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Abstract  11 

Multimetric assessment is one of the important tools for diagnosing, detecting and measuring the 12 
level of impairments of ecosystem function in lentic ecosystem.  It also provides detection 13 
capability over a broader range and nature of stressors and gives a more complete picture of the 14 
ecological conditions than single metrics and biological indicators. A diatom-based multimetric 15 
index (MMI-D) was developed to evaluate the ecological-health of Lake Hawassa. 16 
Physicochemical and benthic diatom sampling was done at nine sites with different degrees of 17 
human disturbance along the lakeshore area from February to November 2015 and 2016. A priori 18 
classification of lake segments into minimally disturbed (three sites), moderately disturbed (three 19 
sites) and highly disturbed (three sites) was done by clustering sampling sites based on percentage 20 
disturbance score (PDS). From 24 diatom candidate-metrics, only 10 were chosen as core metrics 21 
for the development of MMI-D based on redundancy analysis, reaction to environmental 22 
conditions, percent discriminatory efficiency (%DE), and box-plots. The newly established MMI-23 
D index clearly distinguished between reference and non-reference sites, as well as between the 24 
lake's three clusters. The MMI-D index's performance was validated using independent data sets 25 
from Lakes Hawassa and Ziway, and it demonstrated the best capability for discrimination 26 
between different disturbance levels. MMI-D TSLS regression analysis revealed an inverse but 27 
robust connection with PDS, indicating its responsiveness to Lake Hawassa habitat quality 28 
degradation (n=9, R2=0.921, P=0.000). The MMI-D index revealed a high %DE (95.1%) and a 29 
negative but significant connection with nutrients, total suspended solids (TSS), and turbidity 30 
(R2>0.6; P<0.05). Generally, it can be concluded that this index is a powerful tool that could 31 
assist end-users by providing a practical method for measuring the ecological quality of L. 32 
Hawassa. 33 
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 36 

Introduction 37 

Lake Hawassa is one of the most threatened Rift Valley Lake because of human pressure related 38 

to adverse watershed land use, urban development, and expansion of industries. For example, 39 

around the 1980s, there were no observed pollution signs on adjacent sites of the lake to Hawassa 40 

City since there were few recreational activities and urban development (Kibret 1985). Nowadays, 41 

recessional farming, deforestation, urbanization, recreational activities and industrial expansion 42 

are among the stressors type that significantly contributes to the observed change of the lake water 43 

quality. As a result of the effect of these multiple stressors, the lake ecology has degraded in terms 44 

of its physical (like modified shoreline, less of riparian vegetation cover, lots of manmade 45 

structures in and around littoral zone), and chemical (like increasing concentration of nutrients) 46 

(Wondmagegn 2019) and high bioaccumulation load of trace metals (Nigussie et al. 2010)). In 47 

addition, there was also deterioration of biological quality (like dominancy of pollution tolerant 48 

macroinvertebrate assemblages (Aklilu 2011).  49 

Lakes of sub-Saharan Africa including Lake Hawassa are utilized for a variety of purposes that are 50 

uncommon or unseen in developed temperate countries, like waste disposal, laundry washing, 51 

cattle watering, and personal hygiene (Wondmagegn and Mengistou 2023). According to Revenga 52 

et al. (2005) these activities have caused a decline in the overall ecological functioning, which has 53 

altered in species abundance and richness of biological communities (Strayer 2006). Such changes 54 

in benthic organisms in response to human pressures has been reported as effective tools to monitor 55 

the biological integrity East African waterbodies (Masese et al. 2013a). Besides, Odountan et al. 56 

(2019) recently suggested that benthic indices and metrics are advocated for the purpose of 57 

biomonitoring of lakes in West Africa and developing countries. Therefore, to have best 58 

management practices and to assure the sustainable function of the lake ecosystem, biological 59 

monitoring uses aquatic organisms is important to monitor changes in chemical and physical 60 

components of the aquatic environment. It can enhance the ability to identify the level of 61 

degradation as well as the actions to take (Masese et al. 2013b; Stribling and Dressing 2015a; 62 

