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Abstract: The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a Mars-dedicated 9 

compact reconnaissance imaging spectrometer that captures remote sensing data with very fine spectral 10 

resolution. However, the spatial resolution of CRISM data is relatively coarse (18 m), limiting its application 11 

to regional scales. The Context Camera (CTX) is a digital camera equipped with a wide-angle lens, providing 12 

a finer spatial resolution (6 m) and larger field-of-view, but CTX provides only a single panchromatic band. 13 

To produce CRISM hyperspectral data with finer spatial resolution (e.g., 6 m of CTX images), this research 14 

investigated spatial-spectral fusion of 18 m CRISM images with 6 m CTX panchromatic images. In 15 

spatial-spectral fusion, to address the long-standing issue of incomplete data fidelity to the original 16 

hyperspectral data in existing methods, a new paradigm called Data Fidelity-oriented Spatial-Spectral Fusion 17 

(DF-SSF) was proposed. The effectiveness of DF-SSF was validated through experiments on data from six 18 

areas on Mars. The results indicate that the fusion of CRISM and CTX can increase the spatial resolution of 19 

CRISM hyperspectral data effectively. Moreover, DF-SSF can increase the fusion accuracy noticeably while 20 

maintaining perfect data fidelity to the original hyperspectral data. In addition, DF-SSF is theoretically 21 

applicable to any existing spatial-spectral fusion methods. The 6 m CRISM hyperspectral data inherit the 22 

advantages of the original 18 m data in spectral resolution, and provide richer spatial texture information on 23 

the Martian surface, with broad application potential. 24 
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1. Introduction 30 

 31 

As a neighboring planet in the solar system, Mars has always been a focus of human fascination and, more 32 



 

 

recently, an emerging target for human exploration. Its known, abundant resources, based on our gradually 33 

deepening understanding of its geology, landform and atmosphere, may be important for the future 34 

development of human society. With advances in space technology, Mars exploration is increasingly seen as 35 

an important pathway for space resources development and scientific technological innovation. 36 

As an advanced imaging technology, hyperspectral remote sensing provides data with a very fine spectral 37 

resolution for observing the surface of Mars, offering unique opportunities for a deeper understanding of the 38 

geology and environment of Mars. The main advantage of hyperspectral images over multispectral images 39 

lies in the richer spectral information, which is crucial for studying the mineral composition and formation 40 

mechanisms on the surface of Mars. The Mars Reconnaissance Orbiter (MRO) was launched on August 12, 41 

2005 (Zurek and Smrekar, 2007) to investigate the geology and climate of Mars. Its scientific objectives 42 

include observing the current climate of Mars, searching for water activity, mapping surface features on Mars, 43 

and studying potential future landing sites. The MRO carries several instruments, including the Compact 44 

Reconnaissance Imaging Spectrometer for Mars (CRISM) (Murchie et al., 2007) and the Context Camera 45 

(CTX) (Malin et al., 2007). These two sensors capture information about the same area with different spectral 46 

and spatial resolutions simultaneously. Specifically, CRISM is operated in hyperspectral mode, acquiring 47 

hyperspectral images covering more than four hundred spectral bands from the visible to near-infrared 48 

wavelengths. However, its spatial resolution is 18 m, which is relatively coarse for observing detailed spatial 49 

texture information in local areas. The primary function of CTX is to provide background information for 50 

other MRO instruments through simultaneous observations. The coverage of the images captured by CTX is 51 

larger than that of CRISM and the spatial resolution is about 6 m, which is three times finer than for CRISM 52 

(Malin et al., 2007). However, these images are single-band and do not provide spectral information. This 53 

study proposed to downscale the 18 m CRISM hyperspectral images to 6 m, with the aid of the 6 m fine 54 

spatial resolution CTX images. The 6 m hyperspectral images can potentially provide more spatial details 55 

about the surface of Mars while preserving the fine spectral resolution of CRISM. 56 

Spatial-spectral fusion (also known as pan-sharpening) aims to fuse images with fine spectral resolution, 57 

but coarse spatial resolution with images with fine spatial resolution, but coarse spectral resolution (e.g., 58 

panchromatic image) in the same region to create images with both fine spatial and spectral resolutions 59 

(Zhang and Shen, 2016). It can resolve the trade-off that occurs between spatial and spectral resolution when 60 

designing a single sensor. The existing spatial-spectral fusion methods include component substitution 61 

(CS)-based, multi-resolution analysis (MRA)-based, variational optimization (VO)-based, matrix 62 

factorization, learning-based, and geostatistical approaches (Ghamisi et al., 2019; Loncan et al., 2015; 63 

Thomas et al., 2008; Vivone et al., 2014; Yang et al., 2022). The main idea of the CS methods is to transform 64 



 

 

the multi/hyperspectral images into another space, and utilize the panchromatic image to substitute the 65 

transformed coarse spatial resolution component (Aiazzi et al., 2007; Thomas et al., 2008). Representative 66 

methods include principal component analysis (PCA) (Shah et al., 2008; Shettigara, 1992), Gram-Schmidt 67 

transformation (GS) (Laben and Brower, 2000), Gram-Schmidt adaptive (GSA) (Aiazzi et al., 2007). The 68 

core idea of MRA is to extract fine spatial resolution details from the panchromatic image and inject them 69 

into the coarse spatial resolution multi/hyperspectral images (Chavez et al., 1991). Representative methods 70 

include smoothing filter-based intensity modulation (SFIM) (Liu, 2000), generalized Laplacian pyramid 71 

(GLP) with modulation transfer function (MTF)-matched filter (MTF-GLP) (Aiazzi et al., 2006), and GLP 72 

with MTF-matched filter and multiplicative injection model (MTF-GLP-HPM) (Lee and Lee, 2009). The 73 

VO-based methods construct a variational optimization model to take full advantage of the spatial 74 

information of panchromatic image and spectral information of coarse spatial resolution multispectral image. 75 

For example, the variational approach developed by Fang et al. (2013) consists of three terms, which aim to 76 

minimize the difference in spatial gradients between the panchromatic image and fused image, the difference 77 

between original coarse multispectral image and (degraded) fused image, and the difference in spectral 78 

gradients between original coarse multispectral image and fused image. The matrix factorization methods 79 

were proposed from the perspective of spectral unmixing. A representative method in this category is coupled 80 

nonnegative matrix factorization (CNMF) (Berne et al., 2010; Yokoya et al., 2012), which extracts 81 

endmembers from coarse spatial, but fine spectral resolution image and proportions from fine spatial, but 82 

coarse spectral resolution image. The CNMF prediction is the linear combination of the proportions and 83 

endmembers. The learning-based methods focus on establishing a nonlinear mapping relationship between 84 

the fine spatial resolution panchromatic images and coarse spatial resolution multi/hyperspectral images or 85 

learning the intrinsic structure of the data observed. Deep learning has become a common choice for 86 

spatial-spectral fusion due to its strong fitting ability. Early attempts are mainly supervised methods, which 87 

require multi/hyperspectral images at the target fine spatial resolution. Examples for this type of methods 88 

include the pan-sharpening neural network (PNN) (Masi et al., 2016) and a deep network architecture for 89 

pansharpening (PanNet) (Song et al., 2018; Yang et al., 2017, 2018). Recently, more advanced versions were 90 

developed, such as domain transform model driven by deep learning (Sun et al., 2024) and progressive 91 

multi-iteration registration-fusion co-optimization network (Qu et al., 2024). For supervised methods, 92 

however, the applicability in reality can be compromised, as it can be difficult to collect required fine spatial 93 

resolution multi/hyperspectral images for training. Alternatively, unsupervised deep learning strategies have 94 

been developed for spatial-spectral fusion in recent years (Ma et al., 2020; Qu et al., 2023; Sun et al., 2023), 95 

which do not need multi/hyperspectral images at the target fine spatial resolution for training, but learn the 96 



 

 

intrinsic structure from the input data. Specifically, the input panchromatic image and coarse multispectral 97 

image are used in the construction of loss factions to constrain the predictions of the networks. Spatially, it is 98 

assumed that the spatial information presented by the (spectrally degraded) fused image should be similar to 99 

that of the panchromatic image. Spectrally, it is assumed that the (spatially degraded) fused image should be 100 

the same as the input multispectral image. The geostatistical approaches can take into account the changes in 101 

the spatial support of the data and the point spread function (PSF) effect of sensors (Atkinson et al., 2008; 102 

