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Classical cosmology exhibits a particular kind of scaling symmetry. The dynamics of the
invariants of this symmetry forms a system that exhibits many of the features of open systems
such as the non-conservation of mechanical energy and the focusing of measures along the
dynamical flow. From these properties, we show that important dynamical features emerge
that are not present in closed systems. In particular, a large and physically plausible class of
cosmological models give rise to a natural arrow of time. We then argue that the appropriate
notion of closure in cosmology is dynamical closure - that a system can be integrated without
reference to external factors. This is realised in physical systems in terms of the algebraic
closure of the equations of motion such that the system is autonomous. Remarkably, in
a growing class of models it can be shown that the autonomous system obtained remains
regular and can be integrated through the big bang.

I. INTRODUCTION

What is a closed system? In trying to answer this question, we will find standard responses
wanting in many respects. Our proposed solution — one that makes sense for self-gravitating
systems — will have some seemingly unusual features. We will show that these features have
unexpected virtues and only seem surprising because of the inadequacies of naive definitions
of closed systems. In fact, our proposal will be seen to lead to some rather remarkable conclu-
sions: the universe behaves like an open system where non-conservation of energy leads to the
elimination of the conventional Big Bang and a solution to the problem of the Arrow of Time
(AoT).

An important aspect of our proposal is the claim that energy need not be conserved in a
closed system. Common intuition suggest that if a system is truly closed then there is nowhere
for the energy to escape. But such an argument begs the question. Assuming that the energy,
which is just some function on the state space of the system, must ‘escape’ somewhere when
its value decreases is precisely the assumption that the energy must be conserved.

A more rigorous argument for conservation of energy in a closed system is to require the
autonomy of the Lagrangian used to generate the system’s laws. Closure of the system could
be taken to motivate the formal requirement that the Lagrangian be a function only of an
algebraically closed set of dependent variables (e.g., field configurations and their derivatives)
with no explicit dependence on the independent variables (e.g., spacetime coordinates x or t)
of the system. In this case, it’s easy to show1 that the equations of motion are equivalent
to a symplectic Hamiltonian system where the Hamiltonian is a function only of phase space.
A straightforward application of the theorems of symplectic geometry then suggests that the
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Hamiltonian function is a constant of motion. Identifying the Hamiltonian with the energy
then gives conservation of energy.

This argument, though general and elegant, has several difficulties. First, it’s not al-
ways appropriate to identify the Hamiltonian function with the energy of the system. Any
reparametrization-invariant theory, such as general relativity, will have a vanishing Hamilto-
nian, and this cannot not lead to an interesting notion of energy. Second, the argument assumes
that the laws of the theory are generated by Hamilton’s principle, which under the assumption
of the autonomy of the Lagrangian leads to a symplectic system. But many interesting physical
systems, as we will argue later, are not symplectic. There is thus no guarantee, in general, that
the Hamiltonian — let alone the energy — will be conserved in a non-symplectic system.

An alternative motivation for conservation of energy could run through Noether’s first the-
orem and the assumption of time-translation invariance of the Lagrangian. Noether’s first
theorem, however, also assumes that the equations of motion are generated by Hamilton’s prin-
ciple and therefore also excludes non-symplectic systems. Moreover, it’s not clear that time-
translation invariance of the Lagrangian should be a necessary condition for a closed system.
In order to have a definition of a closed system that is general enough to include non-symplectic
systems, one must therefore abandon the notion that energy must be conserved.

There are, however, naive arguments against the existence of non-symplectic closed systems.
These arguments run through Liouville’s theorem, which gives the unique Liouville measure
that is conserved in a (finite-dimensional) symplectic system.2 The existence of such a measure
guarantees that conserved probability distributions can be defined within the theory. Thus,
within symplectic systems there is a straightforward way to ‘conserve probabilities.’ The con-
ditions for Liouville’s theorem are not, however, necessary conditions for being able to define
conserved probabilities outside of symplectic systems. For example, in contact systems, which
are not symplectic and will play an important role in our considerations below, generalisations
of Liouville’s theorem guarantee a unique dynamically conserved measure. Thus, there exists
perfectly well-defined notions of probability for closed non-symplectic systems.

