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Abstract. We study the lattice of closed ideals of bounded operators on two families of
Banach spaces: the Baernstein spaces Bp for 1 < p < ∞ and the Schreier spaces Sp for
1 ⩽ p < ∞. Our main conclusion is that there are 2c many closed ideals that lie between the
ideals of compact and strictly singular operators on each of these spaces, and also 2c many
closed ideals that contain projections of infinite rank.

Counterparts of results of Gasparis and Leung using a numerical index to distinguish the
isomorphism types of subspaces spanned by subsequences of the unit vector basis for the
higher-order Schreier spaces play a key role in the proofs, as does the Johnson–Schechtman
technique for constructing 2c many closed ideals of operators on a Banach space.

1. Introduction

Recently, the lattice of closed ideals of the Banach algebra B(X) of bounded operators on a
Banach space X has been studied intensively, in many cases leading to the conclusion that it has
cardinality 2c, which is the largest possible value when X is separable, and an order structure
that is at least as complex as the power set of R. We add two families of Banach spaces to the
list for which these conclusions can be drawn: the Baernstein spaces Bp for 1 < p <∞ and the
Schreier spaces Sp for 1 ⩽ p <∞.

Their definitions rely on the family S1 of Schreier sets, that is, the finite subsets of the
natural numbers whose minimum dominates their cardinality. We can now define the pth

Schreier space Sp, for 1 ⩽ p <∞, as the completion of the vector space c00 of finitely supported
elements x = (x(n))n∈N ∈ KN with respect to the norm

∥x∥Sp
= sup

{(∑
n∈F

|x(n)|p
) 1

p

: F ∈ S1 \ {∅}
}
, (1.1)

while the pth Baernstein space Bp, for 1 < p <∞, is the completion of c00 with respect to the
norm

∥x∥Bp = sup

{( m∑
j=1

(∑
n∈Fj

|x(n)|
)p) 1

p

: m ∈ N, F1, . . . , Fm ∈ S1 \ {∅} and

maxFj < minFj+1 for 1 ⩽ j < m

}
. (1.2)

(Note that (1.2) would simply define the ℓ1-norm for p = 1, which is why there is no Baernstein
space B1.)

Having introduced these Banach spaces, let us summarize our main conclusions about them.

Theorem 1.1. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞. Then:
(i) B(E) contains 2c many closed ideals between the ideals of compact and strictly singular

operators.
(ii) The ideals of strictly singular and inessential operators on E are equal.

For E = Sp, these ideals are also equal to the ideal of weakly compact operators.
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(iii) B(E) contains 2c many closed ideals which are larger than the ideal

{UV : U ∈ B(D,E), V ∈ B(E,D)}
of operators factoring through D, where D = ℓp if E = Bp and D = c0 if E = Sp.

(iv) B(E) contains at least continuum many maximal ideals.

The Baernstein and Schreier spaces originate in Schreier’s counterexample [24] from 1930,
which showed that C[0, 1] does not have the Banach–Saks property. More precisely, Schreier
defined what we call a Schreier set, but did not explicitly consider any of the Banach spaces we
study. More than 40 years later, Baernstein [3] introduced the space B2 to provide an example
of a reflexive Banach space without the Banach–Saks property. Not long after, Seifert observed
in his dissertation [25] that Baernstein’s definition carries over to arbitrary p ∈ (1,∞).

Surprisingly, it appears that the Schreier space S1 was not defined until seven years after
Baernstein’s work [3]. It is hard to imagine that Baernstein did not know S1, but as far as
we have been able to find out, Beauzamy [5] was the first person to define it explicitly, using
it in combination with interpolation methods to obtain another example of a reflexive Banach
space without the Banach–Saks property. Bird and the first author [6] studied the spaces Sp
for p > 1.

A much more commonly researched variant of the Banach space S1 is the family of higher-
order Schreier spaces X[Sξ], defined by Alspach and Argyros [2] for every countable ordinal ξ;
the correspondence is that the space we denote S1 is equal to X[S1] (and X[S0] = c0). We shall
not add to the theory of these spaces for ξ ⩾ 2, but instead develop counterparts of some of
the main results about them for the Baernstein and Schreier spaces, as we shall explain next.

Organization and overview of content. We begin by collecting some preliminary material
in Section 2, most importantly a quantitative version of the fact that for every 1 < p <∞, the
Baernstein space Bp is saturated with complemented copies of ℓp, while the Schreier spaces are
saturated with complemented copies of c0. Theorem 1.1(ii) follows easily from these results, as
we shall show in Section 3.

The remaining parts of Theorem 1.1 are substantially harder to verify. Section 4 contains
the main technical tool that we require: a counterpart for the Baernstein and Schreier spaces of
some results of Gasparis and Leung [14] concerning the higher-order Schreier spaces. For every
n ∈ N, they introduced a numerical index which characterizes when two subspaces spanned by
infinite subsequences of the unit vector basis for X[Sn] are isomorphic. Surprisingly, we find
that their index for n = 1 works for the Baernstein spaces Bp and — perhaps less surprisingly
— the Schreier spaces Sp for p > 1.

Beanland, Kania and the first author [4] used the results from [14] to demonstrate that the
family of closed ideals of B(X[Sn]) that are singly generated by basis projections has a very rich
structure for every n ∈ N. In Section 5, we show that by referring to Section 4 instead of [14],
we can transfer the arguments from [4] to the Baernstein and Schreier spaces; Theorem 5.4
states our main conclusions, which include Theorem 1.1(iv).

Answering a question raised in [4], Manoussakis and Pelczar-Barwacz [20] combined the
results from [14] with the seminal idea of Johnson and Schechtman [16] to prove that B(X[Sn])
contains 2c many closed ideals that lie between the ideals of compact and strictly singular
operators for every n ∈ N. Theorem 1.1(i) is the analogue of this result for the Baernstein
and Schreier spaces. We prove it in Section 6, together with Theorem 1.1(iii), whose proof
turns out to be the easier of the two. The reason is that Theorem 1.1(i) requires the non-
trivial fact that the formal inclusion map from Bp into ℓp is strictly singular. We verify it
using an inequality due to Jameson, who has generously allowed us to include his proof of it
in Appendix A. In contrast to Manoussakis and Pelczar-Barwacz, we express our arguments in
terms of the numerical index of Gasparis and Leung, thereby elucidating their combinatorial
nature and providing a blueprint for other Banach spaces admitting a suitable index.

To provide additional context and background for our results, we conclude this introduction
with a survey of separable Banach spaces X for which the Banach algebra B(X) contains 2c

many closed ideals. As far as we know, Gowers’ hyperplane space XG originally introduced
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in [15] is the first example of this kind; more precisely, the first author [17, Theorem 8.4]
classified the maximal ideals of B(XG) and noted that there are 2c of them.

A major breakthrough occurred when Johnson and Schechtman [16] showed that B(Lp[0, 1])
contains 2c many closed ideals for every p ∈ (1, 2) ∪ (2,∞). Their key technique has proved
very versatile and spawned many new results. Theorem 6.1 states a variant of it, formulated
by Freeman, Schlumprecht and Zsák [13], who used it to verify that B(X) contains 2c many
closed ideals for a number of direct sums of Banach spaces, notably X = ℓp ⊕ ℓq, X = ℓq ⊕ c0
and X = ℓq ⊕ ℓ∞ for 1 ⩽ p < q <∞, as well as the Hardy space H1 and its predual VMO.

Also building on the Johnson–Schechtman technique, Manoussakis and Pelczar-Barwacz [20]
showed that B(X) contains 2c many closed ideals for Schlumprecht’s arbitrarily distortable
Banach space [23] and the higher-order Schreier spaces X[Sn] for n ∈ N, as already mentioned.
In collaboration with Causey, Pelczar-Barwacz [8] has subsequently extended the latter result
to the Schreier spaces X[Sξ] of any countable order ξ, as well as their duals and biduals.

Finally, Chu and Schlumprecht [9] have shown that B(T [Sξ, θ]) contains 2c many closed
ideals for every countable ordinal ξ and 0 < θ < 1, where T [Sξ, θ] denotes the Tsirelson space
of order ξ, as defined by Alspach and Argyros [2].

2. Preliminaries, including a saturation result for the Baernstein and
Schreier spaces

We begin with some general conventions. All vector spaces are over the same scalar field K,
either the real or the complex numbers. We use the letters X,Y, . . . to denote generic Banach
spaces, while we reserve the letter E for either the Baernstein space Bp or the Schreier space Sp
and the letter D for either ℓp or c0, in the same way as in the statement of Theorem 1.1. In line
with these conventions, (en)n∈N will always denote the unit vector basis for E (to be discussed
in more detail below) and (dn)n∈N the unit vector basis for D.

The term “operator” means a bounded, linear map between two Banach spaces X and Y .
We write B(X,Y ) for the space of operators X → Y and abbreviate B(X,X) to B(X) in line
with standard practice.

Let (xn)n∈N be a (Schauder) basis for a Banach space X. For every n ∈ N, we denote the
nth coordinate functional by x∗n ∈ X∗. Suppose that the basis (xn) is unconditional. Then, for
every subset N of N, PN ∈ B(X) denotes the basis projection given by PNx =

∑
n∈N ⟨x, x∗n⟩xn

for x ∈ X. As usual, we abbreviate P{1,2,...,n} to Pn for n ∈ N.
We follow the convention that N = {1, 2, 3, . . .} and write [N] and [N]<∞ for the families of

infinite and finite subsets of N, respectively. As already mentioned,

S1 = {F ∈ [N]<∞ : |F | ⩽ minF}

is the family of Schreier sets, where |F | denotes the cardinality of the set F (and by convention
min ∅ = 0, so ∅ ∈ S1). Observe that S1 is closed under taking subsets, and is spreading in the
following sense: suppose that {j1 < j2 < · · · < jn} ∈ S1 and ji ⩽ ki for each 1 ⩽ i ⩽ n; then
{k1, . . . , kn} ∈ S1. A Schreier set is maximal if it is not contained in any strictly larger Schreier
set. Clearly, this is equivalent to F ̸= ∅ and |F | = minF .

It will be convenient to express the pth Schreier and Baernstein norms defined by (1.1)
and (1.2) as the suprema over certain families of semi-norms. This is straightforward for the
Schreier norms and was used extensively in [6]: for 1 ⩽ p < ∞ and x = (x(n))n∈N ∈ KN, we
can write

∥x∥Sp = sup
{
µp(x, F ) : F ∈ S1

}
∈ [0,∞], where µp(x, F ) =


0 if F = ∅(∑
n∈F

|x(n)|p
) 1

p

otherwise.

As observed in [6, Lemma 3.3(iv)], ∥ · ∥Sp defines a complete norm on the subspace Zp = {x ∈
KN : ∥x∥Sp <∞} of KN, and we can view Sp as the closed subspace of Zp spanned by the “unit
vector basis” (en)n∈N given by en(m) = 1 if m = n and en(m) = 0 otherwise. Justifying its
name, (en)n∈N is a normalized basis for Sp that is 1-unconditional and shrinking, as shown in
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[6, Propositions 3.5 and 3.10 and Corollary 3.12]. It is not hard to verify that Sp is a proper
subspace of Zp; in fact, Zp is non-separable by [6, Corollary 5.6].

To analogously express the Baernstein norm as the supremum of a certain family of semi-
norms, we introduce the following notion: a Schreier chain is a non-empty, finite collection C

of non-empty, consecutive Schreier sets; that is, C = {F1 < F2 < · · · < Fm}, where m ∈ N,
F1, . . . , Fm ∈ S1 \ {∅}, and the notation F1 < F2 < · · · < Fm signifies that maxFj < minFj+1

for each 1 ⩽ j < m. We write SC for the collection of all Schreier chains. Then, for 1 < p <∞
and a Schreier chain C, we can define a seminorm βp( · ,C) on KN by

βp(x,C) =

(∑
F∈C

(∑
n∈F

|x(n)|
)p) 1

p

(x = (x(n))n∈N ∈ KN),

and
∥x∥Bp

= sup
{
βp(x,C) : C ∈ SC

}
∈ [0,∞] (x ∈ KN).

In contrast to the Schreier spaces, it turns out that the pth Baernstein space (defined as the
completion of c00 with respect to this norm) is precisely the collection of vectors x ∈ KN with
finite Baernstein norm: Bp = {x ∈ KN : ∥x∥Bp <∞}; this follows by replacing the exponent 2
with p in Baernstein’s argument given in [3, page 92, first paragraph of “Proof of (2)”]. As is the
case for the Schreier spaces, the unit vector basis (en)n∈N forms a 1-unconditional, normalized
basis for Bp.

In line with standard practice, supp(x) = {n ∈ N : x(n) ̸= 0} denotes the support of an
element x = (x(n))n∈N ∈ KN. Clearly, when computing ∥x∥Sp , it suffices to consider µp(x, F )
for F ∈ S1 with F ⊆ supp(x). Similarly, when computing ∥x∥Bp , it suffices to consider βp(x,C)
for C ∈ SC with

⋃
C ⊆ supp(x).

Lemma 2.1. Let 1 < p < ∞, and suppose that the non-zero coordinates of x ∈ c00 are de-
creasing in absolute value. Then x attains its Baernstein norm at some Schreier chain covering
supp(x); that is, ∥x∥Bp

= βp(x,C) for some C ∈ SC with
⋃
C = supp(x).

Proof. Take C = {F1 < F2 < · · · < Fm} ∈ SC with
⋃
C ⊊ supp(x). For 1 ⩽ j ⩽ m, let F ′

j

be the set which contains precisely the first |Fj | points of supp(x) ∩ [min(Fj),max(Fj)]. Then
C′ = {F ′

1 < F ′
2 < · · · < F ′

m} ∈ SC and∑
n∈Fj

|⟨x, e∗n⟩| ⩽
∑
n∈F ′

j

|⟨x, e∗n⟩| (1 ⩽ j ⩽ m)

because the non-zero coordinates of x are decreasing in absolute value. Hence βp(x,C) ⩽
βp(x,C

′). The set C′′ =
{
{n} : n ∈ supp(x) \

⋃
C′} is non-empty because

⋃
C ⊊ supp(x).

Clearly D = C′ ∪ C′′ is a Schreier chain, and

βp(x,C) ⩽ βp(x,C
′) < βp(x,D) ⩽ ∥x∥Bp

,

so ∥x∥Bp
is not attained at C. However, it must be attained at some Schreier chain because x

is finitely supported. □

For later reference, we now record an estimate for the norm of certain “flat” vectors.

