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Abstract

With the advance of technology, functional data are being recorded more frequently, whether
over time or over different spatial locations. Traditionally, functional data were assumed to
be observed on common and finite coordinate grids. However, real-world functional data
often exhibit irregular coordinate grids or multiple components. To adapt to the demands
of practical applications, researchers have developed visualization tools, outlier detection
techniques, and clustering methods that can handle more general types of functional data.
This paper offers a comprehensive overview of recent procedures for exploratory functional
data analysis (EFDA). It begins by introducing fundamental statistical concepts, such as
mean and covariance functions, as well as robust statistics such as the median and quantiles
in multivariate functional data. Then, the paper delves into the evolution of visualization
methods, such as the rainbow plot, and various adaptations of the functional boxplot. These
modified versions of the functional boxplot are designed to accommodate the complexities
of general functional data. In addition to visualization tools, the paper also reviews outlier
detection technologies, which are commonly integrated with visualization methods to identify
anomalous patterns within the data. Moreover, the application of clustering techniques
tailored for functional data is reviewed. In closing, future directions for EFDA are briefly
discussed. To facilitate the adoption of representative methods, an R package named EFDA
has been developed.
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1 Introduction

Exploratory data analysis (EDA) (Tukey 1977) serves as the primary step in data analysis

because it explores intuitively the basic properties of the underlying dataset and provides

diagnostics for statistical modeling. Tukey (1977) contrasts EDA with confirmatory data

analysis (CDA) (Tukey 1980), an area of data analysis that is mostly concerned with the

techniques of statistical hypothesis testing, confidence intervals, and estimation, to name

a few. Overall, EDA can be categorized into data visualization and data mining. The

data visualization tools include, but are not limited to, the scatter plot, the histogram, the

boxplot (Tukey 1977), and the quantile-quantile plot, whereas the data mining techniques

include, without limitation to the dimensionality reduction, data clustering/classification

and smoothing.

When the data object changes from univariate (multivariate) data to a real (multivari-

ate) function of an index, such as the time, wavelength, or location index, we call the new

data object univariate (multivariate) functional data (Ramsay & Dalzell 1991, Ramsay &

Silverman 2005). Common real-life examples of univariate functional data include, for in-

stance, raw cell-cycle gene expression curves (Zhao et al. 2004), data from a longitudinal

study of the relative diameter and relative height of trees (López-Pintado & Romo 2009),

longitudinal height data for teenagers (López-Pintado & Romo 2009), petroleum level curves

in an oil refinery (Ramsay et al. 2009), daily temperature curves (Sun & Genton 2011, Qu

et al. 2021), annual total precipitation data at 11,918 weather stations from the USA (Sun

& Genton 2012b), and the energy of sea waves as a function of frequency and direction (Wu

et al. 2023), whereas real-life examples of multivariate functional data include longitudi-

nal hip and knee angle curves for children (Ramsay & Silverman 2005), daily temperature

curves derived from data collected by sensors located at different altitudes (Berrendero et al.

2011), coordinates of handwriting data (López-Pintado et al. 2014), hurricane trajectories
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(Yao et al. 2005, Harris et al. 2021), bivariate daily wind-speed components, namely U

and V velocity, mapped in Saudi Arabia (Qu et al. 2021), individual growth velocity curves

for different body parts (Carroll et al. 2021), and the joint curves of stunted growth and

prevalence of low-birth weight in 77 countries (Qu & Genton 2022).

Mathematically, functional data are considered as a realization of a stochastic process

taking values in a Hilbert space. Each subject from one realization of the above process is

assumed to be independent and to have a continuous sample path. Practically, we could

never observe a function entirely over the whole domain; instead, we take records at cer-

tain fixed or random discrete points, which are either the same or differ between subjects.

According to the sampling scheme, functional data can be classified as follows: 1) fully

observed functions without noise at an arbitrarily dense grid (see the smoothed daily Cana-

dian temperature curves); 2) densely sampled functions with noisy measurements (dense

design, see the original daily joint Canadian temperature and precipitation curves); and 3)

sparsely sampled functions with noisy measurements (sparse design in Qu & Genton 2022,

see the univariate CD4 data and bivariate hurricane data). To demonstrate the application

of exploratory analysis methods in diverse sampling schemes, we will use the following three

representative datasets: 1) univariate sparse CD4 cell count data from the R package refund

(Crainiceanu et al. 2013, see Figure 1 (a)); 2) bivariate sparse hurricane trajectory data

(downloaded online) (see Figure 1 (b)); and 3) bivariate dense Canadian daily temperature

and precipitation curves from the R package fda (Ramsay et al. 2023, see Figure 1 (c)).

Functional data can be regarded as a natural extension of a vector from finite dimension

to infinite dimension. However, with the continuing development of data collection tech-

niques, functional observations present themselves more frequently. Hence, functional data

analysis (FDA) (Ramsay et al. 2009) includes both an intrinsic and an applied interest. The

intrinsically infinite dimension of functional data poses challenges for the existing visualiza-

tion tools as well as for the exploratory analysis procedures applied to the data. During the

2

https://data.humdata.org/dataset/archive-of-global-tropical-cyclone-tracks-1980-may-2019


−20 −10 0 10 20 30 40

0
5

0
0

1
5

0
0

2
5

0
0

(a) Observed CD4 Cell Counts

Months since Seroconversion

C
D

4
 C

e
ll 

C
o

u
n

ts

0

20

40

60

250 275 300 325 350
Longitude

L
a

ti
tu

d
e

0

0.2

0.4

0.6

0.8

1
Time

(b) North Atlantic Cyclone Tracks

2 4 6 8 10 12

−3
0

−2
0

−1
0

0
10

20

(c) Monthly Temperature Curves in Canada

Months

Te
m

pe
ra

tu
re

 (
°C

)

2 4 6 8 10 12

0
2

4
6

8
10

12

(c) Monthly Precipitation Curves in Canada

Months

P
re

ci
pi

ta
tio

n 
(m

m
)

Figure 1: Various types of functional data: (a) shows the observed CD4 counts for 366 subjects
during months -18 to 42 post seroconversion, (b) shows 1873 North Atlantic cyclone tracks recorded
from 1851 to 2021, and (c) shows the rainbow plots of monthly temperature and precipitation curves
at 35 different locations in Canada averaged over the period from 1960 to 1994. The orderings are
based on the modified simplicial band depth (López-Pintado et al. 2014) of Canada temperature.

past two decades, much effort has been made to find effective inference methods for func-

tional data, such as estimating mean and covariance functions (Yao et al. 2005, Wang et al.

