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Abstract: The Compact Reconnaissance Imaging Spectrometer for Mars (CR$SM)Marsdedicated
compact reconnaissance imaging spectrometer that captures remote sensing degaywitte spectral
resolution.However, the spal resolution of CRISM data is relativetparsg18 m), limiing its application
to regional scalesThe Context Camera (CTX) is a digital camera equipped with aavigke lens, providing
afiner spatial resolution (6 m) andrger fieldof-view, but CTXprovidesonly a single panchromatic band.
To produceCRISM hyperspectral dataith finer spatialresolution(e.g., 6 m of CTX images}his research
investigatel spatiatspectralfusion of 18 m CRISMimages with 6 m CTX panchromaticimages. In
spatiatspectral fusion, to address thdongstanding issue of gomplete data fidelity to the original
hyperspectratiatain existing methodsa newparadigm calledata FidelityorientedSpatialSpectralFusion
(DF-SSH was proposedThe effectiveness dDF-SSF wa validated through experiments on data from six
areason Mars The results indicate th#te fusion of CRISMand CTXcan increasg¢he spatial resolution of
CRISM hyperspectral data effectiveMoreover,DF-SSF can increaséd fusion accuracyoticeablywhile
maintaining perfect data fidelity tothe original hyperspectratlata In addition, DFSSF istheoretically
applicable to any existing spatisppectral fusion methedThe 6 m CRISM hyperspectral data inhethe
advantags of the original 18n data in spectral resolutioandprovidericher spatial textureaformation on
the Martian surfaceyith broad applicatiopotential

Keywords Compact Reconnaissance Imaging Spectrometer for NGR$SM), Context CameraGTX),

downscaling spatiatspectral fusiondata fidelity areato-point kriging (ATPK)

1. Introduction

As a neighboring planet in the solar system, Mars has alwaysafeensof human fascination and, more
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recently, an emerging targkdr human exploration. Iltknown, abundant resourcebased on ougradually
deepening understandingf its geology, landform and atmosphgenmmay be important for the future
development of human society. With advasicespace technology, Mars exploratisnincreasingly seen as
an important pathway for space resources development and scientific technological innovation.

As an advanced imaging technolodpyperspectral remote sensing providiesa with a very finespectral
resolutionfor observing the surfacef Mars offering unique opportunities for a deeper understandirigeof
geology and environmemtf Mars The main advantage of hyperspectral images over multispectral images
lies inthericher spectral information, which is crucial for studying the minesaposition and formation
mechanism®n the surfaceof Mars The Mars Reconnaissance Orbiter (MRO) was launched on August 12,
2005 (Zurek and Smrekar, 20079 investigate the geology and climate of Mars. Its scientific objectives
includeobserving the current climate of Mars, searching for water activity, mapping surface featvias,
and studying potential future landing sitdhe MRO carriesseveralinstruments, including the Compact
Reconnaissance Imaging Spectrometer for Mars $&RI(Murchie et al., 2007and the Context Camera
(CTX) (Malin et al., 2007)These two sensors capture information about the same area with different spectra
and spatialresolutionssimultaneously. Specifically, CRISNé operaté in hyperspectral mode, acquiring
hyperspectral images covering more than four hundred spectral bandghionsible to neainfrared
wavelengthsHowever, its spatial resolution is 18 m, whichigkativdy coarseor observingdetailedspatial
texture information in local areas. The primary function of CTX is to provide background information for
other MRO instruments through simultaneous obsems. The coverage of thmagescaptured by CTX is
largerthan that of CRISM and the spatial resolution is about 6 m, which is threefitraethanfor CRISM
(Malin et al., 2007)However, these inges are singkand and do not provide spectral information. This
study proposedio downscale the 181 CRISM hyperspectral imagdse 6 m with the aid ofthe 6 m fine
spatialresolution CTX imagesThe 6 mhyperspectral imagesan potentially provide morgpatial details
aboutthe surfaceof Mars whilepreservinghe fine spectralesolutionof CRISM.

