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Observer-Based Adaptive Robust Actor-Critic
Learning Saturated PID Controller for a Class of
Euler-Lagrange Robotic Systems with Guaranteed

Performance: Theory and Practice
Omid Elhaki, Khoshnam Shojaei, Abbas Chatraei, and Allahyar Montazeri

Abstract—This article addresses the output-feedback reinforce-
ment learning-based saturated proportional-integral-derivative
(PID) control design for fully-actuated Euler–Lagrange (EL)
systems which are uncertain subject to actuator saturation
with prescribed performance. It is assumed that the actuator
input nonlinearity, uncertain nonlinearities and unmeasurable
external disturbances have a significant impact on the system.
The presence of actuator saturation and complex uncertainties
may inevitably give rise to the breakdown of the EL control
system. The lack of prior knowledge of the system dynamics
renders the presented technique to achieve a robust prescribed
tracking performance without using velocity sensors. To conquer
mentioned obstacles, a novel reinforcement learning saturated
PID controller, which isn’t dependent on the system’s dynam-
ics and only requires measurable output signals is designed
via actor-critic structure to deeply estimate and compensate
complex unknowns. An adaptive robust controller is used to
reduce external disturbances effects adaptively. The prescribed
performance funnel control way is considered to guarantee
predetermined output constraints. The high-gain observer (HGO)
is used to estimate velocities and derivatives free of system
dynamics, and generalized saturation functions are utilized to
efficiently decrease actuator saturation danger. It is proved that
suggested technique ensures a robust prescribed performance
with input constraints in the absence of velocity sensors and
the existence of considerable complicated model uncertainties.
A SGUUB (semi-global uniform ultimate boundedness) stability
for tracking deviation errors and state estimation deviation is
ensured through a Lyapunov stability study. Finally, experimental
results on a real robotic arm is carried out to further demonstrate
the effectiveness of all theoretical findings.

Index Terms—Reinforcement learning, actor-critic neural net-
work, performance bound, high-gain observer, generalized satu-
ration function.

I. INTRODUCTION

MULTI-LAYER neural network (NN) reinforcement
learning (MLNNRL) solves the dimensional explosion
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problem by estimating the critic function and nonlinearities
with multi-layer neural networks (MLNNs). In fact, MLNNRL
method is a compound of MLNNs, which are able to deal with
the curse of dimensionality problem [1], and reinforcement
learning (RL) [2, 3]. RL-based tactics are used in various fields
such as health-care and medicine [4], operations research and
economics, robotics and autonomous systems [3], and optimal
control design problems [5], due to their wide potential
benefits on decision-making and independent learning, which
can strengthen the adaptability and robustness of the systems.
Actor–critic (AC) learning framework [6, 7] has been observed
as a major structure for RL that unifies the value-based (like Q-
learning) as well as action-based (suchlike gradients of policy)
RL methods to improve the learning performance of the
system. RL is mainly made up of two NNs, i.e. the critic-NN
(CNN) and the actor-NN (ANN). The CNN is exerted to assess
the ongoing system execution and manage the subsequent step
of the ANN action to enhance the performance of learning
for the system. Thus, AC learning design has been viewed
as a key basis for RL in designing control systems for EL
dynamic systems [8, 9]. Therefore, the fusion of MLNNs
and RL has become a sensible solution for complex decision-
making problems.

Currently, some scholars have researched the potential of
intelligent control schemes to achieve high control perfor-
mance for EL systems while others are using RL to improve
autonomous operation of such dynamic systems. In [10], the
output-feedback Q-learning problem was investigated for a
finite-horizon linear-quadratic (LQ) optimal control. However,
this method suffers from redefining Q-factors. Reference [11]
has proposed a RL-based controller for the flexible arms. The
output-feedback regulator problem has been investigated in
[12] by presenting a new linear quadratic regulation (LQR) Q-
function. Nevertheless, the solution for LQR must be provided
with some data samples and it should be viewed as an
important computational burden. From the presented review,
it is clear that most of the RL methods face a considerable
amount of the computational load and the curse of dimen-
sionality due to the requirement of finding the solution to
the Hamilton–Jacobi–Bellman (HJB) optimization principle,
other optimization standards, and iterative algorithms. Actu-
ally, analytical results for the equation of HJB are mostly
infeasible to be obtained and some optimal methods are
devoted to solve the HJB problem [13]. For the particular cases
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of systems that are linear, the equation of HJB decreases to
an algebraic Riccati equation (ARE). Traditional approaches
to find an answer for the ARE are offline and need the
complete knowledge of the system dynamics that may be
impossible in practice. AREs are arduous to resolve because of
their non-linear character. So, iterative approaches like value
and policy iteration methods are employed to discover their
solutions [14]. In the meantime, these solutions model-based
and need a flawless system dynamics knowledge. Thus, finding
an alternative method that can be fused with RL algorithms
independent from the requirement of the solutions of the
HJB, ARE, LQR, and other similar methods is of paramount
importance. To deal with the aforesaid problem, in this paper,
the CNN is used to estimate a strategic long-term cost function
(LTCF), and the output of ANN is used to estimate unknown
nonlinearities and to minimize the strategic LTCF [15].

In most of the present EL control systems, the full feed-
back of states is considered which is usually impossible in
many practical applications. Thus, the output-feedback (OFB)
approaches are more preferable due to the lack of velocity
sensors for the EL systems. Noghreian et al. [16] have
designed a robust OFB controller (OFBC) for robot arms,
and it is assumed that the dynamics of the robot is linearly
parameterized. However, this assumption may not be satisfied
in all EL systems in different situations, such as the input
saturation nonlinearity in which the controller may not be
able to compensate the effects of the nonlinear-in-parameter
(NLIP) unknown terms, which can deteriorate the controller’s
performance. Reference [17] has studied OFBC problem for
robot manipulators by extended state observers. However,
the complete dynamic model wasn’t considered. In addition,
many RL-based controllers didn’t consider the OFBC problem
due to the mathematical challenges to prove the closed-loop
system stability [18]. Moreover, designing an OFBC which
doesn’t need model parameters and can be designed only on
the basis of measurable outputs of the system has a more
chance for the successful practical implementation rather than
dynamic model-based OFBCs. Therefore, integrating a model-
free OFB problem with a MLNNRL-based controller that can
learn and compensate nonlinearities is deeply interesting and
cumbersome.

Another important control viewpoint for the EL systems
concerns with the actuator saturation phenomenon. It is well-
known that the actuator saturation may lead to an undesir-
able transient performance, physical destruction and mechan-
ical breakdown of the actuators, and the closed-loop system
breakage. To cope with this serious problem, the literature
has witnessed different efforts. In [19], a saturated tracking
controller for n-link robot arms was designed, and a finite-
time controller for rigid robots with input saturation has been
developed in [20]. However, such valuable designs need all
states for a practical implementation and they don’t benefit
from MLNNRL advantages.

The next viewpoint is related to the performance of tracking
quality. In the existence of disturbances and NLIP uncertainties
that are usual in the real-world systems, the above-mentioned
methods obtain the tracking error convergence to an unknown-
size residual set. Thus, the tracking performance with spec-

ified characteristics is needed in many important tracking
missions for the EL systems. An approach named prescribed
performance control (PPC) [21] enables users to predetermine
some required performance specifications, including maximum
and minimum peaking, velocity of convergence and steady-
state error exactness by constraining tracking errors to the
performance bounds. Zhang et al. [22] extended PPC-based
design subjected to actuator faults for the EL systems. In
[23], a practically finite-time PPC scheme has been developed
for EL systems. A practical controller with PPC has been
proposed in [24], and the distributed formation problem of
multi EL systems that their control directions are unknown
was studied in [25] with a guaranteed performance. However,
such works don’t propose any OFB-MLNNRL-based control
design.