2016, Happ & Greven 2018). A series of methods and tools have been developed, along with

the proliferation of statistical models and inference techniques for functional data (Ramsay

& Silverman 2005, Horváth & Kokoszka 2012, Wang et al. 2016).

Despite the importance of EDA for real-data applications, there is no systematic review
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of EDA for functional data. The goal of this paper is to provide a comprehensive review

of recent EDA methods for functional data to which we refer as EFDA. We first review

the novel data mining methodology and visualization tools specifically used for FDA as an

initial step prior to diving into modeling and statistical inference analysis. As compared to

a case study of the geometric features of the internal carotid artery (Sangalli et al. 2009),

we introduce exploratory analysis with novel visualization tools and methods of clustering

and classification. In addition, we use the univariate sparse CD4 data, the bivariate irreg-

ular North Atlantic cyclone track data, and the bivariate dense Canadian weather data to

illustrate different methods. In contrast to the review of Wang et al. (2016), which con-

cerns the general analysis of univariate functional data, we cover the EDA of p-dimensional

(p ∈ Z+) functional data, where the measurement index per subject can vary. Hence, uni-

variate functional data correspond to the special case of p = 1, and samples with dense

time grids correspond to the special case of identical measurement indexes per subject. In

contrast to the visualization review by Genton & Sun (2020), we delve into more recent visu-

alization tools that encompass a broader range of functional data. Additionally, we provide

a comprehensive overview of clustering and classification methods in EDA, showcasing their

integration with visualization tools.

The rest of the paper is organized as follows. Section 2 summarizes descriptive statistics

for functional data. Section 3 proposes current tools for visualizing the observed functional

data intuitively. Section 4 displays visualization tools featuring the descriptive statistics of

functional samples. Section 5 presents several methods for functional data clustering and

classification of dense and sparse functional data, separately. Section 6 concludes the paper

with a summary and discussion. An R package named EFDA has been developed to facilitate

practical exploratory functional data analysis.
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2 Notations and Functional Descriptive Statistics

In this section, we focus on the mathematical definitions and basic descriptive statistics

of functional data, with an emphasis on the case in which the dataset is contaminated by

abnormal subjects.

2.1 Notations

A functional random variable Y (Hsing & Eubank 2015) is a random vector with values in

an infinite-dimensional space. Specifically, we view the p-variate (p ∈ Z+) functional data as

paths of a p-variate stochastic process, taking values in some Hilbert space H, such as the

space of square-integrable functions defined on some bounded and closed interval T . That

is, H := L2(T )× · · · × L2(T ). When p = 1, we return to univariate functional data.

Without loss of generality, we allow each marginal random vector in a p-variate stochastic

process Y (t) to be defined at different indexes, that is, Y (t) = (Y (1)(t(1)), . . . , Y (p)(t(p)))⊤

with t⊤ := (t(1), . . . , t(p)) ∈ T := T1 × · · · × Tp. Note that t is a p-dimensional vector, with

its element t(j) being a random time and independent of all other random variables. Each

element Y (j)(t(j)) (j = 1, . . . , p) is defined on the domain Tj, where the Tjs are compact sets

in R with finite Lebesgue measure. Briefly speaking, Y (j)(t(j)): Tj → R is assumed to be

square-integrable in Tj, expressed as L2(Tj). Then, we consider the p-dimensional functional

data Y = {Y (t)}t∈T as sample paths of the stochastic process Y (t), and we have Y ∈ H,

where the space H := L2(T1)× · · · × L2(Tp).

In the following, let Y1, . . . ,YN be a set of independent observations of Y . In practice, we

observe the functions Yi(t) (i = 1, . . . , N) with error ϵi(t) = (ϵ
(1)
i (t(1)), . . . , ϵ

(p)
i (t(p)))⊤, and

the element ϵ
(j)
i (t(j)) are i.i.d. random variables with zero means. Moreover, the functions

Yi(ti) are observed on irregular finite grids at the subject and element level, that is, the jth

(j = 1, . . . , p) element t(j)i of ti (ti ∈ T ) can vary for each curve. Let the observed functions
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with measurement errors and the sparseness be Ỹi(ti), such that Ỹi(ti) = Yi(ti)+ϵi(ti). The

following moment-based methods are assumed to stem from observations denoted as Ỹ . For

simplicity of notation, we will use Y instead.

2.2 Moment-Based Methods

We will consider a collection of functional data, {Y1, . . . ,YN}, consisting of N independent

subjects observed at finite time points. The sampling schedule could vary in both location

and number for each subject. Based on Yi(ti) (i = 1, . . . , N) and ti = (t
(1)
i , . . . , t

(p)
i )⊤ ∈ T ,

we define µ(t) := Ê{Y (t)} as the mean function µ evaluated at time t, with the element

estimation µ̂(j)(t(j)) = E{Y (j)(t(j))} =
∑N

i=1 Y
(j)
i (t

(j)
i )1(t

(j)
i =t(j))∑N

i=1 1(t
(j)
i =t(j))

for l = 1, . . . , L and j = 1, . . . , p.

