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Abstract

It is often the case that decision makers are presented with multiple forecasts for the

same variable, produced perhaps from different forecasting models or experts. While

attempting to identify a single ‘best forecast’ does offer a valid approach, favourable

performance is often achieved through combining the N available forecasts in some way.

As such, forecast combination presents a ubiquitous problem for decision makers in a

wide array of fields, and provides the first focus of this thesis.

Although perhaps a seemingly simple problem, the combination of forecasts can

prove difficult due to issues such as correlation between forecasts, and changing statis-

tical properties of forecasters throughout time. In order to account for such nonstation-

ary behaviour, it is necessary to combine the forecasts dynamically. In this thesis, we

propose a dynamic linear model based procedure for combining point forecasts. This

combination procedure works by creating a linearly weighted combination of forecasts,

where the weights are allowed to evolve temporally in response to observed data. Fol-

lowing this, we consider the problem when one or more of the N forecasters fails to

provide a prediction at time t. We discuss how this can also be interpreted as a sudden

change in forecaster quality, and provide adaptive methods for dealing with this.

As the second focus of this thesis, we examine another problem in nonstationary

time series, pertaining to the autoregressive process of order 1 (AR(1)). From two

bivariate AR(1) processes, we construct a nonstationary oscillating stochastic process,

for which we derive key theoretical properties.
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Chapter 1

Introduction

Time series analysis is a fundamental area of study, with applications in numerous

fields and research areas. When faced with a time series, we may ask: is there the

presence of trends or seasonality? What is the dependence between observations? Can

future values be predicted? Such questions can be answered through the development

of suitable mathematical models, designed to describe the structure of the data. Time

series models enable inference to be made on the values of key parameters, which in

turn can be used to forecast future values of significant variables. The need for adequate

variable predictions over time is of utmost importance to decision makers, and has led

to a plethora of work dedicated to the development of time series forecasting models

and methodologies, some of which can be complex and difficult to implement.

In practice, it is often the case that decision makers have access to not one, but

several different time series. These can be recordings of distinct variables, or perhaps

contemporaneous measurements of the same target variable made using different meth-

ods. Such data sets can be modelled using multivariate time series analysis methods,

wherein the data is described in a joint way that considers the relationships and inter-

dependencies between variables.

In this thesis, we consider two multivariate time series problems. Firstly, we focus
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CHAPTER 1. INTRODUCTION 2

on the setting of N experts (or forecasters) providing individual point forecasts for the

value of a time series of interest yt at each time t. This collection of predictions can be

considered as an N -dimensional multivariate time series, wherein the ith constituent

series is given by the univariate time series of forecasts from the ith expert. We consider

an online setting, such that the arrival of the N predictions at time t is closely followed

by the observation yt, and this process is repeated sequentially throughout time.

The overall aim in such a situation is to utilise the available information in order to

produce the ‘best’ forecast for the target variable at each time. Thus, the practitioner

has two primary options: attempt to identify the best expert, or aggregate the N

available forecasts in some way, in order to provide a new, combined forecast.

While the former offers a valid approach, real data generating processes are often

complex, and a single model is unlikely to capture the true behaviour of an observed

time series; Wang et al. (2023) note that this is often due to the presence of time-

varying trends, seasonality changes and structural breaks. Furthermore, forecasts from

a particular method may afford us some additional useful information which is not

expressed by the other forecasting models, since perhaps forecasts were produced from

differing information sets. Thus, it is often more favourable to combine the forecasts

in some way, in order to produce a ‘combined’ or ‘ensemble’ forecast. By combining

several differing forecasts, we can mitigate against the negative effects arising from

model misspecification of individual forecasters. Furthermore, we can aim to produce a

forecast which contains more information than any constituent forecast, thus reducing

forecast error variance if individual forecasters are noisy.

Indeed, the combination of forecasts has been shown to lead to more accurate fore-

casts than those provided by any single model in a wide variety of applications and

settings, including retail (see Ma and Fildes (2021)), election forecasting (see Graefe

et al. (2014)), and epidemiology (see Ray et al. (2022)). Moreover, forecast combinations

have been shown to outperform individual forecasting methods in several forecasting
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competitions. One of the most important findings from the recent M4 competition

was that all top-performing methods were provided by combining mostly statistical

methods; see Makridakis et al. (2020a).

The aforementioned references make a strong case for the combination of expert

forecasts; however, the question is then how should this combination be carried out in

practice? A wealth of literature has been dedicated to this problem, with its roots in the

seminal work of Bates and Granger (1969), which aims to derive optimal combination

weights in the N = 2 forecaster case. In the years since, research in the area has ex-

panded significantly, with the development of ever more complex combination methods,

machine learning procedures, and the discussion of probabilistic forecast combination;

see Wang et al. (2023) for a thorough review of the literature. However, it is often

found that simple combination schemes, such as taking the mean, often outperform

more complex methods in practice. This phenomenon was termed the ‘forecast combi-

nation puzzle’ by Stock and Watson (2004), and has been the focus of much research.

The majority of works on the subject attribute the puzzle to the difficulties that can

arise through estimating combination weights; see Claeskens et al. (2016) and Blanc

and Setzer (2020) for recent attempts to explain the problem.

Thus, the decision on how to combine theN expert forecasts remains far from trivial.

Straightforward approaches like taking the mean clearly reduce estimation error, but is

this really the most intuitive method for our problem setting? Firstly, the multivariate

time series of forecasters may be nonstationary due to features such as changing expert

quality throughout time; for example, perhaps a particular economic forecaster performs

well when the market is stable, but less favourably when the environment is volatile.

In order to model such behaviour, we will assume that each sequence of point forecasts

has some underlying uncertainty, which is unknown and possibly changing dynamically.

The question is then should the combination procedure also change throughout time,

and if so, how should such a dynamic combination procedure be constructed?



CHAPTER 1. INTRODUCTION 4

Furthermore, it is often the case that experts are correlated; maybe similar method-

ologies have been implemented in order to produce their forecasts, or similar data sets

utilised. This may lead to issues such as reduced diversification gains from the com-

bination, an underestimate of the uncertainty of the combined forecast, or issues with

multicollinearity if a regression-based approach is taken when combining.

Other challenges that can arise when combining forecasts include a lack of historical

data and computational inefficiencies. In the case that one has access to information

about the past performance of the N experts, one may wish to combine in a way

that places a greater bearing on forecasters which have demonstrated superior perfor-

mance previously. However, historical data is often limited in practical applications,

making the quantification of past forecasting performance difficult. Furthermore, even

if significant historical data is available, combination methods that utilise this can be

complex and require considerable time to run. This is particularly detrimental in a high

frequency setting, where forecasts and observed values are arriving in quick succession.

As the first contribution of this thesis, we address some of the above difficulties by

proposing a novel dynamic linear model (DLM)-based methodology for combining point

forecasts from N experts in an online manner. The proposed methodology is suitable

for applications wherein the quality of the experts is changing throughout time, and can

be applied even in the presence of little historical data and highly correlated forecasters.

Due to the sequential nature of DLMs, the method is fast and computationally efficient,

and therefore can be utilised even for a high number of forecasters N .

As the second focus of this thesis, we consider a different type of multivariate time

series. Namely, we study bivariate AR(1) time series, which depict circular oscillations

when plotted in the complex plane. Such oscillations frequently exist in nature, and

often occur when the two components of the bivariate time series correspond to mea-

surements in orthogonal spatial directions; for example, these could be measurements

of northerly and easterly wind or ocean current velocities, see Gonella (1972) .
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It is often the case that we observe not just one oscillation of a given frequency, but

rather multiple oscillatory signals at different frequencies. Such behaviour occurs in a

variety of applications, including ocean waves (see Chave et al. (2019)), the geomagnetic

field (see Riegert and Thomson (2018)) and electroencephalogram (EEG) data (see

Olhede and Ombao (2013)).

In this thesis, we propose a novel stochastic process for modelling two interact-

ing oscillatory signals, simulated from bivariate AR(1) processes; thus, this is a four-

dimensional vector autoregressive time series model of order 1. We propose a novel

mechanism for generating nonstationary oscillations by ‘locking’ the phase difference

between the two oscillations, such that interactions occur between distinct frequencies.

We provide a thorough theoretical investigation of this novel model, which shall include

deriving properties such as the autocovariance sequence and various frequency domain

characteristics.

The structure of the remainder of this thesis is given as follows. In Chapter 2

we review some of the key forecast combination literature. While many methods for

combining expert predictions exist, we focus on linearly weighted combinations, on

accord of the associated interpretability. Chapter 3 introduces our proposed forecast

combination method based on methodology from the DLM literature, and Chapter 4

considers extensions to deal with the case that one (or more) of the N experts fails to

provide a forecast. Chapter 5 introduces our novel model for stochastic oscillations, and

demonstrates how nonstationarity may be constructed. In Chapter 6, we review the

novel contributions made in this thesis, and provide some possible avenues for further

work.



Chapter 2

Literature review

Although we utilise methodologies from the dynamic linear model (DLM) literature in

this thesis, this is not the focus of this literature review; a thorough introduction to the

DLM methodology and relevant references for further reading are given in Section 3.2.

Rather, here we consider the case that a decision maker has access to a set of N

individual forecasts for a random variable of interest, and they wish to combine them

in some way.

Forecast combination constitutes an extensive area of research, with its foundations

rooted in the seminal work of Bates and Granger (1969). In the years since, the topic

has garnered growing interest, with recent applications in epidemiology (Ray et al.

(2022)), economics (Aastveit et al. (2019)) and the energy sector (Xie and Hong (2016)).

An extensive and recent review of forecast combination techniques is given by Wang

et al. (2023). Earlier thorough reviews of the topic are given by Clemen (1989) and

Timmermann (2006).

The general forecast combination problem considers the following. A forecaster

wishes to predict the value of the random variable yt at time t, given only a vector of N

individual forecasts for the variable at that time ft = (f1,t f2,t . . . fN,t), the correspond-

ing histories of the N forecasters, and the past realisations of the random variable.

6
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The combined point forecast is given as a function of the constituent forecasts ft and

some parameters of the combination wt; it is denoted by ŷt = C(ft;wt). A forecast

combination is linear if the function C(ft;wt) is linear. In this case, the parameters wt

can be thought of as weights, and the combined forecast is given by a weighted sum

of the individual forecasts. On the other hand, when C(ft;wt) is a nonlinear function,

we have a nonlinear forecast combination method. Due to the interpretability of linear

forecast combination methods, we will assume for the remainder of this thesis that the

parameter vector wt is given by a set of combination weights, and the combined forecast

is given by a linearly weighted sum of the individual N forecasts (note, some of the

methods in this chapter also introduce an intercept term to account for bias; this will

be included explicitly in the parameter vector when necessary).

2.1 Simple point forecast combinations

Those familiar with the forecast combination literature will be aware that simple com-

bination schemes have been shown to outperform more sophisticated methods time

and time again, in an extensive range of studies. Even in the recent M4 competition

(see Makridakis et al. (2020b)), simple combinations were shown to achieve relatively

good forecasting performance when competing with more complex methods. This has

lead to the consensus among the community that the forecasting performance of such

simple combination schemes is difficult to surpass; see Kang (1986), Clemen (1989),

Stock and Watson (2004) and Lichtendahl and Winkler (2020). In particular, assigning

equal weights to forecasters, thereby taking the simple average, often outperforms more

complex techniques in practice.

Makridakis and Winkler (1983) carried out an empirical study to investigate the

accuracy of combined simple average forecasts from individual methods, and concluded

that the accuracy of the combined forecast is improved by including a larger number of
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individual methods in the combination. However, they also noted that the accuracy of

the combined forecast is clearly dependent on which individual methods are included

in the combination.

The key advantages of implementing simple average forecast combination are suc-

cinctly summarised by Palm and Zellner (1992). Firstly, it is incredibly straightforward

to carry out, since all combination weights are equal and do not require estimation.

Consequently, this mitigates any uncertainty associated with weight estimation. This

is particularly beneficial in problems with a large number of individual forecasters, since

both the computational load of estimating performance-based weights, and the asso-

ciated uncertainties, are undesirable. Furthermore, such performance-based weighting

schemes cannot be implemented when we have insufficient information regarding the

past performance of individual forecasters, and hence simple averaging provides an ap-

propriate solution. Palm and Zellner (1992) also note that simple average forecasts

often average over any individual biases in component forecasters, which leads to re-

duced overall bias and variance in the combined result.

More recently, Gastinger et al. (2021) carried out a study with approximately 16, 000

time series from various sources. They examined the performance of several different

combination procedures, including simple averaging, performance-based weights and

machine learning methods. They found that, although different (and sometimes com-

plex) combination strategies achieved the best forecasting accuracy for different data

sets, the simple average method displayed more gains in improving accuracy on average.

Even when more complex weights should theoretically perform better, simple aver-

aging often outperforms such weighting schemes in practice. Stock and Watson (2004)

termed this phenomenon the ‘forecast combination puzzle’, and it continues to inspire a

vast amount of literature. Smith and Wallis (2009) showed that, in a situation where the

theoretically optimal combining weights are equivalent to the simple average, the sim-

ple average is expected to outperform the weighted average (where combination weights
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have been estimated) systematically, as expected. They showed the detrimental effect

of weight estimation on the MSFE when the optimal weights are close to equality in

both simulation studies and an empirical analysis. A theoretical explanation for these

empirical and simulation results is provided by Claeskens et al. (2016), where the weight

estimation step is explicitly included in the optimal weight derivation. That is, they

treat the weights as random and derive the resulting expectation and variance of the

combined forecast. They show that, in general, estimation of the weights will lead to

a biased combined forecast, with a possible increase in variance compared to the fixed-

weight case. Claeskens et al. (2016) provide a useful visualisation of these effects for

the special N = 2 case.

More recent works include Chan and Pauwels (2018), who propose a framework

for the study of the theoretical properties of forecast combination, and Blanc and Set-

zer (2020), who analyse the forecast combination puzzle with concepts from statistical

learning theory. The latter decompose the forecast error into bias, variance and ir-

reducible error terms, and explain why simple averaging often provides a favourable

bias-variance trade off in practice.

Despite the well-documented good empirical performance of simple average forecast

combinations, there are some associated issues. As highlighted by Wang et al. (2023),

perhaps most obvious is that the success of such schemes depends heavily on the quality

of the forecasts being combined. Clearly, if all of the N available forecasts feature the

same bias, then the combined forecast will also be biased. Such a situation may occur

if all individual forecasts are produced using the same data set and similar forecasting

models, and Thomson et al. (2019) therefore notes that the performance of simple

averaging is improved when the component models are highly diverse. A further issue

that may arise when implementing simple averaging is the inclusion of a particularly

bad forecast in the combination. This can severely degrade the overall accuracy of

the combined forecast, and therefore attention should be focused on selecting which
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forecasts to combine. Despite these issues, simple average forecast combination remains

a difficult benchmark to surpass, and is routinely used as a standard gauge against which

to compare new combination techniques.

Other simple schemes, such as taking the median, trimmed mean or mode of fore-

casts, have also been examined in the literature; see Stock and Watson (2004) and

Genre et al. (2013) for examples. Such methods are more robust to extreme forecasts

than taking the simple average (Lichtendahl and Winkler (2020)); however, there is no

general agreement on whether such techniques perform better.

2.2 Optimal linear combinations

Although simple combination methods are straightforward to implement and often ex-

hibit favourable performance in empirical analyses, a more intuitive approach is to

assign forecaster weights based on past performance. The question is therefore how

should we assign such weights? A common approach in the literature is to construct

the combined h-step ahead forecast at time t as a linear combination of the N individual

h-step ahead forecasts at that time,

ŷt+h|t = w′
t+h|tft+h|t,

where ft+h|t is an N -dimensional vector of h-step ahead forecasts, and wt+h|t is a vector

of corresponding weights. To make things clearer, we shall drop the t + h|t subscript,

and instead denote the vector of forecasts for the time series at time t, given all available

information up to the current time, by ft. Thus, the above notation is simplified to,

ŷt = w′
tft.
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Hence, the prediction from Forecaster i ∈ N for the value of the series yt will be written

as fi,t. We note that the dependence on the available data is implicit in this notation.

The seminal work of Bates and Granger (1969) considers how best to linearly com-

bine a pair of unbiased forecasts, such that the mean square error (MSE) loss of the

combination is minimised. Let ei,t denote the error of the ith forecaster at time t; that

is, ei,t = yt−fi,t, i = 1, 2. Since both forecasters are unbiased, we know that the forecast

errors are distributed with zero mean. Denote the variance of the ith forecaster error

by σ2
i , and let the covariance between the forecasters be denoted by ρσ1σ2, where ρ is

the correlation between the forecast errors and σi is the standard deviation of the ith

forecast error. Thus, the error covariance matrix is given by

Cov(e1,t, e2,t) =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,

for all values of time t. In line with Bates and Granger (1969), let us assume the weights

for the individual forecasts sum to one, such that the linear combination can be written

as

ŷt = w1,tf1,t + w2,tf2,t,

= αf1,t + (1− α)f2,t,

where α ∈ [0, 1]. The t subscript has been dropped on the coefficient α since the covari-

ance matrix of the errors, and therefore the optimal weights, is constant throughout

time. We can now write the forecast error for the combination, ect = yt − ŷt, as a

weighted combination of the individual errors:

ect = αe1,t + (1− α)e2,t.
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By construction this has zero mean, and variance given by

σ2
c (α) = Var

(
αe1,t + (1− α)e2,t

)
,

= α2σ2
1 + (1− α)2σ2

2 + 2α(1− α)ρσ1σ2. (2.2.1)

We can therefore find the weights which minimise the MSE of the combination by finding

those which minimise this variance. Differentiating with respect to α and solving the

first order condition, we find that the minimum variance of the combined forecast occurs

when,

α∗ =
σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

. (2.2.2)

Hence the optimal weights for all times t are given by,

w∗
1 = α∗ =

σ2
2 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

, (2.2.3)

w∗
2 = (1− α∗) =

σ2
1 − ρσ1σ2

σ2
1 + σ2

2 − 2ρσ1σ2

. (2.2.4)

We draw your attention to the fact that no positivity constraints are enforced on the

weights in this derivation. In their recent paper, Radchenko et al. (2023) provide a

useful visual analysis of when negative weights occur. They show that the weight

w∗
1 < 0 if ρ > σ2/σ1, and the weight w∗

2 < 0 if ρ > σ1/σ2. On the other hand, it is clear

from equations (2.2.3) and (2.2.4) that both weights are positive if the correlation ρ is

zero (or negative). Radchenko et al. (2023) also note that, when the correlation equals

the variance ratio, one of the forecasters is not included in the combination. This can

be seen by rewriting equation (2.2.3) as,

w∗
1 =

1− ρ(σ1/σ2)

(σ1/σ2)2 + 1− 2ρ(σ1/σ2)
. (2.2.5)
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If we then set ρ = σ1/σ2, we have,

w∗
1 =

1− ρ(σ1/σ2)

(σ1/σ2)2 + 1− 2ρ(σ1/σ2)
,

=
1− (σ1/σ2)

2

(σ1/σ2)2 + 1− 2(σ1/σ2)2
,

= 1,

and consequently w∗
2 = 0. Conversely, when ρ = σ2/σ1, we have w∗

1 = 0 and w∗
2 = 1.

The reformulation in equation (2.2.5) also aids understanding of the limiting case

in which the variance of one of the forecasters approaches zero. Consider the case that

the variance of Forecaster 1 tends towards zero, such that σ1/σ2 → 0. It is clear from

equation (2.2.5) that w∗
1 → 1, and thus the combination simply selects this forecast and

sets the other weight to zero. Finally, Radchenko et al. (2023) note that a discontinuity

is observed when σ1 = σ2 and ρ = 1. They show that when one goes from the situation

where σ1 < σ2 to the situation where σ1 > σ2, the weight of Forecaster 1 flips from

positive to negative. This indicates that near the discontinuity, the value of the weight

w∗
1 (and consequently w∗

2) is highly sensitive, with small variations in the parameters

leading to significant shifts in w∗
1.

The expected squared error loss associated with using the above optimal weights to

combine forecasts can be found by substituting the expressions for the optimal weights

into the objective function given by equation (2.2.1),

σ2
c (α

∗) =
σ2
1σ

2
2(1− ρ2)

σ2
1 + σ2

2 − 2ρσ1σ2

.

In relation to our discussion in the previous section, it may be of interest to compare

this with the expected squared error loss from the simple average combination. Denote

the simple average combination ŷsa = (1/2)(f1,t + f2,t). The variance of the forecast
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error under this combination scheme is therefore given by,

σ2
sa =

1

4
σ2
1 +

1

4
σ2
2 +

1

2
σ1σ2ρ.

