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Abstract: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a Mars-dedicated 9 

compact reconnaissance imaging spectrometer that captures remote sensing data with very fine spectral 10 

resolution. However, the spatial resolution of CRISM data is relatively coarse (18 m), limiting its application 11 

to regional scales. The Context Camera (CTX) is a digital camera equipped with a wide-angle lens, providing 12 

a finer spatial resolution (6 m) and larger field-of-view, but CTX provides only a single panchromatic band. 13 

To produce CRISM hyperspectral data with finer spatial resolution (e.g., 6 m of CTX images), this research 14 

investigated spatial-spectral fusion of 18 m CRISM images with 6 m CTX panchromatic images. In 15 

spatial-spectral fusion, to address the long-standing issue of incomplete data fidelity to the original 16 

hyperspectral data in existing methods, a new paradigm called Data Fidelity-oriented Spatial-Spectral Fusion 17 

(DF-SSF) was proposed. The effectiveness of DF-SSF was validated through experiments on data from six 18 

areas on Mars. The results indicate that the fusion of CRISM and CTX can increase the spatial resolution of 19 

CRISM hyperspectral data effectively. Moreover, DF-SSF can increase the fusion accuracy noticeably while 20 

maintaining perfect data fidelity to the original hyperspectral data. In addition, DF-SSF is theoretically 21 

applicable to any existing spatial-spectral fusion methods. The 6 m CRISM hyperspectral data inherit the 22 

advantages of the original 18 m data in spectral resolution, and provide richer spatial texture information on 23 

the Martian surface, with broad application potential. 24 
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1. Introduction  30 

 31 

As a neighboring planet in the solar system, Mars has always been a focus of human fascination and, more 32 



 

 

recently, an emerging target for human exploration. Its known, abundant resources, based on our gradually 33 

deepening understanding of its geology, landform and atmosphere, may be important for the future 34 

development of human society. With advances in space technology, Mars exploration is increasingly seen as 35 

an important pathway for space resources development and scientific technological innovation. 36 

As an advanced imaging technology, hyperspectral remote sensing provides data with a very fine spectral 37 

resolution for observing the surface of Mars, offering unique opportunities for a deeper understanding of the 38 

geology and environment of Mars. The main advantage of hyperspectral images over multispectral images 39 

lies in the richer spectral information, which is crucial for studying the mineral composition and formation 40 

mechanisms on the surface of Mars. The Mars Reconnaissance Orbiter (MRO) was launched on August 12, 41 

2005 (Zurek and Smrekar, 2007) to investigate the geology and climate of Mars. Its scientific objectives 42 

include observing the current climate of Mars, searching for water activity, mapping surface features on Mars, 43 

and studying potential future landing sites. The MRO carries several instruments, including the Compact 44 

Reconnaissance Imaging Spectrometer for Mars (CRISM) (Murchie et al., 2007) and the Context Camera 45 

(CTX) (Malin et al., 2007). These two sensors capture information about the same area with different spectral 46 

and spatial resolutions simultaneously. Specifically, CRISM is operated in hyperspectral mode, acquiring 47 

hyperspectral images covering more than four hundred spectral bands from the visible to near-infrared 48 

wavelengths. However, its spatial resolution is 18 m, which is relatively coarse for observing detailed spatial 49 

texture information in local areas. The primary function of CTX is to provide background information for 50 

other MRO instruments through simultaneous observations. The coverage of the images captured by CTX is 51 

larger than that of CRISM and the spatial resolution is about 6 m, which is three times finer than for CRISM 52 

(Malin et al., 2007). However, these images are single-band and do not provide spectral information. This 53 

study proposed to downscale the 18 m CRISM hyperspectral images to 6 m, with the aid of the 6 m fine 54 

spatial resolution CTX images. The 6 m hyperspectral images can potentially provide more spatial details 55 

about the surface of Mars while preserving the fine spectral resolution of CRISM. 56 

Spatial-spectral fusion (also known as pan-sharpening) aims to fuse images with fine spectral resolution, 57 

but coarse spatial resolution with images with fine spatial resolution, but coarse spectral resolution (e.g., 58 

panchromatic image) in the same region to create images with both fine spatial and spectral resolutions 59 