When functional data all have common and finite grid points, the number of observations

at each grid point is equal to the number of subjects. However, when functional data are

observed on irregular grids, the number of observations at each grid point varies and is

imbalanced. It may be practical to count the number of observations in each bin rather than

at each grid point. To obtain the whole curve, one can simply apply smooth interpolation

or nonparametric smoothing methods, e.g., kernel smoothing (Wand & Jones 1995), local

polynomial smoothing (Fan & Gijbels 1996), or spline smoothing (Wang 2011).

For s, t ∈ T , we define the matrix of covariances C(s, t) := cov{Y (s),Y (t)} with

elements Cij(s
(i), t(j)) := cov{Y (i)(s(i)), Y (j)(t(j))} for s(i) ∈ Ti and t(j) ∈ Tj. Likewise, the

pointwise covariance function can be estimated as

Ĉij(t
(i)
k , t

(j)
l ) =

∑N
n=1{Y

(i)
n (t

(i)
n )− µ̂(i)(t

(i)
k )}{Y (j)

n (t
(j)
n )− µ̂(j)(t

(j)
l )}1(t(i)n = t

(i)
k , t

(j)
n = t

(i)
l )∑N

n=1 1(t
(i)
n = t

(i)
k , t

(j)
n = t

(i)
l )

,

and the whole surface of the covariance function can be obtained by smoothing the three-

dimensional (3D) scatterplot. Common smoothing methods for sparse functional data in-

clude multivariate functional principal component analysis (MFPCA) (Happ & Greven 2018)
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and tensor-product splines (Cai & Yuan 2010, Xiao et al. 2018, Li et al. 2020). Practically,

these records are often assumed to be contaminated by measurement errors, and we refer the

readers to the article by Wang et al. (2016) for a comprehensive review of the estimation of

mean and covariance functions in such a scenario.

2.3 Robust Methods

Functional data can be contaminated by abnormal subjects, also known as outliers, in a simi-

lar manner to univariate or multivariate data. Outliers may severely bias the aforementioned

moment-based estimators and, consequently, lead to incorrect inference results. Hence, it

is desired to develop methods that could eliminate the influence of outliers and summarize

functional data robustly.

For univariate data, order-statistics and ranks induced naturally by the order of scalars

on the real line are commonly used to design robust analysis methods, whereas for functional

data, such a natural ranking is not available. During the past two decades, the idea of data

depth, initially proposed to sort multivariate data, has been generalized to functional data.

Specifically, a functional depth, taking values in [0, 1], maps functional data as scalars and

assigns larger depth values to central ones and smaller depth values to the more outward

ones. Consequently, these scalars provide a ranking criterion for functional data in the data

cloud from the center outward.

Commonly implemented depth notions for dense univariate functional data include, but

are not limited to, band depth (BD) and modified band depth (MBD) (López-Pintado &

Romo 2009, Sun et al. 2012), half-region depth and modified half-region depth (HRD and

MHRD) (López-Pintado & Romo 2011), extremal depth (Narisetty & Nair 2016), functional

tangential angle pseudo-depth (FUNTA) (Kuhnt & Rehage 2016) and its robustified version,

order extended integrated depth (Nagy et al. 2017), total variation depth (TVD) (Huang &

Sun 2019), and elastic depths (Harris et al. 2021). For dense multivariate functional data,
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available depth notions include combinations of univariate functional depth measures (Ieva &

Paganoni 2013), simplicial band depth (SBD) and modified simplicial band depth (MSBD)

(López-Pintado et al. 2014), multivariate functional halfspace depth (MFHD) (Claeskens

et al. 2014), and multivariate FUNTA pseudo-depth and its robustified version (Kuhnt &

Rehage 2016).

For sparse univariate functional data, López-Pintado & Wei (2011) first proposed a model-

based consistent procedure for estimating the depths based on the estimated curves on regular

grids. Then, Sguera & López-Pintado (2021) proposed a new depth that enables the curve

estimation uncertainty to be incorporated into the depth analysis. Those two depth notions

have been extended to sparse multivariate functional data by Qu & Genton (2022), who

also compared their ranking performances with simulations. Elías et al. (2023) proposed

an integrated functional depth for partially observed functional data, but this depth does

not work if the data are not a common domain or all subjects show missing values. In

a recent study, Qu et al. (2022) introduced a novel framework for multivariate functional

depths, specifically designed for sparse multivariate functional data and eliminating the need

for curve estimation. This new depth concept, termed “global depth”, distinguishes itself

from previous approaches by handling sparse functional data directly. The authors have

demonstrated how the procedures for MFHD and multivariate extremal depth (an extension

of extremal depth) can be adapted to their global depth framework.

Functional depths provide a natural basis for defining the median, extremes, and quantiles

of functional data. Fraiman & Muniz (2001) defined the functional median as the deepest ob-

servation, i.e., the sample with the largest depth value, denoted as M = argmax
Y

D(Y , FY ),

where D(Y , FY ) is the depth of a random function Y with respect to its distribution FY .

The functional version of the α-trimmed mean, µα, is defined as the average of the deepest
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1− α proportion of subjects,

µα =
E(Y 1[β,∞)(D(Y , FY )))

E(1[β,∞)(D(Y , FY )))
,

where 1A(y) = 1 for y ∈ A and zero otherwise, and E(1[β,∞)(D(Y , FY ))) = 1 − α. The

empirical definitions of these two statistics can be expressed as

MN = arg max
i=1,...,N

D(Yi, FY ,N) and µ̂α,N =

∑N
i=1 Yi1[β,∞)(D(Yi, FY ,N))∑N
i=1 1[β,∞)(D(Yi, FY ,N))

.

