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We present a study of spin-unpolarized and spin-polarized two-dimensional uniform electron liq-
uids using variational and diffusion quantum Monte Carlo (VMC and DMC) methods with Slater-
Jastrow-backflow trial wave functions. Ground-state VMC and DMC energies are obtained in the
density range 1 ≤ rs ≤ 40. Single-particle and many-body finite-size errors are corrected using
canonical-ensemble twist-averaged boundary conditions and extrapolation of twist-averaged energies
to the thermodynamic limit of infinite system size. System-size-dependent errors in Slater-Jastrow-
backflow DMC energies caused by partially converged VMC energy minimization calculations are
discussed. We find that, for 1 ≤ rs ≤ 5, optimizing the backflow function at each twist lowers the
twist-averaged DMC energy at finite system size. However, nonsystematic system-size-dependent
effects remain in the DMC energies, which can be partially removed by extrapolation from multiple
finite system sizes to infinite system size. The DMC energies in the thermodynamic limit are used to
parameterize a local spin density approximation correlation functional for inhomogeneous electron
systems. Our zero-temperature phase diagram shows a single transition from a paramagnetic fluid
to a hexagonal Wigner crystal at rs = 35(1), with no region of stability for a ferromagnetic fluid.

I. INTRODUCTION

The uniform electron liquid is one of the most im-
portant models in physics which provides a basic under-
standing of the quantum properties of simple metals and
semiconductors and also materials under extreme condi-
tions [1–13]. Determining its ground state properties at a
wide range of densities is a challenging problem for many-
body methods, because the density controls the strength
of the electron-electron interactions and therefore corre-
lations. As the density is lowered and the average dis-
tance between electrons increases the Coulomb potential
energy decreases as 1/rs, where rs = (πna2B)

−1/2 is the
Wigner-Seitz density parameter, n is the density, and
aB = ℏ2/(me2) is the Bohr radius. By contrast the av-
erage kinetic energy in the low-density regime scales as
r−α
s , where α > 1. In this limit, the kinetic energy be-
comes much smaller than the Coulomb interaction and
consequently the ground state of the system becomes
crystal-like, meaning that the ground state wave function
(WF) of the electron liquid model can be considered as
an antisymmetrized product of localized functions (ulti-
mately δ-functions) located on the positions of a regular
lattice. Such a dilute system of electrons represents a
prototypical system with strong correlations. The pos-
sibility of a crystal phase of the electron liquid was ini-
tially suggested by Wigner in 1934 [14]. In an earlier
paper, Bloch predicted that spontaneous magnetization
occurs in a low-density system of electrons because the
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exchange interaction energy contribution driven by the
alignment of all spins outweighs the kinetic energy [15].
It should be pointed out that the structure of a Wigner
crystal cannot be determined a priori. Using the classi-
cal description of electrostatic energy one can find that
the crystal structure with the lowest energy will be the
one that, for a given volume of the primitive unit cell, has
the first reciprocal lattice vector of the largest magnitude
[16]. In two and three dimensions, the crystal structures
with this property are the hexagonal and body-centered-
cubic lattices, respectively.
An important but challenging question is: at what

value of rs does the transition between uniform electron
liquid and the Wigner crystal occur? This is a difficult
question to answer because, before the transition, ex-
change effects play a crucial role and also the system
could exist in some form of broken symmetry state such
as floating crystal. While perturbation theory cannot
be applied to the low-density regime, the early quantum
Monte Carlo (QMC) methods yielded a highly accurate
description of the phase diagram and crystallization den-
sity [17–21]. The phase diagram is obtained by com-
paring the ground state energies of different phases with
different symmetries. One issue of this approach is that
the ground state might have a symmetry that was not
considered. There are other QMC approaches which try
to discover the phase diagram by optimizing the wave
function using the variational Monte Carlo (VMC) tech-
nique [22, 23]. In this work, we address some of the
technical challenges of the QMC approach in calculating
the ground-state energy of two-dimensional (2D) uniform
electron liquid (UEL) at low densities.
The 2D UEL model which consists of a system of
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electrons moving in 2D in a uniform, inert, neutral-
izing background, interacting via the Coulomb poten-
tial has been widely studied theoretically [16, 18, 20,
21, 24–29] and can be observed at the interface of
metal-oxide-semiconductor structures [30], metal-oxide-
semiconductor field-effect transistors [31, 32], quantum
wells [32, 33], and MgZnO/ZnO heterostructures [34].
According to the 2D UEL phase diagram reported in
Ref. 28, the ground state is a non-spin-polarized (para-
magnetic) liquid from high density down to the point of
Wigner crystallization. However, in the absence of crys-
tallization, lowering the density would eventually make
the paramagnetic fluid phase unstable with respect to
a spin-polarized (ferromagnetic) fluid. An experimental
study of nonequilibrium transport in low-density 2D elec-
tron systems at zero external magnetic field suggests that
a fully spin-polarized fluid is stable before crystallization
[35], which was also reported by some previous theoret-
ical studies [20, 21]. On the other hand, more recent
experimental work has not found a region of stability for
the ferromagnetic fluid [34]. At low densities, classical 2D
Wigner crystals were produced by spraying electrons onto
droplets of liquid He [36], and also quantum 2D Wigner
crystals were observed at the interface between two semi-
conductors [37]. Within the last few decades a wide range
of experimental techniques have been deployed to detect
the crystallization and appearance of magnetic ordering
in low-density 2D electron systems [38–42].