(Zhang and Shen, 2016). It can resolve the trade-off that occurs between spatial and spectral resolution when 60 

designing a single sensor. The existing spatial-spectral fusion methods include component substitution 61 

(CS)-based, multi-resolution analysis (MRA)-based, variational optimization (VO)-based, matrix 62 

factorization, learning-based, and geostatistical approaches (Ghamisi et al., 2019; Loncan et al., 2015; 63 

Thomas et al., 2008; Vivone et al., 2014; Yang et al., 2022). The main idea of the CS methods is to transform 64 



 

 

the multi/hyperspectral images into another space, and utilize the panchromatic image to substitute the 65 

transformed coarse spatial resolution component (Aiazzi et al., 2007; Thomas et al., 2008). Representative 66 

methods include principal component analysis (PCA) (Shah et al., 2008; Shettigara, 1992), Gram-Schmidt 67 

transformation (GS) (Laben and Brower, 2000), Gram-Schmidt adaptive (GSA) (Aiazzi et al., 2007). The 68 

core idea of MRA is to extract fine spatial resolution details from the panchromatic image and inject them 69 

into the coarse spatial resolution multi/hyperspectral images (Chavez et al., 1991). Representative methods 70 

include smoothing filter-based intensity modulation (SFIM) (Liu, 2000), generalized Laplacian pyramid 71 

(GLP) with modulation transfer function (MTF)-matched filter (MTF-GLP) (Aiazzi et al., 2006), and GLP 72 

with MTF-matched filter and multiplicative injection model (MTF-GLP-HPM) (Lee and Lee, 2009). The 73 

VO-based methods construct a variational optimization model to take full advantage of the spatial 74 

information of panchromatic image and spectral information of coarse spatial resolution multispectral image. 75 

For example, the variational approach developed by Fang et al. (2013) consists of three terms, which aim to 76 

minimize the difference in spatial gradients between the panchromatic image and fused image, the difference 77 

between original coarse multispectral image and (degraded) fused image, and the difference in spectral 78 

gradients between original coarse multispectral image and fused image. The matrix factorization methods 79 

were proposed from the perspective of spectral unmixing. A representative method in this category is coupled 80 

nonnegative matrix factorization (CNMF) (Berne et al., 2010; Yokoya et al., 2012), which extracts 81 

endmembers from coarse spatial, but fine spectral resolution image and proportions from fine spatial, but 82 

coarse spectral resolution image. The CNMF prediction is the linear combination of the proportions and 83 

endmembers. The learning-based methods focus on establishing a nonlinear mapping relationship between 84 

the fine spatial resolution panchromatic images and coarse spatial resolution multi/hyperspectral images or 85 

learning the intrinsic structure of the data observed. Deep learning has become a common choice for 86 

spatial-spectral fusion due to its strong fitting ability. Early attempts are mainly supervised methods, which 87 

require multi/hyperspectral images at the target fine spatial resolution. Examples for this type of methods 88 

include the pan-sharpening neural network (PNN) (Masi et al., 2016) and a deep network architecture for 89 

pansharpening (PanNet) (Song et al., 2018; Yang et al., 2017, 2018). Recently, more advanced versions were 90 

developed, such as domain transform model driven by deep learning (Sun et al., 2024) and progressive 91 

multi-iteration registration-fusion co-optimization network (Qu et al., 2024). For supervised methods, 92 

however, the applicability in reality can be compromised, as it can be difficult to collect required fine spatial 93 

resolution multi/hyperspectral images for training. Alternatively, unsupervised deep learning strategies have 94 

been developed for spatial-spectral fusion in recent years (Ma et al., 2020; Qu et al., 2023; Sun et al., 2023), 95 

which do not need multi/hyperspectral images at the target fine spatial resolution for training, but learn the 96 



 