Our proposal for defining a closed system does not require the system to be symplectic.
Instead, it makes use of an essential element of the proposals given above: the requirement
of the autonomy of the dynamical system in question. While symplectic proposals rely on
the autonomy of the Lagrangian and the use of Hamilton’s principle to generate autonomous
equations of motion, ours will focus more directly on the autonomy of the equations of motion
themselves. In particular, we will define a closed dynamical system as a system whose dynamical
laws are deterministic and algebraically closed in terms of a particular algebra of observables.
We will be silent on the nature of the observable algebra in question so that the algebraic
closure of our equations does not in principle prevent us from treating probabilistic or quantum
theories (modulo the measurement problem).

To begin, we will give a simple example to illustrate different senses in which a dynamical
system can be closed. This will help both to motivate our proposal and to illustrate the
consequences for cosmology.

A. Closure in the harmonic oscillator

Let us first consider an example of a system that is generally accepted to be closed, and
is so under all the definitions discussed above. This is the example of the harmonic oscillator

2 No such finite measure exists in a infinite-dimensional system.



3

consisting of two constants: the mass m and spring constant k; and an equation of motion
relating acceleration a to position x,

a = −kx. (1.1)

In this system, the mechanical energy,

E =
mv2

2
+

kx2

2
(1.2)

which is also numerically equal to the Hamiltonian of the system, is constant. If we plot the
trajectory of such a particle on phase space (i.e. plotting momentum against position) we find
that the orbits form ellipses, which we can directly see is the result of the energy, E, being
constant along a classical trajectory. Given an ensemble of such systems, each with some initial
position and momentum determined such that the ensemble spreads over some region R in the
phase space, the dynamical flow of the ensemble is such that R is rotated about the origin at
some fixed angular velocity while the volume it occupies on phase space is constant. This is a
direct consequence of Liouville’s theorem, which applies to this system.

Let us now imagine generalising the harmonic-oscillator model in the following standard
way by adding a damping term proportional to the velocity v:

ma = −kx− fv (1.3)

where f is a constant. There are now at least two senses in which the system is no longer closed.
First, the mechanical energy of the system decreases over time because dE/dt is proportional to
−v2 < 0. Second, the orbits on phase space are no longer ellipses but spirals, which eventually
come to rest at the origin. The region R then shrinks over time to a point at the origin.

But although our model is open in the sense that neither energy nor Liouville volume are
preserved, it is nevertheless autonomous because the equations of motion are entirely self-
contained: given an initial x and v and the value of f , we can solve the dynamical equations for
all time without reference to any other information. This damped model is then autonomous,
and therefore closed, in the sense we have defined above.

At this point, one might contend that damped oscillators should be understood as open
systems because they are usually thought to interact dynamically with their environments; for
example, through air resistance. But the model itself makes no explicit reference to such effects,
and including these explicitly would ultimately involve knowing more information about the
environment and its interactions with the system. On the other hand, the damped oscillator
can be taken as a complete system making no reference to the outside world, where the value
of f is akin to a constant of nature. Absent further modeling assumptions, the system can
thus be seen to be closed in the sense that all future behaviour can be inferred from current,
self-contained knowledge.

The models treated in this section illustrate the three distinct notions of ‘closure’ discussed
in the introduction. Note that these notions are completely independent: physical systems may
exhibit any or none of these. But because the implications of each notion can differ drastically,
it is important identify which notions are relevant (or not) a system in question.

II. CONTACT SYSTEMS

One class of systems with autonomous equations of motion that gives rise neither to con-
served Liouville forms nor to conserved energies is the class of contact systems. Contact me-
chanics can be thought of as the odd-dimensional counterpart to symplectic mechanics. Here,
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for reasons of length, we will introduce only the necessary parts for our analysis, and work
directly in Darboux coordinates. Comprehensive and general introductions can be found in
[5, 13].