This work revisits the problem of calculating the phase
diagram of the 2D UEL by QMC [28]. We improve
the trial WF by including additional long-range back-
flow terms and we look at a broader range of system sizes.
The single-particle finite-size (FS) errors of the system at
high densities are reduced by optimizing the trial WF at
each twist during the twist-averaged calculations. The
problem of many-body FS errors, which are tradition-
ally removed using an extrapolation approach, near the
crystal-liquid phase transition is discussed in detail. We
provide more accurate diffusion quantum Monte Carlo
(DMC) ground-state energies at the infinite system size
limit, which are used for the parameterization of a cor-
relation functional.

II. DETAILS OF THE QMC CALCULATIONS

We have carried out QMC calculations for 2D UELs
with spin polarizations of ζ = 0, 0.5, and 1 within the
density range 1 ≤ rs ≤ 40, where rs is the radius of the
circle that contains one electron on average in units of
the Bohr radius. We have focused on reducing FS errors
[43–46] by using twist-averaging (TA) and extrapolation
techniques [17, 18, 47]. We discuss errors in DMC calcu-
lations near the crystallization density introduced during
WF optimization, whose effects may be exaggerated by
FS extrapolation.

Slater-Jastrow-backflow (SJB) WFs [48, 49] with
plane-wave orbitals exp(iG·r) were used in our QMC cal-

culations for fluid phases. Details of the SJB WF have
been explained in our recent studies [50–52]; the prin-
ciple difference from Ref. 28 is the inclusion of a long-
range two-body backflow term π that is expanded in a
plane-wave basis. This term lowers the variational energy
in finite cells and is intended to make the treatment of
two-body correlations in different simulation cells more
consistent, to aid extrapolation to the thermodynamic
limit. We used the variational and diffusion quantum
Monte Carlo (VMC and DMC) methods [53] as imple-
mented in the casino package [54]. To impose fermionic
antisymmetry in our DMC calculations we have used the
fixed-node approximation [55], where the nodal surface is
forced to be the same as that of the trial WF. The vari-
ational parameters in the Jastrow factor and backflow
functions were optimized within VMC by minimizing ei-
ther the energy variance [56, 57] or the mean absolute
deviation of the local energies from the median [58], then
minimizing the energy expectation value [56, 59]. We
used a target population of 2560 walkers in our DMC
calculations. At rs = 1, 2, 5, 10, 15, 20, 25, 30, 35, and
40 we used DMC time steps of τ = 0.005, 0.01, 0.05, 1,
1.5, 2, 3, 4, 5, and 6 Ha−1, respectively. Random errors
due to TA are larger than the time-step bias in each case.

III. NUMERICAL RESULTS

Our DMC energies obtained at various system sizes us-
ing a hexagonal simulation cell are listed in tables I and
II. Except where otherwise stated, our Jastrow factors
and backflow functions were optimized at zero twist (i.e.,
pure periodic boundary conditions). For paramagnetic
2D UELs with densities rs = 1, 2, and 5, and system size
N = 146, we tested separately optimizing the Jastrow
factor and backflow function at each twist. The results
are listed in Table III. We have used 30 random twists
in our analysis. Our analysis shows that separately opti-
mizing the Jastrow factor and backflow function at each
twist reduces the TA DMC energy by−0.225(9)×10−3/rs
Ha/el. for paramagnetic 2D UELs at N = 146. These re-
sults demonstrate the existence of significant, quasiran-
dom FS errors in TA energies in which the same backflow
function is used for all twists.