Wang et al., 2014). The most significant advantage of geostatistical methods is that the downscaling results 103 

are consistent with the original coarse spatial resolution data. Representative methods include area-to-point 104 

regression kriging (ATPRK) (Wang et al., 2016), downscaling cokriging (DSCK) (Pardo-Igúzquiza et al., 105 

2006), and kriging with an external drift (KED) (Sales et al., 2012). 106 

Significant progress has been made in research on spatial-spectral fusion based on various Earth 107 

observation datasets. However, research on fusion of datasets on other planets is relatively limited. To the 108 

best of our knowledge, there has been no study on the fusion of CTX and CRISM images for Mars. The 109 

surface of Mars is generally covered by rocks and minerals with various terrain and landform features, which 110 

is substantially different from that for the Earth surface. The main advantage of hyperspectral image over 111 

multispectral image is that the former can provide more detailed spectral information, which significantly 112 

enhances the ability to distinguish between different types of rocks and minerals. In this case, the 113 

effectiveness of existing spatial-spectral fusion methods needs to be validated. Most current spatial-spectral 114 

fusion methods suffer from a long-standing issue: they cannot achieve data fidelity of the original coarse 115 

spatial resolution images. That is, when the spatial-spectral fusion results are degraded to the original coarse 116 

spatial resolution, they are not consistent with the original coarse image. To realize data fidelity is crucial for 117 

hyperspectral sharpening, as the reliability of spectra plays key role in downstream applications such as rock 118 

and mineral identification. 119 

Geostatistics provides a new solution for realization of spatial-spectral fusion with perfect data fidelity to 120 

the original coarse spatial resolution images. Specifically, various models based on area-to-point kriging 121 

(ATPK) (Atkinson, 2013; Kyriakidis, 2004; Kyriakidis and Yoo, 2005; Wang et al., 2015) including DSCK, 122 

KED, and ATPRK, have significant advantages in preserving the original coarse image. That is, when the 123 

spatial-spectral fusion result is degraded to the original spatial resolution, it is completely consistent with the 124 

original image. This characteristic of complete data fidelity is also referred to complete data coherence in 125 

geostatistics. 126 

This paper proposed a completely new paradigm of spatial-spectral fusion called DF-SSF (Data 127 

Fidelity-oriented Spatial-Spectral Fusion) for fusion of CTX and CRISM images, where the CTX image is 128 



 

 

treated as the panchromatic image. It aims to preserve perfectly the original CRISM data. DF-SSF achieves 129 

this by utilizing ATPK to downscale the difference (i.e., coarse residual image) between the existing fusion 130 

result (i.e., produced by any of the existing spatial-spectral fusion methods) and the original coarse spatial 131 

resolution image. The produced fine spatial resolution residual image is then added to the existing fusion 132 

result to obtain the final fusion result with complete data fidelity. The contributions of this paper mainly lie in 133 

two aspects. 134 

1) It is the first study on the fusion of CTX and CRISM images on Mars to enhance the spatial resolution 135 

of CRISM hyperspectral images. Although spatial-spectral fusion has been developed over decades, to 136 

the best of our knowledge, there is no research on Mars remote sensing data dominated by rocks and 137 

minerals, especially for fusion of CTX and CRISM data, where the preservation of original spectra is 138 

crucial for downstream applications. 139 

2) A completely new paradigm DF-SSF, is proposed for spatial-spectral fusion with complete data fidelity 140 

to the original coarse spatial resolution data. DF-SSF is theoretically applicable to any existing 141 

spatial-spectral fusion method. 142 

The remainder of this paper is divided into five sections. Section 2 provides a brief introduction to the 143 

study area, research data, and the corresponding processing. Section 3 explains the principles of the proposed 144 

DF-SSF method. The experimental results for validation of the method are presented in Section 4. Section 5 145 

discusses issues related to the proposed method and outlines future directions. Finally, Section 6 concludes 146 

the paper. 147 

 148 

 149 

2. Study area and data 150 

 151 

2.1. Study area 152 

 153 

The study area of this paper consists of six regions, as shown in Table 1 (Bennett et al., 2014). Among 154 

them, Eberswalde Crater, Mawrth Vallis, and Holden Crater (Poulet et al., 2014) were once considered as 155 

candidate landing sites for Mars missions. The Melas Chasma area is a canyon on the Martian surface, while 156 

the Gale Crater (Peulvast and Masson, 1993; Poulet et al., 2014) was the location where the Curiosity Rover 157 

landed successfully in 2012 and is currently considered for scientific exploration. The Jezero Crater (Goudge 158 

et al., 2015) was the landing site of the Perseverance Rover, which landed successfully in 2021. These six 159 

regions have become the focus of scientific research due to their unique geological and geomorphological 160 



 

 

characteristics. Utilizing the hyperspectral remote sensing data covering these areas, it is possible to study 161 

Martian rocks, minerals and many other topics. The abundance, distribution, and properties of these rocks 162 

and minerals can provide insights into the composition and evolutionary processes of the Martian surface. 163 

In-depth study of these regions can help us understand the geological history and hydrological processes of 164 

Mars more comprehensively. 165 

 166 

2.2. CRISM images 167 

 168 

All CRISM images used in this paper are Map-Projected Targeted Reduced Data Record (MTRDR) 169 

(Murchie et al., 2007) products obtained at the latest, publicly available calibration level. The MTRDR 170 

includes map-projected Targeted Empirical Record corrected (TER) calibrated I/F (the ratio of the sensor's 171 

spectral irradiance to the solar spectral irradiance) spectral information and excludes spectral channels with 172 

questionable radiance measurements ("bad bands"). The hyperspectral image cubes in the MTRDR product 173 

suite are stored as 32-bit real number units. As a hyperspectral sensor, CRISM covers the spectral range from 174 

362 nm to 3920 nm with a fine spectral resolution of 6.55 nm per channel. This range includes the visible, 175 

near-infrared and shortwave infrared wavelengths. Through these channels, CRISM obtains spectral 176 

information from the Martian surface, which can be used for studying Martian mineralogy, geology and 177 

geomorphology. The CRISM data used in this study are MTRDR products with a spatial resolution of about 178 

18 m in this hyperspectral mode. 179 

 180 

2.3. CTX images 181 

 182 

The CTX images used in this paper are Experiment Data Record (EDR) (Malin et al., 2007) products 183 

containing raw CTX images along with their associated metadata information (e.g., observation time, 184 

exposure time, camera parameters, etc.). The raw EDR data are convenient for further processing, analysis 185 

and utilization. Unlike multispectral images, CTX images contain only a single-band, with a spectral range 186 

from 500 nm to 700 nm. On the MRO's near-circular, near-polar mapping orbit, the spatial resolution of CTX 187 

is about 6 m. This relatively fine spatial resolution enables CTX to capture more detailed surface features on 188 

Mars, including impact craters, canyons, dunes, and some other intricate information. 189 

 190 

2.4. Data processing 191 

 192 



 

 

The CRISM MTRDR images were used as originally provided, while CTX images were processed using 193 

the ISIS3 (Sucharski et al., 2020) pipeline. The raw CTX image files were first converted to ISIS3 image 194 

format and then subjected to image map projection (Equidistant cylindrical). Since precise alignment 195 

between the input hyperspectral and panchromatic images is essential for spatial-spectral fusion, image 196 

registration was also performed. Geometric registration between the CRISM and CTX images was achieved 197 

by using rasterio's virtual warping to reproject the CRISM images into the coordinate reference system of the 198 

corresponding CTX images. However, even within the same coordinate system, the CRISM and CTX images 199 

may not be perfectly aligned. Therefore, subsequent registration is necessary. In this paper, the software 200 

ENVI was employed for local registration through the Harris corner detection algorithm. The final 6 m CTX 201 

and 18 m CRISM images of the study area are shown in Fig. 1. The spatial sizes of CTX and CRISM images 202 

used in each region are 900900 and 300300 pixels, respectively. 203 

 204 

Table 1. Locations of the six study regions. 205 

Regions 
Latitude (°) Longitude (°) 