Herglotz [18] considered a generalization of the usual Lagrangian mechanics to include La-
grangians that are dependent on the action, i.e.

S =

∫
L(qi, q̇i, S)dt (2.1)

the minimization of which gives rise to a slightly modified version of the usual Euler-Lagrange
equations, henceforth called the Herglotz-Lagrange equations:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
− ∂L

∂S

∂L
∂q̇i

(2.2)

Here we see that when the Lagrangian is independent of the action the usual equations are
recovered. The Lagrangian is taken to be a function of the tangent bundle over configuration
space and the action. This is an odd dimensional space. By construction, our system is
autonomous because the Lagrangian is a function only of the coordinates, their derivatives and
the action. We can perform a Legendre transform and arrive at a contact Hamiltonian following
the usual scheme. Let p = ∂L

∂q̇ . Then, the contact Hamiltonian is

Hc =
n∑

i=1

piq̇i − L (2.3)

From this have the contact Hamilton equation:

q̇i =
∂Hc

∂pi
ṗi = −∂Hc

∂qi
− ∂Hc

∂S

∂Hc

∂pi
Ṡ =

∑
pi
∂Hc

∂pi
−Hc (2.4)

Again, the usual Hamilton equations are recovered when the contact Hamiltonian is independent
of the action. It is a straightforward exercise to see that the contact Hamiltonian is not
conserved under time evolution with

Ḣc = −∂Hc

∂S
Hc (2.5)

The contact form, η =
∑n

i=1 pidqi − dS, is the odd-dimensional counterpart to the symplectic
potential. To obtain a volume form on our contact phase space, written in the coordinates qi,pi
and S, we take

Ωc = η ∧ dηn = −dS ∧
n∧

i=1

(dqi ∧ dpi) (2.6)

Since the space is odd dimensional, we cannot construct a Liouville-type measure because the
symplectic form is a two-form, and hence any product of symplectic forms is an even order form
that cannot serve as a volume form for an odd-dimensional space. In contrast to the Liouville
form, the privileged volume form on a contact manifold is not conserved under time evolution
and obeys

η̇ = −∂Hc

∂S
η → Ω̇c = −(n+ 1)

∂Hc

∂S
Ωc (2.7)
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Let us illustrate our construction by considering the damped harmonic oscillator. If we begin
with the Lagrangian

L =
mẋ2

2
− kx2

2
− µS

m
(2.8)

then the Herglotz–Lagrange equation for x is precisely that of the damped harmonic oscillator
1.3. Identifying p = mẋ, the contact Hamiltonian is thus

Hc =
p2

2m
+

kx2

2
+

µS

m
(2.9)

It is important to note that this does not correspond to what we would think of as the mechanical
energy of the oscillator as it contains a term proportional to the action. The evolution of the
contact Hamiltonian shows that it has an exponential decay, as does the contact volume-form.

We can interpret the decay of the contact volume-form as a focusing of solutions on the
contact space. This focusing of solutions, in turn, introduces a local time asymmetry into the
system along particular solutions, and thus can be used to define a local Arrow of Time. More
globally, because this focusing is monotonic along all solutions and points in the same direction
as the decrease in the contact Hamiltonian, the asymptotic future of any damped oscillator is
a system at rest, x = 0 = ẋ. The future of all solutions converges on to this point. Hence, for
all solutions we can further identify a global Arrow of Time: the direction pointing towards
this final state. Equivalently, this Arrow of Time is the direction in which the energy (either
mechanical, or the contact Hamiltonian itself) is decreasing. See [13] for an extensive treatment
of how an arrow of time can emerge through such a mechanism. The damped oscillator thus
has a qualitative feature distinct from its undamped counterpart.