Spatialspectral fusion (also known as psimarpeninggims to fuse imagewith fine spectral resolutign
but coarsespatial resolutiorwith images with fine spatial resolutionbut coarsespectral resolutiorfe.qg.,
panchromatidmagg in the same region toreateimages with bothfine spatal and spectral resolutisn
(Zzhang and Shen, 2018j canresolve thetradeoff that occurdetween spatial and spectral resolutidmen
designinga single sensofThe existing spatiadpectral fusionmethodsinclude component substitution
(CS)based multi-resolution analysis (MRApased variational optimization (VO}based matrix
factorization learningbased, and geostatistical approacf@kamisi et al., 2019Loncan et h, 2015;
Thomas et al., 2008/ivone et al., 2014Yang et al., 222). The main idea of th€ES method is to transform
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the multi’/hyperspectral images into another space, and utilize the panchromatic image to substitute tt

transformedcoarse spatialelution componentfAiazzi et al., 2007;Thomas et al., 2008Representative
methods includerincipal componentanalysis(PCA) (Shah et al., 2008; Shettigara, 199@yamSchmidt
transformation (GSjLaben and Brower, 20005ramSchmidtadaptive (GSA)(Aiazzi et al., 2007)The
core idea ofMRA is to extractfine spatialresolutiondetails fromthe panchromatic image and inject them
into the coarse spatialesolution multi’/hyperspectrainages(Chavez et al., 1991Representative mebds
include smoothing filtebased intensity modulation (SFIM)iu, 2000) generalized Laplacian pyramid
(GLP) with modulation transfer function (MTHatched filter (MTFGLP) (Aiazzi et al., 2006)and GLP
with MTF-matched filter and multiplicative injection model (MTE.P-HPM) (Lee and Lee, 2009)The
VO-based methods construct a variational optimization madefake full advantage of thepatial
informationof panchromatiegmageand spectrainformationof coarse spatial resolutionultispectral imag.
For examplethe variational approachdevelopediy Fang et al(2013)consists of three terms, which aim to
minimize the differencein spatial gradients betwa thepanchromatiédmageand fused image, theifference
betweenoriginal coarsemultispectral imageand ¢legradedl fused image, and thdifferencein spectral
gradients betweenriginal coarsemultispectral imagend fused imag The matrix factorizatiormethods
wereproposed from the perspectivespiectraunmixing A representative method in this categorgaspled
nonnegative matrix factorization (CNMF (Berne et al., 2010Yokoya et al., 2012)which extracts
endmembers froncoarsespatial, but fine spectraksolutionimage and proportions from firgpatial but

coarsespectralresolutionimage The CNMF prediction is the linear combination of the proportions and

endmembersThe learningbasedmethods focus on establishing a nonlinear mapping relationship between

the fine spatialresolution panchromatic images agmhrse spatialesolution multi/hyperspectral images
learning the intrinsic structure of the dadhserve. Dee learning hasbecome a common choice for
gpatiatspectral fusiordue to its strong fittingbility. Early attemps are mainlysupervisednethods, which
require multi/hyperspectral imagest thetargetfine spatial resolution. Examples for this type of methods
includethe pansharpening neural netwoPNN) (Masi et al.,, 2016 anda deep networlarchitecture for
pansharpeningPanNe} (Song et al., 2018; Yang et @017 2018).Recently, more advanced versions were
developed such asdomain transform model driveby deep learnig (Sun & al., 2024 and progressive
multi-iteration registratioffusion ceoptimization network (Qu et al., 2024. For supervisedmethods,
however the applicabilityin reality can be compromisedsit can bedifficult to collectrequiredfine spatial
resolution multi/hyperspectral imagés training. Alternatively, unsupervised deep learning stratediase
been developed fapatiatspectral fusia in recent yeargMa et al., 2020Qu et al.,2023 Sun et al., 2023

which do not neednulti/hyperspectral imagest thetargetfine spatial resolutiorfor training but learn the