Motivated by the above literature review and to improve our
previous works [26, 27] that were developed for particular
cases of the EL systems, a novel output-feedback adaptive
robust actor-critic learning saturated PID controller is pro-
posed for a wider group of the EL systems with a guaranteed
performance in the present article. The major contributions
could be summed up as follows: 1) In contrast to [10–13], a
novel MLNNRL approach is suggested in this article which
is independent of HJB, ARE, LQR and iterative methods.
Instead, a novel LTCF is considered and minimized by the
proposed scheme. The nonlinear equations of MLNNs are used
and expanded in an innovative way to introduce the suggested
MLNNRL with a rigorous stability analysis. The proposed
MLNNRL method diminishes the computational burden of the
RL-based controllers and just relies on the output signals. 2)
Unlike the existing results that address OFB problem for the
EL systems [16, 17], a HGO, which is only dependent on
measurable output signals, is efficiently employed to estimate
derivatives and velocities of the EL system without the need
of system’s model information considering NLIP terms, un-
modeled dynamics and a complete model for the EL systems.
3) Different from the existing saturated controllers [19, 20]
for the EL systems, generalized saturation functions (GSFs)
are effectively adapted and utilized here to minimize the
possibility of the actuator saturation in fusion with MLNNRL
and OFB methods which can learn and counteract the actuator
saturation nonlinearity deeply while preventing any unwanted
peaking. 4) In contrast to many previous works including [28–
30] which usually rely on proportional controllers, a saturated
PID controller is heuristically developed in this article. Its
essential property is that the performance-tuning role of the
proportional, integral and derivative gains is not restricted by
using GSFs to produce smaller control efforts while preserving
an excellent performance. 5) Prescribed funnel characteristics
for the tracking errors are ensured in advance. 6) An effi-
cient adaptive upper-bounding robust controller is proposed
to deal with the unknown time-varying external disturbances
and networks approximation errors. 7) Some auxiliary control
terms are designed innovatively to increase the closed-loop
performance and to facilitate the proof of stability. 8) The
suggested control approach is experimentally assessed on
SCARA IBM7547 robot manipulator via an Arduino Due
control hardware, and the computational burden is evaluated to
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prove that the proposed controller is computationally effective
in practical applications.

Although intelligent controllers are reported in [29, 30]
and very novel RL-based controllers have been proposed in
[5, 8, 31–38], they do not cover simultaneously all the above-
stated novelties in items 1-7. Besides, in the recent literature
[39–41], output feedback reinforcement-learning-based control
methods have been developed. However, these controllers
cannot ensure a prescribed performance with the actuators’
saturation prevention. Moreover, in contrast to reference [42],
the suggested control system is a full output feedback PID
sliding-mode-type controller that uses GSFs to reduce the risk
of actuators saturation more effectively and it is designed
for a wide group of fully-actuated EL systems with practical
implementation in mind. To sum up this expression, the robust
OFB-MLNNRL-based saturated PID control technique with a
funnel performance has not been studied for fully actuated EL
systems in the literature to the best of our knowledge. It is the
first time to propose an MLNNRL-based saturated PID OFBC
for EL systems which doesn’t need any information on model
structure and measurements of higher-order output derivatives
and doesn’t require a solution for an HJB equation. This
strongly contributes to the existing literature. Additionally,
an integration of contributions 1-7 is crucial to deal with
previously mentioned deficiencies of the present literature.
This integration is highly challenging due to the existence of
complex mathematical relationships between the mentioned
control methods. This causes serious complexities and ob-
stacles in the design procedure, especially in the proof of
stability. In this paper, this integration is successfully handled,
and the stability analysis is studied meticulously. Besides, the
practical implementation of the suggested controller is another
challenge stated by item 8 which is conducted with success in
this paper.

The article is arranged as follows. The next section provides
some prefaces. The main theoretical findings are presented in
Section III. Experiments are carried out in Section IV and in
Section V, conclusions are provided.

II. PRELIMINARIES

A. System Description

The following set of equations can represent the general
dynamic model of a fully-actuated EL system:

q̇ = J1(q)ν, (1)
M1ν̇ = −C1(q, ν)ν −D1ν −G(q)−H(ν) +B(q)τs + τd,

at which q = [q1, . . . , qn]
T is the generalized coordinates

vector, J1(q) ∈ ℜn×n stands for a rotation matrix that is
orthogonal, ν ∈ ℜn shows the velocity vector, M1 ∈ ℜn×n

is the inertia matrix such that M1(q) = MT
1 (q) > 0,

C1(q, ν) ∈ ℜn×n denotes the centripetal and Coriolis forces
matrix that has the skew-symmetric property, D1 ∈ ℜn×n

indicates the damping matrix including viscous friction coeffi-
cients which is strictly positive, G(q) ∈ ℜn signifies the vector
of gravity effects, H(ν) ∈ ℜn shows the unmodeled dynamics
vector and NLIP nonlinearities as a function of the velocities,
B(q) ∈ ℜn×n is an unknown matrix of input transformation,

τs = [τ1s, . . . , τns]
T indicates the saturated input vector, and

τd ∈ ℜn is the vector of bounded disturbances such that
|τdi| ≤ Bdi,∀i = 1, . . . , n, where Bdi ∈ ℜ+. The control
input τs is characterized by

τis =

{
sign(τi)χMi , |τi| ≥ χMi,∀i = 1, . . . , n,
miτi , |τi| < χMi,

(2)

where τis, τi, and χMi are the saturated control signals,
unsaturated control forces, and the actuators boundary. mi

shows a ratio among τis and τi. Hence, the nonlinearity of
saturation dis(τi) = τis − τi, which is a NLIP function and
cannot be applied by the actuators, is defined as

dis =

{
sign(τi)χMi − τi , |τi| ≥ χMi,
(mi − 1)τi , |τi| < χMi.

(3)

B. Control Objectives and Conditions

The control objectives is to design a controller for fully-
actuated EL systems so that tracking errors converge asymp-
totically to a small area comprising the origin under following
conditions: C1: There are no sensors to measure output
derivatives including velocities and accelerations, and only
output is accessible for the feedback. C2: The parametric
and non-parametric uncertainties should have minimum nega-
tive effects on tracking performance. C3: Actuator saturation
should be avoided to keep desirable tracking performance and
prevent mechanical failure of actuators. C4: An improved type
of RL (providing lower computational load compared with
conventional RL methods) should be designed to render a
more accurate estimation of nonlinearities. C5: The controller
robustness should be preserved against all types of bounded
external disturbances. C6: The tracking errors should approach
to vicinity of the origin exponentially with desired transient
and steady-state performance features. C7: The performance
of the suggested controller should be evaluated on a real EL
system by assessing practicability and feasibility of the design.

C. Error Dynamics and PPC Transformation

In completion of the prescribed performance control, the
tracking errors (i.e. e = q − qd) must evolve strictly within
a funnel set [24, 43]. The function ηi : ℜ+ → ℜ+, which
is limited and smooth, represents the performance bound,
provided that ηi remains decreasing and lim

t→∞
ηi(t) = ηi∞ [21].

Then, the prescribed performance property will be assured if
the condition ηli(t) ≤ ei(t) ≤ ηui(t), i = 1, . . . , n, stays true
as t → ∞. Here, ei is the ith element of the vector e, ηui
and ηli are the predefined upper and lower bounds for ei,
respectively, and

ηi(t) := (ηi0 − ηi∞)exp(−ait) + ηi∞, (4)

where ai ∈ ℜ+ is the convergence rate, ηi0 ≫ ηi∞ ∈ ℜ+

are the performance bound variables, in which ηi∞ is a small
value. Then, the prescribed performance limits could be guar-
anteed by setting ηli = −αiηi, ηui = βiηi, ∀i = 1, . . . , n, in
which βi, αi ∈ ℜ+ are set by the user.
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Assumption 1 [21]. The inequality ηli(0) ≤ ei(0) ≤ ηui(0)
must be satisfied to ensure PPC in the paper.
Next, the following transformation for PPC is utilized:

ei = Si(ϵei) =
ηui − ηli

π
arctan(ϵei) +

ηui + ηli
2

. (5)

From (5), the transformed error ϵei(t) is given by

ϵei = tan
(π(2ei − ηli − ηui)

2(ηui − ηli)

)
. (6)