 

intrinsic structure from the input data. Specifically, the input panchromatic image and coarse multispectral 97 

image are used in the construction of loss factions to constrain the predictions of the networks. Spatially, it is 98 

assumed that the spatial information presented by the (spectrally degraded) fused image should be similar to 99 

that of the panchromatic image. Spectrally, it is assumed that the (spatially degraded) fused image should be 100 

the same as the input multispectral image. The geostatistical approaches can take into account the changes in 101 

the spatial support of the data and the point spread function (PSF) effect of sensors (Atkinson et al., 2008; 102 

Wang et al., 2014). The most significant advantage of geostatistical methods is that the downscaling results 103 

are consistent with the original coarse spatial resolution data. Representative methods include area-to-point 104 

regression kriging (ATPRK) (Wang et al., 2016), downscaling cokriging (DSCK) (Pardo-Igúzquiza et al., 105 

2006), and kriging with an external drift (KED) (Sales et al., 2012). 106 

Significant progress has been made in research on spatial-spectral fusion based on various Earth 107 

observation datasets. However, research on fusion of datasets on other planets is relatively limited. To the 108 

best of our knowledge, there has been no study on the fusion of CTX and CRISM images for Mars. The 109 

surface of Mars is generally covered by rocks and minerals with various terrain and landform features, which 110 

is substantially different from that for the Earth surface. The main advantage of hyperspectral image over 111 

multispectral image is that the former can provide more detailed spectral information, which significantly 112 

enhances the ability to distinguish between different types of rocks and minerals. In this case, the 113 

effectiveness of existing spatial-spectral fusion methods needs to be validated. Most current spatial-spectral 114 

fusion methods suffer from a long-standing issue: they cannot achieve data fidelity of the original coarse 115 

spatial resolution images. That is, when the spatial-spectral fusion results are degraded to the original coarse 116 

spatial resolution, they are not consistent with the original coarse image. To realize data fidelity is crucial for 117 

hyperspectral sharpening, as the reliability of spectra plays key role in downstream applications such as rock 118 

and mineral identification. 119 

Geostatistics provides a new solution for realization of spatial-spectral fusion with perfect data fidelity to 120 

the original coarse spatial resolution images. Specifically, various models based on area-to-point kriging 121 

(ATPK) (Atkinson, 2013; Kyriakidis, 2004; Kyriakidis and Yoo, 2005; Wang et al., 2015) including DSCK, 122 

KED, and ATPRK, have significant advantages in preserving the original coarse image. That is, when the 123 

spatial-spectral fusion result is degraded to the original spatial resolution, it is completely consistent with the 124 

original image. This characteristic of complete data fidelity is also referred to complete data coherence in 125 

geostatistics. 126 

This paper proposed a completely new paradigm of spatial-spectral fusion called DF-SSF (Data 127 

Fidelity-oriented Spatial-Spectral Fusion) for fusion of CTX and CRISM images, where the CTX image is 128 



 

 

treated as the panchromatic image. It aims to preserve perfectly the original CRISM data. DF-SSF achieves 129 

this by utilizing ATPK to downscale the difference (i.e., coarse residual image) between the existing fusion 130 

result (i.e., produced by any of the existing spatial-spectral fusion methods) and the original coarse spatial 131 

resolution image. The produced fine spatial resolution residual image is then added to the existing fusion 132 

result to obtain the final fusion result with complete data fidelity. The contributions of this paper mainly lie in 133 

two aspects. 134 

1) It is the first study on the fusion of CTX and CRISM images on Mars to enhance the spatial resolution 135 

of CRISM hyperspectral images. Although spatial-spectral fusion has been developed over decades, to 136 

the best of our knowledge, there is no research on Mars remote sensing data dominated by rocks and 137 

minerals, especially for fusion of CTX and CRISM data, where the preservation of original spectra is 138 

crucial for downstream applications. 139 

2) A completely new paradigm DF-SSF, is proposed for spatial-spectral fusion with complete data fidelity 140 

to the original coarse spatial resolution data. DF-SSF is theoretically applicable to any existing 141 

spatial-spectral fusion method. 142 

The remainder of this paper is divided into five sections. Section 2 provides a brief introduction to the 143 

study area, research data, and the corresponding processing. Section 3 explains the principles of the proposed 144 