97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

intrinsic structure from the input dat8pecifically, the inpupanchromatiamageand coarsenultispectral
imageare usedn the construction of loss factiot@ constrain the predictions of the netwarkpatially, it is
assumedhat the spatiahformationpresentedy the (spectrallylegradell fused image should be similar to
that ofthe panchromatiamage Spectrally, it is assumed thisie (spatiallydegraded fused image should be
the same as the inpotultispectral imageThe geostatistial approackscan take into account the changes in
the spatial support of the data and the point spread function (PSF) effect of $atidoson et al., 2008;
Wang et al., 2014)The most significant advantage of geostatistmathods is that the downscaling results
are consistent with the originabarsespatial resolution data. Representative methods incteseto-point
regressiorkriging (ATPRK) (Wang et al., 2016)downscaling cokriging (DSCKJPardolgzquiza et al.,
2006) and kriging withanexternal drift (KED)(Sales et al., 2012)

Significant progress has been made in reseanchsmatialspectral fusionbasedon various Earth
observationdatasetsHowever research orfusion of datasetsn otherplanets is relatively limitedTo the
best of our knowledgethere has been no study on the fusion of CTX and CRISM infagédars The
surface of Marss generally covered by rocks and minenalth variousterrainand landform featuresvhich
Is substantially different from that for the Eaghrface The main adantage of hyperspectral image over
multispectral images that the former can providenore detailed spectral information, which sigraintly
enhances the ability to distinguish between different typkesocks andminerabk. In this case the
effecivenessof existingspatiatspectralfusion methods needs to balidated Most currentspatiatspectral
fusion methodssuffer from a longstanding issue: thegannot achievelatafidelity of the original coarse
spatial resolutiommages That is, when the spatiapectral fusion results are degraded to the original coarse
spatial resolution, they are not consistent with the original coauage To realizedata fidelityis crucialfor
hyperspectratharpening, as the reliability of spectra plays key roownstreamapplicationssuch agock
andmineralidentification

Geostatistics provides a nesslutionfor realization of spatiaspectal fusion withperfect datdidelity to
the original coarse spatial resolution imageSpecifically, various models based amato-point kriging
(ATPK) (Atkinson, 2013; Kyriakidis, 2004; Kyriakidis and Yoo, 2005; Wang et al., 2bith)ding DSCK,
KED, and ATPRK, have significant advantage preserving the original coarse imadéat s, when the
spatiatspectral fusiomesult isdegradd to the origindspatial resolutionit is completely consistent with the
original image.This characteristiof complete data fidelitys alsoreferred tocomplete data coherenae
geostatistics

This paperproposé a completely new paradigm ofspatialspectral fusioncalled DF-SSF (Data

Fidelity-orientedSpatial Spectral Fusion) for fusion of CTX and CRISM imageswhere the CTX image is



129 treated as thpanchromatiégmage It aims to preservperfectlythe original CRISMdata DF-SSF achieves
130 this by utilizing ATPK to downscale the differendee(, coarseresidualimage betveen the existing fusion
131 result(i.e., produced by any dhe existing spatiabpectral fusion metha@ and the original coarsgpatial

132  resolution image. e produced fine spatial resolution residual imagehenaddel to the existing fusion
133  resultto obtain the final fusion result with completatafidelity. The contributions of thipaper mainly lie in

134  two agpects

135 1) It is the first study on the fusion @TX and CRISM imagesn Mais to enhance the spatial resolution
136 of CRISM hyperspectral imagealthough spatiatspectralfusion has been developeter decadesto
137 the best of our knowledgéhere is no research on Mars remote sensingdiatanated by rock and
138 minerals especiallyfor fusion of CTX and CRISMlatg where the preservation ofiginal spectra is
139 crucialfor downstreanapplications

140 2) A completelynew paradigm DFSSF is proposedor spatiatspectrafusion with completelatafidelity
141 to the original coarse spatiatesolution data DF-SSF is theoretically applicableto any existing
142 spatiatspectralfusion method.