Stribling and Dressing 2015b).  63 



In earlier times, indicator organisms (metrics) were used for biomonitoring practice based on their 64 

response to human perturbation in their community structure. Later, ecologists developed single 65 

biotic index to get better discription on the human disturbance to aquatic ecology than the indicator 66 

organisms (Barbour et al. 1996). In recent years, using single biotic index is being replaced by 67 

multimetric biotic index sinces single biotic index can responds to  limitted stressors which may 68 

affect the accuracy of the assessment (Wang et al. 2015). Thus, the multimetric approach is more 69 

robust water quality assessor and indicates ecosystem integrity, and provide opportunity to respond 70 

for different stressors type at a time (Schoolmaster et al. 2012; Wang et al. 2015). This method 71 

uses an aggregation of individual community metrics that comprise benthic biological elements 72 

for the development of a single composite multimetric index (De la Rey et al. 2004) which are 73 

recommended to use lakes suffered with multiples stress like that of Lake Hawassa (Wondmagegn 74 

and Mengistou 2020). This can potentially reflect multiple effects of human impact on the structure 75 

and function of aquatic ecosystem (Barbour et al. 1999; Menetrey et al. 2011) and is based on 76 

comparing the biological metrics form minimally disturbed to highly disturbed sites of the water 77 

body (Stoddard et al. 2006; Whittier et al. 2007).  78 

The application of diatom based multimetric index in lake biomonitoring is quite recent and only 79 

few studies have been recorded from tropical regions (Phiri et al. 2007; Wang et al. 2015; Chen et 80 

al. 2017) but not Ethiopian lakes, including Lake Hawassa.  Since the water quality of Lake 81 

Hawassa has been affected by a number of stressors, a multimetric approach is highly 82 

recommended (Wondmagegn et al. 2019) to obtain accurate results of the response diatoms to the 83 

potential stressors of the littoral regions of the lake. Therefore, the objective of this study was to 84 

develop a diatom base multimetric index of biotic integrity of L. Hawassa (MMI-D) and validate 85 

its capability of discriminating reference from non-reference sites of the lake. 86 

Materials and Methods 87 

 Description of the study area 88 

Lake Hawassa, lies 275 km south of Addis Ababa, in the Main Ethiopian Rift (MER), surface 89 

elevation 1,686 m asl (6°33' - 7°33' N and 38°22' - 38°29' E; Figure 1) (Welcome 1972). It has no 90 

visible outlet, however, a UN Geothermal Survey has suggested that there may be groundwater 91 

flow away from the lake on the south-west and north sides, which may account for a major loss of 92 



water. This outflow could moreover be used to explain the relatively low alkalinity of Hawassa 93 

compared with either saline Lake Shala or Lake Abiyata, both of which are also terminal lakes 94 

(Makin et al. 1975). 95 

Tikur Wuha, the only perennial river feeding the lake drains the vast swamps of Wendo Genet 96 

area, which in itself drains the highlands on the east. The surface area of the lake is about 92 km² 97 

(Makin et al. 1975), 16 km long, up to 8 km wide, and it has an estimated volume of 1.3 billion 98 

m³. The maximum and mean depth of the lake is about 22 m and 11 m, respectively. 99 

It is ecologically very important and is home to eight species of fish (Dadebo 2000; Tekle-Giorgis 100 

et al. 2017), Pelicans, Storks, Herons, Hammerkops, Sea Eagles and Kingfishers. There is a small-101 

scale fish market on the shore at Amora Gedel. The lake also supports large mammals including 102 

hippopotamus (Wondmagegn et al. 2019). 103 

Sampling site selection 104 

The sampling sites were selected according to their exposure to anthropogenic activities by 105 

computing its habitat quality through percent disturbance score (PDS; Table 1) (Fig. 1). So, KW1, 106 

KW2 and WSH were categorized as reference groups whereas, the remaining sites (such as 107 

MK,TW1, TW2 of moderately disturbed sites and WR, RH1 and AG1 of Highly disturbed sites) 108 

were classified as non-reference groups (Table 1) according to Wondmagegn et al. (2019).  All the 109 

physicochemical and the biological sampling was done on these categorized sites with three replications. 110 

Sampling of environmental parameters 111 

A combined portable HQ40D multimeter was used to measure in situ physicochemical parameters 112 

such as temperature (T), pH, conductivity (EC) and dissolved oxygen (DO). The turbidity was 113 

measured with an OAKTON turbidimeter (T-100). NO2
⁻, NO3

⁻,  NH4
+, soluble reactive phosphate 114 

(SRP) and total phosphorus (TP) were analysed spectrophotometrically in the Limnological 115 

Laboratory of Addis Ababa University. Nitrate was analysed with sodium salicylate method 116 

