
New Facets of the Clique Partitioning Polytope

Adam N. Letchford∗ Michael M. Sørensen†

September 2024; Revised December 2024

Abstract

The clique partitioning problem is a combinatorial optimisation
problem which has many applications. At present, the most promising
exact algorithms are those that are based on an understanding of the
associated polytope. We present two new families of valid inequalities
for that polytope, and show that the inequalities define facets under
certain conditions.

Key Words: clique partitioning problem; combinatorial optimisation;
polyhedral combinatorics

1 Introduction

In the clique partitioning problem (CPP), we are given a complete undirected
graph G = (V,E), where V is the set of vertices (or nodes) and E is the set of
edges. We are also given a rational weight we for each edge e ∈ E. The task
is to find a partition of V into cliques, such that the sum of the weights of
the edges that have both end-nodes in the same clique is maximised [8, 13].
The CPP has applications in sociology, zoology and economics [8, 13], group
technology [20], network analysis [7] and computational biology [2].

At present, the most promising exact algorithms are based on the follow-
ing integer programming formulation, due to Marcotorchino [13]. For each
edge e = {i, j} ∈ E, let xe be a binary variable, taking the value 1 if and
only if nodes i and j lie in the same set in the partition. We then have:

max
∑

e∈E wexe

s.t. xik + xjk − xij ≤ 1 ({i, j} ∈ E, k ∈ V \ {i, j}) (1)

xe ∈ {0, 1} (e ∈ E). (2)

∗Department of Management Science, Lancaster University, Lancaster LA1 4YW,
United Kingdom. E-mail: A.N.Letchford@lancaster.ac.uk

†Department of Economics and Business Economics, Aarhus University, Fuglesangs
Allé 4, DK-8210 Aarhus V, Denmark. E-mail: mim@econ.au.dk

1

The constraints (1) are called transitivity inequalities. The convex hull
of solutions to (1), (2) is called the clique partitioning polytope. Valid in-
equalities for this polytope can be used to good effect in exact algorithms
for the CPP [8, 16, 17, 18, 19].

In this paper, we introduce two new families of valid inequalities for the
clique partitioning polytope, and show that they define facets under certain
conditions. The paper has a very simple structure. Section 2 reviews the
relevant literature, and the remaining two sections present the two families
of inequalities, along with the facet proofs.

Throughout the paper, we use the following notation. Given a set S ⊂ V ,
we let E(S) denote the set of edges with both end-nodes in S. Given disjoint
sets S1, S2 ⊂ V , we let E(S1 : S2) denote the set of edges with one node in
S1 and the other in S2. For brevity, we also write E(v : S) for E({v} : S).

2 Literature Review

Let Pn denote the clique partitioning polytope of order n. The study of Pn

was initiated by Grötschel & Wakabayashi [10]. They showed that the tran-
sitivity inequalities define facets, along with the non-negativity inequality
xe ≥ 0 for all e ∈ E. They then presented four additional families of facet-
defining inequalities, called 2-partition, 2-chorded odd cycle, 2-chorded even
wheel and 2-chorded path inequalities. Among them, we will be particularly
interested in the first two families of inequalities.

The 2-partition inequalities take the form:∑
e∈E(S:T)

xe −
∑

e∈E(S)

xe −
∑

e∈E(T)

xe ≤ min {|S|, |T |},

where S and T are disjoint and non-empty subsets of V . They define facets
of Pn if and only if |S| ≠ |T |.

The 2-chorded odd cycle (2-COC) inequalities take the form

c∑
i=1

x(vi, vi+1)−
c∑

i=1

x(vi, vi+2) ≤ ⌊c/2⌋, (3)

where (a) c ≥ 5 is an odd integer, (b) v1, . . . , vc are distinct nodes, and (c)
indices are taken modulo c.

After the publication of [10], several other families of strong valid in-
equalities were quickly discovered [1, 3, 4, 6, 9, 14, 18]. Among those, we
will be interested in the odd wheel (OW) inequalities of Chopra & Rao [4],
which always define facets. They take the form:

c∑
k=1

x(h, vk)−
c∑

k=1

x(vk, vk+1) ≤ ⌊c/2⌋, (4)

2

where (a) c ≥ 3 is an odd integer, (b) v1, . . . , vc and h are distinct nodes,
and (c) indices are taken modulo c. The node h is called the ‘hub’.