A given contact system can be symplectified. Doing so will produce a symplectic system in
which the Hamiltonian is conserved under evolution. This is achieved at the cost of embedding
the contact phase space into a phase space with one extra dimension. This process will imply
that a single solution to the contact system is mapped onto multiple solutions of the symplectic
system, which will appear as a symmetry in the symplectic representation. A simple way to
achieve this is to expand our configuration space by introducing a new coordinate Q orthogonal
to the contact space. We can then define the symplectic Hamiltonian and symplectic potential
by

Hs = QHc θ = Qη (2.10)

It is a simple exercise to show that both the symplectic Hamiltonian and potential are con-
served as a consequence of Hamilton’s equations, and that the equation of motion for each of
the contact variables remains unchanged by this process. In our damped harmonic oscillator
example, our symplectic system is then

Hs =
π2

2mQ
+

kQx2

2
+

µQS

m
ω = dS ∧ dQ+ dπ ∧ dx (2.11)

Note that the observable algebra of this system is not generated by the original x and p = v
variables but x and π = Qv. This system, as any system made from such symplectifications,
exhibits dynamical similarity of order 1 under the similarity vector D = Q ∂

∂Q + π ∂
∂π , i.e

LDHs = Hs LDω = ω . (2.12)
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This reflects the redundancy brought to the system through the introduction of the coordinate
Q.

At this point it is natural to ask why, if an open (contact) system can always be embedded
within a closed (symplectic) system of this type, do we not simply declare the closed system to
give a complete description? Our answer comes from demanding autonomy only on the smallest
algebraic set required to retain empirical adequacy [14]. Let us motivate this demand now.

In our symplectification process we have, by necessity, introduced an auxiliary structure Q
into the system. In the case of the damped harmonic oscillator, the momenta depend upon
this auxiliary variable Q. Similarly, both the conserved volume-form and the conserved energy
(ie, the symplectic Hamiltonian) are also dependent upon Q, which can take arbitrary values.
All these quantities will therefore take arbitrary values themselves, and thus cannot be used
to represent physical structures. The value of Q can therefore have no empirical significance.
We see that autonomy in the symplectic system is only achieved in terms of an algebra that
is strictly larger than the minimum required for empirical adequacy. In terms of the measure,
this means that states are counted as distinct even if they differ only by the (arbitrary) value
of Q. This is clearly not a desirable state of affairs as it would introduce a distinctions without
a difference.

In the case of the damped oscillator, we thus find that the non-conservative, contact formu-
lation should be treated as a complete description of the system as it involves an autonomous
system that is independent of auxiliary structures. We conclude that certain apparently ‘open’
systems can reasonably be considered to be ‘closed’ in the sense that they provide complete
descriptions.

III. COSMOLOGY

Let us now apply our framework to cosmology. In our analysis we shall restrict to the
simplest case: flat (k = 0) Friedmann-Lemâıtre-Robertson-Walker (FLRW) models. The results
can be generalized to include open (k = −1) and closed (k = 1) spatial slices, and include
anisotropies, together with general matter sources [19, 23, 24]. Our considerations here thus
illustrate a much more general procedure that can be applied to a variety of different situations.
For reasons of space, we refer the interested reader to the cited papers for details.

There is an unfortunate clash of nomenclature here wherein cosmologically the terms ‘open’
and ‘closed’ (and separately ‘flat’) are used to refer to the geometry of a spatial manifold, which
can either be a three dimensional hyperboloid, a three-sphere or a compactified section of R3.
The issue of whether or not a spatial slice is compact is not at issue here since the stringent
demands of homogeneity and isotropy render such considerations orthogonal to the issue of
‘open’ versus ‘closed’ in terms of conservation laws or autonomy.

Cosmology provides an interesting test case for distinguishing between the various demands
of being ‘closed’. Since the object under consideration is taken to be the entire universe, it
may be argued that if some quantity is to be conserved in a complete accounting of physics,
then there should be nowhere to hide any losses. However, one may counter that cosmology is
simply the consideration of long wavelength modes of a full theory of general relativity, and that
a complete model should account for the transfer of, e.g., energy between modes of differing
wavelengths. Thus, a failing of strict conservation laws within the cosmological context does
not rule out such conservation for the full theory.