Hence we can write the ratio of the expected squared error loss for the the derived

optimal combination to the equally weighted combination as,

σ2
sa

σ2
c (α

∗)
=

(σ2
1 + σ2

2)
2 − 4ρ2σ2

1σ
2
2

4σ2
1σ

2
2(1− ρ2)

. (2.2.6)

It is possible to show that this ratio is always greater than or equal to one; that is, the

expected squared error loss from optimally derived weights is less than that obtained

from simple averaging. To see this, note that,

(a+ b)2 ≥ 4ab,

and therefore,

(σ2
1 + σ2

2)
2 ≥ 4σ2

1σ
2
2.

Consequently, we have

(σ2
1 + σ2

2)
2 − 4ρ2σ2

1σ
2
2 ≥ 4σ2

1σ
2
2(1− ρ2),

and therefore the fraction given in equation (2.2.6) is always greater than or equal to one.

We see that this is an equality in the case that σ1 = σ2. This methodology was extended

to deal with more than two individual forecasters by Newbold and Granger (1974).

Assume we wish to linearly combine N ≥ 2 unbiased forecasters, with N ×N forecast

error covariance matrix Σt. Newbold and Granger (1974) assume that combination
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weights are bounded and constrained to sum to one:

w′
tι = 1, 0 ≤ wi,t ≤ 1, for i = 1, . . . , N,

where ι is an N × 1 vector of 1s. As before, the forecast error of the combination is

given by a weighted combination of the individual forecast errors,

ect = w1,te1,t + w2,te2,t + · · ·+ wN,teN,t,

which can be expressed in vector notation as ect = w′
tet, where et = ytι − ft. The

variance of the combined forecast error can hence be written as,

σ2
c (wt) = Var(w′

tet) = E{w′
tete

′
twt} − E{w′

tet}2

= w′
tE{ete′t}wt − (w′

tE{et})2

= w′
tΣtwt.

We wish to find the optimal weight vector that minimises this expression, w∗
t , under the

constraint that the sum of the weights is equal to one. Thus, we write the Lagrangian,

L(wt, λ) = w′
tΣtwt − λ(w′

tι− 1).

The first order derivatives are then given by,

d

dwt

L(wt, λ) = w′
t(Σ

′
t +Σt)− λι = 2Σtwt − λι, (2.2.7)

d

dλ
L(wt, λ) = w′

tι− 1. (2.2.8)
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Setting equation (2.2.7) equal to zero and rearranging for the weight vector gives

wt =
λ

2
Σ−1

t ι. (2.2.9)

This can be substituted into equation (2.2.8) in order to give an expression for the

Lagrange multiplier, λ = 2(ι′Σ−1
t ι)−1. Finally, this expression for λ can be substituted

into equation (2.2.9) in order to give us the optimal constrained weights under MSE

loss for N ≥ 2 unbiased forecasters:

w∗
t =

λ

2
Σ−1

t ι, (2.2.10)

= (ι′Σ−1
t ι)−1Σ−1

t ι.

Henceforth, we will refer to these weights as the theoretically optimal covariance weights,

as they are computed using the error covariance matrix. It can be shown that these

weights are equivalent to the simple average weights when all forecast errors have the

same variance σ2 and correlation ρ. In this case, the inverse of the covariance matrix

is given by

Σ−1
t =

1

σ2(1− ρ)

(
IN − ρ

1 + (N − 1)ρ
ιι′
)
,

=
1

σ2(1− ρ)(1 + (N − 1)ρ
((1 + (N − 1)ρ)IN − ριι′),

where IN denotes the N × N identity matrix. Inserting this expression into equation

(2.2.10), we see that

w∗
t =

σ2(1 + (N − 1)ρ)

N

ι

σ2(1 + (N − 1)ρ)
=

(
1

N

)
ι.

The general solution for the optimal linear unconstrained weights under MSE loss

was characterised by Timmermann (2006), where it is assumed that the outcome yt and
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the individual forecasts ft follow a joint Gaussian distribution:

yt

ft

 ∼ N

(µy,t

µf ,t

 ,

 σ2
y,t σ′

yf ,t

σyf ,t Σf ,t

).
In this derivation, Timmermann (2006) wish to minimise the expected square forecast

error,

E{(yt −w′
tft)

2} = (µy,t −w′
tµf ,t)

2 + σ2
y,t +w′

tΣf ,twt − 2w′
tσyf ,t.

Once again, this is done by differentiating with respect to the weight vector,

∂E{(ect)2}
∂wt

= 2(µy,t −w′
tµf ,t)(−µf ,t) +w′

t(Σ
′
f ,t +Σf ,t)− 2σyf ,t,

= −2µy,tµf ,t + 2µf ,tµ
′
f ,twt + 2Σf ,twt − 2σyf ,t.

Setting this to zero, and assuming that (µf ,tµ
′
f ,t +Σf ,t) is invertible, one can solve for

the optimal weight vector,

w∗
t = (µf ,tµ

′
f ,t +Σf ,t)

−1(µy,tµf ,t + σyf ,t),

as given in Timmermann (2006). A constant can be included in the linear combination,

in order to account for bias in the individual forecasters (recommended under MSE

loss by Granger and Ramanathan (1984)). In this case, Timmermann (2006) gives the

optimal values for the constant and the combination weights as

w∗
0,t = µy,t −w∗

tµf ,t,

w∗
t = Σ−1

f ,tσyf ,t.

Although we have seen in this section that the theoretical optimal weights under
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MSE loss are sometimes equivalent to the simple average weights, this is rarely the

case in practice. When the set of forecasters have differing variances and correlations,

knowledge of the forecast error covariance matrix is required in order to apply optimal

weighting. In real world applications, this contributes to the forecast combination

puzzle, as having to estimate the weights no longer guarantees reductions in MSE

loss versus the simple average. In the next sections, we turn our attention to weight

estimation.

2.3 Regression-based weights

Many different methods have been proposed for assigning weights in linear forecast com-

binations, including performance-based weights (Pawlikowski and Chorowska (2020)),

criteria-based weights (Petropoulos et al. (2018)) and Bayesian weights (Bunn (1975));

see Wang et al. (2023) for a thorough review of such methods. An alternative and

popular approach is to model the forecast combination under a linear regression frame-

work, and estimate the weights using ordinary least squares (OLS). This idea was first

proposed in the seminal work of Granger and Ramanathan (1984).

In their work, Granger and Ramanathan (1984) consider three possible regressions,

wherein the response variable is given by the observations yt, and the predictor variables

are provided by the vector of individual forecasts ft. The idea is that the realisations

of the target variable are regressed onto the N individual forecasts using all the data

up to the current time t. As such, the method assumes constant weights, but allows

the estimated weights to change in response to newly observed data. Each of the three

regression formulae impose different restrictions on the combination weights, as shown

below:

(i) yt = w′
tft + ϵt, s.t.

∑
wt = 1,

(ii) yt = w′
tft + ϵt,
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(iii) yt = w0,t +w′
tft + ϵt.

Regression (i) arises from the assumption that all individual forecasters are unbiased.

The fact that the weights are constrained to sum to one therefore ensures that the

combined forecast is unbiased. Implementation of this regression model for N = 2

unbiased forecasters therefore estimates the ‘optimal’ weights derived by Bates and

Granger (1969). On the other hand, both regressions (ii) and (iii) are unconstrained.

The intercept term in regression (iii) enables adjustment in case of biased forecasters;

Granger and Ramanathan (1984) argued that this was a superior method to the popular

‘optimal’ weight combination of Newbold and Granger (1974), since it enables the

computation of an unbiased combined forecast even when constituent forecasts are

biased.

Furthermore, since the ‘optimal’ covariance weights can be interpreted as a con-

strained least squares regression with no intercept term, the Granger and Ramanathan

(1984) weights will result in a lower combined within sample MSE. This is acknowl-

edged by De Menezes et al. (2000) in their review of practical guidelines for forecast

combination; however, they caution against applying Granger and Ramanathan (1984)’s

regression framework without proper care. In particular, De Menezes et al. (2000) note

that, since the regression includes an intercept term in the predictor variables, the time

series being forecast must be stationary (or made stationary) in order for the OLS re-

gression to work. Moreover, De Menezes et al. (2000) note that issues can occur due

to serial correlation in forecast errors, and the presence of multicollinearity in the case

that the constituent forecasters are correlated. Difficulties can also arise in practical

implementations where there is a large number of constituent forecasters N ; see Stock

and Watson (2006) for notes on combining many predictors.



CHAPTER 2. LITERATURE REVIEW 20

2.4 Time-varying weights

The regression-based combination methods of Granger and Ramanathan (1984) assume

that the combination weights are constant, and this framework is therefore impractical

for cases in which individual forecaster quality evolves with time. In such cases, it

is instead favourable to let the combination weights change accordingly. As discussed

by Timmermann (2006), the general idea for such dynamic weighting schemes usually

involves assigning a larger weight to whichever forecaster has most recently performed

the best, or the application of an adaptive updating scheme wherein more importance

is placed on the recent performance of individual forecasters, rather than their past

behaviour.

2.4.1 Adaptive updating schemes for time-varying parameter

estimation

The need for time-varying weights was considered by Granger and Newbold (1977), who

suggested five different methods for adaptive weight estimation. These methods work

by either considering historical forecasting performance over a fixed moving window,

or introducing a parameter that discounts the effects of forecasting performance in the

distant past. While the authors presented a total of five methods, two of these can be

considered as simplifications, wherein correlations between forecast errors are ignored.

Therefore, here we provide an overview of three of the suggested methods.

Firstly, Granger and Newbold (1977) suggested using the previous k observations

to calculate the weights at each time point, such that the optimal weights are given by

wt = (ι′Σ−1
t ι)−1Σ−1

t ι,
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where the elements of the covariance matrix are given by

Σij,t =
1

k

t∑
τ=t−k+1

ei,τej,τ . (2.4.1)

This method assigns the most weight to forecasters who have displayed the best perfor-

mance in the recent past; however, as noted by Diebold and Pauly (1987), the choice

of window size k is arbitrary and will greatly impact the estimated weights.

Granger and Newbold (1977) also suggested an adaptive scheme wherein the esti-

mated weights at time t are computed as a function of the estimated weights at the

previous time t − 1, in addition to the estimated forecast errors over the previous k

observations,

wi,t = αwi,t−1 + (1− α)

( t∑
τ=t−k+1

e2i,τ

)
/

( N∑
j=1

( t∑
τ=t−k+1

e2j,τ

)−1)
, i = 1, . . . , N,

for some parameter 0 < α < 1. While this method may lead to smoother weight

estimates, we note that covariance information is ignored in this case.

Finally, Granger and Newbold (1977) considered using the entire history of forecast

errors to determine the weights, but assigned a discount factor λ ≥ 1 such that more

recent observations were given a greater weighting,

wi,t =

( t∑
τ=1

λτe2i,τ

)−1( N∑
j=1

( t∑
τ=1

λτe2j,τ

)−1)
, i = 1, . . . , N.

Similar to the fixed window case, we note that the selection of λ is arbitrary, and the

choice of this parameter will have a significant impact on the results.

Regardless of whether exponential discounting or rolling window methods are used to

estimate the weights, placing more importance on recent observations leads to increased

variability in the estimates. This is intuitive; the estimated weights will be influenced

by variations in the recently observed data, and will not be largely affected by any
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long term trends. Hence, as noted by Timmermann (2006), if the true underlying data

generating process for the component forecasters is indeed covariance stationary, such

methods will be overly sensitive to recently observed data, which in turn will result in

unsatisfactory forecasting performance.

The above three methods for the estimation of time-varying combination weights are

based on the original ‘optimal’ weights derived by Newbold and Granger (1974), and

work by estimating the covariance matrix of the forecast errors at each time point.

Diebold and Pauly (1987) compared the performance of such ‘variance-covariance’

methods with regression-based approaches for time-varying weights.

We recall that using the regression framework (i) of Granger and Ramanathan (1984)

in the case of N = 2 forecasters leads to results numerically equivalent to the ‘optimal’

weights derived by Bates and Granger (1969) (given by equation (2.2.2)). Diebold

and Pauly (1987) therefore surmised that the above ‘variance-covariance’ methods for

time-varying weight estimation could be successfully extended into a regression context,

which would benefit from the favourable characteristics of this framework (namely, the

relaxation of the constraint that weights sum to unity, and an ability to deal with biases

through an added intercept term).

To this end, Diebold and Pauly (1987) used weighted least squares (WLS) regres-

sion to minimise the matrix weighted average of square forecast errors throughout

time, where more weight is assigned to recent observations. Furthermore, Diebold and

Pauly (1987) also considered two regression-based systematically time-varying param-

eter models: namely, a deterministic evolution model for the combination weights and

a stochastic parameter model. Their numerical examples indicated that these time-

varying generalisations to the regression framework offered significant reductions in

forecast error.
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2.4.2 Explicitly modelling parameter time-variations

Modelling time variations in the weight parameters explicitly was also considered by

Sessions and Chatterjee (1989) and LeSage and Magura (1992), who consider combina-

tion models of the form:

yt = xtβ
′
t + ϵt, (2.4.2)

βt = Tβt−1 + νt. (2.4.3)

Here, the vector of predictor variables xt is given by the N individual forecasts ft =

(f1,t f2,t . . . fN,t) in addition to an intercept term, such that we can write xt = (1 ft)
′. The

corresponding vector of weights is given by βt. Equation (2.4.2) describes the evolution

of the observed series as a linear function of the forecasts, with a disturbance term given

by ϵt (here we choose not to provide a distribution for this noise term in order to keep

the definition general, distributional assumptions are imposed in Chapter 3). Equa-

tion (2.4.3) describes the evolution of the regression coefficients (combination weights)

throughout time, where the matrix T determines the form of this evolution and the

disturbance term νt describes the stochastic effects. When the matrix T is set to the

identity matrix, T = I, the weights are modelled according to a random walk. This is

the approach taken by LeSage and Magura (1992), and later Stock and Watson (2004),

wherein the empirical performance of various combination methods is examined on data

for output growth in seven OECD countries. This forecast combination framework is

sometimes referred to as a time-varying-parameter (TVP) model in the literature; for

example see Stock and Watson (2004).

Under certain assumptions, the above equations define a dynamic linear model

(DLM), wherein combination weights can be recursively estimated using the Kalman

filter (see Chapter 3). Stock and Watson (2006) note that, unlike the OLS regression

method of Granger and Ramanathan (1984), this approach is appropriate for combining
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high numbers of individual forecasts by virtue of the additional structure imposed on

the weights.

However, this approach requires the user to specify the variance of the noise term

νt, known as the system covariance. It is this that specifies the magnitude of the

time variation in the weights, and knowledge of this variance is necessary in order

to apply the standard Kalman filter to the problem (see Section 3.2.1). Of course,

it is possible to estimate this quantity using standard maximum likelihood methods;

however, this technique fails to take properly into account the uncertainty about the

estimated parameter, and requires historical data in order to be implemented. Stock and

Watson (2006) also note that the estimation of this covariance is particularly difficult

in the case of many forecasters.

Sessions and Chatterjee (1989) circumvent the issues associated with an unknown

system covariance by extending a method first proposed by Snyder (1985), which

Sessions and Chatterjee (1989) entitle the Synder DLM (SDLM). This method re-

places the error term νt by αut, where ut is a scalar variable distributed according to

ut
iid∼ N(0, σ2). Snyder (1985) derives updating equations for the unknown vector βt,

where the algorithm is fully recursive for known α. In the case that α is unknown,

Snyder (1985) suggests estimation through maximum likelihood estimation (MLE) from

forecast errors. Sessions and Chatterjee (1989) present an alternative method for the

estimation of α such that this can be carried out recursively, and apply this technique

to the forecast combination problem. However, the proposed method for dealing with

unknown system covariance is not applicable in the case that this parameter is changing

throughout time.

LeSage and Magura (1992) propose a method for combining forecasts which uses the

above time varying parameter framework combined with Gordon and Smith (1990)’s

multiprocess mixture model. The aim of their method is to develop a combination

procedure that effectively deals with outliers in the observed data, and abrupt struc-
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tural shifts in the weight parameters. Such abrupt sudden shifts correspond to sudden

changes in the accuracy of the individual forecasters, which LeSage and Magura (1992)

note may be due to changes in external conditions, changes in the model used to provide

the constituent forecasts, or changes in how the forecasts are reported. Despite the fact

that the proposed method was tailored towards data featuring abrupt structural shifts,

it did not improve upon simpler TVP-based combination methods in their empirical

analysis.

2.5 Density combination

Although point forecast combination techniques are sufficient for many applications,

a growing literature has been dedicated to the combination of density forecasts in re-

cent years. Clearly, density forecasts provide not only a point estimate of the value

of interest, but also a quantification of the associated uncertainty. This provides deci-

sion makers with a more informed understanding of risk, consequently enabling better

decisions.

When working with point predictions, the objective of the combination is to improve

the accuracy of the combined forecast. On the other hand, density combination aims

to produce a ‘good’ distribution. Accordingly to Gneiting et al. (2007) and later Wang

et al. (2023), the intent of probabilistic forecasting is ‘to maximise the sharpness of

the forecast distributions subject to calibration’ based on the available information set.

Therefore, in order to quantify the quality of a distribution, practitioners often use

scoring rules which reward these desirable measures.

2.5.1 Linear pooling

Denote the density forecast provided by Forecaster i for the variable yt+1 at time t

by pi,t(y). Here, y serves as a dummy variable representing all potential outcomes of
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the random variable yt+1 under the forecast distribution. Assume we have N different

density forecasts, such that i ∈ {1, . . . , N}. In the literature, a common method for

the aggregation of these forecasts is to take a mixture distribution with some mixture

weights wi,

pt(y) =
N∑
i=1

wipi,t(y),

known as a ‘linear opinion pool’ (dating back to at least Stone (1961)). This is in-

tuitive, and mirrors the approach of taking a linear combination of point forecasts in

the framework discussed previously. In order to ensure that the combined density is

non-negative and integrates to one, the weights are taken to be non-negative and sum

to one.

As in the point forecast combination setting, the question is therefore how to choose

the weights? Of course, the most obvious approach would be to assign equal weights of

1/N to each distribution; see Wallis (2005) for a review. A more involved procedure for

assigning mixture weights was later proposed by Hall and Mitchell (2007), who suggest

using the weights which maximise the average logarithmic score of the combined density

forecast,

w∗ =argmax
w

{
1

T − 1

T−1∑
t=1

ln pt(yt+1)

}
,

=argmax
w

{
1

T − 1

T−1∑
t=1

ln

( N∑
i=1

wipi,t(yt+1)

)}
,

where pi,t(yt+1) is the probability assigned to the realised outcome yt+1 by the forecast

distribution from Forecaster i at time t. Following this, Conflitti et al. (2015) pro-

posed a simple iterative algorithm to estimate such weights; we provide a more detailed

description of these two methods in Section 4.2.
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2.5.2 Bayesian Model Averaging

Bayesian Model Averaging (BMA) provides an alternative method for weighting density

forecasts in a combination. For clarity, we shall write the dependence of the density

forecasts on the previously observed data Dt explicitly, such that pi,t(y) = pi,t(y|Dt),

where once again we have used y as a dummy variable to represent all potential outcomes

of the random variable yt+1. Assume each forecast i corresponds to a different model

Mi, such that we can write pi,t(y|Dt) = pi,t(y|Mi,Dt). In the BMA framework, the

combined posterior probability forecast given the data Dt is written as,

pt(y|Dt) =
N∑
i=1

P (Mi|Dt)pi,t(y),

where P (Mi|Dt) denotes the posterior probability of modelMi given the data up to time

t. This represents the weighted average of the posterior distributions for each model

considered, with weights based on their posterior model probabilities. The posterior

probability that model Mi is the true model is found using Bayes theorem,

P (Mi|Dt) =
P (Mi)P (Dt|Mi)∑N
i=1 P (Mi)P (Dt|Mi)

,

where P (Dt|Mi) is the marginal likelihood of model Mi given by,

P (Dt|Mi) =

∫
θi

P (Dt|θi,Mi)P (θi|Mi)dθi.

Here, θi denotes the vector of parameters of model Mi, P (θi|Mi) denotes the prior

density of θi under model Mi, P (Dt|θi,Mi) is the likelihood function of model Mi and

P (Mi) is the prior probability that Mi is the true model. We refer the reader to Koop

(2003) for more details on implementing BMA.