Min Max Min Max 

Eberswalde crater -24.5 -23.4 -34.0 -32.7 

Mawrth Vallis 23.3 24.6 -19.6 -18.4 

Holden crater -27.6 -25.9 -36.0 -34.0 

Melas Chasma -10.5 -8.7 -78.0 -75.0 

Jezero crater 18.0 18.8 77.2 78.4 

Gale crater -0.9 -3.8 135.9 139.9 

 206 

      
(a1) (b1) (c1) (d1) (e1) (f1) 

      
(a2) (b2) (c2) (d2) (e2) (f2) 

Fig. 1. The CTX (6 m) and CRISM (18 m) images of the six regions (bands 37, 25 and 12 as RGB). The spatial sizes of the CTX 207 

and CRISM images are 900900 and 300300, respectively. (a) Eberswalde Crater. (b) Mawrth Vallis. (c) Holden Crater. (d) Melas 208 

Chasma. (e) Jezero Crater. (f) Gale Crater. 209 

 210 



 

 

 211 

3. Methods 212 

 213 

3.1. Overview of DF-SSF 214 

 215 

The main requirement of the Wald protocol I (Wald et al., 1997) in spatial-spectral fusion is that there 216 

should be no deviation between the spatial-spectral fusion result and the original coarse image. That is, when 217 

the fused image is degraded to the original coarse spatial resolution, it should be exactly the same as the 218 

observed coarse image. However, the reality is that existing spatial-spectral fusion models struggle to achieve 219 

data fidelity in the true mathematical sense, meaning that the residuals (i.e., the difference between the fusion 220 

result and the original coarse data) are commonly non-zero. Achieving data fidelity to the original coarse 221 

image plays a crucial role in enhancing the reliability of the fused data. Therefore, this paper proposes a 222 

completely new spatial-spectral fusion paradigm (DF-SSF) that can realize complete data fidelity to the 223 

original coarse image: 224 

 HŜk = HŜk

'
 + ∆Rk,  k = 1,2,…, N (1) 

where k denotes the result of the k-th band (k=1,2,…,N, where N is the total number of bands), HŜk is the 225 

spatial-spectral fusion result that enables complete data fidelity, HŜk

'
 is the prediction of any existing 226 

spatial-spectral fusion model, and ∆Rk represents the fine spatial resolution residuals present in the existing 227 

spatial-spectral fusion model. Details for calculation of HŜk

'
 and ∆Rk are introduced in the following 228 

Sections 3.2 and 3.3, respectively. The whole flowchart of the proposed DF-SSF method is sketched in Fig. 229 

2. 230 

 231 

3.2. Estimation based on existing SSF methods 232 

 233 

The widely used spatial-spectral fusion algorithms generally follow the basic principles of CS or MRA. 234 

Therefore these two categories of methods are the focus of this paper. Their main principles are briefly 235 

described as follows. 236 

For the CS-based methods, the spatial-spectral fusion result is defined as: 237 

  HŜk

'
 = HS̃k + g

k
C(P - IL),  k = 1,2,…, N (2) 

in which HŜk

'
 denotes the fusion result for the k-th band, HS̃k denotes the multi/hyperspectral image 238 



 

 

interpolated to the spatial size of the panchromatic image, g
k
C is the weight of the fine spatial resolution gain 239 

injected into the k-th band (where C represents the CS-based methods), and P denotes the panchromatic 240 

image. IL is defined as: 241 

 

IL= ∑ ωiHS̃i

N

i=1

 (3) 

in which ωi represents the fitting weight for the i-th (i=1,2,…,N) band of the multi/hyperspectral image. 242 

For the MRA-based method, the spatial-spectral fusion result is defined as: 243 

 HŜk

'
 = HS̃k + g

k
M(P - PL),  k = 1,2,…, N (4) 

where PL represents the coarse spatial resolution version of the image P, and g
k
M is the weight of the fine 244 

spatial resolution gain for the k-th band (where M represents the MRA-based methods). 245 

 246 

3.3. Estimation of the residuals at fine spatial resolution 247 

 248 

For existing spatial-spectral fusion models, it is inevitable that there are coarse spatial resolution residuals 249 

(denoted as ∆Rk
C) in their predictions, as defined as follow: 250 

 ∆Rk
C = HSk - HŜk

'
 (5) 

where HSk  represents the observed coarse spatial resolution image of the k-th band,  denotes the 251 

degradation operation, and HŜk

'
 indicates the result of degrading the spatial-spectral fusion result of the 252 

k-th band to the original coarse spatial resolution. 253 

In this paper, we utilized ATPK to estimate the spatial resolution fine residuals ∆Rk  in Eq. (1). 254 

Specifically, for the residual of the fine spatial resolution pixel at spatial position x in the k-th band (denoted 255 

as ∆Rk(x)), its value can be predicted through a linear combination of L spatially adjacent coarse residuals in 256 

image ∆Rk
C: 257 

 

∆Rk(x) = ∑ β
i

L

i=1

∆Rk
C(xi),  s.t. ∑ β

i

L

i=1

=1 (6) 

where xi denotes the spatial location of the i-th neighborhood, i denotes the weight of its corresponding 258 

coarse residual, and L is the number of neighboring coarse pixels used in the prediction. The L weights (i.e., 259 

1, 2,..., L) in Eq. (6) are calculated by the kriging equation as follows: 260 
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γ

CC
k (x1,x1) ⋯ γ

CC
k (x1,xL) 1

⋮ ⋱ ⋮ ⋮
γ

CC
k (xL,x1) ⋯ γ

CC
k (xL,xL) 1

1 ⋯ 1 0]
 
 
 
[

β
1

⋮
β

L

θ

] =

[
 
 
 
γ

FC
k (x,x1)

⋮
γ

FC
k (x,xL)

1 ]
 
 
 
 (7) 

where the term γ
CC
k (xm,xn) (m, n=1,2,…,L) is the coarse-to-coarse residual semivariogram between coarse 261 

pixels centered at xm and xn in the k-th band, γ
FC
k (x,xm) is the fine-to-coarse residual semivariogram between 262 

fine and coarse pixels centered at x and xm in the k-th band, and  is the Lagrange multiplier. Further details 263 

on calculation of the semivariograms can be found in Wang et al. (2015, 2016). 264 

 265 

3.4. Perfect data fidelity of DF-SSF 266 

 267 

An important advantage of ATPK is the perfect coherence of the prediction with the input coarse image. 268 

That is, once the ATPK prediction is degraded to the original coarse spatial resolution, it is exactly identical 269 

to the original coarse data. Based on the perfect coherence of ATPK, the coarse residuals ∆Rk
C can be 270 

accurately reproduced when the ATPK predictions ∆Rk are degraded to the coarse spatial resolution as 271 

follows: 272 

 ∆Rk= ∆Rk
C (8) 

As described in Eq. (1), the prediction of DF-SSF is composed of HŜk

'
 predicted by any of the existing 273 

spatial-spectral fusion methods and ∆Rk predicted by ATPK. Combining Eqs. (1), (5) and (8), we can derive 274 

the following: 275 

 HŜk = (HŜk

'
 + ∆Rk) 

          = HŜk

'
 + ∆Rk 

          = HŜk

'
 +  ∆Rk

C 

          = HŜk

'
 +  HSk - HŜk

'
  

          = HSk 

(9) 

Eq. (9) means that once the prediction of DF-SSF (i.e.,  HŜk ) is degraded to the original coarse spatial 276 

resolution, it is exactly identical to the original coarse image (i.e., HSk), thereby, achieving complete data 277 

fidelity to the original data. 278 

 279 



 

 

 280 

Fig. 2. Flowchart of the proposed DF-SSF. 281 

 282 

 283 

4. Experiments 284 

 285 

4.1. Experimental setup 286 

 287 

In this paper, two sets of experiments were designed to validate the feasibility of the spatial-spectral fusion 288 

of CRISM and CTX data, as well as the effectiveness of our proposed DF-SSF model (e.g., its data fidelity 289 

ability). The six regions introduced in Section 2 were selected. For the CRISM hyperspectral data, after 290 

removing the noisy bands, the first 70 bands covering the spectral range similar to that of the CTX 291 



 

 

panchromatic image were selected in the experiments. 292 

In the first set of experiments, the effectiveness of DF-SSF was validated utilizing simulated data. 293 