Such an arguments does not appear to hold in the vicinity of space-time singularities where,
per the Belinski-Khalatnikov-Lifschitz [3, 4, 15, 20, 26] conjecture, the dynamics of the full
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theory of general relativity asymptotes to those of a homogeneous solution at each spatial
point. Further, since cosmological solutions are exact solutions of the full theory, as opposed
to truncations in which some terms have been disregarded, any features of these solutions
are necessarily features of at least a subset of solutions to the full theory. Thus we have a
counter-example to the claim that conservation should hold in a full theory.

For our purposes it will suffice to demonstrate our results in the flat FLRWmodel with simple
scalar fields as matter.3 The behaviour of such a cosmology can be found from the Einstein–
Hilbert action following a symmetry reduction to homogeneous and isotropic subsystems. After
some technical considerations, the foremost of which is checking compatibility with the principle
of symmetric criticality, we can render the action as

SEH =

∫
v

(
− v̇2

3v2
+

ϕ̇i
2

2
− V

)
dt , (3.1)

where V = V (ϕ⃗) is a potential function and, to streamline our algebra, we adopt the convention
8πG = 1. We here note that a cosmological constant can be included trivially in this system by
having a non-zero minimum of V . The geometric sector is described by v, which represents the
volume of a fiducial cell in comoving coordinates. Note that although the scale factor is often
referred to as being the ‘size of the universe’, this is undefined in the case of an infinite spatial
slice. From this action we can derive (following a Legendre transformation) the Hamiltonian
description of our theory. We write this in terms of a Hamiltonian function and symplectic
structure on phase space

0 := H = v

(
−3P 2

v

8
+

P 2
i

2v2
+ V

)
(3.2)

ω = dPv ∧ dv + dPi ∧ dϕi .

Here, Pv = −4v̇
3v = 3H, where H is the Hubble parameter. Note that the Hamiltonian is a

constraint and must be zero — a fact that follows from the time reparametrization invariance
of general relativity. From the existence of these structures it is easy to verify that the ‘energy’
(the Hamiltonian) and the volume-form Ω = ω1+n where n is the number of scalar fields, are
conserved over time.4 Furthermore, from Hamilton’s equations we can find an equations of
motion of each of the phase-space variables written in terms of itself and the other phase-space
variables. Our system is therefore autonomous. It would hence seem apparent that cosmology
is a closed system following all three notions that we have discussed.

There is, however, a catch: The algebra generated by the set of variables just described is
strictly larger than what is needed for empirical adequacy. In particular, the volume v can be
set to any value by re-scaling its initial condition without affecting any empirical predictions
of the theory. This is because such predictions only ever rely on the value of v relative to some
reference value (usually taken to be an initial or final condition).

The equations of motion of our system are the Friedmann equations and the Klein-Gordon

3 We will deal exclusively with classical models in this paper, sidestepping the important question of how to
build a full-fledged quantum model of the early universe. Such models, for instance, may involve modified
dynamics on a coarse-grained level.

4 Note that while the numerical value of the Hamiltonian, treated as a phase space function, is preserved,
the functional form of its Legendre transform will depend, in general, on the time parameter chosen for the
evolution.
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equation:

H2 =
1

3

(
ϕ̇2
i

2
+ V

)
(3.3)

Ḣ + H2 = −1

3

(
ϕ̇2
i + V

)
(3.4)

ϕ̈i + 3Hϕ̇i +
∂V

∂ϕi
= 0 (3.5)

It is clear from these that the dynamical algebra closes in terms of the ϕ and H without ever
needing to refer to v. We should therefore seek a description of our system that never makes
reference to v in the first place. To do so, we note that the freedom to choose the value of v
at any time represents a scaling symmetry, and thus we can follow the analysis of [6, 13, 21]
and reduce our symplectic system to a contact system with one fewer dimension. In fact, it
was shown in [23, 24] that the dynamics of this system can be derived from an action principle
that never refers to scale in the first place by extremizing the action