One may verify that (5) has the following features:

lim
ϵei→+∞

Si(ϵei) = ηui, lim
ϵei→−∞

Si(ϵei) = ηli, (7)

where (7) shows that tracking errors converge to performance
bounds and tend to origin vicinity provided that Assumption
1 holds and ϵei ∈ L∞. The time derivative of (6) leads to

ϵ̇ei = (∂ϵei/∂ei)ėi +Φi, (8)

where Φi =
∂ϵei
∂ηui

η̇ui +
∂ϵei
∂ηli

η̇li. Using (5) and (6) yields:

∂ϵei
∂ei

=
π

η̃i
cos−2

(π
2
× 2ei − ηui − ηli

η̃i

)
> 0, (9)

∂ei
∂ϵei

=
η̃i

π(1 + ϵ2ei)
> 0, (10)

in which η̃i = ηui − ηli. By substituting ė = q̇− q̇d in (8) and
using (1), one has

ϵ̇e =Rν + ℏ, (11)

in which R = TJ1, ℏ = Φ − T q̇d is a function of the per-
formance bounds and transformed errors

(
i.e. ℏ(ϵe, ηu, ηl, η̇u,

η̇l, qd, q̇d)
)
, T = diag[∂ϵe1/∂e1, . . . , ∂ϵen/∂en], Φ =

[Φ1, . . . ,Φn]
T , ηu = [ηu1, . . . , ηun]

T , ηl = [ηl1, . . . , ηln]
T ,

η̇u = [η̇u1, . . . , η̇un]
T , and η̇l = [η̇l1, . . . , η̇ln]

T .

D. Mathematical Preliminaries

Since we assume that output derivatives are unavailable, the
HGO is employed here.

Lemma 1 [1]. Assume the system output signals vector up
to n− 1 derivatives is finite such that ∥y(k)∥ ≤ Bk, in which
Bk ∈ ℜ+. Then, the next system is presented:

ϵℓ̇k =ℓ(k+1), k = 1, . . . , n− 1,

ϵℓ̇n =− λ1ℓn − λ2ℓ(n−1) − · · · − λ(n−1)ℓ2 − ℓ1 + y, (12)

in which ℓk are the observer states, ϵ ∈ ℜ+ is chosen by
designer, and variables λ1, . . . , λ(n−1) must be specified so
that the term ρn + λ1ρ

n−1 + · · · + λ(n−1)ρ + 1 becomes
Hurwitz. Thus, the next items are true. (i) ℓ(j+1)/ϵ

j − y(j) =
−ϵκ(j+1), j = 0, 1, . . . , n− 1, in which κ = ℓn +λ1ℓ(n−1) +
· · · + λ(n−1)ℓ1, the j-th derivative of κ is κ(j). By invoking
[1], ℓ(j+1)/ϵ

j inclines to y(j) with a limited small error when
y(t) and jth derivatives of y(t) are limited; (ii) there exist
t1, Gj ∈ ℜ+ such that ∀t > t1, the term ∥κ(j)∥ ≤ Gj is true.

Definition 1. The function ϖi : ℜ → ℜ : ξ → ϖi(ξ)
with a bound Mi ∈ ℜ+ is a GSF, if ϖi is locally Lipschitz,
non-decreasing, and verifies (i) ξϖi(ξ) > 0,∀ξ ̸= 0; and (ii)
|ϖi(ξ)| ≤ Mi,∀ξ ∈ ℜ.

Lemma 2 [44]. Allow ϖi : ℜ → ℜ : ξ → ϖi(ξ) with
bound Mi be a strictly increasing continuously GSF, k1 ∈ ℜ+

is a constant and ϱi : ξ → dϖi/dξ. Then, we have
(i) ϱi(ξ) ∈ ℜ+ is bounded in a way that there is a constant

ϱiM ∈ (0,∞) so that 0 < ϱi(ξ) ≤ ϱiM ,∀ξ ∈ ℜ,
(ii) ϖ2

i (k1ξ)/(2k1ϱiM ) ≤
∫ ξ

0
ϖi(k1r)dr ≤ k1ϱiMξ2/2,

(iii)
∫ ξ

0
ϖi(k1r)dr > 0,∀ξ ̸= 0,

(iv)
∫ ξ

0
ϖi(k1r)dr → ∞ as |ξ| → ∞,

(v) ϖ2
i (ξ) ≤ ϖ2

i (k1ξ), ∀ξ ∈ ℜ, k1 ≥ 1.

Lemma 3 [45]. ab ≤ a2

2ϵ + ϵb2

2 , ∀a, b ∈ ℜ, and ∀ϵ ∈ ℜ+.
Lemma 4 [45]. If function f(y, t) : ℜn → ℜn is a continu-

ous differentiable function in D ⊂ ℜn, there exists a Lipschitz
parameter l ∈ ℜ+ such that ∥f(y, t)− f(ŷ, t)∥ ≤ l∥y − ŷ∥.

Lemma 5 [46]. There exists a saturation functions group
ϖh := [ϖh1, . . . , ϖhn]

T such that |ϖhi| ≤ Mhi, where Mhi

is an upper bound so that Mhi ∈ ℜ+ and Mhi < ∞, and
fulfills the inequality 0 ≤ |χ| − χϖhi(χ/a) ≤ 0.2785a,∀a ∈
ℜ+, χ ∈ ℜ.

Lemma 6 [45]. λmin{N}∥w∥2 ≤ wTNw ≤
λmax{N}∥w∥2, ∀w ∈ ℜn and ∀N = NT ∈ ℜn×n.

III. MLNNRL-BASED SATURATED PID CONTROLLER
DESIGN

In this section, main results of this paper are presented.
At first, the concept of MLNNs is given in Section A which
is used to design MLNNRL-based controller in the next
sections. The open-loop error dynamics, saturated control and
observer design are provided in Section B. Sections C and D
respectively introduce the ANN and CNN components of the
proposed RL whose learning rules and proposed controller are
given in Section E. Some gain tuning instructions are depicted
in Section F , and finally, Section III is warped up through a
stability analysis of the proposed controller in Section G.

A. Multi-layer Neural Network

MLNNs have been efficiently used to estimate the unknown
NLIP parts of EL systems as follows ∀i = 1, . . . , No [1, 47]:

yi =

Nh∑
j=1

[
wij σ̄

( Ni∑
k=1

vjkxk + θvj

)
+ θwi

]
, (13)

in which xk denotes the kth input of the NN, yi presents the
ith output, No, Ni and Nh are the numbers of output, input
and hidden layers cells, respectively, wij and vjk show the
network weights, σ̄(x) = 1/(1 + e−x) is a sigmoid activa-
tion function and θvj and θwi denote the threshold offsets.
Equation (13) can be written as y = WTσ(V Tx) in which
W ∈ ℜ(Nh+1)×No and V ∈ ℜ(Ni+1)×Nh denote the weight
matrices whose first columns include the thresholds θvj and
θwi, x = [1, x1, . . . , xNi ]

T ∈ ℜNi+1, y = [y1, . . . , yNo ]
T ∈

ℜNo , and σ(V Tx) =
[
1, σ̄(V T

r1x), . . . , σ̄(V
T
rNh

x)
]T ∈ ℜNh+1,

where V T
rj , j = 1, ..., Nh, is the jth row of V T . For a given

continuous function f(x) : U → ℜNo where U ⊂ ℜNi+1

indicates a set which is compact, one can find the optimal
thresholds, weights and hidden-layer neurons such that f(x) =
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W ∗Tσ(V ∗Tx) + ex(x), in which ex(x) ∈ ℜNo denotes the
error of functional estimation which is limited on the set U
such that |exi| ≤ Bxi, i = 1, . . . , No,∀x ∈ U , in which
Bxi ∈ ℜ+. Ideal NN matrices of weights W ∗ ∈ ℜ(Nh+1)×No

and V ∗ ∈ ℜ(Ni+1)×Nh are defined by

(W ∗, V ∗) := argmin
(W,V )

{
sup
x∈U

∥∥WTσ(V Tx)− f(x)
∥∥}. (14)

Because W ∗ and V ∗ are unknown, f(x) is substituted with
its approximation, i.e. f̂(x) = ŴTσ(V̂ Tx), in which Ŵ and
V̂ are the approximated matrices.