Sørensen [18] found a family of facet-defining inequalities, called odd
clique wheel (OCW) inequalities, that includes the OW inequalities as a
special case. Let c ≥ 3 be an odd integer, let h be a node, and let S1, . . . , Sc ⊂
V \ {h} be disjoint and non-empty node sets. The OCW inequalities take
the form:

c∑
k=1

∑
e∈E(h:Sk)

xe −
c∑

k=1

∑
e∈E(Sk)

xe −
c∑

k=1

∑
e∈E(Sk:Sk+1)

xe ≤ ⌊c/2⌋, (5)

where, as usual, indices are taken modulo c. Note that these reduce to the
OW inequalities (4) when |Sk| = 1 for all k.

Still more valid and facet-defining inequalities for Pn can be found in
[11, 12, 15, 16]. We do not go into details, for brevity. We will however need
the following result. It was first stated explicitly in Section 2 of Bandelt et
al. [1], but it is also an easy consequence of Theorem 2.9 in Deza et al. [6].

Theorem 1 (Trivial Lifting). If the inequality∑
1≤i<j≤n

αijxij ≤ β

is valid (or facet-defining) for Pn, then it is valid (or facet-defining) for Pn′

for all n′ > n.

3 Generalised Odd Wheel Inequalities

In this section and the next, we say that a clique is “trivial” if it contains
only one node. The following theorem presents a family of valid inequalities
that includes the OCW inequalities (5) as a special case.

Theorem 2. Let c ≥ 3 be an odd integer, and let H and S1, . . . , Sc be
disjoint and non-empty node sets. The “generalised odd wheel” (GOW)
inequality

c∑
k=1

∑
e∈E(H:Sk)

xe −
⌊ c
2

⌋ ∑
e∈E(H)

xe −
c∑

k=1

∑
e∈E(Sk)

xe

−
c∑

k=1

∑
e∈E(Sk:Sk+1)

xe ≤ |H|
⌊ c
2

⌋
(6)

is valid for Pn.

3

Proof. Let S′ =
⋃c

i=k Sk. By Theorem 1, we can assume without loss of
generality that V = H ∪ S′. Moreover, one can check that, if c = 3, then
the inequality reduces to a 2-partition inequality. (It suffices to set S to H
and T to S′.) So we can also assume c ≥ 5.

Now, let x1 be an extreme point of Pn, and let x2 be the extreme point
of Pn+1 that one obtains from x1 by setting xi,n+1 to 0 for i = 1, . . . , n
(or, equivalently, placing node n + 1 in a trivial clique). Also consider any
k ∈ {1, . . . , c}. One can check that x1 violates the GOW inequality (6) if
and only if x2 violates the modified GOW inequality that one would obtain
by replacing Sk with Sk ∪ {n+1}. Applying this procedure n times to each
of the sets Sk, we obtain an extreme point of Pn(c+1) that violates a GOW
inequality, yet corresponds to a CPP solution in which at least n nodes of
each set Sk lie in a trivial clique. We assume w.l.o.g. that we are working
with such a CPP solution from now on.

Now suppose that there is a non-trivial clique C in the solution such
that C ⊆ H. If we modify the solution by placing each node in C in its own
trivial clique, the left-hand side of the GOW inequality increases. Thus, we
can assume w.l.o.g. that no such clique exists. For a similar reason, we can
assume w.l.o.g. that no non-trivial clique is a subset of S′. So, from now on,
we assume that each non-trivial clique contains at least one node from H
and at least one node from S′.

Now suppose that there is a non-trivial clique C in the solution, and an
index k, such that C∩Sk and C∩Sk+1 are both non-empty. Let r = |C∩Sk−1|
and s = |C ∩ Sk+2|. One can check that, if r > s, then the left-hand side
of the GOW inequality would increase if we modified the solution by (a)
removing the nodes in C ∩ Sk from C and placing those nodes in trivial
cliques, and (b) expanding C back to its original size by adding nodes from
Sk+1 \ C that are currently in trivial cliques. Similarly, if s > r, then the
left-hand side would increase if we removed the nodes in C ∩ Sk+1 from C
and replaced them with nodes from Sk \C. If s = r, we could perform either
operation without affecting the left-hand side.

Thus, we can assume w.l.o.g. that no non-trivial clique C intersects two
consecutive sets Sk, Sk+1. This implies in particular that each non-trivial
clique has a non-empty intersection with no more than ⌊c/2⌋ of the sets Sk.
In other words, it suffices to show that the GOW inequality is satisfied by
all CPP solutions for which each clique that intersects H has a non-empty
intersection with no more than ⌊c/2⌋ of the sets Sk.