Similarly, the α-trimmed covariance function can be defined as

Cα(s, t) =
E[{Y (s)− µα(s)}{Y (t)− µα(t)}1[β,∞)(D(Y , FY ))]

E(1[β,∞)(D(Y , FY )))
,

and its empirical version can be derived by substituting the statistics with their respective

estimators. Another concept related to the ranking of functional data is the central region

(López-Pintado & Romo 2009, Sun & Genton 2011, Narisetty & Nair 2016, Myllymäki et al.

2017), which is defined as

C1−α = {Y ∈ L2(T ) : Y
(j)
L (t) ≤ Y (j)(t) ≤ Y

(j)
U (t),∀t ∈ T , j = 1, . . . , p},

where YL and YU are lower and upper α-envelope functions, YL = inf{Y ∈ L2(T ) :

D(Y , FY ) > α} and YU = sup{Y ∈ L2(T ) : D(Y , FY ) > α}, respectively.

Similarly, the global envelope (Myllymäki & Mrkvička 2019) is a band such that the

functional data Y falls outside with probability α. For the univariate functional data Y =

{Y (t), t ∈ T }, we define Ylow = {Ylow(t), t ∈ T } and Yupp = {Yupp(t), t ∈ T } as the lower

and upper bounds, respectively. Then, the global envelope [Ylow(t), Yupp(t)] is defined as

P (Y (t) /∈ [Ylow(t), Yupp(t)] for t ∈ T ) = α.
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3 Direct Visualization of Functional Observations

Visualization (Friedman & Stuetzle 2002) has long been a component of great importance to

EDA, and many visualization tools are widely used as routine steps in the analysis procedure.

For instance, the histogram of a univariate dataset shows a rough sense of the density of

its underlying distribution, the scatter plot of a bivariate dataset presents the locations of

the data points on a two-dimensional plane to provide some idea of the relation between the

two variables, and a heatmap shows the magnitude of an object as color in two dimensions.

Similar demands in FDA motivate researchers to develop new graphical tools.

Here, we highlight several reasonably simple tools that have proved useful in the literature

(Hyndman & Shang 2010, Hubert et al. 2015, Wrobel & Goldsmith 2016). We will consider

the Canadian weather dataset from Figure 1 (c) as one instance. This dataset includes

monthly recorded temperature and precipitation curves for 35 stations in Canada over the

period from 1960 to 1994.

3.1 Spaghetti Plot and Rainbow Plot

A spaghetti plot (Allen 2019) is a simple visualization that assigns a distinct color to each

subject, making it easy to track movement for data with small samples. However, such a

plot may look messy when used to visualize big functional data. The rainbow plot, proposed

by Hyndman & Shang (2010), can be regarded as an improvement of the spaghetti plot. As

a visualization of all the curves, it adds a data ordering feature and colors the samples based

on the ordering, using the rainbow palette. The order can reflect time, data depth, data

density, or another index.

In Figure 1 (c), the Canadian temperature curves are ordered with the MSBD from the

median to the extreme, and the curves are labeled from red to purple in the rainbow palette.

We can see that the red group represents the median tendency of the temperature and
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precipitation over the course of a year, whereas the purple group includes data from some

stations with high temperatures and high precipitation during winter and some stations with

low temperatures and low precipitation all year round.

3.2 Heatmap

A heatmap (Hubert et al. 2015) represents different values by using a system of color-

coding. In FDA, an n×m heatmap is suitable for showing a functional dataset consisting of

n subjects recorded on m common design points. We visualize the data with a heatmap in

Figure 2. For instance, each cell in Figure 2 (a) represents the estimated temperature at one

station in a specific month, each row represents the monthly temperature curve for a station,

and each column represents the average temperature at 35 stations in a particular month.

Some abnormal information can be easily detected through the heatmap. Figure 2 (a) shows

that Victoria and Vancouver have persistent high temperatures between April and October,

whereas temperatures in Resolute and Iqaluit remain below 10 degrees Celsius almost all
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(a) Heatmap of Canada Temperature Curves
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Figure 2: (a) is the heatmap of 35 Canada monthly average temperature curves over the period
from 1960 to 1994, and (b) is the heatmap of 35 Canada monthly average precipitation curves over
the period from 1960 to 1994.
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year round. Pr. Rupert has monthly precipitation up to 6 mm, except between April and

August, whereas the other stations have monthly precipitation of less than 6 mm.

3.3 Interactive Plots

Several packages have been developed to generate interactive visualization for functional

data. An interactive plot retains the advantages of both visual and numerical illustration of

data, i.e., it is intuitive as well as accurate. The interaction can be achieved in many ways,

e.g., by showing the associated records at the locations indicated by the cursor, zooming

in or out, or interacting between different plots. Wrobel et al. (2016) proposed using the

refund.shiny package (Goldsmith & Wrobel 2015) that creates interactive graphics for FDA.

The refund.shiny package relies on the shiny package (Chang et al. 2015) to generate such an

interactive user interface. Figure 3 illustrates the observed scores for the functional principal

components and the corresponding fitted values for each station in the Canadian temperature

data. Another commonly used tool is the plotly package (Sievert et al. 2018), which produces

interactive plots with two or three dimensions in combination with a web portal.

Figure 3: An illustration of an interactive functional principal component (FPC) plot generated by
the refund.shiny package. The left panel shows the observed score scatterplot for selected FPCs of
Canadian temperature, and the right panel shows fitted values for subjects, where subjects selected
in the left panel are in orange and the other subjects are in blue.
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3.4 Animations

An animation (or video) is another powerful tool for enhancing still figures that can visualize

the dynamic evolution of data. Genton et al. (2015) proposed the term visuanimation for

referring to visualization through animations, and they explored the utility of animation in

various perspectives of statistics. Castruccio et al. (2019) illustrated the predicted global

temperature data, which can be regarded as functional data, varying spatially and temporally

via a 3D virtual-reality movie, and they developed a mobile application that enables users

to watch the movie interactively.