Although BMA provides a conceptually straightforward approach to density combi-

nation, there are challenges that arise in practical implementation. Firstly, as detailed
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by Wang et al. (2023), BMA assumes that the true model is included in the set of

candidate models {M1, . . . ,MN}. This means that as the number of observations tends

towards infinity, all but one of the posterior probabilities tend towards zero, with the

weight of the single ‘best’ model tending towards unity. While this is appropriate in

the case that the true model is included in the model set, this is often not the case in

practice, and can lead to a combination that is suboptimal under logarithmic scoring

(see Diebold (1991)).

Furthermore, BMA assigns fixed probabilities to each of the component models. As

stated by Aastveit et al. (2019), BMA ignores the uncertainty of the weights attached

to each model, which can be very large. In turn, this can lead to unstable combined

forecasts when structural changes are present in the forecasting performance of the

individual models.

With the aim of addressing this challenge of BMA, Dynamic model averaging (DMA)

was proposed by Raftery et al. (2010) in order to deal with evolving model performance

over time. This is done through the introduction of a forgetting factor α ∈ (0, 1] that

discounts older data when computing the posterior model probabilities, allowing DMA

to deal effectively with non-stationary settings. Specifically, Raftery et al. (2010) let

πt|t−1,i represent the weight of model Mi at time t, based on data observed up to time

t−1. When an observation is made at time t, the weight of each model is then updated,

according to,

πt|t,i =
πt|t−1,ipi,t−1(yt|Dt−1)∑N
j=1 πt|t−1,jpj,t−1(yt|Dt−1)

,

where pi,t−1(yt|Dt−1) represents the forecast density assigned to the realised outcome yt

by model Mi. The weight of model Mi at the next time t+1 is then adjusted using the

forgetting factor α and a small constant c (typically in the range 0 < c ≪ 1), according
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to,

πt+1|t,i =
(πt|t,i)

α + c∑N
j=1[(πt|t,j)α + c]

.

The choice of α determines the rate of forgetting of past information, such that when α

is close to one past observations have a longer-lasting influence on the model weights,

making the system more stable and less responsive to recent changes in the data. The

role of the constant c is to prevent degenerate weights and associated numerical prob-

lems such as division by zero. A very small c has minimal impact on the relative

weighting of models; however, it can lead to models with poor performance being effec-

tively excluded from the combination. Slightly larger values of c may be used if there is

a desire to ensure that all models retain at least a minimal baseline weight, regardless

of their performance.

Bernaciak and Griffin (2024) state that DMA has exhibited good empirical perfor-

mance in economic applications, while avoiding the significant computational burden

associated with alternative methods, such as sequential Monte Carlo. However, they

show that the choice of forgetting factor α can have a significant impact on the perfor-

mance.

In order to provide more robustness to parameter choice, Bernaciak and Griffin

(2024) propose a loss discounting framework (LDF), wherein layers of ‘meta-models’ are

defined which use different values of forgetting factor. The proposed flexible discounting

scheme can be used for both dynamic model averaging and dynamic model selection.

In order to carry out dynamic model averaging, Bernaciak and Griffin (2024) begin

by defining a pool of forecast combination densities by applying DMA with different

values of discount factor, and refer to these as ‘meta-models’. The best meta-model

average is then found by applying exponential discounting to the past performance of

the meta-models.
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2.6 Summary

The contributions presented in Chapter 3 and Chapter 4 of this thesis build upon the

forecast combination literature. In particular, in Chapter 3 we introduce a point fore-

cast combination procedure which utilises a similar time-varying parameter framework

as that implemented by Sessions and Chatterjee (1989) and LeSage and Magura (1992).

We formalise the procedure by providing a complete step-by-step guide for the combi-

nation of point forecasts within the DLM framework, and compare this method with

key benchmarks. In particular, we assess our DLM-based procedure by comparing the

forecasting performance with that of the simple average forecast, due to its favourable

empirical performance. Furthermore, we also compare the forecasting performance with

that of the optimal covariance weights given by equation (2.2.9), and the regression-

based weights of Granger and Ramanathan (1984). This is done both in a stationary

setting, and a dynamic setting using ‘rolling’ estimates. In Chapter 4, we consider

density combination. We utilise a linear opinion pool to combine density forecasts, and

assign mixture weights using an extension of the method proposed by Hall and Mitchell

(2007); a more in depth review of this methodology is given in Section 4.2.



Chapter 3

DLM-based point forecast

combination

In this chapter, we develop a dynamic linear model (DLM)-based point forecast combi-

nation method. This is motivated by our problem setting, wherein N individual experts

provide (possibly correlated) point forecasts for some target variable of interest yt at

time t. The forecasts arrive sequentially, such that they must be combined in an online

manner. Furthermore, we assume that there is some underlying uncertainty associated

with each forecaster, which is unknown and dynamically changing throughout time.

The proposed method assigns combination weights to each of the N forecasters, which

are allowed to evolve as more information becomes available. We demonstrate this in

simulations featuring correlated forecasters and changing forecaster quality throughout

time, before considering two empirical applications.

3.1 Introduction

We seek a method for combining forecasts which allows combination weights to evolve

in response to dynamic forecaster quality. Existing methods for explicitly modelling

time variation in the combination weights include those of LeSage and Magura (1992)

31
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and Sessions and Chatterjee (1989), which were introduced in Chapter 2 and will be

discussed in more depth shortly. Our approach will use a DLM-based model for time-

varying weights which enables sequential updating as more data is observed. In addition

to the ability to adapt to changing forecaster quality, this approach is appealing due to

its potential to overcome the common difficulties of correlated forecasters and a lack of

historical data (small sample size). The latter can make the estimation of weights based

on past performance difficult, particularly for methods such as the optimal weights of

Newbold and Granger (1974), where a sufficient number of observations is required in

order to estimate the covariance matrix. On the other hand, our DLM-based model

allows suitable combination weights to be estimated from the outset. The sequential

nature of DLMs also makes such models suitable for situations where forecasts are

arriving with high-frequency, making this an applicable framework for our problem set

up.

Although both LeSage and Magura (1992) and Sessions and Chatterjee (1989) utilise

methodology from the DLM literature, this is not their primary focus. The former dis-

cuss how the simple DLM-based combination model given in their paper is undesirable

for their purpose, since it assumes a single covariance structure for the weight parameter

variation over the entire data sample. To remedy this, they propose a multiprocess mix-

ture model, which derives five changepoint models from the basic model by adjusting

the observation variance and the weight covariance. In order to avoid an exponential

increase in the number of models under consideration at each time point, LeSage and

Magura (1992) invoke an approximation to collapse the set of possible models back

down to five at each time period.

Sessions and Chatterjee (1989) include a DLM-based combination method in their

model evaluation, but the primary focus for the paper is given to an extension of a

method first proposed by Snyder (1985), and the introduction of two ad-hoc methods for

combining forecasts with non-stationary weights. Little information is given detailing
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how to select necessary parameters for the DLM-based method, nor is its performance

assessed for different parameter choices.

Thus, as the first contribution of this thesis we provide an explicit and coherent

description of how to implement time-varying parameter forecast combination within

the DLM framework. This type of forecast combination procedure is suitable for situ-

ations where forecasts are arriving with high frequency, and expert quality is changing

dynamically throughout time. We provide advice on appropriate choices for prior pa-

rameters, and clear instructions for dealing with an unknown variance of the noise in

the observation equation. Furthermore, a discount factor is introduced to deal with

the case that the covariance of the noise in the evolution equation for the combination

weights is also unknown.

We compare this combination method with various benchmarks in several simula-

tion studies, and show an improvement on simple averaging for various metrics. We

also consider two empirical applications, which help to highlight when this forecast

combination method is suitable (and when it is not). To the best of our knowledge, a

detailed guide on implementing DLM-based forecast combination, and an exploration

of its performance in this way, has not been provided in the literature before.

Furthermore, we provide a formulation of the relevant filtering equations such that

this forecast combination method can be easily integrated with methodology from the

adaptive discount factor selection literature. The synthesis of such methods with DLM-

based forecast combination is a novel contribution, and is discussed further in Chapter

4.

3.2 Background on DLMs

Dynamic linear models (DLMs) define a specific form of state-space model, wherein both

the observation equation and the state equation are linear. Since their development in
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an engineering setting in the early 1960’s, DLMs have been implemented in a vast

range of fields thanks to their straightforward approach to Bayesian modelling and

forecasting. DLMs provide flexible modelling tools, and have recently been applied

to areas including finance (Fisher et al. (2020)), environment (Ahn et al. (2017)) and

epidemiology (Khan et al. (2021)). In the forecast combination literature, alongside

the work of LeSage and Magura (1992) and Sessions and Chatterjee (1989), DLMs

have also been implemented by Terui and van Dijk (2002) and Raftery et al. (2010).

The following methodology in this chapter is largely in line with the work of West and

Harrison (1997). Other valuable references in the area are given by Prado and West

(2010) and Harvey (1990).

The general univariate DLM describes how a univariate time series yt depends lin-

early on some underlying vector of size n× 1, known as the state vector θt. The formal

definition is given below.

Definition 3.2.1. For each t, the general univariate DLM is defined by:

Observation equation: yt = F ′
tθt + νt, νt ∼ N(0, Vt), (3.2.1)

System equation: θt = Gtθt−1 + ωt, ωt ∼ N(0,W t), (3.2.2)

Initial information: (θ0|D0) ∼ N(m0,C0).

The observation equation (3.2.1) describes the relationship between the observed time

series yt and the state vector θt at time t. The n×1 vector F t is chosen by the modeller,

in order to define the nature of this linear dependence. The observational error term is

denoted by νt, which is Gaussian distributed with mean zero and variance Vt.

The system equation (3.2.2) (also known as the state or evolution equation) de-

scribes how the unobservable state vector θt evolves with time. Considering the two

components of this equation in turn, we see that the deterministic part of the evolution

is given by the transition from the state θt−1 to Gtθt−1. Here, Gt is an n× n matrix,
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defined by the modeller in order to describe the nature of this evolution. The second

component of the system equation provides the stochastic part of the evolution. This is

given by the n× 1 noise vector ωt, which defines the multivariate Gaussian distributed

state evolution error with mean 0 and covariance W t.

As noted by West and Harrison (1997), the error sequences {νt} and {ωt} are as-

sumed to be internally and mutually independent, and are independent of (θ0|D0).

This is a natural assumption, since clearly the observational error νt is a simple random

perturbation in the measurement process; this only influences the immediate observa-

tion yt. By contrast, the state evolution noise ωt influences the development of the

system into the future. The assumption of independence between these two sources of

stochastic behaviour clearly clarifies their separate roles in the model. We note that it

is also possible to generalise the model in the case that we have known, non-zero means

for either of the noise terms (see West and Harrison (1997) for further details).

Definition 3.2.1 also requires the assumption of a normal distribution for the state

vector at time t = 0 given the available information at that time, D0. We assume

prior mean m0 and covariance C0. In the case that we are modelling the data as

a continuation of a previously observed series, where we have chosen the time origin

arbitrarily, one can think of the chosen prior as summarising the information from the

past, where the state vector at the time origin θ0 can be interpreted as the final state

vector of the historical data. In the literature, it is often the case that a univariate

DLM is written as its defining quadruple of the form,

{F t,Gt, Vt,W t}.

When modelling an observed time series as a DLM, we are interested in several

relevant distributions. West and Harrison (1997) note that at time t, all known infor-

mation about a system is summarised by the posterior distribution of the state vector.

For simplicity, consider the univariate DLM where all information about the system
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at times t ≥ 1 is provided by the observed time series; that is to say, the system is

closed to external information. Assuming some prior information D0, the available in-

formation about the system at time t is then given by Dt = {yt, Dt−1}. Therefore, we

denote the posterior distribution of the state vector at this time by p(θt|Dt). We seek a

method that enables this distribution to be determined throughout time. Furthermore,

we often wish to estimate the prior distribution of the state vector at time t, given the

information available at time t− 1; for example, in applications which require one-step

ahead forecasts of the state variable. Similarly, we may wish to estimate the forecasting

distribution of the observed time series at some future time t + h, for h ≥ 0; we shall

consider the one-step-ahead case in this thesis, such that h = 1. We refer to these three

relevant distributions as the posterior, prior and forecasting distributions respectively,

and denote them by p(θt|Dt), p(θt|Dt−1) and p(yt|Dt−1).

3.2.1 The Kalman filter

It is expected that our inference on the posterior, prior and forecasting distributions

will change throughout time as more data become available; recall, in a system closed

to external information at times t ≥ 1, the available information set Dt is updated with

every new observation received. We therefore desire a sequential analysis where we are

able to update our inference on the relevant distributions whenever a new observation

is recorded.

The Kalman filter is a set of recursive equations which allow the aforementioned

relevant distributions to be computed within a simple Bayesian framework. Whenever

a new time series observation is made, the Kalman filtering equations are performed

in order to compute the prior, posterior and forecasting distributions in closed-form.

These are given as follows.

Theorem 3.2.2 (The Kalman Filter). For the univariate DLM given by Definition
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3.2.1, let

(θt−1|Dt−1) ∼ N(mt−1,Ct−1),

for some mean mt−1 and variance matrix Ct−1. Then the prior, forecasting and poste-

rior distributions are given for each t as follows:

1. Prior at t:

(θt|Dt−1) ∼ N(at,Rt), where at = Gtmt−1, and Rt = GtCt−1G
′
t +Wt.

2. One-step-ahead forecasting distribution:

(yt|Dt−1) ∼ N(ft, Qt), where ft = F′
tat, and Qt = F′

tRtFt + Vt.

3. Posterior at t:

(θt|Dt) ∼ N(mt,Ct), with mt = at +Atet and Ct = Rt −AtQtA
′
t,

where At = RtFtQ
−1
t and et = yt − ft.

The closed-form analysis provided by the Kalman filter is one of the key advantages of

DLMs compared to other Bayesian approaches. It allows real-time predictive densities

and point forecasts to be obtained in a clear and uncomplicated manner. When applied

to a sequence of observations, the filtering procedure provides a series of posterior

distributions and predictive densities. The proof for the univariate Kalman filter, the

multivariate extension and the relevant smoothing equations for a retrospective analysis

can be found in West and Harrison (1997).
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3.2.2 Dealing with unknown parameters

In order to apply the Kalman filter to a DLM, we require knowledge of the defining

quadruple {F t,Gt, Vt,W t} at all times t. In general, the regression vectors F t and

the evolution matrices Gt are defined by the modeller in order to best describe the

behaviour of the observed time series. They are chosen by considering some physical

interpretation of the system, and can therefore be defined in a way that takes into

account any seasonal, regression or trend components in the model (for more details,

see Petris et al. (2009) and West and Harrison (1997)).

On the other hand, it is often the case that the observational variance Vt, and/or

the system evolution covariance W t are unknown. Since the modeller only has access

to the observed time series yt at time t and not the corresponding state variable θt,

little may be known about the underlying stochastic variation of the system, or indeed

the magnitude of the observational errors. Often, the direct quantification of these

parameters is difficult, and the resulting estimates are grossly misspecified. In the

following, we describe closed-form methods for dealing with unknown parameters which

can be suitably integrated into the model combination framework.

Unknown observational variance

West and Harrison (1997) propose dealing with unknown observational variance by in-

troducing a slight modification to the univariate DLM structure. Namely, they consider

the defining quadruple now given by

{F t,Gt, V
∗
t σ

2,W ∗
tσ

2}.

We assume that the defining vectors F t and Gt are known, in addition to the values

V ∗
t and W ∗

t . An unknown scale factor σ2 has been introduced into the model, such

that the observational variance is given by Vt = V ∗
t σ

2, where V ∗
t is the known constant
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multiplier (similarly, the system evolution covariance is given by W t = W ∗
tσ

2). The

introduction of the scale factor provides a scale-free model. In most cases, the known

constant multiplier of the scale factor is set to V ∗
t = 1, in which case the observational

variance of the model is given by Vt = σ2. We refer to σ2 as the uncertain variance.

A closed-form filtering procedure for learning the uncertain variance can be devel-

oped by working with its reciprocal ϕ = 1/σ2, known as the observational precision.

By assuming a gamma prior on this parameter,

(ϕ|D0) ∼ G(n0/2, n0s0/2),

West and Harrison (1997) develop a fully conjugate Bayesian analysis, which allows the

uncertain variance to be learned as the filtering procedure takes place.

The parameter n0 describes the degrees of freedom at time t = 0, such that the

mean of this prior distribution is given by,

E[ϕ|D0] =
n0

n0s0
=

1

s0
.

Thus, the parameter s0 provides a prior point estimate of the observational variance

σ2 at time t = 0. Under this prior assumption, and setting V ∗
t = 1, the corresponding

DLM is defined by

Observation equation: yt = F ′
tθt + νt, νt ∼ N(0, σ2),

System equation: θt = Gtθt−1 + ωt, ωt ∼ N(0, σ2W ∗
t ), (3.2.3)

Initial information: (θ0|D0, ϕ) ∼ N(m0, σ
2C∗

0), (ϕ|D0) ∼ G(n0

2
, n0s0

2
).

This model can be analysed using a closed-form filtering analysis similar to Theo-

rem 3.2.2, with the addition of an updating step for the distribution of the unknown

precision ϕ. In particular, when moving from time t − 1 to time t, the updates to the
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gamma parameters are given by

nt = nt−1 + 1 and st = st−1 +
st−1

nt

(
e2t
Qt

− 1

)
.

Thus, the quantity st provides the posterior estimate of σ2 = 1/ϕ at time t. In the one-

step ahead forecasting equations (part (2) of Theorem 3.2.2), the time t−1 estimate for

σ2 is substituted into the expression for the conditional observational variance Vt = σ2.

In addition, the updating equation for the variance matrix Ct involves a change of scale

to reflect the revised estimate of σ2, that is,

Ct =
st
st−1

(Rt −AtA
′
tQt).

Finally, we note that in Theorem 3.2.2, the prior and posterior distributions for the state

vectors, in addition to the one-step ahead forecasting distribution for the observed time

series, are all normally distributed. In the sequential updating analysis of the model

described by equation (3.2.3), these distributions are only normal when conditional on

the unknown parameter σ2. The unconditional distributions are instead Student’s t-

distributions; as an example, the prior for the state vector at time t is now given by

(θt|Dt−1) ∼ Tnt−1(at,Rt), where Tn denotes the Student’s t-distribution with n degrees

of freedom. The updated posterior distribution is then given by (θt|Dt) ∼ Tnt(mt,Ct),

in comparison to the normal distributions defined in parts (a) and (c) of Theorem 3.2.2.

A full summary of the modified updating equations for a DLM with unknown and

constant observational variance can be found in Chapter 4 of West and Harrison (1997).

The above shows that by introduction of a gamma prior for the unknown precision

parameter, a fully closed-form, conjugate analysis can be carried out in the case of

unknown and constant observational variance. This enables sequential learning about

the unknown parameter within a Bayesian updating framework, where inference on the

unknown state vector is updated simultaneously.
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Sometimes it is beneficial to consider the case where the uncertain variance is varying

stochastically throughout time. An adapted closed-form updating sequence can be

derived by introducing a variance discount factor β and a beta-distributed random

variable γt, which represents random shocks at each time. These parameters are used

to define the stochastic evolution of the precision. For brevity, we omit the exact details

here and instead refer the interested reader to Chapter 4 of West and Harrison (1997).

However, we do note that this analysis was incorporated into the forecast combination

code developed for this thesis as a user-specified option.

Unknown system covariance

The appropriate specification of both the structure and magnitude of the system evolu-

tion covariance matrix W t is critically important for successful modelling and forecast-

ing in the DLM framework. The system evolution covariance controls the extent of the

stochastic variation in the state equation, and is therefore responsible for determining

the stability of the model over time.

In a classical framework, it is possible to estimate W t using maximum likelihood

methods, and then proceed with the filtering analysis using the maximum likelihood

estimate. For some models and data sets, this method can be effective; however, such

an approach fails to take properly into account the uncertainty about the estimated

parameter (since we compute a point estimate). Furthermore, this approach is not

particularly efficient in an online analysis; in the case that the optimal value of W t

changes with time, we are required to carry out the maximum likelihood estimation at

each time step. We also note that this technique cannot be implemented in the case

that we have no historical data.