Lemma 2.2. Let {F1 < F2 < · · · < Fm} be a chain of maximal Schreier sets for some m ∈ N.
Then

1 ⩽

∥∥∥∥ m∑
j=1

1

|Fj |
1
p

∑
k∈Fj

ek

∥∥∥∥
Sp

⩽ 2
1
p (1 ⩽ p <∞) (2.1)

and

m
1
p ⩽

∥∥∥∥ m∑
j=1

1

|Fj |
∑
k∈Fj

ek

∥∥∥∥
Bp

⩽ 2m
1
p (1 < p <∞). (2.2)
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Proof. To prove (2.1), set x =
∑m
j=1|Fj |

− 1
p
∑
k∈Fj

ek ∈ Sp. By definition, we have µp(x, Fj) = 1

for 1 ⩽ j ⩽ m; the lower bound on the norm follows. On the other hand, since x is finitely
supported and its non-zero coordinates are decreasing, ∥x∥Sp is attained at some set G ∈ S1

that intersects at most two consecutive sets from {F1, . . . , Fm}; that is, G ⊆ Fj ∪Fj+1 for some
1 ⩽ j < m, and we have µp(x,G)p ⩽ µp(x, Fj)

p + µp(x, Fj+1)
p = 2, which proves the upper

bound.
Turning our attention to (2.2), we define x =

∑m
j=1

1
|Fj |

∑
k∈Fj

ek ∈ Bp. The lower bound
on the norm of x follows from the fact that C = {F1 < F2 < · · · < Fm} is a Schreier chain for
which βp(x,C) = m

1
p .

For the upper bound, Lemma 2.1 implies that we can take C = {G1 < · · · < Gn} ∈ SC such
that ∥x∥Bp

= βp(x,C) and
⋃n
k=1Gk =

⋃m
j=1 Fj . Define a map φ : {1, . . . , n} → {1, . . . ,m} by

φ(k) = min{j : Gk ∩ Fj ̸= ∅}.

We observe that φ is surjective because otherwise we would have Fj ⊊ Gk for some j and k,
contradicting that Fj is a maximal Schreier set.

Fix j ∈ {1, . . . ,m}, set h(j) = maxφ−1({j}), and note that
⋃{

Gk : φ(k) = j, k ̸= h(j)
}
⊆

Fj because the sets G1, . . . , Gn are successive. Since the ℓ1-norm dominates the ℓp-norm, it
follows that∑

k∈φ−1({j})

(∑
i∈Gk

|⟨x, e∗i ⟩|
)p

⩽

( ∑
k∈φ−1({j})

∑
i∈Gk

|⟨x, e∗i ⟩|
)p

⩽

(
1 +

|Gh(j) ∩ Fj+1|
|Fj+1|

)p
⩽ 2p.

Combining this with the fact that the sets {φ−1({j}) : 1 ⩽ j ⩽ m} partition {1, . . . , n}, we
conclude that

∥x∥pBp
= βp(x,C)

p =

m∑
j=1

∑
k∈φ−1({j})

(∑
i∈Gk

|⟨x, e∗i ⟩|
)p

⩽ 2pm,

which gives the upper bound. □

We shall now present the main conclusion of this section, which is a quantitative version
of two results in the literature: one by Seifert [25, Theorem 3] stating that Bp is saturated
with complemented copies of ℓp for 1 < p <∞, the other by Bird and the first author [6, Corol-
lary 5.4] stating that the Schreier spaces are saturated with copies of c0 (which are automatically
complemented by Sobczyk’s Theorem). Our statement strengthens these results by providing
explicit norm bounds on the projections and isomorphisms, using the following terminology.

Definition 2.3. Let X and Y be Banach spaces. We say that X is C-uniformly saturated
with complemented copies of Y for some constant C ⩾ 1 if every closed, infinite-dimensional
subspace of X contains a closed subspace Z for which

(i) there exists an isomorphism U of Y onto Z with ∥U∥ · ∥U−1∥ ⩽ C, and
(ii) there exists a projection P of X onto Z with ∥P∥ ⩽ C.

Theorem 2.4. Let (E,D) = (Bp, ℓp) for some 1 < p < ∞ or (E,D) = (Sp, c0) for some
1 ⩽ p <∞. Then E is C-uniformly saturated with complemented copies of D for every C > 1.

We provide a full proof of this theorem, even though the norm bounds it provides may
seem only a modest improvement of existing knowledge. However, Seifert never published
his dissertation, and it contains an unfortunate error: [25, Lemma 2] claims that every semi-
normalized block basic sequence (wn)n∈N of the unit vector basis for Bp admits a subsequence
which is equivalent to the unit vector basis for ℓp. That is not true; for instance, no subsequence
of the unit vector basis for Bp is equivalent to the ℓp-basis. The correct statement is that
(wn)n∈N admits a block basic sequence which is equivalent to the ℓp-basis; this will follow from
Lemma 2.7 and Proposition 2.14 below.

To compound this issue, Seifert’s incorrect statement has been reproduced in [7, Theo-
rem 0.15(c)–(d)], as well as [11, page 233] in a special case. This has caused at least one
mistake in the published literature: citing [7], Flores et al. [12, page 334] deduce that the
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Baernstein spaces are “disjointly homogeneous”. However, that is impossible because by [12,
Theorem 2.13], it would imply that every strictly singular operator on Bp is compact, which
would contradict Theorem 1.1(i). (In more concrete terms, it would also contradict Proposi-
tion 6.6 below, which implies that the formal inclusion map of Bp into ℓp composed with any
isomorphic embedding of ℓp into Bp is a strictly singular, non-compact operator on Bp.)

Having explained why Theorem 2.4 requires a detailed proof, we shall now present one,
proceeding through a series of lemmas.

Definition 2.5. A block subspace of a Banach spaceX with a basis (xn)n∈N is a closed subspace
of X of the form span (wn : n ∈ N) for some block basic sequence (wn)n∈N of (xn)n∈N.

Lemma 2.6. Let X and Y be Banach spaces, where X has a basis (xn)n∈N. Suppose that there
is a constant C1 ⩾ 1 for which every block subspace W of X admits operators U ∈ B(Y,W ) and
V ∈ B(X,Y ) such that V |WU = IY and ∥U∥ · ∥V ∥ ⩽ C1. Then X is C2-uniformly saturated
with complemented copies of Y for every constant C2 > C1.

Proof. Let K be the basis constant of (xn)n∈N, and let (Pn)n∈N be the corresponding basis
projections. Given C2 > C1, choose ε ∈ (0, 1) such that

7(C2 − C1)

4(C1 + C2)
⩾ ε. (2.3)

Set m0 = 0 and P0 = 0, and let Z be a closed, infinite-dimensional subspace of X. By
recursion, we can choose natural numbers m1 < m2 < · · · and unit vectors zn ∈ Z ∩ kerPmn−1

such that ∥zn − Pmnzn∥ ⩽ ε/(2n+2K) for every n ∈ N. Set wn = Pmnzn ∈ X, and note that

∥wn∥ = ∥zn − (zn − wn)∥ ⩾ 1− ε

2n+2K
⩾

7

8
(n ∈ N). (2.4)

In particular, wn ̸= 0, and since zn ∈ kerPmn−1
, it follows that (wn)n∈N is a block basic

sequence of (xn)n∈N. Set W = span (wn : n ∈ N). By hypothesis, we can find operators
U1 ∈ B(Y,W ) and V1 ∈ B(X,Y ) such that V1|WU1 = IY and ∥U1∥ · ∥V1∥ ⩽ C1.

For each n ∈ N, choose a functional fn ∈ X∗ of norm 1 such that ⟨wn, fn⟩ = ∥wn∥. Then,
using (2.4), we have

∞∑
n=1

∥(Pmn − Pmn−1)
∗fn∥

∥wn∥
· ∥wn − zn∥ ⩽

∞∑
n=1

2K

7/8
· ε

2n+2K
=

4ε

7
,

so we can define an operator R ∈ B(X) by

R =

∞∑
n=1

(Pmn
− Pmn−1

)∗fn

∥wn∥
⊗ (wn − zn),

where f ⊗ x, for f ∈ X∗ and x ∈ X, denotes the rank-one operator y 7→ ⟨y, f⟩x as usual.
Since ∥R∥ ⩽ 4ε/7 < 1, the Neumann series implies that the operator S = IX − R ∈ B(X) is
invertible, and ∥S−1∥ ⩽ (1− 4ε/7)−1 = 7/(7− 4ε). The definition of R shows that

Rwj =

∞∑
n=1

⟨(Pmn
− Pmn−1

)wj , fn⟩
∥wn∥

(wn − zn) =
⟨wj , fj⟩
∥wj∥

(wj − zj) = wj − zj ,

so Swj = zj for each j ∈ N, and therefore S[W ] ⊆ Z. It follows that Z0 = (S|WU1)[Y ] is a
subspace of Z, and the operators U = S|WU1 ∈ B(Y, Z0) and V = V1S

−1 ∈ B(X,Y ) satisfy
V |Z0

U = V1|WU1 = IY . Since U is surjective by definition, this implies that U is invertible
with inverse V |Z0

and P = UV is a projection of X onto Z0. In particular, Z0 is a closed
subspace of Z, and the norm bounds on ∥U∥ · ∥U−1∥ and ∥P∥ specified in Definition 2.3(i)–(ii)
follow from the fact that

∥U∥ · ∥V ∥ ⩽ ∥S∥ · ∥U1∥ · ∥V1∥ · ∥S−1∥ ⩽
(
1 +

4ε

7

)
C1 ·

7

7− 4ε
⩽ C2,

where the final inequality is a direct consequence of (2.3). □
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It turns out that the supremum norm ∥x∥∞ = supn∈N|x(n)| for x = (x(n))n∈N ∈ KN

plays an important auxiliary role in a number of results about the Baernstein and Schreier
spaces. We shall sometimes use the coordinate functionals to express it in the alternative form
∥x∥∞ = supn∈N|⟨x, e∗n⟩| for x ∈ Bp or x ∈ Sp.

Lemma 2.7. Every block basic sequence of the unit vector basis for Bp (for 1 < p <∞) or Sp
(for 1 ⩽ p < ∞) admits a normalized block basic sequence (un)n∈N for which ∥un∥∞ → 0 as
n→ ∞.

Proof. As usual, let E = Bp or E = Sp, and let (wn)n∈N be a block basic sequence of the unit
vector basis (en)n∈N for E. Replacing (wn)n∈N with the block basic sequence (wn/∥wn∥E)n∈N,
we may suppose that (wn)n∈N is normalized in the E-norm. If (wn)n∈N admits a subsequence
(wnj

)j∈N such that ∥wnj
∥∞ → 0 as j → ∞, there is nothing to prove.

Otherwise δ := infn∈N∥wn∥∞ > 0, so for each n ∈ N, we can choose mn ∈ N such that
|⟨wn, e∗mn

⟩| ⩾ δ. Since (wn)n∈N is a block basic sequence, we have m1 < m2 < · · · and
Fn = {mj : 2

n−1 ⩽ j < 2n} is a Schreier set, being a spread of the interval [2n−1, 2n)∩N ∈ S1.
This implies that the block basic sequence (vn)n∈N of (wn)n∈N defined by

vn =

2n−1∑
j=2n−1

wj (n ∈ N)

is unbounded because

∥vn∥E ⩾

{
µp(vn, Fn) ⩾ 2(n−1)/pδ → ∞ as n→ ∞ for E = Sp,

βp(vn, {Fn}) ⩾ 2n−1δ → ∞ as n→ ∞ for E = Bp.

On the other hand, ∥vn∥∞ = max
{
∥wj∥∞ : 2n−1 ⩽ j < 2n

}
⩽ 1 because (wj)j∈N is a nor-

malized block basic sequence of (en)n∈N, so (un = vn/∥vn∥E)n∈N is a normalized block basic
sequence of (wn)n∈N such that

∥un∥∞ =
∥vn∥∞
∥vn∥E

⩽
1

∥vn∥E
→ 0 as n→ ∞. □

Our next lemma involves the following standard piece of terminology. A basic sequence
(xn)n∈N in a Banach space X dominates a basic sequence (yn)n∈N in a Banach space Y if there
is a constant C > 0 such that∥∥∥∥ m∑

n=1

αnyn

∥∥∥∥
Y

⩽ C

∥∥∥∥ m∑
n=1

αnxn

∥∥∥∥
X

(m ∈ N, α1, . . . , αm ∈ K). (2.5)

If we wish to record the value of the constant C, we say that (xn)n∈N C-dominates (yn)n∈N.

Lemma 2.8. Let (E,D) = (Bp, ℓp) for some 1 < p < ∞ or (E,D) = (Sp, c0) for some
1 ⩽ p <∞, and suppose that (un)n∈N is a normalized block basic sequence of the unit vector
basis for E with infn∈N ∥un∥∞ = 0. Then, for every constant C > 1, (un)n∈N admits a
subsequence which is C-dominated by the unit vector basis for D.

Proof. Set ε = Cp − 1 > 0. We begin with the easier case, which is the Schreier space; that is,
(E,D) = (Sp, c0). Recursively, we can choose integers 1 = j1 < j2 < · · · such that

∥ujk+1
∥p∞ ⩽

ε

max(supp(ujk))
(k ∈ N). (2.6)

In order to verify that the unit vector basis for c0 C-dominates the basic sequence (ujk)k∈N
in Sp, we must show that µp(x, F ) ⩽ C whenever x =

∑n
k=1 αkujk for some n ∈ N and some

α1, . . . , αn ∈ K with max1⩽k⩽n|αk| ⩽ 1, and F ∈ S1 \ {∅} with F ⊆ supp(x). Set

m = min{k ∈ N : F ∩ supp(ujk) ̸= ∅}.
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Then we have |F | ⩽ minF ⩽ max(supp(ujm)), so |F | · ∥ujk∥p∞ ⩽ ε for k > m by (2.6), and
therefore

µp(x, F )
p = µp(αmujm , F )

p + µp

( n∑
k=m+1

αkujk , F

)p
⩽ |αm|p ∥ujm∥pSp

+ |F |
(

max
m<k⩽n

|αk| ∥ujk∥∞
)p

⩽ 1 + ε = Cp,

as required.
Proceeding to the case (E,D) = (Bp, ℓp), we use the fact that the function t 7→ tp is uniformly

continuous on [0, 2] to choose numbers δk ∈ (0, 1) such that

(s+ t)p ⩽ sp +
ε

2k
(k ∈ N, s ∈ [0, 1], t ∈ [0, δk]). (2.7)

After replacing (un)n∈N with a suitable subsequence, we may suppose that ∥un∥∞ → 0 as
n→ ∞. We can then recursively choose integers 1 = j1 < j2 < · · · such that

∥ui∥∞ ⩽
δk

max(supp(ujk))
(k ∈ N, i ⩾ jk+1). (2.8)

We seek to verify that the unit vector basis for ℓp C-dominates the basic sequence (ujk)k∈N
in Bp. This amounts to showing that βp(x,C) ⩽ C whenever x =

∑n
k=1 αkujk for some n ∈ N

and some α1, . . . , αn ∈ K with
∑n
k=1|αk|p ⩽ 1, and C is a Schreier chain contained in supp(x).