4 Visualization with Functional Summary Statistics

Many visualization tools for classical data have been developed that feature descriptive

statistics. For instance, the boxplot (Tukey 1977) of a univariate dataset illustrates the

structure of the dataset by showing its descriptive statistics, e.g., the median, quartiles,

extreme values, and possible outliers; whereas the bagplot (Rousseeuw et al. 1999) of a

bivariate dataset presents the deepest data, the deepest 50% of the data points, and possible

outliers under the ranks given by the halfspace depth (Tukey 1975). In FDA, functional

data can be transformed to notions of depth or outlyingness (Dai & Genton 2019) from the

center outwards (see Subsection 2.3) for visualization and outlier detection. Hence, we will

introduce visualization tools that contain functional summary statistics of raw data.

4.1 Visualization Based on Ranking Information

Hyndman & Shang (2010) first proposed several visualization tools for smoothed functional

data, such as the functional bagplot and functional highest density region (HDR) boxplot

available in the R package rainbow (Shang & Hyndman 2019). The functional bagplot is

based on the bivariate bagplot of Rousseeuw et al. (1999). It first applies the bivariate
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bagplot to the first two robust functional principal component scores as an auxiliary tool to

rank the observations and detect outliers. Then, it displays the median curve, the 50% inner

region, and the 99% fence. Curves that are partially outside these regions are identified as

outliers. The functional HDR boxplot is a mapping of the bivariate HDR boxplot (Hyndman

1996) of the first two robust functional principal component scores to the functional curves.

In contrast to the functional bagplot, this method displays curves with high HDRs. Specifi-

cally, it focuses on curves whose first two functional principal component scores correspond

to the 50% inner and 99% outer bivariate HDRs. Additionally, it identifies outliers as points

that are excluded from the 99% outer HDR. The visualization tools mentioned above use

either time-ordering or the first two robust functional principal component scores to arrange

the curves.

The functional boxplot, as proposed by Sun & Genton (2011), is a data visualization

technique used to summarize the distribution and features of a set of functional data. It uses

the functional depth and highlights the central quantiles and possible outliers. Analogous

to the classical boxplot, there are four descriptive statistics in the functional boxplot (see

Figure 4): the envelope of the 50% central region, the median curve, the outliers, and the

maximum non-outlying envelope. An observation is flagged as an outlier if its measurement

at any grid point is outside a constant factor times the range at the central region. The

constant factor is set to be 1.5 under the assumption that observations at each index are

independent and identically distributed and that they follow a normal distribution. The

functional boxplot is generalized to other types of boxplots to suit functional data with

additional characteristics. We can categorize the various functional boxplots as follows:

those with more descriptive statistics, those dealing with spatio-temporal data, those with

missing data, and those with more general data objects.

In the first category, the enhanced functional boxplot (Sun & Genton 2011), the double-

fence functional boxplot (Serfling & Wijesuriya 2017), and the two-stage functional boxplot
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(Dai & Genton 2018a) were proposed to underline more features. For instance, the enhanced

functional boxplot provided 25% and 75% central regions on the basis of the functional

boxplot and the two-stage functional boxplot; the double-fence functional boxplot included

an additional fence of 0.5 interquartile regions, enhancing its ability to identify specific shape

and location outliers; and the two-stage functional boxplot implemented the directional

outlyingness (Dai & Genton 2019) first, colored the detected outliers in green, then applied

the remaining curves to the procedures in the functional boxplot. Figure 4 illustrates these

tools on the CD4 functional data.
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(a) Functional Bagplot: Fitted CD4 Cell Counts
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(b) Functional HDR Boxplot: Fitted CD4 Cell Counts

−20 −10 0 10 20 30 40

0
50

0
10

00
15

00
20

00

(c) Functional Boxplot: Fitted CD4 Cell Counts

Months since Seroconversion

To
ta

l C
D

4 
C

el
l C

ou
nt

s

−20 −10 0 10 20 30 40

0
50

0
10

00
15

00
20

00

(d) Two−Stage Functional Boxplot: Fitted CD4 Cell Counts
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Figure 4: Comparisons of the functional bagplot, the functional HDR boxplot, and the functional
boxplots of the fitted CD4 cell counts from bootstrap MFPCA (Qu & Genton 2022): (a) the
functional bagplot, (b) the functional high-density region (HDR) boxplot, (c) the functional boxplot,
and (d) the two-stage functional boxplot.
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In the second category, the adjusted functional boxplot (Sun & Genton 2012a) and surface

boxplot (Genton et al. 2014) were proposed for use with spatio-temporal data. The spatio-

temporal data can be viewed as a temporal curve at each spatial location or as a spatial

surface at each time. In the former case, correlations need to be considered across locations.

Hence, Sun & Genton (2012a) proposed the adjusted functional boxplot, which flexibly

selects the constant factor to control the probability of correctly detecting no outliers. In

the aforementioned work, Genton et al. (2014) extended the concept of MBD to modified

volume depth specifically for image data. This extension enabled them to introduce a surface

boxplot, which facilitates the visualization of image subjects based on the modified volume

depth. Similarly, the same four descriptive statistics can also be established by using the

modified volume depth. Furthermore, Huang et al. (2023) adapted the functional boxplot

method to visualize test functions of covariance properties for multivariate spatio-temporal

random fields.