Assumption 2. W ∗ and V ∗ are limited on the set U such
that ∥W ∗∥F ≤ Bw, ∥V ∗∥F ≤ Bv , in which Bw, Bv ∈ ℜ+.

B. Saturated Controller-Observer Design

By using (11) and its time derivative, one has

ν =R−1ϵ̇e −R−1ℏ, (15)

ν̇ =R−1ϵ̈e −R−1ṘR−1ϵ̇e +R−1ṘR−1ℏ−R−1ℏ̇. (16)

Replacing (15)-(16) in the second equation of (1) and multi-
plying both sides by R−T results in

M(ϵe)ϵ̈e +D(ϵe)ϵ̇e + C(ϵe, ϵ̇e)ϵ̇e − ς = R−T τ + δ, (17)

in which M(ϵe) = R−TM1R
−1, C(ϵe, ϵ̇e) = R−T

(
C1(q, ν)−

M1R
−1Ṙ

)
R−1, D(ϵe) = R−TD1R

−1, δ = R−T τd ∈ ℜn,
where |δi| ≤ Bδi , i = 1, . . . , n, and ς , which includes lumped
NLIP uncertainties, is given by

ς =C(ϵe, ϵ̇e)ℏ+M(ϵe)ℏ̇+D(ϵe)ℏ−R−TG(q)−R−TH(ν)

+R−T
(
B(q)− In×n

)
τ +R−TB(q)ds(τ). (18)

Property 1. Since R is full-rank by referring to the strictly
positive relation (9), Eq. (11) and the properties of rotation
matrix J1, the followings are true for (17) ∀w1, w2, w ∈ ℜn:

P1.1: M(ϵe) = MT (ϵe) > 0, λm∥w∥2 ≤ wTMw ≤
λM∥w∥2, ∀w ∈ ℜn, 0 < λm < λM < ∞, λm :=
min

∀ϵe∈ℜn
λmin

(
M(ϵe)

)
, λM := max

∀ϵe∈ℜn
λmax

(
M(ϵe)

)
.

P1.2: D(ϵe) = DT (ϵe) > 0, λd∥w∥2 ≤ wTDw ≤
λD∥w∥2, ∀w ∈ ℜn, 0 < λd < λD < ∞, λd :=
min

∀ϵe∈ℜn
λmin

(
D(ϵe)

)
, λD := max

∀ϵe∈ℜn
λmax

(
D (ϵe)

)
.

P1.3: Matrix C(ϵe, ϵ̇e) has the following properties [47]:

(i) wT
(
Ṁ(ϵe)− 2C(ϵe, ϵ̇e)

)
w = 0,∀w ∈ ℜn,

(ii) C(ϵe, w1)w2 = C(ϵe, w2)w1,
(iii) C(ϵe, w1 + w2)y = C(ϵe, w1)y + C(ϵe, w2)y,
(iv)

∥∥C(ϵe, w1)w2

∥∥ ≤ Uc∥w1∥∥w2∥ where Uc ∈ ℜ+.

Now, a saturated PID error surface is defined as follows:

zf = ϵ̇e + ΛPϖ(ϵe) + ΛIµI , (19)

where ΛP = ΛT
P > 0 and ΛI = ΛT

I > 0 are gain matrices,
ϖ(•) is the vector of GSFs [44] and µI is updated by

µ̇I = −cfµI + βf

(
ϵ̇e + ΛPϖ(ϵe) + ΛIµI

)
, (20)

where cf and βf are design parameters. Using (17), (19),
properties (ii) and (iii) from P1.3 yields:

M(ϵe)żf = −C(ϵe, ϵ̇e)zf −D(ϵe)zf + ς(x) + ϑ

+R−T τ + δ, (21)

and ϑ is calculated as follows:

ϑ = M(ϵe)ΛP ϱ(ϵe)ϵ̇e +M(ϵe)ΛIµ̇I + C
(
ϵe, ϵ̇e

)
ΛPϖ(ϵe)

+ C
(
ϵe, ϵ̇e

)
ΛIµI +D(ϵe)ΛPϖ(ϵe) +D(ϵe)ΛIµI

(22)

that is limited through employing Property 1 so that

∥ϑ∥ ≤ ι1∥xf∥+ ι2∥xf∥2, (23)

in which xf is the augmented state vector that is given by

xf =
[
ϖT (ϵe),µ

T
I , z

T
f

]T
, (24)

and ι1, ι2 ∈ ℜ+ are unknown. Since velocities are unavailable,
an approximation of zf is generated as follows:

ẑf = ℓ2/ϵ+ ΛPϖ(ϵe) + ΛIµI (25)

by using ˙̂ϵe = ℓ2/ϵ based on following HGO and Lemma 1:

ϵℓ̇1 = ℓ2, ϵℓ̇2 = −λ1ℓ2 − ℓ1 + ϵe(t), (26)

and µI will be updated as

µ̇I = −cfµI + βf

(
ℓ2/ϵ+ ΛPϖ(ϵe) + ΛIµI

)
. (27)

Then, by employing item (ii) of Lemma 1 and z̃f = ẑf−zf =
˙̂ϵe− ϵ̇e, we have ∥z̃f∥ = ∥ϵκ̈∥ ≤ ϵG2 := Bf where Bf ∈ ℜ+.
Based on the above results, the MLNNRL-based control law
is proposed in the sequel.

C. The Actor Neural Network

Since ς(x) in (21) with its exact definition in (18) is a
complex NLIP uncertain term, a multi-layer ANN is necessary
in this paper to estimate it as follows:

ς(x) = W ∗T
a σ1(V

∗T
a x) + ex(x), ∀x ∈ U ⊂ ℜNi+1, (28)

where x = [1, ϵTe , ϵ̇
T
e , ν

T , τT , ηTl , η̇
T
l , η̈

T
l , η

T
u , η̇

T
u , η̈

T
u , q

T , q̇Td ,
q̈Td ]

T ∈ ℜNi+1 denotes the ANN vector of inputs and
ex(x) = [ex1 , . . . , exn ]

T is the NN error. Since V ∗
a and W ∗

a

are not known and the input vector x contains unmeasurable
states, we design an actor network as ς̂ = ŴT

a σ1(V̂
T
a x̂) where

x̂ = [1, ϵTe ,
˙̂ϵTe , ν̂

T , τT , ηTl , η̇
T
l , η̈

T
l , η

T
u , η̇

T
u , η̈

T
u , q

T , q̇Td , q̈
T
d ]

T ,
in which ˙̂ϵe := ℓ2/ϵ and ν̂ = R−1 ˙̂ϵe−R−1ℏ are computed by
(15) and the HGO in (26), Ŵa and V̂a show the estimates
of W ∗

a and V ∗
a , respectively, and W̃a = W ∗

a − Ŵa and
Ṽa = V ∗

a − V̂a denote ANN estimation errors. Thus, it is
possible to write [1]:

ς − ς̂ =W̃T
a

(
− σ′

1(V̂
T
a x̂)V̂ T

a x̂+ σ1(V̂
T
a x̂)

)
+ ex(x) + rt + ŴT

a σ′
1(V̂

T
a x̂)Ṽ T

a x̂, (29)

in which σ′
1(V̂

T
a x̂) =

[
0Nh×1, diag[σ

′
11, . . . , σ

′
1Nh

]
]T ∈

ℜ(Nh+1)×Nh , with σ′
1i = dσ̄1(z)/dz|z=V̂ T

ari
x̂, i = 1, . . . , Nh,
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and rt is limited as

∥rt∥ ≤∥W ∗
a ∥F

(
∥σ′

1(V̂
T
a x̂)V̂ T

a x̂∥+ ∥σ1(V̂
T
a x̂)∥

)
+ ∥V ∗

a ∥F ∥x̂∥∥ŴT
a σ′

1(V̂
T
a x̂)∥F . (30)

Substituting (29) into (21) leads to

M(ϵe)żf =− C(ϵe, ϵ̇e)zf −D(ϵe)zf + χp + ς̂

+ W̃T
a

(
− σ′

1(V̂
T
a x̂)V̂ T

a x̂+ σ1(V̂
T
a x̂)

)
+ ŴT

a σ′
1(V̂

T
a x̂)Ṽ T

a x̂+ rt + ϑ+R−T τ, (31)

where χp = δ+ex(x) ∈ ℜn which is bounded so that |χpi | ≤
pi, i = 1, . . . , n, in which pi ∈ ℜ+ and p = [p1, . . . , pn]

T .