We can instead consider a Bayesian approach to the problem. Under a Bayesian

perspective, the unknown parameters are treated as random quantities; in the context

of DLMs, the posterior distribution of interest is considered to be the joint conditional
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distribution of the state vector and the unknown covariance W t, given the observed

data. Markov chain Monte Carlo (MCMC) methods can be used to approximate the

relevant distributions in the case that computations are not analytically tractable. For

example, Petris et al. (2009) show how Gibbs sampling algorithms can be used effec-

tively to simultaneously solve the filtering, smoothing and forecasting problems for a

DLM with unknown system evolution covariance. However, such MCMC procedures

are not ideally suited to recursive inference. Each time a new time series value is ob-

served, the distribution of interest changes. This means that a new MCMC procedure

must be performed at each time step, in order to sample from the updated posterior

distribution. This is clearly computationally inefficient, particularly in applications

that require an online analysis or where the data arrive with high frequency. As high-

lighted in Section 3.2.1, a key advantage of working with DLMs is the ability to carry

out a closed-form, sequential analysis. Therefore, the requirement to run an MCMC

simulation each time a new observation is recorded has an adverse effect on the overall

benefits of such a model. Hence, we seek a method for performing a recursive, closed-

form analysis in the case that system covariance W t is unknown. To this end, we utilise

the method of discounting (see Section 6.3 of West and Harrison (1997), and Prado and

West (2010)), which we describe in the following.

In the system equation (3.3.1), it is seen that the covariance matrix W t leads to an

increase in uncertainty about the state vector as we move from time t − 1 to time t;

this can be equivalently interpreted as a loss of information from this transition. To see

this, consider the posterior and prior distributions of the state vector at two subsequent

time steps. According to Theorem 3.2.2, the posterior distribution of the state vector

at time t− 1 is normally distributed with covariance

Cov(θt−1|Dt−1) = Ct−1.
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By the evolution equation, this then results in a prior covariance for θt given by,

Cov(θt|Dt−1) = GtCt−1G
′
t +W t.

In line with West and Harrison (1997), let P t denote the first term in this covariance,

that is

P t = GtCt−1G
′
t = Cov(Gtθt−1|Dt−1).

Therefore, P t can be interpreted as the appropriate prior covariance for a system with

no stochastic evolution (that is, the DLM given by {F t,Gt, Vt,0}). By considering

the covariance in this way, it can be seen that the role of W t in the Kalman filtering

equations is to increase the uncertainty from the ideal P t to the realistic Rt = P t+W t.

To exploit this interpretation ofW t, and to avoid the issues arising via MCMCmethods,

a popular choice in the DLM literature is to introduce a discount factor δ, which satisfies

the condition 0 < δ ≤ 1. Using this, we can write the implied covariance as a fraction

of the ideal covariance in the case that no stochastic variation is present,

Cov(θt|Dt−1) = Rt =
1

δ
P t.

By considering that Rt = P t +W t, we can therefore write

W t =
1− δ

δ
P t =

1− δ

δ
G′

tCt−1Gt. (3.2.4)

Using this identification of the system evolution covariance, one can determine the

whole sequence {W t} from an initial C0 and discount factor δ. Hence, by inserting

equation (3.2.4) into the Kalman filter, it is possible to carry out a sequential, closed-

form analysis for a DLM with unknown W t.

Appropriate choice of a discount factor presents an interesting problem. Essentially,
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the role of the discount factor is to control the local durability of the model (West

and Harrison (1997)). A discount factor equal to 1 implies a zero system evolution

covariance; in this case, the system model is globally reliable. Conversely, as δ → 0

and therefore W t → ∞, the system model becomes completely unreliable. In general,

application of a low value of discount factor indicates the need for a superior model.

The suggested optimal choice of discount factor varies in the literature. West and

Harrison (1997) recommend a discount factor in the range [0.9, 0.99] for routine analysis,

as do Prado and West (2010). On the other hand, others consider δ ∈ {0.95, 0.99}; for

example, Koop and Korobilis (2012). Typically in the literature, the discount factor is

simply set to a constant user-specified value, which is chosen a priori. Alternative and

more complex methods for discount factor selection are discussed in Chapter 4.

3.3 Complete DLM-based forecast combination model

framework

In this section we provide a user’s guide for the implementation of a DLM-based point

forecast combination framework, detailing step-by-step instructions for the practitioner.

This framework allows forecast combination weights to be estimated sequentially as

more data become available, in a computationally efficient manner. Combination

weights are unconstrained and can take negative values (we demonstrated optimal

weights can be negative in the N = 2 forecaster case in Chapter 2). To the best

of our knowledge, a complete description of this methodology has not been provided in

the literature before.

In order to define the forecast combination problem as a DLM, we assume the

unconstrained regression framework with no intercept term suggested by Granger and

Ramanathan (1984), such that the observed series yt is modelled as a linear combination
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of N individual forecasters,

yt = w1,tf1,t + w2,tf2,t + · · ·+ wN,tfN,t + νt.

We note that the extension to include an intercept term is straightforward, and we

advise this if bias is present in the individual forecasters. In order to avoid the require-

ment that the individual forecasters must be stationary (highlighted by De Menezes

et al. (2000)), and to accommodate for changing forecaster quality throughout time, we

let the regression coefficients evolve according to a random walk model:

wt = wt−1 + ωt,

wherewt = [w1,t w2,t . . . wN,t]
′. We emphasise here that we do not enforce the constraint

that weights sum to one in our method, even though this may be desirable in the case

that forecasters are known to be unbiased. We note that such weights could be achieved

through an extension to constrained Kalman filtering, which is discussed briefly in

Chapter 6.

Let us assume that the observational noise term νt follows a normal distribution

with mean zero and variance Vt. Similarly, let us assume that the random walk noise

term follows a multivariate normal distribution with mean 0 and covariance matrix

Wt. Denote the vector of N expert forecasts at time t by ft = [f1,t f2,t . . . fN,t]
′. If we

also assume that, at time t = 0, there is a normal prior distribution on the regression

parameters, with mean m0 and covariance C0, then we can define a DLM for the

forecast combination problem with state vector wt as follows,

Observation equation: yt = f ′twt + νt, νt ∼ N(0, Vt),

System equation: wt = wt−1 + ωt, ωt ∼ N(0,W t),

Initial information: (w0|D0) ∼ N(m0,C0).
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By defining the forecast combination problem as a DLM in this way, we can compute

the one-step-ahead forecasting distribution for the observed series yt at each point in

time through the application of the Kalman filtering equations. Moreover, application

of the Kalman filter will enable prior and posterior estimates on the weight vector to

be obtained throughout time. This is a DLM with defining quadruple:

{ft, IN , Vt,W t}.

Of course, the observational variance Vt and the system covariance Wt will be unknown

in practice. We can deal with this by enforcing a gamma prior on the precision and in-

cluding a discount factor δ for the system covariance matrix, as detailed in Section 3.2.2.

Thus, the complete DLM for the point forecast combination problem is given by,

Observation equation: yt = f ′twt + νt, νt ∼ N(0, σ2),

System equation: wt = wt−1 + ωt, ωt ∼ N(0, σ2W ∗
t ), (3.3.1)

Initial information: (w0|D0, σ
2) ∼ N(m0, σ

2C∗
0), (ϕ|D0) ∼ G(n0

2
, n0s0

2
),

where the precision is denoted by ϕ = 1/σ2. Step-by-step instructions on the imple-

mentation of this forecast combination procedure are given in the following.

1. Define prior parameters m0, C
∗
0, n0, s0, and discount factor δ.

(a) Simple averaging often displays favourable empirical performance, therefore

a suitable prior for the weight vector is given by equal weights,

m0 = [1/N 1/N ... 1/N ].

(b) An uninformative prior for the state evolution covariance reflects uncertainty

in the optimal choice of combination weights and allows the filtering proce-



CHAPTER 3. DLM-BASED POINT FORECAST COMBINATION 47

dure to converge to optimal weights quickly, therefore a suitable choice is

given by the N ×N matrix,

C∗
0 =



1× 107 0 . . . 0

0 1× 107 . . . 0

...
...

. . .
...

0 0 . . . 1× 107


.

(c) As is the convention in the literature, we recommend setting,

n0 = 1, s0 = 1.

(d) In general, we recommend selecting a discount factor δ ∈ [0.9, 1). Individual

guidance is provided for the simulation studies and empirical examples in this

chapter, and more complex discount factor selection methods are discussed

in Chapter 4.

2. For times t = 1, . . . , T :

(a) Compute the prior distribution for the weight vector,

(wt|Dt−1) ∼ Tnt−1(mt−1,
st−1

δ
C∗

t−1).

(b) Compute the one-step-ahead forecasting distribution,

(yt|Dt−1) ∼ Tnt−1(f
′
tmt−1, st−1Q

∗
t ),

where

Q∗
t =

1

δ
(f ′tC

∗
t−1ft + δ).
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(c) Observe yt and compute the forecast error,

et = yt − f ′tmt−1.

(d) Compute the posterior distributions,

(θt|Dt) ∼ Tnt(mt, stC
∗
t ),

(ϕ|Dt) ∼ G(nt/2, ntst/2),

where the parameters for the precision distribution are updated recursively ac-

cording to

nt = nt−1 + 1, st =
nt − 1

nt

st−1 +
e2t

ntQ∗
t

,

and the parameters for the state vector distribution are given by the recursive

equations:

mt = mt−1 +Atet, C∗
t =

1

δ
(IN −Atf

′
t)C

∗
t−1,

with

At =
1

δQ∗
t

C∗
t−1ft =

1

f ′tC
∗
t−1ft + δ

C∗
t−1ft.

The above formulation is given for a constant choice of discount factor δ. However, a

simple extension can be made to consider δt at each time. With the equations in this

format, it is straightforward to integrate the combination procedure with methods for

adaptive discount factor selection, such as those of Irie et al. (2022) or Yusupova et al.

(2023) (discussed in Chapter 4).
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3.4 Simulation study

In this section, we undertake a simulation study to investigate the performance of our

forecast combination procedure in a variety of settings, working with both independent

and correlated forecasters, in static and dynamic environments. The purpose of this

is both as a ‘proof of concept’ for our forecast combination method, and to assess its

forecasting performance in comparison with established benchmarks. We demonstrate

how our method can capture dynamics in the combination weights in an online and

sequential framework, unlike other forecast combination methods.

In addition to our DLM-based method, we evaluate the performance of simple aver-

aging, the optimal covariance weights of Newbold and Granger (1974), the regression-

based weights of Granger and Ramanathan (1984), and taking the recent best fore-

caster. In dynamic scenarios, we also consider ‘rolling’ adaptations of the Granger and

Ramanathan (1984) regression-based weights and the Newbold and Granger (1974) co-

variance weights. These are evaluated by implementing the estimation methods on the

previous k observations at each time step (this was described in Section 2.4.1 for the

optimal covariance weights). We compare the mean square error (MSE),

MSE =
1

n

T∑
t=1

(yt − ŷt)
2,

the mean absolute error (MAE),

MAE =
1

T

T∑
t=1

|yt − ŷt|,

and the symmetric mean absolute percentage error (SMAPE),

SMAPE =
100

T

T∑
t=1

|yt − ŷt|
(|yt|+ |ŷt|)/2

,
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for each forecasting method tested.

The simulations in this section were inspired by financial applications. An ‘under-

lying’ time series of interest of length T = 500 was simulated according to an AR(1)

model with mean level µ,

ỹt = ϕỹt−1 + (1− ϕ)µ+ ϵt, ϵt
iid∼ N(0, σ2

ϵ ).

The observed series of interest yt was then simulated by taking this underlying series

and adding some ‘local market effects’,

yt = ỹt + ζt, ζt
iid∼ N(0, σ2

ζ ).

A set of N = 4 expert forecasts were simulated from a multivariate normal distribution,

as though ‘unaware’ of the local market effects,

ft ∼ N(ỹtι,Σt),

where ι is a 4-dimensional vector of 1s. In the following simulations, parameters were

set to σ2
ϵ = 2.52, σ2

ζ = 0.42, ϕ = 0.9, µ = 100. These parameters were chosen based on

a financial data set. Different simulation settings were defined through different choices

of covariance matrix Σt. In order to ensure robustness of the method, 100 replications

of expert forecasts were simulated from the underlying time series ỹt for each choice of

Σt. The simulated time series yt is shown in Figure 3.4.1a, and the first 20 observations

along with a set of forecaster series (simulated from covariance matrix Σ1 defined in

Section 3.4.2) are shown in Figure 3.4.1b.
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(a) Simulated time series yt.
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(b) The first 20 observations of yt,
and four forecasters.

Figure 3.4.1: Time series simulated according to an AR(1) plus noise model.

3.4.1 Oracle weight derivation

To begin, let us consider the estimation of the combination weights themselves, rather

than the resulting combined forecast. While we require a combination method that

provides accurate forecasts, we also desire interpretability. That is to say, we do not

only wish to know the combined forecast for the variable of interest, but also which

forecaster is the best at each point in time and likewise, which is the worst. For

example, consider combining two forecasters of equal quality. By coincidence, assume

that these two forecasters have produced identical forecasts at time t. Clearly, several

different choices of combination weights would lead to the same combined forecast;

however, only one choice would provide an accurate interpretation of the individual

forecaster quality. For example, we could assign each a combination weight of 1/2, or

alternatively one forecaster could be assigned a weight of 1 and the other a weight of

0. In both cases, the combined forecast would be the same, and the resulting forecast

error would be identical. If we were only interested in forecasting performance, either of

these combinations would be sufficient. However, in the latter case we may incorrectly

interpret these weights to mean that the forecaster with the weight of 1 was far superior

than that with the zero weight. Only the combination where each forecaster is assigned
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a weight of 1/2 provides the correct interpretation of the forecasters: namely, they are

of equal quality.

With this in mind, we desired a method for computing what the optimal weight

combination would be if we had access to the observed series yt at each time. In Sec-

tion 2.2, we provided the derivation of the covariance weights of Newbold and Granger

(1974), which are optimal for the case of N unbiased forecasts with weights constrained

to lie on the unit simplex. Similarly, we showed how Timmermann (2006) derived the

generalised optimal weights for N forecasters, under the assumption of joint Gaussian-

ity for the forecaster series and the observed yt. In this section we follow a similar

approach to the derivation of Timmermann (2006), but instead of imposing distribu-

tional assumptions on the observed data yt, we treat this as a known value at each

time point rather than a random variable. Thus, the assumption of joint multivariate

Gaussianity is no longer required, and the derived optimal weights can be treated as

the ‘oracle’ weights, in the sense that they are derived given knowledge of the observed

data. This is done as follows.

Let us assume that the N -vector of forecasters is distributed with expectation and

covariance matrix given by,

E{ft} = µt and Cov(ft) = Σt.

We note that these moments are allowed to vary with time, and no other assumptions

are made on the distribution of ft. We can find optimal weights by minimising the

expected squared forecast error of the combination:

E{(yt −w′
tft)

2} = E{yt −w′
tft}2 +Var(yt −w′

tft)

= (yt −w′
tµt)

2 +w′
tΣtwt.
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This is done by differentiating with respect to the weight vector,

∂E{(yt −w′
tft)

2}
∂wt

= −2(yt −w′
tµt)µt + (Σt +Σ′

t)w
′
t,

= −2(yt −w′
tµt)µt + 2Σtwt,

where we have used the fact that the covariance matrix is symmetric. The optimal

weight vector can then be found by setting this to zero and rearranging,

− ytµt + (w′
tµt)µt +Σtwt = 0

=⇒ µt(µ
′
twt) +Σtwt = ytµt

=⇒ wt = (µtµ
′
t +Σt)

−1ytµt, (3.4.1)

where we have assumed that (µtµ
′
t + Σt) is invertible. We shall refer to the weights

given by equation (3.4.1) as the oracle weights, since they are evaluated with knowledge

of yt. Since we have not treated yt as a random variable in our derivation, the oracle

weights can be calculated for any observed series yt, provided we have knowledge of the

forecast vector mean and covariance matrix. Of course, such weights are meaningless in

a practical forecast combination problem, since one would not have knowledge of yt in

advance of choosing the weights (if one did, then the entire forecast combination would

be redundant). However, it is particularly useful in our simulation studies, as we can

compare the weights estimated from our method with the oracle weights. Moreover,

we can also use the oracle weights to compute a combined forecast at each time. The

forecasting performance of our method and other forecast combination methods can

then be compared with the forecasting performance of the oracle method, to provide

insight on how well methods are performing.

We note that even in the case of unbiased forecasters with constant covariance

matrix, the oracle weights will vary slightly throughout time, unless the observed series
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yt is itself constant. This differs from the optimal weights derived in Section 2.2, where

constant forecaster quality implies constant optimal weights. However, the variations in

the oracle weights are very small for typical signal to noise ratios. For example, consider

the case of two forecasters of equal quality, which are unbiased and uncorrelated:

E

{f1,t
f2,t

} =

yt
yt

 , Cov(f1,t, f2,t) =

σ2 0

0 σ2

 .

The oracle weights can then be written as:

wt =
1

2y2t + σ2

y2t
y2t

 =
1

2 + σ2/y2t

1
1


Note that if y2t ≫ σ2, then we have σ2/y2t ≈ 0, and hence the weights are approximately

1/2, as we would obtain using the methods in Section 2.2. We highlight that the oracle

weights in this case are upper bounded by 1/2, and will therefore sum to less than one.

The forecast is therefore not the best linear unbiased estimator, but rather the best

linear estimator that minimised the MSE.

3.4.2 Constant forecaster quality

The case of constant forecaster quality throughout time can be simulated by selecting a

constant covariance matrix for the forecasters Σt = Σ. Here we consider the case of in-

dependent forecasters and correlated forecasters, described by the respective covariance
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matrices

Σ1 =



σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


, and Σ2 =



σ2
1 ρ12σ1σ2 0 0

ρ12σ1σ2 σ2
2 0 0

0 0 σ2
3 ρ34σ3σ4

0 0 ρ34σ3σ4 σ2
4


.

Covariance matrix Σ1 corresponds to the case that all forecasters are uncorrelated,

meanwhile covariance matrix Σ2 induces correlations between Forecasters 1 and 2, and

Forecasters 3 and 4. The variances were set to σ2
1 = 0.2, σ2

2 = 0.4, σ2
3 = 0.6, σ2

4 = 0.8,

and the correlation coefficients were set to ρ12 = 0.9 and ρ34 = 0.3.

In order to apply our combination method, a discount factor of δ = 0.99 was chosen.

This choice lies within the range of values suggested by West and Harrison (1997) and

also Koop and Korobilis (2012). In actuality, since the forecasters were simulated from

a constant covariance matrix Σ, we acknowledge that perhaps an even higher value of

discount factor would be more suitable to the problem, since the oracle weights will be

almost constant with time.

Estimated weights

The forecast combination procedure was carried out on each of the 100 replications,

for the two choices of covariance matrix. For each replication, the estimated weight for

each forecaster was computed at time t by taking the mean of the conditional posterior

distribution (θt|Dt, σ
2), and the corresponding one-step-ahead combined forecasts were

obtained by taking the mean of the conditional forecasting distribution (yt|Dt−1, σ
2).

The median estimated weights over the 100 replications and the interquartile ranges

are plotted in Figure 3.4.2a and Figure 3.4.2b for the independent and correlated cases

respectively. The coloured dashed lines show the oracle weights for each forecaster.

Both figures show initially wide interquartile ranges for the estimated weights. This
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(a) Covariance matrix Σ1.
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Figure 3.4.2: Estimated combination weights for unbiased forecasters with constant co-
variance matrices. Optimal oracle weights shown by the dashed lines, median estimated
across 100 repetitions shown by solid coloured lines, and interquartile ranges shown by
corresponding shaded regions.

is a consequence of of the choice of prior for C∗
0. To begin, there is large uncertainty

on the weights, and consequently the filtered weights vary greatly between replications.

As more data is observed, the uncertainty on the weights decreases and the variability

between replications decreases, leading to narrower interquartile ranges. We see that it

generally takes about 50 observations for the interquartile range to converge to a steady

width.

The median filtered weights are close to the oracle weights in both cases. In the

uncorrelated case (Figure 3.4.2a), all median weights are between 0 and 1. This is

not a requirement of our method (unlike the optimal weights derived by Newbold and

Granger (1974)). This can be seen by inspection of the weights in the correlated case

(Figure 3.4.2b), where the weight associated with Forecaster 1 exceeds unity, and Fore-

caster 2 is assigned a negative weight. We refer back to the discussion in Chapter 2, and

expect that this is a consequence of the high correlation between these two forecasters.

Forecasting performance

We compared the forecasting performance of our combination procedure with other

popular methods in the literature, namely: simple averaging, regression-based weight
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estimation (Granger and Ramanathan (1984)), and optimal covariance weights derived

using an estimated covariance matrix (Newbold and Granger (1974)). Details of these

methods can be found in Chapter 2. Since the simulated forecasters were unbiased, the

regression equation without the intercept was applied (regression (ii) in Section 2.3).

We also considered the forecast provided by the forecaster who had the smallest forecast

error at the previous time point, since this is a method used in financial applications.

