
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Blockchain-empowered Keyword Searchable
Provable Data Possession for Large Similar Data
Ying Miao, Keke Gai, Senior Member, IEEE, Jing Yu, Member, IEEE, Yu’an Tan, Liehuang Zhu, Senior

Member, IEEE, and Weizhi Meng, Senior Member, IEEE

Abstract—Provable Data Possession (PDP) is an alternative
technique that guarantees the integrity of remote data. However,
most current PDP schemes are inapplicable to similarity-like
data checking with the same attribute, i.e., when there are
numerous similar files to be checked by Data Owners (DOs).
Some traditional models cannot resist the corrupt auditors who
always generate biased challenge information. Besides, a copy-
summation attack exists in some schemes, which means the
Cloud Server (CS) can bypass the verification by storing the
median value instead of initial data via summation operation. To
address the issues above, in this work, we propose a keyword
searchable PDP scheme for large similar data checking. To
achieve searchability, we introduce the notion of a keyword
in PDP and design a specific index structure to match the
authenticator. The scheme enables all matched files to be au-
ditable and verifiable, while guaranteeing privacy protections.
Unlike existing methods, our Third Party Auditor (TPA) checks
all similar data containing the same keyword simultaneously.
We utilize unpredictable yet verifiable public information on
the blockchain to generate challenge information, rather than
relying on a centralized TPA. The proposed scheme can resist
copy-summation attacks. Theoretical analysis demonstrates that
the proposed scheme satisfies the security requirements, and our
evaluations demonstrate its efficiency.

Index Terms—Blockchain, Keyword search, Provable data
possession, Similar data.

I. INTRODUCTION

CLoud-based services have become a desirable alternative
for acquiring on-demand services, due to their multiple

merits, e.g., pay-as-you-go and wide resource access. Along
with the expansion of clouds, it is observable that security and
privacy concerns have been impacting the implementation of
cloud systems in various dimensions, such as cloud storage.
One of the major concerns is the lack of control for Data
Owners (DOs), which may cause hazards in data integrity, e.g.,
downtime events. Data losses caused by clouds derive from
various aspects, e.g., hardware/software failure and improper
operations [1], [2]. As a remote check technique without
downloading the entire dataset, Provable Data Possession
(PDP) has been developed to ensure efficient data integrity

Y. Miao, K. Gai, Y. Tan and L. Zhu are with School of Cyberspace Science
and Technology, Beijing Institute of Technology, Beijing, 100081, China (e-
mail: {yingmiao, gaikeke, tan2008, liehuangz}@bit.edu.cn).

J. Yu is with the School of Information Engineering, Minzu University of
China, Beijing, China, jing.emy.yu01@gmail.com.

W. Meng is with School of Computing and Communications, Lancaster
University, United Kingdom. Email: weizhi.meng@ieee.org.

This work is partially supported by the National Key Research and Devel-
opment Program of China (Grant No. 2021YFB2701300), National Natural
Science Foundation of China (Grant No. 62372044).

Corresponding author: Keke Gai (gaikeke@bit.edu.cn)

Fig. 1: Searchable provable data possession.

checks, considering reliable cloud service offerings [3]. In this
paper, we mainly address two key issues in PDP.

On one hand, ensuring a fair challenge is a key issue
that needs to be addressed. Prior studies have explored PDP
schemes in multiple dimensions, e.g., privacy-preserving [4],
dynamic PDP [5], multi-copy [6], and multi-cloud PDP [7].
In practice, a Third Party Auditor (TPA) is an alternative
for assisting in the integrity check of outsourced data within
an auditing model. A TPA generally executes Challenge and
Verify algorithms in the model. To be specific, there are two
major methods to generate challenge information. One method
is that TPA selects two random seeds and sends them to
the Cloud Server (CS) as the challenge; the other method
is that TPA generates the challenge index set and sends it
to the cloud server. We see that both challenge seeds and
indices are selected by TPA, regardless of which method
is applied. Unfortunately, the credibility of auditing cannot
be guaranteed when TPA colludes with CS and generating
improper challenge information, since PDP adopts a challenge-
response and a randomly sampled pattern to ensure reliability.
For example, when the corrupt data blocks ratio is 1%, it only
needs to challenge 300 blocks to guarantee 99% credibility.

Another critical challenge in PDP schemes is ensuring
integrity checks for data with similar attributes, particularly
given the large volumes of data commonly generated in
commercial and scientific contexts [13]. Users often prioritize
the integrity of specific data categories, such as data related to
particular diseases or specific time frames, since these focused
datasets can yield more valuable insights. Therefore, robust
integrity assurance for these data groups is essential. However,
many existing schemes [17]–[19] do not fully address the

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

TABLE I: The Index Structure and a Partial Proof Information

Scheme Index structure A partial proof information
Gao et al. [8] Ωwk,j = [(

∑
i∈Swk

H1(IDi||j)−1)×H3(j)×H2(π(wk)‖j)]x µ =
∑
i∈Swk

∑
j∈Q cij × vj

Xue et al. [9] Ωwk,j = [H2(Z)−1 ×H3(π(wk)‖j)×
∏
i∈Swk

(H1(IDi‖j)−1)]sku µ =
∑
i∈Swk

∑
j∈Q cij × vj

Xue et al. [10] Ωwk,j = [H2(Z)−1 ×H3(π(wk)‖j)×
∏
i∈Swk

(H1(IDi‖j)−1)]ssk µ =
∑
i∈Swk

∑
j∈Q cij × vj

wk: keyword; Swk : the file set containing keyword wk; π(wk): pseudo-random function; Z: the number of file updates; IDi: unique filename.
j: data block identifier; Q: challenge set; cij : the data blocks; vj : the random number.

integrity verification needs for large datasets with similar
attributes. Most current PDP schemes focus on verifying
individual files rather than performing broad integrity checks
across data sharing common characteristics [11], [12]. These
schemes typically require users to inform the TPA of detailed
file information before each integrity check, resulting in re-
dundant communication and reduced efficiency. Additionally,
when DO lacks precise knowledge of the total data volume in
the database, it may lead to incomplete or ineffective audits.
One promising solution to this issue is the use of keyword-
based search mechanisms. In this approach, users can extract
keywords from the stored files and associate them with tags
(see Fig. 1), allowing for efficient integrity verification across
files with shared attributes.

However, there are some challenges that need to overcome.
(i) Keywords generally have a high likelihood of carrying sen-
sitive information, so that preventing keywords from leaking
to TPA and CS during the searching and auditing phase is
a challenge. (ii) Finding out the method of maintaining the
consistency of audit data between TPA and CS sides is a
challenging issue. In general, a DO only transmits a trapdoor
to TPA whose primary role is performing integrity audits.
Unfortunately, TPA can hardly distinguish which files contain
a particular keyword or the quantity of files with keywords.
Thus, mistrustful CS may utilize incomplete search results to
generate the proof while passing verification. (iii) Constructing
a secure index structure is a tough task because the quantity of
the required index is great. In order to achieve the searchable
auditing, the index is used for matching files and participated
in the auditing, and only matched files can be audited and
verified. One keyword corresponds to one or a few file(s);
therefore, each matched file needs an index to achieve all
corresponding files to participate in the auditing.

In order to eliminate the workload of the index, existing
works [8]–[10] tried adopting aggregated indexes, which easily
susceptible to a summation attack. TABLE I lists the index
structures in sample schemes. We describe potential attacks
as well as attacking mechanisms here. In the proof generation
phase, the proof information generated by CS is P = {µ =∑
i∈Swk

∑
j∈Q cij × vj}. We observe that for k ∈ [1, s], the

summation
∑
i∈Swk

∑
j∈Q cij × vj can be handled by CS to

reduce storage cost. CS can easily deceive the verifier in the
following ways:∑

i∈Swk

∑
j∈Q

cij × vj =
∑
j∈Q

vj(
∑
i∈Swk

cij).

As shown in Fig. 2, the CS can store only the summation
of the values {

∑
i∈Sw cij}j∈[1,s] rather than original data

Fig. 2: Copy-summation attack from the same keyword files.

{cij}i∈Sw,j∈[1,s]. In this way, CS can pass the verification as
all summation files will be checked at each time; thus, CS
not only saves storage overhead but also pass the verification
without possessing the original data. In general, cloud storage
services are available by the service payment [14]. For less
frequently used data, CS adopts this method to reduce storage
overhead so that summation attacks must be resisted.

In order to address challenges mentioned above, we explore
to find out the solution to achieving decentralized challenge
information generation and keyword searchable provable data
possession. The main contributions of this paper are listed as
follows.

Our Contributions:
• In order to improve the auditing dimension and achieve

similar data integrity checking, we propose a new key-
word searchable provable data possession, which can
effectively verify the data integrity based on keywords.
In contrast to earlier approaches, this scheme empowers
the DO and CS to scrutinize all data linked to a particular
keyword. CS’s proof is considered valid by TPA only if
it successfully demonstrates that all files associated with
the same keyword have been accurately stored, setting it
apart from previous methods.

• To achieve similar data integrity checking, we introduce
the notion of keyword and design an index structure to
match the authenticator. All matched files can be audited
and verified. Privacy can be guaranteed at the same time.
Besides, a copy-summation attack was identified. We give
the detailed attack process and provide the solution to
resist this attack.

• To resist the corrupt auditor from generating biased chal-

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

lenge information, we utilize unpredictable but verifiable
public information on the blockchain to generate chal-
lenge information instead of relying on the centralized
TPA, which can achieve decentralized auditing.