Specifically, due to the absence of 6 m CRISM images, there are no reference data for objective evaluation of 294 

the 6 m results produced by fusion of the 18 m CRISM data and the 6 m CTX data. Therefore, to ensure the 295 

existence of reliable hyperspectral reference images at the target fine spatial resolution, a commonly used 296 

strategy was adopted: the 18 m CRISM hyperspectral image and the 6 m CTX panchromatic image were 297 

degraded to 54 m and 18 m, respectively. Then the two degraded images were fused to obtain the 18 m 298 

hyperspectral image by spatial-spectral fusion. The original 18 m CRISM hyperspectral image was used as 299 

the reference image to evaluate the accuracy of the 18 m fusion result. During the degradation process, the 300 

Gaussian PSF (with a convolution kernel parameter of 0.5) was used in the experiments. This paper employs 301 

five evaluation metrics for quantitative assessment, including correlation coefficient (CC), spectral angle 302 

mapper (SAM), root mean square error (RMSE), relative global-dimensional synthesis error (ERGAS) 303 

(Ranchin and Wald, 2000) and universal image quality index (UIQI) (Wang and Bovik, 2002). For CC, 304 

RMSE, and UIQI, the values were computed band-by-band, and then averaged across all bands. For SAM, it 305 

was first calculated pixel-by-pixel and finally averaged across all pixels. To evaluate the data fidelity 306 

capability, we also evaluated the metric of coherence, which involves degrading the spatial-spectral fusion 307 

image to the original coarse spatial resolution and to calculate the CC with the original input coarse 308 

resolution image. 309 

In the second set of experiments, the actual 18 m CRISM hyperspectral data were fused with 6 m CTX 310 

panchromatic data to obtain CRISM hyperspectral data at 6 m spatial resolution. The spatial-spectral fusion 311 

performance was evaluated mainly based on visual inspection and the metric of coherence. 312 

CS and MRA are two types of the most widely used spatial-spectral fusion methods. Therefore, we applied 313 

DF-SSF to seven methods within the two categories: GS, GSA, PCA, SFIM, MTF-GLP, MTF-GLP-HPM, 314 

and guided filter PCA (GFPCA) (Liao et al., 2015). In addition, we also examined the applicability of 315 

DF-SSF to the unsupervised deep learning-based method, and a typical method of this type, that is, 316 

pansharpening based on a generative adversarial network (Pan-GAN) (Ma et al., 2020), was considered. 317 

 318 

4.2. 18 m fusion results 319 

 320 

1) Visual evaluation: Fig. 3 shows the spatial-spectral fusion results of different CS and MRA methods in 321 

the six regions. Note that the sub-areas marked in red are zoomed in Fig. 4 for clearer comparison. Visually, 322 

it is evident that all methods produce results closer to the reference images after considering data fidelity by 323 



 

 

DS-SSF. Specifically, using the DF-SSF method, the spectral distortion present in the GS and PCA methods 324 

(such as in the alluvial fan and channel areas of the Eberswalde Crater region in Fig. 3) is significantly 325 

reduced. The fusion results of the GFPCA and SFIM methods based on DS-SSF reproduce more spatial 326 

structures (as seen in the Mawrth Vallis region where surface features are depicted as relatively small and 327 

dense layers of sediment). For the MTF-GLP and MTF-GLP-HPM methods, the spectral and spatial 328 

distortions in the results are relatively minor, but when considering data fidelity, the results are closer to the 329 

reference images in the hue. 330 

2) Accuracy evaluation: Firstly, for a clearer comparison of the results from different methods, we selected 331 

two bands from the fusion results in Fig. 3 for analysis, and produced the error maps in Fig. 5. It can be 332 

observed clearly that, for all seven methods, the errors are significantly reduced when using the DF-SSF 333 

method, particularly in areas such as smooth river channels, weathered regions, and impact craters. Hence, 334 

the fusion results obtained by DF-SSF exhibit smaller errors compared to those of the original methods. 335 

Secondly, scatterplots representing the results of the original and DF-SSF methods are given in Fig. 6. From 336 

the scatterplots, it is apparent that the results of the original spatial-spectral fusion methods are relatively 337 

scattered along the axes, while the fusion results of DF-SSF are more concentrated around the y=x line, 338 

indicating that its results are closer to the reference. 339 

Table 2 provides quantitative evaluation results for the various methods in the six regions. It can be seen 340 

that the accuracy of the DF-SSF results is obviously greater than that of the original methods. For example, 341 

the CC and UIQI values of all six regions are increased by over 0.0120, the ERGAS values are all decreased 342 

by more than 0.0500, and the SAM values are all decreased by more than 0.0003. It is worth noting that even 343 

in some regions where several methods present lower accuracies (e.g., GS, GSA, and PCA in the Jezero 344 

Crater area), the accuracy is increased noticeably by using the DF-SSF method. 345 

3) The effect of band correlation: Generally, spatial-spectral fusion methods perform better on bands that 346 

have larger correlation with the panchromatic image. Fig. 7 presents the fusion accuracy (using CC as an 347 

example) of various methods for all bands in the six regions (left) and also the relationship (in terms of CC) 348 

between the original CTX data and CRISM hyperspectral bands (right). As shown in Fig. 7, the trend of all 349 

curves in the left column is similar to that of the corresponding curves in the right column. Taking the 350 

Eberswalde crater region as an example, in the right plot of Fig. 7(a), the first 20 bands present a smaller 351 

correlation with the panchromatic image compared to other bands. Correspondingly, the fusion accuracy of 352 

all methods for the first 20 bands in the left plot of Fig. 7(a) is relatively lower. The physical reason for this 353 

phenomenon is that the first 20 bands are not completely covered by the panchromatic image. For the 354 

remaining 50 bands in the visible range, the panchromatic image provides more correlated information for 355 



 

 

the fusion process, leading to more accurate fusion results. 356 

4) Coherence: Coherence is an important indicator for evaluating the quality of the spatial-spectral fusion 357 

results in terms of data fidelity. We degraded the 18 m spatial-spectral fusion results of various methods to 54 358 

m, and compared them with the input 54 m CRISM hyperspectral data. Table 3 shows the overall coherence 359 

(in terms of CC) assessment for all six regions. It can be seen clearly that the proposed DF-SSF model 360 

achieves perfect coherence for all original methods, indicating its ability to preserve the original coarse data 361 

completely. This advantage of DS-SSF lies in the perfect coherence property of ATPK, as demonstrated 362 

mathematically in Section 3.4. 363 

5) Unsupervised deep learning-based fusion results: We apply DF-SSF to Pan-GAN to validate its 364 

applicability to the unsupervised deep learning method. Since the performance of deep learning-based 365 

methods relies on the number of training data, different numbers of pairs (including 53, 28 and 14 pairs) of 366 

CRISM and CTX images were considered for training, and DF-SSF was examined in all these cases. The 367 

accuracy evaluation results are shown in Table 4. It can be seen that the spatial-spectral fusion accuracy of 368 

the proposed DF-SSF method is consistently greater than that of the original methods in all cases. For 369 

example, in the case of 53 pairs of training data, both CC and UIQI are increased by more than 0.0200, and 370 

ERGAS is decreased by more than 0.1500. Moreover, when the number of training data decreases, the 371 

accuracy of original Pan-GAN decreases correspondingly, but the advantage of DF-Pan-GAN is more 372 

obvious. For example, for the Eberswalde Crater data, the CC gain of DF-Pan-GAN over Pan-GAN is around 373 

0.07 in the case of 53 pairs, and the gain further increases to 0.10 in the case of 14 pairs. Therefore, the 374 

proposed DF-SSF method is also effective for the unsupervised deep learning approach, even under various 375 

numbers of training data. 376 

 377 

     GS GSA PCA SFIM MTF-GLP 
MTF-GLP-HP

M 
GFPCA 

E
b

er
sw

al
d

e 
cr

at
er

 

1
8

 m
 r

ef
 

 

 
O

ri
g

in
al

 

       

5
4

 m
 i

n
p

u
t 

 

 
D

F
-b

as
ed

 

       

M
aw

rt
h

 

V
al

li
s 

1
8

 m
 r

ef
 

 

 
O

ri
g

in
al

 

       



 

 

5
4

 m
 i

n
p

u
t 

 

 
D

F
-b

as
ed

 

       
 

H
o

ld
en

 c
ra

te
r 

1
8

 m
 r

ef
 

 