IV. TRIAL WF OPTIMIZATION

WF optimization [56, 59] is challenging at large sys-
tem sizes (N ≳ 150) and at densities near the solid-
liquid phase transition (rs ≳ 20). Figure 1 shows the
energy minimization process for the paramagnetic liquid
phase with different system sizes and densities. The SJB
WFs used for energy minimization were initially opti-
mized by minimization of the mean absolute deviation
(MAD) of the local energies at low densities. The prob-
lem of slow convergence with optimization cycle can be
observed in Fig. 1. The plots in this figure also show occa-
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TABLE I. Twist-averaged diffusion Monte Carlo energy
EDMC for N -electron two-dimensional uniform electron liq-
uids with spin polarization ζ = 0 and density parameter rs.
SJB WFs were used.

rs N EDMC (Ha/el.) rs N EDMC (Ha/el.)

1 146 −0.211457(5) 20 62 −0.046445(1)

1 218 −0.210922(5) 20 110 −0.0464184(8)

1 302 −0.210708(6) 20 146 −0.0464077(8)

. . . . . . . . . 20 218 −0.046401(1)

2 146 −0.25901(6) 20 242 −0.046399(1)

2 218 −0.258831(6) . . . . . . . . .

2 302 −0.258665(5) 25 62 −0.0378521(7)

. . . . . . . . . 25 110 −0.0378329(4)

5 146 −0.150113(2) 25 146 −0.0378238(5)

5 218 −0.150069(2) 25 254 −0.0378136(5)

5 302 −0.150024(4) . . . . . . . . .

. . . . . . . . . 30 62 −0.0319681(9)

10 62 −0.085709(2) 30 170 −0.0319466(5)

10 110 −0.085643(2) 30 254 −0.0319435(4)

10 170 −0.085612(1) . . . . . . . . .

10 302 −0.085582(3) 35 62 −0.0276932(8)

. . . . . . . . . 35 122 −0.0276811(3)

15 62 −0.060214(1) 35 254 −0.0276751(7)

15 100 −0.060177(1) . . . . . . . . .

15 170 −0.060160(1) 40 62 −0.0244424(2)

15 242 −0.060148(2) 40 110 −0.0244321(2)

. . . . . . . . . 40 146 −0.0244295(2)

sional jumps suggestive of WF parameters moving from
one local minimum-energy configuration to another.

Our final WFs are obtained by energy minimization,
but usually this requires a reasonable first approxima-
tion to the WF, obtained using a different method. Al-
though unreweighted variance minimization exhibits su-
perior numerical stability to energy minimization at high
and intermediate densities, we found numerical instabil-
ities in variance minimization for systems with large N
and low density. Numerical instability in variance mini-
mization can occur when the nodes of the trial WF are
altered during minimization. Near the transition density,
we find that numerical instabilities become more severe
at large system sizes due to the growth of complexity of
the energy landscape in parameter space. Minimizing a
more robust measure of the spread of the local energies,
such as the MAD [58], provides much lower variational
energy (Table IV), because the MAD is less sensitive to
divergent local energies [54].

We found that more than a dozen cycles of VMC con-
figuration generation and energy minimization are often
required to converge adequately in the regime of large
N and large rs, as shown in Fig. 1. The magnitude of
the effect is significant on the scale of the FS error, even
if the subsequent use of DMC weakens the dependence
on the backflow function. A related observation is that

TABLE II. As Table I, but for a fully ferromagnetic two-
dimensional uniform electron liquid with spin polarization ζ =
1.

rs N EDMC (Ha/el.) rs N EDMC (Ha/el.)

1 55 0.124298(6) 20 55 −0.0462735(5)

1 91 0.125157(5) 20 91 −0.0462584(4)

1 169 0.125782(2) 20 139 −0.0462488(2)

. . . . . . . . . 20 169 −0.0462449(2)

2 55 −0.195569(3) . . . . . . . . .

2 91 −0.195089(2) 25 55 −0.0377815(4)

2 139 −0.194848(1) 25 91 −0.0377695(4)

2 169 −0.194792(1) 25 139 −0.0377639(2)

. . . . . . . . . 25 169 −0.0377603(2)

5 55 −0.143992(2) . . . . . . . . .