In the third category, the sparse functional boxplot and the intensity sparse functional

boxplot (Qu & Genton 2022) were proposed for visualization. Data reconstruction is re-

quired with MFPCA (Happ & Greven 2018). In addition to the descriptive statistics in

the functional boxplot, the sparse functional boxplot displays the smooth sparseness pro-

portion within the 50% central region, and the intensity sparse functional boxplot displays

the intensity of the smooth sparseness within the 50% central region. Usually, the direc-

tional outlyingness (Dai & Genton 2019) and sparse functional boxplots are combined to

form the sparse two-stage functional boxplot and the intensity sparse two-stage functional

boxplot for visualization and outlier detection (see Figure 5). Furthermore, sparse functional

boxplots have been extended to the simplified sparse functional boxplot (Qu et al. (2022))

and the simplified intensity sparse functional boxplot without data reconstruction. The sim-

plified visualization tools are based on the global multivariate functional depths (Qu et al.

2022), which are applied to the sparse multivariate functional data directly without data
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(b) Sparse Two−Stage Functional Boxplot: Fitted CD4 Cell Counts
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(c) Intensity Sparse Functional Boxplot: Fitted CD4 Cell Counts
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(d) Intensity Sparse Two−Stage Functional Boxplot: Fitted CD4 Cell Counts
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Figure 5: Functional boxplot and its variations when missing values exist, taking the instance of
the fitted CD4 cell counts from bootstrap MFPCA (Qu & Genton 2022). The left column includes
(a) the sparse functional boxplot and (c) the intensity sparse functional boxplot. The right column
includes (b) the sparse two-stage functional boxplot and (d) the intensity sparse two-stage functional
boxplot.

reconstruction.

The fourth category includes other natural extensions of the functional boxplot for data

expressed as sets, curves, paths, or trajectories. Whitaker et al. (2013) defined the set band

depth and introduced a contour boxplot for visualization and exploration of ensembles of

contours or level sets of functions. Mirzargar et al. (2014) generalized the band depth for

curves and proposed the curve boxplot. Hong et al. (2014) introduced a weighted functional

boxplot for use when data objects become shapes and images. Raj et al. (2017) proposed the

graph-simplex band depth and developed a visualization tool path boxplot. Yao et al. (2020)
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developed a trajectory boxplot (see Figure 6) for visualization and exploratory analysis of

trajectories that show variation in longitude and latitude through time.

The functional boxplot has some shortcomings, such as the loss of functional interpre-

tation in the envelopes of the 50% central region and the non-outlying region and its inap-

plicability to functional observations under hidden temporal warping variability. Therefore,

Xie et al. (2017) decomposed observation variation in functional data into three main com-

ponents: amplitude, phase, and vertical translation based on curve registration (Srivastava

et al. 2011). They constructed a different visualization for each element based on the

median, two quartiles, and extreme observations. They also proposed identifying outliers

based on those three components and visualizing the amplitude or phase outliers through

the phase-versus-amplitude distance plot.

4.2 Visualization Based on Decomposition

Another set of visualizations, specifically for outlier detection, are usually based on ranking

criteria such as statistical depth or outlyingness. Due to the intrinsically infinite dimension,

outliers contaminated in functional data reveal various patterns. Regarding the amount of

outlying proportion, they are divided as persistent and isolated outliers (Hubert et al. 2015);

regarding whether they jump out of the normal range of oscillation, they are classified as

magnitude and shape outliers (Dai et al. 2020). The outlier detection visualization tools

that we introduce here can be separated into those specifically for univariate functional data

and those for multivariate functional data (univariate functional data are usually special

cases).

For univariate functional data, Arribas-Gil & Romo (2014) proposed using outliergrams

to visualize and detect shape outliers in functional data by exploiting the relation between

MBD and the modified epigraph index (MEI, López-Pintado & Romo 2011). Through a

novel decomposition of the total variation depth, proposed by Huang & Sun (2019), we
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can easily detect shape outliers via the boxplot of the modified shape similarity (MSS).

Thereafter, the magnitude outliers can be seen among the remaining observations with the

functional boxplots.

For multivariate functional data, Hubert et al. (2015) discussed amplitude and shape

outliers and proposed various functional outlier maps based on the notion of outlyingness

and depth in the multivariate functional data, e.g., adjusted outlyingness (AO) and skew-

adjusted projection depth (SPD). Furthermore, they exploited the relation between AO and

SPD. They constructed the centrality-stability plot in which the amplitude outliers lie in the

upper-right region and the shape outliers lie in the right region. Rousseeuw et al. (2018)

proposed a robust notion of outlyingness, directional outlyingness (DO), and this can be

applied in the univariate or multivariate setting. Based on the DO in the univariate setting,

they defined the average of outlyingness as the functional directional outlyingness (FO)

and measured the variability of its DO (VO). Then, they developed a graphical tool called

the functional outlier map (FOM), which is a scatterplot of (FO, VO). Shift outliers, local

outliers, and global outliers can be detected and displayed in different domains in FO. Based

on the relation between mean directional outlyingness (MO) and VO, Dai & Genton (2018b)

proposed a new graphical tool, the magnitude-shape (MS) plot, to illustrate the centrality of

curves comprehensively. They also generalized the outliergram to the bivariate outliergram

for outlier detection in bivariate functional data, according to a quadratic relation between

FO and MO. However, the bivariate outliergram is limited to bivariate functional data and

is less efficient than the MS plot at measuring the centrality of curves. Yao et al. (2020)

introduced wiggliness of directional outlyingness (WO) to detect outliers, and constructed

the WO-MSBD plot which can distinguish shape outliers and magnitude outliers. The depth

boxplot, introduced by Harris et al. (2021), is constructed on the elastic depths directly and

serves as a half-boxplot. Its purpose is to identify potential amplitude and phase outliers.

Ojo et al. (2023) proposed the magnitude-shape-amplitude (MSA) plot based on fast massive
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unsupervised outlier detection (FastMUOD, Ojo et al. 2022).