Set
Ck = {F ∈ C : minF ∈ supp(ujk)} (1 ⩽ k ⩽ n).

Then, defining βp(x, ∅) = 0 to cover the case where Ck = ∅ for some k, we can write

βp(x,C)
p =

n∑
k=1

∑
F∈Ck

(∑
i∈F

|⟨x, e∗i ⟩|
)p

=

n∑
k=1

βp(x,Ck)
p. (2.9)

We claim that
βp(x,Ck)

p ⩽ |αk|p +
ε

2k
(1 ⩽ k ⩽ n), (2.10)

from which the conclusion will follow because substituting (2.10) into (2.9), we obtain

βp(x,C)
p ⩽

n∑
k=1

(
|αk|p +

ε

2k

)
⩽ 1 + ε = Cp.

It remains to prove (2.10). Take k ∈ {1, . . . , n} with Ck ̸= ∅, let Gk be the final set in Ck (in
the sense that Gk is the set in Ck with the largest minimum), and define

G′
k = Gk ∩ supp(ujk) and G′′

k = Gk \ supp(ujk).

Then we have

βp(x,Ck)
p =

∑
F∈Ck\{Gk}

(∑
i∈F

|⟨x, e∗i ⟩|
)p

+
(∑
i∈Gk

|⟨x, e∗i ⟩|
)p

(2.11)

= |αk|p
∑

F∈Ck\{Gk}

(∑
i∈F

|⟨ujk , e∗i ⟩|
)p

+ (sk + tk)
p,

where we have introduced the quantities

sk =
∑
i∈G′

k

|⟨x, e∗i ⟩| = |αk|
∑
i∈G′

k

|⟨ujk , e∗i ⟩| and tk =
∑
i∈G′′

k

|⟨x, e∗i ⟩|.

Now we observe that 0 ⩽ sk ⩽ |αk| ∥ujk∥Bp
⩽ 1 because G′

k ∈ S1, and

0 ⩽ tk ⩽ |G′′
k | max
k<i⩽n

|αi| ∥uji∥∞ ⩽ δk,
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where we have used (2.8) together with the fact that |G′′
k | < |Gk| ⩽ min(Gk) ⩽ max(supp(ujk)).

Hence (2.7) implies that (sk + tk)
p ⩽ spk + ε/2k. Substituting this into (2.11) and defining the

Schreier chain C′
k = (Ck \ {Gk}) ∪ {G′

k}, we obtain

βp(x,Ck)
p ⩽ |αk|p

∑
F∈Ck\{Gk}

(∑
i∈F

|⟨ujk , e∗i ⟩|
)p

+ |αk|p
(∑
i∈G′

k

|⟨ujk , e∗i ⟩|
)p

+
ε

2k

= |αk|pβp(ujk ,C′
k)
p +

ε

2k
⩽ |αk|p +

ε

2k
. □

Lemma 2.9. Let C = {F1 < F2 < · · · } be an infinite chain of successive Schreier sets, and
take 1 < p <∞. Then, for each x ∈ Bp,

ΣCx =
(∑
j∈Fn

⟨x, e∗j ⟩
)
n∈N

(2.12)

defines an element of ℓp with ∥ΣCx∥ℓp ⩽ ∥x∥Bp
. Hence (2.12) defines a map ΣC : Bp → ℓp,

which is bounded and linear with norm 1.

Proof. For x ∈ Bp and m ∈ N, we have
m∑
n=1

∣∣∣∣∑
j∈Fn

⟨x, e∗j ⟩
∣∣∣∣p ⩽ m∑

n=1

(∑
j∈Fn

|⟨x, e∗j ⟩|
)p

= βp
(
x, {F1 < F2 < · · · < Fm}

)p
⩽ ∥x∥pBp

.

This shows that ΣCx ∈ ℓp with ∥ΣCx∥ℓp ⩽ ∥x∥Bp
because the upper bound ∥x∥pBp

is independent
of m. The remainder of the lemma is now straightforward to verify. □

Lemma 2.10. Let (E,D) = (Bp, ℓp) for some 1 < p < ∞ or (E,D) = (Sp, c0) for some
1 ⩽ p < ∞, and suppose that (un)n∈N is a normalized block basic sequence of the unit vector
basis for E. Then there exists an operator V ∈ B(E,D) of norm 1 such that V un = dn for
every n ∈ N.

Proof. We begin with the case (E,D) = (Sp, c0). For n ∈ N, set mn = max(supp(un)), and use
the Hahn–Banach Theorem to find a functional fn ∈ S∗

p such that ⟨un, fn⟩ = 1 = ∥fn∥. Then,
for each x ∈ Sp, we can define

V x =
(
⟨(Pmn

− Pmn−1
)x, fn⟩

)
n∈N ∈ ℓ∞, (2.13)

where we have introduced m0 = 0 and P0 = 0 for notational convenience. We see that V x ∈ c0
because∣∣⟨(Pmn − Pmn−1)x, fn⟩

∣∣ ⩽ ∥(Pmn − Pmn−1)x∥Sp ⩽ ∥(I − Pmn−1)x∥Sp → 0 as n→ ∞,

so (2.13) defines a map V : Sp → c0, which is clearly linear. Furthermore, V is bounded with
∥V ∥ ⩽ 1 because ∥Pmn − Pmn−1∥ = 1 = ∥fn∥ for n ∈ N, and we have V un = dn because
supp(un) ⊆ (mn−1,mn] and ⟨un, fn⟩ = 1.

As before, the case (E,D) = (Bp, ℓp) is somewhat more involved. We begin by choosing a
sequence of scalars (σj)j∈N as follows. If j ∈ supp(un) for a (necessarily unique) n ∈ N, we take
σj ∈ K of modulus 1 such that σj · ⟨un, e∗j ⟩ > 0. Otherwise (that is, for j ∈ N\

⋃∞
n=1 supp(un)),

set σj = 1. The 1-unconditionality of the unit vector basis (ej)j∈N for Bp means that we can
define an isometric isomorphism ∆ ∈ B(Bp) by ∆x =

∑∞
j=1 σj⟨x, e∗j ⟩ej . Our choice of the

sequence (σj)j∈N implies that

∆(un) = |un| (n ∈ N), (2.14)

where we have used the standard notion of modulus for an element of a Banach space with a
1-unconditional basis (justified by the fact that such a Banach space is a Banach lattice), that
is,

∣∣∑∞
j=1 αjej

∣∣ = ∑∞
j=1|αj |ej .

For each n ∈ N, take a Schreier chain Cn contained in supp(un) with βp(un,Cn) = 1, and
set C =

⋃
n∈N Cn. Defining m0 = 0 and mn =

∑n
k=1|Ck| for n ∈ N, we can enumerate Cn as

Cn = {Fmn−1+1 < Fmn−1+2 < · · · < Fmn}.
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Since (un)n∈N is a block basic sequence, we have Fmn < Fmn+1 for n ∈ N. Consequently
C = {F1 < F2 < · · · } is an infinite chain of successive Schreier sets, so it induces an operator
ΣC ∈ B(Bp, ℓp) of norm 1 by Lemma 2.9.

Set Dn = span(dj : mn−1 < j ⩽ mn) ⊂ ℓp, and let Qn ∈ B(ℓp, Dn) be the basis projection
onto Dn; that is, Qndj = dj for mn−1 < j ⩽ mn and Qndj = 0 otherwise. Then we can define
an isometric isomorphism Θ ∈ B

(
ℓp,

(⊕
n∈NDn

)
ℓp

)
by Θx = (Qnx)n∈N.

In view of (2.14), the vector yn = ΣC∆(un) ∈ ℓp satisfies

yn = ΣC|un| =
mn∑

j=mn−1+1

(∑
k∈Fj

|⟨un, e∗k⟩|
)
dj ∈ Dn.

In particular, we have

∥yn∥pℓp =

mn∑
j=mn−1+1

(∑
k∈Fj

|⟨un, e∗k⟩|
)p

= βp(un,Cn)
p = 1,

so by the Hahn–Banach Theorem, we can take fn ∈ D∗
n such that ⟨yn, fn⟩ = 1 = ∥fn∥ℓ∗p .

This enables us to define an operator Γ ∈ B
((⊕

n∈NDn

)
ℓp
, ℓp

)
of norm 1 by Γ(xn)n∈N =(

⟨xn, fn⟩
)
n∈N.

Finally, we compose these operators to obtain an operator V = ΓΘΣC∆ ∈ B(Bp, ℓp); that
is,

Bp Bp ℓp

(⊕
n∈N

Dn

)
ℓp

ℓp.
∆ ΣC Θ Γ

Recalling that yn = ΣC∆(un) ∈ Dn and then using the definitions of the operators Θ and Γ,
we conclude that

V un = ΓΘyn =
(
⟨Qjyn, fj⟩

)
j∈N = ⟨yn, fn⟩dn = dn (n ∈ N).

In particular, since un and dn are unit vectors, we have 1 ⩽ ∥V ∥ ⩽ ∥Γ∥ ∥Θ∥ ∥ΣC∥ ∥∆∥ = 1,
so V has norm 1. □

Proof of Theorem 2.4. By Lemma 2.6 (applied withX = E and Y = D), it suffices to show that
for every constant C > 1 and every block subspace W = span (wn : n ∈ N) of E, where (wn)n∈N
is a block basic sequence of the unit vector basis for E, there are operators U ∈ B(D,W ) and
V ∈ B(E,D) such that V |WU = ID and ∥U∥ ∥V ∥ ⩽ C.

Lemma 2.7 implies that we can find a normalized block basic sequence (un)n∈N of (wn)n∈N
such that ∥un∥∞ → 0 as n→ ∞. By Lemma 2.8, (un)n∈N admits a subsequence (unj )j∈N which
is C-dominated by the unit vector basis (dj)j∈N for D. Therefore we can define an operator
U ∈ B(D,W ) by Udj = unj

for every j ∈ N, and ∥U∥ ⩽ C. Lemma 2.10 shows that there
exists an operator V ∈ B(E,D) of norm 1 such that V unj

= dj for every j ∈ N. It follows that
V Udj = dj for every j ∈ N, so V |WU = ID, and ∥U∥ · ∥V ∥ ⩽ C · 1 = C, as required. □

Definition 2.11. A Banach space X is subprojective if every closed, infinite-dimensional sub-
space of X contains a closed, infinite-dimensional subspace which is complemented in X.

Theorem 2.4 implies that the Baernstein and Schreier spaces have this property. We record
this observation formally for later reference.

Corollary 2.12. The Baernstein spaces Bp for 1 < p < ∞ and the Schreier spaces Sp for
1 ⩽ p <∞ are subprojective.

Remark 2.13. Originally, Baernstein [3] proved that the Banach space B2 is reflexive by
verifying that the unit vector basis is a shrinking and boundedly complete basis for it and then
appealing to a well-known theorem of James. We can now give an alternative proof of this result
using Theorem 2.4, valid for any 1 < p < ∞: the fact that Bp is ℓp-saturated implies that it
does not contain any subspace isomorphic to either c0 or ℓ1. Since Bp has an unconditional
basis, it follows from another well-known theorem of James that Bp is reflexive.
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With a small amount of extra effort, we can characterize the normalized block basic sequences
of the unit vector basis for the Baernstein and Schreier spaces that admit a subsequence which
is equivalent to the unit vector basis for ℓp or c0, respectively.

Proposition 2.14. Let (E,D) = (Bp, ℓp) for some 1 < p < ∞ or (E,D) = (Sp, c0) for some
1 ⩽ p < ∞. The following conditions are equivalent for a normalized block basic sequence
(un)n∈N of the unit vector basis for E :

(a) infn∈N∥un∥∞ = 0;
(b) (un)n∈N admits a subsequence which is C-equivalent to the unit vector basis for D, for

every constant C > 1;
(c) (un)n∈N admits a subsequence which is dominated by the unit vector basis for D.

Proof. To see that (a) implies (b), suppose that infn∈N∥un∥∞ = 0, and take C > 1. By
Lemma 2.8, (un)n∈N admits a subsequence (unj )j∈N that is C-dominated by (dj)j∈N. On the
other hand, (unj

)j∈N 1-dominates (dj)j∈N because Lemma 2.10 shows that there is an operator
V ∈ B(E,D) with ∥V ∥ = 1 such that V unj

= dj for every j ∈ N. Hence (unj
)j∈N and (dj)j∈N

are C-equivalent.
The implication (b)⇒(c) is trivial.
We complete the proof by proving that (c) implies (a), arguing contrapositively. Suppose

that δ := infn∈N∥un∥∞ > 0, and take a subsequence (unj
)j∈N of (un)n∈N. To verify that (dj)j∈N

does not dominate (unj
)j∈N, it suffices to show that for every C ⩾ 1, there exists k ∈ N such

that ∥∥∥∥2k−1∑
j=k

unj

∥∥∥∥
E

> C

∥∥∥∥2k−1∑
j=k

dj

∥∥∥∥
D

=

{
C for D = c0,

Ck
1
p for D = ℓp.

(2.15)

Choose k ∈ N such that k > (C/δ)p if E = Sp and k > (C/δ)
p

p−1 if E = Bp, and set
x =

∑2k−1
j=k unj

∈ E. By hypothesis, we can find mj ∈ supp(unj
) such that |⟨unj

, e∗mj
⟩| ⩾ δ for

each j ∈ {k, . . . , 2k − 1}. Then F = {mj : k ⩽ j < 2k} is a Schreier set because |F | = k ⩽
mk = minF . Hence we have

∥x∥Sp
⩾ µp(x, F ) =

(2k−1∑
j=k

|⟨x, e∗mj
⟩|p

) 1
p

=

(2k−1∑
j=k

|⟨unj
, e∗mj

⟩|p
) 1

p

⩾ k
1
p δ > C

and

∥x∥Bp
⩾ βp(x, {F}) =

2k−1∑
j=k

|⟨x, e∗mj
⟩| =

2k−1∑
j=k

|⟨unj
, e∗mj

⟩| ⩾ kδ > Ck
1
p ,

where the final inequalities follow from the choice of k in both cases. This establishes (2.15). □

3. An application to operator ideals: the proof of Theorem 1.1(ii)

The main purpose of this short section is to use Theorem 2.4 to identify the ideals of strictly
singular, inessential and weakly compact operators on the Baernstein and Schreier spaces. We
begin by recalling the formal definitions of these ideals, as well as some other standard notions
that we require.