• Security analysis demonstrates that the proposed scheme
can achieve auditing soundness. Experiments show that
it is efficient in authenticator generation and index gen-
eration. Experiments also show that the verification time
does not increase much with the number of files.

In the rest of this paper, we organize it as follows. We start
by reviewing related work in Section II, providing context
for research status. Section III covers the basic knowledge
and definitions to understand our work. Our core contributions
are discussed in Section IV, where we detail our proposed
scheme. Section V assesses its security aspects, and Section VI
evaluates its performance. Finally, in Section VII, we make a
conclusion and list the future explore direction of the proposed
scheme.

II. RELATED WORK

Provable Data Possession (PDP) [3] and Proof of Retriev-
ability (PoR) [15] are two fundamental techniques for veri-
fying the integrity of data stored remotely in cloud services.
These technologies aim to ensure data integrity without obtain-
ing the entire dataset, thus enhancing efficiency and reducing
bandwidth usage. Specifically, PoR recovers complete data
from partial data; while PDP detects data corruptions by
random sampling. For the convenience of the data owner,
Wang et al. [16] developed a TPA in the PoR model to assist
the auditing check, leading to the proposal of many PDP/PoR
schemes in subsequent work.

To prevent data from leakin to the honest-but-curious TPA,
some prior explorations have tried a variety of auditing meth-
ods, such as combining homomorphic linear authenticators
with masking techniques to prevent the TPA from deducing the
actual data content [17]–[19]. Blinding is an optional solution
for conditional anonymity to protect privacy [20], [21]. Using
IBC technology has been examined for achieving data integrity
checking in order to optimize the certificate management of
Public Key Infrastructure (PKI) [22]. For example, Li et al.
[23] applied this method in the context of maritime transporta-
tion systems via adopting identity-based aggregate signatures.
Another type of scheme aims to utilize certificate-less aggre-
gate signatures to data integrity verification. For instance, [24]
used certificate-less signatures to design an integrity checking
method tailored for multi-copy data, thereby reducing the risk
of data loss. [25] tried a certificate-less signature-based method
to enable batch auditing with a designated verifier. In response
to the emerging threat of quantum attacks, Tian et al. [26]
turned to Learning With Errors (LWE)-based ring signatures as
means to ensure secure data auditing. Similarly, [27] combined
blind signature with code-based proofs of retrievability for data
auditing. We see that most existing PDP and PoR schemes rely
on the centralized TPA, meaning that semi-honest TPAs may
collude with CS and generate biased challenge information or
lead to data loss.

Some attempts have focused on using blockchain technol-
ogy to address aforementioned issues [28], [29]. To prevent

TPA from generating biased challenge information, prior stud-
ies utilized some features of blockchain networks, such as
using block hashes as seeds for challenge information creation.
The drawback of this type of scheme was that the TPA
still controlled the challenge information, as the timestamp is
selected by TPA to obtain random and public information. To
resist collusion, [30] was a two-party approach that combined
public information from blockchain with the random challenge
seed from a TPA for generating the challenge information.
Some prior explorations utilized blockchain smart contracts
to record the auditing results in improve the credibility of
TPAs [31]–[33]. For example, [34] merged smart contracts
with binary search to ensure faults locations in multiple
copies and heterogeneous clouds. Recent studies also had
examined various perspectives, such as using smart contract
for guaranteeing fairness in privacy auditing [35], establishing
punishment mechanism for avoiding malicious parties [36],
and using decentralized ledger to achieve data deduplication
in information sharing [37], [38].

Maintaining the integrity of similar data is a challenging
task, as auditing each piece of data incurs a significant
overhead. Gao et al. [8] presented a keyword-based auditing
approach to extend the coverage of the audited data. Subse-
quently, [10] incorporated a privacy-preserving keyword-file
index table to safeguard file privacy. [9] adopted a bloom filter
for fuzzy matching and maintaining an index table with update
timestamps for a broader range of file auditing. Unfortunately,
relying heavily on PKI requires the management of digital
certificates, resulting in higher complexities and overhead
in the system. We improved it according to certificateless
cryptography.

III. PRELIMINARIES AND DEFINITIONS

1) Bilinear map: A bilinear e : G1 × G1 → GT satisfies
three properties:
• Computability: Given ∀u, v ∈ G1, it is easy to compute
e(u, v).

• Non-degeneracy: ∃u, v ∈ G1, e(u, v) 6= 1GT .
• Bilinearity: For any ∀a, b ∈ Z∗q and ∀u, v ∈ G1, the

equation e(ua, vb) = e(u, v)ab holds.
2) Computational Diffie-Hellman (CDH) Assumption:

Given (g, ga, gb) ∈ GT , a, b ∈ Z∗q and g ∈ G1, and for
any probabilistic polynomial time (PPT) algorithm A, the
advantage of A to solve the CDH problem is negligible,
defined as

AdvCDHA = Pr[A(g, ga, gb)→ gab] 6 ε.

A. Basic notations

Some main notations and its meaning utilized in this paper
are presented in TABLE II.

B. System Model

As depicted in Fig. 3, the system comprises four key
entities: the DO, CS, TPA, and blockchain.

1) A DO intends to outsource multiple files to CS for saving
storage space. To guarantee the integrity of similar files,

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

TABLE II: Main Notations and Its Meanings

Notation The meaning
DO Data owner
TPA Third party auditor
CS Cloud server
e : G1 × G1 → GT A bilinear map
(α, P0) The master secret key and public

key
skID The private key
H1, H2, H3, H4 The hash function
fk1 (·), ψk2 (·), πk3 (·) The pseudo random permutation

and the pseudo random function
{ak}sk=1, {Ak}

s
k=1 The secret value and its public pub-

lic value
W = {w1, w2, · · · , wm} The keyword set
V = {vw1 , vw2 , · · · , · · · , vwm} The index matrix
cw = [nw1 , nw2 , · · · , nwm] The keyword number vector
F = {F1, F2, · · · , Fv The file set
σij The authenticator for block bij
T ′w = {πo(w′), fl(πo(w′))} The trapdoor
tstart, tend,4t The timestamp of start and end and

its interval
T The interval of successive blocks
B(t) The blockhash within the times-

tamp t
Bi = {B(t)}, t ∈ [tstart + (i −
1)4 t, tstart + i×4t]

The blockhash set

k1, k2 The random challenge seed
{C = {(j, vij)}}j∈[1,c],i∈[1,v]} The challenge information
Proof = {T, {µk}16k6s} The proof information

Fig. 3: System model.

DO extracts the keywords and generates a secure index
matrix. DO outputs the secure index matrix, encrypted
blocks set and the authenticator set to CS.

2) CS: CS provides enough storage service. CS is obliged to
respond to challenges from the TPA to demonstrate the
data integrity. However, it’s important to note that CS,
while typically trusted, may have an incentive to conceal
data loss to maintain its reputation.

3) TPA: To alleviate the computational burden on DO, it’s
common practice for DO to delegate an independent
entity to assist with integrity checking. TPA is semi-
trust, it may collude with CS and always generate bias
challenge information.

4) Blockchain: The blockchain is a decentralized entity. It
provides public, decentralized and unforgeable informa-
tion.

DO stores its data information, index information and authen-
ticator in the cloud. Then, DO make a delegation for TPA to
conduct data integrity verification through blockchain. Upon
receiving the authorization, TPA initiates a challenge via smart
contract. Then, CS generates the corresponding proof, sends
the specific proof information to TPA, and hashes the proof
information to blockchain. Finally, TPA retrieves challenge
information and index information from blockchain, performs
verification and informs the DO of the verification result.

C. Definition
Definition 1. A blockchain-based and keyword searchable
provable data possession scheme contains nine algorithms:

1) (pp, α, P0) ← SysIni(λ): When provided with the
security parameter λ as input, this process generates and
produces the following outputs: the system parameters
pp, the master secret key α and the master public key
P0.

2) (x,R, {ak}sk=1, {Ak}sk=1,W, V) ← Setup(F): When
provided with the file F as input, this process generates
the following outputs: secret values x and public values
R and {Ak}sk=1, along with the keyword set W and the
index vector set V .

3) skID ← KeyGen(ID, α): When provided with both the
identity ID and the master secret key α as inputs, this
process yields the private key skID as its output.

4) (I,Ω) ← IndexGen(x,W, V): When provided with a
random value x, the keyword set W and the index matrix
V as input, this process produces the encrypted index
matrix I and the matched index authenticator set Ω as its
output.

5) Φ← AuthGen(F, x, skID): When provided with the file
F , a random value x, and the private key skID as input,
this process generates the authenticator set Φ as its output.

6) Tw′ ← TrapdoorGen(w′): When provided with the
keyword w′ as input, this process generates the search
trapdoor T ′w as its outputs.

7) Chal ← ChalGen(Chal, I,Ω, F,Φ): When provided
with the search trapdoor Tw′ , the encrypted index matrix
I , the matched index authenticator set Ω, file set F and
the authenticator set Φ as input, this process produces the
challenge information Chal as output.

8) Proof ← ProofGen(Chal, I,Φ): When provided with
the challenge Chal, the encrypted index matrix I , and
the authenticator set Φ as input, this process generates
the auditing proof Proof as its outputs.

9) (0, 1) ← ProofV erify(Proof): When provided with
the auditing proof Proof as input, this process generates
the auditing result as its output.