DF-SSF method. The experimental results for validation of the method are presented in Section 4. Section 5 145 

discusses issues related to the proposed method and outlines future directions. Finally, Section 6 concludes 146 

the paper. 147 

 148 

 149 

2. Study area and data 150 

 151 

2.1. Study area 152 

 153 

The study area of this paper consists of six regions, as shown in Table 1 (Bennett et al., 2014). Among 154 

them, Eberswalde Crater, Mawrth Vallis, and Holden Crater (Poulet et al., 2014) were once considered as 155 

candidate landing sites for Mars missions. The Melas Chasma area is a canyon on the Martian surface, while 156 

the Gale Crater (Peulvast and Masson, 1993; Poulet et al., 2014) was the location where the Curiosity Rover 157 

landed successfully in 2012 and is currently considered for scientific exploration. The Jezero Crater (Goudge 158 

et al., 2015) was the landing site of the Perseverance Rover, which landed successfully in 2021. These six 159 

regions have become the focus of scientific research due to their unique geological and geomorphological 160 



 

 

characteristics. Utilizing the hyperspectral remote sensing data covering these areas, it is possible to study 161 

Martian rocks, minerals and many other topics. The abundance, distribution, and properties of these rocks 162 

and minerals can provide insights into the composition and evolutionary processes of the Martian surface. 163 

In-depth study of these regions can help us understand the geological history and hydrological processes of 164 

Mars more comprehensively. 165 

 166 

2.2. CRISM images 167 

 168 

All CRISM images used in this paper are Map-Projected Targeted Reduced Data Record (MTRDR) 169 

(Murchie et al., 2007) products obtained at the latest, publicly available calibration level. The MTRDR 170 

includes map-projected Targeted Empirical Record corrected (TER) calibrated I/F (the ratio of the sensor's 171 

spectral irradiance to the solar spectral irradiance) spectral information and excludes spectral channels with 172 

questionable radiance measurements ("bad bands"). The hyperspectral image cubes in the MTRDR product 173 

suite are stored as 32-bit real number units. As a hyperspectral sensor, CRISM covers the spectral range from 174 

362 nm to 3920 nm with a fine spectral resolution of 6.55 nm per channel. This range includes the visible, 175 

near-infrared and shortwave infrared wavelengths. Through these channels, CRISM obtains spectral 176 

information from the Martian surface, which can be used for studying Martian mineralogy, geology and 177 

geomorphology. The CRISM data used in this study are MTRDR products with a spatial resolution of about 178 

18 m in this hyperspectral mode. 179 

 180 

2.3. CTX images 181 

 182 

The CTX images used in this paper are Experiment Data Record (EDR) (Malin et al., 2007) products 183 

containing raw CTX images along with their associated metadata information (e.g., observation time, 184 

exposure time, camera parameters, etc.). The raw EDR data are convenient for further processing, analysis 185 

and utilization. Unlike multispectral images, CTX images contain only a single-band, with a spectral range 186 

from 500 nm to 700 nm. On the MRO's near-circular, near-polar mapping orbit, the spatial resolution of CTX 187 

is about 6 m. This relatively fine spatial resolution enables CTX to capture more detailed surface features on 188 

Mars, including impact craters, canyons, dunes, and some other intricate information. 189 

 190 

2.4. Data processing 191 

 192 



 

 

The CRISM MTRDR images were used as originally provided, while CTX images were processed using 193 

the ISIS3 (Sucharski et al., 2020) pipeline. The raw CTX image files were first converted to ISIS3 image 194 

format and then subjected to image map projection (Equidistant cylindrical). Since precise alignment 195 

between the input hyperspectral and panchromatic images is essential for spatial-spectral fusion, image 196 

registration was also performed. Geometric registration between the CRISM and CTX images was achieved 197 

by using rasterio's virtual warping to reproject the CRISM images into the coordinate reference system of the 198 

corresponding CTX images. However, even within the same coordinate system, the CRISM and CTX images 199 

may not be perfectly aligned. Therefore, subsequent registration is necessary. In this paper, the software 200 