 
O

ri
g

in
al

 

       

5
4

 m
 i

n
p

u
t 

 

 
D

F
-b

as
ed

 

       

M
el

as
 C

h
as

m
a
 

1
8

 m
 r

ef
 

 

 
O

ri
g

in
al

 

       

5
4

 m
 i

n
p

u
t 

 

 
D

F
-b

as
ed

 

       

Je
ze

ro
 c

ra
te

r 

1
8

 m
 r

ef
 

 

 
O

ri
g

in
al

 

       

5
4

 m
 i

n
p

u
t 

 

 
D

F
-b

as
ed

 

       
(f) 

 
 

G
al

e 
cr

at
er

 

1
8

 m
 r

ef
 

 

 
O

ri
g

in
al

 

       

5
4

 m
 i

n
p

u
t 

 

 
D

F
-b

as
ed

 

       
 Fig. 3. 18 m spatial-spectral fusion results (300300 pixels) of the six regions (bands 37, 25 and 12 as RGB). The first and second 378 

rows of each region are the results of the original SSF and DF-SSF, respectively. The sub-areas marked in red are zoomed in Fig. 4. 379 
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Fig. 4. The sub-areas of 18 m spatial-spectral fusion results in Fig. 3. 381 
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Fig. 5. Error maps for selected bands 12 and 37 in the Jezero crater region. 383 



 

 

 384 

Table 2. Quantitative assessment of different spatial-spectral fusion methods for the six regions. 385 

 Methods 

CC SAM RMSE ERGAS UIQI 

Original 
DF- 

based 
Original 

DF-ba

sed 
Original 

DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 

E
b

er
sw

al
d

e 

C
ra

te
r 

GS 0.8937 0.9654 0.0065 0.0051 0.0044 0.0025 1.3041 0.7638 0.8912 0.9654 

GSA 0.9264 0.9620 0.0062 0.0051 0.0038 0.0027 1.1300 0.8041 0.9260 0.9619 

PCA 0.8937 0.9655 0.0065 0.0051 0.0044 0.0025 1.3054 0.7638 0.8912 0.9654 

SFIM 0.9318 0.9682 0.0059 0.0050 0.0035 0.0024 1.0521 0.7252 0.9310 0.9682 

MTF-GLP 0.9317 0.9660 0.0060 0.0050 0.0036 0.0025 1.0685 0.7548 0.9317 0.9659 

MTF-GLP-HPM 0.9312 0.9656 0.0060 0.0051 0.0036 0.0025 1.0723 0.7603 0.9312 0.9655 

GFPCA 0.9561 0.9796 0.0063 0.0049 0.0029 0.0019 0.8602 0.5755 0.9505 0.9705 

M
aw

rt
h

 V
al

li
s 

GS 0.9477 0.9817 0.0039 0.0027 0.0049 0.0029 0.7137 0.4203 0.9474 0.9816 

GSA 0.9598 0.9809 0.0035 0.0027 0.0043 0.0030 0.6266 0.4280 0.9597 0.9809 

PCA 0.9451 0.9817 0.0040 0.0027 0.0051 0.0029 0.7355 0.4204 0.9449 0.9817 

SFIM 0.9725 0.9851 0.0032 0.0025 0.0034 0.0026 0.4996 0.3721 0.9727 0.9851 

MTF-GLP 0.9686 0.9824 0.0033 0.0026 0.0038 0.0028 0.5543 0.4075 0.9686 0.9824 

MTF-GLP-HPM 0.9687 0.9825 0.0033 0.0026 0.0038 0.0028 0.5439 0.4072 0.9686 0.9824 

GFPCA 0.9734 0.9900 0.0037 0.0024 0.0033 0.0020 0.4861 0.2962 0.9722 0.9900 

H
o

ld
en

 C
ra

te
r 

GS 0.8701 0.9576 0.0127 0.0095 0.0105 0.0061 2.9637 1.7348 0.8632 0.9576 

GSA 0.8971 0.9540 0.0121 0.0097 0.0096 0.0064 2.7250 1.8149 0.8971 0.9540 

PCA 0.8702 0.9577 0.0129 0.0095 0.0105 0.0061 2.9659 1.7339 0.8635 0.9577 

SFIM 0.9104 0.9583 0.0113 0.0095 0.0088 0.0061 2.4776 1.7155 0.9067 0.9579 

MTF-GLP 0.9134 0.9576 0.0113 0.0095 0.0086 0.0061 2.4446 1.7303 0.9127 0.9575 

MTF-GLP-HPM 0.9131 0.9574 0.0113 0.0095 0.0087 0.0061 2.4520 1.7378 0.9123 0.9573 

GFPCA 0.9121 0.9656 0.0121 0.0092 0.0088 0.0055 2.4991 1.5544 0.8934 0.9650 

M
el

as
 C

h
as

m
a
 GS 0.8938 0.9814 0.0036 0.0026 0.0059 0.0025 1.0204 0.4311 0.8930 0.9814 

GSA 0.9244 0.9803 0.0035 0.0027 0.0052 0.0026 0.9023 0.4455 0.9234 0.9803 

PCA 0.8974 0.9815 0.0036 0.0026 0.0058 0.0025 1.0036 0.4305 0.8967 0.9815 

SFIM 0.9636 0.9836 0.0031 0.0026 0.0034 0.0023 0.5984 0.4030 0.9635 0.9836 

MTF-GLP 0.9613 0.9820 0.0032 0.0026 0.0036 0.0024 0.6212 0.4227 0.9613 0.9820 

MTF-GLP-HPM 0.9615 0.9821 0.0032 0.0026 0.0035 0.0024 0.6191 0.4212 0.9618 0.9821 

GFPCA 0.9623 0.9897 0.0036 0.0026 0.0034 0.0018 0.6045 0.3176 0.9599 0.9897 

Je
ze

ro
 C

ra
te

r 

GS 0.8077 0.9607 0.0029 0.0021 0.0023 0.0010 0.3687 0.1640 0.8052 0.9606 

GSA 0.8509 0.9543 0.0027 0.0021 0.0021 0.0011 0.3477 0.1783 0.8483 0.9541 

PCA 0.8068 0.9609 0.0029 0.0021 0.0023 0.0010 0.3719 0.1639 0.8048 0.9608 

SFIM 0.9377 0.9670 0.0023 0.0020 0.0012 0.0009 0.2030 0.1461 0.9362 0.9669 

MTF-GLP 0.9282 0.9618 0.0024 0.0020 0.0013 0.0010 0.2213 0.1593 0.9280 0.9617 

MTF-GLP-HPM 0.9281 0.9617 0.0024 0.0020 0.0013 0.0010 0.2216 0.1596 0.9278 0.9616 

GFPCA 0.9144 0.9744 0.0027 0.0020 0.0014 0.0007 0.2381 0.1253 0.9011 0.9742 

G
al

e 
C

ra
te

r 

GS 0.9306 0.9793 0.0052 0.0033 0.0062 0.0034 1.0395 0.5700 0.9297 0.9793 

GSA 0.9471 0.9782 0.0045 0.0033 0.0054 0.0035 0.9186 0.5846 0.9470 0.9781 

PCA 0.9280 0.9794 0.0053 0.0033 0.0063 0.0034 1.0619 0.5702 0.9273 0.9793 

SFIM 0.9617 0.9819 0.0040 0.0031 0.0045 0.0031 0.7651 0.5258 0.9612 0.9819 

MTF-GLP 0.9590 0.9801 0.0042 0.0032 0.0047 0.0033 0.7987 0.5535 0.9590 0.9801 

MTF-GLP-HPM 0.9588 0.9800 0.0042 0.0032 0.0047 0.0033 0.8013 0.5560 0.9588 0.9800 

GFPCA 0.9697 0.9873 0.0042 0.0029 0.0041 0.0026 0.6934 0.4349 0.9665 0.9872 
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Fig. 6. Scatterplots of predicted against actual coarse pixel values (18 m) in the Mawrth Vallis region. 392 
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Fig. 7. The spatial-spectral fusion accuracy (in terms of CC) of each band (left) and relation (in terms of CC) between the 394 

panchromatic (degraded) and hyperspectral bands (right) for the six regions. (a) Eberswalde crater. (b) Mawrth Vallis. (c) Holden 395 

crater. (d) Melas Chasma. (e) Jezero crater. (f) Gale crater. 396 

 397 

Table 3. Evaluation (in terms of CC) of the data fidelity ability of the 18 m spatial-spectral fusion results for the six regions. 398 