D. The Critic Function
The following LTCF or ideal critic function which includes

a multi-layer CNN, is introduced in this paper:

Fc =ϵ̇e + ΛPϖ(ϵe) + ΛIµI

+ ∥ϵ̇e + ΛPϖ(ϵe) + ΛIµI∥W ∗T
c σ2(V

∗T
c x), (32)

where W ∗T
c ∈ ℜNo×(Nh+1), V ∗T

c ∈ ℜNh×(Ni+1) and
σ2(V

∗T
c x) =

[
1, σ̄2(V

∗T
cr1x), . . . , σ̄2(V

∗T
crNh

x)
]T ∈ ℜNh+1

where V ∗T
cri , i = 1, ..., Nh, is the ith row of V ∗T

c . Since W ∗
c ,

V ∗
c and the velocities are not known, their approximations are

utilized. Thus, the critic function could be approximated as

F̂c =ℓ2/ϵ+ ΛPϖ(ϵe) + ΛIµI

+ ∥ℓ2/ϵ+ ΛPϖ(ϵe) + ΛIµI∥ŴT
c σ2(V̂

T
c x̂). (33)

Remark 1. Note that in reference [48], MLNNs are used as
the structure of the actor and critic. MLNNs have two layers
of adjustable weights WT and V T with one hidden layer that
can be seen in Eq. (13). WT represents the weight matrix for
the layer of outputs and V T denotes the weight matrix of the
hidden layer [47]. In [48], the concept of using MLNNs as the
structure of ANN and CNN is introduced, but the design of
the nets was simplified to design WT

a and WT
c adaptively, and

V T
a and V T

c are firstly picked at random and kept constant.
However, in the proposed MLNNRL method, we managed
to design V T

a and V T
c adaptively, and we overcame the

difficulties arisen from designing proper adaptive laws for V T
a

and V T
c and the proof of their convergence by the Lyapunov

theory, which is an essential contribution of this paper. The
corresponding adaptive laws for determining V̂ T

a and V̂ T
c and

their convergence analysis are given in the sequel.
Remark 2. Because the LTCF (33) could be considered

like a sort of reinforcement variable [48], F̂c has more pro-
cessed data compared with the system variables. So, a greater
outcome will be achieved for the controller [49].

E. Actor-Critic NN Update Rules and Control Law
In this paper, the next adaptive rules are provided by

utilizing σ−modification to create Ŵa, V̂a, Ŵc V̂c and p̂:

˙̂
Wa =− σwa + Γwa

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)
×(ℓ2

ϵ
+ ΛPϖ(ϵe) + ΛIµI+

∥ℓ2
ϵ
+ ΛPϖ(ϵe) + ΛIµI∥ŴT

c σ2(V̂
T
c x̂)

)T

, (34)

˙̂
Va =Γva x̂

(ℓ2
ϵ
+ ΛPϖ(ϵe) + ΛIµI

+ ∥ℓ2
ϵ
+ ΛPϖ(ϵe) + ΛIµI∥ŴT

c σ2(V̂
T
c x̂)

)T

× ŴT
a σ′

1(V̂
T
a x̂)− δvaΓva V̂a, (35)

˙̂
Wc =Γwc

∥ℓ2
ϵ
+ ΛPϖ(ϵe) + ΛIµI∥σ2(V̂

T
c x̂)

(
ŴT

a σ1(V̂
T
a x̂)

)T
− σwc , (36)

˙̂
Vc =Γvc∥

ℓ2
ϵ
+ ΛPϖ(ϵe) + ΛIµI∥V̂a − δvcΓvc V̂c, (37)

˙̂p =Q
[
H(ẑf )(

ℓ2
ϵ
+ ΛPϖ(ϵe) + ΛIµI)−Θ(p̂− p0)

]
,

(38)

where σwa
= δwa

Γwa
Ŵa, σwc

= δwc
Γwc

Ŵc, Γwa
,Γwc

∈
ℜ(Nh+1)×(Nh+1), Γva ,Γvc

∈ ℜ(Ni+1)×(Ni+1) are adaptation
gains, δwa , δva , δwc , δvc ∈ ℜ+ denote design variables, Θ, Q ∈
ℜn×n are adaptive gains, p0 ∈ ℜn is a vector to be designed
and H = diag

[
ϖh1(ẑf1/c1r) , . . . , ϖhn(ẑfn/cnr)

]
where

c1r, . . . , cnr ∈ ℜ+ indicate some control constants. Then, the
next saturated PID control framework is suggested here:

τ = RT
(
−ϖ(Kpϵe)−ϖ(Kv ẑf )− ŴT

a σ1(V̂
T
a x̂)

−
5∑

j=1

kjhj ẑf −Hp̂
)
, (39)

where Kp = diag[kpi
], i = 1, . . . , n, with

min{kp1
, . . . , kpn

} ≥ 1, Kv = diag[kvi ], i = 1, . . . , n,
kvi ≥ 1, k1, k2, k3, k4, k5 ∈ ℜ+ indicate design gains, and hj

are in the next form:

h1 = ∥V̂a∥2F , h2 = ∥σ2(V̂
T
c x̂)σT

1 (V̂
T
a x̂)Ŵa∥2F ,

h3 =
(
∥σ′

1(V̂
T
a x̂)V̂ T

a x̂∥+ ∥σ1(V̂
T
a x̂)∥

)2∥σT
2 (V̂

T
c x̂)Ŵc∥2,

h4 = ∥x̂∥2
∥∥σT

2 (V̂
T
c x̂)ŴcŴ

T
a σ′

1(V̂
T
a x̂)

∥∥2,
h5 =

(
∥σ′

1(V̂
T
a x̂)V̂ T

a x̂∥+ ∥σ1(V̂
T
a x̂)∥

)2
+∥x̂∥2∥ŴT

a σ′
1(V̂

T
a x̂)∥2F .

(40)
The third, fourth and last terms in (39) are responsible for the
objective C2 in Section II.B. Finally, through replacing (39)
into (31), one gets the following closed-loop error dynamics:

M(ϵe)żf =− C(ϵe, ϵ̇e)zf −D(ϵe)zf + ϑ−ϖ(Kpϵe) + χp

−ϖ(Kv ẑf ) + W̃T
a

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)

+ ŴT
a σ′

1(V̂
T
a x̂)Ṽ T

a x̂+ rt −Hp̂− k1h1ẑf

− k2h2ẑf − k3h3ẑf − k4h4ẑf − k5h5ẑf . (41)

Fig. 1 shows a detailed block diagram of the controller.

Remark 3. The goal of utilizing the LTCF in equation (33)
is to find a better control signal. It means the ANN cancels
uncertainties and reduces the LTCF along with the tracking
errors in parallel. Concomitantly, the CNN estimates the LTCF
to adjust the ANN weights. It means supplementary data is
provided in order to improve the performance of learning
for the ANN in (34) and (35). Therefore, through learning,
the overall performance of the estimator ŴT

a σ1(V̂
T
a x̂) could
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Fig. 1: Block diagram of the proposed control system.

be enhanced, and the performance of controller could be
reinforced accordingly [15, 49, 50].

Remark 4. The CNN receives the output of the ANN in
(36) and (37) in order to estimate the LTCF in (33). Then, by
using the estimation of LTCF in (33) which could be perceived
like a kind of strengthening signal stated in Remark 2, the
ANN weights are better updated in (34) and (35) to estimate
ς , which is the unknown part of the system dynamic in (17),
in control law (39). The convergence of update rules (34)-(37)
is studied in the sequel.

Remark 5. An interesting property of the feedback part of
the proposed controller is that the performance-tuning role of
the proportional, integral, and derivative gains is not restricted
by using GSFs to produce smaller control efforts.