Definition 3.1. An operator T ∈ B(X,Y ) between Banach spaces X and Y is:
• strictly singular if the restriction of T to W is not an isomorphic embedding for any

infinite-dimensional subspace W of X,
• inessential if IX +UT is a Fredholm operator (meaning that its kernel is finite-dimen-

sional and its range has finite codimension in X) for every operator U ∈ B(Y,X),
• weakly compact if the image under T of the unit ball in X is relatively weakly compact,
• unconditionally converging if the series

∑∞
n=1 Txn converges unconditionally in norm

for every series
∑∞
n=1 xn in X which is weakly unconditionally Cauchy in the sense that

the series
∑∞
n=1⟨xn, f⟩ converges absolutely for every functional f ∈ X∗.

Furthermore, we say that T fixes a copy of a Banach space Z if there is an operator V ∈ B(Z,X)
such that the composition TV is an isomorphic embedding.
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We write S (X,Y ), E (X,Y ) and W (X,Y ) for the sets of strictly singular, inessential and
weakly compact operators between X and Y , respectively, with the usual convention that
S (X) = S (X,X), etc. It is well known that S , E and W are closed operator ideals in the
sense of Pietsch.

The Banach–Alaoglu Theorem implies that every operator defined on a reflexive Banach
space is weakly compact, so W (Bp) = B(Bp) for every 1 < p <∞.

Pfaffenberger [22] has shown that S (X) = E (X) for every subprojective Banach space X.
Hence, in view of Corollary 2.12, we obtain:

Proposition 3.2. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞. Then

S (E) = E (E).

Consequently, to complete the proof of Theorem 1.1(ii), it remains only to show that
W (Sp) = S (Sp) for 1 ⩽ p < ∞. This will follow from our next, considerably more gen-
eral, result, which applies to X = Sp by Theorem 2.4 and the fact that Sp has an unconditional
basis.

Proposition 3.3. Let T ∈ B(X,Y ) be an operator, where X is a c0-saturated Banach space
that embeds into a Banach space with an unconditional basis and Y is a separable Banach space.
The following conditions are equivalent:

(a) T is strictly singular;
(b) T is inessential;
(c) the identity operator on c0 does not factor through T in the sense that there are no

operators U ∈ B(Y, c0) and V ∈ B(c0, X) such that UTV = Ic0 ;
(d) T does not fix a copy of c0;
(e) T is unconditionally converging;
(f) T is weakly compact.

The proof relies on a classical result of Pełczyński [21, Proposition 9, 1◦].

Theorem 3.4. Let X be a Banach space which embeds into a Banach space with an uncondi-
tional basis, and suppose that X does not contain any subspace which is isomorphic to ℓ1. Then
every unconditionally converging operator from X into a Banach space is weakly compact.

Proof of Proposition 3.3. The proof has two parts. In part (i), we show that conditions (a)–(d)
are equivalent, while part (ii) contains the proof that conditions (d)–(f) are equivalent.

(i). The implication (a)⇒(b) is always true, and (b) implies (c) because the identity operator
on an infinite-dimensional Banach space cannot be inessential.

We prove that (c) implies (d) by contraposition. Suppose that we can find an operator
V ∈ B(c0, X) such that TV is an isomorphic embedding. Then TV [c0] is isomorphic to c0, so
it is complemented in Y by Sobczyk’s Theorem. Therefore TV has a left inverse U ∈ B(Y, c0);
that is, UTV = Ic0 , as desired.

Finally, (d) implies (a) because X is c0-saturated.
(ii). As observed in [10, Exercise 8(i), page 54], conditions (d) and (e) are equivalent in

general (that is, without any restrictions on the Banach spaces X and Y ). The hypothesis
that X is c0-saturated ensures that ℓ1 does not embed into X, so Theorem 3.4 shows that (e)
implies (f). Finally, the implication (f)⇒(d) follows from the fact that c0 is not reflexive. □

Remark 3.5. The condition that the codomain Y of the operator T in Proposition 3.3 is
separable cannot be dropped because the embedding of c0 into ℓ∞ is an inessential opeator
which obviously fixes a copy of c0.

4. The Gasparis–Leung index and its applications

The aim of this section is to establish counterparts for the Baernstein and Schreier spaces of
some important technical results of Gasparis and Leung [14]. They introduced a numerical
index for each n ∈ N and every pair M,N of infinite subsets of N which characterizes when the
subspaces spanned by the infinite subsequences of the unit vector basis for X[Sn] corresponding
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to M and N are isomorphic. As we mentioned in the introduction, it turns out that this index,
for n = 1, also works for the Baernstein and Schreier spaces.

In order to define it, we must first introduce the Schreier covering number of a set A ∈ [N]<∞,
which according to [14, Definition 3.1] and using our notation from Section 2 is

τ1(A) =

{
0 if A = ∅,
min

{
|C| : C ∈ SC, A ⊆

⋃
C
}

otherwise.
(4.1)

Unpacking the somewhat condensed notation for A ̸= ∅, we can restate this definition as

τ1(A) = min

{
m ∈ N : A ⊆

m⋃
j=1

Fj , where F1, . . . , Fm ∈ S1 and F1 < F2 < · · · < Fm

}
.

Furthermore, as observed in [4, Remark 4.2], we can refine it as follows. Let m ∈ N. Then
τ1(A) = m if and only if there is a Schreier chain {F1 < · · · < Fm} such that A =

⋃m
j=1 Fj and

F1, . . . , Fm−1 are maximal Schreier sets; it is important to note that Fm need not be maximal.
As in [4], for a set M = {m1 < m2 < · · · } ∈ [N] and J ⊆ N, we define

M(J) = {mj : j ∈ J}.
This piece of notation enables us to state [14, Definition 3.3] in the following compact form.
For M,N ∈ [N], the Gasparis–Leung index of M with respect to N is

ΓL1(M,N) = sup{τ1(M(J)) : J ∈ [N]<∞, N(J) ∈ S1}. (4.2)

Gasparis and Leung denoted this quantity d1(M,N). We have chosen the more distinctive
symbol ΓL1(M,N) in their honour, noting that the Greek spelling of “Gasparis” begins with
the letter Γ.

Before we state the first main result of this section, let us introduce a piece of notation that
we shall use frequently. Given a Banach space X with a basis (xn)n∈N, we set

XN = span (xn : n ∈ N) (N ⊆ N). (4.3)

Further, recall from Section 2 that we write ∥x∥∞ = supn∈N|⟨x, e∗n⟩| for x ∈ Bp or x ∈ Sp in
line with standard usage.

Theorem 4.1. Let E = Bp for some 1 < p < ∞ or E = Sp for some 1 ⩽ p < ∞, equipped
with the unit vector basis (en)n∈N. The following conditions are equivalent for M,N ∈ [N] :

(a) The Gasparis–Leung index ΓL1(M,N) is finite.
(b) The basic sequence (em)m∈M dominates (en)n∈N .
(c) There exists an operator T ∈ B(EM , EN ) for which infm∈M∥Tem∥∞ > 0.

We begin with a quantitative version of the implication (a)⇒(b).

Lemma 4.2. Let E = Bp for some 1 < p < ∞ or E = Sp for some 1 ⩽ p < ∞, take
M,N ∈ [N] for which ΓL1(M,N) <∞, and define

C =

{
ΓL1(M,N) for E = Bp,

ΓL1(M,N)
1
p for E = Sp.

(4.4)

Then the basic sequence (em)m∈M C-dominates (en)n∈N .

Proof. Enumerate M and N as M = {m1 < m2 < · · · } and N = {n1 < n2 < · · · }, respectively.
Our aim is to show that ∥y∥E ⩽ C∥x∥E whenever x =

∑k
j=1 αjemj

and y =
∑k
j=1 αjenj

for
some k ∈ N and some α1, . . . , αk ∈ K. We may of course suppose that α1, . . . , αk are not all 0.

We consider the Baernstein and Schreier spaces separately, but emphasize that the proofs
follow similar strategies, originating in the proof of [14, Lemma 3.4]. For readability, we begin
with the easier case, which is E = Sp. Since y is finitely supported, we can choose a Schreier
set F such that ∥y∥Sp = µp(y, F ) and F ⊆ supp y ⊆ {ni : 1 ⩽ i ⩽ k}. Take J ⊆ {1, . . . , k} such
that N(J) = F . Then τ1(M(J)) ⩽ ΓL1(M,N) = Cp by (4.2) and (4.4), so there is a Schreier
chain {G1 < · · · < GCp} such that M(J) ⊆

⋃Cp

i=1Gi by (4.1). Set Ki = {j ∈ J : mj ∈ Gi} for
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i ∈ {1, . . . , Cp}. Then we have J =
⋃Cp

i=1Ki and Kh ∩Ki = ∅ for h ̸= i, from which we deduce
that

∥y∥pSp
= µp(y, F )

p =
∑
j∈J

|αj |p =
Cp∑
i=1

∑
j∈Ki

|αj |p =
Cp∑
i=1

µp(x,Gi)
p ⩽ Cp∥x∥pSp

,

where the final inequality follows from the fact that G1, . . . , GCp ∈ S1.
Having completed the proof for E = Sp, we turn our attention to E = Bp. We begin

in the same way as above: using that y is finitely supported, we can find a Schreier chain
C = {F1 < · · · < Ft} such that ∥y∥Bp

= βp(y,C) and
⋃t
r=1 Fr ⊆ supp y ⊆ {ni : 1 ⩽ i ⩽ k}.

Fix r ∈ {1, . . . , t}, and choose Jr ⊆ {1, . . . , k} such that N(Jr) = Fr ∈ S1. Then we
have τ1(M(Jr)) ⩽ ΓL1(M,N) = C by (4.2) and (4.4), so we can find a Schreier chain
{Gr1 < · · · < GrC} such that M(Jr) ⊆

⋃C
i=1G

r
i by (4.1). Set

Kr
i = {j ∈ Jr : mj ∈ Gri } and γri =

∑
j∈Kr

i

|αj | (i ∈ {1, . . . , C}),

and choose ι(r) ∈ {1, . . . , C} for which γrι(r) = max{γri : 1 ⩽ i ⩽ C}. Since Jr =
⋃C
i=1K

r
i and

Kr
h ∩Kr

i = ∅ whenever h ̸= i, we have

∑
j∈Jr

|αj | =
C∑
i=1

γri ⩽ Cγrι(r) = C
∑

j∈Kr
ι(r)

|αj |.

Furthermore, D = {M(Kr
ι(r)) : 1 ⩽ r ⩽ t} is a Schreier chain, as the following two facts show:

• M(Kr
ι(r)) ∈ S1 for each 1 ⩽ r ⩽ t because M(Kr

ι(r)) ⊆ Grι(r) ∈ S1, and
• the sets M(K1

ι(1)),M(K2
ι(2)), . . . ,M(Kt

ι(t)) are successive because M(Kr
ι(r)) ⊆ M(Jr)

for each 1 ⩽ r ⩽ t and M(J1) < M(J2) < · · · < M(Jt).
In conclusion, we have

∥y∥pBp
= βp(y,C)

p =

t∑
r=1

(∑
j∈Jr

|αj |
)p

⩽ Cp
t∑

r=1

( ∑
j∈Kr

ι(r)

|αj |
)p

= Cpβp(x,D)p ⩽ Cp∥x∥pBp
. □

Proof of Theorem 4.1, (a)⇒(b)⇒(c). Lemma 4.2 shows that (a) implies (b).
To see that (b) implies (c), suppose that (em)m∈M dominates (en)n∈N . By definition, this

means that the linear map T : span(em : m ∈ M) → EN determined by Temj
= enj

for every
j ∈ N is bounded, where M = {m1 < m2 < · · · } and N = {n1 < n2 < · · · } are the increasing
enumerations. Therefore T extends uniquely to an operator in B(EM , EN ), also denoted T ,
which satisfies ⟨Temj

, e∗nk
⟩ = δj,k for every j, k ∈ N. Hence infm∈M∥Tem∥∞ = 1 > 0. □

It remains to prove the implication (c)⇒(a) in Theorem 4.1. For this, we follow the approach
of [14] closely, although we can shorten certain steps because we consider only the first Schreier
family S1.

We begin by generalizing [14, Proposition 3.13], which Gasparis and Leung established for
the higher-order Schreier spaces X[Sξ] for ξ < ω1. However, as we shall show, it applies to a
much larger class of Banach spaces, including the Baernstein and Schreier spaces that we are
investigating. We provide a detailed proof for the reader’s convenience.

Lemma 4.3. Let X and Y be Banach spaces with unconditional, normalized bases (xn)n∈N
and (yn)n∈N, respectively, and suppose that the basis (xn)n∈N for X is shrinking. The following
conditions are equivalent:

(a) There is an operator T ∈ B(X,Y ) for which

inf
k∈N

sup
j∈N

|⟨Txk, y∗j ⟩| > 0. (4.5)

(b) There is an operator U ∈ B(X,Y ) for which Uxk ∈ {yj : j ∈ N} for every k ∈ N.
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It is easy to see that (b) implies (a). The proof of the converse relies on a careful analysis
of the matrix (Tj,k)j,k∈N associated with the operator T . We recall the standard definition
of this matrix: for j, k ∈ N, the (j, k)th coefficient of the matrix associated with an operator
T ∈ B(X,Y ) between Banach spaces X and Y with bases (xn)n∈N and (yn)n∈N, respectively,
is

Tj,k = ⟨Txk, y∗j ⟩; (4.6)
that is, the kth column of the matrix associated with T contains the coordinates with respect
to the basis (yj)j∈N of the image under T of the kth basis vector xk. Dualizing, we have
Tj,k = ⟨xk, T ∗y∗j ⟩, so if the basis (xn)n∈N for X is shrinking, then the jth row of the matrix
associated with T contains the coordinates with respect to the basis (x∗k)k∈N for X∗ of the
image under T ∗ of the jth coordinate functional y∗j .

In the proof of Lemma 4.3, we require a variant of a result due to Tong [26]. It involves the
following notion: a matrix Γ = (γj,k)j,k∈N is a block diagonal of a matrix A = (αj,k)j,k∈N if
there are increasing sequences 0 ⩽ r1 < r2 < · · · and 0 ⩽ s1 < s2 < · · · of integers for which

γj,k =

{
αj,k if (j, k) ∈

⋃∞
i=1(ri, ri+1]× (si, si+1]

0 otherwise
(j, k ∈ N).