ENVI was employed for local registration through the Harris corner detection algorithm. The final 6 m CTX 201 

and 18 m CRISM images of the study area are shown in Fig. 1. The spatial sizes of CTX and CRISM images 202 

used in each region are 900³900 and 300³300 pixels, respectively. 203 

 204 

Table 1. Locations of the six study regions. 205 

Regions 
Latitude (°) Longitude (°) 

Min Max Min Max 

Eberswalde crater -24.5 -23.4 -34.0 -32.7 

Mawrth Vallis 23.3 24.6 -19.6 -18.4 

Holden crater -27.6 -25.9 -36.0 -34.0 

Melas Chasma -10.5 -8.7 -78.0 -75.0 

Jezero crater 18.0 18.8 77.2 78.4 

Gale crater -0.9 -3.8 135.9 139.9 

 206 

      
(a1) (b1) (c1) (d1) (e1) (f1) 

      
(a2) (b2) (c2) (d2) (e2) (f2) 

Fig. 1. The CTX (6 m) and CRISM (18 m) images of the six regions (bands 37, 25 and 12 as RGB). The spatial sizes of the CTX 207 

and CRISM images are 900³900 and 300³300, respectively. (a) Eberswalde Crater. (b) Mawrth Vallis. (c) Holden Crater. (d) Melas 208 

Chasma. (e) Jezero Crater. (f) Gale Crater. 209 

 210 



 

 

 211 

3. Methods 212 

 213 

3.1. Overview of DF-SSF 214 

 215 

The main requirement of the Wald protocol I (Wald et al., 1997) in spatial-spectral fusion is that there 216 

should be no deviation between the spatial-spectral fusion result and the original coarse image. That is, when 217 

the fused image is degraded to the original coarse spatial resolution, it should be exactly the same as the 218 

observed coarse image. However, the reality is that existing spatial-spectral fusion models struggle to achieve 219 

data fidelity in the true mathematical sense, meaning that the residuals (i.e., the difference between the fusion 220 

result and the original coarse data) are commonly non-zero. Achieving data fidelity to the original coarse 221 

image plays a crucial role in enhancing the reliability of the fused data. Therefore, this paper proposes a 222 

completely new spatial-spectral fusion paradigm (DF-SSF) that can realize complete data fidelity to the 223 

original coarse image: 224 

 HSk = HSk
'
 + æRk,  k = 1,2,é, N (1) 

where k denotes the result of the k-th band (k=1,2,é,N, where N is the total number of bands), HSk is the 225 

spatial-spectral fusion result that enables complete data fidelity, HSk
'
 is the prediction of any existing 226 

spatial-spectral fusion model, and æRk represents the fine spatial resolution residuals present in the existing 227 

spatial-spectral fusion model. Details for calculation of HSk
'
 and æRk are introduced in the following 228 

Sections 3.2 and 3.3, respectively. The whole flowchart of the proposed DF-SSF method is sketched in Fig. 229 

2. 230 

 231 

3.2. Estimation based on existing SSF methods 232 

 233 

The widely used spatial-spectral fusion algorithms generally follow the basic principles of CS or MRA. 234 

Therefore these two categories of methods are the focus of this paper. Their main principles are briefly 235 

described as follows. 236 

For the CS-based methods, the spatial-spectral fusion result is defined as: 237 

  HSk
'
 = HSk + gk

CP - IL,  k = 1,2,é, N (2) 

in which HSk
'
 denotes the fusion result for the k-th band, HSk denotes the multi/hyperspectral image 238 



 

 

interpolated to the spatial size of the panchromatic image, g
k
C is the weight of the fine spatial resolution gain 239 

injected into the k-th band (where C represents the CS-based methods), and P denotes the panchromatic 240 

image. IL is defined as: 241 

 

IL= ɤiHSi

N

i=1

 (3) 

in which ɤi represents the fitting weight for the i-th (i=1,2,é,N) band of the multi/hyperspectral image. 242 