We shall refer to this as the ‘recent best’ method. The combined forecasts achieved

from applying the oracle weights were also computed, in order to provide a benchmark

for the different combination methods.

The optimal covariance weights of Newbold and Granger (1974) require the covari-

ance matrix to be estimated; similarly, the regression-based weights of Granger and

Ramanathan (1984) require a linear regression to be carried out. Since we are inter-

ested in an online forecast combination method, we defined a training set of the first

k observations to allow these quantities to be learned. Forecast performance of the

different methods was then compared on the remaining T − k observations. We con-

sidered two different sizes of training set, k = 20 and k = 50. The MSE, MAE and

SMAPE were computed for each of the 100 replications, and the median values of these

error metrics computed across the replications are reported in Table 3.4.1 (uncorrelated

forecaster case) and Table 3.4.2 (correlated forecaster case) for the two different test

sets.

For the uncorrelated forecasters, our method provided forecasts with lower median

MSE, MAE and SMAPE across the replications for both training sets k = 20 and

k = 50. We note that for the k = 50 case, the optimal covariance weights computed

with an estimated covariance matrix, and the regression-based weights also performed

well. The benefits of our DLM-based method become more apparent in the case k =

20, reflecting the ability to adapt quickly to new information as it becomes available.

The simple approach of taking the forecast provided by the forecaster whom had the
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smallest forecast error at the previous time point demonstrated the worst forecasting

performance by all three error metrics, which is unsurprising given the benefits of

forecast combination highlighted in Chapter 2. Similar results were obtained in the

case of correlated forecasters. In all situations tested, our method performed best, with

more gains achieved when a smaller training set was used.

Training Combination Method MSE MAE SMAPE

k = 50

Oracle 0.02799 0.13346 0.133%
Our method 0.21778 0.37493 0.374%
Optimal covariance weights 0.21973 0.37621 0.375%
Regression-based weights 0.21988 0.37725 0.376%
Simple average 0.25905 0.40598 0.405%
Recent best 0.42477 0.50939 0.508%

k = 20

Oracle 0.02815 0.13344 0.133%
Our method 0.21508 0.37241 0.372%
Optimal covariance weights 0.23316 0.38581 0.385%
Regression-based weights 0.24104 0.39264 0.392%
Simple average 0.25396 0.40305 0.402%
Recent best 0.42035 0.50470 0.504%

Table 3.4.1: Forecasting performance of five different forecast combination methods, in
addition to the oracle combination weights (light grey row), on simulated uncorrelated
forecasters. Values are provided by taking the median error metrics across 100 repeti-
tions. Method(s) with the lowest MSE, MAE and SMAPE highlighted in green.

3.4.3 Gradually changing forecaster quality

Of course, a key advantage of our forecast combination method is that it is online and

dynamic, allowing the combination weights to change over time in response to observed

data. Dynamic quality of forecasters can be represented by allowing the covariance

matrix to vary with time. Once again, two choices of covariance matrix were considered,
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Training Combination Method MSE MAE SMAPE

k = 50

Oracle 0.020139 0.11272 0.112%
Our method 0.20926 0.36743 0.367%
Optimal covariance weights 0.21158 0.37063 0.370%
Regression-based weights 0.21227 0.37102 0.370%
Simple average 0.28538 0.42629 0.425%
Recent best 0.44313 0.51727 0.516%

k = 20

Oracle 0.02023 0.11336 0.113%
Our method 0.20715 0.36521 0.364%
Optimal covariance weights 0.22429 0.37920 0.378%
Regression-based weights 0.23226 0.38441 0.383%
Simple average 0.28062 0.42393 0.423%
Recent best 0.43506 0.51350 0.512%

Table 3.4.2: Forecasting performance of five different forecast combination methods, in
addition to the oracle combination weights (light grey row), on simulated correlated
forecasters. Values are provided by taking the median error metrics across 100 repeti-
tions. Method(s) with the lowest MSE, MAE and SMAPE highlighted in green.

namely,

Σ1,t =



σ2
1 0 0 0

0 σ2
2,t 0 0

0 0 σ2
3 0

0 0 0 σ2
4


, and Σ2,t =



σ2
1 ρ12σ1σ2,t 0 0

ρ12σ1σ2,t σ2
2,t 0 0

0 0 σ2
3 ρ34σ3σ4

0 0 ρ34σ3σ4 σ2
4


.

Covariance matrix Σ1,t corresponds to the case that all forecasters are uncorrelated,

and the variance of Forecaster 2 is changing with time. Covariance matrix Σ2,t induces

correlations between Forecasters 1 and 2 (ρ12 = 0.9) and Forecasters 3 and 4 (ρ34 = 0.3).

The variance of Forecaster 2 was simulated such that it increased linearly from 0.2 to

0.8, and the other variances were set to σ2
1 = 0.4, σ2

3 = 0.6, σ2
4 = 1.2.

Estimated weights

The combination DLM was defined using the same prior parameter choices as in the

constant covariance matrix case, apart from the discount factor which was set to δ =
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0.97. This value of discount factor was chosen since we are expecting the optimal

weights to change over time in accordance with the changing variance of Forecaster 2,

and therefore a lower choice of discount factor is more suitable to accommodate these

dynamics. This discount factor was not tuned to the problem, and it is likely that other

values of discount factor would improve upon the forecasting performance detailed in

this section.

Once again, the filtering procedure was carried out on each of the 100 forecaster

vectors, for the two choices of covariance matrix. The median estimated weights over

the 100 replications are plotted in Figure 3.4.3a and Figure 3.4.3b, for the uncorrelated

and correlated forecasters, respectively. Interquartile ranges are shown by the shaded

regions, and the oracle weights are shown by the dashed lines.
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Figure 3.4.3: Estimated combination weights for unbiased forecasters with time-varying
covariance matrices. Optimal oracle weights shown by the dashed lines, median esti-
mated across 100 repetitions shown by solid coloured lines, and interquartile ranges
shown by corresponding shaded regions.

Changing the variance of Forecaster 2 over time clearly induced dynamics in the

weights. In the uncorrelated case, the changes in the weights are gradual and relatively

small, meaning that our choice of discount factor enables the estimated weights to

‘track’ the oracle weights well. On the other hand, the changing variance of Forecaster

2 in the correlated case has a more significant impact on the induced dynamics in the

oracle weights around times t ∈ [0, 150]. The estimated weights from our method track
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the oracle weights well for Forecasters 3 and 4 in this time period; however, the median

estimated weights are not as close to the oracle weights for Forecasters 1 and 2. Here,

we see that although the oracle weights lie within the relevant interquartile ranges of the

estimated weights, the changes in the median weight appear ‘too slow’ to adequately

track the oracle for the first part of the time series. It is expected that a lower choice of

discount factor for the first 150 observations would improve upon this. This motivates

the concept of time varying discount factors discussed in Chapter 4.

Forecasting performance

Once again, we compared the forecasting performance of our method with that of

simple averaging, regression-based weights, optimal covariance weights and the recent

best forecaster method. In order to accommodate the changing oracle weights, we also

considered ‘rolling’ versions of the optimal covariance weights of Newbold and Granger

(1974), and the regression-based weights of Granger and Ramanathan (1984), where

the previous k observations were used to estimate the parameters at each time point.

The former corresponds to the time-varying weights proposed by Granger and Newbold

(1977), with covariance matrix given by equation (2.4.1).

The median MSE, MAE and SMAPE across the 100 replications, for the uncor-

related case, are shown in Table 3.4.3. For the k = 50 case, the lowest MSE was

achieved by our method; the lowest MAE and SMAPE was achieved by the rolling co-

variance weights. The key difference between the two methods is that the DLM-based

method enables sequential updating, whereas the rolling covariance weights requires

the covariance matrix to be re-estimated at every time point. This is computationally

inefficient, and would take considerable time if the number of forecasters N was to be

increased. We also note that the value of discount factor chosen in our method was

not tuned to the data, and therefore we expect that forecasting performance could be

improved through more dedicated tuning of this parameter. Despite the lack of tuning,
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our method displayed the lowest error metrics in the k = 20 case.

Training Combination Method MSE MAE SMAPE

k = 50

Oracle 0.08426 0.23141 0.231%
Our method 0.28654 0.43010 0.430%
Optimal covariance weights 0.29070 0.43264 0.432%
Regression-based weights 0.29167 0.43421 0.434%
Simple average 0.33777 0.46393 0.463%
Recent best 0.66273 0.62065 0.622%
Optimal covariance weights (rolling) 0.28666 0.42904 0.429%
Regression-based weights (rolling) 0.29173 0.43214 0.432%

k = 20

Oracle 0.08363 0.23093 0.230%
Our method 0.28327 0.42615 0.425%
Optimal covariance weights 0.31077 0.44723 0.446%
Regression-based weights 0.32329 0.45705 0.456%
Simple average 0.33178 0.46071 0.459%
Recent best 0.65136 0.61665 0.616%
Optimal covariance weights (rolling) 0.31963 0.44971 0.449%
Regression-based weights (rolling) 0.33531 0.46221 0.461%

Table 3.4.3: Forecasting performance of seven different forecast combination methods,
in addition to the oracle combination weights (light grey row), on simulated uncorrelated
forecasters. Changing forecaster quality. Values are provided by taking the median error
metrics across 100 repetitions. Method(s) with the lowest MSE, MAE and SMAPE
highlighted in green.

Similar behaviour was observed in the case of correlated forecasters (see Table 3.4.4).

For the k = 50 case, the rolling covariance weights demonstrated the best performance

for all three error metrics tested, with our method displaying an equal SMAPE. In the

k = 20 case, our method displayed superior performance for all three error metrics.

3.5 Empirical analysis

Two empirical applications are considered in this section, in order to demonstrate the

forecasting performance of our method in practice. Of course, issues can arise when

working with real data, such as missingness in the observation series and also the

forecasting series. The DLM filtering recursions deal with missing observations easily
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Training Combination Method MSE MAE SMAPE

k = 50

Oracle 0.07872 0.22275 0.223%
Our method 0.28112 0.42429 0.424%
Optimal covariance weights 0.28636 0.42836 0.428%
Regression-based weights 0.28940 0.42912 0.429%
Simple average 0.39563 0.50300 0.502%
Recent best 0.67302 0.62582 0.625%
Optimal covariance weights (rolling) 0.28028 0.42426 0.424%
Regression-based weights (rolling) 0.28621 0.42683 0.426%

k = 20

Oracle 0.07991 0.22584 0.225%
Our method 0.28130 0.42439 0.423%
Optimal covariance weights 0.33809 0.46206 0.461%
Regression-based weights 0.34691 0.47138 0.470%
Simple average 0.39042 0.49893 0.499%
Recent best 0.66758 0.62348 0.622%
Optimal covariance weights (rolling) 0.31407 0.44847 0.448%
Regression-based weights (rolling) 0.33123 0.46000 0.459%

Table 3.4.4: Forecasting performance of seven different forecast combination methods,
in addition to the oracle combination weights (light grey row), on simulated correlated
forecasters. Changing forecaster quality. Values are provided by taking the median error
metrics across 100 repetitions. Method(s) with the lowest MSE, MAE and SMAPE
highlighted in green.

and effectively by simply propagating forward the prior state vector parameters, corre-

sponding to stationary combination weights until more data is observed. The problem

of missing forecasters is more complex, and is discussed in Chapter 4. The forecaster

series in this section were aggregated to ensure no missing data were present.

3.5.1 Atlantic meridional overturning circulation

The Atlantic Meridional Overturning Circulation (AMOC) is a large system of ocean

currents, which transports huge volumes of water around the globe. Warm water from

the tropics is carried by surface currents into the North Atlantic, and likewise cold

water is carried south by deep ocean currents several kilometres below the surface. The

AMOC plays a crucial role in the global climate system, and contributes to the mild

winter climate of North Western Europe. This significant impact on the global climate
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means that the study and monitoring of the AMOC is of high importance to scientists,

and many efforts have been made to model the phenomenon.

The AMOC is measured in Sverdrups (Sv), where 1Sv represents a transport of

one million cubic metres of water per second (1Sv= 106m3/s). In order to quantify

this, it is necessary to take measurements that span a complete ocean basin. As such,

observation is difficult. The RAPID/MOCHA/WBTS (RAPID) program was started

in 2004 in order to monitor the AMOC at a latitude of 26.5°N. An array of instruments

was deployed across 6500km of the Atlantic ocean, from Morocco to Florida, in order

to measure ocean velocity, pressure, temperature and salinity. Since the installation

of this basin-wide array, the AMOC has been continuously monitored (see McCarthy

et al. (2015) for details).

Despite the large improvement in the observational network around the North At-

lantic over recent decades, there remain significant gaps in the observational coverage

(see Sanchez-Franks et al. (2021)). Ocean reanalyses allow observations from measure-

ment instruments to be integrated with an ocean model based on physical equations,

and can be used to provide reconstructions of the AMOC strength. Such reanalyses can

be used to estimate the AMOC prior to 2004, and also at different latitudes. Although

many ocean reanalyses use similar models and assimilated data, assimilation techniques

vary, leading to differences in results. In this section, we apply our forecast combination

method to four different AMOC reconstructions provided by ocean reanalyses, in order

to dynamically weight the reanalyses and gain insight on their performance throughout

time. We use the RAPID data as the true observed AMOC in our model. Our decision

to implement our method on this data was motivated by Jackson et al. (2019), who

assess the ability of several ocean reanalyses to capture the observed dynamics of the

AMOC by comparing reanalyses constructions with data from the RAPID array.

Jackson et al. (2019) consider a reconstruction of the AMOC strength from the

GloSea5 ocean reanalysis in their work, which combines observations of salinity, ocean
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temperature, sea ice concentration and sea level from both in situ and satellite ob-

servations (MacLachlan et al. (2015)). The GloSea5 reanalysis is also considered by

Sanchez-Franks et al. (2021), who note that this reanalysis underestimates the AMOC

mean values in 2004 to 2010 and does not capture the strengthening apparent in the

RAPID AMOC data in 2006. We wanted to see if this behaviour was reflected in the

weights assigned by application of our model to the data.

The data

Data from the RAPID AMOC monitoring project are funded by the Natural Environ-

ment Research Council and are freely available from www.rapid.ac.uk/rapidmoc. The

reanalyses data set used by Jackson et al. (2019) is available at: https://zenodo.org/

record/2598509#.Y-TC4BPP23J. The raw RAPID data set features AMOC estimates

every day from April 2nd 2004, taken twice a day at midnight and midday. Reanalysis

data is provided on a monthly basis from January 1993, which is when satellite altimetry

data became routinely available, to December 2016. The data features AMOC recon-

structions from four different ocean reanalyses: GloSea5, ECCO V4 R3, GLORYS12v1

and GONDOLA100A.

In order to apply our method, five artificial time series were created by aggregating

each series into monthly means and assigning these to the first day of each month.

Only the time period for which both RAPID observations and reanalysis data were

available was considered, leading to a time series of 141 observations from April 2004 to

December 2016. The RAPID AMOC measurements and the corresponding reanalyses

reconstructions are shown in Figure 3.5.1.

www.rapid.ac.uk/rapidmoc
https://zenodo.org/record/2598509#.Y-TC4BPP23J
https://zenodo.org/record/2598509#.Y-TC4BPP23J
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Figure 3.5.1: Monthly mean AMOC measurements from the RAPID array shown by
black line, from April 2004 to December 2016. Reconstructions of the AMOC from
four different ocean reanalyses: GloSea5, ECCO V4 R3, GLORYS12v1 and GON-
DOLA100A, shown by the coloured lines.

Choice of parameters

In order to implement our forecast combination model on the reanalysis data, a gamma

prior distribution was assumed for the unknown observational precision,

(ϕ|D0) ∼ G(n0/2, n0s0/2),

where initial parameter values were set to n0 = 1 and s0 = 1. The prior distribution of

the state vector was then assumed to be,

(θ0|σ2, D0) ∼ N(m0, σ
2C∗

0),

where the parameters were set to

m0 = 1/4ι, C∗
0 = 107I4,
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where ι is a 4-dimensional vector of 1s as before. In order to deal with the unknown

system evolution covariance, a discount factor δ was introduced. Sanchez-Franks et al.

(2021) note that the GloSea5 reanalysis does not capture the strengthening of the

AMOC in 2006, but performs well for other time periods. Hence, we expect there to

be some evolution in the combination weights, corresponding to stochastic evolution in

the state vector. With this in mind, we carried our the combination method for four

different values of discount factor: δ = 0.900, 0.925, 0.950, 0.975. All of these lie within

the region of values recommended by West and Harrison (1997). We do not consider

very high values (for example, δ = 0.99) since these correspond to very little stochastic

variation in the state vector.

Filtered weights and forecasting performance

The filtered combination weights for each choice of discount factor are shown in Fig-

ure 3.5.2 (a)-(d). We see that as the value of discount factor is increased, the filtered

weights become less variable throughout time. By examining the case that δ = 0.975,

it is a little easier to identify any long-term trends in the filtered weights, which may

be indicative of individual reanalysis performance. For example, the weight associated

with the GLORY12v1 reanalysis (shown by the green line) is centred about zero for the

majority of the time series, with a slight increase being exhibited from 2014 onwards

(though this is not enough data to assume a long-term change from this point). This

implies that the GLORY12v1 reanalysis does not adequately capture the behaviour of

the AMOC at 26°N when compared to the other reanalyses included in the combination.

A sharp decrease in the weight associated with GloSea5 is exhibited just prior to

2006. The weight recovers from this quickly, before generally declining until around

2009. While we cannot say what may have caused the sudden decrease prior to 2006,

it is possible that the steady declination of the weight from 2006 to 2009 is reflective

of the inability of this reanalysis to capture the strengthening of the AMOC in 2006
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as described by Sanchez-Franks et al. (2021). Similar behaviour is exhibited by the

GONDOLA100A reanalysis. On the other hand, the ECCO V4 R3 reanalysis increases

until around 2010, possibly indicating that this reanalysis captures the behaviour of

the AMOC better in this period. We also see that some negative weights are assigned

throughout the time series, implying correlations between the four reanalyses.

The forecasting performance of each choice of discount factor is compared in Ta-

ble 3.5.1, where the MSE, MAE and SMAPE are provided. Measures of error are also

provided for the popular forecast combination methods of simple averaging, regression-

based weights and estimated Newbold and Granger (1974) weights, in addition to the

‘recent best’ method. Rolling windows of 50 observations were used to accommodate

changing combination weights for the Newbold and Granger (1974) and regression-based

methods.

The lowest value of MSE, MAE and SMAPE are highlighted in green in Table 3.5.1.

We see that the lowest error metrics were achieved using our DLM-based forecast combi-

nation method with a discount factor of δ = 0.925. Furthermore, the results show that

for all values of discount factor tested, δ = 0.900, 0.925, 0.950, 0.975, our DLM-based

forecast combination method outperformed all other forecast combination methods con-

sidered.

3.5.2 European Central Bank survey of professional forecast-

ers

The European Central Bank (ECB) survey of professional forecasters has been used

widely in the forecast combination literature (see Magnus and Vasnev (2023), Rad-

chenko et al. (2023), Matsypura et al. (2018)). The survey is concerned with fore-

casting three macroeconomic variables, namely: real GDP growth (GDP), inflation

(HICP), and unemployment (UNEM). The survey began in 1999, and forecasters are

asked to provide one- and two-year-ahead forecasts on a quarterly basis. In this em-
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Figure 3.5.2: Estimated combination weights for GloSea5, ECCO V4 R3, GLORYS12v1
and GONDOLA100A ocean reanalyses, for different values of discount factor: (a) δ =
0.900, (b) δ = 0.925, (c) δ = 0.950, (d) δ = 0.975. Filtered weights have been omitted
for a 12 month ‘burn in’ period to allow the posterior state variance to converge.

pirical analysis we will consider the one-year-ahead forecasts. Approximately 100 fore-

casters take part in the survey; however, most participating forecasters fail to pro-

vide forecasts for all time periods. The ECB survey data is freely available at http:

//www.ecb.europa.eu/stats/prices/indic/forecast, and is updated four times a

year. Observed data of the GDP growth rate, HCIP and UNEM macroeconomic vari-

ables are available from the ECB at http://sdw.ecb.europa.eu.