F. Proposed Controller Gains Selection

1) Parameter selection for the update rules (34)-(37):
by increasing the learning gains Γwa

,Γva , Γwc
and Γvc , the

learning speed of the AC is increased. Choosing a large value
for these gains leads to divergence of the learning laws, and
having small values for the gains will considerably reduce the
learning procedure. A proper selection of δwa

, δva , δwc
and

δvc can provide a trade-off among the robustness of these
adaptation rules and accuracy of tracking. In other words,
large values for these parameters increase the robustness of
the learning laws (34)-(37), but note that the ultimate accuracy
for tracking could be reduced as a result of the large values
of δwa

, δva , δwc
and δvc . So, operators should equilibrate the

final tracking precision and learning robustness attentively by
choosing proper values for δwa , δva , δwc and δvc .

2) Parameter selection for the update rule (38): increasing
the value of Q results in a quick parameters estimation, and
leads to improving the robustness for the control system.
Additionally, in order to prevent the divergence of the adaptive

law (38), users should avoid picking Q very large. The pa-
rameters Θ and p0 are assigned according to the experimental
setup conditions. For the example, Θ and p0 are appropriately
selected by observing the level of external disturbances to
secure the robustness for system. Nevertheless, increasing Θ
and p0 decreases the final tracking accuracy. One of the most
important impacts with respect to the regulation of (38) and the
closed-loop performance concerns the values cir, i = 1, . . . , n,
which are the boundary layer thicknesses. One should make a
trade-off among the accuracy of tracking and smoothness of
the system variables by correct selection of the cir values.

G. Stability Analysis

Theorem 1. Assume a class of EL systems for which the
kinematics and dynamics are represented by (1). Under the
Assumptions 1-2, the suggested saturated PID controller (39)
along with the strengthening variable designed in (33) and the
rules of adaptation (34)-(38) with the HGO (26), secures that
variables in the system of control stay limited and the errors
of tracking are SGUUB which tend to a region comprising
origin. In addition, it can be proved that the output constraints
are never transgressed and the region of attraction

RA =

{
xu ∈ ℜ3n+cn |∥xu∥2 <

λf (2χf − ι1)

ι2λxu

}
(42)

could be created large in order to cover all initial conditions
by choosing the control gains properly. Here, cn = 2(Nh +
1)No +2(Ni +1)Nh, χf ∈ ℜ+ is a gain-dependent constant,
λf and λxu

are constants defined later.
Proof. The proof of Theorem 1 is given in Appendix A.
Remark 6. Since all signals for the control system, includ-

ing (33), are analyzed by the Lyapunov theory, it is concluded
that Ė is strictly negative outside Ωxl

=
{
xl|0 ≤ ∥xl∥ ≤
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√
Ξ/c

}
according to the proof in Appendix A, where Ξ and c

are gain dependent parameters and can be adjusted by selecting
proper control gains to reduce Ωxl

. Consequently, the LTCF
in (33) converges to a zone around zero, and this zone could
be decreased by selecting proper control parameters. So, the
LTCF in (33) is minimized about the origin by the proposed
AC structure and the overall control performance is improved
in the sense of minimizing LTCF in (33).

Remark 7. In this paper, the actuator saturation is pre-
vented by a successful combination of the GSFs and actuators
saturation nonlinearity compensation. As long as the actuator
saturation is avoided by the proposed controller, there is no
concern about the PPC operation. However, if the actuator
saturation occurs in the worst case, the PPC fragility problem
may take place. Toward this end, a non-fragile PPC approach
is suggested in [51]. However, this issue does not lie in the
scope of this paper and it is devoted to our future works.

IV. EXPERIMENTAL VERIFICATION

To verify the suggested controller efficacy in a real-world
scenario, experimental results are reported here. To this end,
the suggested intelligent controller is implemented on a
SCARA IBM7547 robot arm whose image is shown by Fig 2.

The proposed controller is programmed into Arduino Due
control board to test its performance empirically on SCARA
IBM7547 arm. The board utilizes Atmel SAM3X8E ARM
micro-controller with 84 MHz clock frequency, 96 KB SRAM,
512 KB flash memory, 12 PWM (pulse width modulation)
outputs, 54 digital input-output pins, 12 analog inputs, 4 serial
ports, and two digital-to-analog converters. A 12-bit resolution
decoder latch is also used in this study. The joint limits for
the first and second joints are 0 ≤ q1 ≤ 3.5rad and 0 ≤
q2 ≤ 2.8rad, respectively. The control signals are generated
by the controller-observer block programmed into the Arduino
Due controller and changed to 40 KHz PWM signals with a

Algorithm 1: The proposed controller pseudocode
Initialization;
Set t = 0;
Compute the tracking errors at t = 0 as e(0) = q(0)− qd(0);
If the condition ηli(0) ≤ ei(0) ≤ ηui(0) is true, start the

control loop. Otherwise, increase ηi0, βi and αi;
while t < tmax do

1) Compute the tracking errors as e(t) = q(t)− qd(t);
2) Transform the tracking errors using (6);
3) Form the vector of the transformed tracking errors as

ϵe = [ϵe1 , . . . , ϵen ]
T ;

4) Estimate the system derivatives in (19) by (26);
5) Calculate the saturated filtered error

ẑf = ˙̂ϵe + ΛPϖ(ϵe) + ΛIµI ;
6) Get the input vector x̂ for the multilayer ANN and CNN;
7) Update Ŵa, V̂a and p̂ by (34), (35) and (38), respectively;
8) Update Ŵc and V̂c by (36) and (37);
9) Estimate the reinforcement signal in (33);

10) Calculate the input control signal τ in (39);
11) Measure the system states q for the new execution loop;

end
return outcomes;
End

Fig. 2: SCARA IBM7547 for the experimental setup.

TABLE I: Numerical evaluation of the computational complexity

Variable in
Algorithm 1

Elapsed time
(ms)

Number of math
operations

e1, e2 0.048 16
ϵe1 , ϵe2 0.144 50
ẑf,1, ẑf,2 0.231 88
p̂1, p̂2 0.292 110

Ŵa 7.68 3072

V̂a 8.9225 3569

Ŵc 12.05 4420

V̂c 14.7175 5887

F̂c1 , F̂c2 16.0875 6036
τ1, τ2 19.4525 9384

13-bit resolution and amplified through IRF540N-MOSFET
power amplifiers before being applied to the direct current
(DC) motors mounted on each joint. Subsequently, the sensor
signals measured by the shaft encoder at the sampling rate
of 0.02 s are transmitted to a decoder-counter latch and the
angular position q(t) is fed back to the controller program.
Thus, the proposed control laws (25), (26), (33), (34)-(38) and
(39), programmed on the Arduino board digitally, calculate the
control effort τ(t). The torque applied to each motor is based
on measuring the position error e = q − qd for each joint at
each sampling time so that the position errors converge toward
zero. The following function is used as a GSF for (19) and
(39):

ϖi(zi) =


−Li + (Mi − Li) tanh(

zi+Li
Mi−Li

) , ∀zi < −Li

zi , ∀|zi| ≤ Li

Li + (Mi − Li) tanh(
zi−Li
Mi−Li

) , ∀zi > Li

(43)
where Li < Mi,∀i = 1, 2, 3 with Mi = 10 and Li = 0.9Mi,
and the control inputs are saturated so that |τi| ≤ 30. The
controller parameters are chosen as follows for a best tracking
performance: η10 = η20 = 10, η1∞ = η2∞ = 0.1, a1 =
0.2, a2 = 0.2, α1 = 2, α2 = 2, β1 = β2 = 2,ΛP =
diag[1, 1], ϵ = 0.1, λ1 = 5, Nh = 5, No = 2,Γwa

=
0.001I6, δwa = 2,Γva = 0.001INi+1, δva = 2,Γwc =
0.1I6, δwc = 2,Γvc = 0.1INi+1, δvc = 2, c1r = c2r =
0.01,Θ = diag[5, 5], k1 = k2 = k3 = k4 = 1.5, k5 =
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Fig. 3: The experimental setup outcomes: (a) tracking error e1, (b) tracking error e2, (c) estimated RL signal F̂c1 , (d) estimated RL signal
F̂c2 , (e) ˙̂ϵe1 , (f) ˙̂ϵe2 , (g) p̂1, (h) p̂2, (i) time evolution of q1, (j) time evolution of q2, (k) end-effector trajectory, (l) control signal τ1, (m)
generated control signal τ2, (n) estimation of the saturated filtered transformed error ẑf,1, and (o) ẑf,2.
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0.15,Kp = 2diag[1, 1] and Kv = 0.5diag[1, 1]. The results
of this experimental setup are shown in Figs. 3. As it is clear
in Figs. 3(a)-3(b), the position errors converge to zero in the
performance bounds, and the joints are tracking the desired
angles well as shown in Figs. 3(i)-3(j) by the smooth, well-
bounded control signals generated by the suggested control
method in Figs. 3(l)-(m). Besides, the other bounded signals of
the system, plotted in Fig. 3, demonstrate a nice performance
for the proposed intelligent controller. Thus, the practical
implementation displays the merit of the suggested controller.
The computational complexity of the proposed algorithm is
also evaluated experimentally and listed in Table I. The table
confirms the practicability of the proposed controller on the
presented hardware setup for real-time implementation.