143 The remairder of this paperis divided into fivesectiors. Section2 provides a brief introduction to the

144  study arearesearcldata, and the corresponding processBegtion3 explairs the principles of the proposed
145 DF-SSFmethod. Theexperimentatesultsfor validationof the methodare presented iBection4. Section5
146  discusses issues related to the proposed method amksdtiture directionsFinally, Section6 concludes
147  thepaper

148

149

150 2. Study areaand data

151

152 2.1 Study area

153

154 The study area of this paper consists of six regions, as shown in Tébémrett et al.,, 2014Among
155 them, Eberswalde Crater, Mawrth Vallis, and Holden Cré®eulet et al., 2014yvere once considered as
156  candidate landing sites for Mars missions. The Melas Chasma area is a catiypantan surface, while
157 the Gale CratefPeulvast and Masson, 1993; Poulet et al., 20i4) the location where the Curiosity Rover
158 landedsuccessfullyn 2012 and is currentlgonsdered forscientific exploration. The Jezero Craf&oudge
159 et al., 2015)was the landing site ohé Perseverance Rover, which landedcessfullyin 2021. These six

160 regions have become the focus of scientific research due to their unique geological and geomorphologic
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characteristicsUtilizing the hyperspectral remote sensing dadgering these aag it is possible tostudy
Martian rocks minerals andnany other topicsThe abundance, distribution, and properties of these rocks
and minerals can providesighs into the composition and evolutiany processe®f the Martian surface.
In-depth study bthese regionganhelp us understand the geological history and hydrological processes of

Mars more comprehensively.

2.2 CRISMimages

All CRISM images used in this paper are Mamjected Targeted Reduced Data Record (MTRDR)
(Murchie et al., 2007)products obtained at thiatest publicly availablecalibration level. The MTRDR
includes magprojectedTargeted Empirical Record correct€bER) calibratedl/F (the ratio of the sensor's
spectral irradince to thesolar spectral irradiangepectral information anexcludes spectral channels with
qusstionable radiance measuremefitsad bands”)The hyperspectral image cubiesthe MTRDR product
suite are stored as &t real numbeunits. As a hypersparal sensorCRISM covers the spectral range from
362 nm to 3920 nm with Bine spectral resolution of 6.55 nm per chanfiglis range includethe visible,
nearinfrared and shortwave infraredavelengths Through these channels, CRISM obtains spectral
information from the Martian surface, which che used for studying Martian mineralogy, geology and
geomorphology. The CRISM data used in this study are MTRDR products with a spatial resolution of abou
18 m in this hyperspectral mode.

2.3 CTX images

The CTX images used in this paper are Experiment Data Record (@DdRh et al., 2007)products
containing raw CTX imagealong with their associated metadata information (e.g., observation time,
exposire time, camera parameters, etc.). Té@ EDR dataare convenientor further processing, analysis
and utilization. Unlike multispectral images, CTX images contain ardyngleband, with a spectral range
from 500 nm to 700 nm. On the MRO's ne@cular, nearpolar mapping orbit, the spatial resolution of CTX
is about 6 m. Thiselatively fine spatiafesolution enables CTX to capture more detailed surface features on

Mars, including impact craters, canyons, dunes, and some other intricate information.

