underlying return

patterns more accurately. In particular, our approach proves highly effective in dealing

with characteristics that exhibit inverted “smirk” or inverted “smile” shapes, such as asset

growth, return volatility, and beta. In such cases, power portfolios combine a high value

for q̃t and a low value for p̃t, thus producing inverted smirk weight schemes that increase

exposure on stocks in the extremes of the short side, and reduce exposures on stocks in

the extremes of the long side. Furthermore, for some characteristics, like momentum,

the effect is amplified in the extremes and the algorithm opts for high values of p̃t and

q̃t, resonating with an aggressive stance in both the long and the short side to exploit

variation in both tails.

Figure 2.4: Conditional monthly returns and power factor portfolio weight
function for six characteristic-based factor portfolios. Characteristics are standard-
ized in the [−1, 1] range. Conditional returns are estimated by ranking stocks based on their
underlying characteristic in the previous period and splitting them into 100 equal-weighted quan-
tile portfolios. The blue line shows the average monthly return across portfolio groups. The
orange line shows the average weight function for the factor portfolio as implied by the selected
values for p̃t and q̃t across periods. The sample includes all common shares on NYSE, AMEX,
and NASDAQ exchanges and covers the period from March 1980 to December 2021.
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2.3.4 Power sorting versus conventional decile sorting

Table 2.1 compares the portfolio performance of power sorting against that of conven-

tional decile sorting, presenting average portfolio statistics across factors for both equal-

weighted and value-weighted cases. The results demonstrate the superiority of power

sorting over the conventional approach across all portfolio metrics. Specifically, power

sorted portfolios consistently exhibit significantly higher average returns and Sharpe ra-

tios, with an average t-statistic above three for both value and equally weighted factors.

Notably, for the value-weighted case, power sorting leads to an average Sharpe ratio that

is twice as high as that achieved through the conventional approach (0.52 versus 0.26).

Importantly, these results are not likely to be driven by increased trading costs or tail

risk, as power factors exhibit on average a lower turnover and maximum drawdown com-

pared to the conventional long-short portfolios. Finally, the resulting portfolios are more

diversified, encompassing a higher number of effective names on both the long and short

sides. The asymmetrically higher number of effective names for the long leg of the average

power portfolio corroborates the patterns depicted in Figure 2.3, reflecting higher values

of q̃ and a more aggressive stance for the short side.

Table 2.1: Average performance measures across factors for power and conven-
tional long-short portfolios. Return: Average monthly return, Stand. dev.: Monthly stan-
dard deviation, Sharpe ratio: Annualized Sharpe ratio, t-stat: t-statistic on H0: Return=0, Hit
rate: Percentage frequency of positive returns, Turnover: Average monthly turnover (bounded
by 200%), # of effective names long: Number of effective names (i.e., sum of squared weights
raised to −1) for the long leg, # of effective names short: Number of effective names (i.e., sum
of squared weights raised to −1) for the short leg. The sample period is from March 1980 to
December 2021.

Equal-weighted Value-weighted
Power Conventional Power Conventional

Return (%) 0.77 0.51 0.62 0.32
Standard deviation (%) 4.04 4.21 4.17 4.39
Sharpe ratio 0.72 0.46 0.52 0.26
t-stat 4.64 2.96 3.40 1.71
Maximum drawdown (%) −45.79 −55.35 −48.96 −59.22
Hit rate (%) 61.88 57.39 58.27 53.44
Turnover (%) 37.57 39.39 33.09 35.44
# of effective names long 1315.41 369.24 460.01 107.00
# of effective names short 535.60 370.33 229.79 98.42
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Figure 2.5 presents selected out-of-sample portfolio evaluation measures for individ-

ual factors, depicting the power-sorted versions in blue and the conventional long-short

decile versions in orange. Panel A compares the pure power-sorted portfolios with equal-

weighted decile benchmarks, while Panel B compares the capitalization-adjusted power

versions with the capped value-weighted versions of the conventional long-short approach.

Power sorting consistently leads to substantial gains in average returns and Sharpe ratios

across the majority of factors, and these improvements cannot be attributed to increased

turnover. Specifically, 75.3% of power versions have higher average returns, and 86%

have higher Sharpe ratio. For value-weighted results, the respective numbers are 85.9%

for returns and 96.5% for Sharpe ratios.

In addition, power sorting achieves a significantly higher significance rate for the av-

erage returns of factor portfolios, as indicated by a t-statistic above three (75.3% versus

40% for equal-weighted portfolios and 55.3% versus 18% for value-weighted portfolios).

Hence, several factors deemed insignificant under the conventional weighting scheme be-

come significant when the power weighting scheme is applied, even when using the stricter

t-value threshold of three, as advocated by Harvey, Liu, and Zhu (2016). These results

raise questions about the ability of decile sorting to efficiently extract the underlying

signal from many characteristics, potentially leading to false rejections of factors.

It is worth noting that results are fairly consistent across the pure power-sorted and

value-adjusted versions of the power portfolios, while the benchmark results considerably

deteriorate under value-weighting. In fact, in some cases adjusting for market capital-

ization leads to value-weighted portfolios with negative average returns under the con-

ventional method. Conversely, returns remain positive under a power sorting approach.

Hence, the incorporation and parameterization of the size effect into the factor weight-

ing procedure preserves the underlying factor behavior and controls for any confounding

effects that might otherwise arise in naive value-weighted decile sorts.
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Figure 2.5: Portfolio evaluation measures for conventional long-sort and power
versions. Panel A displays equal-weighted results and Panel B displays value-weighted results.
(1) Average monthly return, (2) t-statistics on average monthly return, (3) Annualized Sharpe
ratio, (4) Monthly turnover. The optimal powers are selected using an in-sample expanding
window starting from January 1980 to December 2021. Factors are sorted into six groups based
on their economic rationale.

A. Equal-weighted portfolios
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B. Value-weighted portfolios
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Finally, investment gains from power sorting are evenly distributed across factors,

yet notable significance is observed for factors associated with Frictions, Investment, and

Intangibles. These factor themes are recognized for their asymmetric nature (i.e., Ang

et al. (2006), Cooper, Gulen, and Schill (2008)), confirming the effectiveness of power
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sorting in capitalizing on the specific patterns inherent to these factors.

2.3.5 Dissecting long and short factor portfolio legs

So far, we have established the presence of asymmetric and non-linear return effects

of characteristics and demonstrated the effectiveness of power sorting in identifying and

capitalizing on these patterns. To gain a deeper understanding, we further explore the

implications of p̃t and q̃t on the long and short sides of each factor.

Figure 2.6 provides a visual depiction of the improvement in return performance

for the long (Panel A) and short (Panel B) sides of the different factors, based on their

corresponding values of p̃t and q̃t. Each subfigure includes the line of best fit and the

zero line. Data points positioned below the zero line indicate instances where the power

leg underperforms its conventional decile leg. Panel A shows the increase in average

return for the power long leg compared to decile ten, using the average optimal value

of p̃t. The relationship between the two is negative, suggesting that a more diversified

approach that spreads weights across the long leg is preferable over concentrating solely

on stocks in the extreme decile. Characteristics associated with Investment, Intangibles,

and Market Friction proxies exhibit the most significant benefits from a low value of

p̃t. As already discussed, these variables demonstrate inverted smile and smirk patterns,

indicating that conditional returns in the long tail either decrease or remain relatively

flat. Consequently, a low p̃t reduces portfolio exposure to underperforming corner stocks

in the long tail, enhancing diversification benefits and investment performance in the long

leg.

Panel B of Figure 2.6 shows the decrease in average return for the power short leg

over decile one for the average optimal value of q̃t. Higher values of q̃t are associated with

lower average returns for the short side, increasing the long-short spread. Power sorting

remains particularly effective for factors related to market frictions, such as maxret or

retvol, as it capitalizes on the sharp decline in conditional returns on the short side.

Still, intangibles and investment factors are now more spread across the line, implying
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heterogeneity in terms of optional concentration levels for the short leg. Intuitively, this

result suggests that the different investment and intangible proxies agree on the long side

but disagree on the short side.

Figure 2.6: Concentration ratios and excess returns. Panel A shows the increase in
average returns for the long leg given the estimated value of p̃t. Panel B shows the decrease in
average return for the short leg given the estimated value of q̃t. Each subfigure includes the line
of best fit and the zero line. The sample period is from March 1980 to January 2021.
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B. Short leg
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Note that stocks with the most extreme characteristics have a significant impact

on the determination of optimal powers, as their weights increase exponentially. When

using the median rank as the cutoff, the algorithm favors a low power in the long leg to
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avoid overinvestment in underperforming corner stocks relative to their peers. Due to the

monotonic nature of the function, it has limited capacity to capture inflection points in

the tails of the conditional return distribution. As a result, it adopts a passive approach

by equally weighting stocks above the median to compensate. This pattern emerges also

for the short leg of many value characteristics.

Overall, both sides of power portfolios outperform their conventional counterparts.

The outperformance on the long side is driven by adopting a more balanced approach,

spreading weights across a broader range of stocks. On the other hand, the outperfor-

mance on the short side is attributed to adopting a more aggressive stance, capitalizing

on the specific patterns identified through power sorting.

2.3.6 Spanning regressions

In Figure 2.7, we further report the monthly alphas from regressing power portfolio

returns on those of their conventional long-short counterparts. The subfigures correspond

to equal-weighted and value-weighted results and all estimates include their 95% confi-

dence bounds. An interval that excludes (includes) zero indicates statistical significance

(insignificance) at the 5% level.

Out of the 85 alphas, 77 are positive and 62 are statistically significant for the equal-

weighted case. In the value-weighted case, the corresponding numbers are 81 and 63,

respectively. In fact, even factors that did not exhibit any significant improvement un-

der power sorting in the equal-weighted case now exhibit alphas that are positive and

significant. This improvement is particularly noticeable for momentum factors, which

are infamous for experiencing a sharp decline in profitability with market capitalization

(Hong, Lim, and Stein 2000). Hence, results underscore the importance of incorporating

size considerations in the factor construction process to mitigate performance deteriora-

tion or factor dilution in the value-weighted case. Finally, several of the alphas are also

economically significant, with the 18% annualized alpha for the past month’s volatility

(retvol) being particularly noteworthy.
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Figure 2.7: Spanning regression alphas. Intercepts from univariate regressions of power
portfolio returns on conventional long-short portfolio returns for the sample period March 1980
to December 2021. Panel A shows equal-weighted results and Panel B shows value-weighted
results. Power portfolios are constructed using an expanding window and conventional long-
short using equal-weighted decile sorting. Factors are sorted into six groups based on their
economic rationale.

A. Equal-weighted portfolios
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B. Value-weighted portfolios
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2.3.7 Multi-factor portfolios

Power sorting can be utilized to construct multi-factor portfolios through either an

averaging or a combination approach. The averaging approach (AVP) involves aggregating

factor exposures into a single weight vector by averaging the weights of each stock across

different power factor portfolios. Let W PS
t = (wPS

t,1 , w
PS
t,2 , . . . , w

PS
t,M) be a (Nt ×M) matrix

of weights, where M is the number of available characteristics and wPS
t,m is the mth column

of W PS
t based on characteristic m = 1, . . . ,M . Each wPS

t,m is estimated based on a set of

values for ˆ̃pt and ˆ̃qt, specific to the underlying characteristic. The average weight vector

is then obtained as:

wP
t =

1

M
W PS

t 1′M , (2.15)

where 1M is a (1×M) vector of ones. To ensure a unit sum for the long and short sides,

the weights are re-standardized:

wAV P
t,(n) =



−
wPS

t,(n)∑
wPS
t,(n)

<0

∣∣∣wPS
t,(n)

∣∣∣ for wPS
t,(n) < 0

0 for wPS
t,(n) = 0

wPS
t,(n)∑

wPS
t,(n)

>0

∣∣∣wPS
t,(n)

∣∣∣ for wPS
t,(n) > 0.

(2.16)

This approach promises significant diversification benefits by mixing factor exposures

and allows for the cut-off point for the long and the short side to deviate from the charac-

teristic median rank. As a benchmark, we repeat the same procedure using equal-weighted

decile weights (AVD).

In the second approach, we combine standardized characteristic ranks into an equal-

weighted composite score, which serves as a signal for constructing a power-sorted multi-

factor portfolio. This approach is called Power-sorted Multi-factor Equal-weight (PME)

since each characteristic contributes equally to the combined signal. To illustrate, let

S̃t = (s̃.,1, . . . s̃.,M) be an (Nt × M) matrix of standardized characteristic ranks for Nt
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stocks at time t. The next step is to use the average standardized characteristic rank as

the underlying signal to obtain the weight vector for the composite power portfolio:

wPME
t = wPS

t

(
1

M
S̃t1

′
M ; p̃t, q̃t

)
. (2.17)

Again, p̃t and q̃t are estimated based on the Sharpe ratio maximization objective to

derive wPME
t . As a benchmark, we use the average characteristic rank in conventional

decile sorting, which is referred as Decile Mutli-factor Equal-weight (DME).

In our third approach, we construct the power multi-factor portfolio by using the sum

of weights across power-sorted factors as the underlying signal. This approach considers

not only the underlying characteristic scores but also the values of the characteristic

powers in determining the contribution of each characteristic to the composite score.9 We

name this approach Power-sorted Multi-factor Power portfolio (PMP), and its weights

are derived as:

wPMP
t =wPS

t

(
1

M
W PS

t 1′M ; p̃t, q̃t

)
. (2.18)

Similarly to the previous case, the values of p̃t and q̃t are calibrated to maximize the

portfolio Sharpe ratio. This approach assigns higher weights to characteristics that have

a better ability to identify the extreme ends of the conditional return distribution. As a

benchmark, we construct a decile-sorted multi-factor portfolio using the sum of weights

from decile sorting as a ranking variable. We refer to this benchmark as Decile-sorted

Multi-factor Decile-weighted (DMD).

Table 2.2 presents the out-of-sample performance of the three multi-factor strategies,

comparing the utilization of power sorting to the conventional benchmark. One might

anticipate a reduced opportunity set for power sorting in multi-factor portfolios due to the
9Consider as an example a hypothetical factor with q̃ = 1 and p̃ = 0. The concentration ratios indicate

that a stock with a low characteristic should be allocated a highly negative weight, while a stock with a
high characteristic should be allocated a moderately positive weight, reflecting the varying importance
of the characteristic rank.
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inclusion of multiple signals. However, our findings show that power sorting consistently

outperforms the standard procedure across all construction schemes. This outperfor-

mance holds true for both equal-weighted and value-weighted portfolios, highlighting the

robustness of our approach.

Table 2.2: Portfolio evaluation measures for multi-factor portfolios. AVP: Multi-
factor portfolio based on the average portfolio weight from individual power portfolios. AVD:
Multi-factor portfolio based on average portfolio weight from individual decile long-short port-
folios. PME: Power portfolio on based the average characteristic rank. DME: Decile long-short
portfolio based on the average characteristic rank. PMP: Power portfolio based on the rank
implied by average power portfolio weights. DMD: Decile long-short portfolio based on the rank
implied by the average decile long-short portfolio weights. The sample period covers March 1980
to December 2021. Panel A shows equal-weighted results and Panel B shows value-weighted re-
sults.

AVP AVD PME DME PMP DMD
A. Equal-weighted portfolios
Return (%) 1.82 1.51 3.05 2.04 3.16 1.98

Standard deviation (%) 4.96 4.32 7.27 6.39 7.30 5.62

Sharpe Ratio 1.27 1.21 1.45 1.11 1.50 1.22

t-stat 8.28 7.89 9.44 7.19 9.72 7.92

Maximum drawdown (%) −46.08 −41.80 −55.51 −56.59 −55.40 −53.10

Hit rate (%) 71.60 70.61 73.72 68.77 72.73 70.75

Turnover (%) 37.33 41.40 48.57 52.34 66.73 59.18

# of effective names long 1814.32 1425.83 1608.76 390.38 146.34 390.38

# of effective names short 600.71 935.10 101.38 390.38 141.27 390.38

B. Value-weighted portfolios
Return (%) 1.36 0.84 2.80 1.72 2.50 1.32

Standard deviation (%) 4.57 3.54 7.40 6.42 7.07 5.39

Sharpe Ratio 1.03 0.82 1.31 0.93 1.23 0.85

t-stat 6.68 5.32 8.52 6.01 7.96 5.51

Maximum drawdown (%) −41.21 −42.01 −61.54 −57.63 −56.61 −43.26

Hit rate (%) 67.26 63.31 69.37 64.03 68.77 61.46

Turnover (%) 34.00 42.89 44.64 47.84 52.56 51.64

# of effective names long 641.23 420.89 578.14 211.20 166.51 191.04

# of effective names short 510.43 433.92 79.87 67.56 89.25 69.45

Regarding specific strategies, AVP and AVD exhibit a similar risk-return profile in
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the equal-weighted case. However, the strength and robustness of the power sorting pro-

cedure become evident when market capitalization is incorporated into the construction

of the multi-factor portfolio. In this case, power sorting experiences significantly lower

performance deterioration compared to the conventional approach, while also maintain-

ing lower turnover and drawdown risk. This discrepancy in value-weighted results for the

two approaches further emphasizes the importance of effectively incorporating the size

effect within the factor weighting procedure, demonstrating its positive impact on the

risk-return profile of the multi-factor portfolio.

Moving on to the combination approaches, both PME and PMP display significant

outperformance in terms of average returns and Sharpe ratios compared to their respective

benchmarks. The notable performance advantage of PME over DME demonstrates the

ability of power sorting in generating superior portfolios utilizing the same information

source, emphasizing its effectiveness in extracting optimal performance from informative

signals. Similarly, the superior performance of PMP over DMD highlights the advantages

of combining power sorting with multiple characteristics and emphasizes the effectiveness

of this approach in aggregating and integrating various characteristics into a composite

signal.

Overall, across the different portfolio weighting methods, PMP stands out with the

highest overall return performance, followed by PME. It is worth noting that the key factor

driving the performance difference between PMP and PME lies in their long legs. PME

takes a diversified approach in the long leg, as indicated by a high number of effective

names, suggesting that the combined characteristic rank does not strongly differentiate

returns in the long tail. On the other hand, PMP adopts an aggressive long stance, indicat-

ing that the combined power portfolio weights can effectively identify strong performers.

This outcome highlights the significant effectiveness of power sorting, as it allows for

characteristic-specific treatment of weights. By assigning more weight to characteristics

with higher concentration ratios, PMP leverages power sorting to identify and capitalize

on assets with robust performance potential.
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2.3.8 Asset pricing tests

Finally, we examine the asset pricing implications of power sorting across existing

asset pricing models using the squared Sharpe ratio test of Barillas et al. (2020). This

test enables direct model comparison by quantifying the difference in squared Sharpe

ratios between two models, eliminating the need for test assets. Our objective is to

assess whether incorporating power-sorted factors into predetermined models enhances

the squared Sharpe ratio and, consequently, the pricing ability of these models beyond

what is achieved by conventional factors.

We consider three asset pricing models that can be constructed from our characteris-

tic universe. The first model is the 5-factor model (FF5) introduced by Fama and French

(2015), which extends the previous 3-factor model by adding profitability and investment

factors. The second model, FF5M, follows the framework proposed by Fama and French

(2018) augmented by the momentum factor. Our final model is the 4-factor model sug-

gested by Hou, Xue, and Zhang (2015), which includes size, investment, profitability, and

the market factor.