(Robarge et al. 1983), ammonium with indo-phenol blue (APHA 1995), and soluble reactive 117 

phosphate (SRP) with ascorbic acid method (APHA 1999). Nitrite concentration was determined 118 

by the reaction between sulfanilamide and N-naphthyl-(1)- ethylenediamine dihydrochloride 119 

(APHA 1995). Total phosphorus (TP) and silica (SiO2) were determined using persulfate digestion 120 

method and molybdosilicate method (APHA 1999), respectively.  121 



The Chlorophyll a concentration was estimated according to the method of Talling and D. (1963). 122 

From each site, 200–500 ml of the lake water was filtered through Whatman GF/F filters. The 123 

filters were folded with aluminium foil, labeled and transported to the laboratory in an icebox and 124 

stored for not longer than one day. Pigments were ground and extracted in 90% acetone. After 125 

grinding, the algal material was centrifuged. Then, the extract was decanted into 5 ml cuvette and 126 

the absorbance of Chlorophyll a was measured spectrophotometrically at wavelengths of 665 nm 127 

and 750 nm, respectively. The total suspended solids (TSS) samples were filtered using Whatman 128 

GF/F filters and analyzed following Wetzel and Likens (2000) 129 

Sampling of benthic diatoms 130 

Diatoms were scraped from cobbles and macrophytes in the littoral areas of Lake Hawassa at the 131 

maximum of 1 m depth. Sampling was conducted by taking cobbles (five stones with upper surface 132 

areas of cobble ~25 cm2) and macrophytes (five random stems of macrophytes with 5 cm length) 133 

from the lake shore (King et al. 2005; Martin and Fernandez 2012). Small amounts of lake water 134 

(approximately 50 ml) were poured into a tray the biofilm from the upper surface of each cobble 135 

and the macrophyte was removed by scrubbing vigorously with a toothbrush. The toothbrush was 136 

rinsed regularly with lake water. Finally, the suspension was poured into a labeled 150 ml plastic 137 

bottle. Before pouring, the suspension was swirled in the tray so that any settled particles were re-138 

suspended. Then, the diatom samples were preserved with 70% ethanol. 139 

A 5-10 ml aliquot of each sample was taken from the bottle and homogenized by shaking. Diatom 140 

samples were treated with concentrated sulfuric acid and potassium dichromate (Patrick and 141 

Reimer 1966). Then, a drop of cleaned diatom samples were taken and dropped onto a microscopic 142 

slide and placed on hot plate. After it had dried, a permanent slide was prepared by adding 143 

Naphrax® (refractive index of 1.73) to the coverslip and placing the latter into the dried slide. 144 

Diatom frustules were examined with Carl Zeiss Axioskop light microscope at 1000 x 145 

magnification, with oil immersion objective, using bright-field illumination with a green filter to 146 

increase the contrast in the laboratory of Environmental Centre of Lancaster University, UK. 147 

Identification of diatom species was made by standard identification keys, manuals and 148 

publications of Van Meel (1954 ); Gasse (1986); Krammer and Lange-Bertalot (1986 and 1988 149 

and 1991b and 1991a); Kelly (2000 ); Taylor et al. (2007a); Taylor et al. (2007b); (Taylor and 150 



Cocquyt 2016). For each slide, 500 valves were counted and relative abundance, as percentage, 151 

was calculated for each species. 152 

 153 

Diatom indices/ metric calculation 154 

OMNIDIA software version 6.1 was employed to calculate the diatom indices/metrics listed in 155 

Table 2 (Lecointe et al. 1993). Four diatoms (i.e. RAT, RRT, PRAT and PRRT; Table 2) reference 156 

based metrics were included as candidate metrics and calculated using Microsoft excel. The 157 

development of the MMI-D index was based on three a priori clustered sites, namely, C1-158 

minimally disturbed sites (KW1, KW2 and WSH), C2- moderately disturbed sites (MK, TW1 and 159 

TW2) and C3-highly disturbed sites (WR, RH1 and AG1).  160 

Selection and removal of redundant metrics 161 

A total of 24 diatom candidate metrics (17 of them were published in Wondmagegn et al. (2019); 162 

Table 2) representing various aspects of the diatom communities related to family richness, 163 

taxonomic composition, tolerance measures, biotic indices and others (Kelly and Whitton 1995; 164 

Rott et al. 1999; Lecointe et al. 2003) were compiled. 165 

The listed candidate metrics/indices were used for the selection of the potential/core metric which 166 

were incorporated in the development of multimetric index of biotic integrity of Lake Hawassa 167 