D. Security Model
The security game is established as an interaction between

two parties: a simulator S and the adversary A.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

E. Unforgeability of Authenticators

SysIni, Setup: The simulator S initiates the process by
executing the SysIni and Setup algorithms, thereby obtaining
public parameters (pp, P0 = ga, R = gx, {Ak}sk=1,W, v).
These parameters are then transmitted to the adversary
A, while S maintains the confidentiality of secret values
(a, x, {ak}sk=1).

User Creation: S selects the challenge set by randomly
tossing a coin randomly.

Queries: A poses queries to S, and S responds to these
queries.

1) HashQuery: A makes hash queries to S. S responds to
the corresponding hash results.

2) KeyQuery: When A requests the private key for a
specific ID from S , S employs the KeyGen algorithm to
produce the private key skID and provides it in response
to A.

3) Authenticator Query: When A adaptively chooses any
block and requests the authenticator tag for the identity
ID from S, S utilizes the AuthGen algorithm to acquire
the authenticator tag, which is then provided in response
to A.

Forge: A can produce a forged authenticator σ′ij for block
b′ij associated with user identity ID′. A is declared the winner
of the game, when the forged authenticator successfully passes
the verification with the following conditions holding:

1) (ID′, σ′ij , b
′
ij) passes the verification.

2) A has never conducted an authenticator query on
(ID′, σ′ij , b

′
ij).

Definition 2. The proposed scheme ensures the unforgeability
of authenticators. For any adversary A that operates within
probabilistic polynomial time (PPT), the probability of A
winning the game is negligible.

F. Unforgeability of Proof

The SysIni, Setup, Queries phases are the same as in
definition III-E, we omit it here.

TrapdoorGen: S generates a search trapdoor Tw′ =
{πo(w′), fl(πo(w′))} and sends it to A.

ChalGen: A generates and sends the challenge information
(Tw′ , {j, vj}j∈Q̃) to S.

ProofGen: S generates the proof information based on the
challenge information.

Forge: A produces a forged proof Proof ′ = {T ′, {µk}}.
A is declared the winner of the game, if the forged proof
passes the verification with the following conditions holding:
the proof information is based on the challenge information
(Tw′ , {j, vj}j∈Q̃), which is not queried before.

Definition 3. The proposed scheme ensures security against
semi-trusted CS. For any adversary A that operates within
probabilistic polynomial time (PPT), the probability of A
winning the game is negligible.

Fig. 4: Data flow of the scheme.

G. Design Goals

The proposed scheme needs to satisfy the following security
goals.

1) Keyword searchable auditing: to make sure that all files
containing the same keyword are audited while DO needs
not to provide these file information to TPA and CS, and
the auditing correctness can be guaranteed at the same
time.

2) Decentralized challenge information generation: to
generate challenging information in a decentralized way
instead of relying on the centralized TPA who may
collude with CS to generate biased challenge information.

3) Privacy preservation: to prevent TPA and CS from
guessing the content of the files according to the keyword
and the trapdoor information.

4) Resist the same keyword files summation attack: to
avoid the same keyword file summation attack performed
by CS. The attack is that CS only stores the file summa-
tion of the same keyword instead of the original file to
save storage but can still pass the auditing verification.

IV. PROPOSED CONSTRUCTION

A. High-level Overview

The proposed scheme operates through four main phases:
data preparation, challenge, proof generation, and verification.
In the data preparation phase, authenticators are generated for
each data block of the stored files, while keywords are ex-
tracted from the data to create index information. The DO then

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

uploads the data along with the authenticator information to
the cloud, and stores the index information on the blockchain.
In the challenge phase, both the DO and TPA participate; the
DO first generates trapdoor information and sends it to the
TPA, which then creates specific challenge information and
forwards it to the CS. During the proof generation phase, the
CS processes the challenge information to retrieve relevant
data, constructs the proof information, and sends it back to
the TPA. Finally, in the verification phase, the TPA verifies
the proof information provided by the CS.

To better understand the whole scheme, the data interaction
of the whole scheme is shown in Fig. 4. This flowchat
illustrates the workflow of data integrity auditing process.
The process begins at KeyGen and through a series of steps
to reach auditing result. Initially, step A involves KeyGen,
IndexGen, AuthGen, TrapdoorGen, the resulting interme-
diate values are used for storage on cloud, blockchain and
TPA. Followed by step A, TPA and CS conducts the auditing
process through step B ChalGen, step C ProofGen and step
D ProofV erify. The arrows indicate data transmition during
each step. The dashed line is the data to get from other entity.

B. Our Scheme

1) (pp, α, P0)← SysIni(λ)
This algorithm is conducted by KGC and aimes
to generate the system public parameters pp =
(e,H1, H2, H3, H4, f(·), π(·)), master secret/public key
pair (α, P0), and some secret keys (k1, k2, k3).

a) The Key Generation Center (KGC) defines the system
parameters pp as follows: it involves two multiplicative
cyclic groups G1 and GT with q-order, establishes a
bilinear map e : G1 × G1 → GT , incorporates four
hash functions H1, H2, H3, H4 : {0, 1}∗ → G1 for
various purposes, employs a Pseudo-Random Permu-
tation (PRP) denoted as fk1(·) : {0, 1}∗ → [1, v]
with a key k1 ∈ Z∗q , and a PRP denoted as ψk2(·) :
{0, 1}∗ → [1, n] with a key k2 ∈ Z∗q . Additionally, it
utilizes a Pseudo-Random Function (PRF) denoted as
πk3(·) : {0, 1}∗ → Z∗q with a key k3 ∈ Z∗q . Note that
keys K1, k2 and k3 are generated in a random way in
the ChalGen and ProofGen algorithms.

b) KGC randomly chooses the master secret key α from
the set Z∗q and computes the master public key as P0 =
gα. The secret key α is utilized to generate identity key
for ID.

2) (x,R, {ak}sk=1, {Ak}sk=1,W, V)← Setup(F)
This algorithm is conducted by DO and produces a secret
value x for generating matched index authenticators and
data block authenticators, public values R, {Ak}sk=1 for
data block authenticator verification, a keyword set W for
file classification, and an index matrix V for fast search.

a) DO splits each file into n blocks and distributes them
across s sectors.

b) DO randomly selects a value x from the set Z∗q and
generates R = gx. While keeping x secret, the DO
publicly shares the value R.

Algorithm 1 IndexGen
Require: The secret key x, the keyword set W , the index vector set
V

Ensure: The index I matrix
1: for Each wk ∈W (1 6 k 6 m) do
2: Extract vwk from V
3: Compute πo(wk)
4: Compute evπo(wk) = vwk ⊕ fl(πo(wk))
5: Initiate an empty set Swk = ∅
6: for Each i ∈ [1, v] do
7: if vwk [i] == 1 then
8: Insert i to set Swk
9: end if

10: end for
11: for Each i ∈ Swk do
12: for Each 1 6 j 6 n do
13: Compute Ωwk,ij = [H3(IDi||j)−1 ×H4(πo(wk)‖j)]x
14: end for
15: end for
16: end for
17: Set Ωπo(wk) = {Ωwk,i1,Ωwk,i2, · · · ,Ωwk,in}i,vwk [i]=1

18: return I = {πo(wk), evπo(wk)}k∈[1,m]

19: and Ω = {Ωπo(wk)}k∈[1,m]

c) DO randomly selects s values ak ∈ Z∗q and keeps them
secretly. Then, the DO generates s public values {Ak =
gak}sk=1 and publishes them. The public values are
utilized to generate authenticators, and these values can
be precomputed in advance.

d) DO identifies and extracts all keywords from the
content, subsequently forming the keyword set W =
{w1, w2, · · · , wm}.

e) For each keyword wk, DO initiates a binary index
vector vwk of length v with all elements set to 0. For
each file Fi containing the keyword wk, DO writes the
i-th bit of the index vector to 1: vwk [i] = 1.

f) All the individual index vectors vwk are collec-
tively assembled to create the index matrix as V =
{vw1

, vw2
, · · · , vwm}. The index matrix is utilized as

auxilary information to achieve searchability and the
matched index content.

3) skID ← KeyGen(ID, α)
This algorithm is conducted by DO and produces a private
key for index generation and authenticator generation.
KGC computes the private key for the user with identity
ID as skID = H1(ID)α. The identity key is utilized to
generate authenticators.

4) (I,Ω)← IndexGen(x,W, V)
This algorithm is conducted by DO and produces the en-
crypted index matrix I = {πo(wk), evπo(wk)}k=1,2,··· ,m
and the matched index authenticator set Ω =
{Ωπo(wk)}k=1,2,··· ,m as its output. πo(wk) represents the
blind row in I . To protect the privacy of index matrix,
each row in the index matrix is encrypted as evπo(wk).
Each row in the index matrix represents a file that con-
tains a certain keyword. Each column in the index matrix
represents all keywords contained in a file. The matched
index content is involved in the matching process. The
index matrix is utilized to assist TPA and CS in locating

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 5: Index structure.

files that need to be checked.
As shown in Fig. 5 and Algorithm 1, DO generates the
index structure as follows:

a) For every keyword wk in the keyword set W , DO
calculates πo(wk) as the address assigned to each row
within the secure index. Here, o ∈ Z∗q is a pseudo-
random permutation key selected by DO.

b) For each keyword wk within the set W , DO performs
encryption on the index vector, resulting in evπo(wk) =
vwk⊕fl(πo(wk)). In this expression, l ∈ Z∗q represents
a pseudo-random function key selected by DO.

c) For each keyword wk ∈ W , DO initializes an empty
set Swk = ∅. If vwk [i] = 1 for any i ∈ [1, v], DO adds
the corresponding file index i to the set Swk . The total
number of elements satisfying vwk [i] = 1 is denoted
by ξ.

d) For each keyword wk ∈ W , DO generates
the matched index authenticators Ωπo(wk) =
{Ωwk,i1,Ωwk,i2, · · · ,Ωwk,in}i,vwk [i]=1, where
Ωwk,ij = [H3(IDi||j)−1 × H4(πo(wk)‖j)]x,
j ∈ [1, n].

e) DO sets the encrypted index matrix as I =
{πo(wk), evπo(wk)}k=1,2,··· ,m and the matched index
authenticator set as Ω = {Ωπo(wk)}k=1,2,··· ,m. The en-
crypted index matrix I is utilized to for searchiability.
The matched index authenticator set Ω is utilized to
match data block authenticators.