In the forecast combination literature, it is generally the case that forecasters with

infrequent responses are excluded from the analysis. Matsypura et al. (2018) suggest

http://www.ecb.europa.eu/stats/prices/indic/forecast
http://www.ecb.europa.eu/stats/prices/indic/forecast
http://sdw.ecb.europa.eu
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Combination Method MSE MAE SMAPE
Our method (δ = 0.900) 3.718 1.432 9.31%
Our method (δ = 0.925) 3.645 1.417 9.23%
Our method (δ = 0.950) 3.658 1.426 9.31%
Our method (δ = 0.975) 3.875 1.468 9.58%
Optimal covariance weights (rolling) 4.310 1.591 10.22%
Regression-based weights (rolling) 4.074 1.505 9.80%
Simple average 6.210 2.073 13.20%
Recent best 5.137 1.784 11.24%

Table 3.5.1: Forecasting performance of our forecast combination method for four values
of discount factor (δ = 0.900, δ = 0.925, δ = 0.950, δ = 0.975), along with the fore-
casting performance of estimated optimal covariance weights, regression-based weights,
simple average forecast combination and recent best. Smallest error metrics shown in
green.

removing forecasters which fail to provide more than 6 years worth of forecasts (cor-

responding to 24 observations); similarly, Magnus and Vasnev (2023) only consider

forecasters who have missed no more than 10 time periods. We also take this approach,

which results in seven forecasters for the GDP data and six forecasters for the unem-

ployment data. We do not consider the inflation data set, since this had the fewest

available forecasts.

Despite removing the most infrequent forecasters from the analysis, some missing

forecaster data was still present. In order for our forecast combination method to be

applied, missing data was imputed using the last available value for that forecaster.

Alternative methods for dealing with missing forecaster data are discussed in Chapter

4. The observed data and resulting forecaster series for the GDP growth rate is shown

in Figure 3.5.3, from October 1999 to March 2023. The observed data and forecasts for

unemployment are shown in Figure 3.5.4, from February 2000 to August 2023.

The effect of the COVID-19 pandemic is clearly noticeable in both data sets. In the

case of the GDP growth rate, forecasters were unable to predict the significant drop

in 2020, leading to drastically wrong forecasts for this period. On the other hand, it

appears several forecasters severely overestimated the unemployment rate for the period



CHAPTER 3. DLM-BASED POINT FORECAST COMBINATION 71

2000 2005 2010 2015 2020

−
15

−
10

−
5

0
5

10
15

2000 2005 2010 2015 2020

−
15

−
10

−
5

0
5

10
15

G
D

P

Time

Observed series
Forecaster 1
Forecaster 2
Forecaster 3
Forecaster 4
Forecaster 5
Forecaster 6
Forecaster 7

Figure 3.5.3: Observed GDP growth rate data from October 1999 to March 2023 shown
by the black line, with observations given for each quarter. Corresponding one-year-
ahead forecasts shown by coloured lines.

after the pandemic.

Choice of parameters

For both data sets, a gamma prior distribution was assumed for the unknown observa-

tional precision,

(ϕ|D0) ∼ G(n0/2, n0s0/2),

where initial parameter values were set to n0 = 1 and s0 = 1. The prior distribution of

the state vector was then assumed to be,

(θ0|σ2, D0) ∼ N(m0, σ
2C∗

0),
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Figure 3.5.4: Observed unemployement rate data from February 2000 to August 2023
shown by the black line, with observations given for each quarter. Corresponding one-
year-ahead forecasts shown by coloured lines.

where the mean and covariance matrix were set to be the simple average weights and

a noninformative prior respectively (see Section 3.3).

The choice of discount factor δ is difficult for this application due to the presence of

the Covid-19 pandemic. Whilst we might expect a gradual change in forecaster quality

throughout time like that observed for the AMOC, Figure 3.5.4 shows that certain

forecasters severely overestimated the unemployment rate for the post-pandemic period.

This implies a very sudden shift in forecaster quality at this point. We recall that sudden

shifts in stochastic volatility of the weights can be accounted for by using a low value of

discount factor; however, higher values of discount factor have been shown to perform

better in more stable regions. Therefore, for this data set it may be preferable to use

a time-varying discount factor. As methods for adaptive discount factor selection have

yet to be discussed, we decided to select a constant value of discount factor throughout

time and remove the data post 2020 when calculating error metrics. However, we note

that forecasters also performed poorly in the late 2000s due to the financial crisis;
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consequently, we believe that the use of our method with a constant discount factor

might not be suitable to this data set. For the GDP data, the discount factor was set

to δ = 0.999; for the unemployment data set, the discount factor was set to δ = 0.935.

These values were chosen based on the data.

Filtered weights and forecasting performance

The filtered combination weights provided by our method are shown in Figures 3.5.5a

and 3.5.5b for GDP growth rate and unemployment rate respectively. A ‘burn in’

period of 12 observations (corresponding to three years) has been omitted from the

plot. Both plots show negative weights. This reflects the high correlations present

between the ECB forecasters, as discussed by Radchenko et al. (2023). We also note

that the weights for the GDP growth rate seem to stabilise after the 2008 financial crisis

until the Covid-19 pandemic, implying that the forecasts were of consistent quality in

this period.
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Figure 3.5.5: Filtered combination weights shown by the coloured lines for (a) GDP
growth rate and (b) unemployment rate. A burn in period of 12 observations has been
omitted.

The forecasting performance for the two data sets is compared with the ‘rolling’ op-

timal covariance weights method, the ‘rolling’ regression-based method, simple average

forecast combination, and the recent best method in Table 3.5.2 and Table 3.5.3, for

GDP growth rate and unemployment rate respectively. As mentioned previously, we



CHAPTER 3. DLM-BASED POINT FORECAST COMBINATION 74

decided to remove observations after 2019 from the analysis in order to minimise the

adverse affects of the Covid-19 pandemic. Rolling windows of 16 observations (corre-

sponding to four years) were used to accommodate for changing weights in the optimal

covariance weights method and the regression-based method. SMAPE was not included

for the GDP data set since the observations were close to zero.

Combination Method MSE MAE
Our method (δ = 0.999) 2.67 1.078
Optimal covariance weights (rolling) 11.07 1.667
Regression-based weights (rolling) 10.2 1.769
Simple average 2.27 0.991
Recent best 2.05 0.928

Table 3.5.2: Comparison of error metrics for different forecast combination methods
applied to the ECB data set for GDP growth rate. Metrics were evaluated omitting
the first k = 16 observations, corresponding to four years of data, and excluding data
after 2019. SMAPE has not been included since values are close to zero.

Combination Method MSE MAE SMAPE
Our method (δ = 0.935) 0.625 0.637 6.41%
Optimal covariance weights (rolling) 1.103 0.743 7.95%
Regression-based weights (rolling) 0.773 0.641 6.60%
Simple average 0.564 0.566 6.02%
Recent best 0.430 0.467 4.94%

Table 3.5.3: Comparison of error metrics for different forecast combination methods
applied to the ECB data set for unemployment rate. Metrics were evaluated omitting
the first k = 16 observations, corresponding to four years of data, and excluding data
after 2019.

Perhaps most interesting about these results is the stark contrast with both the

simulations and the AMOC data set. The recent best method, which exhibited sig-

nificantly poor forecasting performance in the previous studies, resulted in the lowest

error metrics for both ECB data sets. Despite removing the post-pandemic period from

the computation of the error metrics, our method was outperformed by both simple

averaging and the recent best method. However, we do note that our method displayed
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superior forecasting performance to the dynamic adaptions of the optimal covariance

weights method and the regression-based method. This is unsurprising, given the small

window size used to estimate the coefficients.

It is known that the ECB forecasters are very highly correlated as indicated from

the filtered weights displayed in figures 3.5.5a and 3.5.5b (see also Radchenko et al.

(2023) and Magnus and Vasnev (2023)). It is therefore possible that the superior per-

formance of simple averaging can be attributed to the fact that we are trying to estimate

individual combination weights from such highly correlated data. This feeds into the

bias-variance trade off of the forecast combination puzzle, since it is likely that the gains

obtained from estimating the combination weights do not outweigh the corresponding

estimation error. Furthermore, methods that aim to estimate the combination weights

are impacted greatly by the sudden ‘shocks’ of the financial crisis and the Covid-19

pandemic. This can make the use of past data to estimate the weights difficult, which

would possibly explain the preferable performance of the simple averaging approach.

Although the recent best method performed well on this data set, we emphasise that

this method is not robust to a sudden change in forecaster performance, and therefore

not generally an appropriate choice. We expect that the positive performance of this

method is a fluke result from the data set under consideration.

It is possible that superior performance from our method could be achieved by

allowing a time varying discount factor to be used. This would allow for large changes

in combination weights at highly volatile periods, while allowing for more consistent

weight estimation in more stable periods. The concept of time varying discount factors

is explored in Chapter 4.
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3.6 Discussion

We have presented a step-by-step guide to combining point forecasts in a DLM frame-

work. Furthermore, we have provided a novel formulation of the Kalman filtering

equations specific to the forecast combination setting, which have been given in terms

of discount factor δ. This is so that the forecast combination procedure can be com-

bined with methodology from the adaptive discount factor selection literature discussed

in Chapter 4.

The proposed DLM-based methodology enables combination weights to be estimated

sequentially as more data become available. Consequently, this approach is highly

applicable to situations where observed data and one-step-ahead forecasts are arriving in

succession and with high frequency. By working within the DLM framework, inference

on relevant distributions can be updated using closed-form Bayesian filtering. This

is computationally efficient, contrasting with other methods wherein the covariance

matrix of the forecasters must be estimated anew at each time step.

The way in which combination weights are updated sequentially also deals with

the common issue of little historical data. By assigning a prior distribution to the

combination weights with mean equivalent to simple averaging, we provide appropriate

weight estimates from the outset. This is in contrast to methods such as those proposed

by Newbold and Granger (1974) and Granger and Ramanathan (1984), which require a

certain amount of information to compute initial weight estimates. The benefits of this

were seen in the ECB empirical application, where we used the previous 16 observations

to estimate the optimal covariance weights and the regression-based weights. Given the

short time series, it would have been impractical to use a larger window size. In this

application, the best performance was observed from methods which did not require

parameters to be estimated at all, followed by our method, and finally the rolling

covariance weights and regression-based weights.

As with the models of Sessions and Chatterjee (1989) and LeSage and Magura
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(1992), we chose to model the evolution of the forecast combination weights as a ran-

dom walk. This allows dynamic adaptation throughout time in response to forecasters’

past performance, which is particularly useful in situations where the ‘best’ forecaster

is changing throughout time. Unlike the aforementioned references, our method gives

focus to the role of the discount factor parameter δ, which controls the stochastic volatil-

ity of the combination weights. We have demonstrated how an appropriate choice of

discount factor allows gradually changing ‘oracle’ weights to be estimated in simula-

tion studies; such behaviour corresponds to the case that the quality of a forecaster is

changing gradually throughout time. We have also shown how the choice of δ plays a

critical role in the forecasting performance of the method by comparing different choices

of discount factor in an environmental empirical application.

In contrast to other more simple forecast combination methods (such as simple av-

eraging), and more complex forecast combination methods (such as machine learning-

based techniques), our method offers interpretability from the assigned forecast combi-

nation weights. For example, in the case of independent forecasters (and consequently,

positive weights), a larger weight indicates superior forecaster performance. If we wit-

ness a positive weight decrease over time, this could be interpreted as the quality of

the corresponding forecaster declining; likewise, an increasing positive weight could in-

dicate an increase in forecaster quality. This can then be related to known information

about the application; for example, a particular forecaster had difficultly predicting the

increase in AMOC strength. If our method assigns negative weights, this indicates that

correlations are present between the forecasters. This can make direct interpretations

of forecaster quality more difficult (a more negative weight does not necessarily imply

worse forecaster quality); however, it can provide valuable information about the degree

of correlation between forecasters.

We conclude this chapter by considering some drawbacks of our DLM-based method.

We saw in the ECB application that our method was outperformed by both simple aver-
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aging and taking the recent best forecaster. This may be for two reasons: high levels of

correlation between the forecasters, and the shocks to the data due to the financial crisis

and the Covid-19 pandemic. The latter may have caused sudden jumps in forecaster

quality (perhaps one forecaster did a significantly better job at predicting during these

time periods); methods for dealing with this in the context of missing forecaster data

are discussed in Chapter 4. In relation to the former, although our method does ac-

count for correlations between forecasters (by assigning negative combination weights),

it is possible that the very high levels of correlation present in the ECB data negatively

affected forecasting performance.

A high level of correlation between forecasters is common in many forecast com-

bination applications, and the ECB data is no exception. Magnus and Vasnev (2023)

show for the ECB data set that ignoring positive correlation can lead to confidence

bands around forecast combinations that are much too narrow. Therefore, very high

levels of correlation must be assumed between forecasters in order to correctly account

for uncertainty. We showed in Chapter 2 that negative weights are optimal when com-

bining two forecasters under certain conditions. Furthermore, our simulation studies

showed how negative weights are assigned when correlations are introduced between

forecasters. Radchenko et al. (2023) provide a thorough investigation of the negative

weights that can emerge when combining forecasts. They study the theoretical condi-

tions necessary for negative weights to emerge and find that negative weights are driven

by high positive correlations.

Given that theoretically optimal weights can indeed take negative values, we devel-

oped our combination method such that the estimated weights would be unconstrained.

However, the typical practice in the literature is to consider only convex combinations,

and ignore or trim negative weights (set them to zero). Radchenko et al. (2023) show

that the positive effect of trimming comes from reducing the variance of the estimated

weights, but the threshold of zero is arbitrary and can be improved. In their empirical
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analysis, Radchenko et al. (2023) range the threshold from −∞ to 0 and look at the

mean squared forecast error (MSFE) of the resulting combined forecast. They compare

this with the MSFE achieved from taking the simple average. The recommendation

of the paper is to implement trimmed weights using an optimal trimming threshold

(rather than zero).

It is possible that the application of trimming procedures would lead to improved

empirical performance of our DLM-based method for the ECB data set. For the sake

of brevity, and issues that arise due to appropriate trimming threshold selection, a full

empirical analysis of this has been omitted from this thesis. However, let us consider a

simple toy example to investigate the effects of trimming highly correlated forecasters

on MSE. We simulated 100 replications of four forecasters using the methodology from

Section 3.4.2. The covariance matrix was set to,

Σ =



σ2
1 ρ12σ1σ2 0 0

ρ12σ1σ2 σ2
2 0 0

0 0 σ2
3 ρ34σ3σ4

0 0 ρ34σ3σ4 σ2
4


,

with σ2
1 = 0.2, σ2

2 = 0.4, σ2
3 = 0.6, σ2

4 = 0.8. Correlation coefficients were set to

ρ12 = ρ34 = 0.9, such that Forecasters 1 and 2 were highly correlated, and likewise for

Forecasters 3 and 4.

The median filtered weights and interquartile ranges in the untrimmed case are

shown in Figure 3.6.1a. We see that the large positive correlations between forecasters

has lead to negative weights. Radchenko et al. (2023) utilise a two-step trimming

procedure, where weights are first estimated and then trimmed according to

wTR1
i = α1 ×


ŵi, ŵi > −c,

−c, ŵi ≤ −c,
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Figure 3.6.1: Example of the effects of trimming negative weights.

where an additional scaling parameter α1 is required to satisfy the constraint that

the weights sum to one. This trimming procedure was implemented on the estimated

weights, where the threshold c was allowed to range from −1 to 0 in steps of 0.05.

The median MSE across the replications for the trimmed weights is shown as a

function of threshold parameter c in Figure 3.6.1b. The median MSE of our untrimmed

weights is shown by the dashed pink line. We see that the MSE for the thresholded

weights is lower for approximately choices of c ∈ (−0.75,−0.45), with a minimum

achieved at c = −0.5 (shown by the black dot). We note that this is close to the

minimum filtered weight; consistent with Proposition 7.1 in Radchenko et al. (2023).

Trimming the weights in this way decreases the variance of the estimated weights,

leading to more accurate forecasts.

Of course, in practice the optimal trimming threshold is unknown. Radchenko et al.

(2023) consider a data driven threshold in their empirical analysis, where the threshold

is chosen based on the pseudo out of sample MSFE; however they found that this

didn’t improve forecasting performance when compared with the best fixed threshold

for trimming.

It is possible that the combination of a trimming procedure with our method could
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lead to improved empirical performance on the ECB data set. This could be incor-

porated as part of a two-step procedure, where weights are first estimated and then

trimmed. Alternatively, there is the option to estimate and trim the weights at the

same time as part of a one-step procedure. This could perhaps be achieved by utilising

methodology from the constrained Kalman filtering literature; see, for example, Simon

(2010) and Jiang and Zhang (2013). This is discussed in more detail in Chapter 6.



Chapter 4

Missing forecaster data

For some high frequency variable of interest yt, we consider the case that N experts

provide individual point forecasts for the observed value at each time. Each sequence

of point forecasts has some underlying uncertainty, which is unknown and possibly

changing dynamically, and the forecasts are often correlated. In this problem setting,

a common difficulty that can arise is missing forecaster data. Since the data yt is

observed sequentially, after predictions are made, simple imputation techniques like

linear interpolation cannot be applied. The question is therefore how should this missing

data be dealt with; should only the available forecasters be combined? And if not, how

should we impute the missing forecasters?

4.1 Introduction

In Chapter 3, we presented a DLM-based framework for combining point forecasts. We

carried out simulation studies as both a proof of concept and to compare forecasting

performance with other well-established forecast combination methods. We then ap-

plied the method to two empirical applications: the environmental AMOC data, and

the ECB survey data.

In the aforementioned simulation studies, we assumed that our N forecasters pro-

82
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vided data at every time point. Similarly, the empirical data was pre-processed such

that no missing forecaster data was present before the forecast combination methods

were applied. In order to ensure that each ocean reanalyses model provided predictions

for the AMOC strength with the same frequency, we aggregated data. For the ECB

data set, we chose to remove forecasters who failed to provide data for more than 10

time periods; any remaining missing data was then imputed by filling forward from the

last provided forecast.

As demonstrated by the two empirical examples, missing forecaster data is a chal-

lenge that is frequently encountered in practice. There exists a multitude of reasons as

to why this might be the case; perhaps different forecasting models have different tem-

poral resolutions, or perhaps the missing data is more sporadic, resulting from human

error. However, despite being a frequent occurrence in practice, the problem of miss-

ing forecasters in combinations is not widely studied in the literature. Capistrán and

Timmermann (2009) consider the combination of forecasts with the ‘entry and exit of

experts’ (also referred to as forecast combination with an unbalanced panel); however,

in order to apply the least squares combination of Granger and Ramanathan (1984),

missing forecasts are back-filled using the Expectation Maximisation algorithm. There-

fore, such methods cannot be applied in an online setting. While Capistrán and Tim-

mermann (2009) do consider least-squares combination methods without back-filling

missing forecasters, they found that in approximately one-third of time periods, a sub-

set of forecasters with suitably long histories of observed data could not be found.

Consequently, the combined forecasts for these time points were given by the simple

average, which can be viewed as neglecting the potentially useful historical data that

is available.

In more recent work, Lahiri et al. (2017) discuss the challenges of comparing the per-

formance of different combination algorithms when missing forecaster data is present.

They argue that distinct combination methods implicitly impute missing forecasts in
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different ways, and as a consequence the combination methods are applied to different

data sets.

In order to understand how a given combination method can implicitly impute

missing forecaster data, let us consider simple average point forecast combination. For

N forecasters, let SA
t denote the set of available forecasters at time t, and SNA

t denote

the set of forecasters that are unavailable. Denote the number of observed forecasts

at time t as Nt, such that the number of elements in SNA
t is given by N − Nt. If one

chooses to compute the simple average combination of the available forecasters at time

t, the weight assigned to Forecaster i is given by

wav
i,t =


0, fi,t is not available,

1/Nt, otherwise,

where we use the superscript av to highlight the fact that these weights correspond to

the simple average weights. The combined simple average (av) forecast is then given

by

fav
t =

N∑
i=1

wav
i,tfi,t =

1

Nt

∑
i∈SA

t

fi,t.

That is, the combined simple average forecast is equal to the mean of the available

forecasters. In order to create a ‘conceptually balanced’ panel of forecasters, we must

consider how this method imputes the missing forecasters. Denote the imputed value

for some unobserved Forecaster j by f ∗
j,t. The combined forecast can now be written as

fav
t =

1

N

(∑
i∈SA

t

fi,t +
∑

j∈SNA
t

f ∗
j,t

)
.

Now, since the sum of the available forecasts is equal to the number of available forecasts
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multiplied by the simple average combined forecast,
∑

i∈SA
t
fi,t = Ntf

av
t , we can write,

fav
t =

1

N

(
Ntf

av
t +

∑
j∈SNA

t

f ∗
j,t

)
,

fav
t =

Nt

N
fav
t +

1

N

∑
j∈SNA

t

f ∗
j,t,

fav
t

(
1− Nt

N

)
=

1

N

∑
j∈SNA

t

f ∗
j,t,

fav
t =

1

N −Nt

∑
j∈SNA

t

f ∗
j,t.