For the MRA-based method, the spatial-spectral fusion result is defined as: 243 

 HSk
'
 = HSk + gk

M P - PL,  k = 1,2,é, N (4) 

where PL represents the coarse spatial resolution version of the image P, and g
k
M is the weight of the fine 244 

spatial resolution gain for the k-th band (where M represents the MRA-based methods). 245 

 246 

3.3. Estimation of the residuals at fine spatial resolution 247 

 248 

For existing spatial-spectral fusion models, it is inevitable that there are coarse spatial resolution residuals 249 

(denoted as æRk
C) in their predictions, as defined as follow: 250 

 æRk
C = HSk - HSk

'
¬ (5) 

where HSk represents the observed coarse spatial resolution image of the k-th band, ¬ denotes the 251 

degradation operation, and HSk
'
¬ indicates the result of degrading the spatial-spectral fusion result of the 252 

k-th band to the original coarse spatial resolution. 253 

In this paper, we utilized ATPK to estimate the spatial resolution fine residuals æRk in Eq. (1). 254 

Specifically, for the residual of the fine spatial resolution pixel at spatial position x in the k-th band (denoted 255 

as æRk(x)), its value can be predicted through a linear combination of L spatially adjacent coarse residuals in 256 

image æRk
C: 257 

 

æRk(x) = ɓ
i

L

i=1

æRk
C(xi),  s.t.ɓi

L

i=1

=1 (6) 

where xi denotes the spatial location of the i-th neighborhood, bi denotes the weight of its corresponding 258 

coarse residual, and L is the number of neighboring coarse pixels used in the prediction. The L weights (i.e., 259 

b1, b2,..., bL) in Eq. (6) are calculated by the kriging equation as follows: 260 
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 (7) 

where the term ɔ
CC
k(xm,xn) (m, n=1,2,é,L) is the coarse-to-coarse residual semivariogram between coarse 261 

pixels centered at xm and xn in the k-th band, ɔ
FC
k(x,xm) is the fine-to-coarse residual semivariogram between 262 

fine and coarse pixels centered at x and xm in the k-th band, and q is the Lagrange multiplier. Further details 263 

on calculation of the semivariograms can be found in Wang et al. (2015, 2016). 264 

 265 

3.4. Perfect data fidelity of DF-SSF 266 

 267 

An important advantage of ATPK is the perfect coherence of the prediction with the input coarse image. 268 

That is, once the ATPK prediction is degraded to the original coarse spatial resolution, it is exactly identical 269 

to the original coarse data. Based on the perfect coherence of ATPK, the coarse residuals æRk
C can be 270 

accurately reproduced when the ATPK predictions æRk are degraded to the coarse spatial resolution as 271 

follows: 272 

 æRk¬= æRk
C (8) 

As described in Eq. (1), the prediction of DF-SSF is composed of HSk
'
 predicted by any of the existing 273 

spatial-spectral fusion methods and æRk predicted by ATPK. Combining Eqs. (1), (5) and (8), we can derive 274 

the following: 275 

 HSk ¬=HSk
'
 + æRk ¬ 

          = HSk
'
¬ + æRk¬ 

          = HSk
'
¬ +  æRk

C 

          = HSk
'
¬ +  HSk - HSk

'
 ¬ 

          = HSk 

(9) 

Eq. (9) means that once the prediction of DF-SSF (i.e.,  HSk ) is degraded to the original coarse spatial 276 

resolution, it is exactly identical to the original coarse image (i.e., HSk), thereby, achieving complete data 277 

fidelity to the original data. 278 

 279 



 

 

 280 

Fig. 2. Flowchart of the proposed DF-SSF. 281 

 282 

 283 

4. Experiments 284 

 285 

4.1. Experimental setup 286 

 287 

In this paper, two sets of experiments were designed to validate the feasibility of the spatial-spectral fusion 288 

of CRISM and CTX data, as well as the effectiveness of our proposed DF-SSF model (e.g., its data fidelity 289 

ability). The six regions introduced in Section 2 were selected. For the CRISM hyperspectral data, after 290 

removing the noisy bands, the first 70 bands covering the spectral range similar to that of the CTX 291 



 

 

panchromatic image were selected in the experiments. 292 

In the first set of experiments, the effectiveness of DF-SSF was validated utilizing simulated data. 293 