5) Φ← AuthGen(F, x, skID)
This algorithm is conducted by DO and produces authen-
ticators for all data blocks.
As shown in Algorithm 2, the authenticator is generated
as follows.

a) Suppose the file set F = {F1, F2, · · · , Fv} and each
file Fi ∈ F has a unique identity IDi. DO splits
each file Fi, i ∈ [1, v] into n blocks, i.e., Fi =
{mi1,mi2, · · · ,min}.

b) DO creates a blinded version of each block, denoted as
bij , using the formula bij = mij+H2(skID‖IDi‖i‖j),
where i ∈ [1, v] and j ∈ [1, n]. DO can subsequently
recover the original plaintext mij for each block as

Algorithm 2 AuthGen
Require: The file set F = {F1, F2, · · · , Fv}
Ensure: The authenticator set Φ

1: for Each Fi ∈ F (1 6 i 6 v) do
2: Split Fi into n blocks mi1,mi2, · · · ,min

3: for Each 1 6 j 6 n do
4: 4 : Blind each data block
5: Compute bij = mij +H2(skID‖IDi‖i‖j)
6: Split bij into s sectors {bijk}k∈[1,s]
7: end for
8: end for
9: Randomly selects x ∈ Z∗q

10: Computes R = gx

11: for Each 1 6 i 6 v do
12: for Each 1 6 j 6 n do
13: 4 : The authenticator
14: Compute σij = skID × [H3(IDi‖j)× g

∑s
k=1 akbijk]x

15: end for
16: end for
17: return Φ = {σij}, (1 6 i 6 v, 1 6 j 6 n)

mij = bij −H2(skID‖IDi‖i‖j).
c) Each block bij undergoes further division into s sec-

tors, resulting in a set {bijk}k∈[1,s].
d) For every encrypted data block bij , DO calculates the

authenticator σij using the formula σij = skID ×
[H3(IDi‖j)× g

∑s
k=1 akbijk]x.

e) The DO sets the data block authenticator set as Φ =
{σij}, (1 6 i 6 v, 1 6 j 6 n). The authenticators are
utilized to conduct integrity auditing verification.

DO uploads the data F = {F1, F2, · · · , Fv}, the data
block authenticator set Φ = {σij}, (1 6 i 6 v, 1 6
j 6 n) to CS. Assume that entities (DO, TPA, CS)
have registered an address on blockchain. DO makes
a data integrity checking delegation for the TPA. DO
initiates a smart contract (as shown in Algorithm 3), DO
defines the auditing task, including the file name, the
number of challenge blocks, the address of TPA and CS
in the blockchain. DO uploads the encrypted index ma-
trix I = {πo(wk), evπo(wk)}k=1,2,··· ,m and the matched
index authenticator set Ω = {Ωπo(wk)}k=1,2,··· ,m to the
blockchain.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Algorithm 3 Smart Contract
Require: Functionname, invoked parameters
Ensure: Setting up functions

1: Structure: Task
2: 4 : Define a structure of the auditing task
3: taskID; fileName;numChallenges; startT ime;
4: endT ime; chalStatus; proofStatus; recordList;
5: 4 : The participant
6: addressTPA; addressCS;
7: function: newTask(user, name, n, TPA,CS,

Ω = {Ωπo(wk)}k=1,2,··· ,m)
8: task = tasks[taskID]
9: task.fileName = name

10: task.n = n
11: task.index = Ω
12: task.addressTPA = TPA
13: task.addressCS = CS
14: task.chalStatus = true
15: task.proofStatus = true
16: function: ChalGen(taskID, tstart, tend,4t, c)
17: require(tasks[taskID].addressTPA == msg.sender)
18: require((tend − tstart)/4 t > 12)
19: require(tend > block.timestamp)
20: require(tasks[taskID].chalStatus == true)
21: task.startT ime = tstart
22: task.endT ime = tend
23: task.numChallenges = c
24: compute T = b tend−tstart4t c
25: for i ∈ [1, T] do
26: recordList← [tstart + (i− 1)×4t, tstart + i×4t]
27: end for
28: 4 : The retrieved blocks are Bi = {B(t)}
29: task.chalStatus = false
30: function: addProof(taskID, proofhash)
31: require(tasks[taskID].addressCS == msg.sender)
32: require(tasks[taskID].proofStatus == true)
33: task.proof.push(proofhash)
34: tasks[taskID].proofStatus = false

6) Tw′ ← TrapdoorGen(w′)
This algorithm is conducted by DO and produces the
search trapdoor.
DO generates the search trapdoor as Tw′ =
{πo(w′), fl(πo(w′))} based on keyword w′. DO
sends the trapdoor Tw′ to TPA. The trapdoor information
is utilized to seach files that require integrity auditing.

7) Chal← ChalGen(Tw′ , I,Ω)
To generate challenge information, the algorithm first
produces challenge seeds based on the blockchain. The
core concept behind generating random seeds is to utilize
a series of public, unforgeable, and verifiable blocks in the
blockchain. Then, the challenge information is generated
based on these random seeds, including the indices of
the challenge data blocks and their corresponding random
values.
As shown in Smart Contract 3. The smart contract is
posted by DO. DO first defines the structure of the
auditing task, writes the participants’ address to the
smart contract and sets the access control for partici-
pants to use smart contracts. TPA makes a challenge
according to the smart contract. We define an agreement
denoted as Ag, which comprises five elements: Ag =

{tstart, tend,4t, c}. Here, tstart represents the starting
timestamp chosen by TPA for when the auditing begins,
while tend marks the end of the auditing period. 4t
signifies the time interval between two timestamps. We
use T to denote the interval of successive blocks, where
T is defined as T = b tend−tstart4t c > 12. This requirement
ensures security, as more than 12 successive blocks is
considered secure. Additionally, we define B(t) as the
function that returns the blockhash within the timestamp
t.

a) The challenge information will be retrieved from a
succession of blocks. Specifically, for i ∈ [1, T],
Bi = {B(t)}, t ∈ [tstart+ (i− 1)4 t, tstart+ i×4t].
Here, c denotes the number of challenge blocks.

b) TPA parses the challenge information from the
blockchain as follows: TPA generates k11 = H2(1‖Bi)
and k12 = H2(2‖Bi). The value k11 serves as a key
for generating challenge data blocks, while k12 is used
to generate random values.

c) Using the address πo(wk) = πo(w
′) for reference,

TPA locates the row evπo(wk) from blockchain. Sub-
sequently, TPA obtains the plaintext vector using the
equation vwk = evπo(wk) ⊕ fl(πo(wk)).

d) TPA begins by initializing an empty set Sw1 = ∅. For
each i ∈ [1, n], if vw′ [i] = 1, TPA includes i in the set
Sw1.

e) Then, TPA generates the challenge information {C1 =
{(j1, v1ij)}}j1∈[1,c],i∈Sw1

, where j1 = ψk11(β) for
β ∈ [1, c] and v1ij = πx1i

(j1) for x1i = πk12(i),
i ∈ Sw1, j1 ∈ [1, c]. Let the index of challenge data
blocks set on TPA side be defined as Q1 = {j1 =
ψk11(β)}β∈[1,c]. TPA sends the challenge information
Chal = (Ag, c, Tw′) to CS.