This implies that applying the simple average method leads to imputed values f ∗
j,t

(j ∈ SNA
t ), such that the average of these imputed values equals the average of the

observed data. Lahiri et al. (2017) show that not all combination methods produce

the same implicitly imputed values (and subsequently, the combination methods can

be thought of as being applied to different data sets), and argue that this means that

combined forecasts computed using different procedures are not comparable in the

unbalanced panel setting.

Motivated by the sparse literature on the subject, we dedicate this chapter to a

conceptual exploration of the missing forecaster problem. We have chosen not to include

an empirical application, as we do not wish to focus on finding the best method for

dealing with a particular data set with missing forecasts. Rather, we propose one

possible method for imputing missing forecasters, and examine some of the implications

of this.

One feature of the proposed approach is that it provides the practitioner with the

choice to combine either point or density forecasts. We therefore also introduce two

novel forecast combination methods tailored to deal with the output of the proposed

imputation approach: an extension of the DLM-based point forecast combination pro-

cedure detailed in Chapter 3, and one density combination method. We aim to provide
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insight on which methods are suitable for which kinds of missing forecaster data. To

this end, we provide a conceptual simulation study which investigates two types of

missingness.

4.2 Background and methodology

In Chapter 3, we described how the Kalman filter deals with missing data in the ob-

served series yt by simply propagating forward the state vector from the previous time

point. This is straightforward to implement, and intuitive, since we have gained no

new information with which to update the parameter estimates. However, there is no

generally accepted method for dealing with missing values in the Ft vector, which in

our model is given by the vector of N forecasts at time t, ft = [f1,t . . . fN,t].

Of course, one approach for dealing with missing forecaster data is to only combine

the available forecasts at each time. While this method is straightforward, and easy

to implement in a simple combination setting such as simple averaging, it is not the

most suitable for our problem. Firstly, we recall that there is an underlying uncertainty

associated with each forecaster. Although the primary objective is to produce the most

accurate combined forecast, it may also be of interest to the practitioner to quantify

this uncertainty in some way. Quantification of this uncertainty would provide decision

makers with a more comprehensive comparison between the different forecasters, and

offer more insight into the uncertainty of the combined forecast; this in turn would

enable more informed and balanced decision making. If we are to simply neglect a

forecaster from the analysis when it fails to provide a forecast, we do not consider

how this missing data might be related to the forecaster’s uncertainty. For example, a

forecaster repeatedly failing to provide a prediction due to human error may indicate

that it is less reliable, and it is prudent to incorporate this information into our model

in some way.
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Furthermore, dealing with missing forecasters in this way raises the question of how

should weights be allocated when a forecaster returns online. Is it sensible to simply

restore a forecaster’s weight back to its ‘pre-missing data’ level? From discussions with

industry collaborators, we determined that it is possible that the quality of a particular

forecaster will change after a prolonged period of missing data. This is intuitive; an

upgrade to a forecasting system may lead to improved forecasts, meanwhile a new

employee working on the forecasts may perform less favourably than their predecessor.

For this reason, we desire an approach which requires forecasters to ‘earn’ their new

weighting after a missing period, rather than simply be assigned their previous weight.

Secondly, it is not a trivial task to change the number of forecasters in the com-

bination throughout time for some point forecast combination methods. The optimal

covariance weights of Newbold and Granger (1974) require the covariance matrix be-

tween the forecasters to be estimated. If some forecasters fail to provide predictions

for some time points, these cannot be included in the estimation. Hence, possibly use-

ful information obtained from when forecasters have provided predictions in the past

would be ignored. A similar problem is encountered in our DLM-based combination

framework. Since the Kalman filter cannot be carried out when a forecast is missing,

any forecasters with missing data would have to be neglected for the entire analysis.

This would fail to utilise all the available information, leading to worse forecasts than

those which could have been achieved at times when all forecasters were online.

Therefore, we propose that missing forecaster data must somehow be imputed; this

also negates any issues for comparison of methods that may arise due to the reasons

detailed by Lahiri et al. (2017). Of course, one option is to simply fill forward missing

observations from the previously provided data point. Although this technique would

preserve the online nature of the DLM-based combination method, it is not the most

intuitive approach. Clearly, one expects the observed time series yt, and likewise the

associated forecasts, to change throughout time. Therefore, we seek an imputation
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method that describes this evolution more accurately. More appropriate imputed values

may be obtained via linear interpolation or smoothing; however, such methods can only

be implemented in retrospect, after the missing forecaster comes back online. As we

are considering forecaster data which is arriving sequentially, we instead seek a method

that does not require knowledge of the next available forecast to make an imputation.

We propose modelling each individual forecaster series as a DLM. As the observed

series will now be provided by the forecaster series itself, the Kalman filter provides a

straightforward method for dealing with missing observations. Moreover, by virtue of

the sequential nature of DLMs, the filtering of all N forecasters can be carried out in

parallel, resulting in a computationally efficient method. If a suitable model is chosen for

the forecaster series, fitting a DLM will provide imputed values which describe the true

evolution of the series more effectively than simply filling forward the last observed

value. Furthermore, modelling each forecaster as a DLM allows us to compute full

forecasting distributions at each time point. This will enable the uncertainty of the

forecasters to be quantified throughout time, with the effects of missing data directly

reflected in the spread of the distribution. Therefore we are afforded a choice: should

only the point forecasts (obtained by taking the expectations of the distributions) be

combined, or should we now consider combining the full density forecasts? The latter

may be more preferable if one wishes to quantify the uncertainty of the combined

forecast.

In this chapter, we consider both approaches. For the DLM-based point forecast

combination approach proposed in Chapter 3, we introduce the concept of adaptive

discount factor selection. This was motivated by a desire to develop a method that

can adapt quickly to sudden changes in forecaster quality (for example, caused by a

forecaster going offline). We integrate an existing particle-learning based method for

adaptive parameter selection with our DLM-based point forecast combination frame-

work, which negates the need for the multiprocess mixture model proposed by LeSage
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and Magura (1992). In the context of density forecast combination, we propose a novel

method for assigning dynamic finite mixture model weights, based on maximising the

log predictive score.

4.2.1 Proposed imputation methodology

In order to deal with missing forecaster data, we propose using a DLM to model each

individual forecaster series. As a simple example, consider an observed time series yt

simulated according to an AR(1) plus noise model, as described in Chapter 3,

ỹt = ϕỹt−1 + (1− ϕ)µ+ ϵt, ϵt
iid∼ N(0, σ2

ϵ ),

yt = ỹt + ζt, ζt
iid∼ N(0, σ2

ζ ).

We recall that this simulation was motivated by a financial application, wherein ỹt de-

scribes some underlying time series, and the observed series is given by adding some

local market effects ζt. A set of N expert forecasts were then simulated from a multi-

variate normal distribution, as though ‘unaware’ of the local market effects,

ft ∼ N(ỹtι,Σt),

where ι is a N -dimensional vector of 1s. Based on this simulating model, it is possible

to describe each forecaster as a DLM. Recall, a univariate DLM is often written as

its defining quadruple of the form {Ft,Gt, Vt,Wt}. For Forecaster i, i ∈ {1, . . . , N},

simulated from the above multivariate normal distribution, this defining quadruple is
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given by,

Ft =

[
1 0

]′
, Gt =

ϕ (1− ϕ)µ

0 1

 ,

Vi,t = Σii,t, W =

σ2
ϵ 0

0 0

 .

where Σii,t denotes the [i, i]th element of the forecaster covariance matrix Σt at time

t. Of course, in practice the exact values of ϕ, µ, Σt and σ2
ϵ are unknown; however,

it is straightforward to estimate these from the data. Alternatively, unknown observa-

tion and state evolution covariances can be estimated using the closed-form methods

described in Chapter 3.

We emphasise that the choice of DLM is specific to the data set under consideration.

In the previous chapter, we defined a universal DLM that could be applied to any point

forecast combination problem (after dealing with missing forecaster data); here, the

choice of DLM is to reflect the individual time series structure of Forecaster i, and is

chosen by the modeller. Hence, we will not give further details on DLM selection for

this purpose, and will refer to the individual DLM applied to Forecaster i as fi-DLM.

For more details on appropriate selection of DLMs for different types of time series, we

refer the reader to West and Harrison (1997) and Petris et al. (2009), and note that

many kinds of DLM can be constructed easily within the DLM package in R.

Once the defining quadruple for fi-DLM has been specified, the Kalman filtering

equations can be used to model the temporal evolution of the series of forecasts provided

by the ith forecaster. In this case, the observed data is given by the forecaster series

fi,t, and not the observed series yt. It is of importance to note that the observed series

yt is not taken into account in the modelling of the forecasters. The only information

utilised in the fi-DLM is the set of previous predictions provided by the ith forecaster.
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We chose to model each individual forecaster as a DLM for two reasons. Firstly,

DLMs deal with missing observed data by simply propagating forwards the parameters

of the state vector from the previous time point, such that the posterior distribution

of the state vector at time t is the same as the prior at time t. At time t + 1, the

prior mean and covariance of the state vector are then updated as usual, according to

at+1 = Gt+1mt and Rt+1 = Gt+1CtG
′
t+1 + Wt+1. Hence, the evolution of the state

vector is still modelled throughout time, we just do not update our posterior distribution

at each time point. Therefore, by applying a DLM to the forecaster series, any missing

forecasts are dealt with implicitly as part of the filtering process. This is attractive

since it negates the need for any offline imputation methods, whilst providing a more

suitable alternative to simply filling forward the last provided forecast.

Secondly, modelling each individual forecaster as a DLM allows us to compute a

full forecast distribution at each time t, rather than a simple point forecast. Recall,

experts provide point forecasts at each time t, with no information regarding individ-

ual forecaster uncertainty. Application of the DLM-based point forecast combination

method described in Chapter 3 does provide some interpretation of forecaster quality,

reflected in the assigned combination weights. However, it is preferable to have an idea

of individual forecaster uncertainty before the combination takes place. By taking the

point forecasts provided by the experts, and applying the Kalman filter, we produce

full forecasting distributions at each time. This allows the individual uncertainty of

forecasters to be quantified in a more practical manner.

Here we provide a toy example which demonstrates the effects of modelling a fore-

caster series with missingness using a DLM. Under the above AR(1) plus noise process,
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we simulated three forecasters with covariance matrix

Σt =


1.02 0 0

0 1.52 0

0 0 1.72

 .

Artificially missing data was inserted for Forecaster 1, for times t ∈ [90, 115]. The

Kalman filter was then applied to each forecaster series, with defining quadruple defined

as above. In this set-up, density forecasts for Forecaster i at time t can be obtained

from the posterior distribution of the state vector at this time. Figure 4.2.1 shows the

observed data of interest yt, along with the mean and 95% credible intervals of the

density forecast for Forecaster 1 at each time. The missing data period is shown by the

shaded grey region. We see that during the missing data period, the credible interval

increases, reflecting the increased uncertainty in this period.

Thus, modelling the individual forecasters in this way enables a full density forecast

to be computed at each time t, even in periods where the original forecaster may

have failed to provide a forecast. This information can now be combined using point

forecast combination methods (wherein the mean of the forecast distribution is taken

as the point forecast), or density combination methods. In the case of point forecast

combination, we require a method that allows for sudden changes in forecaster quality

(reflective of a forecaster going offline, for example). With this in mind, we provide

background on adaptive discount factor selection methods in the following, and present

a novel methodology which incorporates an existing particle-learning based approach

with our point forecast combination DLM. Furthermore, we present a novel method for

combining density forecasts with dynamic weights. These methods are implemented on

simulated data in Section 4.3.
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Figure 4.2.1: Simulated observed data yt shown by black points. Artificially missing
data was inserted for Forecaster 1 for times between t ∈ [90, 115], shown by shaded
grey region. Expectation of the filtered distribution shown by blue line; 95% credible
intervals of filtered distribution shown by shaded blue region.

4.2.2 A dynamic discounting approach for point forecast com-

bination

The role of the discount factor δ in our DLM-based point forecast combination method

was introduced in Section 3.2.2. West and Harrison (1997) recommend a discount factor

in the range δ ∈ [0.9, 0.99], while Koop and Korobilis (2012) consider δ ∈ {0.95, 0.99}.

In the simulations and empirical studies in Chapter 3, the discount factor was set to a

constant value which was chosen a-priori. This is suitable in the case that the combi-

nation weights are changing gradually throughout time, at a constant rate. However,

it is sometimes the case that different values of discount factor perform better at dif-

ferent times. Although we have proposed a method for imputing missing values for an

offline forecaster, we still expect the quality of the said forecaster to decrease during

the period of missing observations; this is reflected in the increase in the width of the
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credible interval shown in Figure 4.2.1. In order to account for this very sudden change

in forecaster quality, it is perhaps desirable to adopt a low value of discount factor at

the start and end of the missing period. This would allow the combination weights to

adapt quickly by responding to the recently observed data. Hence, in this section we de-

scribe an existing dynamic discount factor selection method from the literature, which

we integrate with the DLM-based point forecast combination framework of Chapter 3.

Several alternatives to simply specifying a fixed value of discount factor a-priori have

been proposed in the literature. For example, one approach is to define a grid of possible

δ values, each with an associated probability, and update the posterior probability for

each value whenever a new observation is made. For example, for the j-th choice of δ

in the grid,

p(δj|Dt) ∝ p(yt|Dt−1, δj)p(δj|Dt−1).

While intuitive, this method can lead to assigning significantly low probabilities to

values of δ which may perform well in the future. This can in turn have an adverse

effect on the predictive performance of the model, and therefore this method is often

not favoured in practice. In order to prevent significantly low probability mass values

being assigned to values of δ which may be favourable in the future, Zhao et al. (2016)

utilise a power discount factor α ∈ (0, 1], and update the posterior probabilities such

that,

p(δj|Dt) ∝ p(yt|Dt−1, δj)p(δj|Dt−1)
α.

The introduction of the power discount factor α enables recent model performance

to have a greater influence on the updated posterior distribution for δ. Zhao et al.

(2016) consider a grid of possible values for both δ and α. Consequently, this method

can become computationally expensive, therefore negating the computational savings
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afforded from applying DLMs initially.

A more computationally efficient approach is provided by Yusupova et al. (2023),

who propose a method for dynamic discount factor selection where δt is approximated

through stochastic gradient descent (SGD). They exploit the idea that the optimal

value of discount factor δ at time t is that which minimises the expectation of the

one-step-ahead squared forecast error,

δ∗t = argmin
δ

1

2
E{(yt − F′

tmt−1)
2}.

Although this optimisation cannot be solved directly Yusupova et al. (2023) note that

an unbiased estimator is provided by the observed squared forecast error at time t,

e2t = (yt − F′
tmt−1)

2,

and approximate the optimal discount factor by computing a recursive formula for the

derivative of this expression with respect to δ.

Although not proposed in the DLM literature, a further method for discount factor

selection is provided by Irie et al. (2022). The authors augment a Poisson-Gamma

state space model for web traffic data by introducing a time varying discount factor

parameter. They develop an efficient particle-learning based estimation procedure that

is suitable for sequential analysis, which allows the model to adapt quickly to structural

changes.

Despite the fact that the approach of Irie et al. (2022) models the dynamics of a dis-

count factor within a Poisson-gamma framework, the proposed non-linear state-space

model for the evolution of δ can be directly implemented into a DLM. Given that this

method is designed to work well with sudden structural changes, we decided to inte-

grate this with our forecast combination procedure in order to explore the performance

when a forecaster goes offline. To the best of our knowledge, this thesis provides the
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first consideration of how such an adaptive discount factor selection approach may be

integrated into the forecast combination framework.

In order to construct an appropriate particle-learning algorithm for the integration

of Irie et al. (2022)’s method with our forecast combination framework, we will begin by

describing the dynamics of the discount factor in line with Irie et al. (2022). Consider

a logistic transformation of the form,

gt = logit(γt) = log
δt

1− δt
,

where it is assumed that the transformed series, g1, g2, . . . , gt, . . . , follows a first order

autoregressive model,

gt = (1− ϕ)µ+ ϕgt−1 + ηt,

where ηt ∼ N(0, σ2
η). Following the work of Irie et al. (2022), let us choose the prior,

g0 ∼ N(µ, σ2
η/
√

1− ϕ2),

such that the process gt is stationary with marginal distribution identical to the prior

g0 for all t. It is then possible to implement a fully Bayesian approach by assuming

priors on the AR(1) triplet, (µ, ϕ, σ2
η), and allowing the estimates to be updated as

new data is received. Specifically, as per the work of Irie et al. (2022), let us consider

another parameterisation given by ϕ0 = (1− ϕ)µ, ϕ1 = ϕ, and w = σ−2
η , and assume a

normal-gamma hyperprior for these parameters,

p(ϕ0, ϕ1, w|D0) = N(ϕ0, ϕ1|m̃0, C̃0/w)G(w|a0/2, b0/2).

The hyperparameters m̃0, C̃0, a0, b0 are user specified. Irie et al. (2022) recommend

choosing these parameters such that a preference is given to high and stable values of
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discount factor, since this is favoured in many cases. In our work, we choose to set

these to m̃0 = [(1− 0.9)logit(0.9), 0.9], C̃0 = 0.052I2, a0 = 10, b0 = 5.

The state-space model is non-linear, and therefore particle-learning (Carvalho et al.

(2010)) can be used in order to carry out filtering and estimation. We constructed

a particle-learning procedure that incorporated the above model for the evolution of

discount factor δ with the DLM-based point forecast combination procedure proposed

in Chapter 3, such that both the parameters for the evolution of δt, and the parameters

for the forecast combination DLM are updated at each time. This allowed us to output

the value of δt at each time, in addition to the combination weight vector, for each

particle. We note that the computational cost of this method is greatly increased when

compared with a standard DLM with discounting.

4.2.3 Density combination

We recall that filtering the individual forecaster series leads to forecasting distributions

at each time. Therefore, rather than combining the means of the distributions in a point

forecast combination framework, we can instead choose to combine the distributions

themselves.

Denote the density forecast provided by Forecaster i for the variable yt+1 at time t

by pi,t(y), where we have introduced a dummy variable y as before, in order to represent

all potential outcomes of the random variable yt+1 under the forecast distribution. As

described in Chapter 2, a natural approach when combining density forecasts is to take

a linear opinion pool. For a total of N individual forecasters, the linear opinion pool is

defined by the finite mixture,

pt(y) =
N∑
i=1

wipi,t(y),

where weights are constrained to be non-negative and sum to one. The question is then
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how to choose the combination weights? In the point forecast combination setting, op-

timal weights were described as those which minimised the expected mean square error.

A similar notion is proposed in the density combination setting by Hall and Mitchell

(2007), who suggest combining density forecasts using the weights which provide the

most ‘accurate’ density forecast, in a statistical sense. We shall present a simple exten-

sion to this work which enables density forecasts to be combined dynamically, in order

to account for changing forecaster quality.

Assume that the observed process is given by realisations from some unknown den-

sity f(y). The combination weights which provide the most ‘accurate’ density forecast

are therefore those which minimise the Kullback-Leibler information criterion (KLIC)

between the true density f(y) and the combined density p(y). The KLIC is defined as

KLICt =

∫
ft(yt) ln

{
ft(yt)

pt(yt)

}
dyt, or

KLICt = E[ln ft(yt)− ln pt(yt)].

When the combined density is closer to the true density, the KLIC is smaller; the

KLIC is equal to zero if and only if f(y) = p(y). Hall and Mitchell (2007) state

that in empirical applications, under certain regularity conditions, the KLIC can be

consistently estimated by taking the sample mean over the available data,

KLIC =
1

T

T∑
t=1

[ln ft(yt)− ln pt(yt)]. (4.2.1)

Hence, the optimal combination weights can be found by minimising the KLIC between

the combined and true distributions, given by equation (4.2.1). Of course, in practice

the true data generating distribution f(y) is unknown; however, Hall and Mitchell

(2007) note that in the forecast combination setting, this minimisation is equivalent to
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finding the vector of weights w which maximise the concave cost function,

Φ(w) =
1

T − 1

T−1∑
t=1

ln pt(yt+1), (4.2.2)

=
1

T − 1

T−1∑
t=1

ln

( N∑
i=1

wipi,t(yt+1)

)
,

known as the log predictive score.

Although this approach is intuitively appealing, optimisation of the concave cost

function can lead to increased computational expense, particularly in the case of many

forecasters. Conflitti et al. (2015) tackle this by formulating an iterative algorithm for

the computation of optimal weights, based on a ‘minorisation-maximisation’ strategy.