(MMI-D). The procedure for selecting the potential metric was done according to Barbour et al. 168 

(1999), with some modification. The selection was done based on the metrics response to 169 

physicochemical parameters and with the relationship between themselves and their ability to 170 

characterize the reference and non-reference sites. Metrics which significantly correlated with 171 

physicochemical variables were selected for the next analysis. Redundancy analysis was employed 172 

to identify the pair of metrics with a significant correlation (i.e., correlation coefficient ≥0.7) 173 

(Ofenböck et al. 2004; Hering et al. 2006). From the redundant metrics, the one which strongly 174 

correlated with the physicochemical variables was considered for further analysis and the others 175 

were rejected.  176 

Percent discriminatory efficiency (%DE) of each metric was calculated to identify the most 177 

suitable metrics having high % DE (usually greater than or equal to 50%) as was used in 178 



Wondmagegn et al. (2019) and Wondmagegn and Mengistou (2023) . Besides this, for diatom 179 

indices selection, percent inclusion of the diatom species in index calculation was also considered 180 

as an important criterion in which <50% inclusion was excluded for further analysis (Wondmagegn 181 

et al. 2019). The distribution of each metrics between the reference and non-reference sites was 182 

visualized using Box and Whisker plots. The sensitivity of the metrics was examined based on 183 

their interquartile overlap degree according to the method outlined in Barbour et al. (1996).  184 

Scoring of metrics 185 

Using the discrete type of scoring system, calculated metric values were converted (normalized) 186 

to metric scores of 5, 3 or 1 depending on their proximity to the optimal values as used in 187 

Wondmagegn and Mengistou (2023).  Metrics whose values decreased with the increase of 188 

disturbance (positive metric) 5, 3 and 1 scoring was used, and the reverse scoring for negative 189 

metrics. For instance, positive metrics values above 75th percentiles were scored as 5. Metric values 190 

between and including the 75th and 25th percentiles were scored as 3, and all metric values below 191 

the 25th percentile were scored as 1 (Barbour et al. 1996; Wang et al. 2005).  192 

Development of multimetric index of biotic integrity for Lake Hawassa (MMI-D) 193 

The scored values of each potential metric value were combined into a multimetric diatom index 194 

(MMI-D) by summing up the score of each individual metric. The possible maximum and 195 

minimum MMI-D index values were calculated (maximum value= total number of selected metric 196 

multiplied by 5, and minimum value= total number of selected metric multiplied by 1) and divided 197 

into quartile rages to have four quality classes. Thus, the highest score classified as very good 198 

quality and the lowest score as poor quality. Box and Whisker plots were also used to visualize 199 

MMI-D index’s distribution between the reference and non-reference sites and to test its potential 200 

to discriminate the minimally disturbed sites from the moderately and highly disturbed sites of 201 

Lake Hawassa.  202 

Ecological quality ratio (EQR) 203 

The ecological quality ratio (EQR) of each sampling station was used for the purpose of 204 

classification of ecological status (Wondmagegn and Mengistou 2023). EQR was calculated by 205 

dividing MMI-D values of each site with the median MMI-D values of reference sites. The ratio 206 



is expressed as a numerical value usually between zero and one. Then the 90th percentile of the 207 

reference site of the EQR values was used to classify into five ecological classes. Generally, as the 208 

value of EQR becomes close to one, it is considered as high ecological status and as its values 209 

approaches to zero, it is considered as bad ecological status (EQR 2007; Delgado et al. 2010). 210 

Validation of the MMI-D 211 

The validation of MMI-D index was conducted using independent data sets which were not 212 

incorporated in the MMI-D index development of L. Hawassa. One of the independent data set 213 

was taken from the reference and non-reference sites of Lake Hawassa.  In addition, it was also 214 

validated using the independent data set from L. Ziway with box and whisker plot of Sigma 215 

Software version 10.0. The independent data set of Lake Ziway was taken form unpublished data 216 

of Abnet Woldesenbet. Two-stage Least Squares (TSLS) regression analysis was also employed 217 

to test the relationship between the MMI-D index and percent disturbance score (PDS) in the SPSS 218 

package version 20.  Principal component analysis (PCA) was also used to visualize the capability 219 

of MMI-D index’s distribution between the reference and non-reference sites of Lake Hawassa.  220 