5 Functional Clustering and Classification

In the terminology of machine learning, functional data clustering is an unsupervised learning

process, partitioning similar samples into subgroups. The range of applications for functional

data clustering is vast. For example, Abramowicz et al. (2017) applied a functional cluster-

ing method to study sediment data and to infer past environmental and climate changes.

Athanasiadis & Mrkvička (2019) analyzed financial time series by using functional clustering

methods to identify different insurance penetration (IP) rate profiles in European markets. In

general, the resulting clusters show high potential for data visualization and interpretation.

When dealing with functional data, similarities might take into account the character-

istics of the curves, such as their shapes, magnitudes, or derivatives (Hitchcock & Green-

wood 2015). Broadly, we can classify the existing functional clustering methods as follows

(Jacques & Preda 2014): 1) raw data methods; 2) filtering methods; 3) adaptive methods;

and 4) distance-based methods. Raw data methods represent a naive approach and might re-

sult in high-dimensional vectorial clustering (Bouveyron & Brunet-Saumard 2014). Filtering

methods and adaptive methods use the basis expansion approach for functional data with a

common basis for all of the data or a common basis per group, respectively. The fundamen-

tal difference between filtering and adaptive methods (Cheam & Fredette 2020) lies in how

the latter treats basis expansion coefficients and FPCA scores as random variables rather

than parameters. Moreover, adaptive methods operate under the assumption that these ran-

dom variables follow cluster-specific probability distributions. Some examples of clustering

methods that use B-splines, Fourier basis, or functional principal component analysis have

been described in detail by Abraham et al. (2003), Serban & Wasserman (2005), Chiou &

Li (2007) and Shang (2014). Lastly, distance-based methods quantify the similarity between
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clusters by computing distances for functional objects. Here, we focus on distance-based

methods. For a useful review of filtering and adaptive methods, we refer the reader to the

articles by Jacques & Preda (2014) and Wang et al. (2016).

There are two main objects in a distance-based clustering method: the similarity measure

and the clustering algorithm. We need to define a similarity or dissimilarity measure be-

tween curves that will be highly related to the interpretation of the clusters. Usually, these

measures are defined between two curves, {Xi,Xj}, where Xi = (X
(1)
i , . . . , X

(p)
i )⊤ and

Xj = (X
(1)
j , . . . , X

(p)
j )⊤ are p-variate functional data, and we need a clustering algorithm to

compute similarities across clusters, C1 = {X1
1 , . . . ,X

1
n1
} and C2 = {X2

1 , . . . ,X
2
n2
}. Often,

the similarity measure can be defined using a distance between functions, d(Xi,Xj). Natural

choices for the distance are the L1, L2, or L∞ distances, where

dl(Xi,Xj) =

(
1

p

p∑
k=1

∫
Tk
(|X(k)

i (t)−X
(k)
j (t)|)ldt

)1/l

for l = 1, 2, and d∞(Xi,Xj) = max
k=1,...,p

(
1
p

∫
Tk
|X(k)

i (t)−X
(k)
j (t)|dt

)
. The above distances

are sensitive to both local and global changes in shape, allowing them to effectively capture

the similarity between curves by measuring the extent of alignment between corresponding

curves or by quantifying the maximum deviation along any component. If we consider the

L1, L2, or L∞ distance, then the resulting clusters are built of functions with similar shapes

and magnitudes. If there is no interest in the similarity of magnitude, then the functions can

be normalized and the total variation (TV) distance used (Alvarez-Esteban et al. 2016):

dTV (Xi,Xj) = 1− 1

p

p∑
k=1

∫
Tk
min{X(k)

i (t), X
(k)
j (t)}dt = 1

2p

p∑
k=1

∫
Tk
|X(k)

i (t)−X
(k)
j (t)|dt.

These distances might be more complex if we also include information about the deriva-

tive curve and define a similarity measure as a weighted combination of the distances, i.e.,

a1d(Xi,Xj)+a2d(X
′
i ,X

′
j). Here, we assume that the curves X ′

is are all independent. How-
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ever, if the user is interested in clustering dependent curves, then a similarity measure can

be proposed that uses the Spearman correlation or the rank correlation between functions

(Heckman & Zamar 2000). If these curves are linked to a time series trajectory, then a

coherence-based distance might be useful too (Euán et al. 2019). In this setting, the cor-

relation of the resulting clusters is high within each group but low across clusters. Chen

et al. (2021) introduced two novel robust rank-based dissimilarity measures: one based on

the distance between functional medians and the other based on the size of the central region

during merging. Dai et al. (2021) induced the dissimilarity matrix from functional ordering.

The idea is to construct the set of functional differences, apply any functional depth (or

ranking) notions to the above set, and define the similarity as one minus the depth.

However, those methods assume that functions are observed at a fixed set of points, and

no sparseness exists. Elastic time distance was proposed by Qu et al. (2024) to address this

issue. It is applicable to (multivariate) functional data with either identical or different time

measurements per subject. The core idea is to build standard grid points and to interpolate

measurements at standard grid points with the available observations. Assume curves Xi

and Xj are p-variate multivariate functional data and that X̃i and X̃j are their interpolated

observations based on procedures described by Qu et al. (2024), then

dETD(Xi,Xj) = max
m=1,...,T

√√√√ p∑
k=1

{X̃(k)
i (tm)− X̃

(k)
j (tm)}2, tm ∈ T .

Once the similarity measure is chosen, we use a clustering algorithm that selects the

groups of functions that are more similar in an “optimal” manner, i.e., members within each

group are highly similar, but members across groups are highly dissimilar. The algorithms

most commonly used for this purpose are the k-means and hierarchical clustering algorithms.