8) Proof ← ProofGen(Chal, I,Ω, F,Φ)
Upon receiving the challenge information Chal, as out-
lined in Algorithm 4, CS generates the proof information
as follows:

a) Using the address πo(wk) = πo(w
′) for reference from

blockchain, CS locates the row evπo(wk). Subsequently,
CS obtains the plaintext vector using the equation
vwk = evπo(wk) ⊕ fl(πo(wk)).

b) CS begins by initializing an empty set Sw2 = ∅. For
each i ∈ [1, n], if vw′ [i] = 1, CS includes i in the set
Sw2.

c) CS parses the challenge information from the
blockchain as follows: CS generates k21 = H2(1‖Bi)
and k22 = H2(2‖Bi). The value k21 serves as a key
for generating challenge data blocks, while k22 is used
to generate random values. Then, CS generates the
challenge set {C2 = {(j2, v2ij)}}j2∈[1,c],i∈Sw2

, where
j2 = ψk21(β) for β ∈ [1, c] and v2ij = πx2i(j2) for
x2i = πk22(i), i ∈ Sw2, j2 ∈ [1, c]. Let the index of
challenge data blocks set on TPA side be defined as
Q2 = {j2 = ψk21(β)}β∈[1,c].

d) CS computes aggregated sigmature as
T =

∏
i∈Sw2

∏
j∈Q2

(σij)
v2ij , and aggregated data

information as µk =
∑
i∈Sw2

∑
j∈Q2

(v2ij × bijk). CS

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 4 ProofGen
Require: The challenge Chal, the index vector I , the matched index

content Ω, the file set F , the authenticator set Φ
Ensure: The auditing proof Proof

1: if πo(wk) = πo(w
′) then

2: Obtain plaintext vector vwk = evπo(wk) ⊕ fl(πo(wk))
3: end if
4: Initialize an empty set Sw2 = ∅
5: for i ∈ [1, n] do
6: if vw′ [i] = 1 then
7: Include i into set Sw2

8: end if
9: end for

10: 4 : Parse the challenge information
11: for β ∈ [1, c] do
12: Generate challenge set {C2 = {(j2, v2ij)}}j2∈[1,c],i∈Sw2

,
where j2 = ψk21(β)

13: end for
14: for i ∈ Sw2 do
15: Generate x2i = πk22(i)
16: for x2i = πk22(i) do
17: v2ij = πx2i(j2)
18: end for
19: end for
20: Search the corresponding row in the index matrix,

where πo(wk) = πo(w
′)

21: Compute vwk = evπo(wk) ⊕ f(πo(wk)) 4 : Encrypt each row
22: Initiate an empty set: Wwk = ∅
23: for Each i ∈ [1, v] do
24: if vwk [i] == 1 then
25: Add i to Swk
26: end if
27: end for
28: Compute T =

∏
i∈Sw2

∏
j∈Q2

(σij)
v2ij

29: for k ∈ [1, s] do
30: Compute µk =

∑
i∈Sw2

∑
j∈Q2

(v2ij × bijk)
31: end for
32: return Proof = {T, {µk}16k6s}

sets the auditing proof Proof = {T, {µk}16k6s}.
CS sends the proof information Proof =
{T, {µk}16k6s} to TPA. CS computes the hash
value for the proof and then submits this hash value to
the blockchain.

9) (0, 1)← ProofV erify(Proof)

Upon receiving the challenge information Proof , TPA
checks the validity of the following equation:

e(T ×
∏
i∈Sw1

∏
j∈Q1

(Ωwk,ij)
v1ij , g)

= e((
∏
j∈Q1

(H4(πo(wk)‖j))
∑
i∈Sw1

v1ij)×
s∏

k=1

Aµkk , R)

× e((H1(ID))
∑
i∈Sw1

∑
j∈Q1

v1ij , P0).
(1)

If the equation is satisfied, TPA outputs 1, signifying that
similar files containing the queried keyword are securely
stored in the cloud. Conversely, if the equation is not
satisfied, TPA outputs 0, indicating that some files may
have been tampered with. The data interaction of the
whole scheme is shown in Fig. 4.

V. SECURITY ANALYSIS

This part includes storage correctness, the unforgeability
of authenticators, the unforgeability of proof, decentralized
challenge information generation, privacy preservation and
resistance to the same keyword files summation attack.

Theorem 1. (Correctness). The proof information generated
from CS can pass the verification.

Proof. Since the block information on the blockchain is
unforgeable, the information i ∈ [1, T], corresponding to
Bi = {B(t)}, where t ∈ [tstart + (i− 1)4 t, tstart + i×4t],
is also unforgeable. Using the same seeds, the challenge
information {{C1 = {(j1, v1ij)}}j1∈[1,c],i∈Sw1

, Q1 = {j1 =
ψk11(β)}β∈[1,c]} from TPA side is identical to {{C2 =
{(j2, v2ij)}}j2∈[1,c],i∈Sw2

, Q2 = {j2 = ψk21(β)}β∈[1,c]} on
the CS side. Therefore, the following equation holds:

e(T ×
∏
i∈Sw1

∏
j∈Q1

(Ωwk,ij)
v1ij , g)

= e(
∏
i∈Sw2

∏
j∈Q2

(skID × [H3(IDi‖j)× g
∑s
k=1 akbijk]x)v2ij×∏

i∈Sw1

∏
j∈Q1

([H3(IDi||j)−1 ×H4(πo(wk)‖j)]x)v1ij , g)

= e(
∏
i∈Sw2

∏
j∈Q2

(skID × (g
∑s
k=1 akbijk)x·v2ij×∏

i∈Sw1

∏
j∈Q1

H4(πo(wk)‖j)x·v1ij , g)

= e(
∏
i∈Sw2

∏
j∈Q2

skID, g)×

e(
∏
i∈Sw1

∏
j∈Q1

(g
∑s
k=1 akbijk ×H4(πo(wk)‖j))x·v1ij , g)

= e((H1(ID))
∑
i∈Sw2

∑
j∈Q2

v2ij , P0)×

e((
∏
j∈Q1

(H4(πo(wk)‖j))
∑
i∈Sw1

v1ij)×
s∏

k=1

Aµkk , R).

Theorem 2. (Unforgeability of Authenticators). If there
exists a PPT adversary A making queries to H1, KeyGen,
H3, and authenticator queries qH1 , qkey , qH3 , qauth times,
respectively, and winning the game defined in the Section
III with advantage ε within time t, then a simulator S
can break the CDH assumption with a probability ε′, where
ε′ ≥ (1−γ)qkey+qauth ζ

qu
ε ≥ ε/(qu(qkey +qauth)×2e) within

time t′ 6 t+O(qH1 + qkey + qH3 + qauth).

Proof. If the adversary A manages to win the security game
in the Section III with a non-negligible probability, the sim-
ulator S is capable of leveraging A to compute gab with a
non-negligible probability. The interaction between S and A
unfolds as follows:

SysIni, Setup: S first generates the public parameters
(pp,W, v) and sets P0 = ga. Then, it randomly chooses
values x ∈ Z∗q and s random values (a1, a2, · · · , as) ∈
Z∗q . Afterward, S computes R = gx and Ak = gak

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

for 1 6 k 6 s. Finally, S shares the public parameters
(pp, P0, R, {Ak}sk=1,W, v) R with A.

User Creation: S sets the challenge user identity set
{ĨDi, τ} as follows: S tosses a coin τ ∈ {0, 1} for each ĨDi,
when τ = 1, the probability is ζ, when τ = 0, the probability
is 1− ζ. Let the set be I = {ĨDt}t∈{1,··· ,qu} when τ = 1.
H1 Query: During the interaction, A adaptively makes H1-

Query requests for identity ĨD∗i . S keeps track of a list L1

consisting of tuples in the form L1 = {(ĨDi, h1, Q1)}. If L1

contains the entry for ĨD∗i , S retrieves the tuple (ĨD∗i , h
∗
1, Q

∗
1)

and provides Q∗1 in response to A. If L1 does not include
ĨD∗i , S checks whether ĨD∗i ∈ I. Then S randomly selects
h∗1, b ∈ Z∗q and generates the value as

Q∗1 =

{
gh
∗
1 i /∈ {1, · · · , qu}

(gb)h
∗
1 i ∈ {1, · · · , qu}

Then, S responds with Q∗1 to A and includes a new tuple
(ID∗, h∗1, Q

∗
1) in L1.

Key Query: A adaptively initiates a Key,Query for
identity ĨD∗i . S examines whether the tuple (ĨD∗, h∗1, Q

∗
1)

exists in L1. If it doesn’t, S itself executes the H1-Query for
ĨD∗. Once S obtains the corresponding tuple (ĨD∗i , h

∗
1, Q

∗
1)

from L1, it proceeds to check the value of ĨD∗i . If ĨD∗i /∈
{ĨDt}t∈{1,··· ,qu}, S computes (Q∗1)a = (gh1)a = (ga)h1 and
delivers this result to A. However, if ĨD∗i ∈ {ĨDt}t∈{1,··· ,qu},
S terminates the operation.
H3 Query: A adaptively initiates a H3, Query for the pair

(ID∗i , j
∗). To manage these queries, S maintains a list denoted

as L2 with entries in the form of L2 = {(IDi, j, Q2)}. If
(ID∗i , j

∗, Q∗2) exists in L2, S retrieves the corresponding tuple
and forwards Q∗2 to A. In cases where (ID∗i , j

∗, Q∗2) is not
present in L2, S randomly selects Q∗2 ∈ G1 and transmits it
to A. Subsequently, S inserts a new tuple (ID∗i , j

∗, Q∗2) into
the L2 list.

Authenticator Query:A forwards the tuple (ĨD∗i , ID
∗
i , j
∗)

to S to inquire about the tag for b∗ij . Upon receiving the
tag query, S initially checks for the existence of the tuple
(ĨD∗i , h

∗
1, Q

∗
1) in L1 and (ID∗i , j

∗, Q∗2) in L2. If these tuples
are not found, S proceeds to execute H1Query and H3Query
to obtain them. In case when ĨD∗i ∈ {ĨDt}t∈{1,··· ,qu}, S
calculates the tag as σ∗ij = (ga)h

∗
1 × (Q∗2 × g

∑s
k=1 akb

∗
ijk)x.

However, if ĨD∗i ∈ {ĨDt}t∈{1,··· ,qu}, S terminates the game.
Forge: In the end, A generates a forged tag σ′ij for block

b′ij associated with user identity ID′. A wins if the conditions
hold:

1) (ID′, σ′ij , b
′
ij) passes the verification.

2) A has never conducted a authenticator query on
(ID′, σ′ij , b

′
ij).