Lemma 4.4. Let T ∈ B(X,Y ) be an operator between Banach spaces X and Y with uncon-
ditional bases (xn)n∈N and (yn)n∈N, respectively, and suppose that Γ = (γj,k)j,k∈N is a block
diagonal of the matrix associated with T . Then there is an operator R ∈ B(X,Y ) whose matrix
is Γ; that is,

⟨Rxk, y∗j ⟩ = γj,k (j, k ∈ N).

Proof. As already mentioned, Tong proved a similar result in [26], using very different ter-
minology. A simple proof of the above statement is outlined in the first remark after [19,
Proposition 1.c.8]. Note, however, that the definition stated in the text above [19, Proposi-
tion 1.c.8] of the matrix associated with an operator T ∈ B(X,Y ) produces the transpose of
the matrix given by (4.6). Fortunately this difference does not matter, as the transpose of a
block diagonal is again a block diagonal of the transposed matrix. □

Proof of Lemma 4.3. To see that (b) implies (a), suppose that U ∈ B(X,Y ) is an operator for
which Uxk ∈ {yj : j ∈ N} for every k ∈ N. Then supj∈N|⟨Uxk, y∗j ⟩| = 1 for every k ∈ N, so
T = U satisfies (4.5).

We prove that (a) implies (b) by expanding on the approach Gasparis and Leung took in
their proof of [14, Proposition 3.13]. In view of (4.5) and (4.6), we can choose δ > 0 such that,
for every k ∈ N, |Tj,k| ⩾ δ for some j ∈ N. This allows us to define a map ψ : N → N by

ψ(k) = min{j ∈ N : |Tj,k| ⩾ δ}.
Take j ∈ N. Since the basis (xn)n∈N for X is shrinking, the series

∑∞
k=1 Tj,kx

∗
k is convergent

with sum T ∗y∗j , as explained in the text below (4.6). It follows that |Tj,k| → 0 as k → ∞, so
every natural number has finite (possibly empty) pre-image under ψ. Therefore ψ has infinite
image; let ψ(N) = {n1 < n2 < · · · } be its increasing enumeration. Then {ψ−1(nj) : j ∈ N}
partitions N into non-empty, finite, disjoint sets, so there is a unique permutation ρ : N → N
such that

ρ(k) < ρ(m) ⇐⇒

{
ψ(k) < ψ(m), or
ψ(k) = ψ(m) and k < m

(k,m ∈ N).

In more concrete terms, we can define ρ as follows. Set s0 = 0 and sj =
∑j
i=1|ψ−1(ni)| for

j ∈ N. Then each k ∈ N belongs to the interval (sj−1, sj ] for a unique j ∈ N, and ρ(k) is
the (k − sj−1)

th smallest element of the set ψ−1(nj). In particular, we have ψ(ρ(k)) = nj , so
the definition of ψ implies that |Tnj ,ρ(k)| ⩾ δ, and therefore we can define a diagonal operator
∆ ∈ B(X) of norm at most K/δ by ∆xm = T−1

nj ,mxm for each m ∈ N, where j ∈ N is chosen
such that sj−1 < ρ−1(m) ⩽ sj and K denotes the unconditional basis constant of (xn)n∈N.

The unconditionality of the basis (xn)n∈N means that any reordering of it is also a basis forX.
Hence, viewing the composite operator Pψ(N)T∆ as a map fromX to Yψ(N) = span (ynj

: j ∈ N),
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we may consider its matrix with respect to the bases (xρ(k))k∈N for X and (ynj )j∈N for Yψ(N).
Suppose that j, k ∈ N satisfy sj−1 < k ⩽ sj . Then we have

(Pψ(N)T∆)j,k = ⟨Pψ(N)T∆xρ(k), y∗nj
⟩ =

⟨Txρ(k), P ∗
ψ(N)y

∗
nj
⟩

Tnj ,ρ(k)
=

⟨Txρ(k), y∗nj
⟩

Tnj ,ρ(k)
= 1,

so the matrix Γ = (γj,k)j,k∈N defined by

γj,k =

{
1 if sj−1 < k ⩽ sj

0 otherwise
(j, k ∈ N) (4.7)

is a block diagonal of the matrix associated with the operator Pψ(N)T∆. Lemma 4.4 implies
that there is an operator R ∈ B(X,Yψ(N)) whose matrix is Γ; that is, ⟨Rxρ(k), y∗nj

⟩ = γj,k for
every j, k ∈ N. In view of (4.7), this means that Rxρ(k) = ynj

for every k ∈ N, where j ∈ N
is the unique number such that sj−1 < k ⩽ sj . Hence, writing J : Yψ(N) → Y for the inclusion
map, we obtain an operator U = JR ∈ B(X,Y ) which satisfies Uxm = Rxm ∈ {yn : n ∈ N}
for every m ∈ N, as required. □

Lemma 4.5. Let x =
∑k
j=1 αjemj

, where k ∈ N, α1, . . . , αk ∈ [0,∞), and m1, . . . ,mk ∈ N are
(not necessarily distinct) numbers for which {m1, . . . ,mk} ∈ S1. Then ∥x∥E =

∑k
j=1 αj for

E = S1 and E = Bp, while ∥x∥Sp ⩾
(∑k

j=1 α
p
j

)1/p for 1 < p <∞.

Proof. Take J ⊆ {1, . . . , k} such that {mj : j ∈ J} = {m1, . . . ,mk} and mi ̸= mj for distinct
i, j ∈ J , and set Kj = {i ∈ {1, . . . , k} : mi = mj} for each j ∈ J . Then {Kj : j ∈ J} partitions
{1, . . . , k}, and we have x =

∑
j∈J

(∑
i∈Kj

αi
)
emj . Since {mj : j ∈ J} is a Schreier set, we

conclude that ∥x∥E =
∑
j∈J

(∑
i∈Kj

αi
)
=

∑k
j=1 αj for E = S1 and E = Bp, while

∥x∥pSp
=

∑
j∈J

(∑
i∈Kj

αi

)p
⩾

∑
j∈J

∑
i∈Kj

αpi =

k∑
j=1

αpj

for 1 < p < ∞, where the inequality follows from the fact that the ℓ1-norm dominates the
ℓp-norm. □

Lemma 4.6. Let E = Bp for some 1 < p < ∞ or E = Sp for some 1 ⩽ p < ∞, let M ∈ [N],
and suppose that θ : M → N is a map for which the linear map U : span(em : m ∈ M) → E
determined by Uem = eθ(m) for m ∈M is bounded. Then

sup{|θ−1(n)| : n ∈ N} <∞ and sup{τ1(θ−1(F )) : F ∈ S1} <∞. (4.8)

Proof. The hypothesis means that U extends uniquely to an operator in B(EM , E), also de-
noted U . We begin by showing that the second supremum in (4.8) is finite. Note that this
will include showing that the pre-image under θ of every Schreier set F is finite, as otherwise
τ1(θ

−1(F )) is not defined. Our strategy is as follows: given F ∈ S1, we take m ∈ N for which
θ−1(F ) contains a chain {G1 < G2 < · · · < Gm} of maximal Schreier sets. As we shall ver-
ify below, m is then dominated by a constant times a power of the norm of the operator U ;
that is, m ⩽ C∥U∥t for some constants C, t ∈ (0,∞) that will depend only on p. This will
give the desired conclusion because (i) if θ−1(F ) were infinite, it would contain arbitrarily long
chains of maximal Schreier sets, contradicting the uniform bound on m; (ii) we can therefore
use the characterization of τ1 stated in the paragraph below its definition (4.1) to deduce that
τ1(θ

−1(F )) ⩽ C∥U∥t + 1. Since the right-hand side of this inequality is independent of F , it
provides an upper bound on the second supremum in (4.8).

It remains to establish the inequality m ⩽ C∥U∥t. We consider the two types of spaces sep-
arately. For E = Bp, set x =

∑m
k=1|Gk|−1

∑
j∈Gk

ej , and recall from (2.2) that ∥x∥pBp
⩽ 2pm.

Consequently, we have

2pm∥U∥p ⩾ ∥Ux∥pBp
=

∥∥∥∥ m∑
k=1

1

|Gk|
∑
j∈Gk

eθ(j)

∥∥∥∥p
Bp

=

( m∑
k=1

|Gk|
|Gk|

)p
= mp, (4.9)
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where the penultimate step follows from Lemma 4.5 and the fact that
⋃m
k=1 θ(Gk) is a Schreier

set because it is contained in F ∈ S1. Rearranging (4.9), we obtain m ⩽ (2∥U∥)
p

p−1 , which
provides an upper bound on m of the desired form for C = 2

p
p−1 and t = p/(p− 1).

The argument for E = Sp is very similar, except that we use the vector

x =

m∑
k=1

1

|Gk|
1
p

∑
j∈Gk

ej .

It has Sp-norm at most 2
1
p by (2.1), so

2∥U∥p ⩾ ∥Ux∥pSp
=

∥∥∥∥ m∑
k=1

1

|Gk|
1
p

∑
j∈Gk

eθ(j)

∥∥∥∥p
Sp

⩾
m∑
k=1

|Gk|
|Gk|

= m

by another application of Lemma 4.5. This establishes the desired upper bound on m for C = 2
and t = p, thereby completing our proof that the second supremum in (4.8) is finite.

We now turn our attention to the first supremum in (4.8). Assume towards a contradiction
that the set {|θ−1(n)| : n ∈ N} is unbounded. Given a non-empty set G ⊆ N, it will be
convenient to introduce the notation G† = G \ {minG}. Arguing as in the proof of [14, Prop-
osition 3.11], we can recursively construct an increasing sequence of maximal Schreier sets
G1 < G2 < · · · , each contained in M ∩ [2,∞), and a sequence (nj)j∈N of natural numbers such
that

θ(i) = nj (j ∈ N, i ∈ G†
j). (4.10)

We include the details of this recursion for the reader’s convenience. Set m1 = minM ∩ [2,∞).
By hypothesis, we can choose a number n1 ∈ N such that |θ−1(n1)| > m1, so we can find a
subset F1 ⊆ θ−1(n1) \ {1,m1} of cardinality m1 − 1. Then G1 = {m1} ∪ F1 ⊆ M ∩ [2,∞) is a
maximal Schreier set, and (4.10) is satisfied for j = 1 because G†

1 = F1.
Now assume recursively that G1 < · · · < Gj−1 have been chosen for some j ⩾ 2. Set

mj = minM ∩ (maxGj−1,∞), choose nj ∈ N such that |θ−1(nj)| ⩾ mj + |M ∩ [1,mj)|, and
take a subset Fj ⊆ θ−1(nj)∩(mj ,∞) of cardinalitymj−1. Then Gj = {mj}∪Fj ⊆M∩[mj ,∞)
is a maximal Schreier set such that (4.10) is satisfied for the given value of j, and Gj > Gj−1

because minGj = mj > maxGj−1. Hence the recursion continues.
Choose an integer m such that m > (4∥U∥)

p
p−1 if E = Bp and m > 4∥U∥p if E = Sp. We

observe that the set {nj : j ∈ N} is unbounded, or else we could take n ∈ N and J ∈ [N]
such that nj = n for every j ∈ J , which would imply that

⋃
j∈J G

†
j ⊆ θ−1(n), contradicting

that θ−1(n) is finite, as shown in the first part of the proof. Consequently, we can find a set
K ∈ [N]<∞ such that |K| = m ⩽ min{nk : k ∈ K}, and therefore {nk : k ∈ K} ∈ S1.

For E = Bp, consider the vector y =
∑
k∈K |Gk|−1

∑
j∈G†

k
ej ∈ Bp, which has norm at most

2m
1
p by (2.2) and the 1-unconditionality of the basis (ej)j∈N. We can now argue as in (4.9) to

obtain

2pm∥U∥p ⩾ ∥Uy∥pBp
=

∥∥∥∥∑
k∈K

|Gk| − 1

|Gk|
enk

∥∥∥∥p
Bp

=

(∑
k∈K

|Gk| − 1

|Gk|

)p
⩾

(m
2

)p
,

where we have used (4.10), Lemma 4.5 and the fact that |Gk| − 1 ⩾ |Gk|/2 for every k ∈ N.
Rearranging this inequality, we find 4p∥U∥p ⩾ mp−1, which contradicts our choice of m.

Again, the argument for E = Sp is very similar, just using the vector

y =
∑
k∈K

1

|Gk|
1
p

∑
j∈G†

k

ej ∈ Sp,

whose norm is at most 2
1
p . Following the same steps as above, we obtain

2∥U∥p ⩾ ∥Uy∥pSp
=

∥∥∥∥∑
k∈K

|Gk| − 1

|Gk|
1
p

enk

∥∥∥∥p
Sp

⩾
∑
k∈K

(|Gk| − 1)p

|Gk|
⩾
m

2
,

once again contradicting the choice of m. □
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Proposition 4.7. Let M,N ∈ [N], and suppose that there exists a map θ : M → N for which

sup{|θ−1(n)| : n ∈ N} <∞ and sup{τ1(θ−1(F )) : F ∈ S1 ∩ [N ]<∞} <∞. (4.11)

Then ΓL1(M,N) <∞.

Proof. This is a restatement of [14, Proposition 3.12] for ξ = 1, bearing in mind that

sup{|θ−1(n)| : n ∈ N} = sup{τ0(θ−1(F )) : F ∈ S0 ∩ [N ]<∞}
because S0 = {{n} : n ∈ N} ∪ {∅} and τ0(A) = |A| for every A ∈ [N]<∞. □

Proof of Theorem 4.1, (c)⇒(a). Suppose that T ∈ B(EM , EN ) is an operator for which

inf
m∈M

∥Tem∥∞ > 0.

Then T satisfies condition (4.5) with respect to the bases (em)m∈M and (en)n∈N for EM
and EN , respectively, so Lemma 4.3 shows that there is an operator U ∈ B(EM , EN ) for which
Uem = eθ(m) for every m ∈ M , where θ(m) ∈ N is a suitably chosen index. Regarding θ as
a map of M into N, we can apply Lemma 4.6 to deduce that both suprema in (4.8) are finite.
However, they are equal to the suprema in (4.11) because θ(M) ⊆ N , so Proposition 4.7 implies
that ΓL1(M,N) <∞, as required. □

With the proof of Theorem 4.1 complete, we state an important consequence of it that is
the second main outcome of this section.

Theorem 4.8. Let E = Bp for some 1 < p < ∞ or E = Sp for some 1 ⩽ p < ∞. The
following conditions are equivalent for M,N ∈ [N] :

(a) The Gasparis–Leung indices ΓL1(M,N) and ΓL1(N,M) are both finite.
(b) The basic sequences (em)m∈M and (en)n∈N are equivalent.
(c) The subspaces EM and EN are isomorphic.

As already indicated, we shall deduce this result from Theorem 4.1. However, the implication
(c)⇒(a) requires one additional ingredient: every isomorphic embedding of EM into E satisfies
the technical condition (c) of Theorem 4.1.