5 91 −0.143865(1) 30 55 −0.0319418(3)

5 139 −0.1438037(8) 30 91 −0.0319340(2)

5 169 −0.1437819(5) 30 139 −0.0319296(2)

. . . . . . . . . 30 169 −0.0319243(1)

10 55 −0.084688(1) . . . . . . . . .

10 91 −0.0846419(7) 35 55 −0.0276857(3)

10 139 −0.0846251(4) 35 91 −0.0276788(2)

10 169 −0.0846088(4) 35 139 −0.0276739(1)

. . . . . . . . . 35 169 −0.0276719(1)

15 55 −0.0597888(9) . . . . . . . . .

15 91 −0.0597629(5) 40 91 −0.0244397(2)

15 139 −0.0597489(4) 40 139 −0.0244353(1)

15 169 −0.0597451(3) 40 169 −0.02443388(9)

TABLE III. TA DMC energies of paramagnetic 146-electron
2D UELs. The DMC calculations were performed using either
the same Jastrow factor and backflow function, optimized at
zero twist, for all twists (DMC0) or SJB WFs separately op-
timized at each twist (DMC1).

rs
TA DMC energy (Ha/el.)

Difference (Ha/el.)
DMC0 DMC1

1 −0.210731(7) −0.210957(5) −0.225(8)× 10−3

2 −0.258378(9) −0.258501(6) −0.12(1)× 10−3

5 −0.149595(4) −0.149637(2) −0.042(5)× 10−3

the TA VMC and DMC energies per particle are often
higher than suggested by extrapolation from smaller sys-
tem sizes (see Figs. 4 and 5).

Residual canonical-ensemble TA errors in the Hartree-
Fock (HF) kinetic and exchange energies around the crys-
tallization density are orders of magnitude smaller than
the fluctuations in the DMC energy shown in Fig. 5;
hence residual momentum quantization effects in the TA
energy cannot explain the nonsystematic system-size de-
pendence. Other sources of nonsystematic FS error, such
as Ruderman-Kittel oscillations being forced to be com-
mensurate with the simulation cell, may be present in
Fig. 4. Such nonsystematic FS errors are at least par-
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FIG. 1. SJB VMC total energy against energy minimization cycle for different system sizes and density parameters for
the paramagnetic 2D UEL at zero twist. The initial WF was optimized by either unreweighted variance minimization or
minimization of the MAD from the median local energy.

tially averaged out by extrapolation to the thermody-
namic limit.

We investigated this issue further. First, we investi-
gated how the initial SJB WF optimization depends on
the number of configurations and the twist. The results
are summarized in Table IV. They indicate that the op-
timized energy for a large system at low density does
not depend strongly on the number of configurations or
the twist wavevector, but does depend on the optimiza-
tion method. Because the local energy diverges at nodes,
the unreweighted variance and MAD landscapes depend
strongly on the sampled configurations. Nevertheless,
it is clear that MAD minimization provides much bet-
ter results than variance minimization and hence better
starting points for energy minimization. Second, we com-
pared the FS behavior with Slater-Jastrow (SJ) and SJB
WFs. The fixed-node SJ-DMC energy is in principle in-
dependent of the Jastrow factor. Figure 4 shows that the

TA SJ-DMC energies behave in a nonsystematic manner
as a function of system size, and that this behavior is
further exaggerated by the inclusion of backflow. This
demonstrates (i) that the nonsystematic behavior is not
simply a result of difficulties optimizing WFs and (ii)
that applying analytic FS corrections [43–45] to results
obtained at a single fixed cell size is unreliable because
nonsystematic FS effects cannot be removed by this ap-
proach. Third, we examined the static structure factor
(SF) and momentum density (MD) of a paramagnetic
2D UEL with N = 254 at rs = 30 obtained by VMC
at a single twist as illustrated in Fig. 2. We have not
found significant WF-optimization-dependent or system-
size-dependent anomalies in the SF and MD (e.g., the
MD retains its discontinuity at the Fermi wavevector).