2.4. Data processing



193 The CRISM MTRDR imagesvereused as originally provided, while CTX imagesreprocessed using

194 the ISIS3(Sucharski et al., 202@ipeline. The raw CTX image files were first converted to ISIS3 image
195 format and then subjected to image map project{@&guidistant cylindrical) Since precise alignment

196 between the input hyperspectral and panchromatic imagessentialfor spatialspectral fusion, image

197 registrationwas also performedseometricregistrationbetweenthe CRISM and CTX images vgaachieved

198 by using rasterio's virtual warping to reprojdot CRISM images into the coordinate reference system of the
199  corresponding CTXmages However, even within the same coordinate system, the CRISM and CTX images
200 may not be perfectly aligned. Therefore, subsequent registration is necessary. In this paper, the softwa
201 ENVI was employed for local registratigdhrough the Harris corner detection algoritifhefinal 6 mCTX

202 and18 mCRISM images of the study area are shown in Fighg. spatial sizes &TX andCRISM images

203 used in each regicere90C 900and30C 300 pixels, respectively

204
205 Tablel. Locatiors of the six study regions
. Latitude(®) Longitude(®)
Regions Min Max Min Max
Eberswalderater -24.5 -23.4 -34.0 -32.7
Mawrth Vallis 23.3 24.6 -19.6 -18.4
Holdencrater -27.6 -25.9 -36.0 -34.0
MelasChasma -10.5 -8.7 -78.0 -75.0
Jezero crater 18.0 18.8 77.2 78.4
Gale crater -0.9 -3.8 135.9 139.9
206

(a2) (b2 (c2) (d2) (€2 (f2)
207 Fig. 1. The CTX(6 m)and CRISM(18 m)images of the six regions (bands 37, 25 and 12 as RGB). The spatial sizes of the CTX

208 and CRISM imageare 908900 and 300300, respectively. (a) Eberswalde Crater. (b) Mawrth Vallis. (c) Holden Crater. (d) Melas
209 Chasma. (e) Jezero Crater. (f) Gale Crater.

210



211

212 3. Methods

213

214 3.1 Overview of DFSSF

215

216 The main requirement of the Wald protocalWald et al., 1997)n spatialspectral fusions that there

217 should be no deviation between the spapdctral fusion result and the original coarse image. That is, when
218 the fused imagés degraded to the originaloarse spatialesolution,it should beexactlythe same as the

219 observeccoarseémage. However, the reality is that existing spadjactral fusion models struggle to achieve

220 data fidelity in the true mathematical sense, mmagthattheresidualsi(e., thedifferencebetween théusion

221 result and the originatoarse datagre commonly noizera Achievingdata fidelityto the original coarse

222 imageplays a crucial role in enhancing the reliability of the fused data. Therefore, this paper proposes
223 completely newspatiatspectral @ision paradigm(DF-SSH that can realize complete data fidelity the

224  original coarse image

HR=HR+aR, k=1, 2 Né (1)
225  wherek denoteghe result of thék-th band(k= 1 , 2N, wéhereN is the total number of banjjsH § is the

226  spatiatspectralfusion result that enables complete data fideIIfyS is the prediction ofany existing

227 spatiatspectralfusion modeland aR, represerd thefine spatialresolution residuals presenttime existing

228 spatiatspectralfusion model.Details for calculation oﬂ-IE;} and sk, are introduced in the following
229  Sectiors 3.2 and 3.3, respectivelyThe whole flowchart of theroposedDF-SSFmethod issketcled in Fig.
230 2.

231

232 3.2 Estimation based oexisting SSHnethods

233

234 The widely usedspatiatspectral fusion algrithms generdly follow the basic principles of CS or MRA.
235 Therefore these tweaategoriesof methods are the focus of this paper. Their main principledbraeély
236 described as follows

237 For the CSbased methal thespatiatspectal fusion result is defined as
HR=HK+gZ P-I_, k=1, 2 N %)

238 in which H$ denotes thefusion result for the k-th band H § denotes themulti/hyperspectralimage
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interpolated to thepatial sizeof the panchromatic imagegf is the weight of théine spatial resolution gain

injected into thek-th band(where C represents the CBased methodspnd P denotes the panchromatic
image | is defined as

= *HS (©)
i= 1
in which ¥; represents the fitting weight for tireh (i= 1 , 2N) bé&ndof the multi/hyperspectral image