To ensure a meaningful comparison, we employ value-adjusted power-sorted factors

(using h = 0.5) and compare them to the factors provided in the original studies, which

we obtained from the authors’ websites. It is worth noting that while the proposed

models concentrate on similar economic drivers—namely, market, size, profitability, and

investment—they diverge in their approaches to constructing the underlying variables.

For instance, while both models utilize the percentage change in total assets (agr) as a

proxy for investment, Fama and French (2015) emphasize operating profitability (oper-

prof), whereas Hou, Xue, and Zhang (2015) examine return on equity (roeq) as a measure

of profitability. Moreover, the original papers have adopted distinct methodologies for

constructing these factors. For instance, Fama and French (2015) used independent 2× 3

sorts based on size, although they acknowledge that this choice is quite arbitrary. The

motivation behind the 2 × 3 sorting methodology is to capture the factor effect across

different size groups, ensuring a balanced representation of small and large stocks. By im-
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plementing value-adjusted power sorting with a parameter value of h = 0.5, we effectively

replicate this effect, as it guarantees the inclusion of smaller capitalization stocks in the

factor, provided they possess a sufficient characteristic rank. On the other hand, Hou,

Xue, and Zhang (2015) conducted a triple 2×3×3 sort on their characteristics to achieve

orthogonality among the predictors. This sorting method helps reduce the covariance

among factors, thereby decreasing the variance component of the squared Sharpe ratio.

Under a power-sorting framework, a similar effect could be achieved by fine-tuning the

powers of the factors to minimize factor covariance or even directly maximize the model

squared Sharpe ratio.

Table 2.3: Asset pricing models based power-sorted versus original factors.
θ2P : Squared Sharpe ratio of factor model utilizing power-sorted factors. θ2O: Squared Sharpe
ratio of factor model utilizing original factors. θ2P − θ2O: Difference in squared Sharpe ratio.
We conduct nonnested pairwise model comparisons with traded factors using sequential testing.
We first reject the null-hypothesis that the difference between the market factor, which is the
only overlapping factor, and a model that includes all the non-overlapping factors from both
competing model versions is different from zero. We then test whether the squared Sharpe ratios
of the nonnested models are different by computing the p-value as in Barillas et al. (2020).

FF5 FF5M HXZ
θ2P 0.236 0.281 0.238
θ2O 0.127 0.150 0.156
θ2P − θ2O 0.097 0.114 0.085
p-value 0.006 0.002 0.058

Table 2.3 evidences that models incorporating power-sorted factors consistently out-

perform conventional models in terms of squared Sharpe ratio across all scenarios. These

results are statistically significant at a 1% level for two out of three cases, with the q-

theory model proposed by Hou, Xue, and Zhang (2015) exhibiting significance at the

10% level. These findings underscore the significant asset pricing implications of power

sorting, demonstrating its capacity to enhance the performance of asset pricing models.
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2.4 Benchmarking and Robustness

2.4.1 Alternative Benchmarks

Rank portfolios

It is natural to investigate how power sorting compares to alternative factor portfolio

weighting schemes.10 As shown in Figure 2.2, rank sorting constitutes a special case

of power sorting. Hence, it is important to examine whether the incorporation of non-

linearities and asymmetries through the use of powers adds value beyond the use of simple

rank portfolios.

Table 2.4: Power sorting versus rank sorting. Return: Average monthly return,
Standard deviation: Monthly standard deviation, Sharpe ratio: Annualized Sharpe ratio, t-
stat: t-statistic on H0: Return=0, Hit rate: Percentage frequency of positive returns, Turnover:
Average monthly turnover bounded by 200%, # of effective names long: Number of effective
names (i.e., sum of squared weights raised to −1) for the long leg, # of effective names short:
Number of effective names (i.e., sum of squared weights raised to −1) for the short leg. The
sample period is from March 1980 to December 2021. In the value-weighted case we use a value
h = 0.5 for both rank and power portfolios.

Equal-weighted Value-weighted
Power Rank Power Rank

Return (%) 0.77 0.32 0.62 0.22

Standard deviation (%) 4.04 2.78 4.17 2.68

Sharpe ratio 0.72 0.45 0.52 0.30

t-stat 4.64 2.91 3.40 1.97

Maximum drawdown (%) −45.79 −41.20 −48.96 −41.80

Hit rate (%) 61.88 57.35 58.27 54.57

Turnover (%) 37.57 28.47 33.09 23.28

# of effective names long 1, 315.41 1, 329.93 460.01 543.98

# of effective names short 535.57 1, 331.95 229.79 622.76

10In this section, we compare the performance of alternative approaches at a univariate level, while
Section A.3.3 of the Appendix presents results for multi-factor strategies applied to the alternative bench-
marks.
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Table 2.4 presents the average portfolio results for power portfolios and rank port-

folios, encompassing both value- and equal-weighted cases. On average, power portfolios

deliver a considerably higher annualized Sharpe ratio by providing more than double the

return without doubling the risk. In contrast, rank portfolios generally demonstrate lower

risk and turnover given broadly diversified positions. Specifically, their weight function

corresponds to the rank in a linear manner, resulting in minor weight adjustments. Con-

versely, power portfolios can adopt more concentrated positions and vary their level of

concentration over time, thus introducing an additional layer of turnover. This effect is

more noticeable on the short side, where power portfolios tend to exhibit higher concen-

tration, resulting also in a lower number of effective names.

Parametric Portfolio Policy

Next, we compare power sorting against the Parametric Portfolio Policy (PPP) of

Brandt, Santa-Clara, and Valkanov (2009) for single characteristics in isolation. Under a

PPP framework, the cross-sectional portfolio weight vector is defined as a linear function

of the underlying firm characteristic:

wPPP
t (w̄t, x̂t; θ) = w̄t +

1

Nt

θx̂t, (2.19)

where w̄t denotes benchmark portfolio weights, θ the coefficient to be estimated, 1/Nt is a

normalization term, and x̂t is the cross-sectional characteristic vector at date t, standard-

ized cross-sectionally to have zero mean and unit standard deviation. In our case, the

benchmark portfolio weight is determined by equally weighting stocks above and below

the mean characteristic value. This approach allows θ to have a similar interpretabil-

ity to that of p and q, where a value of zero reflects a passive stance and higher values

shift the weight distribution towards stocks with more extreme characteristics. As in the

case of power sorting, we maximize the in-sample Sharpe ratio and impose a cap on the

estimate-constrained version, wherein θ is limited to not exceed a maximum weight of
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2%.11 Finally, to ensure unit dollar portfolio legs we normalize positive and negative

weights to an absolute unit sum. Hence, as θ → ∞, the portfolio weight vector converges

to x̂t normalized such that positive (negative) scores sum up to 1 (-1).

Similar to power sorting, PPP directly derives portfolio weights from firm charac-

teristics and can be optimized for any arbitrary objective function, such as maximizing

investors’ utility or portfolio Sharpe ratio. Despite their similarities, there are some ap-

parent differences between the two approaches. First, power sorting utilizes characteristic

ranks and introduces non-linearities through the use of powers, while PPP employs a

linear specification and standardized characteristics to derive portfolio weights. Despite

PPP’s linear approach, the resulting portfolio weights are, in fact, non-linear, with the

non-linearities being driven by the higher moments of the cross-sectional characteristic

distribution. Even though recent research suggests that the higher moments of the char-

acteristics could potentially be informative about expected returns (e.g., Kagkadis et al.

(2024b)), it is crucial to recognize that these higher moments are heavily contingent upon

the underlying feature construction scheme. For instance, when examining momentum,

Figure 2.4 emphasizes the joint importance of the long and the short side of the mo-

mentum factor. However, since cumulative returns cannot be lower than –100%, the

momentum distribution exhibits positive skewness by construction. Consequently, PPP

is biased into assigning more extreme weights to the long side. In contrast, power sorting,

by utilizing ranks and introducing powers, allows deliberate manipulation of the higher

moments of the weight distribution in a way most pertinent to returns.

In addition, a notable distinction between the two approaches arises with regards

to the stability of the weight distribution over time. Under power sorting, the shape of

the weight distribution remains approximately constant as long as p and q do not change

significantly, while under PPP, it can exhibit significant variation, even with a stable θ, due

to strong time-variation in the skewness and kurtosis of the underlying characteristic’s
11Note that in rare cases the characteristic distribution is so skewed towards the one side that the

respective benchmark portfolio ends up containing fewer than 50 stocks and hence the constraint is not
achievable. Equally, for platykurtic characteristic distributions the constraint is redundant.
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distribution. In that sense, the comparative analysis of power sorting and PPP sheds

light on the extent to which rapid deviations of characteristics’ higher moments from

their long-term values are informative for future returns.

Table 2.5: Power sorting versus Parametric Portfolio Policy. Return: Average
monthly return, Stand. dev.: Monthly standard deviation, Sharpe ratio: Annualized Sharpe
ratio, t-stat: t-statistic on H0: Return=0, Hit rate: Percentage frequency of positive returns,
Turnover: Average monthly turnover bounded by 200%, # of effective names long: Number of
effective names (i.e., sum of squared weights raised to −1) for the long leg, # of effective names
short: Number of effective names (i.e., sum of squared weights raised to −1) for the short leg.
The sample period is from March 1980 to December 2021. PPP-constrained applies a maximum
weight constrain of 2%.

Power PPP-constrained PPP-unconstrained
Return (%) 0.77 0.43 0.46

Stand. dev. (%) 4.04 3.18 3.36

Sharpe ratio 0.72 0.49 0.50

t-stat 4.64 3.21 3.23

Max drawdown (%) −45.79 −44.02 −45.10

Hit-rate (%) 61.88 58.12 58.23

Turnover (%) 37.57 34.21 34.75

# of eff. names long 1315.41 1398.32 1360.83

# of eff. names short 535.57 884.34 843.51

Table 2.5 presents the average portfolio results for power sorting and PPP. To ensure

comparability with power sorting, PPP is implemented by maximizing Sharpe ratio as in

Section 2.3.2. First, we observe that imposing a maximum theta constraint on PPP port-

folios has minimal impact on their performance, albeit marginally decreasing their average

risk profile. Second, the results show that power portfolios provide average returns that

are markedly higher than the ones offered by the PPP portfolios (0.77% per month for

power sorting vs 0.43% and 0.46% per month for PPP). These higher average returns are

also translated into higher Sharpe ratios. In essence, power sorting is able to capitalize

better the information content in the tails of the various characteristic distributions with

only a slight increase in turnover compared to PPP.
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Overall, these results underscore the importance of independently addressing and

parameterizing the two legs of factor portfolios. Furthermore, leveraging higher moments

within the cross-sectional characteristic distribution to influence factor portfolio weights

does not appear particularly fruitful. Instead, employing a constant approach via power

transformations effectively moderates the weight vector and improves investment perfor-

mance.

Efficient sorting portfolios

Lastly, we evaluate the performance of power sorting in comparison to the “efficient

sorting” approach proposed by Ledoit, Wolf, and Zhao (2019). The term “efficient” refers

to minimum variance-optimized factor portfolios that preserve the characteristic spread of

the original long-short decile portfolio. Specifically, the weight vector wEF
t at each point

in time is estimated as:

min
wEF

t

wEF ′
t Ĥtw

EF
t (2.20)

subject to x′
tw

EF
t = x′

tw
LS
t and (2.21)∑

wEF
t,i <0

∣∣wEF
t,i

∣∣ = ∑
wEF

t,i >0

∣∣wEF
t,i

∣∣ = 1 (2.22)

where Ĥt is an estimator of the (conditional) VCV. The resulting portfolio is supposed to

have the same exposure to the underlying characteristics as the original long-short portfo-

lio because of (2.21), but smaller variance, and therefore a higher Sharpe ratio because of

(2.20).12 For the estimation of Ht, we employ the Quadratic-Inverse Shrinkage estimator

proposed by Ledoit and Wolf (2022). Specifically, at each investment date, we estimate

Ĥt for stocks with available return history over the most recent five years (i.e., 1,260 days),

which considerably reduces the viable investment universe in the comparison.13 Finally,

we winsorize the cross-sectional characteristic vector mt at each period t, following the
12Note that we additionally incorporate a maximum weight constraint of 2% to align with the power

sorting framework and to prevent the minimum-variance optimizer from generating excessively large and
imbalanced positions for the long and short side.

13The effect of this constraint on the sample size is illustrated in Figure A.12 in the Appendix.
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methodology outlined in Ledoit, Wolf, and Zhao (2019).

A virtue of power sorting is that there is no need for computing a VCV at an indi-

vidual stock level. We though investigate whether enriching the power sorting procedure

by Ĥt is beneficial, thus making efficient sorting and power sorting more comparable. In

particular, we modify equation (2.13) as:

var(rPS) = wPS′
t Ĥtw

PS
t . (2.23)

Figure 2.8 illustrates the average weight function for selected factors under power

sorting and efficient sorting, alongside the conditional volatility across quantile groups.

Evidently, the two approaches differ in terms of portfolio construction, reflecting their

distinct underlying objective functions. Specifically, power sorting aims to exploit varia-

tions in conditional returns to maximize the factor portfolio Sharpe ratio, while efficient

sorting focuses on minimizing variance while maintaining the same characteristic spread.

To gain insights into how these different objectives translate into portfolio decisions,

consider the volatility factor as an illustrative example. Recall from Figure 2.1 that stocks

with the highest volatility exhibit relatively lower average returns, while those with the

lowest volatility do not demonstrate significant outperformance. Consequently, the power-

sorted portfolio adopts an aggressive stance on the short side and a more diversified one

on the long side to capitalize on this pattern. In contrast, the efficient sorting portfolio

aims to minimize variance by reducing exposure to stocks with the highest volatility on

the short side and increasing exposure to those with the lowest volatility on the long side.

Similar conclusions can also be drawn for beta, while in other cases efficient sorting tends

to take a more passive stance, particularly on the short side. Only in the case of book-

to-market ratio, efficient sorting adopts a more aggressive stance than power sorting,

even though this behavior does not align with conditional returns. This result lies in

the fact that as we move towards the extremes (high and low book-to-market ratios),

the covariance between the long and short positions increases, leading to a reduction in
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the overall long-short variance. Hence, efficient sorting falls short of fully capturing the

relationship between characteristics and returns beyond what is implied by covariance

alone. On the other hand, power sorting integrates characteristic, return, and variance

information, directly targeting the Sharpe ratio, while preserving the factor structure

through the imposition of monotonicity.

Figure 2.8: Average weight function for efficient sorting and power sorting.
Characteristics are standardized in the [−1, 1] range. The conditional volatilities (orange lines)
are estimated by ranking stocks based on their underlying characteristic in the previous period
and splitting them into 100 equal-weighted quantile portfolios. The blue lines represent the
weight function under efficient sorting, while the dashed blue lines depict the weight function
under power sorting. The sample includes all common shares on NYSE, AMEX, and NASDAQ
exchanges and covers the period from January 1980 to December 2021.
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Next, Table 2.6 presents the average portfolio evaluation measures using the viable

sample (that only includes stocks that have five years of return history at a given point in

time) for the four approaches: the conventional approach, the efficient sorting approach,

the original power sorting approach, and the modified power sorting approach utilizing the

stock-level VCV, which we label as Power-VCV. Consistent with the findings of Ledoit,

Wolf, and Zhao (2019), efficient sorting consistently reduces factor portfolio variance

(2.90% for efficient sorting vs 3.96% for conventional sorting). However, this reduction in

variance comes at a slight cost of lower average returns. This result aligns with the notion
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that characteristics are intertwined with the covariance structure of returns (Kelly, Pruitt,

and Su 2019). Consequently, when attempting to limit the underlying factor portfolio

variance, there is an unavoidable trade-off with the underlying risk premia. Additionally,

we note that the number of effective names for the efficient sorting approach implies a more

symmetric stance that focuses on both extremes, even though the characteristic-return

relationship is often asymmetric.

Table 2.6: Power sorting versus efficient sorting. Return: Average monthly return,
Stand. dev.: Monthly standard deviation, Sharpe ratio: Annualized Sharpe ratio, t-stat: t-
statistic on H0: Return=0, Hit rate: Percentage frequency of positive returns, Turnover: Average
monthly turnover bounded by 200%, # of effective names long: Number of effective names (i.e.,
sum of squared weights raised to −1) for the long leg, # of effective names short: Number of
effective names (i.e., sum of squared weights raised to −1) for the short leg. The sample includes
stocks with an available return history of five years at each investment date through the sample
period from March 1980 to December 2021.

Power Power-VCV Efficient Conventional
Return (%) 0.50 0.44 0.31 0.36

Standard deviation (%) 3.73 3.46 2.90 3.96

Sharpe ratio 0.52 0.50 0.37 0.34

t-stat 3.35 3.24 2.43 2.19

Maximum drawdown (%) −45.50 −43.63 −44.71 −55.62

Hit rate (%) 58.89 58.87 56.07 55.78

Turnover (%) 35.72 35.96 40.83 38.46

# of effective names long 940.97 1, 031.10 529.46 270.23

# of effective names short 434.85 478.56 493.05 264.10

On the other hand, power sorting effectively captures the inherent asymmetries in

many characteristics, leading to a significant increase in average factor portfolio returns,

along with a slight decrease in portfolio variance compared to the conventional method.

As a result, the average Sharpe ratios and t-statistics show notable enhancements. Specifi-

cally, our findings demonstrate a 53% increase in the average t-stat through power sorting,

compared to an 11% increase with efficient sorting. Importantly, this result remains con-

sistent regardless of whether the variance is estimated directly from the power portfolio

time-series or using a VCV approach. Finally, note that while power sorting portfolios
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may exhibit higher volatility than efficient sorting portfolios, this increased volatility does

not translate into higher drawdown risk, with average turnover being also lower.

2.4.2 Robustness Tests

Next, we analyze whether the presented results generalize to different sub-periods and

methodological alternations. We show that power sorting generates performance that is

robust to the choice of maximum weight thresholds, different size adjustment levels, and

different sub-periods.

Lookback window

In the base case we employ an expanding window for estimating the optimal concen-

tration ratios. Here, we explore the out-of-sample power using different rolling windows

ranging from 12 months up to 10 years. With the expanding window, the estimated con-

centration ratios converge toward the values that were most effective through the whole

sample, while a rolling window is more adaptive. Shorter windows adapt more dynami-

cally to recent information, potentially introducing higher variation in the concentration

ratios and resulting in more pro-cyclical strategies.

Table 2.7 presents the average portfolio evaluation measures across power portfolios

for different lookback windows. To ensure consistency regarding the length of the evalua-

tion period, results are assessed for the out-of-sample period from January 1990 onward.

Our findings reveal that both short and long windows yield similar return performances,

with the expanding window showing a slight advantage on average. Generally, longer

lookback windows achieve comparable investment performance while maintaining signifi-

cantly lower turnover, making them more desirable from a practical standpoint. Overall,

results remain consistent across different formation periods, with power portfolios con-

sistently outperforming the conventional benchmark, and the results not being driven by

higher turnover or tail risk.
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Table 2.7: Robustness with respect to different lookback windows. Return: aver-
age monthly return, Standard deviation: monthly standard deviation, Sharpe ratio: Annualized
Sharpe ratio, t-stat: t-statistic on H0: return=0, Hit rate: percentage frequency of positive
returns, Turnover: monthly turnover bounded by 200%, # of effective names long: Number of
effective names (i.e., sum of squared weights raised to −1) for the long leg, # of effective names
short: Number of effective names (i.e., sum of squared weights raised to −1) for the short leg.
The sample period is from January 1990 to December 2021. Panel A shows equal-weighted and
Panel B shows value-weighted results.