Sh =

∫ t

0

(
3S2

h(t
′)

2
+

ϕ̇2
i

2
− V

)
dt′ . (3.6)

This is an action of the Herglotz type as discussed above. Together with the identification
Sh = −H this produces the original equations of motion. The action is equivalent to the
second Friedmann equation and the Herglotz–Lagrange equation for ϕ is the Klein–Gordon
equation. The contact Hamiltonian is then equivalent to the first Friedmann equation:

0 := Hc = −3S2

2
+

p2i
2

+ V η = −dS + dpi ∧ dϕi (3.7)

with pi = ϕ̇i.
There are several notable features of this description of our system. The contact Hamiltonian

and contact structure are expressed directly in terms of the minimum autonomous system
(ϕ, ϕ̇, S = −H) required for empirical adequacy rather than the usual symplectic variables used
in cosmology. The identification of the action S with the Hubble parameter makes the nature of
‘Hubble friction’ more apparent. From equation 2.6, we see that the natural volume form over
physical quantities will shrink in time. This solution focusing is a hallmark of ‘open’ systems.

The action is monotonically increasing, and can therefore act as a physically observable proxy
for time. It is common when addressing issues of measure in cosmology to construct a space of
solutions by restricting to a surface whereon the Hubble parameter is constant [1, 11]. This is
the restriction to a constant extrinsic curvature slicing in the cosmological context. Doing so
demonstrates clearly the distinction between the symplectic and contact cases: If we restrict
the Liouville form in each case to this slice, we find that Ωs = ϕ̇dv ∧ dϕ whereas Ωc = ϕ̇dϕ
since the contact phase space is one dimension smaller. Thus in the symplectic case, when
evaluating measures on phase space, one must choose an interval in v over which to integrate.
This can lead to problems because the volume is not empirically significant. However, since the
amount by which volume changes between two times is, the freedom to chose different initial
conditions for v leads to ambiguous statements [2, 7, 8, 25]. In the contact case, the measure
is unambiguous but not preserved under time evolution. The time evolution of the measure is
proportional to the action, and hence solutions focuses on those which maximize the integral
of the Hubble parameter between two time slices.
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These considerations show that in cosmology, as in the damped oscillator, ‘open’ dynamical
systems can reasonably be understood to give complete, though idealised, descriptions of the
universe.

A further enticing feature of the open description of cosmology is that the system of differen-
tial equations it produces remain deterministic at, and beyond, the initial big bang singularity.
The status of singularities within general relativity as a whole is a complex topic with the
Hawking–Penrose theorems proving that, under fairly generic circumstances, there will exist
points in a space-time beyond which the paths of physical objects within the system become
non-deterministic as the geodesics that objects follow are incomplete. Thus, Einstein’s equa-
tions do not admit a unique continuation beyond such points. In the cosmological setup, our
considerations are somewhat simpler: we need only concern ourselves with the determinism of
the system of equations derived from the symplectic Hamiltonian description, equations III.
The relevant point in evolution is when the Hubble parameter becomes infinite as does (nec-
essarily) at least one contribution to the matter energy density. A theorem due to Foster [10]
shows that under a broad range of conditions this corresponds to the kinetic energy of the
scalar field becoming infinite.

Infinities, even of physically observable quantities, do not necessary signal the breakdown of
the evolution equations. If we consider the harmonic oscillator described in terms of y = 1/x,
we see that its evolution results regularly in infinities of y in finite time. The physical system,
with x interpreted as the distance to equilibrium, sees such points as nothing special and
continues beyond them. The infinities may appear, on first glance, to inhibit the integration
of the equations of motion. However, when rendered in the usual manner through a change of
variables, we see that they are in fact an artefact of the description.