Fourth, we compared the energies of paramagnetic 2D
UELs at rs = 30 obtained using hexagonal and square
simulation cells with system sizes 62 ≤ N ≤ 302. We
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tor S(k) of paramagnetic two-dimensional uniform electron
liquids using SJB WFs with density parameter rs = 30 at
different system sizes N obtained by VMC at zero twist. kF
is the Fermi wavevector.
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FIG. 3. Twist-averaged SJB-WF DMC energies of two-
dimensional paramagnetic uniform electron liquids at rs = 30
obtained using hexagonal and square simulation cells.

plotted the twist-averaged DMC energies as a function
of N−5/4 and used linear regression to obtain the DMC
energy at the thermodynamic limit (Fig. 3). The DMC
energies at the infinite system size limit obtained with
hexagonal and square simulation cells are −0.03187(2)
and −0.03189(1) Ha/el., respectively. The extrapolated
results agree within the error bars; however, the fluctu-
ations about the fitted lines are much larger than the
error bars, so that we rely on fitting to multiple different
system sizes to remove nonsystematic finite-size effects.
The plot shows that the variation of the DMC energy as
a function of system size N is smaller in the square lat-
tice. The hexagonal Wigner crystal energies used in our
phase diagram (Fig. 6) were calculated using hexagonal
simulation cells.

Fifth, we performed SJ-VMC, SJ-DMC, and DMC
with only the Slater trial WF (S-DMC) calculations
for paramagnetic Fermi fluids at rs = 30 in square
cells with N = 90 electrons. We chose three differ-
ent initial WFs for the optimization (Starting points
1–3) and optimized the Jastrow factor by energy min-
imization at either Γ (ks = 0) or the Baldereschi point

[ks = (1/4)b1 + (1/4)b2, where b1 and b2 are the su-
percell reciprocal lattice vectors]. The DMC calculations
were performed at time steps of 2 and 8 Ha−1, with pop-
ulations in inverse proportion to the time step, and the
energies were extrapolated linearly to zero time step and
infinite population. HF and VMC energies are shown in
Table V, while DMC energies with and without a Jastrow
factor are shown in Table VI.
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FIG. 4. TA DMC energies for paramagnetic (ζ = 0) 2D
UELs with density parameter rs = 30 obtained using SJ and
SJB WFs. The differences between the SJB and SJ energies
for N = 218, 242, 254, and 302 are −0.041(2), −0.042(4),
−0.068(1), and −0.037(2) mHa/el., respectively.

As expected, the choice of twist for optimization has
only a small effect on the fluid energy at this low density.
Indeed, twist averaging only has a small effect on the fluid
energy. Starting points 2 and 3 produce WFs that give
a significantly lower VMC energy than the HF energy,
i.e., they introduce correlations that lower the energy.
However, the energy obtained is not as low as the energy
obtained in starting point 1. Hence there are issues with
local minima in parameter space.
The S-DMC energy obtained with the HF WF is lower

than the SJ-DMC energy obtained using the WFs from
starting points 2 and 3, despite the fact that the HF en-
ergy is higher than the SJ-VMC energies. Hence these
Jastrow factors introduce features that are difficult for
DMC to remove (i.e., much smaller DMC time steps and
longer simulations would be required). The S-DMC en-
ergy is in fairly good agreement with the SJ-DMC energy
obtained with the good Jastrow factor obtained in start-
ing point 1. The remaining small difference is very likely
because of the need to extrapolate the S-DMC energy
to zero time step more carefully. These findings confirm
that our DMC results can be affected by trial wave func-
tions whose variational parameters have not converged
to the values that best describe the fluid ground state.

V. PHASE DIAGRAM

We calculated the TA DMC energy for all the system
sizes shown in Fig. 1. The energy at the thermodynamic
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TABLE IV. Optimized energy of paramagnetic 2D UELs at rs = 30 with N = 302 electrons. Only polynomial and plane-wave
two-body Jastrow terms were used. The energies were calculated using different numbers of configurations Nconf. Two different
optimization methods, unreweighted variance minimization (“varmin”) and MAD minimization (“madmin”), were used. Three
twists, with fractional coordinates k0 = (0, 0), k1 = (1/3, 1/3), and k2 = (1/4, 1/2), were used. All the energies are in Ha/el.
The energies which are lower than −0.031 Ha/el. are highlighted in bold.