V. CONCLUSION AND FUTURE RESEARCH DIRECTION

This paper presented a novel OFB-MLNNRL-based sat-
urated PID control strategy for output constrained EL sys-
tems with unknown NLIP dynamics and actuator saturation.
The need for a prior knowledge on system dynamics are
removed for both OFB and MLNNRL methods successfully.
The MLNNRL has been devised to adaptively detect complex
NLIP unknowns and a critic function for supervising control
performance. In combination with the critic function and OFB
problem, an AC-MLNNRL structure has been established.
Extra advantages of our method include more robustness,
low design complexity, low computational burden, saturated
inputs, prescribed output tracking and removing velocity sen-
sors in the presence of NLIP uncertainties and disturbances.
Moreover, by an effective combination of compensating the
nonlinearity of saturation through the suggested MLNNRL-
based controller and employing GSFs, the actuator saturation
risk was effectively avoided. Also, the stability analysis proves
that the entire OFB-MLNNRL control scheme guarantees the
errors convergence to an arbitrary small region in the origin
vicinity with a prescribed performance. Although innovative
aspects of the proposed controller have been reviewed, there
are yet some open problems that clarify our future research
directions including relaxation of Assumption 1, considering
the actuator dynamics, and bounding the estimated HGO states
to avoid the observer peaking phenomenon.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 is presented in this section by
using a Lyapunov’s direct method. For this purpose, consider
the following Lyapunov function candidate:

E =

n∑
i=1

∫ ϵei

0

ϖi(kpiξ)dξ +
1

2
zTf M(ϵe)zf +

1

2
p̃TQ−1p̃

+
1

2
tr{W̃T

a Γ−1
wa

W̃a}+
1

2
tr{Ṽ T

a Γ−1
va Ṽa}+

1

2
µT

I µI

+
1

2
tr{W̃T

c Γ−1
wc

W̃c}+
1

2
tr{Ṽ T

c Γ−1
vc

Ṽc}, (44)

where W̃a = W ∗
a −Ŵa, Ṽa = V ∗

a − V̂a, W̃c = W ∗
c −Ŵc, Ṽc =

V ∗
c − V̂c and p̃ = p̂ − p. From (44) and using items (iii) and

(iv) from Lemma 2, it is obvious that (44) is an unbounded,

positive-definite, and decrescent function. Recalling property
(ii) from Lemma 2 gives:

λf∥xf∥2 ≤ λxl
∥xl∥2 ≤ E(t) ≤ λxu

∥xu∥2, (45)

where λf , λxl
, λxu

, xf , xl and xu are given by

λf =0.5min
{
1, (kp1

ϱ1M )−1, . . . , (kpn
ϱnM )−1, λm

}
,

λxl
=0.5min

{
(kp1

ϱ1M )−1, . . . , (kpn
ϱnM )−1, λm, λmin{Γ−1

wa
}

, λmin{Γ−1
va }, λmin{Γ−1

wc
}, λmin{Γ−1

vc }, λmin{Q−1}, 1
}
,

λxu
=0.5max

{
kp1

ϱ1M , . . . , kpn
ϱnM , λM , λmax{Γ−1

wa
}

, λmax{Γ−1
va }, λmax{Γ−1

wc
}, λmax{Γ−1

vc }, λmax{Q−1}, 1
}
,

xl =
[
ϖT (ϵe), z

T
f , w̃a11, . . . , w̃a(Nh+1)No

, ṽa11, . . . , ṽa(Ni+1)Nh

, w̃c11, . . . , w̃c(Nh+1)No
, ṽc11, . . . , ṽc(Ni+1)Nh

, p̃T ,µT
I

]T
,

xu =
[
ϵTe , z

T
f , w̃a11, . . . , w̃a(Nh+1)No

, ṽa11, . . . , ṽa(Ni+1)Nh
,

w̃c11, . . . , w̃c(Nh+1)No
, ṽc11, . . . , ṽc(Ni+1)Nh

, p̃T ,µT
I

]T
.

Time derivative of (44) along (41), adding and subtracting
zTf ϖ(Kvzf ), employing (19), (27) and item (i) of P1.3 yields:

Ė =−ϖT (Kpϵe)ΛPϖ(ϵe)−ϖT (Kpϵe)ΛIµI

− cfµ
T
I µI + βfµ

T
I ẑf − zTf D(ϵe)zf + zTf ϑ

− zTf ϖ(Kv ẑf ) + zTf ϖ(Kvzf )− zTf ϖ(Kvzf )

+ zTf (χp −Hp̂) + zTf W̃
T
a

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)

+ zTf Ŵ
T
a σ′

1(V̂
T
a x̂)Ṽ T

a x̂+ zTf rt − zTf

5∑
j=1

kjhj ẑf

− tr{W̃T
a Γ−1

wa

˙̂
Wa} − tr{Ṽ T

a Γ−1
va

˙̂
Va} − tr{W̃T

c Γ−1
wc

˙̂
Wc}

− tr{Ṽ T
c Γ−1

vc
˙̂
Vc}+ p̃TQ−1 ˙̂p. (46)

Now, by employing Lemma 6 and item (v) of Lemma 2 and
using the followings:

−zTf ϖ(Kvzf ) ≤− zTf ϖ(zf ),

−ϖT (Kpϵe)ΛPϖ(ϵe) ≤−ϖT (ϵe)ΛPϖ(ϵe),

−ϖT (ϵe)ΛPϖ(ϵe) ≤− λmin{ΛP }∥ϖ(ϵe)∥2,
−ϖT (Kpϵe)ΛIµI ≤−ϖT (ϵe)ΛIµI , (47)

and employing (34)-(38) based on (33), the fact that
−zTf ϖ(zf ) ≤ 0 and utilizing Property P1.2, we get

Ė ≤− λmin{ΛP }∥ϖ(ϵe)∥2 − λd∥zf∥2 + zTf ϑ

−ϖT (ϵe)ΛIµI − cf∥µI∥2 + βfµ
T
I zf + βfµ

T
I z̃f

− tr{W̃T
a

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)
z̃Tf }+ zTf rt

− tr{W̃T
a

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)
∥ẑf∥σT

2 (V̂
T
c x̂)Ŵc}

− tr{Ṽ T
a x̂z̃Tf Ŵ

T
a σ′

1(V̂
T
a x̂)}+ δvatr{Ṽ T

a V̂a}
− tr{Ṽ T

a x̂∥ẑf∥σT
2 (V̂

T
c x̂)ŴcŴ

T
a σ′

1(V̂
T
a x̂)}

− tr{W̃T
c ∥ẑf∥σ2(V̂

T
c x̂)σT

1 (V̂
T
a x̂)Ŵa}+ zTf (χp −Hp̂)

− tr{Ṽ T
c ∥ẑf∥V̂a}+ δvctr{Ṽ T

c V̂c}+ δwc
tr{W̃T

c Ŵc}
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+ p̃T [H(ẑf )ẑf −Θ(p̂− p0)]− zTf