Now let C be a clique that intersects H. We define

T =
{
k ∈ {1, . . . , c} : C ∩ Sk ̸= ∅

}
.

Note that, from the previous paragraph, we can assume that |T | ≤ ⌊c/2⌋.

4

For k ∈ T , consider the 2-partition inequality∑
e∈E(C∩H:C∩Sk)

xe −
∑

e∈E(C∩H)

xe −
∑

e∈E(C∩Sk)

xe ≤ |C ∩H|.

Summing together the 2-partition inequalities over all k ∈ T , we obtain∑
k∈T

∑
e∈E(C∩H:C∩Sk)

xe − |T |
∑

e∈E(C∩H)

xe −
∑
k∈T

∑
e∈E(C∩Sk)

xe ≤ |C ∩H| |T |.

Since |T | ≤ ⌊c/2⌋, the contribution of the edges in E(C) to the left-hand
side of (6) cannot exceed |C ∩H|⌊c/2⌋. Applying the same argument to all
of the remaining cliques that intersect H, we find that the total contribution
of those cliques to the left-hand side of (6) cannot exceed |H|⌊c/2⌋.

Note that the inequalities (6) reduce to the OCW inequalities (5) when
|H| = 1. We have the following theorem:

Theorem 3. If
|Sk| > ⌊|H|/2⌋ (k = 1, . . . , c), (7)

then the GOW inequality (6) defines a facet of Pn.

Proof. As before, let S′ denote
⋃c

k=1 Sk. From Theorem 1, it is enough to
prove the result for the case in which H ∪S′ = V . Moreover, we can assume
that c ≥ 5 since, for c = 3, the inequality reduces to a 2-partition inequality.
We can also assume w.l.o.g. that H = {1, . . . , h}.

Let us say that a CPP solution is a “root” if it satisfies the inequality
(6) at equality. As usual in polyhedral proofs, we will suppose that all roots
satisfy some linear equation, say αTx = β, and then show that this equation
is a multiple of the equation that one obtains by changing (6) to an equation.

We start by constructing one specific root, which we will callR. This root
will contain h non-trivial cliques, each of cardinality ⌈c/2⌉. For i = 1, . . . , h,
the i-th clique contains node i, together with one node from each of the
sets S2−i, S4−i, . . . , S(c−1)−i. Any nodes that have not yet been placed into
a clique are then placed into their own trivial clique.

Now, the condition (7) implies that at least ⌈c/2⌉ of the nodes in S′ lie
in trivial cliques. Moreover, due to the way that R was constructed, there
exists an index k such that each of the sets Sk, Sk+2, . . . , Sk+c−1 contains
at least one trivial clique. This means in particular that, given any integer
t ∈ {2, . . . , ⌊c/2⌋}, we can find sets Sk and Sk+t that each contain a trivial
clique. Let {u} be a trivial clique in Sk and {v} be a trivial clique in Sk+t.
We can obtain a new root by taking R and replacing the cliques {u} and
{v} with the single clique {u, v}. From this we deduce that αuv = 0. By
symmetry, this implies that αe = 0 for all e ∈ E(Sk : Sk+t). Applying this
argument for all t in the given range, we deduce that αe = 0 for all of the
edges that have a coefficient of zero in the inequality (6).

5

Returning to our original root R, observe that there must be a node
u ∈ H, a set Sk and nodes v, w ∈ Sk such that u and v are in the same
clique, say C, but node w is in a trivial clique. From this, we can construct
another root by removing node v from C, placing node v into a trivial clique,
and putting node w into C. This shows that αuv = αuw. By symmetry, this
also shows that αuv = αuw for all u ∈ H, all k ∈ {1, . . . , c} and all v, w ∈ Sk.

We can also construct another root from R by placing node w into C.
By symmetry, this shows that αvw = −αuw for all u ∈ H, all k ∈ {1, . . . , c}
and all v, w ∈ Sk.

Returning a second time to R, observe that there must be a node u ∈ H,
an index k, a clique C, and nodes v ∈ Sk, w ∈ Sk+1 such that (a) u and v
lie in C, (b) w lies in a trivial clique, and (c) C ∩ Sk+2 = ∅. From this, we
can construct another root by removing node v from C, placing node v into
a trivial clique, and putting node w into C. By symmetry, this shows that
αuv = αuw for all u ∈ H and all v, w ∈ S′.