Nconf
Twist k0 Twist k1 Twist k2

“varmin” “madmin” “varmin” “madmin” “varmin” “madmin”

1920 −0.027955(7) −0.019491(8) −0.025725(2) −0.0315169(4) −0.025009(2) −0.0314244(5)

3840 −0.019497(8) −0.019508(8) −0.028892(8) −0.019487(9) −0.0307900(8) −0.0315429(4)

7680 −0.0307833(9) −0.0314710(4) −0.01950(1) −0.019496(9) −0.029414(3) −0.0315166(4)

9600 −0.025907(2) −0.0315087(4) −0.019502(9) −0.019496(8) −0.028948(2) −0.01948(1)

11520 −0.019503(8) −0.0315034(4) −0.030772(3) −0.0315255(4) −0.0308548(6) −0.01949(1)

15360 −0.019492(8) −0.019523(9) −0.0313126(5) −0.01948(2) −0.030773(1) −0.019507(9)

19200 −0.027983(2) −0.019519(8) −0.030738(2) −0.019494(9) −0.01947(1) −0.0315176(5)

TABLE V. HF and SJ-VMC energies for 90-electron Fermi
fluids in a square simulation cell, with the WF being opti-
mized from three different random starting points at the Γ
point and at the Baldereschi point of the square simulation
cell.

ks Start
Energy (Ha/el.)

HF TA HF SJ-VMC TA SJ-VMC

Γ 1 −0.0196518 −0.0196034 −0.0317373(2) −0.0317344(2)

Γ 2 −0.0196518 −0.0196034 −0.0251398(8) −0.025177(2)

Γ 3 −0.0196518 −0.0196034 −0.0271506(7) −0.02716(1)

Bald. 1 −0.0194515 −0.0196034 −0.0317356(2) −0.0317350(2)

Bald. 2 −0.0194515 −0.0196034 −0.02495(1) −0.02500(1)

Bald. 3 −0.0194515 −0.0196034 −0.0277466(6) −0.027726(7)

TABLE VI. As Table V, but using S-DMC and SJ-DMC cal-
culations.

ks Start
Energy (Ha/el.)

S-DMC TA S-DMC SJ-DMC TA SJ-DMC

Γ 1 −0.03151(2) −0.03151(2) −0.031919(1) −0.031903(1)

Γ 2 −0.03151(2) −0.03151(2) −0.02676(7) −0.02683(4)

Γ 3 −0.03151(2) −0.03151(2) −0.02848(2) −0.02849(2)

Bald. 1 −0.03151(2) −0.03159(2) −0.031899(2) −0.031898(1)

Bald. 2 −0.03151(2) −0.03159(2) −0.02670(2)

Bald. 3 −0.03151(2) −0.03159(2) −0.02901(2) −0.02901(2)

limit is obtained by a linear extrapolation of the TA DMC
energy as a function of N−5/4 [29]. Figure 5 shows the
extrapolation of TA DMC energies of two sets of data
points labeled as “nonglobal minima” and “global min-
ima.” All the TA DMC energies at the infinite system
size limit presented in the rest of this paper are obtained
using the extrapolation of TA DMC of systems that we
believe correspond to the fluid ground state.

Table VII lists our TA DMC energies at the thermody-
namic limit for 2D UELs with spin polarizations ζ = 0,
0.5, and 1, and density parameters 1 ≤ rs ≤ 40. We com-
pare our results with the previous works of Drummond
and Needs [28, 29]. The energies extrapolated to infi-
nite system size are slightly lower than those obtained by

-1.08
-1.06
-1.04
-1.02

-1
-0.98
-0.96
-0.94
-0.92

-0.9
-0.88
-0.86

 0  0.002  0.004  0.006

rs=30 - ζ=0
E

D
M

C
+

3
1

 (
m

H
a
/e

l)

 N -5/4

global minima
nonglobal minima

FIG. 5. Extrapolation of TA DMC fluid energies to the
thermodynamic limit of infinite system size for paramagnetic
(ζ = 0) 2D UELs with density parameter rs = 30. The red
data points are assumed to be trapped in nonglobal minima
during optimization and do not correspond to the fluid ground
state.

Drummond and Needs. There are two major differences
between our work and the previous ones. First, we used
the two-body plane-wave backflow π term [50, 51], giving
additional variational freedom in simulation cells of finite
size. Second, we used larger system sizes and hexagonal
simulation cells. These differences do not matter in prin-
ciple, but in practice, they affect the extrapolation to
infinite system size.