Ferraty & Vieu (2006) introduced examples of hierarchical clustering using the L2 distance

between the functions and their second derivatives. Ieva et al. (2013) applied a k-means to
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identify clusters of electrocardiograph traces with a weighted distance between the curves

and their first derivatives. Recently, Euán et al. (2018) proposed the hierarchical merger

clustering algorithm. Its main contribution to classical hierarchical algorithms is the use of a

representative member for each cluster. Euán et al. (2018) proposed using the TV distance

in a hierarchical merger algorithm to cluster spectral density functions from ocean wave

time series. Euán & Sun (2019) extended this method to general 2D directional spectra

functions. Moreover, Qu et al. (2024) combined the elastic time distance and the original

robust two-layer partition (RTLP) clustering algorithm to cluster multivariate functional

curves. They also compared RTLP clustering with other algorithms, including the distance-

based methods DBSCAN, k-means, and k-medians and the model-based funHDDC algorithm

(Schmutz et al. 2020).

Some real data applications might need a more robust clustering algorithm, especially if

the data have a high noise level. Although some of the methods described previously in this

section might separate possible outliers as single clusters, this is not true for all methods. In

the presence of potential outliers, Cuesta-Albertos & Fraiman (2007) proposed a trimmed

k-means clustering that results in a robust cluster procedure for functional data. Also,

Rivera-García et al. (2019) applied the trimming technique to introduce a robust model-

based clustering method for functional data. When data are misaligned, applying clustering

methods directly might result in nonreasonable clustering structures. Sangalli et al. (2010)

proposed an algorithm that considers the case in which curves are misaligned. De Micheaux

et al. (2021), based on the curve depth, employed the original clustering algorithm (Jörnsten

2004) with slight modifications for unparameterized curves. The robust two-layer partition

clustering, introduced by Qu et al. (2024), uses both a two-layer partition algorithm and a

modified silhouette index. This approach is effective at distinguishing clusters and identifying

potential outliers in terms of their magnitude and shape.

In general, a good strategy is to select the clustering method based on the research goal.
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Figure 6: North Atlantic cyclone track clusters visualized with our version of the trajectory boxplot
(Yao et al. 2020). (a) and (b) are from k-medoids clustering, (c) and (d) are from hierarchical
clustering, and (e) and (f) are from robust two-layer partition clustering. Black and red represent
the median and outliers, respectively, and purple, magenta, and pink indicate the first, second, and
third quartile curves, respectively.

We will illustrate this by using the bivariate hurricane trajectory data for the North Atlantic

(see Figure 1 (b)). Because the trajectory data have various observations per subject, we
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apply the elastic time distance mentioned in Qu et al. (2024) and consider the following

different clustering methods based on the interpolated data: 1) k-medoids clustering (Park

& Jun 2009) (see Figure 6 (a)-(b)); 2) hierarchical clustering with the average as the linkage

function (see Figure 6 (c)-(d)); and 3) robust two-layer partition clustering (see Figure 6

(e)-(f)). Each clustering method generates two clusters, but outliers are introduced only by

the robust two-layer partition clustering.

6 Discussion

We have presented an overview of methods and tools to perform exploratory functional

data analysis (EFDA) and broadened its scope from analyzing only fully observed univariate

functional data to encompassing irregular multivariate functional data. By using functional

depths and distances, EFDA offers a wide array of tools for visualizing, clustering, and

classifying both dense and sparse multivariate functional data, and for detecting outliers.

Functional depths play a pivotal role in establishing functional rankings, forming the

foundation for generating functional boxplots and identifying outliers. These functional

depths can be categorized into four types, as outlined in Zuo & Serfling (2000). The first

type gauges the average closeness of the curve to random samples, exemplified by the BD

and the SBD. The second type measures the distance of the curve from random samples,

represented by the Lp depth. The third type assesses the outlyingness of a point with respect

to the center of random samples, such as the elastic depth. As for the fourth type, it is an

index related to the relative depth with respect to the center of the distribution, known as

the extremal depth.

Applying functional depths to sparse functional data is more complex because of the

irregular coordinate grids. One approach to address this involves estimating curves and their

confidence bands or, alternatively, applying global functional depth to sparse functional data
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directly as proposed by Qu et al. (2022). The original functional boxplot serves to identify

central tendencies and outliers. However, it has limitations with regard to detecting certain

shape outliers, and it may not be directly applicable to functional data with missing values.

To address these limitations, variations of functional boxplots and other visualization tools

have been proposed, enabling the detection of shape outliers and facilitating the application

of sparse functional data.

Moreover, functional distances play a crucial role in facilitating functional clustering.

Examples of such distances include the Lp distance, the total variation distance, and the

elastic time distance. By leveraging functional distances, a wide range of classical clustering

algorithms, as well as novel ones, can be applied to functional data. To handle common noise

present in real-world data, robust two-layer partition clustering techniques can effectively

separate potential outliers from the clusters. In the context of functional classification, both

functional depths and distances find utility. When comparing the distance or depth of a

curve to all other groups, the group with the smallest distribution proportion of distances

(or the maximal depth) is assigned as the label for that curve.

Although this review has extended its domain from classical functional data to sparse

multivariate functional data, a wider area of functional data can be considered, and this may

pose new challenges in visualization, robust statistics, and clustering/classification. New-

generation functional data can include: interval-valued functional data (Nasirzadeh et al.

2022; see the simultaneous systolic and diastolic blood pressure of subjects at different visit

times); longitudinal functional data from a clinical trial (see the medical imaging data of

patients at different time points during a clinical study in the papers by Adeli et al. 2019 and

Zhu et al. 2021); spatial functional data (Delicado et al. 2010; see the longitudinal climate

data from arrays of monitors in the nearby area, and the review by Martínez-Hernández &

Genton 2020), and wearable health data (Smets et al. 2018).
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