We can also construct another root from R by placing node w into C.
By symmetry, this shows that αuw = −αvw for all u ∈ H, all k ∈ {1, . . . , c},
all v ∈ Sk and all w ∈ Sk+1.

The restrictions on α that we have shown so far are already enough to
prove the result for the case h = 1. To complete the proof, we must deal
with the case h ≥ 2.

Returning a third time to R, let u and v be distinct nodes in H, and
let C1 and C2 be the cliques to which they belong. We can obtain another
root by moving u to C2 and moving v to C1. From this we conclude that
αuw = αvw for every w ∈ S′. This in turn shows that αuw is constant for all
u ∈ H and w ∈ S′. We can assume w.l.o.g. that the equation αTx = β has
been scaled so that this constant is 1.

Finally, observe that, when h ≥ 2 and condition (7) holds, we have Sk ≥
2 for all k. Also recall that R has h non-trivial cliques. We construct one
final root from R by (a) deleting the second non-trivial clique and putting all
of its nodes into trivial cliques, and (b) enlarging the first non-trivial clique
so that it contains nodes 1 and 2, together with two nodes from each of the
sets S1, S3, . . . , Sc−2. Comparing this root to R, we see that α12 = −⌊c/2⌋.
By symmetry, we have αuv = −⌊c/2⌋ for all u, v ∈ H.

It was pointed out to us by an anonymous reviewer that the condition
(7) is not necessary to obtain a facet. Indeed, as noted in the proofs of
Theorems 2 and 3, the GOW inequalities reduce to 2-partition inequalities
when c = 3. From that, one can show that the GOW inequalities with c = 3
define facets if and only if |S1|+ |S2|+ |S3| > |H|. We leave the derivation
of a necessary and sufficient condition for future research.

6

4 Generalised 2-Chorded Odd Cycle Inequalities

We now present a family of valid inequalities that includes the 2-COC in-
equalities (3) as a special case.

Theorem 4. Let c ≥ 5 be an integer, and let S1, . . . , Sc be disjoint and non-
empty node sets such that

∑c
k=1 |Sk| is odd. The “generalised 2-chorded odd

cycle” (G2COC) inequality

c∑
k=1

∑
e∈E(Sk:Sk+1)

xe−
c∑

k=1

∑
e∈E(Sk)

xe−
c∑

k=1

∑
e∈E(Sk:Sk+2)

xe ≤
⌊∑c

k=1 |Sk|
2

⌋
(8)

is valid for Pn.

Proof. As usual, we can assume w.l.o.g. that V = S1 ∪ · · · ∪ Sc. So let
c and S1, . . . , Sc be given. We say that a CPP solution is “bad” if the
corresponding x vector violates (8).

Now suppose that we are given a bad solution. For a given non-trivial
clique C that is used in the bad solution, let G(C) be a graph with node set

V (C) =
{
k ∈ {1, . . . , c} : C ∩ Sk ̸= ∅

}
,

in which the edge {k, k+1} is present if and only if both k and k+1 are in
V (C). For example, if C has a non-empty intersection with S1, S2 and S4,
then G(C) contains the nodes 1, 2 and 4 and the edge {1, 2}. We will call
G(C) the signature of the clique C. Note that the signature is a subgraph
of a cycle on c nodes.

We will apply a series of operations to the bad solution, in order to
obtain a bad solution such that each non-trivial clique that is used in the
solution has a signature with special properties.

First, suppose that G(C) has q ≥ 2 connected components. We replace
C with q smaller cliques as follows. For each component K of G(C), we form
the clique

⋃
k∈K(Sk ∩C). One can check that this transformation leaves the

violation of the G2COC inequality unchanged. Thus, we can assume that
each non-trivial clique has a connected signature.

Second, suppose that the signature consists of a single isolated node,
say u. Since all edges in E(Su) have negative coefficients in (8), we obtain
another bad solution by replacing the clique C with |C| trivial cliques. Thus,
we can assume that each non-trivial clique has a signature that contains
between 2 and c nodes.

Third, suppose that the signature is a cycle on c nodes. Consider some
k ∈ {1, . . . , c}, and let v be some node in C ∩ Sk. Suppose we removed v
from C, and then placed v in its own trivial clique. One can check that this
would cause the violation of (8) to increase by at least

δk = |Sk−2 ∩ C|+ |Sk+2 ∩ C| − |Sk−1 ∩ C| − |Sk+1 ∩ C|.