In our cosmological model it is the scalar fields that become infinite. We can change coor-
dinates through a gnomonic projection. For two scalar fields, this is achieved by projecting a
point on a plane onto one half of a sphere. The unit radius sphere is tangential to the plane,
touching at the origin. Each point P on the plane is then mapped uniquely to a point Q on
the lower half of the sphere by considering a line from the center of the sphere to the point
P , and taking Q to be the point of intersection of this line with the sphere. Thus two scalar
field values, ϕ1 and ϕ2 are represented as a pair of longitude and latitude on the sphere. The
singularity in the original coordinates (where at least one of the fields has become infinite)
is mapped to the equator of the sphere. It is then a matter of technical calculations [17, 22]
to show that the equations of motion of the system remain well defined and predictive when
expressed in terms of these sphere based coordinates.

The basic mechanism that allows for evolution through the big bang in this formalism is
clear: when the volume v is recognised as an empirically irrelevant quantity, then the geodesics
of the space-time metric lose some of their operational significance. Integrability of the contact
equations then replaces geodesic completeness as a criteria for singularity resolution. While
some progress has been made in understanding this new criterion more physically (see, for
example, [16]), ongoing efforts of underway to provide further clarifications. See, however,
[17, 22] for the full details of the technical construction and motivations.

IV. CONCLUSIONS

Throughout this work, we have investigated different inequivalent ways in which dynamical
systems can be considered closed. These different notions include closure in the sense of con-
served energy, conserved measure density and dynamical autonomy. While we found merits for
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each, no single notion of closure was completely adequate for all purposes. In particular, we
found conventional notions of conserved energy and measure to be wanting when applied to the
cosmological setting. In that context, we compared a closed (in the sense of preserved measure
density and Hamiltonian) symplectic description of cosmology to an open contact formulation.
We found that the latter should be taken to give a better complete description of the system.

Central to our argument was a requirement to treat as physical only those structures that
are strictly necessary for maintaining empirical adequacy. The symplectic ‘closed’ descriptions
violate this principle because they treat as distinct states that differ only by the overall scale of
the universe (as determined by v), which is not empirically relevant. In contrast, the contact
description does satisfy this principle as it excludes v. In other words, while the symplectic
and contact systems are both empirically adequate, they are not physically equivalent in the
sense that the symplectic system makes definite claims about the value of v — claims which
are not necessary for describing cosmological phenomena. While the contact system does not
conserve energy or measure density, it is nevertheless autonomous in the empirically sufficient
variables, and is thus ‘closed’ in the third sense defined in the introduction. This suggests that
the appropriate notion of closure in the cosmological setting is that of dynamical autonomy in
terms of the contact system.

In addition to this epistemic argument favouring the contact description, we also showed
that the contact description of cosmology has several other explanatory advantages over the
standard symplectic description. Firstly, the contact description provides a natural dynamical
explanation for the Arrow of Time.5 This arrow comes from the focusing of solutions along
the dynamical evolution — particularly when this focusing is monotonic across a dense set
of solutions that are consistent with observation. Indeed, we saw that this is precisely what
occurs in the cosmological models we considered since the solution focusing is proportional to
the Hubble parameter, and Hubble expansion is monotonic under a dense set of solutions in the
presence of a positive cosmological constant.6 In symplectic description, the natural measure
is the time-independent Liouville measure, which exists because the symplectic theory counts
states related by different values of v as distinct. It is thus extremely unnatural to use time-
dependent measures in the symplectic description. As a result, the Arrow of Time is usually
explained in terms of some version of a past hypothesis. The limitations of a past hypothesis
have been discussed by many authors (e.g., [9, 12]). In the description we are advocating, these
difficulties are avoided because a past hypothesis is unnecessary.

A second advantage of the ‘open’ model7 is that, while it agrees with the ‘closed’ description
wherever that description is valid, it continues to be regular when the ‘closed’ system breaks
down. The ‘open’ model can be integrated through the initial singularity unambiguously. The
contact system is thus sufficient to save the phenomena while avoiding the problematic aspects
of a big bang singularity.
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