5∑
j=1

kjhj ẑf

− zTf ϖ(Kv ẑf ) + zTf ϖ(Kvzf ) + δwa
tr{W̃T

a Ŵa}. (48)

By using the following inequalities

∥zTf rt∥ ≤ 0.5∥zf∥2
(
∥σ′

1(V̂
T
a x̂)V̂ T

a x̂∥+ ∥σ1(V̂
T
a x̂)∥

)2
+ 0.5∥W ∗

a ∥2F + 0.5∥V ∗
a ∥2F + 0.5∥zf∥2∥x̂∥2∥ŴT

a σ′
1(V̂

T
a x̂)∥2F ,

− tr{W̃T
a

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)
z̃Tf } ≤ 0.5∥W̃a∥2F

+ 0.5B2
f

(
∥σ′

1(V̂
T
a x̂)V̂ T

a x̂∥+ ∥σ1(V̂
T
a x̂)∥

)2
,

− tr{Ṽ T
a x̂z̃Tf Ŵ

T
a σ′

1(V̂
T
a x̂)} ≤ 0.5∥Ṽa∥2F

+ 0.5B2
f∥x̂∥2∥ŴT

a σ′
1(V̂

T
a x̂)∥2F ,

− tr{W̃T
a

(
σ1(V̂

T
a x̂)− σ′

1(V̂
T
a x̂)V̂ T

a x̂
)
∥ẑf∥σT

2 (V̂
T
c x̂)Ŵc} ≤

0.25∥ẑf∥2
(
∥σ′

1(V̂
T
a x̂)V̂ T

a x̂∥+ ∥σ1(V̂
T
a x̂)∥

)2∥σT
2 (V̂

T
c x̂)Ŵc∥2

+ ∥W̃a∥2F ,
− tr{Ṽ T

a x̂∥ẑf∥σT
2 (V̂

T
c x̂)ŴcŴ

T
a σ′

1(V̂
T
a x̂)} ≤ ∥Ṽa∥2F

+ 0.25∥ẑf∥2∥x̂∥2∥σT
2 (V̂

T
c x̂)ŴcŴ

T
a σ′

1(V̂
T
a x̂)∥2,

− tr{W̃T
c ∥ẑf∥σ2(V̂

T
c x̂)σT

1 (V̂
T
a x̂)Ŵa} ≤ ∥W̃c∥2F

+ 0.25∥ẑf∥2∥σ2(V̂
T
c x̂)σT

1 (V̂
T
a x̂)Ŵa∥2F ,

− tr{Ṽ T
c ∥ẑf∥V̂a} ≤ ∥Ṽc∥2F + 0.25∥ẑf∥2∥V̂a∥2F ,

inequality (48) is simplified to

Ė ≤− (λmin{ΛP } − 0.5λmax{ΛI})∥ϖ(ϵe)∥2

− (cf − βf − 0.5λmax{ΛI})∥µI∥2 + 0.5βf∥z̃f∥2

− (λd − 0.5βf )∥zf∥2 + zTf ϑ+ zTf (χp −Hp̂)

+

5∑
j=1

ξjhj − zTf ϖ(Kv ẑf ) + zTf ϖ(Kvzf ) + ∥W̃c∥2F

+ δwa
tr{W̃T

a Ŵa}+ δvatr{Ṽ T
a V̂a}+ δwc

tr{W̃T
c Ŵc}

+ δvctr{Ṽ T
c V̂c}+ 0.5∥W ∗

a ∥2F + 0.5∥V ∗
a ∥2F + 1.5∥W̃a∥2F

+ 1.5∥Ṽa∥2F + ∥Ṽc∥2F + p̃T [H(ẑf )ẑf −Θ(p̂− p0)],

(49)

in which ξjhj =
(
− ρ̄∥zf∥2+ρB2

f

)
hj , where ρ̄ = 0.5kj−0.5

and ρ = 0.5kj + 0.5. Thus, if ∥zf∥ ≥ Bf

√
ρu/ρl, where

ρu = kj + 1 and ρl = kj − 1, holds true with kj > 1, we
get ξjhj ≤ 0. Then, by utilizing Lemmas 3 and 4 and the
following inequalities [45]:

p̃T
[
Hẑf −Θ(p̂− p0)

]
+ zTf (−Hp̂+ χp) ≤ 1.5B2

f

+ 0.2785[c1r, . . . , cnr]p− 0.5λmin{Θ}∥p̃∥2 + ∥p∥2

+ 0.5(p− p0)TΘ(p− p0) + 0.5∥p̃∥2,
∥zf∥∥ −ϖ(Kv ẑf ) +ϖ(Kvzf )∥ ≤

l∥zf∥∥ −Kv ẑf +Kvzf∥ ≤ l∥zf∥∥Kv∥∥z̃f∥,

l∥zf∥∥Kv∥∥z̃f∥ ≤ l

2
λmax{Kv}∥zf∥2 +

l

2
λmax{Kv}B2

f ,

where k >
√
2/2, inequality (49) can be rewritten as

Ė ≤− c̄1∥xf∥2 − c̄2∥W̃a∥2F − c̄3∥Ṽa∥2F − c̄4∥W̃c∥2F

− c̄5∥Ṽc∥2F − c̄6∥p̃∥2 + Ξ, (50)

in which c̄i > 0 are defined as c̄1 = χf − 0.5ι2∥xf∥2 −
0.5ι1, c̄2 = δwa

(−1/2k2 + 1)− 1.5, c̄3 = δva(−1/2k2 + 1)−
1.5, c̄4 = δwc(−1/2k2 + 1) − 1, c̄5 = δvc(−1/2k2 + 1) − 1
and c̄6 = 0.5λmin{Θ} − 0.5, Ξ = 0.2785[c1r, . . . , cnr]p +
∥p∥2 + 0.5(p − p0)TΘ(p − p0) + 0.5lλmax{Kv}B2

f +
0.5δwa

k2∥W ∗
a ∥2F + 0.5δvak

2∥V ∗
a ∥2F + 0.5δwc

k2∥W ∗
c ∥2F +

0.5δvck
2∥V ∗

c ∥2F +0.5∥W ∗
a ∥2F +0.5∥V ∗

a ∥2F +0.5βfB
2
f+1.5B2

f ,
and χf = min{(λmin{ΛP } − 0.5λmax{ΛI}), (λd − 0.5βf −
0.5ι1 − 0.5ι2 − 0.5lλmax{Kv}), (cf − βf − 0.5λmax{ΛI})}.
Next, by choosing χf such that

χf > 0.5ι1 + 0.5ι2∥xf∥2, (51)

one gets Ė ≤ −c̄∥xl∥2 + Ξ, where c̄ = min{c̄1, . . . , c̄6}.
That implies Ė will be strictly negative out of
Ωxl

=
{
xl|0 ≤ ∥xl∥ ≤

√
Ξ/c̄

}
, ∀t ≥ 0, which

means that E is decreasing out of Ωxl
. Then, one

has E(t) ≤ E(0) ≤ λxu∥xu(0)∥2. Next, one gets
∥xf∥2 ≤ λxu/λf∥xu(0)∥2. Therefore, a sufficient
condition for (51) is 2χf > ι1 + ι2(λxu

/λf )∥xu(0)∥2,
which implies zone (42) can be increased adequately
to include all initial conditions by designating control
gains properly. Thus, if (51) is satisfied, then Ė(t) < 0
out of Ωxl

. Then, xl(t) is SGUUB when it is out
of Ωxl

. Also, ϵ̇e ∈ L∞ by recalling (19). Therefore,
tracking errors, NN weights and parameters approximation
errors are SGUUB too. Also, by using Assumption 2,
∥z̃f∥ ≤ Bf , and recalling GSFs properties, one deduces that
ϵe, ẑf , ŵa11, . . . , ŵa(Nh+1)No

, v̂a11, . . . , v̂a(Ni+1)Nh
, ŵc11, . . . ,

ŵc(Nh+1)No
, v̂c11, . . . , v̂c(Ni+1)Nh

, p̂ ∈ L∞. Since ϵe ∈ L∞,
ϵe → 0 and by considering Assumption 1, ei → 0 with a
prescribed performance as t → ∞. □
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