Lookback window 12 36 60 120 Expanding Conventional
Months Months Months Months Window

A. Equal-weighted portfolios
Return (%) 0.65 0.60 0.62 0.63 0.65 0.43

Standard deviation (%) 4.50 4.53 4.49 4.41 4.30 4.55

Sharpe ratio 0.54 0.50 0.53 0.55 0.58 0.38

t-stat 3.04 2.86 3.00 3.11 3.31 2.14

Maximum drawdown (%) −46.14 −49.75 −49.44 −48.93 −45.70 −54.04

Hit rate (%) 58.61 58.81 59.35 59.79 60.05 55.99

Turnover (%) 50.16 42.54 39.97 37.84 36.39 39.03

# of effective names long 1, 133.67 1, 201.18 1, 261.32 1, 311.78 1, 369.61 374.18

# of effective names short 709.94 594.08 564.05 523.48 518.53 377.85

B. Value-weighted portfolios
Return (%) 0.48 0.45 0.47 0.48 0.53 0.26

Standard deviation (%) 4.46 4.51 4.52 4.50 4.37 4.66

Sharpe ratio 0.39 0.36 0.38 0.39 0.44 0.21

t-stat 2.20 2.05 2.17 2.24 2.53 1.16

Maximum drawdown (%) −47.60 −51.77 −51.28 −50.95 −48.18 −59.06

Hit rate (%) 55.77 55.74 56.34 56.45 56.82 52.65

Turnover (%) 48.23 39.27 36.24 33.81 32.61 35.44

# of effective names long 412.18 432.73 448.25 465.18 454.03 109.18

# of effective names short 306.44 260.62 239.16 216.16 187.25 100.92

Maximum weights

In the main analysis, we opted for a maximum portfolio weight of 2% to ensure

that the power portfolios are properly diversified. Table 2.8 shows how average results

change for alternative choices of maximum portfolio weight, ranging from 0.5% to 10%.

Higher maximum weights lead to higher values for pmax
t and qmax

t and hence to weight

distributions that are potentially more concentrated in the tails, delivering higher returns
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at the expense of higher risk and turnover.

Table 2.8: Robustness with respect to the maximum stock weight. Panel A shows
equal-weighted results and Panel B shows value-weighted results. Return: average monthly
return, Standard deviation: monthly standard deviation Sharpe ratio: Annualized Sharpe ratio,
t-stat: t-statistic on H0: return=0, Hit rate: percentage frequency of positive returns Turnover:
monthly turnover bounded by 200%, # of effective names long: Number of effective names (i.e.,
sum of squared weights raised to −1) for the long leg, # of effective names short: Number of
effective names (i.e., sum of squared weights raised to −1) for the short leg. The sample covers
the period from March 1980 to December 2021. Panel A shows equal-weighted results and Panel
B shows value-weighted results.

wceil 0.5% 1% 2% 3% 4% 5% 10%
A. Equal-weighted portfolios
Return (%) 0.53 0.67 0.77 0.83 0.85 0.86 0.87

Standard deviation (%) 3.26 3.72 4.04 4.21 4.33 4.40 4.49

Sharpe ratio 0.65 0.69 0.72 0.73 0.72 0.72 0.71

t-stat 4.19 4.50 4.64 4.72 4.71 4.70 4.64

Maximum drawdown (%) −41.07 −44.28 −45.79 −46.10 −47.34 −47.28 −48.11

Hit rate (%) 60.68 61.65 61.88 62.09 62.21 62.11 62.18

Turnover (%) 32.49 35.55 37.57 38.62 39.29 39.69 40.01

# of effective names long 1413.22 1342.05 1315.41 1298.95 1290.90 1288.57 1287.28

# of effective names short 816.46 612.07 535.57 508.47 493.30 487.75 491.10

B. Value-weighted portfolios
Return (%) 0.39 0.52 0.62 0.67 0.70 0.71 0.72

Standard deviation (%) 3.34 3.81 4.17 4.35 4.48 4.57 4.67

Sharpe ratio 0.44 0.49 0.52 0.53 0.54 0.54 0.53

t-stat 2.84 3.20 3.40 3.47 3.49 3.49 3.46

Maximum drawdown (%) −44.83 −47.47 −48.96 −49.62 −50.27 −50.84 −52.02

Hit rate (%) 56.78 57.74 58.27 58.34 58.34 58.53 58.60

Turnover (%) 31.12 34.08 36.02 37.24 38.01 38.41 38.70

# of effective names long 1306.86 1197.04 1144.98 1128.32 1119.88 1121.61 1117.87

# of effective names short 371.61 275.21 229.79 214.08 202.74 197.20 196.74

Increasing the upper weight threshold up to 10% can result in higher average return

gains for portfolio performance, with the Sharpe ratio remaining practically unchanged.

In the equal-weighted case, the maximum Sharpe ratio is achieved at a 3% weight thresh-

old (0.73). For value-weighted data, the maximum Sharpe ratio is achieved with a weight

concentration of 5% (0.54), suggesting that a higher power threshold is required to extract

optimal performance after accounting for market capitalization. Importantly, power sort-
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ing does not appear to excessively increase concentration in both legs, even when higher

maximum weight thresholds are allowed. This can be attributed, in part, to the objective

of maximizing the power portfolio Sharpe ratio, which helps maintain a balance between

concentration and diversification.

Conversely, the enforcement of high diversification via a low weight threshold may

moderate the effectiveness of power sorting in exploiting return-relevant characteristic

variation (i.e., setting wceil = 0.5%). Nevertheless, values below 1% can lead to maximum

power thresholds below one for the different factors (pmax
t ∧ qmax

t < 1), rendering them

insufficient upper bounds for examining concentration in the tails.

Concentration in mega-cap stocks

In the base case, we employed h = 0.5 to address extreme concentration in mega-

cap stocks when evaluating value-weighted results. Here, we examine the implications of

different values of h on the performance of value-weighted power portfolios. Additionally,

we consider different variations of the conventional decile sorts to assess the sensitivity

of the conventional approach with regard to the treatment of size effects. First, we

compute “pure” value-weighted portfolios without winsorizing market-caps of individual

stocks, effectively setting h = 1 in the power sorting framework. Second, since h = 0.5 is

equivalent to using the square root, we analyze the effect of employing the square root of

the market cap within the conventional decile sorting approach.

Table 2.9 displays the average portfolio evaluation results for values of h ranging

from 0 (equal-weighted) to 1 (pure value-weighted), along with the different benchmark

variations. Lower values yield better portfolio performance as they minimize the effect of

size on portfolio composition. Nonetheless, even when there is no size adjustment for the

value-weighted power portfolios (h = 1), power sorting outperforms capped and unad-

justed value-weighted decile sorting. Moreover, the performance of h = 0.5 significantly

surpasses that of the square root approach in the conventional framework, reflecting the

ability of the method to effectively incorporate size effects in portfolio construction.
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Table 2.9: Robustness with respect to concentration on mega-cap stocks. Conv.
VW (Capped): Stocks are weighted by their market cap winsorized at the NYSE 80th percentile.
Conv. VW (No Adj.): Stocks are weighted by their market cap without any adjustment. Conv.
VW (Square root): Stocks are weighted by the square root of their market cap. Return: average
monthly return, Standard deviation: monthly standard deviation Sharpe ratio: Annualized
Sharpe ratio, t-stat: t-statistic on H0: return=0, Hit rate: percentage frequency of positive
returns, Turnover: monthly turnover bounded by 200%, # of effective names long: Number of
effective names (i.e., sum of squared weights raised to −1) for the long leg, # of effective names
short: Number of effective names (i.e., sum of squared weights raised to −1) for the short leg.
The sample period covers March 1980 to December 2021.

Power Sorting Conventional VW
h = 0 h = 0.25 h = 0.5 h = 0.75 h = 1 Capped No Adj. Square root

Return (%) 0.77 0.71 0.62 0.52 0.43 0.32 0.29 0.39

Standard deviation (%) 4.04 4.09 4.17 4.41 4.74 4.39 4.78 4.20

Sharpe Ratio 0.72 0.64 0.52 0.39 0.29 0.26 0.20 0.33

t-stat 4.64 4.15 3.40 2.54 1.85 1.71 1.31 2.19

Maximum drawdown (%) −45.79 −47.10 −48.96 −52.91 −58.50 −59.22 −65.05 56.81

Hit rate (%) 61.88 60.53 58.27 55.77 54.20 53.44 52.82 55.19

Turnover (%) 37.57 35.05 33.09 32.54 33.11 35.44 35.85 34.71

# of effective names long 1, 315.41 975.46 460.01 180.73 73.60 107.00 37.09 165.09

# of effective names short 535.57 409.18 229.79 116.87 67.47 98.42 37.21 158.65

Sub-period analysis

Finally, in Table 2.10 we conduct a decade-by-decade analysis which shows the av-

erage portfolio evaluation measures for power portfolios and the conventional approach

for the four sub-periods. The magnitude of the difference between power and conven-

tional sorting covaries with the efficacy of factor investing as a whole, corroborating that

results are driven by extracting optimal performance from the underlying factors rather

than introducing other effects on the portfolio construction procedure. Confirming our

full-sample analysis, the added value of power sorting is consistently positive within the

chosen sub-period and is not driven by specific time periods. However, it is important to

highlight that the performance of factor investing as a whole exhibits a noticeable decline

in later years, as observed in previous studies (McLean and Pontiff 2016).
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Table 2.10: Robustness across different sub-periods. Return: average monthly
return, Standard deviation: monthly standard deviation Sharpe ratio: Annualized Sharpe ratio,
t-stat: t-statistic on H0: return=0, Hit rate: percentage frequency of positive returns, Turnover:
monthly turnover bounded by 200%, # of effective names long: Number of effective names (i.e.,
sum of squared weights raised to −1) for the long leg, # of effective names short: Number of
effective names (i.e., sum of squared weights raised to −1) for the short leg. The sample period
covers March 1980 to December 2021. Panel A shows equal-weighted results and Panel B shows
value-weighted results.

1980/1989 1990/1999 2000/2010 2011/2021
A. Equal-weighted portfolios
A.1 Power sorting
Return (%) 1.19 0.90 0.68 0.43

Standard deviation (%) 2.81 3.53 5.64 3.39

Sharpe ratio 1.40 0.97 0.50 0.44

t-stat 4.42 3.07 1.58 1.52

Maximum drawdown (%) −16.01 −25.14 −33.87 −31.97

Hit rate (%) 67.81 63.75 60.21 57.01

Turnover (%) 41.49 38.50 38.52 32.92

# of effective names long 1138.13 1595.78 1461.20 1115.79

# of effective names short 590.50 610.45 548.69 421.27

A.2 Conventional
Return (%) 0.83 0.60 0.43 0.24

Standard deviation (%) 2.76 3.68 5.94 3.70

Sharpe ratio 1.00 0.66 0.31 0.23

t-stat 3.16 2.09 0.99 0.79

Maximum drawdown (%) −20.68 −30.80 −42.56 −38.83

Hit rate (%) 62.33 59.25 55.86 53.13

Turnover (%) 40.59 40.67 40.11 36.81

# of effective names long 352.98 450.04 405.37 288.44

# of effective names short 345.68 455.04 411.05 289.38

B. Value-weighted portfolios
B.1 Power sorting
Return (%) 0.95 0.77 0.56 0.29

Standard deviation (%) 2.95 3.84 5.79 3.38

Sharpe ratio 1.02 0.72 0.37 0.29

t-stat 3.21 2.27 1.18 1.03

Maximum drawdown (%) −19.49 −28.47 −36.20 −31.21

Hit rate (%) 62.71 60.50 56.27 54.60

Turnover (%) 38.33 33.06 33.58 28.54

# of effective names long 448.13 541.06 463.29 402.63

# of effective names short 288.98 257.16 213.02 174.07

B.2 Conventional
Return (%) 0.46 0.33 0.43 0.13

Standard deviation (%) 3.28 3.98 6.10 3.59

Sharpe ratio 0.48 0.29 0.28 0.11

t-stat 1.51 0.92 0.87 0.40

Maximum drawdown (%) −28.29 −37.71 −42.26 −36.64

Hit rate (%) 55.60 54.86 53.33 50.63

Turnover (%) 37.33 35.34 35.47 34.00

# of effective names long 100.05 115.65 121.79 93.90

# of effective names short 90.42 109.48 108.19 88.25
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2.5 Conclusion

We propose power sorting as a framework for constructing equity factors to improve

upon conventional quantile sorting. Our method hinges on the assumption of a monotonic

relationship between factor characteristics and returns. It is geared at creating refined

versions of the factors while facilitating the construction of economically meaningful and

sufficiently diversified portfolios. We deem the power sorting procedure as an effective

compromise between conventional portfolio sorts and machine learning methods. While

the former easily fails to account for characteristic-specific information, the latter is usu-

ally criticized for its lack of interpretability and its black box character. By striking a

balance between interpretability and computational efficiency, our framework offers prac-

tical advantages. Under our modeling procedure, concentration ratios directly translate

to weight concentration levels, allowing for a simple and intuitive interpretation of the

model parameters.

We present several important empirical findings. First, we document the existence

of asymmetric and non-linear patterns between characteristics and returns. Such pat-

terns contradict the notion that the return signal is always amplified at the extremes and

motivate separate treatment of the long and the short side of factor portfolios. As a conse-

quence, off-the-shelf procedures may struggle to harvest the underlying factor premiums,

which, in turn, can lead to false rejections of individual characteristics. The limitations

of the conventional approach become more evident when dealing with value-weighted

portfolios, as it fails to adequately account for confounding size effects. Unlike standard

approaches, our method is designed to extract optimal performance from the vast ma-

jority of characteristics by allowing the weight function to be characteristic-specific and

effectively incorporating size-effects in the construction of factors.

Building on these insights, we investigate the performance gains resulting from power

sorting compared to the conventional quantile approach. Power sorting can generate aver-

age returns and Sharpe ratios that are up to double those achieved through conventional
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quantile sorting. These gains are both economically and statistically significant, survive

size-adjustments, and are not driven by increased turnover or tail risk. Furthermore, the

benefits persist when considering alternative optimization-based portfolio formulation ap-

proaches, suggesting that the use of exponential functions to model factor portfolio weights

introduces structure to the weight vector that is beneficial in terms of out-of-sample per-

formance.

The outperformance of power-sorted factor portfolios primarily stems from taking

an aggressive stance on the short leg and adopting a more diversified one on the long

leg. Hence, our results demonstrate that various characteristics are effective in identify-

ing underperforming stocks, although they may provide mixed signals for outperforming

stocks. Nonetheless, power sorting boosts performance in both the long and short leg of

the various factor portfolios.

Lastly, the benefits of power sorting extend to a multi-factor level. For instance, by

adopting power-sorted factors in existing asset pricing models, we can enhance the squared

Sharpe ratio of the underlying model, thus increasing its ability to capture the cross-

section of stock returns. In the context of multi-factor strategies, power sorting implicitly

accounts for the informativeness of characteristics across the characteristic spectrum,

yielding multi-factor portfolios with improved risk-return properties compared to simple

equal-weighted schemes and individual factors.
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Chapter 3

Multi-Factor Power Sorting

This paper is a joint work with Anastasios Kagkadis, Harald Lohre, Ingmar Nolte, and Sandra Nolte.
We would like to thank Robert Korajczyk, Carsten Rother, and the participants at the 4th Frontiers
of Factor Investing Conference for their valuable comments and suggestions. The views and opinions
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Ultramarin. Send correspondence to Nikolaos Vasilas, n.vasilas@lancaster.ac.uk.
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3.1 Introduction

The asset pricing literature posits that firm characteristics convey information about

future stock returns. When a firm characteristic is a strong cross-sectional return pre-

dictor, a long-short portfolio based on that characteristic should exhibit robust return

performance over time, providing exposure to the associated premium. While such port-

folios’ robust performance suggests the importance of the underlying characteristic, it

is insufficient to declare a characteristic a strong return predictor, especially given the

increasing number of contenders in the factor zoo. A key challenge in empirical asset

pricing is assessing whether a new candidate factor brings additional information to the

existing set of factors, ultimately identifying and constructing a set of factors that can

jointly explain asset returns (Cochrane 2011; Green, Hand, and Zhang 2017; Freyberger,

Neuhierl, and Weber 2020).1

In this paper, we extend the power sorting methodology of Kagkadis et al. (2024a)

to a multivariate level by incorporating the dependence structure of firm characteristics

in the construction of the power sorting factor portfolios. Rather than maximizing the

individual Sharpe ratios of each factor, we jointly estimate the set of weight functions

for the factor portfolios to maximize their squared Sharpe ratio (Barillas et al. 2020).

This approach enables leveraging potential interactions among factors within the portfo-

lio construction process, thereby providing valuable insights into the interplay of different

characteristics. In our analysis, we observe a shift from the short side to the long side

when many characteristics are considered jointly. These findings complement Kagkadis

et al. (2024a), who show that the short leg is the most significant contributor to univariate

power sorting factor portfolio performance. This suggests that on the short side, different

characteristics tend to capture rather similar effects, while on the long side, they pro-

vide more complementary information. Consequently, our methodology holds significant

implications, making it relevant from both practical and academic perspectives.
1In this context, the underlying assumption is that asset returns are explained by a reduced form

factor model or as a (linear) function of a small number of factors.
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The emergence of various characteristics on the long side under multivariate power

sorting supports the view that information on these characteristics is particularly useful

from a practical perspective. While characteristics’ information can be challenging to ex-

ploit on the short side due to shorting constraints, it can also guide investment decisions

for long-only investors. More importantly, multivariate power sorting leads to significant

improvements in risk-adjusted performance compared to portfolios that merely combine

univariate power sorting portfolios. Specifically, for the out-of-sample period from Jan-

uary 2000 to December 2021, multivariate power sorting delivers a Sharpe ratio of 1.12

versus 0.76 for the univariate approach. Additionally, the tail risk of multivariate power

sorting is half that of univariate power sorting, suggesting that joint optimization bene-

fits factor diversification and reduces the risk associated with heavily loading on specific

factor themes.

From an academic perspective, multivariate power sorting provides a powerful, struc-

tured, and intuitive framework for constructing characteristic-based factor models. We

thus construct fully specified dynamic characteristic-based models for the cross-section of

expected stock returns that optimize the pricing performance of any given characteristic

set while maintaining a high level of interpretability and explainability in the estima-

tion process. In doing so, we aim to reconcile observed and latent asset pricing models,

which have emerged in the empirical asset pricing literature over recent decades. While

observed models are easier to interpret and link to economic theories, they often rely on a

fixed set of factors and portfolio construction schemes. On the other hand, latent models,

while empirically strong, can be opaque and non-intuitive, posing challenges to their wide

adoption for empirical asset pricing applications.