For the MRAbased method, thepatiatspectal fusion result is defined as
Hg=HS+q' P-P . k= 1,1 (4)
where P, representshe coarsespatial resolution version of the imaBeand g&" is the weight ofthe fine

spatial resolution gain for theth band(whereM represents th®IRA-based methods)
3.3 Estimation ofthe residua at fine spatiatesolution

For existingspatialspectrafusion models, it is inevitable that there aoarse gatial resolution residuals
(denoted asaRY) in their predictionsasdefined as follow
aRE=H S-H S~ ®)
where H § representsthe observedcoarse spatiaresolution imageof the k-th band - denots the
degradation operatiomnd H S;}—- indicaes the result of degradinghe spatiatspectralfusion result of the
k-th bandto the original coarsgpatial resolution
In this paper,we utilized ATPK to estimatdhe spatial resolutionfine residualsaR, in Eq. (1)
Specifically,for theresidual of thdine spatial resolutiomixel at spatial positioxx in the k-th band(denoted
as aRy(x)), its value can be predicted through a linear combinatidnspiatiallyadjacent coarse resials in
image aR{:
L L
aR(X)= DbaRi(x) s. th=1 (6)
i=1 i=1
where x; denotes thespatial locationof the i-th neighborhoodb denotes the weight of its corresponding
coarse residuagndL is the number of neighbioig coarse pixels used in the predictidme L weights(i.e.,

by, by,..., b)) in EQ.(6) are catulated bythekriging equationas follows:
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6 dXaxe) 'ij L dxax) Ly b, S XXy
11 é NE é é’l é =11 é 1 (7)
'ﬂé dAXLX1) E dé dAXuX0) n b, 'thé XX
u 1 E 1 oYd u 1 U

wherethe termdéc(xm,xn) (m n=1, 4) i®the coarsdo-coarse residual semivariogram between coarse
pixels centered at,, andx, in the k-th band d; dX.xy) is the fineto-coarse residual semivariognebetween

fine and coarse pixels centeredxaandxn, in the k-th band, andg is theLagrange multiplierFurther details

on calculation of theemivariograracan be found iWang etal. (2015, 2016)
3.4. Perfectdatafidelity of DF-SSF

An important advantage of ATPK is tiperfectcoherenceof the prediction with the input coarse image.
That is once the ATPK predictiors degraded to the original coarggatialresolution, it is exactly identical
to the original coarse data. Based on peefect coherence of ATPK, the coarse residuad®S can be
accurately reproduced when the ATPK predicti@d®, are degraded tthe coarsespatial resolutioras
follows:

aRy= aR¢ ®

As describedn Eqg. (1), the prediction oDF-SSFis composed ofH &‘R predictedby any ofthe existing

spatiatspectrafusionmethod and aR predictedby ATPK. CombiningEgs.(1), (5) and8), we carderive

the following
HS-= HS+aR, -
=H G- + &Ry~
=H G-+ aR( ©)
=HS+HSG-HS-
=HS
Eq. © means thabnce the prediction of DESF(i.e., H §) is degraded to the original coarse spatial

resolution, it is exactly identical to the original coarse image, H ), thereby achieving completelata

fidelity to the original data.
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Fig. 2. Flowchart ofthe propose®F-SSFE

4. Experiments

4.1 Experimenal setup

In this paper, two sets of experimemtsredesigned twvalidatethe feasibility ofthe spatiatspectralfusion
of CRISM and CTX data, as well as the effectiveness of our propose&iiSBFmodele.qg.,its datafidelity
ability). The sx regionsintroduced in Sectior2 were seleced For the CRISM hyperspectral data, after

removing the noisybands, the first 70 bands covering the spectral range similar to that of the CTX



292 panchromatic image were selectedhe experimens.