We used our DMC energies extrapolated to infinite
system size to calculate the phase diagram of the 2D
UEL (Fig. 6). The ferromagnetic and antiferromagnetic
crystal energies used in our phase diagram calculation
are taken from Ref. 28. We find that the paramagnetic
Fermi fluid transitions to a hexagonal Wigner crystal at
rs = 35(1). The previous work by Drummond and Needs
[28] predicted a value of rs = 31(1) for this phase transi-
tion. Similar to the previous phase diagram [28], we find
no region of stability for the polarized fluid phase with
spin polarizations of ζ = 0.5 or 1.
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TABLE VII. DMC energy in Ha/el. in the infinite system-size limit for 2D UELs with spin polarizations ζ = 0, 0.5, and 1 and
density parameters 1 ≤ rs ≤ 40. The results of Drummond and Needs are taken from Refs. 28 and 29.

rs
Present work Drummond and Needs

ζ = 0 ζ = 0.5 ζ = 1 ζ = 0 ζ = 1

1 −0.21017(6) . . . 0.12626(4) −0.2104(6) . . .

2 −0.25846(7) . . . −0.19453(1) . . . . . .

5 −0.14998(2) . . . −0.143714(2) −0.14963(3) . . .

10 −0.085568(5) . . . −0.084585(6) −0.085399(6) . . .

15 −0.060138(2) . . . −0.059731(1) . . . . . .

20 −0.046388(1) −0.0462813(1) −0.046236(1) −0.046305(4) −0.046213(3)

25 −0.037807(3) −0.0377575(1) −0.037754(1) −0.037774(2) −0.037740(2)

30 −0.0319383(2) −0.0319153(1) −0.031919(2) −0.031926(1) −0.031913(1)

35 −0.0276718(4) . . . −0.027668(7) −0.027665(1) −0.027657(1)

40 −0.0244226(3) . . . −0.0244289(1) −0.024416(1) −0.024416(1)

20 25 30 35 40 45
rs

0.809

0.810

0.811

0.812

0.813

0.814

0.815

0.816

(E
+

v M
0/r

s) 
r1.

5
s

 (H
a/

el
)

Para-fluid-Prs.wrk
Ferro-fluid-Prs.wrk

= 0.5-fluid-Prs.wrk
Para-fluid-Drummond
Ferro-fluid-Drummond
Ferro. crystal
AntiFerro. crystal

FIG. 6. DMC energy extrapolated to infinite system size
as a function of rs for 2D UELs with spin polarizations
ζ = 0, 0.5, and 1. Our results (“Prs-wrk”) are compared
with those of Drummond and Needs [28], which include para-
magnetic (ζ = 0) and ferromagnetic fluids (ζ = 1), and fer-
romagnetic and antiferromagnetic hexagonal Wigner crystals.
The Madelung energy of a hexagonal lattice, −vM0/rs, where
vM0 = −0.50751467391482663 is the Madelung constant at
rs = 1, has been subtracted from all the DMC energies.

VI. CORRELATION ENERGY

The correlation energy Ec is given by the difference
between the TA DMC energy at the thermodynamic limit
and the HF energy. The HF energy of a 2D UEL in the
infinite system size limit is

EHF(rs, ζ) =
1 + ζ2

2r2s
− 23/2

3rsπ
[(1 + ζ)3/2 + (1− ζ)3/2] (1)

where ζ = (N↑ − N↓)/N is the spin polarization. Our
SJB-DMC correlation energy results are shown in Table
VIII. We fit our TA DMC correlation energies to the Padé

TABLE VIII. SJB-DMC correlation energy in the limit of
infinite system size for 2D UELs with spin polarizations ζ = 0
and 1.

rs
Correlation energy (Ha/el.)

ζ = 0 ζ = 1

1 −0.10996(6) −0.02491(4)

2 −0.08335(7) −0.02012(1)

5 −0.04993(2) −0.013948(2)

10 −0.03054(5) −0.009702(6)

15 −0.02235(2) −0.007587(1)

20 −0.017627(1) −0.006295(1)

25 −0.014598(3) −0.005401(1)

30 −0.012487(2) −0.004736(2)

35 −0.0109311(4) −0.004232(7)

40 −0.0097298(3) −0.0038332(1)

function [20]

Ec(rs, ζ) = aζ ×
1 + bζr

1/2
s

1 + bζr
1/2
s + cζrs + dζr

3/2
s

, (2)

which has the correct asymptotic behavior at high and

low densities [20], i.e., Ec(rs) = a − acrs + O(r
3/2
s ) at

small rs, while Ec(rs → ∞) = (ab/d)r−1
s + a(1/d −

bc/d2)r
−3/2
s +O(r−2

s ) at large rs. We also fitted our DMC
correlation energy data to the correlation function sug-
gested by Rapisarda and Senatore [21]. For a given ζ the
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correlation energy is written as