Our approach bridges this gap by recursively adding power sorting factors to the

Capital Asset Pricing Model (CAPM; Sharpe 1964), re-estimating the power parameters

at each step until the marginal contribution of the added factor to the squared Sharpe

ratio is statistically insignificant. Several studies, such as Fama and French (2018) and

Swade et al. (2024), employ the squared Sharpe ratio as a metric to assess and compare
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asset pricing models. However, none consider directly optimizing this metric during the

model construction process. To the best of our knowledge, this is a unique advantage

of multivariate power sorting. Our recursive approach allows us to identify the highest

marginal contributor in terms of pricing ability, aiming for a parsimonious yet statistically

robust factor specification. Intuitively, a given candidate power sorting factor should ex-

hibit a high Sharpe ratio for the underlying characteristic to be a strong cross-sectional

predictor. In the case of multiple factors and a linear specification, the candidate factor

should also exhibit low covariance with the rest of the factor universe, implying that it

provides additional information. By maximizing the squared Sharpe ratio, we effectively

obtain power sorting portfolios that jointly span the tangency portfolio for the full in-

vestment universe, maximizing the attainable Sharpe ratio. This approach allows us to

dynamically build factor models that implicitly incorporate interaction effects in their

construction process, providing valuable insights into the dynamics of factors. More im-

portantly, the underlying portfolios remain investable and economically relevant, allowing

us to interpret the economic forces captured by asset pricing factors end-to-end.

Our procedure uncovers five power sorting factors on top of the market portfolio

that are important in explaining the dynamics of stock returns in the US stock market.

The selected factors in order of contribution are: asset growth (Cooper, Gulen, and

Schill 2008), volatility (Ang et al. 2006), earnings announcement return (Kishore et al.

2008), unexpected quarterly earnings (Rendleman, Jones, and Latane 1982), and market

capitalization (Banz 1981). Thus, our results align with the prior literature in terms of

identifying characteristics that are known to provide independent information (Green,

Hand, and Zhang 2017) and are part of leading characteristic-based models (i.e., Fama

and French 1992, 1993, 2015, 2018 ; Hou, Xue, and Zhang 2015; and Hou et al. 2021)

Finally, we compare the performance of our power sorting 6-factor model (PS6) with

existing leading academic factor models put forward by the literature to explain stock

returns. PS6 attains a significantly higher out-of-sample squared Sharpe ratio compared

to other models, declaring it the unanimous winner in the absence of test assets. To solidify
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our inferences regarding the asset pricing ability of PS6, we conduct extensive tests on a

broad range of test assets. Specifically, we examine how inferences vary based on different

portfolio construction choices, utilizing various sorting algorithms and weighting schemes.

In addition, we address concerns about the construction or selection of test assets, and

evaluate the models’ ability to price the 199 factors from Chen and Zimmermann (2022)

with complete return data in the out-of-sample period. Although PS6 generally delivers

smaller absolute alphas against different sets of test assets, we find that the selection of test

assets is crucial, as different models perform better under different construction schemes.

For instance, a model using value-weighted decile-sorting portfolios is more successful at

pricing the same type of portfolios compared to a model using double-sorting portfolios

based on size or any other sorting scheme. As different academic models utilize various

methods for constructing factors, this subtle but important detail is often overlooked,

resulting in an unfair advantage for the model that matches the construction process of

the test assets. Thus, our paper also implicitly contributes to the ongoing debate between

a right-hand-side and left-hand-side approach for evaluating competing factor models.

The remainder of the paper is structured as follows: Section 3.2 provides a literature

synopsis on characteristic-based portfolio construction and factor models. Section 3.3

introduces the multivariate power sorting procedure and relates it to the univariate ap-

proach. Section 3.4 demonstrates the implications of the multivariate procedure in terms

of multi-factor portfolios. Section 3.5 introduces an iterative factor selection procedure

for the construction of PS6 and compares the proposed models to others in the literature.

Section 3.6 concludes.

3.2 Literature Overview

Our paper contributes to the growing literature on factor models for equity returns.

Given the breadth of this literature, we focus on a brief overview in this subsection.

Henceforth, let t = 1, . . . , T represent time periods, n = 1, . . . , N denote the number of

stocks, and k = 1, . . . , K indicate the number of factors. In these models, the stochastic
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discount factor (SDF) Mt is represented as a function of a small number of K factor

portfolio returns,

Mt = 1− (ft − E [ft]) b, (3.1)

where ft is a 1 × K vector of factor returns at time t and b is a K × 1 vector of SDF

weights corresponding to the conditional mean variance efficient portfolio. The SDF Mt

satisfies E [rn,tMt] = 0 for any stock return in excess of the risk-free rate rn,t. This setup

maps to a factor model for excess returns of the form,

rn,t = βn,kfk,t + ϵn,t for n = 1, . . . , N, t = 1, . . . , T, k = 1, . . . , K, (3.2)

where βn,k denotes the factor exposure (or loadings) of stock n to factor k, and ϵn,t

captures its idiosyncratic errors.2 Although the above linear specification is inherently

simple, it offers flexibility in modeling asset returns. The factors fk,t can be either observed

or latent, constructed via characteristic-based sorts (e.g., Fama and French 2015), or

statistical criteria (e.g., Kozak, Nagel, and Santosh 2018). Similarly, the betas can be

conventional OLS regression slopes or dependent on other economic and asset-specific

variables (e.g., Ferson and Harvey 1991; Kelly, Pruitt, and Su 2019).

Starting with the strand focusing on observed factors, studies in this field typically

select a small number of characteristics and form equal or value-weighted portfolios as

factor proxies. The most prominent example is Fama and French (1993), who, building

on the CAPM, add size and value factors to the market portfolio to form a three-factor

model (FF3). Motivated by the dividend discount model, Fama and French (2015) add

profitability and investment factors to the three-factor model (FF5). In Fama and French

(2018), the momentum factor from Jegadeesh and Titman (1993) is considered, forming a

six-factor model (FF6). Another notable example is Hou, Xue, and Zhang (2015). Taking

inspiration from Q-theory, they propose a four-factor model comprising size, investment,

profitability, and the market factor. This model was later extended with expected growth
2For the model to be empirically valid, these portfolios should explain the cross-section of expected

returns, as well as the co-movement of stock returns.
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by Hou et al. (2021). Other recent factor models based on observable portfolios include

the mispricing model by Stambaugh and Yuan (2017), the behavioral factors model by

Daniel, Hirshleifer, and Sun (2020), and the revised six-factor model by Barillas et al.

(2020).

Studies on latent factor models are inspired by Ross’s (1976) Arbitrage Pricing The-

ory (APT), which assumes linear relationships between risk premia and factor betas.

Successful models under this framework should exhibit a strong factor structure with

low idiosyncratic volatility. Kozak, Nagel, and Santosh (2018) emphasize the absence of

near-arbitrage opportunities, using principal components of anomaly returns as pricing

factors. Lettau and Pelger (2020a) augment PCA with a cross-sectional pricing error to

better capture average asset returns. Similarly, Kelly, Pruitt, and Su (2019) propose In-

strumental Principal Components (IPCA), allowing time-varying factor loadings based on

firm characteristics. Finally, Gu, Kelly, and Xiu (2021) address the limitation of PCA’s

assumed linearity using autoencoders.

Our work is more closely aligned with recent studies that construct characteristic-

based portfolios with varying objectives. For example, Fama and French (2020) utilize the

cross-sectional regression method of Fama and MacBeth (1973) to create factors based

on standardized characteristics, demonstrating that these cross-sectional factors better

explain average returns compared to the original Fama-French factors. Similarly, Kim,

Korajczyk, and Neuhierl (2021) develop portfolios that leverage mispricing information

in characteristics while hedging systematic risk. Likewise, Daniel et al. (2020) create

“characteristic efficient portfolios” by using a hedge portfolio to eliminate unpriced risk

variation.

Our study is also related to a strand of literature that parameterizes portfolio weights

as a function of underlying firm characteristics for solving optimal portfolio formation

problems. One of the earliest and most prominent examples is the Parametric Portfolio

Policy (PPP) of Brandt, Santa-Clara, and Valkanov (2009). Under a PPP framework, the

cross-sectional portfolio weight vector is defined as a linear function of the underlying asset
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characteristics, and the parameters are estimated by solving a simple utility optimization

problem. Recent non-linear extensions of this framework that employ flexible neural

network specifications include Cong et al. (2021) and Simon, Weibels, and Zimmermann

(2023).

Finally, our paper relates to the strand of literature examining the multitude of firm

characteristics. Green, Hand, and Zhang (2017) use Fama-MacBeth regressions to iden-

tify 12 characteristics as independent determinants of average monthly returns, although

they observe a decrease in this number in later periods. Freyberger, Neuhierl, and We-

ber (2020) propose a non-parametric approach based on adaptive group lasso and find

13 characteristics that provide independent information. Using IPCA, Kelly, Pruitt, and

Su (2019) identify 8 characteristics as significant. Meanwhile, DeMiguel et al. (2020)

investigate the impact of transaction costs by extending the parametric portfolio policy

(PPP) of Brandt, Santa-Clara, and Valkanov (2009), showing that incorporating transac-

tion costs increases the number of important characteristics from 6 to 15. Lastly, Swade

et al. (2024) identify 15 factors as relevant for spanning the entire factor zoo from an

alpha perspective.

3.3 Methodology

3.3.1 Univariate Power Sorting

We begin by providing an overview of the original power sorting procedure. In this

framework, factor portfolio weights are expressed as a power series of the underlying

characteristic rank. For ease of presentation, assume a balanced panel of stocks. Let

xt,k := (xt,k,1, . . . xt,k,N )
′ denote the cross-sectional vector of characteristic scores for k =

1, . . . , K characteristics and N stocks at time t and rt+1 := (rt+1,1, . . . , rt+1,N)
′ the vector

of stock returns from month t to month t+1. Equally, let st,k = (st,k,1, . . . , st,k,N )
′ denote

the vector of characteristic ranks of xt,k mapped onto the interval [−1, 1] and centered

around the median rank and mt = (mt,1, . . . ,mt,N) be the vector of market capitalizations
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for the N stocks at month t. The cross-sectional weight vector wt,k = (wt,k,1, . . . , w
′
t,k,N )

for the power sorting portfolio is given by:

wt,k,n = wt,k(st,k,n,mt,n; pk, qk, h) =



− |st,k,n|qk ·mh
t,n∑

st,k,n<0
|st,k,n|qk ·mh

t,n
for st,k,n < 0

0 for st,k,n = 0

s
pk
t,k,n·m

h
t,n∑

st,k,n>0
s
pk
t,k,n·m

h
t,n

for st,k,n > 0.

(3.3)

The behaviour of the weight vector is dictated by two exponent parameters pk and

qk that are applied to positive and negative characteristic ranks before transforming them

into portfolio weights. Those exponents can be tuned across multiple cross-sections to

maximize any arbitrary objective function, such as maximizing the average return and

Sharpe ratio of the power sorting portfolio. Note that the incorporation of market capital-

ization in the estimation of power portfolio weights ensures that the underlying portfolios

are “capitalization-adjusted”, thus avoiding potential extreme allocations in microcaps.

In that context, h ∈ [0, 1] acts as a shrinkage parameter, regulating the concentration in

mega-cap stocks.3 Once the optimal powers are estimated, the respective portfolio weights

are obtained for each cross-section by plugging the latest vector of characteristics ranks

into equation (3.3). The return of the power sorting portfolio related to characteristic k

from t to t+ 1 is then given by rPS
t+1,k = w′

t,k · rt+1.

3.3.2 Multivariate Power Sorting

Under a multivariate framework the objective is no longer to maximize risk-adjusted

performance of individual factors, but to maximize a joint performance metric based on

the underlying factor set. Therefore, we consider the squared Sharpe ratio metric of

Barillas et al. (2020) as a way to maximize the pricing power of a candidate factor model.

Hence, for a set of K factors let p = (p1, . . . , pK)
′ and q = (q1, . . . , qK)

′ be the vectors of
3The vector of ordered market capitalizations behaves as a power series with high exponential growth,

dominated by a few exponentially large stocks. Therefore, not applying any shrinkage (h = 1) results in
the value-adjusted weighting vector being the product of two power curves, leading to potentially extreme
concentrations in mega-cap stocks.
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power parameters. Equally, let RPS = (rPS
1 , . . . , rPS

K ) ∈ RT×K denote the matrix of power

sorting portfolio returns based on p, q. The objective is to identify the set of parameter

vectors p and q that jointly maximize the squared Sharpe ratio of the underlying set

of factors. Specifically, the optimal parameters are estimated by solving the following

optimization problem:

{p̂, q̂} = argmax R̄PSΩ̂−1R̄PS′ (3.4)

Subject to: 0 ≤ pk ≤ pmax
k , 0 ≤ qk ≤ qmax

k for k = 1, . . . , K, (3.5)

where R̄PS is the vector of average power sorting factor portfolio returns and Ω̂ is the

sample covariance matrix of the factors. The power parameters are bounded from below

at zero and from above at qmax
k and pmax

k , based on a given maximum single stock weight.4

Note that by restricting the parameters to be non-negative we impose an economically

motivated prior that the underlying factor weighting scheme remains monotonic, thus

avoiding spurious results related to taking offsetting positions in correlated factors.

3.4 Power Sorting Portfolios

3.4.1 Data

Our empirical analysis is based on a comprehensive set of 85 characteristics as out-

lined by Green, Hand, and Zhang (2017). These characteristics have been computed using

data sourced from the Center for Research in Securities (CRSP), Compustat, and the In-

stitutional Brokers’ Estimate System (I/B/E/S), spanning the timeframe from January

1980 to December 2021. Our stock universe encompasses common stocks listed on NYSE,

AMEX, and NASDAQ, meeting specific criteria such as having month-end market capi-

talization records on CRSP and possessing non-missing and non-negative common equity
4Due to its monotonic nature, it is easy to constrain the search space for the powers to avoid extreme

weight allocations by solving 1∑
n

s
pk
t,k,n

− wceil = 0 to obtain pmax
k , where wceil is the maximum desired

weight. The same logic applies to the short leg for obtaining qmax
k .
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values on Compustat. For further details regarding the characteristics, including their

origin and descriptions, please refer to Section A.1 of the Appendix.

To mitigate the effect of microcaps, we remove stocks with a market capitalization

below the 10th percentile at the portfolio formation period. Furthermore, we set the value

of h at 0.5 for value-adjusted power sorting. This efficiently achieves a balanced mix of

large and small cap stocks, ensuring the incorporation of smaller capitalization stocks into

the factor, provided they meet a certain characteristic rank threshold. As a result, power

sorting factor portfolios are sufficiently diversified, easily interpretable, and practically

relevant, establishing a data-driven and discretion-free framework for constructing factor

portfolios.

3.4.2 Univariate versus Multivariate Power Sorting

First, we demonstrate how a multivariate approach can lead to more nuanced and

reliable conclusions compared to traditional univariate inference methods. To this end,

we explore how the optimal powers of a given power sorting portfolio evolve when tuned

within the framework of joint versus individual objectives. For illustration purposes we

use the whole sample period to estimate the optimal powers that maximize individual

factor portfolio Sharpe ratios versus the squared Sharpe ratio of all 85 factors.

Figure 3.1 presents the optimal powers under the two objectives, standardized by the

upper bounds to allow for easy comparison across factors.5 Blue-shaded bars represent the

average standardized powers for the long side and red-shaded bars represent the average

standardized powers for the short side. In the univariate scenario in Panel A, maximizing

the Sharpe ratio of individual power sorting portfolios leans towards an aggressive stance

on the short side, juxtaposed with a more conservative stance on the long side. This

reflects in disproportionately higher powers allocated to the short side compared to the

long side, suggesting that the various characteristics effectively identify underperforming

stocks but may yield mixed signals for outperforming ones.
5Note that the upper bound constraint is heavily influenced by the size of the underlying cross-section

and can vary for characteristics with different data availabilities.
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Figure 3.1: Average standardized powers of each factor for univariate versus
multivariate optimization. Panel A displays the optimal standardized powers that max-
imize the univariate Sharpe ratio and Panel B displays the optimal standardized powers that
maximize squared Sharpe ratio for all factors. Blue-shaded bars show the standardized powers
for the long side and red-shaded bars show the standardized powers for the short side. Factors
are sorted into six groups based on their economic rationale. The sample period is from March
1980 to December 2021.
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Conversely, the long side becomes more significant than the short side when charac-

teristics are considered jointly (Panel B). This is evident as the powers for many individual

factors reach their maximum values, even for anomalies typically driven by the short side,

such as volatility. Intuitively, joint optimization avoids increasing concentration on the

short factor legs to control for their high covariance. This insight reveals that the long

side of factors provides quite complementary information, whereas the short side rather

tends to converge on similar signals across different factors. This finding aligns with

Blitz, Baltussen, and van Vliet (2020), who show that individual factors exhibit nearly

zero correlation on their long sides but positive correlations on their short sides.

3.4.3 Multi-factor portfolios

We proceed by examining the economic implications of multi-factor power sorting.

For this empirical exercise, we use the first 20 years of the sample period to construct

the corresponding multi-factor strategies and test their performance from January 2000

onward. Our approach builds on the strategies proposed by Kagkadis et al. (2024a), where

univariately optimized power portfolios are combined into multi-factor portfolios through

averaging. This method can be viewed as a forecast combination technique, where optimal

weights are determined individually for each factor and then pooled together to form

the multi-factor strategy, effectively guarding against overfitting and model instability

(Rapach, Strauss, and Zhou 2010).

Arguably, estimation error in the sample moments, such as factor expected returns

and their covariance structure, can propagate to the estimation of the squared Sharpe

ratio, indicating potential drawbacks of using a joint optimization approach. However, one

potential limitation of the univariate optimization and forecast combination approach is

that characteristics with high powers might dominate the multi-factor strategy, especially

if they are correlated. As such, our comparative analysis aims to shed light on the

debate about joint optimization versus the combination approach in terms of out-of-

sample performance.
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The first strategy we consider is the weight averaging approach (AVP) which involves

aggregating factor portfolio weights by averaging the weights of each stock across different

power sorting factor portfolios into a single weight vector. Let Wt = (wt,1, wt,2, . . . , wt,K)

be the (N × K) matrix of weights for K characteristics at time t. The average weight

vector wt ∈ RN at time t is then obtained as:

wt =
1

K
WtS

′
K , (3.6)

where SK is a (1×K) vector reflecting the economic sign of the underlying power sorting

portfolio (-1 or 1), determined in-sample. In other words, we invert the weight sign for

characteristics for which the power portfolio has a negative average return in the in-sample

period. This is crucial for the multi-factor case, as the maximization of the squared Sharpe

ratio does not distinguish if the squared average return is positive or negative. Finally, to

ensure a unit sum for the long and short sides, the weights are re-standardized to:

wAV P
t,n =



− wt,n∑
wt,n<0

|wt,n| for wt,n < 0

0 for wt,n = 0

wt,n∑
wt,n>0

|wt,n| for wt,n > 0.