293 In the first set of experiments, the effectiveness ofIH¥F was validateditilizing simulated data.
294  Specifically, die to the absence of 6 m CRISM imggéereareno reference data for objective evaluatobn
295 the 6 m resultsproduced by fusion of th#8 m CRISM data and the 6 m CTX dat&erefore, to ensure the
296 existence ofreliable hyperspectral reference imagaisthe target finespatial resolution, acenmonly used
297 strategywas adopted: the 18 m CRISM hyperspectral image and the 6 m CTX pancloromagiewere
208 degraded to 54 m and 18 m, respectiv@lyen the twodegraded imagewere fused to obtain the 18 m
299 hyperspectral image bspatialspectralfusion. The original 18 m CRISM hyperspectral imagas useds
300 thereference image to evaluate thewecy of the 18 m fusion resuluring the degradation process, the
301 Gaussian PSF (with a convolution kernel parameter ofviaS)used in th experimentsThis paper employs
302 five evaluation metrics for quantitativeessessmentncluding correlation coefficient (CC), spectral angle
303 mapper (SAM),root mean square error (RMSE), relative globaldimensionalsynthesiserror (ERGAS)
304 (Ranchin and Wald, 200@nd universalimage quality index (UIQI) (Wang and Bovik, 2002)For CC,
305 RMSE, and UIQIthe valuesvere compued baneby-band and then averaged across all bafds. SAM, it
306 was first calculated pixeby-pixel and finally averaged across all pixel$o evaluate thelata fidelity
307 capability, we also evaluated theetric of coherence, which involves degrading tipat&alspectral fusion
308 image tothe original coarse spatiatesolution andto calculatethe CC with the originalinput coarse
309 resolution image.

310 In the second set of experiments, the actual 18 m CRISM hyperspectralestatéusedvith 6 m CTX
311 panchromatiadata to obtain CRISM hyperspectral dat®& m spatiaresolution.The spatiatspectral fusion
312 performancevas evaluated mainlyased on visuahspectionandthe metric ofcoherence.

313 CSandMRA are two types of the mostidely usedspatiatspectral fusioomethod. Thereforewe appled
314 DF-SSF tosevenmethodswithin the two categoriesGS, GSA, PCA, SFIMMTF-GLP, MTF-GLP-HPM,
315 and guided filter PCA (GFPCA (Liao et al., 2015) In addition we also examined the applicability of
316 DF-SSF tothe unsupervisedieep learningbasedmethod and a ypical methodof this type, that is,
317 pansharpening based on a generative adversarial ngfda#kzAN) (Ma et al., 202]) was considered

318

319 4.2 18 mfusion resuk

320

321 1) Visual evaluationFig. 3 shows thespatiatspectralfusion results of differen€S and MRA methods in
322 thesix regionsNote thatthe subareas marked in red are zoomedrig. 4 for clearer comparisorvisually,

323 it is evidentthat all methodgroduce resultsloser to the reference imagafter considering data fidelityy
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DS-SSF Specifically, using the DISSF method, the spectral distortion present in the GS and PCA methods
(such as in the alluvial fan and channel areas of the Eberswalde Crater re§ign3his significantly
redu@d. The fusion results othe GFPCA and SFIMmethodsbased on DSSF reproduce morgpatial
structures (as seen in the Mawrth Vallis region where surface features are depicted as relatively small a
dense layers of sediment). For tMTF-GLP and MTF-GLP-HPM methods, the spectral and spatial
distortions in the results are relatively minor, but when considering data fidelity, the results are closer to th:
reference imagen the hue

2) Accuracy evaluationFirstly, for a clearer comparison of the results from different methods, we selected
two bands fom the fusion resultén Fig. 3 for analysis andproducedthe errormags in Fig. 5. It can be
observedclearly that, for allsevenmethods, the errors are significantly reduced when using th& 3pF
method particularly in areas such as smooth river channels, weakhiegions, and impact cratekence,
the fusion results obtained by EFSF exhibit smaller errors comparedtbhmse ofthe original methosl
Secondlyscatteplotsrepresentinghe results oftte originaland DFSSF methods are given ng. 6. From
the scattaglots, it is apparent that the resulté the originalspatiatspectral fusion methods are relatively
scattered along the axeshile the fusion results oDF-SSF are more concentrated ward they=x line,
indicating that its results are closer to th&erence