Lemma 4.9. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞, and suppose that
T ∈ B(EM , E) is an isomorphic embedding for some set M ∈ [N]. Then infm∈M∥Tem∥∞ > 0.

Proof. Assume towards a contradiction that infm∈M∥Tem∥∞ = 0 for some M ∈ [N] and some
isomorphic embedding T ∈ B(EM , E). Take η > 0 such that ∥Tx∥ ⩾ η∥x∥ for every x ∈ E,
and set k0 = 0, P0 = 0 and εj = η/(3 · 2j + 1) for j ∈ N. We can then recursively choose
increasing sequences (mj)j∈N in M and (kj)j∈N in N such that

∥Temj
∥∞ ⩽

εj
2(kj−1 + 1)

and ∥(IE − Pkj )Temj
∥E ⩽

εj
2

(j ∈ N).

This implies that for each j ∈ N, the vector vj = (Pkj − Pkj−1)Temj ∈ E satisfies

∥Temj
− vj∥E ⩽ ∥(IE − Pkj )Temj

∥E + ∥Pkj−1
Temj

∥E

⩽
εj
2

+ kj−1 · max
1⩽n⩽kj−1

|⟨Temj
, e∗n⟩| ⩽

εj
2

+
εj
2

= εj .

In particular we have

∥T∥ ⩾ ∥vj∥E ⩾ ∥Temj
∥E − ∥Temj

− vj∥E ⩾ η − εj ⩾
6η

7
,

so (vj)j∈N is a semi-normalized block basic sequence of (en)n∈N. Furthermore, since
∞∑
j=1

∥Temj
− vj∥E

∥vj∥E
⩽

∞∑
j=1

εj
η − εj

=

∞∑
j=1

1

3 · 2j
=

1

3
<

1

2
,

the Principle of Small Perturbations (see for instance [1, Theorem 1.3.9]) implies that (Temj )j∈N
is a basic sequence equivalent to (vj)j∈N. (Here we have used the fact that the basis constant
of (vj)j∈N is no greater than the basis constant of (en)n∈N, which is 1.)
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Set uj = vj/∥vj∥E for j ∈ N. Being semi-normalized and unconditional, (vj)j∈N is equivalent
to (uj)j∈N, and

∥uj∥∞ =
∥(Pkj − Pkj−1

)Temj
∥∞

∥vj∥E
⩽

∥Temj
∥∞

6η/7
⩽

7

12(3 · 2j + 1)(kj−1 + 1)
→ 0 as j → ∞,

so infj∈N∥uj∥∞ = 0. Hence Proposition 2.14 implies that (uj)j∈N admits a subsequence
(ujn)n∈N which is equivalent to the unit vector basis (dn)n∈N for D, where D = ℓp if E = Bp
and D = c0 if E = Sp, as usual.

In conclusion, we have shown that (dn)n∈N is equivalent to (ujn)n∈N, which is equivalent to
(vjn)n∈N, which is equivalent to (Temjn

)n∈N, and therefore (emjn
)n∈N is equivalent to (dn)n∈N

because T is an isomorphic embedding. However, this is absurd: no subsequence of (en)n∈N is
dominated by (dn)n∈N, as is easy to see (or alternatively this is a very special case of Proposi-
tion 2.14). □

Corollary 4.10. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞, and suppose
that EM embeds isomorphically into EN for some sets M,N ∈ [N]. Then ΓL1(M,N) <∞.

Proof. Take an isomorphic embedding T ∈ B(EM , EN ), and let J : EN → E denote the in-
clusion map. Then we have 0 < infm∈M∥JTem∥∞ = infm∈M∥Tem∥∞ by Lemma 4.9, so the
implication (c)⇒(a) in Theorem 4.1 shows that ΓL1(M,N) <∞. □

Proof of Theorem 4.8. The equivalence of conditions (a) and (b) in Theorem 4.1 implies that
conditions (a) and (b) are also equivalent in Theorem 4.8. The implication (b)⇒(c) is clear,
and finally Corollary 4.10 shows that (c) implies (a). □

We conclude this section with two applications of Corollary 4.10, both establishing counter-
parts for the Baernstein and Schreier spaces of results of Gasparis and Leung concerning the
structure of the complemented subspaces of the higher-order Schreier spaces.

Definition 4.11. (i) A Banach space X is primary if the kernel or the range of P is
isomorphic to X for every idempotent operator P ∈ B(X).

(ii) Two Banach spaces X and Y are incomparable if no subspace of X is isomorphic to Y
and no subspace of Y is isomorphic to X.

Proposition 4.12. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞. Then:
(i) The subspace EN fails to be primary for every N ∈ [N].
(ii) There is a subset A of [N] of cardinality c such that EL and EM are incomparable

whenever L,M ∈ A are distinct.

Proof. We follow the approach Gasparis and Leung took in their proofs of [14, Corollary 3.15
and Theorem 1.3], respectively. The common starting point is that for any set N ∈ [N], we
can equip [N ] with the topology of pointwise convergence obtained by identifying the elements
of [N ] with their indicator functions; this turns [N ] into a Polish space.

(i). The set
F = {(L,M) ∈ [N ]× [N ] : L ∪M = N, L ∩M = ∅}

is closed with respect to the product topology on [N ]× [N ], and

G = {(L,M) ∈ F : ΓL1(N,L) = ΓL1(N,M) = ∞}
is a dense Gδ-subset. In particular G is non-empty, so we can take (L,M) ∈ G. The fact that
N = L ∪M and L ∩M = ∅ implies that EN = EL ⊕EM , but EN is neither isomorphic to EL
nor EM by Corollary 4.10 because ΓL1(N,L) = ΓL1(N,M) = ∞. (In fact, EL and EM do not
even contain subspaces which are isomorphic to EN .) This proves that EN is not primary.

(ii). By [14, Lemma 3.5],

D = {(L,M) ∈ [N]× [N] : ΓL1(L,M) = ΓL1(M,L) = ∞}
is a dense Gδ-subset of [N] × [N]. Therefore, applying [14, Proposition 3.6], we can find a
subset A of [N] which is homeomorphic to the Cantor set and satisfies (L,M) ∈ D whenever
L,M ∈ A are distinct. In particular A has cardinality c, and Corollary 4.10 shows that EL
and EM are incomparable for distinct L,M ∈ A because ΓL1(L,M) = ΓL1(M,L) = ∞. □
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5. Spatial ideals of operators on the Baernstein and Schreier spaces

Let X be a Banach space. We write ⟨T ⟩ for the (algebraic, two-sided) ideal of B(X) generated
by an operator T ∈ B(X), that is,

⟨T ⟩ =
{ k∑
j=1

UjTVj : k ∈ N, U1, . . . , Uk, V1, . . . , Vk ∈ B(X)

}
. (5.1)

Since B(X) is a unital Banach algebra, the ideal ⟨T ⟩ is proper if and only if its norm-closure
⟨T ⟩ is. Suppose that X has an unconditional basis. Following [4], we call the closed ideals of the
form ⟨PM ⟩ for some non-empty subset M of N spatial, where PM denotes the basis projection,
as usual.

The main aim of this section is to prove the following proposition, which is an extended
counterpart of [4, Proposition 4.12] for the Baernstein and Schreier spaces. The key difference
is the addition of a new quantitative condition, (d), that will play an essential role in the proofs
of parts (i) and (iii) of Theorem 1.1 in the next section.

Proposition 5.1. Let E = Bp for some 1 < p < ∞ or E = Sp for some 1 ⩽ p < ∞. The
following conditions are equivalent for every pair of sets M ⊆ N and N ∈ [N] :

(a) PM ∈ ⟨PN ⟩,
(b) ⟨PM ⟩ ⊆ ⟨PN ⟩,
(c) ⟨PN ⟩ = ⟨PM∪N ⟩,
(d) dist(PM , ⟨PN ⟩) < 1,
(e) ΓL1(M ∪N,N) <∞,
(f) EN contains a subspace which is isomorphic to EM ,
(g) EN contains a complemented subspace which is isomorphic to EM ,
(h) EN is isomorphic to EM∪N ,
(i) The basic sequences (en)n∈M∪N and (en)n∈N are equivalent.

We require two lemmas in the proof of this proposition. The first is a variant of the Neumann
series, showing that every idempotent element which is close to an ideal of a Banach algebra
must in fact belong to the ideal.

Lemma 5.2. Let I be an ideal of a Banach algebra A , and take a non-zero idempotent p ∈ A .
Then p ∈ I if (and only if) dist(p,I ) < ∥p∥−2.

Proof. The implication ⇒ is obvious. Conversely, suppose that ∥p − a∥ < ∥p∥−2 for some
a ∈ I . Then ∥p − pap∥ < 1, so the series

∑∞
n=1(p − pap)n converges absolutely. Set b =

p+
∑∞
n=1(p− pap)n ∈ A and observe that

I ∋ bpap =

(
p+

∞∑
n=1

(p− pap)n
)(
p− (p− pap)

)
= p− p(p− pap) +

∞∑
n=1

(p− pap)np−
∞∑
n=2

(p− pap)n = p. □

The second lemma is the counterpart of [4, Proposition 4.6]. It will enable us to connect the
first four conditions of Proposition 5.1 concerning ideals with the last four (or five) concerning
subspaces.

Lemma 5.3. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞. Then

EM ∼= EM ⊕ EM (M ∈ [N]).

Proof. We take the same approach as in the proof of [4, Proposition 4.6]. Set M ′ = 2M − 1
and M ′′ = 2M . Since these sets are disjoint, we have

EM ′∪M ′′ = EM ′ ⊕ EM ′′

by unconditionality, so it will suffice to show that each of these spaces is isomorphic to EM ,
which in turn will follow from Theorem 4.8 provided that the appropriate Gasparis–Leung
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indices are finite. First, we have ΓL1(M,M ′ ∪M ′′) ⩽ 3 and ΓL1(M
′ ∪M ′′,M) ⩽ 2 by [4,

Lemma 4.11], so EM ′∪M ′′ ∼= EM . Second, M ′′ is a spread of M and of M ′, so ΓL1(M
′′,M) =

1 = ΓL1(M
′′,M ′). Third, we claim that

ΓL1(M,M ′′) ⩽ 2 and ΓL1(M
′,M ′′) ⩽ 2. (5.2)

Indeed, suppose that M ′′(J) ∈ S1 for some non-empty J ∈ [N]<∞. Then 2mj1 ⩾ k, where
we have written J = {j1 < · · · < jk} and M = {m1 < m2 < · · · }. This implies that we
can partition J into two subsets, J1 and J2, each having at most mj1 elements, and therefore
M(J1),M(J2),M

′(J1),M
′(J2) ∈ S1. Hence we have τ1(M(J)) ⩽ 2 and τ1(M ′(J)) ⩽ 2 because

M(J) = M(J1) ∪M(J2) and M ′(J) = M ′(J1) ∪M ′(J2). This proves (5.2), and consequently
EM ∼= EM ′′ ∼= EM ′ . □

Proof of Proposition 5.1. Lemma 5.3 implies that EN ∼= EN⊕EN and EM∪N ∼= EM∪N⊕EM∪N
because N is infinite. Hence conditions (a), (b), (c), (g) and (h) are equivalent by [4, Lemma 2.3
and Corollary 2.5].

We have ΓL1(N,M ∪N) = 1 because N is a spread of M ∪N , so conditions (e), (h) and (i)
are equivalent by Theorem 4.8.

The implications (a)⇒(d) and (g)⇒(f) are trivial, while Lemma 5.2 shows that (d) im-
plies (b). We complete the proof by showing that (f) implies (e). Suppose that EM embeds iso-
morphically into EN . Then EM∪N = EM ⊕EN\M embeds isomorphically into EN ⊕EN ∼= EN ,
so ΓL1(M ∪N,N) <∞ by Corollary 4.10. □

Proposition 5.1 enables us to establish a counterpart for the Baernstein and Schreier spaces
of the main result of [4]. This requires one additional piece of terminology. Let X be a Banach
space with an unconditional basis. The ideal K (X) of compact operators is always spatial
because ⟨PM ⟩ = K (X) if (and only if) M ∈ [N]<∞ \ {∅}. Following [4], we call a spatial
ideal I non-trivial if K (X) ⊊ I ⊊ B(X).

Theorem 5.4. Let E = Bp for some 1 < p <∞ or E = Sp for some 1 ⩽ p <∞. Then:

(i) The family of non-trivial spatial ideals of B(E) is non-empty and has no minimal or
maximal elements.

(ii) Let I ⊊ J be spatial ideals of B(E). Then there is a family {ΓL : L ∈ ∆} such that:
(1) the index set ∆ has the cardinality of the continuum;
(2) for each L ∈ ∆,ΓL is an uncountable chain of spatial ideals of B(E) such that

I ⊊ L ⊊ J (L ∈ ΓL),

and
⋃
ΓL is a closed ideal that is not spatial;

(3) L + M = J whenever L ∈ ΓL and M ∈ ΓM for distinct L,M ∈ ∆.
(iii) The Banach algebra B(E) contains at least continuum many maximal ideals.
(iv) The ideal ⋂

{I : I is a non-trivial spatial ideal of B(E)}

is not contained in the ideal of strictly singular operators on E.

Proof. Clauses (i)–(iii) are the counterparts for E of [4, Theorem 1.1] and can be proved in
exactly the same way; see [4, pages 10–11]. This requires that we establish the counterpart of
[4, Lemma 2.8] for E, which we can do by copying the proof given in [4, pages 21–24] for n = 1,
just referring to Proposition 5.1 instead of [4, Proposition 4.12] throughout.

(iv) is the counterpart of [4, Theorem 1.2(ii), Equation (1.1)], and the proof is similar. Indeed,
let D = ℓp if E = Bp and D = c0 if E = Sp, and take a projection Q ∈ B(E) whose range is
isomorphic to D. Then Q is not strictly singular, but Theorem 2.4 implies that Q ∈ ⟨PN ⟩ for
every N ∈ [N], and therefore Q belongs to every non-trivial spatial ideal of B(E). □



22 N.J. LAUSTSEN AND J. SMITH

6. Finding 2c many closed ideals of operators: the proofs of Theorem 1.1(i)
and (iii)

In this section we combine our previous results about the Gasparis–Leung index and ideals
generated by basis projections to prove the remaining two parts of Theorem 1.1; that is, taking
E = Bp for 1 < p <∞ or E = Sp for 1 ⩽ p <∞, as usual, we shall show that B(E) contains 2c
many closed ideals that lie between the ideals of compact and strictly singular operators, as well
as 2c many closed ideals that are “large” in the sense that they contain projections of infinite
rank. Note that B(E) cannot contain more than 2c many closed ideals because E is separable.