(3.7)

The second multi-factor strategy uses the average weight vector w̄t as the underlying

ranking vector to form a power sorting multi-factor portfolio (PMP). This approach takes

into account both the underlying characteristic scores and the values of the characteristic

powers to determine each characteristic’s contribution to the composite score. Hence,

groups of characteristics that exhibit strong concentration on either side can significantly

impact the multi-factor strategy unless considered in a multivariate context. Note that

both AVP and PMP can be applied under univariate and multivariate frameworks, de-

pending on how Wt is determined. This means using the powers that maximize the

individual Sharpe ratios of the various factors or those that maximize the squared Sharpe

ratio of the set comprising all factors. Therefore, for each strategy, we consider two ways
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of building multi-factor portfolios: either by employing univariate (UNI) or multivariate

(MULTI) power sorting for deriving power portfolio weights.6

Table 3.1: Multi-factor portfolios. The table shows different variants of multi-factor
power sorting strategies. AVP-UNI: Multi-factor portfolio based on the average portfolio weight
from univariate power sorting. AVP-MULTI: Multi-factor portfolio based on the average portfo-
lio weight from multivariate power sorting. PMP-UNI: Power portfolio based on the rank implied
by portfolio weights from univariate power sorting. PMP-MULTI: Power portfolio based on the
rank implied by portfolio weights from multivariate power sorting. Return: Average monthly re-
turn, Standard deviation: Monthly standard deviation, Sharpe ratio: Annualized Sharpe ratio,
VaR: Value-at-risk at a level of 95%, CVaR: conditional value-at risk at a level of 95%, t-stat:
t-statistic on H0: Return=0, Hit rate: Percentage frequency of positive returns, Turnover: Av-
erage monthly turnover (bounded by 200%), # of effective names long: Number of effective
names for the long leg, # of effective names short: Number of effective names for the short leg.
The sample period covers January 2000 to December 2021.

AVP-UNI AVP-MULTI PMP-UNI PMP-MULTI
Return (%) 0.89 0.62 0.99 0.82

Standard deviation (%) 5.33 3.47 4.51 2.55

Sharpe ratio 0.58 0.62 0.76 1.12

VaR 95% −7.35 −4.52 −5.29 −2.69

CVaR 95% −13.00 −9.02 −8.46 −4.10

t-stat 2.74 2.93 3.59 5.25

Maximum drawdown (%) −39.48 −25.82 −30.42 −18.89

Hit rate (%) 60.67 60.30 58.65 65.04

Turnover (%) 30.82 38.12 28.16 35.91

# of effective names long 554.06 433.22 720.73 691.04

# of effective names short 437.38 633.01 42.60 50.11

Table 3.1 presents the portfolio evaluation measures for the different multi-factor

portfolios in the out-of-sample period, comparing the utilization of univariate power sort-

ing to the multivariate approach. AVP results in similar performance across the two

approaches as it mixes factor exposures without an explicit objective. Univariate power

sorting achieves higher average return at the expense of higher volatility and drawdown

risk. As a result, the multivariate approach delivers higher Sharpe ratio (0.62 versus 0.58)

although the difference is economically insignificant. However, once the multi-factor strat-
6Hereafter, the terms “multivariate power sorting” and “multi-factor power sorting” are used inter-

changeably.
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egy is constructed with an explicit objective, the benefits of multivariate power sorting

become evident. Shifting our focus to PMP, the difference in risk-adjusted performance

between multivariate and univariate power sorting becomes way more pronounced with

multivariate power sorting delivering annualized Sharpe ratio of 1.12 versus 0.76 for the

univariate power sorting. More importantly, the various tail risk measures for PMP-

MULTI are about half of those for PMP-UNI. Specifically, PMP-MULTI exhibits an ex-

pected shortfall (at a CVar level of 95%) of -4.10% with maximum drawdown of -18.89%

compared to -8.46% and -30.42% for PMP-UNI. This result stems from not overloading

on factor themes with high univariate powers and highlights the importance of account-

ing for the covariance structure of different factors from a risk management perspective.

Finally, it is worth noting that the more balanced factor stance that arises from multivari-

ate power sorting naturally leads to less constant bets and thus slightly higher turnover

compared to the univariate approach.

3.5 Power Sorting-driven Factor Model

In this section, we examine the implications of multivariate power sorting for con-

structing characteristic-based factor models. We begin by explaining our iterative factor

selection approach, followed by the empirical application and the selected factors com-

prising the model. Finally, we evaluate the performance of the proposed model and

benchmark it against two well-known factor models: the Fama-French 5-factor model

augmented with momentum (Fama and French 2018) and the Q-theory-based model aug-

mented with expected growth (Hou et al. 2021).

3.5.1 Iterative Factor Selection

The objective is to identify a parsimonious factor representation that explains asset

returns. Specifically, our aim is to discover a set of power sorting factor portfolios capable

of spanning the tangency portfolio. Similar to the previous exercise, we use the first 20

years of the sample period to construct our factor model and test its performance in the
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second half. Beginning with the market portfolio, we iteratively incorporate new power

sorting factor portfolios from a pool of candidate predictors into an expanding factor

model, estimating the squared Sharpe ratio at each step. The power sorting portfolio

that maximally increases the squared Sharpe ratio is added to the factor model. We

repeat this process with the augmented factor model until the incremental increase in

squared Sharpe ratio between nested and augmented models becomes insignificant.

The innovative aspect of our approach lies in the recursive estimation of the pow-

ers at each iteration, allowing us to capture the interaction effects between the existing

factor set and the new candidate predictor. In other words, the recursive power tuning en-

sures that the power sorting factors are constructed such that the increase in the squared

Sharpe ratio (or the marginal contribution of the candidate predictor in the factor model)

is maximized. Practically, this translates to the candidate power sorting factor portfolio

achieving a high alpha with low idiosyncratic variance in the spanning regression on the

existing factor set (Fama and French 2018). Finally, it is worth noting that our procedure

constitutes a “greedy” approach in pursuit of sparsity, as we consistently evaluate the

marginal contribution of adding one additional factor at each step, excluding the possi-

bility of subsequent factors significantly altering the squared Sharpe ratio. Formally, the

selection strategy can be stated as follows:

Step 1. Let l be the number of iterations and τ the number of in-sample periods. Set

l := 0 and begin with a single factor CAPM for the period January 1980 to December

2000.

rn,t = αn + βnr
m
t + ϵn,t n = 1, . . . , N, t = 1, . . . , τ, (3.8)

where rm = (rm1 , . . . , r
m
τ ) denotes the vector of market excess return in the in-sample

period.

Step 2. Test K − l different augmented factor models by adding each factor to the

existing set and re-estimating the parameters to maximize the model squared Sharpe

ratio. Specifically, let fk := (rm, rPS
k ) for k = 1, . . . , K − l be a (T × (l + 2)) matrix of
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factor portfolio returns including the market and the kth power sorting factor portfolio.

For each candidate factor we estimate

Sh2
k = max

p̂k,q̂k
f̄kΩ̂

−1
k f̄ ′

k for k = 1, . . . , K − l, (3.9)

where f̄k is the vector of average returns and Ω̂ = (fk − f̄k)
′(fk − f̄k)/(τ − 1) is the

in-sample covariance matrix of the factor set including the market and the kth factor.

Step 3. Sort the candidate factor models by their squared Sharpe ratio and select

the model with the highest value.

Step 4. Test whether the difference in squared Sharpe ratio between the selected

model and the nested model from the previous iteration is statistically significant by

computing the p-value as in Barillas et al. (2020).

Step 5. Stop if the p-value is above the desired significance level (i.e., 10%). Other-

wise, update the existing set with the selected factor model, increment l by 1, and proceed

to Step 2.

3.5.2 Selected Factors

In this section, we report the results of the iterative power sorting factor selection.

Table 3.2 displays the selected factor at each iteration, alongside the underlying factor

model’s squared Sharpe ratio, the difference in squared Sharpe ratio from the previous

iteration, and the associated p-value. Figure A.13 in the Appendix also provides individ-

ual squared Sharpe ratio results for all characteristics at each iteration. Naturally, the

inclusion of an additional factor increases the squared Sharpe ratio of the given model,

although the marginal contribution for later iterations becomes smaller, leading to less

statistically significant increases. Depending on the chosen significance level, the iterative

algorithm will terminate after four to six iterations. For example, at a 10% significance

level, the improvement in the squared Sharpe ratio ceases to be statistically significant

after the inclusion of the sixth factor. When the significance level is reduced to 5% or 1%,
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the number of factors is reduced to five and four, respectively. Therefore, our statistical

inferences regarding the required number of factors in asset pricing models align with the

general academic consensus (Barillas et al. 2020; Fama and French 2015; Hou et al. 2021;

Stambaugh and Yuan 2017).

The first iteration reveals that asset growth (agr; Cooper, Gulen, and Schill 2008) is

the most important individual contributor. Such investment factors are a key component

in many well-known characteristic models, such as the five-factor model by Fama and

French (2015) and the q-models by Hou, Xue, and Zhang (2015) and Hou et al. (2021),

both of which provide strong, though different, theoretical foundations. Notably, the

investment factor category has the highest marginal importance as a whole. As shown in

the first subfigure of Figure A.13, the second (growth in long-term net operating assets,

Table 3.2: Iterative Factor Selection. The table displays the factor that led to the
highest increase in the squared Sharpe ratio between the nested and the augmented models at
each iteration. The first column shows the squared Sharpe ratio of the model incorporating the
additional factor. The second column shows the difference in squared Sharpe ratio between the
nested and the augmented models, and the third column shows the associated p-value as per
Barillas et al. (2020). The sample period for the estimation of the squared Sharpe ratio is from
March 1980 to December 2000.

SR2 SR2dif p-value
Market 0.109
Asset Growth 0.637 0.528 0.000
Volatility 1.026 0.389 0.000
Earnings Announcement Return 1.512 0.486 0.001
Unexpected Quarterly Earnings 1.750 0.237 0.041
Market Capitalization 2.004 0.254 0.079
Max Daily Return Last Month 2.162 0.157 0.208

grltnow), third (annual percentage change in total liabilities, lgr), and fifth best contrib-

utor (annual change in PPE scaled by total assets, invest) also belong to the investment

factor category, corroborating the selection of asset growth in the first iteration. To foster

intuition on how the factor is constructed, Figure 3.2 illustrates the standardized pow-

ers for each factor in the factor model at each iteration. With reference to Figure 3.2,
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the predictability of asset growth stems from the short leg, which includes high asset

growth stocks. This is indicated by the high standardized power for the short side and

the standardized power close to zero for the long side.

In the second iteration, past-month volatility (retvol) from Ang et al. (2006) emerges

as the most significant contributor. Although the volatility factor is commonly identified

as an important characteristic in prior empirical studies (DeMiguel et al. 2020; Green,

Hand, and Zhang 2017) and integrated into risk models used by quantitative asset man-

agers, such as Axioma and BARRA, it is not included in academic factor models given its

defiance of a risk-based explanation, challenging its theoretical justification. Specifically,

the low-volatility anomaly, which shows that high-beta stocks often underperform relative

to low-beta stocks, is at odds with the CAPM’s prediction that higher beta should be

associated with higher returns. Referring to Figure 3.2, it is also worth noting that for

two short-side-dominant factors, such as asset growth and past-month volatility, which

are both driven by the short leg including high asset growth/volatility stocks, not both

will fully engage on the short side. Specifically, in the case of volatility, both the short

and long sides are important, while the significance of high asset growth diminishes com-

pared to the previous iteration as the standardized power for the short leg drops from

0.96 to 0.52. This result highlights the importance of recursive estimation of the powers

at each iteration in capturing the dynamics between the different factors in the model.

Additionally, looking at the second subfigure of Figure A.13, volatility slightly surpasses

momentum in terms of increasing the squared Sharpe ratio. The literature has implicitly

or explicitly documented the non-trivial interplay between volatility and momentum with-

out providing a clear direction (e.g., Grinblatt and Moskowitz 2004; Daniel and Moskowitz

2016; Kim, Tse, and Wald 2016; Fan et al. 2022). Consequently, linear models without

interaction effects may favor one feature over the other, suggesting that the selection of

volatility may displace traditional momentum in the model.

Nonetheless, in the third and fourth iterations, alternative factors from the momen-

tum category, specifically earnings announcement return (ear; Kishore et al. 2008) and
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unexpected quarterly earnings (sue; Rendleman, Jones, and Latane 1982), are identified.

Earnings announcement return refers to the excess return of a firm around the earnings

announcement date compared to a benchmark portfolio of stocks with similar risk profile.

Unexpected quarterly earnings measure the difference between realized earnings and in-

vestors’ expected earnings, derived either from a time series model of earnings or analyst

forecasts, and standardized by a measure of earnings uncertainty. They both fall under

the wider definition of momentum as they both lead to significant drift in future returns

similar to conventional momentum. Novy-Marx (2015a) argues that past stock perfor-

mance is subsumed by earnings surprise measures, and that price momentum is merely

a weak expression of earnings momentum, reflecting the tendency for stocks with strong

recent earnings announcements to outperform those with weak earnings announcements.

Furthermore, earnings surprise measures include a profitability component and covary

with certain profitability variations, such as return-on-equity (Novy-Marx 2015b). This

explains the similar contribution of sue and roe to the model’s squared Sharpe ratio in

the fourth iteration. Finally, as highlighted by Kishore et al. (2008), earnings announce-

ment returns and standardized unexpected earnings strategies are largely independent,

suggesting that investors underreact to earnings and other information in earnings an-

nouncements, which helps explain the inclusion of both characteristics in our factor model.

Similar to retvol, ear and sue are often used by practitioners but rarely make it into aca-

demic models. Figure 3.2 illustrates that both ear and sue provide valuable information

on their long sides, while the short side of ear remains inactive across all iterations.

The fifth iteration identifies size as measured by market capitalization (mve; Banz

1981) as the final feature that makes a statistically significant contribution in terms of

squared Sharpe ratio. The size factor has remained a foundational part of many academic

factor models, as it is known to add explanatory power to the cross-section of stock returns

(Fama and French 1993, 2015, 2018; Stambaugh and Yuan 2017). It is also important to

note that the marginal benefits of size may be due to its conditional efficacy for other

130



Figure 3.2: Standardized powers for each factor in the power sorting factor
model per iteration. Panel A displays the standardized powers for the long legs and Panel
B displays the standardized powers for the short legs. The sample period for the estimation of
the powers is March 1980 to December 2000.
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B. Standardized powers for the short leg
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factors, as size can interact with other characteristics (e.g., Blitz and Hanauer 2020; Chen,
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Pelger, and Zhu 2024). Such interactions are hard to capture in a linear setting without

being explicitly modeled, which is partly why other risk factors are usually neutral with

respect to size. In our setting, we find that the incorporation of size allows the short-side

dominant nature of asset growth and volatility to surface, as the standardized power for

the short leg reaches the upper bounds, and the power for the long leg goes to zero.

From the sixth iteration, the maximum daily return of the previous month (maxret;

Bali, Cakici, and Whitelaw 2011) is selected as the seventh factor, although its marginal

contribution in terms of squared Sharpe ratio is highly insignificant. Furthermore, Figure

A.13 demonstrates that the contribution of maxret is very similar to the contributions of

other factors across all economic themes, making it difficult to justify the incorporation

of this individual characteristic as a single best contributor. Therefore, we stop our

procedure at the fifth iteration, resulting in a six-factor model of power sorting factors,

henceforth labeled as PS6.

3.5.3 Comparative Analysis

Next, we compare the PS6 factor model to classic academic factor models using

both left-hand-side (LHS) and right-hand-side (RHS) approaches. Table 3.3 presents this

comparison, contrasting our model with the five-factor q-model of Hou et al. (2021) (Q5)

and the six-factor model of Fama and French (2018) (FF6).

Specifically, Panel A presents the squared Sharpe ratios of the various models for the

out-of-sample period. It also displays the difference in squared Sharpe ratios between PS6

and the competing models, along with the p-value related to the null hypothesis that the

difference is statistically insignificant. Among the three models, PS6 exhibits the highest

out-of-sample squared Sharpe ratio of 0.376, which is more than twice that of Q5 and

2.7 times that of FF6. The difference is statistically significant, barely crossing the 5%

threshold for Q5, while being highly significant for FF6.

Although the out-of-sample Sharpe ratio achieved is lower than that achieved in-

sample, largely due to the decay in anomaly performance over later periods (McLean
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and Pontiff 2016; Chen, Lopez-Lira, and Zimmermann 2022), our iterative power sorting

procedure successfully selects and constructs factors that meet the underlying objectives,

Table 3.3: Overall Performance of Factor Models.Panel A displays the squared Sharpe
ratio for PS6, Q5, and FF6 models, together with the squared Sharpe ratio test of Barillas et al.
2020. Panels B to F display the average absolute alphas and the number of significant alphas
under a t-stat threshold of 1.96 and 3 for different universes of test assets.(January 2000 -
December 2021)

PS6 Q5 FF6
A. Difference in squared Sharpe ratio
SR2 0.376 0.180 0.139
SR2dif 0.196 0.238
p-value 0.053 0.003

B. 85 Equal-weighted decile sorting portfolios

Avg(|α|) 0.228 0.223 0.240
# |t| > 1.96 12 10 21
# |t| > 3 2 3 9

C. 85 Value-weighted decile sorting portfolios
Avg(|α|) 0.228 0.174 0.188
# |t| > 1.96 9 4 11
# |t| > 3 2 0 1

D. 85 Equal-weighted power sorting portfolios
Avg(|α|) 0.445 0.533 0.502
# |t| > 1.96 33 43 43
# |t| > 3 9 14 16

E. 85 Value-weighted power sorting portfolios
Avg(|α|) 0.303 0.388 0.362
# |t| > 1.96 12 20 20
# |t| > 3 2 4 4

F. 199 Factors from Chen and Zimmermann (2022)
Avg(|α|) 0.317 0.366 0.372
# |t| > 1.96 57 71 83
# |t| > 3 31 26 46
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delivering a significantly higher squared Sharpe ratio compared to competing models.

Therefore, it emerges as the best performing model in the absence of test assets. How-

ever, relying solely on the squared Sharpe ratio may not suffice to declare a model as

superior, emphasizing the necessity of using a diverse set of testing assets to draw reliable

conclusions.

For this reason, Panels B to F display the average absolute alpha obtained by regress-

ing each factor on each of the three models, along with the count of statistically significant

alphas using conventional thresholds of 1.96 and a more conservative threshold of 3.00 to

address data-mining concerns (Harvey, Liu, and Zhu 2016). Specifically, in Panels B to

E, we construct portfolios using combinations of value adjustment or no value adjustment

with power sorting or decile sorting, resulting in four different variations: power sorting

without value adjustment, power sorting with value adjustment, decile sorting without

value adjustment, and decile sorting with value adjustment.7 These portfolios are used

as test assets. Panel F serves as an external validation sample, comprising 199 factors

from Chen and Zimmermann (2022) for which we have complete time-series information

for the period January 2000 to December 2021.

Across the three models, FF6 performs the worst, showing higher average absolute

alphas and leaving more anomalies unexplained across different groups of test assets. Q5

performs well, closely competing with PS6. Specifically, our results indicate that Q5 prices

decile-sorting portfolios more effectively than PS6, aligning better with factors under

the conventional definition. Naturally, PS6 excels in explaining power sorting portfolios,

capturing inherent non-linearities in various characteristics more effectively.