Data analysis 221 

OMNIDIA software version 6.1 was employed to calculate the diatom indices/metric. Spearman 222 

rank correlation was used to check relationships of candidate metrics with themselves and with 223 

environmental parameters, in order to select the core metrics. Two-stage least squares (TSLS) 224 

regression analysis was also employed to test relationship between the MMI-D index and percent 225 

disturbance score (PDS). The above analyses were done with Statistical Package for Social Science 226 

Students (SPSS Inc., software version 20.0). Box and Whisker plot and Principal components 227 

analysis (PCA) were employed to show the discriminatory potential of the multimetric index 228 

(MMI-D) among the reference and test sites of Lake Hawassa using Sigma-plot version 15.0 and 229 

PAST 3.15 software programmes, respectively. The validation of the potential of MMI-D index 230 

with independent data set of L. Ziway was checked with Box and Whisker figures using Sigma-231 

plot version 10.0.  232 



Result  233 

Metric Selection 234 

Metric selection was done based on percent inclusion of the diatom species in index calculation 235 

(the more species are included in index calculation; the more efficient index is to explain the 236 

ecology). In addition, their discrimination efficiency, correlation, and response to environmental 237 

parameter were checked (Table 2&3). Therefore, IDAP, P.SI, WAT, DES, LOBO, PDI, and P.TI 238 

indices were excluded from selection due to <50% inclusion of the diatom species in the index 239 

calculation using OMNIDIA software. These indices did not also exhibit a significant correlation 240 

with ecologically important physicochemical variables such as TP, SRP and Nitrate (Table 3). 241 

IBD, IPS, and CEE were not also included in metrics selection because of having a high correlation 242 

with SHE, IDG and TDI. 243 

Thus, indices those which had greater than 50% discrimination efficiencies, ≥ 50% species 244 

inclusion, lack redundancy and showed a significant correlation with most of physicochemical 245 

variables (EPID, SHE, SLA, IDG, TDI, ROTT, TDIL and LDTI2) were included in metrics 246 

selection (Table 3). From the four reference taxa-based metrics, RATD and PRATD were selected 247 

due to their high discriminatory efficiency for the multimetric index (MMI-D) development (Table 248 

2& 3). These metrics did not exhibit a complete overlap on their interquartile and had potential to 249 

characterize the reference sites and non-reference sites as illustrated on Fig. 2.  250 

Developments of multi-metric index of L. Hawassa (MMI-D) 251 

From the list of 24 diatom candidate metrics, 10 diatom metrics were selected, based on their 252 

response to the different level of disturbances, discriminatory power between the reference and 253 

test sites, and correlation with physicochemical parameters. The selected metrics were used for the 254 

development of multimetric index of biotic integrity of L. Hawassa (MMI-D; Table 4). The MMI-255 

D used a 5, 3 or 1 discrete type scoring system to normalize the metric value for positive metric 256 

using 75th and 25th percentiles of the metric values and the reverse for negative metrics. For positive 257 

metrics, metric values above 75th percentiles were scored as 5. Metric values between and 258 

including the 25th and 75th percentiles were scored as 3, and all metric values below the 25th 259 

percentile were scored as 1(Table 5). The sum of the total score of each site was considered as the 260 

MMI-D values. The maximum and minimum possible ranges of the MMI-D values were 50 and 261 



10, respectively.  These MMI-D values were divided into quartile ranges. So, the MMI-D range 262 

values 41-50, 31-40, 21-30, and 10-20 were classified as very good, good, fair and poor quality, 263 

respectively. 264 

Therefore, the current study showed that the multimetric index (MMI-D) had a potential to 265 

discriminate clearly the reference site and the non-reference and between the three-disturbance 266 

level (minimal, moderate and high disturbance level) of the clustered sampling stations of the lake 267 

(Fig. 3). It put the minimally disturbed sites (C1) into very good to good categories (KW1, KW2, 268 

and WSH), moderately disturbed sites (C2) into fair (MK, TW1 and TW2) and highly disturbed 269 

sites (C3) into poor categories (Table 6).  270 

The discrimination capacity of the MMI-D index between reference and non-reference sites was 271 

tested by Box and Whisker plots within the comparison of the previously classification of sampling 272 

stations of L. Hawassa. Thus, the MMI-D clearly discriminated the reference sites from the non-273 

reference (test) sites (Fig. 3a). It also showed a demarcation potential between the three clusters 274 

such as C1 (minimally disturbed), C2 (moderately disturbed) and C3 (highly disturbed sites) of 275 

the lake (Fig. 3b). 276 

Ecological quality ratio (EQR) 277 

The ecological quality ratio (EQR) was calculated and its range was between one and zero, but 278 

there were values greater than one which were considered as one. The 90th percentile of the 279 

reference site of the EQR values was 1. The sampling sites ecological status was classified based 280 

on the EQR values with its range (Table 7). 281 

The Ecological Quality Ratio potentially discriminated the reference and non-reference sites. It 282 

characterized the minimally disturbed (C1) sites into high and good quality or reference condition 283 