Table 2 provides quantitative evaluation results ftire various methods in the six regions. It can be seen
that the accuracy of tHeF-SSFresults isobviously greatethan that ofthe original methods~or example,
the CC and UlQValues ofall six regions aréncreasd byover0.0120, the ERGASaluesare all decreased
by more than 0.0500, alde SAMvaluesare al decreased by more than 0.00@3s worth noting that even
in some regions wherseveralmethodspresent lower accuraci€s.g., GS, GSA, and PCi the Jezero
Crater arep theaccuracyis increased noticeablyy using the DFSSF method.

3) The effect of band correlatioGeneraly, spatiatlspectral fusion methods perform betberbands that
havelarger correlation with the panchromatic imadg. 7 presents the fusion accuracy (using CC as an
example) of various methods for all bands in the six regions (leftalaodhe relatioship (n terms ofCC)
between the original CTX data and CRISM hyperspectral bands (ghghown inFig. 7, the trend of all
curves in the left columms similar to that ofthe corresponding curves in the right column. Taking the
Eberswalde crater regicas an example, in the rigplot of Fig. 7(a), the first 20 bands preseatsmaller
correlation with the panchromatic image compared to other b@wisespondinglythe fusion accuracyf
all methods for the first 20 bandsthe leftplot of Fig. 7(a) is relatively lower. The physical reason for this
phenomenon is that the first 20 bands are not completely covered by the panchromaticFondabe

remaining50 bands in the visibleange, the panchromatic image provides numeelatedinformation for
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the fusion proces$gading tomore accurate fusion results.

4) CoherenceCoherencds an important indicator for evaluating the quality of sipatiatspectralfusion
resultsin terms of data fidelityWe degraded the 18 gpatiatspectralfusion resultof various methods to 54
m, andcompaed them with the input 54 m CRISM hyperspectral da&ble 3 shows the overall cerence
(in terms of CC)assessment for all six regions. It can be sdearly that theproposed DFSSF model
achievegerfectcoherenceor all original methods, indicating its ability to preserve the original coarse data
completely. This advantageof DS-SSF lies inthe perfect coherence propertf ATPK, as demonstrated
mathematicallyn Section 3.4

5) Unsuperviseddeep learningbasedfusion results:We apply DFSSF to ParGAN to validate its
applicability to the unsupervised deep learning meth8thce the performance of deep learAbased
methods relies on the number of training data, different numbers of pairs (including 53, 28 and 14 pairs) c
CRISM and CTX images were considered for training, BRISSFwas examinedn all these casesThe
acairacy evaluatiomesults are shown ifiable4. It can be seen that the spasakctral fusion accuracy of
the proposed DISSF method isonsistentlygreaterthan that of the original methods all cases For
examplein the case of 53 pai training data bothCC and UlQlareincreased by more than 0.02@M0d
ERGAS is decreased by more than 0.1500oreover, when the number of training data decreases, the
accuracy oforiginal PanGAN decreases correspondingly, but the advantag®FePanrGAN is more
obvious.Forexample, for thé&berswalde Cratatata, theCC gain of DFPanrGAN overPanrGAN is around
0.07 in the case of 5@airs,and the gairfurther increass to 0.10 in the case of 14 pairBherefore the
proposedF-SSFmethod is also effective fdhe unsupervised deep learniagproacheven undevarious

numbes of training data.
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378 Fig.3.18 m spaﬂalspectral fu3|on resul{80C 300 pixels) of the SiX reglons (bands 37, 25 and 12 as RGB). The first and second
379  rows of each region are the results of the original SSF ar83M; respectivgl Thesubareas marked in red are zoomed in Fig. 4.
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