When examining the factor dataset from Chen and Zimmermann (2022), which offers

a fair comparison without potential biases introduced in our factor construction process,

results are mixed. PS6 exhibits smaller average absolute alphas overall compared to
7For power sorting, value adjustment is implemented with h = 0.5, while no value adjustment is

implemented with h = 0.5. For decile sorting, when no value adjustment is applied, deciles are equally
weighted; when value adjustment is used, we employ a “capped value-weighting” scheme following Jensen,
Kelly, and Pedersen (2023a).
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Q5 and leaves fewer anomalies unexplained under the conventional threshold, but more

under the stricter threshold. Hence, although based on the RHS approach PS6 is the clear

winner, conclusions about relative performance based on the LHS approach between PS6

and Q5 are inconclusive and hinge on the selection of test assets. Overall, our findings

affirm the empirical observations of Hou et al. (2021) regarding the sensitivity of relative

performance inferences to the choice of testing assets.

3.6 Conclusion

In this paper, we extend the power sorting methodology to a multivariate framework

by maximizing the squared Sharpe ratio of the underlying set of factors instead of focusing

solely on individual power portfolio Sharpe ratios. Our contributions are twofold.

First, we demonstrate that when considering multiple characteristics jointly, the fo-

cus shifts from the short side to the long side of the power sorting portfolios. This insight

underscores the relevance of long-side factors, making characteristics information partic-

ularly useful for long-only investors. More importantly, the tangible benefits of the mul-

tivariate approach become evident in constructing multi-factor strategies. We show that

risk-adjusted performance significantly improves and risk is almost halved when power

parameters are estimated jointly rather than individually. These risk benefits arise from

more diversified factor exposures, which mitigate the risk of experiencing a crash due to

loading heavily on a specific factor theme.

Second, by integrating power sorting with an iterative factor selection approach, we

propose a structured framework for constructing factor models given a set of characteris-

tics. Our approach thus strikes a balance between observed and latent factor models, as

the factor portfolios remain tradable but dynamically change in structure based on the

underlying characteristic set. Using our procedure, we identify a six-factor model that

outperforms classic asset pricing models in terms of squared Sharpe ratio. Asset pricing

tests further support the validity of our model, although relative performance inferences

become test-asset specific.
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Concluding remarks

In this dissertation, we have explored innovative approaches to factor investing by

addressing key challenges in empirical asset pricing literature. Our research has under-

scored the significance of firm characteristics in predicting stock returns and introduced

novel methodologies to enhance the effectiveness of factor portfolios as both a research

and investment tool.

First, we examined the relevance of firm characteristics for factor timing by ex-

tending stock return predictability to the portfolio level and proposing a new framework

for managing panel data. This approach has notable implications for applying machine

learning methods in asset pricing and highlights the value of observable characteristics in

explaining the dynamics of factor portfolios.

Second, we developed the power sorting procedure—a data-oriented method that ad-

dresses the limitations of conventional quantile approaches. This method represents an

effective compromise between traditional portfolio sorts and advanced machine learning

techniques, leading to refined factor versions and the revival of previously dismissed char-

acteristics. Importantly, the method offers practical advantages by remaining simple and

easily reproducible for fellow researchers.

Third, we extended the power sorting methodology to a multivariate setting, revealing

how considering various characteristics jointly can uncover interaction effects and shift

importance towards the long side of factors. The construction of a six-factor model

that spans the tangent portfolio illustrates the potential of the multivariate approach in
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identifying the most crucial characteristics and understanding their interactions.

Overall, the findings of this dissertation deepen our understanding of factor investing

by refining existing methods and providing new perspectives on portfolio construction.

The introduction of power sorting and the exploration of multivariate extensions offer

researchers and practitioners advanced tools to enhance factor portfolio strategies. These

methodologies not only improve statistical and economic performance but also provide a

more nuanced understanding of the drivers behind factor premia.

We hope that this work will support and inspire future research in factor investing,

contributing to the ongoing development of more effective and insightful asset pricing

tools and methodologies.
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Appendix A

Appendix

A.1 List of characteristics
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Table A.1: Listing of firm characteristics used in the study, including the source and the exact definition.

Acronym Author(s) Journal Definition Group
absacc Bandyopadhyay, Huang, & Wirjanto 2010, WP Absolute value of acc. Investment
acc Sloan 1996, TAR Annual income before extraordinary items (ib) mi-

nus operating cash flows (oancf) divided by aver-
age total assets (at); if oancf is missing then set
to change in act – change in che – change in lct +
change in dlc + change in txp–dp.

Investment

aeavol Lerman, Livnat, and Mendenhall 2008, WP Average daily trading volume (vol) for 3 days
around earnings announcement minus average
daily volume for 1-month ending 2 weeks before
earnings announcement divided by 1-month av-
erage daily volume. Earnings announcement day
from Compustat quarterly (rdq)

Momentum

age Jiang, Lee, & Zhang 2005, RAS Number of years since first Compustat coverage. Intangibles
agr Cooper, Gulen & Schill 2008, JF Annual percentage change in total assets (at). Investment
baspread Amihud & Mendelson 1989, JF Monthly average of daily bid-ask spread divided

by average of daily spread.
Frictions

beta Fama & MacBeth 1973, JPE Estimated market beta from weekly returns and
equal weighted market returns for 3 years ending
month t-1 with at least 52 weeks of returns.

Frictions

betasq Fama & MacBeth 1973, JPE Market beta squared. Frictions
bm Rosenberg, Reid, & Lanstein 1985, JPM Book value of equity (ceq) divided by fiscal year

end market capitalization.
Value

bm_ia Asness, Porter & Stevens 2000, WP Industry adjusted book-to-market ratio. Value
cash Palazzo 2012, JFE Cash and cash equivalents divided by average total

assets
Intangibles

cashdebt Ou & Penman 1989, JAE Earnings before depreciation and extraordinary
items (ib+dp) divided by avg. total liabilities (lt).

Intangibles

cashpr Chandrashekar & Rao 2009, WP Fiscal year end market capitalization plus long-
term debt (dltt) minus total assets (at) divided by
cash and equivalents (che).

Intangibles
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Acronym Author(s) Journal Definition Group
cfp Desai, Rajgopal & Venkatachalam 2004, TAR Operating cash flows divided by fiscal year end

market capitalization.
Value

cfp_ia Asness, Porter & Stevens 2000, WP Industry adjusted cfp. Value
chatoia Soliman 2008, TAR 2-digit SIC fiscal year mean adjusted change in

sales (sale) divided by average total assets (at).
Profitability

chcsho Pontiff & Woodgate 2008, JF Annual percentage change in shares outstanding
(csho).

Investment

chempia Asness, Porter & Stevens 1994, WP Industry-adjusted change in number of employees. Intangibles
chinv Thomas & Zhang 2002, RAS Change in inventory (inv) scaled by average total

assets (at).
Investment

chmom Gettleman & Marks 2006, WP Cumulative returns from months t-6 to t-1 minus
months t-12 to t-7.

Momentum

chpmia Soliman 2008, TAR 2-digit SIC fiscal year mean adjusted change in
income before extraordinary items (ib) divided by
sales (sale).

Profitability

chtx Thomas and Zhang 2011, JAR Percent change in total taxes (txtq) from quarter
t-4 to t

Momentum

cinvest Titman, Wei, and Xie 2004, JFQA Change over one quarter in net PP&E (ppentq)
divided by sales (saleq) - average of this variable
for prior 3 quarters; if saleq = 0, then scale by 0.01

Investment

currat Ou & Penman 1989, JAE Current assets / current liabilities. Investment
depr Holthausen & Larcker 1992, JAE Depreciation over PPE. Investment
dolvol Chordia, Subrahmanyam, & Anshuman 2001, JFE Natural log of trading volume times price per share

from month t-2.
Frictions

ear Kishore et al. 2008, WP Sum of daily returns in three days around earn-
ings announcement. Earnings announcement from
Compustat quarterly file (rdq)

Momentum

egr Richardson, Sloan, Soliman & Tuna 2005, JAE Annual percentage change in book value of equity
(ceq).

Investment

ep Basu 1977, JF Annual income before extraordinary items (ib) di-
vided by end of fiscal year market capitalization.

Value
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Acronym Author(s) Journal Definition Group
gma Novy-Marx 2013, JFE Revenues (revt) minus cost of goods sold (cogs)

divided by lagged total assets (at).
Profitability

grcapx Anderson & Garcia-Feijoo 2006, JF Percentage change in capital expenditures from
year t-2 to year t.

Investment

grltnoa Fairfield, Whisenant & Yohn 2003, TAR Growth in long term net operating assets. Investment
herf Hou & Robinson 2006, JF 2-digit SIC fiscal year sales concentration (sum of

squared percentage of sales in industry for each
company).

Intangibles

hire Bazdresch, Belo & Lin 2014, JPE Percentage change in number of employees (emp). Intangibles
idiovol Ali, Hwang, & Trombley 2003, JFE Standard deviation of residuals of weekly returns

on weekly equal weighted market returns for 3
years prior to month end.

Frictions

ill Amihud 2002, JFM Average of daily (absolute return/dollar volume). Frictions
indmom Moskowitz & Grinblatt 1999, JF Equal weighted average industry 12-month re-

turns.
Momentum

invest Chen & Zhang 2010, JF Annual change in gross property, plant, and equip-
ment (ppegt) + annual change in inventories (invt)
all scaled by lagged total assets (at).

Investment

lev Bhandari 1988, JF Total liabilities (lt) divided by fiscal year end mar-
ket capitalization.

Investment

lgr Richardson, Sloan, Soliman & Tuna 2005, JAE Annual percentage change in total liabilities (lt). Investment
maxret Bali, Cakici & Whitelaw 2011, JFE Maximum daily return from returns during calen-

dar month t-1.
Frictions

mom12m Jegadeesh 1990, JF 11-month cumulative returns ending one month
before month end.

Momentum

mom1m Jegadeesh & Titman 1993, JF 1-month cumulative return. Frictions
mom36m Jegadeesh & Titman 1993, JF Cumulative returns from months t-36 to t-13. Value
mom6m Jegadeesh & Titman 1993, JF 5-month cumulative returns ending one month be-

fore month end.
Momentum

ms Mohanram 2005, RAS Sum of 8 indicator variables for fundamental per-
formance

Profitability
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Acronym Author(s) Journal Definition Group
mve Banz 1981, JFE Natural log of market capitalization at end of

month t-1.
Frictions

mve_ia Asness, Porter, & Stevens 2000, WP 2-digit SIC industry-adjusted fiscal year end mar-
ket capitalization.

Frictions

orgcap Eisfeldt and Papanikolaou 2013, JF Capitalized SG&A expenses Intangibles
pchcapx_ia Abarbanell & Bushee 1998, TAR 2-digit SIC fiscal year mean adjusted percentage

change in capital expenditures (capx).
Investment

pchcurrat Ou & Penman 1989, JAE Percentage change in currat. Investment
pchdepr Holthausen & Larcker 1992, JAE Percentage change in depreciation. Investment
pchgm_pchsale Abarbanell & Bushee 1998, TAR Percentage change in gross margin (sale-cogs) mi-

nus percentage change in sales (sale).
Intangibles

pchquick Ou & Penman 1989, JAE Percentage change in quick. Investment
pchsale_pchinvt Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-

nual percentage change in inventory (invt).
Intangibles

pchsale_pchrect Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-
nual percentage change in receivables (rect).

Intangibles

pchsale_pchxsga Abarbanell & Bushee 1998, TAR Annual percentage change in sales (sale) minus an-
nual percentage change in SG&A (xsga).

Intangibles

pchsaleinv Ou & Penman 1989, JAE Percentage change in sales-to-inventory ratio. Intangibles
pctacc Hafzalla, Lundholm & Van Winkle 2011, TAR Same as acc except that the numerator is divided

by the absolute value of ib; if ib = 0 then ib set to
0.01 for denominator.

Investment

pricedelay Hou & Moskowitz 2005, RFS The proportion of variation in weekly returns for
36 months ending in month t explained by 4 lags
of weekly market returns incremental to contem-
poraneous market return.

Intangibles

ps Piotroski 2000, JAR Sum of 9 indicator variables to form fundamental
health score.

Profitability

quick Ou & Penman 1989, JAE (current assets – inventory) / current liabilities. Investment
rd_mve Guo, Lev & Shi 2006, JBFA R&D expense divided by end of fiscal year market

capitalization.
Intangibles
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Acronym Author(s) Journal Definition Group
rd_sale Guo, Lev & Shi 2006, JBFA R&D expense divided by sales (xrd/sale). Intangibles
retvol Ang et al. 2006, JF Standard deviation of daily returns from month

t-1.
Frictions

roaq Balakrishnan, Bartov, and Faurel 2010, JAE Income before extraordinary items (ibq) divided
by one quarter lagged total assets (atq)

Profitability

roavol Francis et al. 2004, TAR Standard deviation for 16 quarters of income be-
fore extraordinary items (ibq) divided by average
total assets (atq)

Intangibles

roeq Hou, Xue, and Zhang 2015 RFS Earnings before extraordinary items divided by
lagged common shareholders equity

Profitability

roic Brown & Rowe 2007, WP Annual earnings before interest and taxes (ebit)
minus non-operating income (nopi) divided by
non-cash enterprise value (ceq+lt–che).

Profitability

rsup Kama 2009, JBFA Sales from quarter t minus sales from quarter t-4
(saleq) divided by fiscal-quarter-end market capi-
talization (cshoq * prccq)

Value

salecash Ou& Penman 1989, JAE Annual sales divided by cash and cash equivalents. Intangibles
saleinv Ou& Penman 1989, JAE Annual sales divided by total inventory. Intangibles
salerec Ou& Penman 1989, JAE Annual sales divided by accounts receivable. Intangibles
sgr Lakonishok, Shleifer & Vishny 1994, JF Annual percentage change in sales (sale). Value
sp Barbee, Mukherji, & Raines 1996, FAJ Annual revenue (sale) divided by fiscal year end

market capitalization.
Value

std_dolvol Chordia, Subrahmanyam, & Anshuman 2001, JFE Monthly standard deviation of daily dollar trading
volume.

Frictions

std_turn Chordia, Subrahmanyam, & Anshuman 2001, JFE Monthly standard deviation of daily share
turnover.

Frictions

stdacc Bandyopadhyay, Huang, and Wirjanto 2010, WP Standard deviation for 16 quarters of accruals (acc
measured with quarterly Compustat) scaled by
sales; if saleq = 0, then scale by 0.01

Intangibles
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Acronym Author(s) Journal Definition Group
stdcf Huang 2009, JEF Standard deviation for 16 quarters of cash flows

divided by sales (saleq); if saleq = 0, then scale by
0.01. Cash flows defined as ibq minus quarterly
accrual

Intangibles

sue Rendleman, Jones, and Latane 1982, JFE Unexpected quarterly earnings divided by fiscal-
quarter-end market cap. Unexpected earnings is
I/B/E/S actual earnings minus median forecasted
earnings if available, else it is the seasonally differ-
enced quarterly earnings before extraordinary

Momentum

tang Almeida & Campello 2007, RFS Cash holdings + 0.715 × receivables + 0.547 ×
inventory + 0.535 × PPE/total assets.

Investment

tb Lev & Nissim 2004, TAR Tax income, calculated from current tax expense
divided by maximum federal tax rate, divided by
income before extraordinary items.

Profitability

turn Datar, Naik, & Radcliffe 1998, JFM Average monthly trading volume for most recent 3
months scaled by number of shares outstanding in
current month.

Frictions

zerotrade Liu 2006, JFE Turnover weighted number of zero trading days for
most recent 1 month.

Frictions
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A.2 Supplementary Material to Chapter 1

A.2.1 Factor variation explained by the PC portfolios

One of the key elements of our predictive approach is condensing the information

of the factor portfolios using either conventional PCA or the RPPCA of Lettau and

Pelger 2020a. While the estimation of the PC portfolios is straightforward, the number

of PC portfolios to be retained remains an empirical question. Figure A.1 shows that

irrespective of whether we use PCA or RPPCA the variation explained by the principal

components is very similarly. In particular, the first component captures around 37%

of the total variation, the second component captures around 13%, the third component

captures around 8%, while the fourth and fifth components capture around 4%. After the

fifth component the decrease in explained variation is quite gradual but the components

contribute very little to the total variation. Given the aforementioned pattern and in

order to be consistent with Haddad, Kozak, and Santosh 2020, we focus our analysis on

five PC portfolios.

Figure A.1: Percentage of the variation explained by each PC of factor portfolio returns
under PCA and RPPCA for the sample period January 1970 to December 2019.
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A.2.2 Details of the dimension reduction and regularization tech-

niques

For exposition purposes we omit the time dimension when explaining the different

statistical methods. In the methodology section of the main manuscript the time subscript

t indicates the recursive estimation of the different objects.

Principal Component Analysis (PCA)

The first and most popular dimension reduction method is PCA. The method produces

linear combinations of the original data (PCs) while best preserving the covariance struc-

ture among the variables. Each PC successively contains as much new information about

the observed variables and dimension reduction can be accommodated by focusing on the

first few (dominant) PCs, while omitting the rest which are usually noise-related. Let Σ,

be the (N ×N) variance-covariance matrix of the (T ×N) factor portfolio return matrix

R. Consider the eigendecomposition of Σ:

Σ = WΛW ′ =
N∑
i=1

λiwiw
′
i, (A.1)

where W is a (N × N) matrix whose ith column wi is the eigenvector of Σ and Λ is a

diagonal matrix whose diagonal elements are the corresponding eigenvalues in decreasing

order. The ith eigenvector wi, solves:

w1 = argmax
∥w1∥=1

{w′
1Σw1} ,

w2 = argmax {w′
2Σw2}

∥w2∥=1

s.t. w′
1Σw2 = 0,

...

wN = argmax
∥wN∥=1

{w′
NΣwN} s.t. w′

MΣwN = 0 ∀ M < N. (A.2)

Practically, the solution in Equation (A.2) is obtained via a singular value decomposition
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(SVD) R. The (T×N) matrix of PCs is then obtained by multiplying the matrix of factor

portfolio returns with the eigenvectors, Z = RW . Notice that since W is an orthogonal

matrix, this is equivalent to regressing the factor portfolio returns on the eigenvectors.

PCA is also used to regularize the characteristics of each PC portfolio, Hi. This logic is

identical to Principal Component Regression (PCR) where the predictors are transformed

to their PCs and the coefficients of low variance PCs are set to zero.

Risk Premium PCA (RPPCA)

In general, PCA extracts factors that best explain time-series variation in the data.

The variance-covariance matrix of factor portfolio returns can also be written as Σ =

1
T
R′R− R̄R̄′, where R̄ is an (N × 1) vector of average portfolio returns. Since average re-

turns are subtracted, PCA utilizes information from the second moment while it neglects

information from the first moment of the data. Some factors may have weak explanatory

power in terms of variance if they only affect a small proportion of assets, but may still

be important in an asset pricing context. In this case, conventional PCA is unable to

detect the true factors (Onatski 2012). Under an Arbitrage Pricing Theory framework,

exposure to systemic risk factors should be able to explain the cross-section of expected

asset returns (Ross 1976). As such, latent factors should be able to simultaneously cap-

ture time-series variation and explain the cross-section of average returns.