 
Eberswalde 

crater 

Mawrth 

Vallis 

Holden 

crater 

Melas 

Chasma 

Jezero 

crater 

Gale 

crater 

GS 
Original 0.9397 0.9760 0.9319 0.9285 0.8611 0.9634 

DF-based 0.9998 0.9999 0.9997 0.9998 0.9997 0.9999 

GSA 
Original 0.9763 0.9885 0.9616 0.9584 0.9144 0.9808 

DF-based 0.9998 0.9999 0.9997 0.9998 0.9996 0.9999 

PCA 
Original 0.9395 0.9732 0.9311 0.9320 0.8591 0.9591 

DF-based 0.9998 0.9999 0.9997 0.9998 0.9997 0.9999 

SFIM Original 0.9771 0.9934 0.9714 0.9878 0.9833 0.9884 



 

 

DF-based 0.9998 0.9999 0.9997 0.9999 0.9999 0.9999 

MTF-GLP 
Original 0.9794 0.9934 0.9738 0.9886 0.9818 0.9887 

DF-based 0.9998 0.9999 0.9998 0.9999 0.9998 0.9999 

MTF-GLP-HPM 
Original 0.9795 0.9934 0.9738 0.9886 0.9818 0.9887 

DF-based 0.9998 0.9999 0.9997 0.9999 0.9998 0.9999 

GFPCA 
Original 0.9884 0.9909 0.9663 0.9833 0.9597 0.9914 

DF-based 0.9999 0.9999 0.9997 0.9999 0.9998 0.9999 

 399 

Table 4. Quantitative assessment of the unsupervised deep learning method (Pan-GAN) for the six regions. 400 

 Regions 

CC SAM RMSE ERGAS UIQI 

Original 
DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 

5
3

 p
ai

rs
 o

f 

tr
ai

n
in

g
 d

at
a 

Eberswalde Crater 0.9057 0.9756 0.0093 0.0044 0.0049 0.0022 1.4642 0.6674 0.8981 0.9753 

Mawrth Vallis 0.9716 0.9934 0.0029 0.0012 0.0037 0.0016 0.5531 0.2396 0.9689 0.9933 

Holden Crater 0.9424 0.9843 0.0150 0.0087 0.0082 0.0038 2.3353 1.0794 0.9361 0.9840 

Melas Chasma 0.9596 0.9919 0.0034 0.0013 0.0040 0.0016 0.6958 0.2867 0.9570 0.9919 

Jezero Crater 0.9463 0.9874 0.0227 0.0007 0.0016 0.0006 0.2773 0.0979 0.9318 0.9871 

Gale Crater 0.9468 0.9880 0.0042 0.0019 0.0056 0.0023 0.9637 0.3952 0.9389 0.9878 

2
8

 p
ai

rs
 o

f 

tr
ai

n
in

g
 d

at
a 

Eberswalde Crater 0.8986 0.9736 0.0094 0.0048 0.0054 0.0024 1.6128 0.7143 0.8845 0.9729 

Mawrth Vallis 0.9609 0.9899 0.0036 0.0015 0.0045 0.0020 0.6515 0.2955 0.9578 0.9897 

Holden Crater 0.9363 0.9806 0.0156 0.0088 0.0090 0.0044 2.3837 1.7723 0.9315 0.9802 

Melas Chasma 0.9524 0.9881 0.0036 0.0015 0.0046 0.0018 0.7861 0.3039 0.9517 0.9880 

Jezero Crater 0.9393 0.9800 0.0236 0.0009 0.0018 0.0008 0.3008 0.1203 0.9177 0.9795 

Gale Crater 0.9449 0.9864 0.0047 0.0022 0.0057 0.0025 0.9720 0.4233 0.9360 0.9861 

1
4

 p
ai

rs
 o

f 

tr
ai

n
in

g
 d

at
a 

Eberswalde Crater 0.8609 0.9632 0.0117 0.0061 0.0063 0.0028 1.8772 0.8310 0.8450 0.9625 

Mawrth Vallis 0.9491 0.9852 0.0044 0.0022 0.0049 0.0023 0.7235 0.3486 0.9449 0.9848 

Holden Crater 0.9349 0.9763 0.0169 0.0100 0.0091 0.0046 2.4019 2.0302 0.9279 0.9740 

Melas Chasma 0.9510 0.9874 0.0044 0.0021 0.0054 0.0021 0.7879 0.3616 0.9509 0.9872 

Jezero Crater 0.9297 0.9795 0.0216 0.0013 0.0023 0.0015 0.3196 0.1439 0.9269 0.9732 

Gale Crater 0.9439 0.9847 0.0047 0.0028 0.0058 0.0025 1.0006 0.4401 0.9354 0.9841 

 401 

4.3. 6 m fusion results 402 

 403 

In this set of experiments, the original fusion and DF-SSF methods were used for spatial-spectral fusion of 404 

the original 18 m CRISM hyperspectral data and 6 m CTX panchromatic data, to create 6 m CRISM 405 

hyperspectral images. The Gaussian PSF with a convolution kernel parameter of 0.5 was used. The 6 m 406 

fusion results for the Holden crater are shown in Figs. 8 and 9, while the results for the Gale crater regions 407 

are shown in Figs. 10 and 11. Note that Figs. 9 and 11 show the zoom images of three sub-regions in Figs. 8 408 

and 10, respectively. It is evident that the 6 m CRISM images are visually more pleasant, which present more 409 

spatial details. Furthermore, the 6 m DF-SSF results are more similar in color to the original 18 m images, 410 

indicating greater data fidelity. Table 5 provides the coherence evaluation results for the Holden Crater and 411 

Gale Crater regions. It is apparent that the data fidelity of the seven methods is increased using the proposed 412 

model (e.g., the coherence is increased by at least 0.0080). 413 

 414 



 

 

    
(a1)  (b1)  (c1)  (d1)  

    
(a2)  (b2)  (c2)  (d2)  

    
(e1)  (f1)  (g1)  (h1)  

    
(e2)  (f2)  (g2)  (h2)  

Fig. 8. 6 m spatial-spectral fusion results for the Holden crater region (bands 37, 25 and 12 as RGB). The sizes of the panchromatic 415 

and hyperspectral images are 900900 and 300300, respectively. (a1) 18 m CRISM. (a2) 6 m CTX. (b1)-(h1) show the results of 416 

the original SSF, while (b2)-(h2) show the corresponding results of DF-SSF. (b) GS. (c) GSA. (d) PCA. (e) SFIM. (f) MTF-GLP. (g) 417 

MTF-GLP-HPM. (h) GFPCA. 418 

 419 
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Fig. 9. 6 m spatial-spectral fusion results of the three sub-areas in Fig. 8. The first row of each sub-area shows the results of 420 

original SSF and the second row shows the results of DF-SSF. 421 
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(e1)  (f1)  (g1)  (h1)  
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Fig. 10. 6 m spatial-spectral fusion results for the Gale crater region (bands 37, 25 and 12 as RGB). The sizes of the panchromatic 423 

and hyperspectral images are 900900 and 300300, respectively. (a1) 18 m CRISM. (a2) 6 m CTX. (b1)-(h1) show the results of 424 

the original SSF, while (b2)-(h2) show the corresponding results of DF-SSF. (b) GS. (c) GSA. (d) PCA. (e) SFIM. (f) MTF-GLP. (g) 425 

MTF-GLP-HPM. (h) GFPCA. 426 
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Fig. 11. 6 m spatial-spectral fusion results of the three sub-areas in Fig. 10. The first row of each sub-area shows the results of 428 

original SSF and the second row shows the results of DF-SSF. 429 

 430 

Table 5. Evaluation (in terms of CC) of the data fidelity ability of the 6 m spatial-spectral fusion results for the Holden crater region 431 

and the Gale crater region. 432 

 