(KW1, KW2, and WSH), moderately disturbed sites into moderate quality and highly disturbed 284 

sites into poor quality sites (Table 8). The Box and Whisker plots also showed that the EQR had 285 

the efficiency to discriminate between reference and non-reference sites and the three clustered 286 

sites (C1, C2 and C3; Fig. 4). 287 



Validation of the multi-metric index 288 

The efficiency of the MMI-D index to discriminate between reference and non-reference sites, and 289 

between a priori classification of the sampling station (i.e. minimal, moderate and high disturbance 290 

levels) were tested by Box and Whisker plots in previous section. Furthermore, to confirm the 291 

suitability and robustness of this newly developed index (MMI-D index) it requires validation. The 292 

validation of the MMI-D index was performed using independent data sets where the MMI-D 293 

index was not based. Thus, the performance of the MMI-D index was tested in the new data sets 294 

of Lake Hawassa and Lake Ziway. Three sites were taken from Lake Hawassa and subjected to 295 

validation using the MMI-D index. Thus, the MMI-D classified one site as very good (MMI-D 296 

value= 34), and the other two sites as fair (MMI-D value= 28 and 28) which coincided with prior 297 

classification of these sites.   298 

The developed MMI-D also discriminated L. Ziway’s reference and test sites as shown in Fig. 5. 299 

It showed good potential of characterizing the L. Ziway clustered sites.  For example, all the three 300 

reference sites (C1) were classified as very good quality; from three moderately disturbed sites 301 

(C2) all of the sites were characterized as fair. The three highly disturbed sites (C3) of the lake 302 

were also classified as fair to poor category. The principal component analysis (PCA) also clearly 303 

explained 96.85% of the variation between the reference site and non-reference/test site of Lake 304 

Hawassa with both the first and the second axis (Fig. 6). This confirms the potential of the MMI-305 

D index to discriminate between reference and non-reference sites of Lake Hawassa. 306 

The two-stage least squares (TSLS) regression analysis of MMI-D showed an inverse but strong 307 

relationship with percent disturbance score (PDS) which demonstrates the MMI-D index 308 

responsiveness to the habitat quality degradation of Lake Hawassa (n=9, R2=0.921, P=0.000; Fig. 309 

7). The MMI-D index also showed significant positive response to DO, and negative but 310 

significant correlation with temperature, nutrients, TSS and turbidity and had high percent 311 

discriminatory efficiency (%DE= 95.1; Table 9). 312 

Discussion 313 

Lake Hawassa has been affected by multi-type stressors which come from different sources (more 314 

often from non-point sources), the need of multimetric index development is a mandatory practice 315 

to quantify the ecological status of the sampling stations that have suffered from human induced 316 



level of disturbances. The multimetric index of biotic integrity of L. Hawassa (MMI-D) was 317 

developed in order to harvest these benefits.  318 

The multimetric index of biotic integrity of L. Hawassa (MMI-D) showed a clear demarcation 319 

between the reference and non-reference/ test sites (Table 6; Fig. 3). It also placed the minimally 320 

disturbed sites (C1) as very good to good categories (KW1, KW2 and WSH), moderately disturbed 321 

(MK, TW1 and TW2) sites into fair and highly disturbed (WR, RH1 and AG1) sites into poor 322 

quality (Table 6). Hence, the MMI-D index showed a robust result able to discriminate the three 323 

clusters of the sampling stations of the lake as previously classified. Besides, the ecological quality 324 

ratio (EQR) explained the status of the sampling sites in-terms of their ecological condition (Table 325 

8) as it is believed that EQR is an ecological expression of the MMI-D index (Lepistö et al. 2004; 326 