Both results rely on a general theorem of Freeman, Schlumprecht and Zsák [13, Proposition 1]
that extracts the key idea of the argument that Johnson and Schechtman [16] used to show
that B(Lp[0, 1]) contains 2c many closed ideals for every p ∈ (1, 2) ∪ (2,∞). Before we can
state the said theorem of Freeman–Schlumprecht–Zsák precisely, we require two additional
pieces of terminology. The first generalizes the classical notion of a (closed) ideal of a (Banach)
algebra to the space of operators between two distinct Banach spaces X and Y : a (closed)
ideal of B(X,Y ) is a (norm-closed) subspace J of B(X,Y ) such that UTV ∈ J whenever
V ∈ B(X), T ∈ J and U ∈ B(Y ). Extending (5.1), for a subset T of B(X,Y ), we write ⟨T ⟩
for the ideal of B(X,Y ) it generates.

The reason this generalization is useful for our purposes is that in the case where X contains
a complemented subspace isomorphic to Y , the map

J 7→
{ n∑
j=1

UjTj : n ∈ N, U1, . . . , Un ∈ B(Y,X), T1, . . . , Tn ∈ J

}
(6.1)

is an injection from the lattice of closed ideals of B(X,Y ) into the lattice of closed ideals
of B(X). (This is a special case of an observation stated above [13, Proposition 2], and is also
easy to verify directly.) Hence, to show that B(X) contains 2c many closed ideals, it suffices
to find a complemented subspace Y of X for which B(X,Y ) contains 2c many closed ideals.

The second notion that we require is that of a 1-unconditional finite-dimensional decom-
position, or 1-UFDD for short, of a Banach space X; that is, a sequence (Xn)n∈N of finite-
dimensional subspaces of X such that every x ∈ X has a unique decomposition of the form
x =

∑∞
n=1 xn, where xn ∈ Xn for every n ∈ N, and the series

∑∞
n=1 σnxn converges with

∥
∑∞
n=1 σnxn∥ ⩽ ∥x∥ for every sequence (σn)n∈N ∈ {±1}N. It follows that for every (non-

empty) subset N of N, we can define a projection QN ∈ B(X) of norm 1 by QNx =
∑
n∈N xn.

In fact, we shall only consider 1-UFDDs of a very simple kind. Let X be a Banach space with
a 1-unconditional basis (xn)n∈N, and take a partition J1 < J2 < · · · of N into finite, successive
intervals. Then the sequence of finite-dimensional subspaces given by

Xn = span{xj : j ∈ Jn} (n ∈ N) (6.2)

is a 1-UFDD for X. For later reference, we observe that in this case the projection QN , for
N ⊆ N, defined above is equal to the basis projection PLN

induced by the set LN =
⋃
n∈N Jn.

Theorem 6.1 (Freeman, Schlumprecht and Zsák). Let A ⊂ [N] be an almost disjoint family of
cardinality c, let X and Y be Banach spaces with 1-UFDDs (Xn)n∈N and (Yn)n∈N, respectively,
and suppose that T ∈ B(X,Y ) is an operator which satisfies

(i) T [Xn] ⊆ Yn for every n ∈ N;
(ii) inf

{
dist(TQM , ⟨TQN ⟩) :M,N ∈ [N], |M \N | = ∞

}
> 0.

Then the map
N 7→ ⟨TQN : N ∈ N⟩ (6.3)

defines an order-preserving injection from the power set of A into the lattice of closed ideals
of B(X,Y ).

To enable us to apply this theorem to the Baernstein and Schreier spaces, we present a variant
not involving dyadic trees of the key construction that Manoussakis and Pelczar-Barwacz used
in their proof of [20, Lemma 4.3].
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Construction 6.2. Set F1 = ∅. By recursion, we can partition N into finite, successive intervals
G1 < F2 < G2 < F3 < G3 < · · · with the following properties:

(i) Gn is the union of n successive maximal Schreier sets for each n ∈ N (so in particular
τ1(Gn) = n),

(ii) |Fn| =
∑n−1
m=1(|Fm|+ |Gm|) for each n ⩾ 2.

For brevity, we introduce the notation Jn = Fn ∪Gn for n ∈ N and set

LN =
⋃
n∈N

Jn (N ⊆ N). (6.4)

We observe for later reference that we can rewrite property (ii) as |Fn| =
∑n−1
m=1|Jm|.

Lemma 6.3. For M,N ∈ [N], the set M \ N is bounded above by ΓL1(LM , LN ) ∈ N ∪ {∞},
where LM , LN ∈ [N] are defined by (6.4).

Proof. Take m ∈M \N . We seek to prove that m ⩽ ΓL1(LM , LN ), which by the definition (4.2)
of the Gasparis–Leung index means that we must find a set K ∈ [N]<∞ such that

τ1(LM (K)) ⩾ m and LN (K) ∈ S1. (6.5)

The case m = 1 is trivial, so we may suppose that m ⩾ 2. We have Jm ⊆ LM because m ∈M ,
so we can find H ∈ [N]<∞ such that Jm = LM (H). Note that H is an interval because Jm is,
and the definition of Jm implies that we can split H in two subintervals H1 < H2 such that
LM (H1) = Fm and LM (H2) = Gm. We claim that K = H2 satisfies (6.5).

The first part is immediate because τ1(LM (H2)) = τ1(Gm) = m, so it only remains to show
that LN (H2) ∈ S1; that is, |LN (H2)| ⩽ min(LN (H2)). Set k = minH2 and observe that
min(LN (H2)) is the kth element of the set

LN =
⋃
n∈N

Jn =
( ⋃
n∈N∩[1,m)

Jn

)
∪
( ⋃
n∈N∩(m,∞)

Jn

)
because m /∈ N . We have∣∣∣ ⋃

n∈N∩[1,m)

Jn

∣∣∣ = ∑
n∈N∩[1,m)

|Jn| ⩽
m−1∑
j=1

|Jj | = |Fm| = |LM (H1)| = |H1| ⩽ maxH1 < k,

so the kth element of LN must belong to the set
⋃
n∈N∩(m,∞) Jn. Hence

min(LN (H2)) ⩾ min
( ⋃
n∈N∩(m,∞)

Jn

)
⩾ min Jm+1 > max Jm

= maxGm ⩾ |Gm| = |LM (H2)| = |H2| = |LN (H2)|,
and the conclusion follows. □

Corollary 6.4. The following conditions are equivalent for M,N ∈ [N] :
(a) ΓL1(LM , LN ) <∞,
(b) ΓL1(LM∪N , LN ) <∞,
(c) |M \N | <∞.

Proof. Lemma 6.3 shows that the set M \ N is bounded above by ΓL1(LM , LN ), so (a) im-
plies (c).

(c)⇒(b). Suppose that M \ N is finite. Then LM∪N \ LN = LM\N is finite, too, so
ΓL1(LM∪N , LN ) <∞.

(b)⇒(a). This is a consequence of the fact that S1 is closed under spreading. □

Proof of Theorem 1.1(iii). We shall apply Theorem 6.1 with X = Y = E, T = IE and the
1-UFDDs given by Xn = Yn = span{ej : j ∈ Jn} for every n ∈ N, where J1 < J2 < · · · are the
intervals defined in Construction 6.2. These choices ensure that condition (i) of Theorem 6.1
is trivially satisfied. To verify condition (ii), we recall that for N ⊆ N, the projection QN
associated with the chosen 1-UFDDs is the basis projection PLN

. Taking M,N ∈ [N] with
|M \ N | = ∞, we have ΓL1(LM ∪ LN , LN ) = ΓL1(LM∪N , LN ) = ∞ by Corollary 6.4, so
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Proposition 5.1 implies that dist(QM , ⟨QN ⟩) = dist(PLM
, ⟨PLN

⟩) = 1. Hence Theorem 6.1
shows that {

⟨PLN
: N ∈ N⟩ : N ⊆ A

}
is a collection of 2c many distinct closed ideals of B(E) for any almost disjoint family A ⊂ [N]
of cardinality c.

The set {UV : U ∈ B(D,E), V ∈ B(E,D)} is closed under addition and therefore an ideal
of B(E) because D ∼= D ⊕D, where we recall that D = ℓp if E = Bp and D = c0 if E = Sp,
as usual. An easy standard argument shows that this ideal is equal to ⟨Q⟩ for any projection
Q ∈ B(E) whose range is isomorphic to D. As we saw in the proof of Theorem 5.4(iv),
Q ∈ ⟨PN ⟩ for every N ∈ [N], so ⟨Q⟩ ⊆ ⟨PLN

: N ∈ N⟩ for every non-empty subset N of A. □

The proof of Theorem 1.1(i) follows a similar path, but some aspects require additional work.
We begin with a standard characterization of strictly singular operators defined on a Banach
space with a basis, and include a short proof for completeness.

Lemma 6.5. Let T ∈ B(X,Y ) be an operator between Banach spaces X and Y , and suppose
that X has a basis. Then T is strictly singular if (and only if) the restriction of T to any block
subspace of X fails to be an isomorphic embedding.

Proof. The implication ⇒ is trivial because block subspaces are infinite-dimensional.
Conversely, suppose that T fails to be strictly singular, so that its restriction to some closed,

infinite-dimensional subspace Z of X is bounded below by some number η > 0. We use the
same notation and approach as in the first part of the proof of Lemma 2.6; that is, (xn)n∈N
denotes the basis of X, K is the basis constant, Pn is the nth basis projection for n ∈ N, and
we set m0 = 0 and P0 = 0. By recursion, we choose natural numbers m1 < m2 < · · · and unit
vectors zn ∈ Z ∩ kerPmn−1

such that

∥zn − wn∥ ⩽ εn, where wn = Pmn
zn and εn =

η

2n+2K(η + ∥T∥) + η
(n ∈ N).

Then (wn)n∈N is a block basic sequence of (xn)n∈N because ∥wn∥ ⩾ 1− εn > 0 for every n ∈ N.
We shall now complete the proof by showing that the restriction of T to the block subspace

spanned by (wn)n∈N is bounded below by η/2. Take a unit vector w =
∑N
n=1 αnwn for some

N ∈ N and α1, . . . , αN ∈ K, and set z =
∑N
n=1 αnzn ∈ Z. We have

∥Tw∥ ⩾ ∥Tz∥ − ∥T (z − w)∥ ⩾ η∥z∥ − ∥T∥∥z − w∥ (6.6)
⩾ η(∥w∥ − ∥z − w∥)− ∥T∥∥z − w∥ = η − (η + ∥T∥)∥z − w∥.

To find an upper bound on ∥z − w∥, we observe that αnwn = (Pmn
− Pmn−1

)w, so

|αn| ⩽
2K

∥wn∥
⩽

2K

1− εn
(1 ⩽ n ⩽ N),

and therefore

∥z − w∥ ⩽
N∑
n=1

|αn|∥zn − wn∥ ⩽
N∑
n=1

2Kεn
1− εn

=

N∑
n=1

η

(η + ∥T∥)2n+1
⩽

η

2(η + ∥T∥)
,

where the equality in the middle follows from the choice of εn. Substituting this estimate
into (6.6), we conclude that ∥Tw∥ ⩾ η/2, which establishes the result. □

Proposition 6.6. Let (E,D) = (Bp, ℓp) for some 1 < p < ∞ or (E,D) = (Sp, c0) for some
1 ⩽ p <∞, and let (en)n∈N and (dn)n∈N denote the unit vector bases for E and D, respectively.
Then the formal inclusion map given by ι : en 7→ dn for n ∈ N extends to a bounded linear
injection ι : E → D of norm 1. Furthermore, ι is strictly singular, but not compact.

Proof. It is obvious that the formal inclusion map ι : Sp → c0 is a bounded linear injection of
norm 1, while the same conclusion for ι : Bp → ℓp is an easy consequence of the definition of the
norm on Bp, or alternatively it follows by applying Lemma 2.9 to the chain C =

{
{n} : n ∈ N

}
.

The non-compactness of ι is witnessed by its action on the unit vector basis in both cases, so
it only remains to verify that ι is strictly singular.
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Lemma 6.5 implies that it suffices to show that the restriction of ι to the closed subspace
spanned by a block basic sequence (wn)n∈N of (en)n∈N is not an isomorphic embedding. By
Lemma 2.7, (wn)n∈N admits a normalized block basic sequence (un)n∈N for which ∥un∥∞ → 0
as n → ∞. This completes the proof for the Schreier space Sp because ∥ι(un)∥ = ∥un∥∞ in
this case. The argument for the Baernstein space Bp is more subtle, relying on an inequality
due to Jameson that we shall establish in Appendix A below; it involves a constant Kp > 0
which depends only on p. Using the variant of Jameson’s inequality stated in the last line of
Theorem A.1, we obtain

∥ι(un)∥p = ∥un∥pℓp ⩽ Kp∥un∥p−1
∞ ∥un∥Bp = Kp∥un∥p−1

∞ → 0 as n→ ∞. □

Proof of Theorem 1.1(i). We shall apply Theorem 6.1 with (X,Y ) = (E,D), that is, either
(X,Y ) = (Bp, ℓp) for some 1 < p <∞ or (X,Y ) = (Sp, c0) for some 1 ⩽ p <∞, endowed with
the 1-UFDDs obtained by blocking the unit vector bases as follows:

Xn = span{ej : j ∈ Jn} and Yn = span{dj : j ∈ Jn} (n ∈ N), (6.7)

where J1 < J2 < · · · are the intervals defined in Construction 6.2, and T = ι ∈ B(E,D) is the
formal inclusion map.

Condition (i) of Theorem 6.1 is trivially satisfied because ι(ej) = dj for j ∈ N. We claim that
the infimum in condition (ii) equals 1. To prove that, we begin by recalling that QN = PLN

for
every N ⊆ N, where QN ∈ B(E) denotes the projection associated with the 1-UFDD (Xn)n∈N
of E, the set LN is given by (6.4), and PLN

∈ B(E) is the corresponding basis projection, as
usual. Hence the claim will follow provided that we show that

dist(ιPLM
, ⟨ιPLN

⟩) = 1 (M,N ∈ [N], |M \N | = ∞).