7

Now, since the sum of the δk values is zero, at least one of them must be
non-negative. Thus, we are able to obtain another bad solution by removing
a node from C. Repeating this operation, if necessary, we obtain a bad
solution such that the signature of each non-trivial clique is a path that
contains between 2 and c− 1 nodes.

Fourth, suppose that the signature of a non-trivial clique is a path with 2
or more edges. We can assume w.l.o.g. that the path starts at node 1. That
is, C intersects with S1, . . . , S3, but does not intersect Sc. Let u ∈ C ∩ S1

and v ∈ C ∩ S2. Suppose we removed u and v from C, and placed u and v
in their own clique. One can check that the violation of (8) would increase
by |S4 ∩ C| ≥ 0. By repeating this operation, if necessary, we can ensure
that at least one of C ∩ S1 or C ∩ S2 becomes empty. Thus, we can assume
that each non-trivial clique has a signature that contains a single edge.

Now, suppose that the signature of C contains 2 nodes, say k and k+1.
Let T1 = Sk ∩C and T2 = Sk+1 ∩C. The contribution of C to the left-hand
side of (8) is: ∑

e∈E(T1:T2)

xe −
∑

e∈E(T1)

xe −
∑

e∈E(T2)

xe.

But there is a 2-partition inequality which states that this contribution
cannot exceed min {|T1|, |T2|}. This in turn implies that the contribution
cannot exceed ⌊|C|/2⌋.

Thus, the contribution of any non-trivial clique C to the left-hand side
of (8) cannot exceed ⌊|C|/2⌋. This implies that (8) is satisfied, which con-
tradicts the assumption that the initial CPP solution was bad.

Note that the G2COC inequalities (8) reduce to the 2-COC inequalities (3)
when |Sk| = 1 for all k (which implies that c is odd).

The following theorem gives a simple sufficient (but not necessary) con-
dition for a G2COC inequality to define a facet.

Theorem 5. If all of the Sk have the same cardinality, then the G2COC
inequality (8) defines a facet of Pn.

Proof. Let |Sk| = d for k = 1, . . . , c. We can assume that d ≥ 3 and
odd, since the inequality reduces to a 2-COC inequality when d = 1, and∑c

k=1 |Sk| must be odd. (This implies of course that c ≥ 3 and odd as well.)
Moreover, from Theorem 1, we can assume that every node in V lies in one
of the Sk.

As in the proof of Theorem 3, we say that a CPP solution is a “root”
if it satisfies (8) at equality, and we will suppose that all roots satisfy the
equation αTx = β.

Now, let E′ =
⋃c

k=1E(Sk : Sk+1) and let G′ = (V,E′). Our first claim
is that, given any u ∈ V , there exists a matching in G′ that touches every
node except u. To see why, suppose w.l.o.g. that u ∈ S1. Match (d − 1)/2

8

nodes from S1 (not including node u) with (d − 1)/2 nodes in S2. Then
take the (d + 1)/2 unmatched nodes in S2 and match them with (d + 1)/2
nodes in S3. Proceed in the same way, matching (d− 1)/2 nodes from each
Sk with k odd to Sk+1 and matching (d + 1)/2 nodes from each Sk with k
even to Sk+1. This procedure ends by taking the final (d− 1)/2 unmatched
nodes in Sc and matching them with the remaining unmatched nodes in S1.

Given a node u ∈ V and a matching of the given type, we can construct
a root by treating each edge {v, w} in the matching as a clique of cardinality
2, and putting u into its own trivial clique. We call such roots “u-roots”.

Now, let u and v be nodes in S1 and let w be a node in S2. Also let R be
a u-root that contains the edge {v, w}. We can construct another root by
putting u and w into a clique and putting v into a trivial clique. This shows
that αuw = αvw. Moreover, we can construct a different root by putting u,
v and w into a single clique. This shows that αuv = −αuw. By symmetry,
this shows that αe = −αf for all e ∈

⋃c
k=1E(Sk) and all f ∈ E′. Thus,

we can assume w.l.o.g. that the equation αTx = β has been scaled so that
αe = −1 for all e ∈

⋃c
k=1E(Sk) and αe = 1 for all e ∈ E′.

Now let u ∈ S1, v ∈ S2 and w ∈ S3. Also let R be a u-root that
contains the cliques {u} and {v, w}. We can construct another root by
replacing those two cliques with the single clique {u, v, w}. This shows
that αuw = −αuv = −1. By symmetry, this shows that αe = −1 for all
e ∈

⋃c
k=1E(Sk : Sk+2).