Analysis: If ID′ /∈ {IDt}t∈{1,··· ,qu}, S aborts. Since
(ID′, σ′ij , b

′
ij) passes the verification, the proof information

satisfies:

e(σ′ij , g) = e(H1(ID′), P0)×e(H3(IDi‖j)×g
∑s
k=1 akb

′
ijk , R).

S retrieves the (ID′, h′1, Q
′
1) from L1 and looks

up the tuple (ID′, j′, Q′2) from L2. With the
verification equation mentioned above, S obtains:

e(σ′ij , g) = e(gbh
′
1 , ga) × e(Q′2 ×

∏s
k=1 u

b′ijk
k , gr).

Consequently, the result for the given CDH instance is
gab = (

σ′ij

(Q′2
∏s
k=1 u

b′
ijk
k)r

)
1
h′1 .

Probability Analysis: If the following situation holds, S
can obtain a instance of CDH problem. (1) E1: S does not ter-
minates in the game. (2) E2: A successfully forges a valid au-
thenticator. (3) E3: ID′ ∈ {IDt}t∈{1,··· ,qu}. The probability
that A wins in the game is Pr = Pr[E1∧E2∧E3] = Pr[E1]∧
Pr[E2] ∧ Pr[E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∧ E2].

1) If E1 happens, there are two situations to consider:
a) S does not abort in the Key Query phase. The prob-

ability is (1− 1
qu
ζ)qkey in this situation.

b) S does not abort in Authenticator Query phase. The
probability is (1− 1

qu
ζ)qauth in this situation.

Thus, it can retrieve Pr[E1] = (1 − 1
qu
ζ)qkey+qauth ≥

(1− ζ)qkey+qauth .
2) If E2 happens, it obtains Pr[E2|E1] = ε.
3) If E3 happens, it obtains Pr[E3|E1 ∧ E2] = ζ

qu
.

Thus, the advantage that A wins is ε′ ≥ (1 −
ζ)qkey+qauth ζ

qu
ε ≥ ε/(qu(qkey + qauth)2e). That means, S

retrieves the value gab with a non-negligible probability ε′ by
using the capability of A under time t′ 6 t+O(qH1 + qkey +
qH3 + qauth), which violates the CDH assumption.

Theorem 3. (Unforgeability of Proof). The probability of the
CS successfully fabricating a complete proof that can pass the
verification without access to the actual data is negligible.

Proof. Assuming that the forged aggregate proof is denoted as
Proof ′ = {T ′, {µ′k}16k6s}, it is important to note that this
forged proof can successfully pass the verification process,
indicating that it fulfills the verification equation

e(T ′ ×
∏
i∈Sw1

∏
j∈Q1

(Ωwk,ij)
v1ij , g)

= e((
∏
j∈Q1

(H4(πo(wk)‖j))
∑
i∈Sw1

v1ij)×
s∏

k=1

A
µ′k
k , R)

× e((H1(ID))
∑
i∈Sw1

∑
j∈Q1

v1ij , P0).

(2)

Assume the real proof is Proof = {T, {µk}16k6s}, it also
satisfies the verification

e(T ×
∏
i∈Sw1

∏
j∈Q1

(Ωwk,ij)
v1ij , g)

= e((
∏
j∈Q1

(H4(πo(wk)‖j))
∑
i∈Sw1

v1ij)×
s∏

k=1

Aµkk , R)

× e((H1(ID))
∑
i∈Sw1

∑
j∈Q1

v1ij , P0).

(3)

When we compare the two equations mentioned above, we
can deduce that T ′ = T only if each µk = µ′k, which contra-
dicts the assumption. According to Theorem 1, it is impossible
to forge a single tag. Therefore, there must be at least one
µk 6= µ′k but T ′ = T , the adversary passes the verification.
Hence, for both equations to hold, it is required that T ′ = T

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

TABLE III: Comparison of Provable Data Possession Schemes

Scheme [8] [39] [40] Ours
Type PKI Certificateless IBC IBC

Public auditing X X X X
Decentralization × X X X

Keyword searchable auditing X × × X
Resist summation attack × X

and at least one µk 6= µ′k. Comparing the two equations
presented above, we observe that

∏s
k=1 u

µk
k =

∏s
k=1 u

µ′k
k .

Thus, we have

g
∑
i∈Sw2

∑
j∈Q2

v2ij
∑s
k=1 akbijk =

g
∑
i∈Sw2

∑
j∈Q2

v2ij
∑s
k=1 akb

′
ijk ,

which implies∑
i∈Sw2

∑
j∈Q2

v2ij

s∑
k=1

akbijk =
∑
i∈Sw2

∑
j∈Q2

v2ij

s∑
k=1

akb
′
ijk.

The equation can be derived as∑
i∈Sw2

∑
j∈Q2

∑s
k=1 v2ijak(bijk − b′ijk) = 0. The equation

can also be represent as
∑
i∈Sw2

∑
j∈Q2

∑s
k=1 aijk · bijk = 0

where aijk ∈ Z∗q . Without loss of generality, we suppose
there are β(1 6 β 6 |Sw2| · c · s) different data blocks
that satisfies bijk 6= b′ijk. Subsequently, the number of
tuples (aij1, · · · , aijs)i∈Sw2,j∈Q2 that satisfy this property is
bounded by qβ−1. Since the values (aij1, · · · , aijs)i∈Sw2,j∈Q2

are random and unknown to the CS, the probability of the
equation

∑
i∈Sw2

∑
j∈Q2

∑s
k=1 ak(bijk − b′ijk) = 0 being

true is less than qβ−1

q|Sw2|·c·s 6 qβ−1

qβ
= 1

q , which is negligible.

From the above theorems, we can further analyse how the
proposed scheme satisfies the design goals.

Decentralized challenge information generation. This prop-
erty is guaranteed by the characteristics of blockchain and
smart contract. The challenge information is generated from
unpredictable current hashes. This is guaranteed by the times-
tamp, only a task start time greater than the current block
timestamp is considered valid. At the same time, the interval
between the task start time and end time is also limited by the
security interval of block numbers. Thus, if the blockchain
is secure, the method of generating challenge information is
decentralized.

Privacy preservation. This property is guaranteed by the
blind index structure. For the real keywords (w1, · · · , wm)
and the corresponding index vector (vw1

, · · · , vwm), the stored
information on the cloud side is (πo(w1), · · · , πo(wm)) and
(evπo(w1), · · · , evπo(wm)) respectively, where πo(wi), i ∈
[1,m] is the pseudo random permutation for the keyword wi
and evπo(wi) is the encrypted value of vwk . According to the
blind keyword, the CS cannot infer the search content. Since
the value evπo(wi) can be decrypted by the CS, the value serves
only as an index vector and cannot leak the content of the data.

Resistance to the same keyword files summation attack.
This property is guaranteed by two-dimensional challenge set
{C1 = {(j1, v1ij)}, X = {x1i}}j1∈[1,c],i∈Sw1

}, the set C1 is

TABLE IV: Comparison of Provable Data Possession Schemes

Scheme [8] [39] [40] Ours
Type PKI Certificateless IBC IBC

Public auditing X X X X
Decentralization × X X X

Keyword searchable auditing X × × X
Resist summation attack × X

TABLE V: Communication Overhead

[8] Our scheme
DO → CS |F |+ (v × n+ n×m)|G| |F |+ v × η|G|

DO → TPA 2|Z∗q | 2|Z∗q |
TPA → CS (2 + 2c)|Z∗q | 2|Z∗q |+ 4|n|
CS → TPA |G|+ |Z∗q | |G|+ s|Z∗q |

utilized for data blocks and the set X is utilized for different
files. This ensures that each block is fresh for each challenge
round.

VI. PERFORMANCE EVALUATION

A. Theoretical Analysis

We showed the function comparison with some different
types of schemes [8], [39] and [40]. Scheme [8] utilized
a PKI cryptosystem. Scheme [39] utilized a Certificateless
cryptosystem. Both scheme [40] and ours were based on
IBC cryptosystem. From Fig. IV, all schemes achieved public
auditing. Only schemes other than [8] were capable of achiev-
ing decentralization. Both scheme [8] and our scheme can
achieve keyword searchable auditing. However, scheme [8]
was vulnerable to the summation attack.

The notion HG1
, MulG1

, MulZ∗q , ExpG1
denote hash

operation to the group G1, multiplication in the group G1,
multiplication in the group Z∗q and exponentiation operation
in the group G1. The notion Pair denoted pairing operation.
In a system with v files and m keywords, where each file F
has a size of n|Z∗q | and is divided into η =

n|Z∗q |
s|Z∗q |

blocks, and
each keyword w is associated with |Sw| files, we can analyze
the computation overhead in different phases. We excluding
simple operations like PRF and XOR.