Lettau and Pelger 2020a propose a new estimator by augmenting PCA with a penalty

term to account for pricing errors in average returns. RPPCA is a generalization of

PCA, regularized by a cross-sectional pricing error and can be implemented by simple

eigenvalue decomposition of the variance-covariance matrix of asset returns after a simple

transformation:

1

T
R′R + γR̄R̄′. (A.3)

Essentially, the method applies PCA to the variance-covariance matrix with over-weighted
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means. The resulting PCs jointly minimize the unexplained variation and the cross-

sectional pricing error. The choice of the tuning parameter γ determines the relative

weight of the cross-sectional pricing error compared to the time-series error. For conven-

tional PCA γ = −1, while γ = 0 is equivalent to applying PCA to the second moment

matrix. Values of γ > −1 can lead to the detection of weak factors with high Sharpe

ratios. We opt for a constant value of γ = 10, as it provides a balance between explaining

time-series variation and detecting weak factors.1 The use of RPPCA should help us focus

on factor portfolios with high average returns as by definition those will have a higher

weight on dominant components.

Again, we apply SVD on 1
T
R′R+10R̄R̄′ and retain the first five eigenvectors to calculate

the PC portfolios Zi ∈ R(T×1), i = 1, . . . , 5. Since the purpose of RPPCA is to detect

weak factors within asset returns and given that characteristics are standardized due to

their difference in scale, it would be insensible to apply it on Hi ∈ R(T×M), i = 1, . . . , 5.

Instead, we apply SDV on each 1
T
H ′

iHi − H̄iH̄
′
i, which converges back to conventional

PCA.

Partial Least Squares (PLS) One of the limitations of PCA is that it focuses on

condensing the covariation within the predictors. However, some of the characteristics

may have no predictive power, meaning that PCA-based PCs can contain information

that is ultimately useless in the forecasting exercise. In contrast, PLS constructs linear

combinations of the characteristics based on their relationship with future returns by

directly exploiting the covariance between the two. The method can be used to rotate Hi

into linear combinations that best explain Zi while still being orthogonal to each other.
1A value of γ = 10 is also consistent with what the authors identify as optimal in their empirical

exercise.
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The vector of weights for the ith PC is estimated recursively by solving:

qi1 = argmax
∥qi1∥=1

{
qi′1H

′
iZiZ

′
iHiq

i
1

}
,

qi2 = argmax
{
q2′i H

′
iZiZ

′
iHiq

2
i

}
∥q2i∥=1

s.t. q1′i H ′
iZiZ

′
iHiq

2
i = 0,

...

qiN = argmax
∥qNi ∥=1

{
qN ′
i H ′

iZiZ
′
iHiq

N
i

}
s.t. qM ′

i H ′
iZiZ

′
iHiq

N
i = 0 ∀ M < N. (A.4)

Equation (A.4) highlights the distinction between PLS and PCA. Specifically, by making a

comparison between Equation (A.2) and Equation (A.4), it is clear that PCA finds linear

combinations that maximize the variance of Hi while PLS finds combinations of weights

that maximize the squared covariance between Zi and Hi, or the product of the variance

of the predictors with the squared correlation with the forecasting target. In other words,

PLS diverges from the solution that best describes Hi in order to find components that

can better predict future returns. Practically, Equation (A.4) can be efficiently solved

using the SIMPLS algorithm by De Jong 1993. Again, we calculate the PLS components

Xi = HiQi and either retain the first component or apply LASSO on Xi to predict each

Ẑt+1,i.

LASSO

Another important aspect of our estimation procedure is the use of LASSO to account

for overfitting and control for model complexity. LASSO imposes sparsity by selecting

a subset of features and setting the remaining coefficients to zero. This is achieved by

slightly modifying the OLS objective function to incorporate a penalty for the sum of the

absolute value of the coefficients. For instance, at each time t we estimate the β ∈ R1×M+1

of PC portfolio Zi ∈ RT×1 on a set of characteristic PCs Xi ∈ RT×M as:

min
β0,β

T∑
t=1

(Zi − β0
i −

M∑
m=1

βm
i Xm

i )2 + δ
M∑

m=1

|βm
i |, (A.5)

149



where δ is a hyperparameter that determines the degree of regularization such as:

M∑
m=1

|βm
i |≤ δ. (A.6)

High values for δ result in solutions that set many coefficients exactly equal to zero,

delivering parsimonious models. Using the coordinate decent algorithm by Friedman,

Hastie, and Tibshirani 2010, we fit many values of δ simultaneously and pick the one that

minimizes the forecasting error in the validation period.

A.2.3 Sources of variation in the PC characteristics

The characteristics of long-short factor portfolios are initially calculated by value-

weighting characteristics of stocks within each decile portfolio and then subtracting the

value of the bottom decile from the top. At this stage no standardization is applied, mean-

ing that the average characteristic across factor portfolios still preserves its time series

trend and the cross-sectional variance for any given characteristic changes over time. The

factor portfolio characteristics are then standardized cross-sectionally by subtracting each

month the cross-sectional characteristic mean and dividing by the cross-sectional char-

acteristic standard deviation. These standardized characteristics are then transformed

into PC portfolio characteristics by being multiplied with wt,i, allowing us to focus on the

cross-sectional dispersion in the data.

Table A.2 presents a stylized hypothetical example with three characteristics and one PC

portfolio for one time period. Each factor portfolio has its own characteristic and two

other characteristics. As in our empirical exercise, the characteristics are cross-sectionally

standardized to have zero cross-sectional mean and unit cross-sectional variance. In this

example, the PC portfolio loads positively on momentum and value and negatively on

reversal. Momentum and value characteristics are positively related to returns, while re-

versal is negatively related. As a result, the PC portfolio has high momentum and value
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scores and low reversal score, resulting in a high return for that month. Provided that

characteristics jointly explain returns and that this relationship holds on average over

time, PC portfolio returns will be high when PC momentum and value characteristics are

high and PC reversal is low.

Table A.2: Stylized example of estimating PC portfolio characteristics and returns using
three anomalies.

Momentum Value Reversal PC
Portfolio Portfolio Portfolio Portfolio

PC Portfolio Weights 0.75 0.5 -0.25

Momentum Characteristic 1 0 -1 1
Value Characteristic 0 1 -1 0.75
Reversal Characteristic -1 0 1 -1

Return t+ 1 1.0% 0.8% -0.2% 1.2%

Given our procedure, it is important to understand the sources of variation in the char-

acteristics of each PC portfolio that ultimately lead to PC portfolio return predictability.

Let us start with the diagonal elements in the characteristic matrix in Table A.2 (e.g.,

the momentum of the momentum portfolio). The diagonal elements will always have the

highest scores across rows (1 in our hypothetical example), since factor portfolios have

the highest score for their own characteristic by construction. Still, the diagonal elements

would remain constant across time only if each characteristic’s distribution across the

portfolio cross-section remained identical in terms of skewness and kurtosis. However, we

observe significant variability in those higher moments for all characteristics over time. In

particular, Figures A.2 and A.3 display the cross-sectional skewness and kurtosis of the

72 characteristics across all the factor portfolios over the whole sample period. As it can

be seen, there is significant variation in the skewness and kurtosis of the characteristics

across time, which suggests that the diagonal elements do change affecting also the char-

acteristic scores of the PC portfolio.
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With regards to the off-diagonal elements of the characteristic matrix in Table A.2 (e.g.,

the momentum characteristic of the value portfolio), those can further change from month

to month depending on the characteristics of stocks within each factor portfolio. Provided

that different factor portfolios do not contain the exact same stocks, each characteristic

can differ significantly across factor portfolios and can vary over time in non-standard

ways. For example, it is possible that for a given month the correlation between stock

momentum and value is high and hence the standardized momentum score of the two

factor portfolios is similar, while in another month the correlation might be low and hence

the momentum score of the two factor portfolios will be completely different. To shed

light on the time-varying interrelations arising among characteristics, we display in Figures

A.4 and A.5 the mean and standard deviation of the monthly cross-sectional correlation

across all the different characteristic pairs. Apropos Figure A.4, average cross-sectional

correlations across characteristics are fairly low (typically between –0.2 and 0.2), with

the exception being market friction and volatility proxies. Figure A.5 further shows that

there is significant time variability on those correlations (standard deviation values mostly

range from 0.2 to 0.4), with again volatility proxies being the most profound exception,

while, as expected, correlations also remain relatively constant for characteristic pairs

with similar economic interpretation. Overall, our results suggest that time variation in

correlations among stock characteristics is another reason for which the characteristics of

the PC portfolios exhibit significant time-series variability.

The above analyses show that, despite the fact that we use the same weighting vector

wt,i for all the months of a given in-sample period, the PC characteristics naturally vary

across months even within the same predictive iteration/in-sample period. Obviously, an

additional source of variation in the characteristics of the PCs arises from the recursive

estimation of the weighting vector wt,i across predictive iterations. Because of the variabil-

ity in the covariance structure of factor portfolio returns (and the change in their average

returns in the case of RPPCA), the weighting vectors change across time, affecting the

characteristic construction process, as the PC characteristics are calculated by multiply-

ing factor portfolio characteristics with wi,t. To visualise how much the weighting vectors
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vary, Figures A.6 and A.7 display heatmaps that correspond to the (absolute value of

the) factor loadings of each PC on the different anomalies across time, for PCA and RP-

PCA respectively. As expected, there is some time variability in the weights. However,

we observe that in most of the cases the loadings (especially the most important ones)

remain quite stable throughout the whole sample period.

Overall, the PC characteristics change across months (within the same predictive it-

eration) because the characteristic distributions across portfolios exhibit time-varying

skewness and kurtosis and because the characteristic themselves have time-varying cor-

relations. An additional but less important source of variation stems from the recursive

estimation of PC portfolios and consequently weighting vectors.

Figure A.2: Monthly cross-sectional skewness of 72 characteristics across factor portfo-
lios. The sample period is 01/1970-12/2019.
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Figure A.3: Monthly cross-sectional kurtosis of 72 characteristics across factor portfolios.
The sample period is 01/1970-12/2019.

Figure A.4: Average monthly cross-sectional correlations across 72 characteristics. The
sample period is 01/1970-12/2019.
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Figure A.5: Standard deviation of monthly cross-sectional correlations across 72 char-
acteristics. The sample period is 01/1970-12/2019.
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Figure A.6: Recursively estimated PC portfolio weights on 72 factor portfolios for the out-of-sample period 01/1990-12/2019. PC
portfolios are constructed using PCA.
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Figure A.7: Recursively estimated PC portfolio weights on 72 factor portfolios for the out-of-sample period 01/1990-12/2019. PC
portfolios are constructed using RPPCA.
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A.2.4 Details of the predictive models

The main analysis of the paper focuses on four models that incorporate PCA or

RPPCA for condensing the variation in factor portfolio returns and PCA or PLS for

condensing the variation in the portfolio characteristics. We further consider two cases,

one where we retain only a single latent factor from the characteristics and another one

where we retain all the characteristic factors but employ LASSO to select the important

ones at each forecasting period. In addition, we select a series of alternative benchmark

models that rely on predictors such as the past return of the factor portfolios, the issuer-

repurchaser spread, market sentiment etc. Finally, we modify our main models in order to

investigate what the most important pillars of our successful predictive method are, and

also modify the benchmark models in order to examine whether adding additional statis-

tical features to them delivers performance similar to the one provided by the portfolio

characteristics. For convenience, Table A.3 presents the list with all the different models

used in the study, together with a detailed description of how we handle the left-hand-side

and the right-hand-side of the forecasting problem.

A.2.5 Factor statistics

In Table A.4, we report some summary statistics for the 72 factor portfolios that

are based on our stock characteristics. Specifically, we report the average monthly return

with the respective t-statistic, the monthly volatility, and the monthly Sharpe ratio of each

portfolio. As discussed in the main paper, there is high cross-sectional variation in the

performance of the portfolios with only 22 of them having an average return significantly

different from zero.
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Table A.3: Detailed description of all the predictive models used in the study. The table includes the acronym for each model
and the description of the modelling approach for each side of the return predictability exercise.

Acronym Left-hand-side Right-hand-side

Panel A: Characteristic-based models (with and without LASSO)
PCA PCA PCA
PCA-PLS PCA PLS
RPPCA RPPCA PCA
RPPCA-PLS RPPCA PLS

Panel B: Baseline Benchmark models
1mMOM No dimension reduction. No dimension reduction. Each anomaly is predicted by its past month return.
12mMOM No dimension reduction. No dimension reduction. Each anomaly is predicted by its 12-month average past return.
PCA-BM PCA No dimension reduction. Each PC portfolio is predicted by its own book-to-market ratio.
IR Spread No dimension reduction. No dimension reduction. Each anomaly is predicted by its own issuer-repurchaser spread.
Sentiment No dimension reduction. No dimension reduction. Each anomaly is predicted by the investors sentiment index.
Historical Sample Mean No dimension reduction. No dimension reduction. Each anomaly is predicted by its in-sample average return.

Panel C: Alternative Specifications
Anom-Own characteristic No dimension reduction. No dimension reduction. Each anomaly is predicted by its own characteristic spread.
Anom-1 PLS No dimension reduction. PLS. One characteristic-based component is retained.
Anom-All characteristics No dimension reduction. No dimension reduction. Each anomaly is predicted by the collection of all its characteristics.
Anom-All characteristics LASSO No dimension reduction. LASSO is applied on the collection of characteristics.
5 PCs-All characteristics PCA No dimension reduction. Each PC portfolio is predicted by the collection of its characteristics.
5 PCs-All characteristics LASSO PCA LASSO is applied on the collection of characteristics.
5 PCs-1mMOM PCA No dimension reduction. Each PC portfolio is predicted by its past return.
5 PCs-12mMOM PCA No dimension reduction. Each PC portfolio is predicted by its 12-month average past return.
5 PCs-5 BMs PCA No dimension reduction. The 5 book-to-market ratios of all PC portfolios are used to predict each one individually.
5 PCs-5 BMs LASSO PCA LASSO is applied on the collection of the 5 book-to-market ratios.
Anom-Own BM No dimension reduction. No dimension reduction. Each anomaly is predicted its own book-to-market ratio.
Anom-All IR Spreads No dimension reduction. No dimension reduction. Each anomaly is predicted by the collection of all issuer-repurchaser spreads.
Anom-All IR Spreads LASSO No dimension reduction LASSO is applied on the collection of all issuer-repurchaser spreads.
5 PCs-IR Spread PCA No dimension reduction. Each PC portfolio is predicted by its own IR Spread.
5 PCs-All IR Spreads PCA No dimension reduction. Each PC portfolio is predicted by the collection of PC IR Spreads.
5 PCs-Sentiment PCA No dimension reduction. Each PC is predicted by the investor sentiment index.
Sentiment-LASSO No dimension reduction. LASSO is applied to the investor sentiment index.
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Table A.4: Descriptive statistics of factor portfolios for the sample period
January 1970 to December 2019. Average Return: Average monthly return, Standard
Deviation: Monthly standard deviation, Sharpe Ratio: Monthly Sharpe ratio, t-statistic:
t-statistic for the null hypothesis that the average monthly return is equal to zero.

Average Return Standard Deviation Sharpe Ratio t-statistic
absacc −0.111 3.982 −0.028 −0.680
acc −0.419 3.009 −0.139 −3.410
age −0.031 3.896 −0.008 −0.196
agr −0.399 3.143 −0.127 −3.110
baspread −0.235 6.796 −0.035 −0.846
beta −0.153 7.854 −0.020 −0.478
betasq −0.146 7.851 −0.019 −0.456
bm 0.377 4.480 0.084 2.061
bm_ia 0.250 3.642 0.069 1.677
cashdebt 0.101 3.884 0.026 0.635
cashpr −0.336 3.545 −0.095 −2.323
cfp 0.298 4.181 0.071 1.744
cfp_ia 0.328 2.889 0.114 2.781
chatoia 0.269 2.647 0.102 2.490
chcsho −0.588 2.901 −0.203 −4.963
chempia 0.065 2.874 0.023 0.553
chinv −0.537 2.955 −0.182 −4.448
chmom −0.574 4.628 −0.124 −3.037
chpmia 0.028 3.094 0.009 0.220
currat −0.052 3.975 −0.013 −0.322
depr 0.058 4.376 0.013 0.322
dolvol −0.210 3.495 −0.060 −1.471
dy −0.060 5.823 −0.010 −0.254
egr −0.429 3.292 −0.130 −3.191
ep 0.613 4.691 0.131 3.198
gma 0.090 3.832 0.023 0.573
grcapx −0.358 2.941 −0.122 −2.979
grltnoa −0.270 3.010 −0.090 −2.199
herf 0.053 3.508 0.015 0.371
hire −0.217 3.135 −0.069 −1.694
idiovol −0.196 6.923 −0.028 −0.692
ill 0.051 3.688 0.014 0.340
indmom 0.175 4.837 0.036 0.887
invest −0.395 3.003 −0.132 −3.223
lev 0.098 4.550 0.022 0.529
lgr −0.189 2.638 −0.072 −1.758
maxret −0.367 5.778 −0.063 −1.554
mom12m 1.080 6.492 0.166 4.071
mom1m −0.353 5.089 −0.069 −1.696
mom36m −0.204 4.891 −0.042 −1.019
mom6m 0.624 5.896 0.106 2.590
mve −0.161 4.015 −0.040 −0.982
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Average Return Standard Deviation Sharpe Ratio t-statistic
mve_ia −0.131 3.212 −0.041 −0.997
operprof 0.248 3.001 0.083 2.021
pchcapx_ia 0.066 2.932 0.022 0.549
pchcurrat −0.202 1.906 −0.106 −2.597
pchdepr 0.158 2.518 0.063 1.536
pchgm_pchsale 0.125 2.723 0.046 1.126
pchquick −0.063 2.042 −0.031 −0.761
pchsale_pchinvt 0.256 2.513 0.102 2.489
pchsale_pchrect 0.004 2.399 0.001 0.036
pchsale_pchxsga −0.078 3.005 −0.026 −0.632
pchsaleinv 0.224 2.457 0.091 2.230
pctacc −0.175 3.127 −0.056 −1.366
pricedelay −0.077 2.717 −0.028 −0.695
ps 0.250 2.337 0.107 2.614
quick −0.099 3.777 −0.026 −0.641
rd_mve 0.243 4.748 0.051 1.253
rd_sale −0.109 4.541 −0.024 −0.585
retvol −0.406 6.782 −0.060 −1.464
roic 0.283 3.725 0.076 1.859
salecash 0.019 3.327 0.006 0.141
saleinv 0.146 3.040 0.048 1.175
salerec 0.252 3.486 0.072 1.770
sgr −0.112 3.374 −0.033 −0.809
sp 0.377 4.183 0.090 2.208
std_dolvol 0.175 3.080 0.057 1.391
std_turn 0.090 5.163 0.017 0.425
tang 0.155 3.423 0.045 1.105
tb 0.195 2.852 0.068 1.676
turn −0.073 5.779 −0.013 −0.308
zerotrade −0.052 5.454 −0.010 −0.235

A.2.6 Interpreting the PC portfolios

One disadvantage of extracting latent common factors from factor portfolio returns is

that the resulting PC portfolios do not have a straightforward economic interpretation. In

order to tackle this problem, we regress recursively each PC portfolio return on each of the

72 anomalies and retain the R2. Next, we estimate the average R2 across months for each

PC portfolio and each anomaly. As an example, we present in Figure A.8 the results of the

PCs stemming from PCA. We observe that the first PC portfolio loads more on volatility

variables such as beta, idiovol, maxret, retvol and std_turn. The second PC portfolio
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loads more on value variables such as bm, bm_ia and sp, as well as on profitability and

leverage variables such as gma, cashdebt and lev. The third PC portfolio is clearly affected

by the momentum characteristics, while the fourth PC portfolio is mainly driven by r&d

variables. The fifth portfolio loads more on salerec and to a lesser extent on gma.