Wells et al. 2007; Gabriels et al. 2010).  327 

Generally, the MMI-D index and the EQR showed robust results that clearly discriminate sampling 328 

stations into their ecological quality level as very good, fair and poor quality. Hence, conservation 329 

of very good quality sites and rehabilitation of the fair and poor-quality sites are important 330 

recommendations that can be drawn from the current result. 331 

The suitability and robustness of a newly developed multimetric index (MMI-D) requires 332 

validation which is an effective method for evaluating the lake condition to recommend future use 333 

of the MMI-D, effective restoration and conservation methods and research gaps (Jun et al. 2012). 334 

Validation of MMI-D using independent data sets is an appreciable method that indicates how well 335 

the multimetric index would be expected to work with sampling sites and gives good insight to 336 

scale up and use for other lakes in the ecoregion (Lunde and Resh 2012; Villamarín et al. 2013). 337 

The potential use of MMI-D was confirmed by the discrimination efficiency of the independent 338 

data set taken from Lake Hawassa and L. Ziway,  which coincided with prior classification of these 339 

sites. Thus, the validation of the MMI-D index showed its potential to be used in the biomonitoring 340 

of the initial lake and lakes which are situated in the same ecoregion of Lake Hawassa, namely 341 

Northern Eastern Rift (Thieme et al. 2005).  342 

Furthermore, the MMI-D was further validated using physicochemical parameters, PCA, and its 343 

relationship with disturbance score (PDS) that showed the responsiveness of the MMI-D with 344 

different levels of degradation which were already observed on the reference and non-reference 345 



sites. Thus, the significant inverse relationship between MMI-D and PDS represents a strong 346 

responsiveness of the MMI-D index to the lake habitat quality levels (PDS: n=9, R2=0.921, 347 

P<0.01, Fig. 7). Similar phenomenon was observed on the study of multimetric index of Lake 348 

Kariba of Africa (Phiri et al. 2007), lakes of USA (Stevenson et al. 2013) and Lake Dongting 349 

(Wang et al. 2015). Since the MMI-D index is considered as a positive metric, its value decreased 350 

against the habitat disturbance (Fig. 7) as was observed on wetlands of California (Lunde and Resh 351 

2012). This wetland report showed that a higher multimetric index scores was considered as signal 352 

of a less disturbed environment, while lower multimetric index scores indicated highly disturbed 353 

habitat. MMI-D index showed a better potential than that of the single metrics of diatoms tested in 354 

Wondmagegn et al. (2019). Similar potential was also observed on the multimetric developments 355 

of Alaska’s biomonitoring practice with high precision and high discrimination efficiency 356 

(Bouchard et al. 2004). 357 

In addition, the MMI-D index also showed significant positive response to DO, and negative but 358 

significant correlation with temperature, nutrients, TSS and turbidity (Table 9). Similar response 359 

of the MMI index to nutrient concentration was observed in lakes of USA (Stevenson et al. 2013), 360 

Lithuanian lakes (Šidagytė et al. 2013) and lakes in Flanders, Belgium (Gabriels et al. 2010). The 361 

negative response of the MMI-D index to nutrients, TSS and turbidity corresponds with what can 362 

be expected for stress-related variables (Gabriels et al. 2010). This indicates that the MMI-D index 363 

was suitable for ecological quality assessment of Lake Hawassa.  364 

The overall finding of the current research indicated that such  multimetric approach has significant 365 

advantage when the water body is exposed to multiple stressor types not usually counted (Everard 366 

et al. 2011). The index can also reduce the independent metric prediction problem and maximize 367 

the efficiency to express the not-visualized and unmeasured disturbance of segments of the lake 368 

ecosystem. As noted by Schoolmaster et al. (2012), when there is a problem of understanding the 369 

exact cause of degradation of water quality, the multimetric approach is most effective. The 370 

discrimination power of the MMI-D index between different levels of human disturbance showed 371 

the effectiveness of multimetric approach.  372 

In addition, the benefit of such MMI-D development to specific lake would also increase the 373 

performance of the multimetric index by reducing natural variability (like in geology, soils, 374 



landscapes, climate, and water chemistry) among sites since it is difficult to distinguish the effect 375 

of natural variability form human induced variability if it is applied across large spatial scale 376 

(Stevenson et al. 2013). Furthermore, the MMI-D index clearly discriminated the reference and 377 

non-reference sites of Lake Hawassa and showed similar performance on Lake Ziway (within the 378 

same ecoregion); thus, it can be recommended for application to biomonitoring activity in other 379 

lakes of the same ecoregion.  380 
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