Finally, suppose that c ≥ 7. Let k be any integer between 4 and c − 3,
and let u ∈ S1, v ∈ Sk and w ∈ Sk+1. Also let R be a u-root that contains
the clique {v, w}. We can construct another root by inserting u into the
clique. This shows that αuv + αuw = 0. By symmetry, this shows that
αe = 0 for all of the edges that have a coefficient of zero in (8).

It turns out that G2COC inequalities can define facets of Pn even if
not all of the Sk have the same cardinality. Using a software package such
as PORTA [5], one can verify that the inequality remains facet-defining, for
example, if 5 ≤ c ≤ 7 and |Sk| ∈ {3, 4} for all k. After experimenting with
several such examples, we make the following conjecture:

Conjecture. Suppose the following holds for k = 1, . . . , c and p = 1, . . . , ⌊c/2⌋:

p−1∑
q=0

|Sk+2q| ≤
p∑

q=0

|Sk+2q−1|.

Then the G2COC inequality (8) defines a facet of Pn.

Acknowledgement: We thank an anonymous reviewer for several helpful
comments that enabled us to improve the paper.

9

References

[1] H.-J. Bandelt, M. Oosten, J.H.G.C. Rutten, and F.C.R. Spieksma. Lift-
ing theorems and facet characterization for a class of clique partitioning
inequalities. Oper. Res. Lett., 24:235–243, 1999.

[2] S. Böcker, S. Briesemeister, and G.W. Klau. Exact algorithms for clus-
ter editing: Evaluation and experiments. Algorithmica, 60:316–334,
2011.

[3] A. Caprara and M. Fischetti. {0, 12}-Chvátal-Gomory cuts. Math. Pro-
gram., 74:221–235, 1996.

[4] S. Chopra and M.R. Rao. The partition problem. Math. Program.,
59:87–115, 1993.

[5] T. Christof and A. Loebl. PORTA (polyhedron representa-
tion transformation algorithm). Software package, available at
http://comopt.ifi.uni-heidelberg.de/software/PORTA/.

[6] M. Deza, M. Grötschel, and M. Laurent. Clique-web facets for multicut
polytopes. Math. Oper. Res., 17:981–1000, 1992.

[7] S. Fortunato. Community detection in graphs. Phys. Rep., 486:75–174,
2010.

[8] M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a
clustering problem. Math. Program., 45:59–96, 1989.

[9] M. Grötschel and Y. Wakabayashi. Composition of facets of the clique
partitioning polytope. In R. Bodendieck and R. Henn, editors, Topics
in Combinatorics and Graph Theory, pages 271–284. Physica-Verlag,
Heidelberg, 1990.

[10] M. Grötschel and Y. Wakabayashi. Facets of the clique partitioning
polytope. Math. Program., 47:367–387, 1990.

[11] A.N. Letchford and M.M. Sørensen. Binary positive semidefinite ma-
trices and associated integer polytopes. Math. Program., 131:253–271,
2012.

[12] A.N. Letchford and A.N. Vu. Facets from gadgets. Math. Program.,
185:297–314, 2021.

[13] J.F. Marcotorchino. Aggregation of Similarities in Automatic Classifi-
cation (in French). PhD thesis, Université Paris VI, 1981.

[14] R. Müller. On the partial order polytope of a digraph. Math. Program.,
73:31–49, 1996.

10

[15] R. Müller and A.S. Schulz. Transitive packing: a unifying concept in
combinatorial optimization. SIAM J. Optim., 13:335–367, 2002.

[16] M. Oosten, J.H.G.C. Rutten, and F.C.R. Spieksma. The clique par-
titioning problem: facets and patching facets. Networks, 38:209–226,
2001.

[17] R.Y. Simanchev, I.V. Urazova, and Y.A. Kochetov. The branch and
cut method for the clique partitioning problem. J. Appl. Ind. Math.,
13:539–556, 2019.

[18] M.M. Sørensen. A Polyhedral Approach to Graph Partitioning. PhD
thesis, Department of Management Science, Aarhus School of Business,
Denmark, 1995.

[19] M.M. Sørensen. A separation heuristic for 2-partition inequalities for
the clique partitioning problem. Technical report, Department of Eco-
nomics and Business Economics, Aarhus University, Denmark, 2020.

[20] H. Wang, B. Alidaee, F. Glover, and G. Kochenberger. Solving group
technology problems via clique partitioning. Int. J. Flex. Manuf. Syst.,
18:77–97, 2006.

11