The computation overhead comparisons were shown in TA-
BLE VII. The computation overhead of index generation was
m×s×|Sw|×2×HG1

+(|Sw|)×MulG1
+PowG1

+m·EncXoR.
The computation overhead of authenticator generation was
v × η × (HG1 + 2MulG1 + 2ExpG1 + sMulZ∗q). The com-
putation overhead of proof generation was (|Sw|+c)ExpG1

+
(|Sw|+ c)MulG1

+ |Sw|× cMulZ∗q +EecXoR. And the proof
verification overhead was 3×Pair+ |Sw|×c×HG1

+(|Sw|×
c+ s− 2)MulZ∗q + (|Sw| × c+ s+ 1)ExpG1

+MulZ∗q .
The communication and storage overhead comparisons were

shown in TABLE V and VI. The communication overhead on
the data upload phase in [8] was |F |+(v×n+n×m)|G|, while
it only needed |F |+v×η|G| in our scheme. That was because
we adopted the aggregate technique. The communication over-
head on the trapdoor generation phase was same over the two
schemes. In the challenge phase, the communication overhead

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE VI: Storage Overhead on Blockchain

Our scheme
DO → blockchain v × n×m|G|+m|Z∗q |+m× v|n|
TPA → blockchain 5|Z∗q |
CS → blockchain 2|Z∗q |

Fig. 6: The authenticator generation time with the number of
files and the separated data block numbers in one file.

in [8] was (2 + 2c)|Z∗q |. In our scheme, we conducted the
challenge according to the smart contract, the communiciation
overhead was 2|Z∗q | + 4|n|. The communication overhead on
the proof generathn phase was |G|+|Z∗q | in [8] and |G|+s|Z∗q |
in our scheme. Our scheme incured higher communication
costs since it needed to check every sector of the aggregate
proof information. We also analysed the storage overhead
on the blockchain in our scheme. In our scheme, the DO
needed to publish a smart contract. The DO stored some
basic information of the data and the index information
on the blockchain. The storage overhead in this phase was
v× n×m|G|+m|Z∗q |+m · v|n|. In the challenge phase, the
TPA should define the auditing task including the start time,
the end time, the time of duration and the challenge block
numbers. The storage overhead in this phase was 5|Z∗q |. In
the proof generation phase, the CS should upload the hash
value of the proof information on the blockchain. The storage
overhead in this phase was 5|Z∗q |.

B. Experiment Results

Experiments were conducted on a Windows 10 machine
equipped with an Intel i7 2.5GHz CPU and 8GB of RAM. To
evaluate the scheme’s performance, key parameters were set.
Each data sector had a size of 160 bits, and Type-A pairings
with a group order of 160 bits were employed. Additionally,
the length of elements in mathematical sets such as Z∗q and G
was standardized at 160 bits.

Parameter selection in the experiment. Assume that a
file F consisted of n blocks and χ blocks were corrupted.
Let the number of challenge blocks represent c. Let Pc =
χ/n represent the corrupted data blocks ratio. Let Pd represent
the probability of detecting corrupted blocks. Let X represent
the number of corrupted blocks being challenged. Pd can be
represented as

Fig. 7: The authenticator generation time with the block
segment number and different file size.

Fig. 8: The index generation time with the number of keyword
and the separated data block numbers in one file. In the case of
resisting the same keyword files summation attack, the number
of files containing the same keyword in experiment was set to
1.

Pd = P{X ≥ 1} = 1− P{X = 0}

= 1− n− χ
n
× n− 1− χ

n− 1
× · · · × n− c+ 1− χ

n− c+ 1
.

Since n−χ
n > n−c+1−χ

n−c+1 holds, the following equation satisfies

1− (
n− χ
n

)c < Pd < 1− (
n− c+ 1− χ
n− c+ 1

)c.

From the above equation, when Pd = 99% and Pc = 1%,
the required number of challenge blocks was c = 460; when
Pd = 95% and Pc = 1%, c was set to c = 300. Therefore, we
used c = 300 and c = 460, respectively, in the experiment.

Evaluation of authenticator generation. In order to evalu-
ate the efficiency of authenticator generation, a series of tests
were conducted with different numbers of files and blocks.
The test scenarios included file numbers ranging from 10 to
100 in increments of 10 and block numbers ranging from 100
to 500 in increments of 100. As shown in Fig. 6, when 10 files
were uploaded, each containing 100 blocks, the user required
approximately 35.726 seconds to generate a total of 1000
authenticators. In the experiment, when 100 files and each con-
taining 500 blocks were uploaded, the user took approximately

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE VII: Computation Overhead

Phase [8] Our scheme
IndexGen m× s× [(|Sw|+ 2)×HG1

+ m× s× |Sw| × 2×HG1
+

(|Sw|+ 1)×MulG1
+ ExpG1

] (|Sw|)×MulG1
+ PowG1

+m · EncXoR
AuthGen v × n× (HG1

+ v × η(HG1
+ 2MulG1

+
MulG1

+ ExpG1
) 2ExpG1

+ sMulZ∗q)

ProofGen 2cExpG1
+ (|Sw| × c+ c)MulG1

+ (|Sw|+ c)ExpG1
+ (|Sw|+ c)MulG1

+
|Sw| × cMulZ∗q |Sw| × cMulZ∗q + 2HZ∗q +DecXoR

ProofVerify 2× Pair + 2× c×HG1
+ 3× Pair + |Sw| × c×HG1

+ (|Sw| × c+ s− 2)MulZ∗q+

(c+ 1)×MulG1
+ (c+ 1)× ExpG1

(|Sw| × c+ s+ 1)ExpG1
+MulZ∗q

EncXoR: the encryption of XoR operation. DecXoR: the decryption of XoR operation.

Fig. 9: Evaluation of gas cost on publishing smart contract
and the transaction cost of newTask, chalGen and addProof.

1827.5 seconds to generate a total of 50, 000 authenticators.
This translated to an average time of 0.037 seconds to generate
a single authenticator. Notably, the authenticator generation
time exhibited a linear relationship with both the number of
files and the number of data blocks. Besides, we also tested
the authenticator generation time with varying block segment
numbers and file sizes. The segment numbers were set to range
from 100 to 1000 with step size 100 and the file size to
1, 5, 10MB respectively. As shown in Fig. 7, we observed
that the authenticator generation time decreased as the block
segment number increased. The authenticator generation time
increased with file size because the number of authenticators
also increased.

Evaluation of the index generation. The number of blocks
in a file was set to 100, 200, 300 and 500, respectively,
while the number of files containing the keyword ranged
from 10 to 100 in increments of 10. As shown in Fig. 8,
we compared the proposed scheme with [8] and [10]. When
there were 100 files containing the keyword, and each file
contained 200 blocks, the DO needed 755.399 seconds to
generate the index structure, which was 44.9% less than that
of scheme [10] and 42.4% less than that of scheme [8]. When
there were 100 files containing the keyword, and each file
contained 500 blocks, the DO required 1696.64 seconds to
generate the index structure, which was 48.5% less than that
of scheme [10] and 46.6% less than that of scheme [8]. From
the figure, the index generation time increased as the number
of keywords increased. For the same number of keywords, the
index generation time was less than that of [8] and [10]. This

was because the proposed scheme only needed to conduct the
matching computation and incurred no extra computation cost.

Evaluation of gas cost. Ethereum was utilized to evaluate
the cost of the smart contract in the proposed scheme. As
shown in Fig. 9, the DO published the smart contract, which
required about 2702060 gas. The DO added a new task
transaction, which required about 1422494 gas. The TPA
made a challenge transaction, which required about 4600709
gas. The CS added the proof information transaction, which
required about 72832 gas.

Evaluation of proof generation and verification. The
number of sectors in a block was set from 1000 to 10000 with
step size 1000. The number of files containing the keyword
ranged from 10 to 90 in increments of 10. The challenge
numbers were set to 300 and 460, respectively. Fig. 10 showed
the time cost when c=300. From Fig. 10 (a), we observed
that the time cost did not increase significantly as the number
of blocks increased but increased as the number of files
containing the keyword. The results are also shown in Fig.
10 (b). Regarding the overhead on the TPA side, Fig. 10 (c)
showed that the time cost increased as the number of files
containing the keyword, while it did not increase significantly
as the number of sectors in a block increased. The results are
also shown in Fig. 10 (d). Fig. 11 showed the time cost when
c=460. It exhibited a similar cost trend compared to c=300.
From Fig. 11 (a) and Fig. 11 (b), we observed that it needed
about more 0.5 times cost than c=300. From Fig. 11 (c) and
Fig. 11 (d), we observed that it increased little and needed
about more extra 0.5 times cost than when the challenge block
numbers were set to c=300.

VII. CONCLUSION

In order to improve the auditing efficiency and reduce the
burden on the DO side due to massive and similar data
integrity checking, we focused on keyword searchable and
provable data possession in this paper. We introduced the
notion of the keyword and designed an index structure to
match the authenticator. All matched files can be audited
and verified, and privacy can be guaranteed at the same
time. To resist the corrupt auditor to always generate biased
challenge information, we utilized unpredictable but verifiable
public information on the blockchain to generate challenging
information instead of relying on the centralized TPA. Besides,
a copy-summation attack was found in some schemes in this
paper. We gave the detailed attack process and provided the

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

(a) (b) (c) (d)

Fig. 10: The time cost when c=300 (a): CSP side with different numbers of sectors in a block; (b): CSP side with different
numbers of files containing the keyword; (c): TPA side with different sectors in a block; (d): TPA side with different numbers
of files containing the keyword.

(a) (b) (c) (d)

Fig. 11: The time cost when c=460 (a): CSP side with different numbers of sectors in a block; (b): CSP side with different
numbers of files containing the keyword; (c): TPA side with different sectors in a block; (d): TPA side with different numbers
of files containing the keyword.

solution to resist this attack. Security analysis and performance
evaluation both demonstrated that the proposed scheme was
both secure and efficient. Experimental results shew that the
index generation time was less than existing schemes in recent
years.

REFERENCES

[1] H. Akbar, M. Zubair, and MS. Malik. The security issues and chal-
lenges in cloud computing. International Journal for Electronic Crime
Investigation, 7(1):13–32, 2023.