The above results stem from a time-series aggregation of the estimated R2s. Another

interesting question that arises is whether the relation between the PCs and the under-

lying characteristics is stable across time. To this end, we select the most important

characteristic for each PC portfolio and plot the R2 of all of them across time in Figure

A.9. In particular, we plot the R2 values of beta, bm, mom12m, rd_sale, and salerec.

Each characteristic dominates a respective PC portfolio and it is evident from Figure A.9

that all the loadings are remarkably stable across time. Overall, we conclude that the PC

portfolios extracted with statistical techniques have reasonable economic interpretation

and the recursive estimation does not impact negatively this interpretation.
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Figure A.8: Average R2 across month from recursive regressions of each PC portfolio on each anomaly. The PC portfolios are constructed
using PCA.
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Figure A.9: R2 across months from a recursive regression of each PC portfolio on each
of the following anomalies: beta, bm, mom12m, rd_sale, and salerec. Each anomaly
loads heavily on one PC portfolio and contributes little to the rest. The PC portfolios
are constructed using PCA.
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A.2.7 Factor timing strategy constituents

In this section we examine the trading positions of our factor timing portfolios.

Specifically, using the forecasts from the LASSO-based models and the LSS, we investigate

how often each anomaly is traded. The anomalies traded under LSS are also the ones

with the highest absolute weights under TSFM and CSFM, so focusing on this case only

is representative of the general investing approach. Figure A.10 displays the percentage

trading frequency of each anomaly. Blue bars imply long and orange bars imply short

positions. Clearly, the benefits of factor timing strategies arise from rotating among

multiple anomalies and not by focusing on a handful of picks. Yet, all strategies tend to

go long on anomalies with high average returns, such as mom6m and mom12m, and short

anomalies with negative average returns, like beta, chmom and retvol. Furthermore, some

anomalies appear almost equally often in the short and the long legs of our factor timing

portfolio, implying higher volatility in conditional returns. For the models that use PCA,

these anomalies are usually related to market frictions, which also have higher volatility

and thus load more heavily on the first PCs. When RPPCA is used for the left-hand-

164



side, the anomalies more regularly traded are those with higher absolute average returns.

Finally, anomalies that do not load heavily on the dominant components, using either

PCA or RPPCA, stay out of the investable universe as their small loadings compress

their individual return forecasts close to zero. Consequently, the use of PCs for the

left-hand-side has an impact on the factor timing portfolio formation.
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Figure A.10: Percentage frequency of LSS constituents over the out-of-sample period. Blue bars suggest long and orange bars suggest
short positions. (a) PCA (b) RPPCA (c) PCA-PLS (d) RPPCA-PLS.

(a) PCA

-0.4 -0.2 0 0.2 0.4 0.6 0.8

absacc
acc
age
agr

baspread
beta

betasq
bm

bm_ia
cashdebt

cashpr
cfp

cfp_ia
chatoia
chcsho

chempia
chinv

chmom
chpmia

currat
depr

dolvol
dy

egr
ep

gma
grcapx
grltnoa

herf
hire

idiovol
ill

indmom
invest

lev
lgr

maxret
mom12m
mom1m

mom36m
mom6m

mve
mve_ia

operprof
pchcapx_ia

pchcurrat
pchdepr

pchgm_pchsale
pchquick

pchsale_pchinvt
pchsale_pchrect

pchsale_pchxsga
pchsaleinv

pctacc
pricedelay

ps
quick

rd_mve
rd_sale

retvol
roic

salecash
saleinv
salerec

sgr
sp

std_dolvol
std_turn

tang
tb

turn
zerotrade

(b) RPPCA

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

absacc
acc
age
agr

baspread
beta

betasq
bm

bm_ia
cashdebt

cashpr
cfp

cfp_ia
chatoia
chcsho

chempia
chinv

chmom
chpmia

currat
depr

dolvol
dy

egr
ep

gma
grcapx
grltnoa

herf
hire

idiovol
ill

indmom
invest

lev
lgr

maxret
mom12m
mom1m

mom36m
mom6m

mve
mve_ia

operprof
pchcapx_ia

pchcurrat
pchdepr

pchgm_pchsale
pchquick

pchsale_pchinvt
pchsale_pchrect

pchsale_pchxsga
pchsaleinv

pctacc
pricedelay

ps
quick

rd_mve
rd_sale

retvol
roic

salecash
saleinv
salerec

sgr
sp

std_dolvol
std_turn

tang
tb

turn
zerotrade

(c) PCA-PLS

-0.4 -0.2 0 0.2 0.4 0.6 0.8

absacc
acc
age
agr

baspread
beta

betasq
bm

bm_ia
cashdebt

cashpr
cfp

cfp_ia
chatoia
chcsho

chempia
chinv

chmom
chpmia

currat
depr

dolvol
dy

egr
ep

gma
grcapx
grltnoa

herf
hire

idiovol
ill

indmom
invest

lev
lgr

maxret
mom12m
mom1m

mom36m
mom6m

mve
mve_ia

operprof
pchcapx_ia

pchcurrat
pchdepr

pchgm_pchsale
pchquick

pchsale_pchinvt
pchsale_pchrect

pchsale_pchxsga
pchsaleinv

pctacc
pricedelay

ps
quick

rd_mve
rd_sale

retvol
roic

salecash
saleinv
salerec

sgr
sp

std_dolvol
std_turn

tang
tb

turn
zerotrade

(d) RPPCA-PLS
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A.3 Supplementary Material to Chapter 2

A.3.1 Supplementary Figures

Figure A.11: Upper Thresholds for qmax
t (a) and pmax

t (b) for the 85 character-
istics using a Maximum Weight Constraint of (wceil) 2%. The figures illustrate the
time variability in the maximum threshold due to the varying number of the cross-sections across
different characteristics. The maximum power thresholds vary with characteristics, reflecting
the different characteristic variabilities within each characteristic due to the time-varying size
of the cross-sections and between the long and short legs of the same characteristic due to the
presence of ties in the underlying characteristic distribution. The sample period is from January
1980 to December 2021.

(a) qmax
t

(b) pmax
t
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Figure A.12: Cross-sectional stock size for original sample and sub-sample
with five years of daily return data. The chart illustrates the difference in the number of
stocks in the sample when five years of past daily data are required. The disparity is particularly
pronounced in earlier periods, notably during the build-up of the dot com bubble, but becomes
less noticeable in later years.
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A.3.2 Return-spread maximization objective

In the base case, power portfolios are constructed based on a Sharpe ratio maxi-

mization objective. To explore the sensitivity of the approach to the underlying objec-

tive, we here construct power portfolios under a return maximization objective. Table

A.5 presents the average portfolio statistics for these power portfolios, alongside the

decile-sorted benchmarks. The results show strong consistency with those in Table 2.1,

confirming the significant outperformance of power sorting over the conventional bench-

mark.

As expected, the switch from Sharpe ratio to returns leads to power portfolios with

a higher average return but a lower Sharpe ratio, in line with the new objective. This is

achieved by slightly increasing concentration in the tails, as evident from a lower number

of effective names for both the long and short sides.
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Table A.5: Power portfolios under a return maximization objective. Return:
Average monthly return, Standard deviation.: Monthly standard deviation, Sharpe ratio: An-
nualized Sharpe ratio, t-stat: t-statistic on H0: Return=0, Maximum drawdown: Maximum
drawdown, Hit rate: Percentage frequency of positive returns, Turnover: Average monthly
turnover (bounded by 200%), # of effective names long: Number of effective names (i.e., sum
of squared weights raised to −1) for the long leg, # of effective names short: Number of effective
names (i.e., sum of squared weights raised to −1) for the short leg. The sample period is from
March 1980 to December 2021.

Equal-weighted Value-weighted
Power Conventional Power Conventional

Return (%) 0.91 0.51 0.69 0.32

Standard deviation (%) 5.03 4.21 4.95 4.39

Sharpe ratio 0.65 0.46 0.48 0.26

t-stat 4.24 2.96 3.12 1.71

Maximum drawdown (%)−56.22 −55.35 −57.05 −59.22

Hit rate (%) 61.21 57.39 57.83 53.44

Turnover (%) 39.39 39.93 35.05 35.44

# of effective names long1168.99 369.24 425.66 107.00

# of effective names short 267.78 370.33 155.07 98.42

A.3.3 Multi-factor strategies for alternative benchmarks

We briefly examine how the results reported in Section 2.4.1 generalize for multi-

factor strategies. Table A.6 reports the results for the three mutli-factor strategies, com-

paring rank portfolios to power portfolios. Evidently, multi-factor portfolios based on

rank portfolios demonstrate very similar performance across the three strategies, indicat-

ing the method’s inability to effectively combine signals in an objective-oriented fashion.

In contrast, power portfolio-based strategies clearly showcase the method’s capability to

combine individual factors into multi-factor portfolios with maximum Sharpe ratio.

When comparing averaging strategies, AVP outperforms AVR in terms of average

returns and Sharpe ratios, while also exhibiting less tail risk. In the case of the com-

bination approaches, which are more aggressive in nature, PME and PMP deliver more

than double the return compared to the rank-based strategies, leading to significantly
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higher Sharpe ratios and t-statistics. Overall, our results demonstrate that the strict

enforcement of a linear weighting scheme hinders performance at both a univariate and

a multivariate level. Furthermore, a simple rank-based approach leads to portfolios that

inherit a passive stance, limiting the effective extraction of underlying signals or the

combination of different signals.

Table A.6: Portfolio evaluation measures for multi-factor power and rank
portfolios. AVP: Multi-factor portfolio based on the average portfolio weight from individ-
ual power portfolios. AVR: Mutli-factor portfolio based on the average portfolio weight from
individual rank portfolios. PME: Power portfolio based on the average characteristic rank.
RME: Rank portfolio based on the average characteristic rank. PMP: Power portfolio based on
the rank implied by average power portfolio weights. RMR: Rank portfolio based on the rank
implied by average rank portfolio weights. Panel A shows equal-weighted results and Panel B
shows value-weighted results. The sample period is from March 1980 to December 2021.

AVP AVR PME RME PMP RMR
A. Equal-weighted portfolios
Return (%) 1.82 1.45 3.05 1.27 3.16 1.26

Standard deviation (%) 4.96 4.60 7.27 4.29 7.30 4.16

Sharpe ratio 1.27 1.09 1.45 1.03 1.50 1.05

t-stat 8.28 7.09 9.44 6.66 9.72 6.82

Maximum drawdown (%) −46.08 −41.81 −55.51 −39.17 −55.40 −38.11

Hit rate (%) 71.60 69.03 73.72 67.19 72.73 68.77

Turnover (%) 37.33 32.82 48.57 32.16 66.73 31.47

# of effective names long 1814.32 1392.70 1608.76 1463.92 146.34 1463.92

# of effective names short 600.71 1150.37 101.38 1463.92 141.27 1463.92

B. Value-weighted portfolios
Return (%) 1.36 0.97 2.80 1.00 2.50 0.98

Standard deviation (%) 4.57 4.23 7.40 4.33 7.07 4.20

Sharpe ratio 1.03 0.80 1.31 0.80 1.23 0.81

t-stat 6.68 5.17 8.52 5.22 7.96 5.25

Maximum drawdown (%) −41.21 −42.03 −61.54 −43.12 −56.61 −42.29

Hit rate (%) 67.26 63.31 69.37 62.45 68.77 62.45

Turnover (%) 34.00 29.57 44.64 27.04 52.56 26.30

# of effective names long 641.23 404.75 578.14 562.56 166.51 556.31

# of effective names short 510.43 1062.73 79.87 849.04 89.25 821.85
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Next, our attention turns to PPP. Beginning with the averaging strategy, power

sorting outperforms PPP, achieving higher returns with lower risk, while metrics for

portfolio concentration and turnover remain largely comparable between the two methods.

In the case of PPPME, which employs average standardized characteristics instead

of ranks, a lower risk-return trade-off is achieved compared to PME, albeit with reduced

turnover and portfolio weight concentration. It’s important to note that the use of average

standardized characteristic scores, rather than ranks, implies an unequal contribution of

characteristics to the composite score.

Table A.7: Portfolio evaluation measures for multi-factor power and PPP
portfolios. AVP: Multi-factor portfolio based on the average portfolio weight from individual
power portfolios. AVPPP: Mutli-factor portfolio based on the average portfolio weight from
individual PPP portfolios. PME: Power portfolio based on the average characteristic rank.
PPPME: PPP portfolio based on the average standardized characteristic score. PMP: Power
portfolio based on the rank implied by average power portfolio weights. PMPP: PPP portfolio
using as input the average PPP portfolio weights. The sample period is from March 1980 to
December 2021.

AVP AVPPP PME PPPME PMP PMPPP
A. Equal-weighted portfolios
Return (%) 1.82 1.59 3.05 1.71 3.16 1.16

Standard deviation (%) 4.96 5.03 7.27 5.23 7.30 4.00

Sharpe ratio 1.27 1.09 1.45 1.13 1.50 1.00

t-stat 8.28 7.10 9.44 7.36 9.72 6.48

Maximum drawdown (%) −46.08 −49.86 −55.51 −50.68 −55.40 −39.96

Hit rate (%) 71.60 69.70 73.72 71.49 72.73 67.13

Turnover (%) 37.33 37.11 48.57 41.06 66.73 34.89

# of effective names long 1814.32 1817.63 1608.76 1349.67 146.34 2262.59

# of effective names short 600.71 599.62 101.38 731.17 141.27 1177.60

Finally, adopting the sum of weights as the underlying signal leads to further diver-

gence in performance and a more passive stance for PMPPP. This passivity arises from

extreme skewness in features related to market friction proxies, which are indicative of

specific sets of illiquid stocks. These outliers in the short tail impede the strategy from

attaining high values of theta to mitigate over-concentration in a handful of stocks on
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the short side. Unlike a ranking-based aggregation, the significant relative distance of

these outliers can result in extreme weight allocations with only slight adjustments in the

underlying parameter. This outcome underscores the limitations of employing a single

parameter to capture variation in a long-short sense, as well as utilizing characteristic

distributions with distinct properties, failing to effectively aggregate information across

various characteristics and adequately capture the heterogeneity in behavior across tails.

Moving on, we see how efficient and power sorting generalize to a multi-factor level

using the updated sample. In Panel A of Table A.8, we begin by analyzing the averaging

strategy. Power sorting exhibits the highest average return, while efficient sorting exhibits

the smallest volatility and highest Sharpe ratio. Nonetheless, the performance differences

across all variations, including the conventional approach, are relatively small. This

can be attributed to the averaging strategy, which blends exposures without adequately

differentiating the strength of the underlying signal.

Panel B presents the results for the strategy that utilizes the average characteristic

rank. In the case of efficient sorting, the characteristics are cross-sectionally standard-

ized and added together, rather than using their ranks, to maintain consistency with the

original framework. The optimization-based approaches clearly outperform the conven-

tional approach when the underlying signal is informative, resulting in a significant 30%

increase in the Sharpe ratio. While the power sorting approaches primarily increase aver-

age returns through asymmetric concentration in the tails, the efficient sorting approach

achieves similar results by reducing variance. Moreover, the efficient sorting approach

demonstrates the lowest drawdown, albeit at a cost of 20% higher turnover per month

compared to power sorting.
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Table A.8: Portfolio evaluation measures for multi-factor power and efficient
portfolios. Return: Average monthly return, Standard deviation: Monthly standard devia-
tion, Sharpe ratio: Annualized Sharpe ratio, t-stat: t-statistic on H0: Return=0, Maximum
drawdown: Maximum drawdown, Hit rate: Percentage frequency of positive returns, Turnover:
Average monthly turnover bounded by 200%, # of effective names long: Number of effective
names (i.e., sum of squared weights raised to −1) for the long leg, # of effective names short:
Number of effective names (i.e., sum of squared weights raised to −1) for the short leg. The
sample includes stocks with an available return history of five years at each investment date
through the period from March 1980 to December 2021. Panel A shows the Weight averaging
strategy, Panel B shows the average characteristic rank strategy, and Panel C shows the average
weight rank strategy.

Power Power Efficient Conventional
VCV

A. Weight Averaging Strategy
Return (%) 1.38 1.28 1.19 1.14

Standard deviation (%) 4.58 4.67 3.52 3.81

Sharpe ratio 1.04 0.95 1.17 1.04

t-stat 6.78 6.15 7.59 6.75

Maximum drawdown (%) −43.85 −45.96 −38.96 −41.82

Hit rate (%) 68.97 66.01 70.36 70.36

Turnover (%) 36.63 35.76 39.96 42.14

# of effective names long 1244.12 1242.10 995.91 990.89

# of effective names short 434.08 488.97 601.37 632.24

B. Average Characteristic Rank Strategy
Return (%) 2.25 1.93 1.52 1.53

Standard deviation (%) 6.41 5.51 4.31 5.61

Sharpe ratio 1.22 1.22 1.22 0.95

t-stat 7.90 7.90 7.92 6.14

Maximum drawdown (%) −55.28 −55.28 −50.02 −57.66

Hit rate (%) 70.16 69.96 71.34 68.18

Turnover (%) 47.26 46.71 66.76 52.68

# of effective names long 1051.80 1195.59 440.34 270.94

# of effective names short 103.19 294.13 271.34 270.94

C. Average Weight Rank Strategy
Return (%) 2.39 2.29 1.23 1.55

Standard deviation (%) 6.99 7.37 3.97 5.03

Sharpe ratio 1.18 1.08 1.07 1.06

t-stat 7.68 6.99 6.96 6.91

Maximum drawdown (%) −50.76 −59.18 −45.41 −51.68

Hit rate (%) 70.95 69.37 70.16 70.55

Turnover (%) 61.99 63.35 71.56 59.73

# of effective names long 99.17 98.74 443.71 270.94

# of effective names short 134.26 128.99 413.40 270.94
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Finally, Panel C displays the findings for the strategy that utilizes the sum of weights

as the underlying signal. Once again, power sorting emerges with the highest Sharpe ra-

tio by maximizing average returns, despite exhibiting the highest variance. In contrast,

efficient sorting demonstrates the lowest volatility, although it comes with the highest

turnover. The conventional approach falls in the middle, achieving a Sharpe ratio com-

parable to that of the sophisticated approaches.

Notably, the sophisticated approaches inherently differ in their approach to factor

portfolio construction. Specifically, when there is a strong underlying signal, as is the case

with the sum of power portfolio weights, power sorting adopts an aggressive stance by

increasing the concentration ratios to maximize performance. This results in a significant

improvement in average returns, albeit at the expense of higher volatility. In contrast,

efficient sorting does not distinguish between weak and strong signals, consistently striv-

ing to minimize variance, even if it slightly reduces the underlying premia. However, it

is worth noting that a variance reduction objective can also be achieved through a power

sorting framework.

A.4 Supplementary Material to Chapter 3

A.4.1 Squared Sharpe ratio from adding each factor in each

iteration
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Figure A.13: Squared Sharpe ratio from adding each factor to the factor
model of the previous iteration

(a) Iteration 1
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(b) Iteration 2
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(c) Iteration 3
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(d) Iteration 4
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(e) Iteration 5
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(f) Iteration 6
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