Specifically, due to the absence of 6 m CRISM images, there are no reference data for objective evaluation of 294 

the 6 m results produced by fusion of the 18 m CRISM data and the 6 m CTX data. Therefore, to ensure the 295 

existence of reliable hyperspectral reference images at the target fine spatial resolution, a commonly used 296 

strategy was adopted: the 18 m CRISM hyperspectral image and the 6 m CTX panchromatic image were 297 

degraded to 54 m and 18 m, respectively. Then the two degraded images were fused to obtain the 18 m 298 

hyperspectral image by spatial-spectral fusion. The original 18 m CRISM hyperspectral image was used as 299 

the reference image to evaluate the accuracy of the 18 m fusion result. During the degradation process, the 300 

Gaussian PSF (with a convolution kernel parameter of 0.5) was used in the experiments. This paper employs 301 

five evaluation metrics for quantitative assessment, including correlation coefficient (CC), spectral angle 302 

mapper (SAM), root mean square error (RMSE), relative global-dimensional synthesis error (ERGAS) 303 

(Ranchin and Wald, 2000) and universal image quality index (UIQI) (Wang and Bovik, 2002). For CC, 304 

RMSE, and UIQI, the values were computed band-by-band, and then averaged across all bands. For SAM, it 305 

was first calculated pixel-by-pixel and finally averaged across all pixels. To evaluate the data fidelity 306 

capability, we also evaluated the metric of coherence, which involves degrading the spatial-spectral fusion 307 

image to the original coarse spatial resolution and to calculate the CC with the original input coarse 308 

resolution image. 309 

In the second set of experiments, the actual 18 m CRISM hyperspectral data were fused with 6 m CTX 310 

panchromatic data to obtain CRISM hyperspectral data at 6 m spatial resolution. The spatial-spectral fusion 311 

performance was evaluated mainly based on visual inspection and the metric of coherence. 312 

CS and MRA are two types of the most widely used spatial-spectral fusion methods. Therefore, we applied 313 

DF-SSF to seven methods within the two categories: GS, GSA, PCA, SFIM, MTF-GLP, MTF-GLP-HPM, 314 

and guided filter PCA (GFPCA) (Liao et al., 2015). In addition, we also examined the applicability of 315 

DF-SSF to the unsupervised deep learning-based method, and a typical method of this type, that is, 316 

pansharpening based on a generative adversarial network (Pan-GAN) (Ma et al., 2020), was considered. 317 

 318 

4.2. 18 m fusion results 319 

 320 

1) Visual evaluation: Fig. 3 shows the spatial-spectral fusion results of different CS and MRA methods in 321 

the six regions. Note that the sub-areas marked in red are zoomed in Fig. 4 for clearer comparison. Visually, 322 

it is evident that all methods produce results closer to the reference images after considering data fidelity by 323 



 

 

DS-SSF. Specifically, using the DF-SSF method, the spectral distortion present in the GS and PCA methods 324 

(such as in the alluvial fan and channel areas of the Eberswalde Crater region in Fig. 3) is significantly 325 

reduced. The fusion results of the GFPCA and SFIM methods based on DS-SSF reproduce more spatial 326 

structures (as seen in the Mawrth Vallis region where surface features are depicted as relatively small and 327 

dense layers of sediment). For the MTF-GLP and MTF-GLP-HPM methods, the spectral and spatial 328 

distortions in the results are relatively minor, but when considering data fidelity, the results are closer to the 329 

reference images in the hue. 330 

2) Accuracy evaluation: Firstly, for a clearer comparison of the results from different methods, we selected 331 

two bands from the fusion results in Fig. 3 for analysis, and produced the error maps in Fig. 5. It can be 332 

observed clearly that, for all seven methods, the errors are significantly reduced when using the DF-SSF 333 

method, particularly in areas such as smooth river channels, weathered regions, and impact craters. Hence, 334 

the fusion results obtained by DF-SSF exhibit smaller errors compared to those of the original methods. 335 