Ec(rs) = a0

{
1 +Ars

[
B ln

(
1 + a1r

−1/2
s

)
+

C

2
ln
(
1 + 2a2r

−1/2
s + a3r

−1
s

)
+D tan−1

(
r
1/2
s + a2√
a3 − a22

− π

2

)]}
(3)

where

b = a1 + 2a2 and b′ = a1 − 2a2

A =
2b

2a1a2 − a3 − a21

B =
1

a1
− 1

b

C =
b′

a3
+

1

b

D =
F − a2C√
a3 − a22

F = 1− b′
(
1

b
− 2a2

a3

)
.

(4)

The parameters a0, a1, a2, and a3 were determined by
fitting. All the fitting parameters are listed in Table IX.

TABLE IX. Fitting parameters for the SJB-DMC correlation
energy [Eq. (2)] of paramagnetic (ζ = 0) and ferromagnetic
(ζ = 1) 2D UELs.

Parameter ζ = 0 ζ = 1

Padé

a (Ha/el.) −0.172202 −0.0428086

b 0.8729471 38.9315

c 0.7467841 22.4206

d 0.3135799 6.34817

Rapisarda-Senatore

a0 (Ha/el.) −0.184448 −0.044662

a1 24.703763 −0.002965

a2 0.0611422 1.8745574

a3 3.7936341 11.327815

We plot our SJB-DMC data and the fitted functions
in Fig. 7. The fitting parameter a in the Padé function
and a0 in the Rapisarda-Senatore function represents the
correlation energy in the limit rs → 0. Within the ran-
dom phase approximation (RPA) the correlation energy
of paramagnetic 2D UEL is Ec(rs) = −(0.19 ± 0.02) −

0.0863rs ln(rs) + O(rs) in Ha/el. [16]. The existence of
ln(rs) indicates that the correlation energy is a nonana-
lytical function of rs for rs → 0. The first term in the
RPA approximation −(0.19 ± 0.02) is comparable with
our fitting parameters of a in the Padé function and a0

0 10 20 30 40
rs

0.12
0.10
0.08
0.06
0.04
0.02
0.00

E c
(H

a/
el

) 

DMC Data = 0
Pade
Rapisarda-Senatore

0 10 20 30 40
rs

0.025
0.020
0.015
0.010
0.005

E c
(H

a/
el

) 

DMC Data = 1
Pade
Rapisarda-Senatore

FIG. 7. DMC correlation energy of 2D uniform electron liq-
uid with ζ = 0 (left panel) and spin polarization ζ = 1 (right
panel) fitted by Padé and Rapisarda and Senatore [21] func-
tions. The fitting parameters are listed in Table IX. Both
fitted functions provide similar asymptotic behavior.

in the Rapisarda-Senatore function for the paramagnetic
case. However, RPA approximation of the asymptotic
term is unknown for the spin-polarized 2D UEL and one
has to rely on the fitting parameters. We found that
both fitting functions we used provide a close estimation
of correlation energy of fully spin-polarized 2D electron
liquid in the limit of rs → 0, as listed in Table IX.

VII. CONCLUSION

In summary, we have used SJB WFs to perform VMC
and DMC calculations for 2D UELs with spin polar-
izations ζ = 0, 0.5, and 1 within the density range
1 ≤ rs ≤ 40. We have corrected single-particle and many-
body FS errors by canonical-ensemble TA and extrapo-
lation of the TA energies to infinite system size. We
find that separately optimizing the Jastrow factor and
backflow function at each twist improves the TA DMC
energy for the density range 1 ≤ rs ≤ 5 and possibly be-
yond. Optimization of the trial WF is challenging near
the transition density because the complexity of the en-
ergy landscape makes it difficult to find the ground state
corresponding to the Fermi fluid. We predict that the
paramagnetic 2D UEL transforms to a Wigner crystal at
rs = 35(1). We have not found any region of stability for
2D UELs with spin polarizations ζ = 0.5 or 1.

ACKNOWLEDGMENTS

S.A. and S.M.V. acknowledge support from the UK
EPSRC grants EP/P015794/1 and EP/W010097/1, the
Royal Society, and the Advanced Research Computing
(ARC) service of the University of Oxford.
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