[2] Y. Miao, K. Gai, L. Zhu, KKR Choo, and J. Vaidya. Blockchain-based
shared data integrity auditing and deduplication. IEEE Transactions on
Dependable and Secure Computing, PP(99):1, 2023.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song. Provable data possession at untrusted stores. In Proceed-
ings of the 14th ACM conference on Computer and communications
security, pages 598–609, Alexandria, Virginia, USA, 2007. ACM.

[4] Y. Qi, Y. Luo, Y. Huang, and X. Li. Blockchain-based privacy-preserving
public auditing for group shared data. Intelligent Automation & Soft
Computing, 35(3), 2023.

[5] Y. Li, Y. Li, K. Zhang, and Y. Ding. Public integrity auditing for
dynamic group cooperation files with efficient user revocation. Computer
Standards & Interfaces, 83:103641, 2023.

[6] Z. Tu, X. Wang, W. Du, Z. Wang, and M. Lv. An improved multi-copy
cloud data auditing scheme and its application. Journal of King Saud
University-Computer and Information Sciences, 35(3):120–130, 2023.

[7] Z. Li, Y. Li, L. Lu, and Y. Ding. Blockchain-based auditing with data
self-repair: From centralized system to distributed storage. Journal of
Systems Architecture, page 102854, 2023.

[8] X. Gao, J. Yu, Y. Chang, H. Wang, and J. Fan. Checking only
when it is necessary: Enabling integrity auditing based on the keyword
with sensitive information privacy for encrypted cloud data. IEEE
Transactions on Dependable and Secure Computing, 19(6):3774–3789,
2021.

[9] J. Xue, S. Luo, Q. Deng, L. Shi, X. Zhang, and H. Wang. Ka: Keyword-
based auditing with frequency hiding and retrieval reliability for smart
government. Journal of Systems Architecture, page 102856, 2023.

[10] J. Xue, S. Luo, L. Shi, X. Zhang, and C. Xu. Enabling hidden frequency
keyword-based auditing on distributed architectures for a smart govern-
ment. In Frontiers in Cyber Security: 5th International Conference,
FCS 2022, Kumasi, Ghana, December 13–15, 2022, Proceedings, pages
48–68. Springer, 2022.

[11] H. Han, S. Fei, Z. Yan, and X. Zhou. A survey on blockchain-based
integrity auditing for cloud data. Digital Communications and Networks,
8(5):591–603, 2022.

[12] A. Li, Y. Chen, Z. Yan, X. Zhou, and S. Shimizu. A survey on integrity
auditing for data storage in the cloud: from single copy to multiple
replicas. IEEE Transactions on Big Data, 8(5):1428–1442, 2020.

[13] M. Sadeeq, N. Abdulkareem, S. Zeebaree, D. Ahmed, A. Sami, and
R. Zebari. Iot and cloud computing issues, challenges and opportunities:
A review. Qubahan Academic Journal, 1(2):1–7, 2021.

[14] S. Duan, D. Wang, J. Ren, F. Lyu, Y. Zhang, H. Wu, and X. Shen. Dis-
tributed artificial intelligence empowered by end-edge-cloud computing:
A survey. IEEE Communications Surveys & Tutorials, 2022.

[15] A. Juels, J. Kaliski, and S. Burton. Pors: Proofs of retrievability for
large files. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 584–597, 2007.

[16] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public
verifiability and data dynamics for storage security in cloud computing.
In Computer Security–ESORICS 2009: 14th European Symposium on
Research in Computer Security, Saint-Malo, France, September 21-23,
2009. Proceedings 14, pages 355–370. Springer, 2009.

[17] N. Dhakad and J. Kar. Eppdp: an efficient privacy-preserving data
possession with provable security in cloud storage. IEEE Systems
Journal, 16(4):6658–6668, 2022.

[18] H. Jin, R. Luo, Q. He, S. Wu, Z. Zeng, and X. Xia. Cost-effective data
placement in edge storage systems with erasure code. IEEE Transactions
on Services Computing, 2022.

[19] D. Kim and K. Kim. Privacy-preserving public auditing for shared cloud
data with secure group management. IEEE Access, 10:44212–44223,
2022.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 15

[20] X. Zhang, X. Wang, D. Gu, J. Xue, and W. Tang. Conditional anonymous
certificateless public auditing scheme supporting data dynamics for
cloud storage systems. IEEE Transactions on Network and Service
Management, 2022.

[21] J. Zhao, Y. Zheng, H. Huang, J. Wang, X. Zhang, and D. He. Lightweight
certificateless privacy-preserving integrity verification with conditional
anonymity for cloud-assisted medical cyber–physical systems. Journal
of Systems Architecture, 138:102860, 2023.

[22] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu. Enabling identity-based
integrity auditing and data sharing with sensitive information hiding for
secure cloud storage. IEEE Transactions on Information Forensics and
Security, 14(2):331–346, 2018.

[23] X. Li, S. Shang, S. Liu, K. Gu, M. Jan, X. Zhang, and F. Khan. An
identity-based data integrity auditing scheme for cloud-based maritime
transportation systems. IEEE Transactions on Intelligent Transportation
Systems, 2022.

[24] L. Zhou, A. Fu, G. Yang, H. Wang, and Y. Zhang. Efficient certificateless
multi-copy integrity auditing scheme supporting data dynamics. IEEE
Transactions on Dependable and Secure Computing, 19(2):1118–1132,
2020.

[25] R. Li, X. Wang, H. Yang, K. Niu, D. Tang, and X. Yang. Efficient
certificateless public integrity auditing of cloud data with designated
verifier for batch audit. Journal of King Saud University-Computer and
Information Sciences, 34(10):8079–8089, 2022.

[26] M. Tian, Y. Zhang, Y. Zhu, L. Wang, and Y. Xiang. DIVRS: data
integrity verification based on ring signature in cloud storage. Computers
& Security, 124:103002, 2023.

[27] S. Ji, W. Zhou, C. Ma, D. Li, K. Zhu, and L. Fang. Proofs of
retrievability with tag outsourcing based on goppa codes. Computer
Standards & Interfaces, 86:103719, 2023.

[28] K. Gai, J. Guo, L. Zhu, and S. Yu. Blockchain meets cloud computing:
A survey. IEEE Communications Surveys & Tutorials, 22(3):2009–2030,
2020.

[29] L. Zhu, Y. Wu, K. Gai, and K. Kim-Kwang Raymond. Controllable
and trustworthy blockchain-based cloud data management. Future
Generation Computer Systems, 91:527–535, 2019.

[30] Y. Miao, Q. Huang, M. Xiao, and H. Li. Decentralized and privacy-
preserving public auditing for cloud storage based on blockchain. IEEE
Access, 8:139813–139826, 2020.

[31] Y. Yuan, J. Zhang, W. Xu, and Z. Li. Identity-based public data integrity
verification scheme in cloud storage system via blockchain. The Journal
of Supercomputing, 78(6):8509–8530, 2022.

[32] Z. Liu, L. Ren, Y. Feng, S. Wang, and J. Wei. Data integrity audit
scheme based on quad merkle tree and blockchain. IEEE Access, 2023.

[33] C. Chen, L. Wang, Y. Long, Y. Luo, and K. Chen. A blockchain-
based dynamic and traceable data integrity verification scheme for smart
homes. Journal of Systems Architecture, 130:102677, 2022.

[34] Y. Miao, Q. Huang, M. Xiao, and W. W. Susilo. Blockchain assisted
multi-copy provable data possession with faults localization in multi-
cloud storage. IEEE Transactions on Information Forensics and Security,
17:3663–3676, 2022.

[35] Y. Huang, Y. Yu, H. Li, Y. Li, and A. Tian. Blockchain-based continuous
data integrity checking protocol with zero-knowledge privacy protection.
Digital Communications and Networks, 8(5):604–613, 2022.

[36] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, and W. Susilo. Blockchain-
based public auditing and secure deduplication with fair arbitration.
Information Sciences, 541:409–425, 2020.

[37] G. Tian, Y. Hu, J. Wei, Z. Liu, X. Huang, X. Chen, and W. Susilo.
Blockchain-based secure deduplication and shared auditing in decentral-
ized storage. IEEE Transactions on Dependable and Secure Computing,
19(6):3941–3954, 2021.

[38] S. Li, C. Xu, Y. Zhang, Y. Du, and K. Chen. Blockchain-based
transparent integrity auditing and encrypted deduplication for cloud
storage. IEEE Transactions on Services Computing, 2022.

[39] Y. Zhang, C. Xu, S. Yu, H. Li, and X. Zhang. Sclpv: Secure certificate-
less public verification for cloud-based cyber-physical-social systems
against malicious auditors. IEEE Transactions on Computational Social
Systems, 2(4):159–170, 2015.

[40] J. Xue, C. Xu, J. Zhao, and J. Ma. Identity-based public auditing for
cloud storage systems against malicious auditors via blockchain. Science
China Information Sciences, 62(3):1–16, 2019.

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2024.3516563

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Lancaster University. Downloaded on January 08,2025 at 15:40:49 UTC from IEEE Xplore. Restrictions apply.

	I Introduction
	II Related Work
	III Preliminaries and Definitions
	III-A Basic notations
	III-B System Model
	III-C Definition
	III-D Security Model
	III-E Unforgeability of Authenticators
	III-F Unforgeability of Proof
	III-G Design Goals

	IV Proposed Construction
	IV-A High-level Overview
	IV-B Our Scheme

	V Security Analysis
	VI Performance Evaluation
	VI-A Theoretical Analysis
	VI-B Experiment Results

	VII Conclusion
	References