Secondly, scatterplots representing the results of the original and DF-SSF methods are given in Fig. 6. From 336 

the scatterplots, it is apparent that the results of the original spatial-spectral fusion methods are relatively 337 

scattered along the axes, while the fusion results of DF-SSF are more concentrated around the y=x line, 338 

indicating that its results are closer to the reference. 339 

Table 2 provides quantitative evaluation results for the various methods in the six regions. It can be seen 340 

that the accuracy of the DF-SSF results is obviously greater than that of the original methods. For example, 341 

the CC and UIQI values of all six regions are increased by over 0.0120, the ERGAS values are all decreased 342 

by more than 0.0500, and the SAM values are all decreased by more than 0.0003. It is worth noting that even 343 

in some regions where several methods present lower accuracies (e.g., GS, GSA, and PCA in the Jezero 344 

Crater area), the accuracy is increased noticeably by using the DF-SSF method. 345 

3) The effect of band correlation: Generally, spatial-spectral fusion methods perform better on bands that 346 

have larger correlation with the panchromatic image. Fig. 7 presents the fusion accuracy (using CC as an 347 

example) of various methods for all bands in the six regions (left) and also the relationship (in terms of CC) 348 

between the original CTX data and CRISM hyperspectral bands (right). As shown in Fig. 7, the trend of all 349 

curves in the left column is similar to that of the corresponding curves in the right column. Taking the 350 

Eberswalde crater region as an example, in the right plot of Fig. 7(a), the first 20 bands present a smaller 351 

correlation with the panchromatic image compared to other bands. Correspondingly, the fusion accuracy of 352 

all methods for the first 20 bands in the left plot of Fig. 7(a) is relatively lower. The physical reason for this 353 

phenomenon is that the first 20 bands are not completely covered by the panchromatic image. For the 354 

remaining 50 bands in the visible range, the panchromatic image provides more correlated information for 355 



 

 

the fusion process, leading to more accurate fusion results. 356 

4) Coherence: Coherence is an important indicator for evaluating the quality of the spatial-spectral fusion 357 

results in terms of data fidelity. We degraded the 18 m spatial-spectral fusion results of various methods to 54 358 

m, and compared them with the input 54 m CRISM hyperspectral data. Table 3 shows the overall coherence 359 

(in terms of CC) assessment for all six regions. It can be seen clearly that the proposed DF-SSF model 360 

achieves perfect coherence for all original methods, indicating its ability to preserve the original coarse data 361 

completely. This advantage of DS-SSF lies in the perfect coherence property of ATPK, as demonstrated 362 

mathematically in Section 3.4. 363 

5) Unsupervised deep learning-based fusion results: We apply DF-SSF to Pan-GAN to validate its 364 

applicability to the unsupervised deep learning method. Since the performance of deep learning-based 365 

methods relies on the number of training data, different numbers of pairs (including 53, 28 and 14 pairs) of 366 

CRISM and CTX images were considered for training, and DF-SSF was examined in all these cases. The 367 

accuracy evaluation results are shown in Table 4. It can be seen that the spatial-spectral fusion accuracy of 368 

the proposed DF-SSF method is consistently greater than that of the original methods in all cases. For 369 

example, in the case of 53 pairs of training data, both CC and UIQI are increased by more than 0.0200, and 370 

ERGAS is decreased by more than 0.1500. Moreover, when the number of training data decreases, the 371 

accuracy of original Pan-GAN decreases correspondingly, but the advantage of DF-Pan-GAN is more 372 

obvious. For example, for the Eberswalde Crater data, the CC gain of DF-Pan-GAN over Pan-GAN is around 373 

0.07 in the case of 53 pairs, and the gain further increases to 0.10 in the case of 14 pairs. Therefore, the 374 

proposed DF-SSF method is also effective for the unsupervised deep learning approach, even under various 375 

numbers of training data. 376 
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 Fig. 3. 18 m spatial-spectral fusion results (300³300 pixels) of the six regions (bands 37, 25 and 12 as RGB). The first and second 378 

rows of each region are the results of the original SSF and DF-SSF, respectively. The sub-areas marked in red are zoomed in Fig. 4. 379 
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