Holden crater Gale crater 

Original 
DF- 

based 
Original 

DF- 

based 

GS 0.8739 0.9993 0.9325 0.9997 

GSA 0.8960 0.9992 0.9475 0.9997 

PCA 0.8745 0.9993 0.9300 0.9997 

SFIM 0.9796 0.9997 0.9929 0.9999 

MTF-GLP 0.9789 0.9996 0.9917 0.9999 

MTF-GLP-HPM 0.9786 0.9996 0.9917 0.9999 

GFPCA 0.9521 0.9995 0.9808 0.9998 

 433 

 434 

5. Discussion 435 

 436 

5.1. Uncertainty in spatial-spectral fusion of CRISM and CTX images 437 

 438 

While the experiments validated the effectiveness of fusing CTX and CRISM hyperspectral data, there still 439 

exists uncertainty in the fusion process. 440 

Spectrally, uncertainty may be introduced if the spectral ranges of CTX image and CRISM hyperspectral 441 

images do not match, especially for hyperspectral bands that are not covered by the spectral range of the 442 

CTX panchromatic image (as shown in the fusion accuracy of the first 20 bands in Fig. 7). Therefore, the 443 

spectral overlap between the CTX image and the CRISM hyperspectral image should be considered before 444 

spatial-spectral fusion. Since the CTX image contains only one visible band, while the CRISM image 445 

contains both visible and infrared bands, to mitigate the uncertainty in the experiments, only the first 70 446 

bands of CRISM that roughly match with the CTX spectral coverage were considered. For further analysis of 447 

the uncertainty, we evaluated the fusion accuracy for the 71st to the 110th bands of the CRISM hyperspectral 448 

data in the Mawrth Vallis region. The results are shown in Fig. 12. It is seen clearly that when there is no 449 

spectral overlap between CTX and CRISM hyperspectral images (e.g., for the 71st to the 110th bands), the 450 

fusion accuracy decreases obviously, especially for the original version without the consideration of DF. 451 

Temporally, it is important to ensure that the CTX and CRISM data were observed at the same time. In 452 



 

 

practice, due to many factors (e.g., shooting time, camera operating mode, etc.), it can sometimes be 453 

challenging to obtain CTX and CRISM data for the same area at the same time. When there is a significant 454 

time gap, there may be certain changes in Martian surface between the two datasets (e.g., the formation of 455 

new impact craters on the Martian surface due to recent impact events), which may lead to uncertainties in 456 

the fusion process. 457 

Spatially, accurate geometric registration is a crucial prerequisite for spatial-spectral fusion. When fusing 458 

CTX images with CRISM hyperspectral images, it is essential to consider fully the geometric registration 459 

accuracy between the two datasets. Although reliable registration was performed between the CTX and 460 

CRISM data in this study, it is worth noting that the registration accuracy may not be perfect, which can also 461 

introduce some uncertainties. 462 

 463 

 

 

Fig.12. Quantitative assessment (in terms of CC) of the spatial-spectral fusion methods for bands 1 to 110 (the Mawrth Vallis 464 

region as an example). 465 

 466 

5.2. Advantages of using ATPK in DF-SSF 467 

 468 

The use of ATPK in DF-SSF lies in the appealing advantage of maintaining completely the original coarse 469 

data. To analyze the advantages of ATPK in residual downscaling in DF-SSF, we selected the bicubic 470 

interpolation (BI) method to downscale the residuals in existing spatial-spectral fusion methods and 471 

compared it with the proposed method. BI offers a good balance between accuracy and computational 472 

complexity and has been used widely in various studies, but it cannot preserve the original data perfectly. The 473 

experimental results are shown in Table 6. It is evident that the proposed method produces more accurate 474 

fusion results in all cases. This illustrates directly the benefit of achieving complete data fidelity in 475 

spatial-spectral fusion. Note that in existing studies, some methods were also designed with the objective to 476 

achieve data fidelity, such as the VO-based methods. Mathematically, however, they can only approach the 477 

original coarse images gradually to achieve approximate fidelity. This is different from ATPK, which can 478 



 

 

achieve data fidelity in the true mathematical sense. 479 

 480 

Table 6. Comparison between the use of bicubic interpolation (BI) and ATPK (i.e., the proposed method) for residual downscaling 481 

in spatial-spectral fusion (the Eberswalde crater region as an example). 482 

 

CC SAM RMSE ERGAS Coherence 

BI- 

based 

DF- 

based 

BI- 

based 

DF- 

based 

BI- 

based 

DF- 

based 

BI- 

based 

DF- 

based 

BI- 

based 

DF- 

based 

GS 0.9592 0.9654 0.0053 0.0051 0.0028 0.0025 0.8304 0.7638 0.9983 0.9998 

GSA 0.9554 0.9620 0.0054 0.0051 0.0029 0.0027 0.8767 0.8041 0.9980 0.9998 

PCA 0.9592 0.9655 0.0053 0.0051 0.0028 0.0025 0.8304 0.7638 0.9983 0.9998 

SFIM 0.9625 0.9682 0.0053 0.0050 0.0026 0.0024 0.7832 0.7252 0.9981 0.9998 

MTF-GLP 0.9590 0.9660 0.0053 0.0050 0.0028 0.0025 0.8258 0.7548 0.9981 0.9998 

MTF-GLP-HPM 0.9585 0.9656 0.0053 0.0051 0.0028 0.0025 0.9312 0.7603 0.9981 0.9998 

GFPCA 0.9745 0.9796 0.0052 0.0049 0.0021 0.0019 0.6452 0.5755 0.9984 0.9999 

 483 

5.3. DF-SSF vs ATPRK 484 

 485 

In ATPRK, the fusion process is achieved by two steps: regression modeling and ATPK-based residual 486 

downscaling. The regression part links the coarse multi/hyperspectral image and fine panchromatic image 487 

through a linear fitting process, and the ATPK part downscales the coarse residuals in the regression process 488 

to the target fine spatial resolution. However, the relation between multi/hyperspectral and panchromatic 489 

images is sometimes complicated, which may not be characterized accurately by a simple linear model. As a 490 

result, the residuals of the regression model may be large, and the uncertainty introduced into the predictions 491 

of post-ATPK may be correspondingly large. As an alternative, the DF-SSF method proposed in this paper 492 

uses any of the existing spatial-spectral fusion method as the first step (i.e., instead of the regression step in 493 

ATPRK). To analyze the influence of magnitude of the residuals in the methods, Table 7 presents the 494 

quantification of coarse residuals for various spatial-spectral fusion methods and the regression part of 495 

ATPRK (in terms of the RMSE), while Table 8 compares the accuracy between DF-SSF and ATPRK. It can 496 

be observed that the RMSE of the regression part of ATPRK is larger than that of the existing spatial-spectral 497 

fusion methods and the accuracy is generally smaller than the DF-SSF-based methods. This suggests that the 498 

DF-SSF method can take full advantage of existing spatial-spectral fusion methods by using them as the 499 

primary step to reduce the coarse residuals, which is more competitive than the regression step in ATPRK. 500 

 501 

Table 7. RMSE of the seven spatial-spectral fusion methods and regression modeling of ATPRK (R-ATPRK) for the Gale crater 502 

region. 503 

 GS GSA PCA SFIM MTF-GLP 
MTF-GLP

-HPM 
GFPCA R-ATPRK 

RMSE 0.0062 0.0054 0.0063 0.0045 0.0047 0.0047 0.0041 0.1864 

 504 

 505 



 

 

Table 8. Accuracy evaluation of DF-SSF and ATPRK for the Gale crater region. 506 

Methods CC SAM RMSE ERGAS UIQI 

DF-GS 0.9793 0.0033 0.0034 0.5700 0.9793 

DF-GSA 0.9782 0.0033 0.0035 0.5846 0.9781 

DF-PCA 0.9794 0.0033 0.0034 0.5702 0.9793 

DF-SFIM 0.9819 0.0031 0.0031 0.5258 0.9819 

DF-MTF-GLP 0.9801 0.0032 0.0033 0.5535 0.9801 

DF-MTF-GLP-HPM 0.9800 0.0032 0.0033 0.5560 0.9800 

DF-GFPCA 0.9873 0.0029 0.0026 0.4349 0.9872 

ATPRK 0.9785 0.0033 0.0034 0.5792 0.9785 

 507 

5.4. Generalization ability of DF-SSF 508 

 509 

In this paper, DF-SSF was proposed for Mars remote sensing data with complex surface configurations 510 

and examined on seven classical spatial-spectral fusion methods of CS and MRA and also an unsupervised 511 

deep learning-based method. By applying the DF-SSF model to these methods, the fusion accuracy is 512 

increased noticeably, demonstrating the generalization ability of DF-SSF for existing methods. In this section, 513 

we also further examined the generalization ability of DF-SSF from three aspects: 1) extension to 514 

spatial-spectral fusion of Earth observation data, 2) extension to the more challenging fusion of hyperspectral 515 

and multispectral images and 3) application to more fusion methods. Accordingly, a GF-5 hyperspectral 516 

dataset covering an urban area in Shanghai, China was used. The spatial resolution is 30 m. The spatial size is 517 