The inequality ⩽ is trivial because ∥ιPLM
∥ = 1. We shall verify the opposite inequality by

showing that if dist(ιPLM
, ⟨ιPLN

⟩) < 1 for some M,N ∈ [N], then |M \ N | < ∞. Hence,
suppose that ∥ιPLM

−R∥ < 1 for some operator R ∈ ⟨ιPLN
⟩, say R =

∑k
j=1 UjιPLN

Vj , where
k ∈ N, U1, . . . , Uk ∈ B(D) and V1, . . . , Vk ∈ B(E). By replacing Uj with ∥Vj∥Uj and Vj with
Vj

∥Vj∥ if ∥Vj∥ > 0, we may suppose that ∥Vj∥ ⩽ 1 for each j ∈ {1, . . . , k}.
Take m ∈ LM . Since em and dm = ιPLM

em are unit vectors, we have

∥ιPLM
−R∥ ⩾ ∥(ιPLM

−R)em∥D ⩾ ∥ιPLM
em∥D − ∥Rem∥D = 1− ∥Rem∥D,

so

1−∥ιPLM
−R∥ ⩽ ∥Rem∥D ⩽

k∑
j=1

∥Uj∥ ∥ιPLN
Vjem∥D ⩽ k · max

1⩽j⩽k
∥Uj∥·∥ιPLN

Vφ(m)em∥D, (6.8)

where we have chosen φ(m) ∈ {1, . . . , k} such that

max
1⩽j⩽k

∥ιPLN
Vjem∥D = ∥ιPLN

Vφ(m)em∥D.

This defines a map φ : LM → {1, . . . , k} which in view of (6.8) satisfies

∥ιPLN
Vφ(m)em∥D ⩾ η (m ∈ LM ), where η =

1− ∥ιPLM
−R∥

k · max
1⩽j⩽k

∥Uj∥
> 0. (6.9)

We use this map to introduce a new operator

W = PLN

∑
j∈φ(LM )

VjPφ−1({j})|ELM
∈ B(ELM

, ELN
).

Our aim is to show that it satisfies

inf
m∈LM

∥Wem∥∞ ⩾


η for E = Sp,( ηp
Kp

) 1
p−1

for E = Bp,
(6.10)
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where Kp > 0 denotes the constant from Theorem A.1. Take m ∈ LM , and observe that
∥Wem∥∞ = ∥PLN

Vφ(m)em∥∞ because

Pφ−1({j})em =

{
em if j = φ(m),

0 otherwise.

If E = Sp, then D = c0, so ∥PLN
Vφ(m)em∥∞ = ∥ιPLN

Vφ(m)em∥D ⩾ η by (6.9), which estab-
lishes (6.10) in the first case. Otherwise E = Bp and D = ℓp; combining (6.9) with Jameson’s
inequality stated in the last line of Theorem A.1, we obtain

ηp ⩽ ∥ιPLN
Vφ(m)em∥pℓp ⩽ Kp∥PLN

Vφ(m)em∥p−1
∞ ∥PLN

Vφ(m)em∥Bp
⩽ Kp∥Wem∥p−1

∞ , (6.11)

where the simple estimate ∥PLN
Vφ(m)em∥Bp ⩽ ∥PLN

∥ ∥Vφ(m)∥ ∥em∥Bp ⩽ 1 justifies the final
inequality. The second case of (6.10) follows by rearranging (6.11).

Hence the operator W satisfies condition (c) of Theorem 4.1, so ΓL1(LM , LN ) < ∞, and
therefore |M \N | <∞ by Corollary 6.4, as required.

We have thus verified both conditions of Theorem 6.1. It follows that the map (6.3) is injec-
tive. Composing it with the injection (6.1), we obtain 2c many closed ideals of B(E). They are
contained in the ideal of strictly singular operators because the operator ι is strictly singular,
as we showed in Proposition 6.6. □

Appendix A. Jameson’s inequality for the Schreier and Baernstein norms

The aim of this appendix is to establish an inequality which relates the ℓp-norm, the first
Schreier (or pth Baernstein) norm and the ℓ∞-norm. (Recall that we denote the latter by
∥ · ∥∞.) Its proof is due to Graham Jameson; we are very grateful for his permission to include
it here. The inequality plays a key role in the proof of Theorem 1.1(i) that we gave in Section 6.

Theorem A.1 (Jameson). For every 1 < p < ∞, there is a constant Kp ∈
[

2p−1
2p−1−1 ,

3·2p−1−2
2p−1−1

]
such that

∥x∥pℓp ⩽ Kp∥x∥p−1
∞ ∥x∥S1 (x ∈ KN). (A.1)

Consequently, ∥x∥pℓp ⩽ Kp∥x∥p−1
∞ ∥x∥Bp for every x ∈ Bp.

We begin with a lemma that will help us reduce to the case of decreasing sequences.

Lemma A.2. Let x : N → [0,∞) be decreasing with limit 0. Then ∥x∥Sp
⩽ ∥x ◦ σ∥Sp

for every
1 ⩽ p <∞ and every permutation σ : N → N.

Proof. Take F ∈ S1\{∅}, and let k = minF . Since σ is surjective, the set σ−1([1, 2k)∩N)\[1, k)
contains a subset G of cardinality k. Then G ∈ S1, and therefore

∥x ◦ σ∥pSp
⩾

∑
n∈G

x(σ(n))p ⩾
2k−1∑
j=k

x(j)p ⩾ µp(x, F )
p,

where the second inequality follows because σ(G) is a k-element subset of [1, 2k) ∩ N and x is
decreasing. Now the conclusion follows by taking the supremum over F . □

Proof of Theorem A.1. Since all three norms in (A.1) depend only on the moduli of the coor-
dinates of x, it suffices to consider non-negative x. We may also suppose that ∥x∥S1

< ∞, as
otherwise the inequality is trivial. This implies that x ∈ c0, which in turn means that we can
find a permutation σ : N → N such that x◦σ is decreasing. Therefore we can apply Lemma A.2
to x ◦ σ and the permutation σ−1 to obtain that ∥x ◦ σ∥S1 ⩽ ∥(x ◦ σ) ◦ σ−1∥S1 = ∥x∥S1 , while
∥x ◦ σ∥ℓp = ∥x∥ℓp and ∥x ◦ σ∥∞ = ∥x∥∞. In conclusion, this shows that it suffices to consider
the case where x : N → [0,∞) is decreasing, and after scaling, we may suppose that ∥x∥S1

= 1.
Take n ∈ N0, and let Fn = [2n, 2n+1) ∩ N ∈ S1. Since x is non-negative and decreasing, we

have ∥x∥∞ = x(1) and x(2n+1) ⩽ x(j) ⩽ x(2n) for j ∈ Fn. Combining this with the fact that
µ1(x, Fn) ⩽ ∥x∥S1

= 1, we obtain

x(2n+1) ⩽
1

2n
and µp(x, Fn)

p ⩽ x(2n)p−1µ1(x, Fn) ⩽ x(2n)p−1. (A.2)
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Write x(1) = θ
2k

, where k ∈ N and 1 ⩽ θ ⩽ 2. Then we have

k−1∑
n=0

µp(x, Fn)
p =

2k−1∑
j=1

x(j)p ⩽ (2k − 1)x(1)p ⩽ θx(1)p−1.

Furthermore, (A.2) implies that µp(x, Fk)p ⩽ x(1)p−1 and
∞∑

n=k+1

µp(x, Fn)
p ⩽

∞∑
n=k+1

1

2(n−1)(p−1)
=

( 1

2k

)p−1 1

1− 1
2p−1

=
x(1)p−12p−1

θp−1(2p−1 − 1)
.

Since (Fn)
∞
n=0 is a partition of N, we conclude that

∥x∥pℓp =

∞∑
n=0

µp(x, Fn)
p ⩽ f(θ)x(1)p−1 = f(θ)∥x∥p−1

∞ , where f(θ) = θ+1+
2p−1

(2p−1 − 1)θp−1
.

This defines a smooth function f : (0,∞) → (1,∞) whose second derivative f ′′(θ) = 2p−1p(p−1)
(2p−1−1)θp+1

is positive. Hence f is convex, so max{f(θ) : 1 ⩽ θ ⩽ 2} = max{f(1), f(2)}. We find that

f(1) = f(2) =
3 · 2p−1 − 2

2p−1 − 1
,

and therefore the inequality (A.1) is satisfied for some constant Kp ⩽ 3·2p−1−2
2p−1−1 .

To verify that this constant is at least 2p−1
2p−1−1 , take k ∈ N and define x : N → (0,∞) by

x(j) =


1

2k
for 1 ⩽ j < 2k+1,

1

2n
for 2n ⩽ j < 2n+1, where n ∈ (k,∞) ∩ N.

Then ∥x∥∞ = 1
2k

and

∥x∥pℓp =
2k+1 − 1

2kp
+

∞∑
n=k+1

2n

2np
=

2

2k(p−1)
− 1

2kp
+

1

2k(p−1)(2p−1 − 1)
.

We claim that ∥x∥S1 = 1. Since x is decreasing, it suffices to consider Schreier sets of the
form [j, 2j) ∩ N for j ∈ N when computing ∥x∥S1

. Clearly µ1(x, [j, 2j) ∩ N) = j/2k ⩽ 1 for
1 ⩽ j ⩽ 2k. Otherwise j = 2n +m for some n ⩾ k and 1 ⩽ m ⩽ 2n, and we have

µ1(x, [j, 2j) ∩ N) =
2n −m

2n
+

2m

2n+1
= 1.

This proves the claim. Hence

Kp ⩾
∥x∥pℓp

∥x∥p−1
∞ ∥x∥S1

=
( 2

2k(p−1)
− 1

2kp
+

1

2k(p−1)(2p−1 − 1)

)
2k(p−1)

= 2− 1

2k
+

1

2p−1 − 1
→ 2 +

1

2p−1 − 1
=

2p − 1

2p−1 − 1
as k → ∞.

The inequality stated in the last line of the theorem follows immediately from (A.1) because
the pth Baernstein norm 1-dominates the first Schreier norm due to the fact that

µ1(x, F ) = βp(x, {F}) (x ∈ KN, F ∈ S1). □

References

[1] F. Albiac and N.J. Kalton, Topics in Banach space theory. Graduate Texts in Mathematics 233, Springer,
New York, 2006.

[2] D.E. Alspach and S. Argyros, Complexity of weakly null sequences, Diss. Math. (Rozprawy Mat.) 321
(1992).

[3] A. Baernstein II, On reflexivity and summability, Studia Math. 42 (1972), 91–94.
[4] K. Beanland, N.J. Laustsen and T. Kania, Closed ideals of operators on the Tsirelson and Schreier spaces,

J. Funct. Anal. 279 (2020), 108668.
[5] B. Beauzamy, Banach–Saks properties and spreading models, Math. Scand. 44 (1979), 357–384.



28 N.J. LAUSTSEN AND J. SMITH

[6] A. Bird and N.J. Laustsen, An amalgamation of the Banach spaces associated with James and Schreier,
Part I: Banach-space structure, in Proceedings of the 19 th International Conference on Banach Algebras
(ed. R.J. Loy, V. Runde and A. Sołtysiak), Banach Center Publications 91 (2010), 45–76.

[7] P.G. Casazza and T.J. Shura, Tsirelson’s space. Springer Lecture Notes in Mathematics 1363, Springer-
Verlag, Berlin, 1989.

[8] R.M. Causey and A. Pelczar-Barwacz, Equivalence of block sequences in Schreier spaces and their duals,
preprint available at https://arxiv.org/abs/2311.00761

[9] H.V. Chu and Th. Schlumprecht, Higher order Tsirelson spaces and their modified versions are isomorphic,
preprint available at https://arxiv.org/abs/2401.16491

[10] J. Diestel, Sequences and series in Banach spaces. Springer-Verlag, New York, 1984.
[11] H. Fetter and B. Gamboa de Buen, The James forest. LMS Lecture Notes 236, Cambridge University Press,

1997.
[12] J. Flores, F. Hernandez, E. Semenov and P. Tradacete, Strictly singular and power compact operators on

Banach lattices, Israel J. Math. 188 (2012), 323–352.
[13] D. Freeman, Th. Schlumprecht and A. Zsák, Banach spaces for which the space of operators has 2c closed

ideals, Forum Math., Sigma 9 (2021), 1–20.
[14] I. Gasparis and D.H. Leung, On the complemented subspaces of the Schreier spaces, Studia Math. 141

(2000), 273–300.
[15] W.T. Gowers, A solution to Banach’s hyperplane problem, Bull. London Math. Soc. 26 (1994), 523–530.
[16] W.B. Johnson and G. Schechtman, The number of closed ideals in L(Lp), Acta Math. 227 (2021), 103–113.
[17] N.J. Laustsen, Maximal ideals in the algebra of operators on certain Banach spaces, Proc. Edinb. Math.

Soc. 45(2002), 523–546.
[18] N.J. Laustsen and R.J. Loy, Closed ideals in the Banach algebra of operators on a Banach space, in Pro-

ceedings of the Conference on Topological Algebras, their Applications, and Related Topics (ed. K. Jarosz
and A. Sołtysiak), Banach Center Publications 67 (2005), 245–264.

[19] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Springer-Verlag, Berlin, 1977.
[20] A. Manoussakis and A. Pelczar-Barwacz, Small operator ideals on the Schlumprecht and Schreier spaces,

J. Funct. Anal. 281 (2021), 109156.
[21] A. Pełczyński, Banach spaces on which every unconditionally converging operator is weakly compact, Bull.

Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 10 (1962), 641–648.
[22] W. Pfaffenberger, On the ideals of strictly singular and inessential operators, Proc. Amer. Math. Soc. 25

(1970), 603–607.
[23] Th. Schlumprecht, An arbitrarily distortable Banach space, Israel J. Math. 76 (1991), 81–95.
[24] J. Schreier, Ein Gegenbeispiel zur Theorie der schwachen Konvergentz, Studia Math. 2 (1930), 58–62.
[25] C.J. Seifert, Averaging in Banach spaces. Kent State University Graduate School Dissertations, 1977.
[26] A.E. Tong, Diagonal submatrices of matrix maps, Pac. J. Math. 32 (1970), 551–559.

(N.J. Laustsen) School of Mathematical Sciences, Fylde College, Lancaster University, Lan-
caster LA1 4YF, United Kingdom

Email address: n.laustsen@lancaster.ac.uk

(J. Smith) School of Mathematical Sciences, Fylde College, Lancaster University, Lancaster
LA1 4YF, United Kingdom

Email address: j.smith43@lancaster.ac.uk

https://arxiv.org/abs/2311.00761
https://arxiv.org/abs/2401.16491

	1. Introduction
	2. Preliminaries, including a saturation result for the Baernstein and Schreier spaces
	3. An application to operator ideals: the proof of thmsmalllargeideals(ii)
	4. The Gasparis–Leung index and its applications
	5. Spatial ideals of operators on the Baernstein and Schreier spaces
	6. Finding 2c many closed ideals of operators: the proofs of thmsmalllargeideals(i) and (iii)
	Appendix A. Jameson's inequality for the Schreier and Baernstein norms
	References