300300 pixels, and the number of VNIR bands used is 150. A four-band 30 m multispectral image was 518 

synthesized by averaging 37 (or 38) consecutive bands of the 150 bands. Moreover, a 120 m coarse 519 

hyperspectral image was simulated by spatially degrading the 30 m hyperspectral image with a zoom factor 520 

of four. The three images of the study area are shown in Fig. 13. The task is to fuse the 120 m hyperspectral 521 

image with the four-band, 30 m multispectral image to reconstruct the 30 m hyperspectral image. For CS and 522 

MRA-based methods, two types of schemes (i.e., the selected band and synthesized band schemes) were 523 

considered for using multiple bands of the 30 m multispectral image (Butera et al., 2015). In addition, the 524 

matrix factorization (i.e., CNMF) method was also examined. The accuracy evaluation results are exhibited 525 

in Table 9. It is clear that the accuracy is increased by using the DF-SSF method. This indicates that the 526 

method proposed in this paper is also applicable to the three cases listed above. 527 

In future, DF-SSF can be applied to more up-to-date spatial-spectral fusion methods. For example, 528 

supervised learning-based spatial-spectral fusion methods have received increasing attention in recent years 529 

(Sun et al., 2021; Ren et al., 2022). Such methods require a large amount of training data (particularly for 530 

deep learning-based versions), which is harder to obtain for the Mars remote sensing data studied in this 531 

paper, thus, preventing validation of these methods. In future research, the generalization ability of DF-SSF 532 



 

 

for supervised learning-based spatial-spectral fusion methods can be investigated based on Earth observation 533 

data. 534 

 535 

   
(a) (b) (c) 

Fig. 13. The GF-5 hyperspectral image used for test. (a) 30 m GF-5 hyperspectral image (300300 pixels; bands 150, 39 and 3 as 536 

RGB). (b) 30 m multispectral image (300300 pixels; bands 4, 2 and 1 as RGB) simulated by degrading (a) spectrally. (c) 120 m 537 

hyperspectral images (7575 pixels; bands 150, 39 and 3 as RGB) simulated by degrading (a) spatially. 538 

 539 

Table 9. Quantitative assessment of the spatial-spectral fusion methods for the GF-5 data set. 540 

Methods 

CC SAM RMSE ERGAS UIQI 

Original 
DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 
Original 

DF- 

based 

S
el

ec
te

d
 

b
an

d
 

GS 0.8992 0.9447 0.0468 0.0352 0.0115 0.0072 2.5827 1.7943 0.8578 0.9300 

GSA 0.9957 0.9965 0.0176 0.0160 0.0020 0.0018 0.4954 0.4451 0.9955 0.9964 

PCA 0.9000 0.9251 0.0476 0.0387 0.0111 0.0075 2.5747 1.9875 0.8470 0.9091 

SFIM 0.9612 0.9675 0.0377 0.0314 0.0086 0.0068 1.8736 1.5024 0.9314 0.9590 

MTF-GLP 0.9749 0.9782 0.0310 0.0266 0.0067 0.0055 1.4832 1.2454 0.9571 0.9708 

MTF-GLP-HPM 0.9756 0.9790 0.0315 0.0269 0.0065 0.0053 1.4553 1.2188 0.9584 0.9717 

GFPCA 0.9071 0.9226 0.0612 0.0421 0.0147 0.0101 3.1901 2.2263 0.7558 0.9067 

S
y

n
th

es
iz

ed
 

b
an

d
 

GS 0.9010 0.9459 0.0447 0.0337 0.0114 0.0071 2.5675 1.7746 0.8602 0.9313 

GSA 0.9981 0.9984 0.0087 0.0081 0.0013 0.0012 0.3115 0.2854 0.9981 0.9984 

PCA 0.9004 0.9262 0.0460 0.0373 0.0110 0.0073 3.4169 1.9711 0.8486 0.9103 

SFIM 0.9628 0.9687 0.0357 0.0294 0.0085 0.0067 1.8513 1.4786 0.9331 0.9602 

MTF-GLP 0.9768 0.9796 0.0282 0.0241 0.0065 0.0054 1.4499 1.2135 0.9591 0.9722 

MTF-GLP-HPM 0.9774 0.9803 0.0288 0.0245 0.0063 0.0052 1.4216 1.1863 0.9603 0.9731 

GFPCA 0.9047 0.9217 0.0596 0.0411 0.0146 0.0101 3.1860 2.2267 0.7536 0.9057 

CNMF 0.9864 0.9915 0.0214 0.0142 0.0043 0.0026 0.9973 0.6317 0.9787 0.9905 

 541 

5.5. Applicability of the 6 m CRISM data 542 

 543 

Compared to 18 m CRISM data, 6 m CRISM data present significant advantages. First, from the spatial 544 

aspect, 6 m CRISM data can provide more detailed texture information. Second, from the spectral aspect, 6 545 

m CRISM data fully inherit the fine spectral resolution (i.e., 6.55 nm) of the original 18 m CRISM data, 546 

which is much finer than that of multispectral sensors. The hyperspectral data can capture more detailed 547 



 

 

spectral characteristics of the Martian surface, offering broader application prospects. For example, when 548 

spacecraft select suitable landing sites on the Martian surface in the future, if some small impact craters, 549 

canyons and ditches are smaller than 18 m, they are often represented as mixed pixels in 18 m CRISM data, 550 

making it difficult to determine the fine topography and geomorphology. However, in 6 m spatial resolution 551 

CRISM data, these small-sized features can be more effectively identified. Additionally, the Martian surface 552 

is covered by complex geological and topographical characteristics. At 18 m spatial resolution, the texture 553 

details of mineral-rich areas cannot be observed clearly. For example, the boundaries of impact craters (e.g., 554 

in the Eberswalde crater area) and canyons (e.g., the Gale crater area) appear blurred, and weathering layers 555 

and river sediments are difficult to identify. In the 6 m CRISM data, the textures of these features can be 556 

recognized more effectively, with great potential to enhance the accuracy of mineral identification. 557 

 558 

 559 

6. Conclusion 560 

 561 

The CRISM can capture hyperspectral images spanning multiple spectral channels from the visible to the 562 

near infrared, offering unique advantages for studying minerals, geology, and surface features on Mars. 563 

However, the spatial resolution of CRISM data is 18 m, which may be relatively coarse for observing surface 564 

texture details in local areas. Here, by spatial-spectral fusion, 18 m CRISM hyperspectral data were 565 

downscaled to 6 m, using 6 m CTX images as the panchromatic image. To address the challenge of data 566 

fidelity to the original coarse hyperspectral data in spatial-spectral fusion, a novel paradigm called DF-SSF 567 

was proposed. It utilizes ATPK to downscale the difference (i.e., coarse residual image) between the 568 

spatial-spectral fusion result of any existing method and the original hyperspectral images. The produced fine 569 

spatial resolution residual image is then added to the spatial-spectral fusion result of the existing method to 570 

yield a spatial-spectral fusion result with complete data fidelity to the original hyperspectral image. The 571 

experimental results in six regions show that the fusion of CRISM and CTX can result in finer spatial 572 

resolution CRISM hyperspectral images with satisfactory accuracy (based on DS-SSF, the CC is above 573 

0.9600 in all cases). Furthermore, by applying the DF-SSF model to existing spatial-spectral fusion methods, 574 

complete data fidelity to the original CRISM hyperspectral original data can be achieved, increasing the 575 

fusion accuracy of the existing methods. DF-SSF is theoretically applicable to any existing spatial-spectral 576 

fusion methods. Compared with the 18 m CRISM data, the 6 m CRISM data not only provide more detailed 577 

texture information, but also inherit the fine spectral resolution, offering broader application potential. 578 

 579 
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