The algorithm is given by

w
(k+1)
i = w

(k)
i

1

T − 1

T−1∑
t=1

P̂ti∑N
i=1 P̂tlw

(k)
l

,

where k denotes the iteration of the algorithm, and P̂ is defined to be a (T − 1) × N

matrix with non-negative elements P̂ti = pi,t(yt+1). Under this notation, equation

(4.2.2) can be written as,

Φ(w) =
1

T − 1

T−1∑
t=1

ln(P̂w)t,

where (P̂w)t denotes the product of the matrix P̂ and the vector of combination weights

w, where the matrix P̂ includes the densities for observations up to time t. In order to

ensure that the estimated weights adhere to the non-negativity constraint, an appropri-

ate initialisation must be chosen; Conflitti et al. (2015) recommend setting w
(0)
i = 1/N

for each forecaster. A stopping threshold must be defined such that the algorithm is

terminated when the difference between the estimated weights on consecutive iterations

is sufficiently small.
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In order to account for changing forecaster quality, it is possible to optimise the log

predictive score over windows of k observations, rather than the entire history of the

time series. That is, the weights at time T will be given by those which maximise,

Φ(wT ) =
1

T − 1− k

T−1∑
t=T−1−k

ln pt(yt+1),

for some window size k, where the subscript T has been introduced to reflect the fact

that these weights are now time-varying. We found that the algorithm of Conflitti

et al. (2015) can be modified in order to find such weights, by reducing the dimension

of the matrix P̂ such that it only includes the forecast densities for the previous k − 1

observations under the combined distribution. The algorithm can then be implemented

for each time t with a redefined matrix P̂ (t). However, we found in simulation stud-

ies that the assigned weights are incredibly sensitive to the choice of window size k,

and therefore appropriate selection of this parameter presents a challenge in practical

applications.

To avoid this, we instead propose computing the weights which maximise the fol-

lowing function at each time T ,

Φ(wT ) =
T−1∑
t=1

ln pt(yt+1)α
∆τ , (4.2.3)

where ∆τ = T − t. Here, α denotes a forgetting factor that is between 0 and 1. The

term α∆τ therefore describes the weight assigned to the observation at time t, where

past observations retain more significance in the optimisation function as α → 1. In

this case, rather than selecting an appropriate choice of window size k, the challenge is

now selecting an appropriate choice of forgetting factor α. We find that this is a more

intuitive problem than the former, since it is similar to the challenge of discount factor

selection presented in our DLM-based point forecast combination framework.
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4.2.4 Point combination vs density combination

To conclude this section, we highlight the key distinction between the point combina-

tion and the density combination approaches in this setting. If we choose to combine

the N density forecasts in a point combination framework, whether applying a constant

value of δ or adaptive δt, the effects of missing forecaster data are incorporated into

the weight allocation indirectly. For example, when the ith forecaster fails to provide

a forecast, an estimated value is provided by taking the expected value of the forecast

distribution outputted by the fi-DLM. It is likely that this value provides a less accu-

rate prediction of the observed series than the available online forecasters, especially

in the case that Forecaster i has been offline for a prolonged period. Therefore, when

estimated combination weights are updated at this time using the DLM-based combi-

nation procedure, the weight assigned to the ith forecaster will drop (with the severity

of this change influenced by the value of discount factor at that time). However, the

decrease in the weight of the missing forecaster is not a guaranteed response to the

forecaster going offline; it is perfectly possible that the predicted value for the miss-

ing period is not worse than the available online forecasters, and therefore the weight

may not decrease at all. On the other hand, pursuing our proposed dynamic density

combination method allows the effects of the missing forecaster to be incorporated into

the combination weights explicitly. Since the entire forecasting density is taken into

account in computation of the mixture weights, the increased spread of Forecaster i’s

distribution during the missing period will directly result in a lower assigned weight.

Whether these properties are beneficial or disadvantageous will depend on the type

of missingness under consideration, and the observed data itself. This topic is explored

further in the simulation studies in the following section.
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4.3 Simulations

Missing forecaster data can arise for many different reasons, and take many different

forms; perhaps one forecaster provides a prediction on a daily basis, whereas another

provides one on every other day; perhaps a forecaster goes offline intermittently due to

mechanical error; perhaps a forecaster is offline for an extended period while systems

are upgraded. In the simulation studies in this section, we consider two different types

of missingness: sporadic missing forecasts, and large periods of missing forecaster data.

We consider how our proposed method for imputation deals with these two different

types of missing data, and apply different combination methods to the resulting forecast

densities. Strengths and weaknesses of each method are discussed.

Sporadic missing data may be encountered in practice due to problems such as lack of

data availability, human error or network issues. For example, perhaps the data required

for a forecasting model is incomplete or inaccurate for a given time, leading to a missing

prediction. We chose to consider this type of missingness in our simulation studies in

order to provide insight on how different combination methods deal with the case of

single missing forecasts: how do the combination weights change when a forecaster fails

to provide a forecast? Is responsiveness to recently observed data a bad characteristic

of a combination method in this case? Are point forecast combination methods better

at dealing with this type of missingness than density combination techniques?

Large periods of missing forecaster data may seem less intuitive at first glance, but

can and do occur in practice; this is evidenced by the ECB data set considered in

Chapter 3, wherein forecasters often failed to provide predictions for many consecutive

time points. There are a variety of reasons as to why this type of missingness might

occur; prolonged technical issues such as system failures or network outages, mainte-

nance and upgrades to the forecasting system, and long-term absence of key personnel

are all possible explanations.

For all simulations in this section, we generated an observed time series of length
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T = 150 according to the AR(1) plus noise model first given in Chapter 3,

ỹt = ϕỹt−1 + (1− ϕ)µ+ ϵt, ϵt ∼ N(0, σ2
ϵ ),

yt = ỹt + ζt, ζt ∼ N(0, σ2
ζ ),

with parameter choices ϕ = 0.9, σ2
ζ = 0.42 σ2

ϵ = 2.52, µ = 100. We consider the

case of N = 3 forecasters, simulated from a multivariate normal distribution as though

‘unaware’ of the local market effects,

ft ∼ N(ỹtι,Σt),

where ι is a 3-dimensional vector of 1s. For both simulation studies, the forecaster

covariance matrix was chosen to be constant throughout time and set to,

Σ =


0.82 0 0

0 1.22 0

0 0 1.52

 ,

such that Forecaster 1 is the ‘best’ forecaster in terms of having the lowest variance.

For both simulation studies, missing data was inserted only for Forecaster 1; both

Forecaster 2 and Forecaster 3 provided data at all time points.

In order to deal with the missing forecaster data, all forecaster series were first

filtered using an appropriate DLM, as described in Section 4.2. This allowed density

forecasts for all forecasters to be obtained at each time, even for the periods where

Forecaster 1 was offline. As shown in the toy example in Section 4.2 (see Figure 4.2.1),

filtering the forecaster series in this way leads to an increase in the spread of the distri-

bution when missing data occurs. The resulting forecasts were then combined using our

standard DLM-based point forecast combination method, our DLM-based point fore-

cast combination method integrated with the particle-learning based discount factor
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selection method of Irie et al. (2022) (both by taking the means of the distributions),

and the density forecast combination method with weights given by equation (4.2.3).

Point combination - parameter selection and details

In our simulation studies we consider our DLM-based point forecast combination method

with a constant value of discount factor δ, and our DLM-based point forecast combi-

nation method with adaptive discount factor selection. For the constant discounting

method, we implement discount factor values of δ = 0.93, 0.95, 0.99. The number of par-

ticles in the particle-learning based method was set to np = 100. For all point forecast

combination methods, priors for the combination DLM were set to m0 = [1/3 1/3 1/3]

and C0 = 107I3.

We chose to carry out 50 replications of the experiment; that is, for a given ob-

served series yt, 50 sets of forecaster series were simulated from the specified covariance

matrix, with missing data inserted for Forecaster 1 at the same time points for all

replications. Of course, since the adaptive discounting method uses particle-learning,

this approach outputs np = 100 different estimates for the combination weights at each

time, for a single replication. In order to compare estimated weights from the different

methods, we decided to take the median weight vector across the particles at each time

as the output for a given replication. This therefore allowed the median weights and

interquartile ranges across the 50 replications to be computed and compared for the

different combination methods.

Density combination - parameter selection and details

Our proposed method for assigning dynamic mixture weights to the density forecasts

was applied for three different values of forgetting factor: α = 0.93, 0.95, 0.99. This was

done in order to draw a comparison with the DLM-based point forecast combination

method with constant value of discount factor. The optimisation was carried out using
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the CVXR package in R, using the Splitting Conic Solver (SCS).

4.3.1 Sporadic missing data

For the case of sporadic missingness, missing data was inserted randomly for Fore-

caster 1 for 20 observations throughout the time series. Figure 4.3.1 shows the median

weights and interquartile ranges across the 50 replications for the different point fore-

cast combination methods: (a) DLM-based combination with δ = 0.93, (b) DLM-based

combination with δ = 0.95, (c) DLM-based combination with δ = 0.99, and (d) DLM-

based combination with particle-learning-based adaptive discounting. The missing data

points for Forecaster 1 are shown by the shaded grey regions. We see that most miss-

ing observations are isolated, with at most two consecutive observations missing. The

‘oracle’ weights (as derived in Section 3.4.1) in the case that no forecasters had missing

data are shown by the dashed lines.

We see in all cases that the presence of sporadically missing forecasts does not have

a great influence on the combination weights for the majority of time points. Until

approximately time t = 140, the weight assigned to Forecaster 1 remains the highest

of the three combination weights, reflective of the low variance of this forecaster. Since

Forecaster 1 is only ever offline for a maximum of two consecutive observations, this is

a desirable feature of our imputation and combination methods. Clearly, it is unlikely

that the quality of a forecaster will drastically decrease during a single period of missing

data, and therefore methods which are overly sensitive would risk assigning a much lower

weight than necessary when the forecaster returns online. The fact that our DLM-based

point forecast combination method, both with a constant choice of discount factor

and integrated with the adaptive discounting methodology, is not overly responsive to

the missing observations indicates that our approach responds suitably to short and

sporadic periods of missing data. Furthermore, the fact that the combination weights

are not drastically impacted by the presence of missing observations implies that our
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decision to impute missing forecasters by modelling each individual forecaster with a

DLM is a sensible approach, for if the imputed values were acutely inadequate, then

we would witness a sharp decrease in the corresponding forecaster weight.

Although all values of discount factor produced relatively stable combination weights,

we note that the weights achieved from the combination with δ = 0.99, and the combi-

nation with adaptive δt, responded the least to the missing observations. Recall, higher

values of discount factor δ lead to more stable state vector estimates, which in our case

describes combination weights which do not evolve much throughout time. The fact

that our method with adaptive discount factor selection leads to such stable weights

implies that a high value of δt is being chosen at each time step. As we do not ex-

pect the quality of the missing forecaster to drastically decrease in the missing period,

we therefore expect these methods to display superior forecasting performance; this is

compared in the following subsection.

Before we consider density forecast combination, we also note that all of the DLM-

based point forecast combination methods struggle with a sharp decrease in the weight

assigned to Forecaster 1 at approximately time t = 140. At this point, we see that

Forecaster 1 has failed to provide two consecutive forecasts. We expect that this drastic

decrease in weight is due to the presence of a shock in the observed series yt. Recall, we

have chosen to impute our missing forecaster by fitting a DLM to the series. Although

this does provide some manner of modelling the evolution of yt throughout time, clearly

such models are incapable of capturing any shocks to the time series that have not yet

been observed. Therefore, if indeed the observed time series yt experiences a shock at

approximately time t = 140, the estimated value for Forecaster 1 will be significantly

inaccurate. Under the DLM-based point forecast combination framework, significantly

inaccurate forecasts lead to low combination weights. This implies that perhaps point

forecast combination methods are not the most robust option for combining our imputed

time series.
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(a) δ = 0.93.
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(b) δ = 0.95.
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(c) δ = 0.99.
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(d) Adaptive discount factor δt.

Figure 4.3.1: Combination weights evaluated using DLM-based point forecast combi-
nation. Optimal weights in the case that no missing data is present are shown by the
dashed lines. Forecaster 1 missing in shaded grey regions.

We also consider application of our dynamic density combination method to the

imputed forecaster series. Recall, this method assigns finite mixture weights to each

distribution in the combination, based on maximising the exponentially weighted log

predictive score given in equation (4.2.3). Figure 4.3.2 displays the median estimated

mixture weights for the three forecasters across the 50 replications, along with the

interquartile ranges. As before, the missing observations for Forecaster 1 are shown by

the grey shaded regions.

It is important here to draw a clear distinction between our two approaches. Our

DLM-based point forecast combination method aims to minimise the MSE of the com-

bined forecast; on the other hand, our dynamic density combination method aims to

maximise the log predictive score. Therefore, the oracle weights derived in Section
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3.4.1 are not included in Figure 4.3.2, as these are not equivalent to the optimal finite

mixture weights. We emphasise that the plots of the finite mixture weights have not

been included such that direct comparisons can be drawn with the point forecast com-

bination weights; rather, we wish to demonstrate the effects of sporadic missing data

when combining density forecasts.

Figure 4.3.2 shows that Forecaster 3 has been assigned a zero weight for most repli-

cations, for all values of forgetting factor α. This is intuitive, since all forecast densities

follow the same type of distribution, with Forecaster 3 having the widest spread. For

all values of forgetting factor, the weights assigned to Forecaster 1 and Forecaster 2

are rather similar. As one would expect, weights are more variable for lower choices of

forgetting factor, and more stable for higher choices. It does appear to be the case that

the weight assigned to Forecaster 1 decreases when missing data is present, with the

magnitude of this effect influenced by the choice of forgetting factor. This is reflective

of the increase in variance of the forecasting distribution during the missing periods

(recall Figure 4.2.1).

Unlike the DLM-based point forecast combination methods, the density combination

method with different values of forgetting factor does not display a drastic decrease in

the weight assigned to Forecaster 1 around t = 140. This is because the mixture weights

are assigned based on the full distribution. Since the variance of the distribution of

Forecaster 1 increases by the same amount for every individual missing period, the

decrease in weight at time t = 140 is no greater than that at a different time period.

Therefore, the finite mixture weights are less responsive to shocks in the observed time

series, implying that the density combination approach is more robust.

Forecasting performance

As previously stated, our DLM-based point forecast combination procedure aims to

minimise the MSE of the combined forecast. On the other hand, our dynamic density
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(b) α = 0.95
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(c) α = 0.99

Figure 4.3.2: Combination weights evaluated using density forecast combination, de-
signed to maximise the exponentially weighted log predictive score. Forecaster 1 missing
in shaded grey regions.

combination procedure aims to maximise the log predictive score. Therefore, the inter-

pretation of which method is ‘best’ will depend on which metric is of the most relevance

to your application.

In this section, we compare the MSE, MAE, and SMAPE error metrics of the

different methods. In order to obtain point forecasts from the density combination

methods, we take the expectation of the combined mixture distribution. We include

the simple average point combination as a benchmark. For the sporadic missing data

case, the error metrics were computed using a data set of T − k observations, where

the first k = 10 observations were excluded as a ‘burn in’ period.

In addition to our usual error metrics, we also compare log-likelihoods of the meth-
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ods, where a higher log-likelihood describes a ‘better’ method. In order to compute

the log-likelihood for the point forecast combinations, we recall that our combination

procedure utilises the DLM framework. As detailed in Section 3.3, this provides ac-

cess to Student’s t-distributions for the combined forecast at time t, on account of the

unknown observational variance Vt. In the case of our density combination, a mixture

density can be obtained by simply taking the finite weighted mixture of the three fore-

caster densities. We also include the finite mixture density with equal weights as a

benchmark; hereafter, this will be referred to as the simple average density.

Figure 4.3.3a displays box and whisker plots across the 50 replications, comparing

(a) MSEs, (b) MAEs, (c) SMAPEs and (d) log-likelihoods, for the different methods

considered in the previous subsection. We also include simple averaging (for MSE, MAE

and SMAPE) and the simple average density (for the log-likelihood) as benchmarks.

As expected, the point forecast combination approaches perform better on average for

the MSE, MAE and SMAPE error metrics.

The lowest median MSE across the replications is achieved by the particle-learning

based method for adaptive discount factor selection (denoted PF), with the median

MSE across replications given by 0.701. This is followed by simple averaging (median

MSE across replications given by 0.712) and DLM-based point forecast combination

with δ = 0.99 (median MSE across replications given by 0.718). Although the DLM-

based point forecast combination with adaptive discounting does also achieve the lowest

individual MSE across the 50 replications, we also note that this method has the widest

interquartile range of all the point forecast combination approaches, implying that this

is less robust over the replications. Finally, we acknowledge that although the density

combination approach obtains higher median MSE across the replications for all values

of forgetting factor, these are not substantially greater than the MSEs obtained by the

point forecast approaches, and therefore such methods could still be applied in practice

if more suited to one’s application.
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(b) Comparison of MAE across repli-
cations.
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(c) Comparison of SMAPE across
replications.
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(d) Comparison of log-likelihood
across replications.

Figure 4.3.3: Comparison of performance metrics across replications for the different
methods implemented, featuring: point forecast combination with δ = 0.93, 0.95, 0.99,
point forecast combination with adaptive discounting, and density combination with
α = 0.93, 0.95, 0.99. For the MSE, MAE and SMAPE, simple averaging has also been
included. For the log-likelihood, simple average density has been included.

MAEs across replications are displayed in Figure 4.3.3b. Here, the adaptive dis-

counting approach displays the lowest median MAE (0.649), followed by our method

with constant choice of discount factor δ = 0.99 (0.658). Similar results are obtained

in terms of SMAPE, shown in Figure 4.3.3c, with the lowest median SMAPE across

replications given by the adaptive discounting method (0.644), followed by DLM-based

point forecast combination with δ = 0.99 (0.653). Hence, for the case of sporadic
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missing data, the integration of our DLM-based point forecast combination procedure

with the particle-learning based adaptive discount factor selection of Irie et al. (2022)

demonstrates superior forecasting performance on average, when compared with the

constant discount factor case. Despite simple averaging offering a benchmark that is

difficult to outperform, we observed improved MSE, MAE and SMAPE across the 50

replications when utilising our DLM-based combination with adaptive discounting.

Log-likelihoods across the replications for the different methods are shown in Figure

4.3.3d. In this case, the highest log-likelihoods were achieved by the density combination

methods, with the highest median log-likelihood obtained when α = 0.99. This is as

expected, since the combination weights were least responsive to the missing data in

this case. Unlike the simple average point combination, the simple average density does

not display comparably favourable performance.

4.3.2 Large missing data period

In order to consider a large missing data period, we introduced missing observations

for Forecaster 1 for times t ∈ [90, 115]. Figure 4.3.4 shows the median weights and in-

terquartile ranges across the 50 replications for the different point forecast combination

methods: (a) DLM-based combination with δ = 0.93, (b) DLM-based combination with

δ = 0.95, (c) DLM-based combination with δ = 0.99, and (d) DLM-based combination

with particle-learning-based adaptive discounting. Once again, the missing data period

for Forecaster 1 is shown by the shaded grey region and optimal weights in the case

that no forecaster had missing data are shown by the dashed lines.

We see that all point forecast combination methods lead to a rapid decrease in

the weight assigned to Forecaster 1 during the missing period; we also see that the

weights of the other two forecasters increase in order to compensate for this. Given

that the forecaster is offline for a significant period of time, it is sensible that such

a drastic decrease in the combination weight should be exhibited: during the missing
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data period, it is highly likely that the forecasts provided by Forecaster 1 will be less

accurate than those provided by the online forecasters.

After approximately 10 missing observations, all four methods assign Forecaster 1

a weight of approximately zero. This implies that our particular imputation method is

only useful for approximately the first 10 missing observations, after which point the

gains of including the missing forecaster in the combination are negligible. It is possible

that fitting a better DLM to the individual forecaster series would increase the number

of missing observations for which this weight is non-zero. Furthermore, this would also

be increased in the case that the available online forecasters were of sufficiently worse

quality.

Most distinctions between the four methods can be drawn by considering the weights

after Forecaster 1 returns online at time t = 116. From this time, the method begins

to learn that Forecaster 1 is now performing better. Consequently, the combination

weight assigned to this forecaster begins to gradually increase. The rate at which this

weight increases varies for the different choices of discount factor. Recall that a higher

value of discount factor δ means that historical information has a greater bearing on

the combination weights. In this case, this means that the performance of Forecaster 1

in the missing data period continues to contribute to the combination weight even once

the forecaster has returned online, resulting in a slow return to the pre-missing data

level. Such behaviour can be observed in Figure 4.3.4c and Figure 4.3.4d, wherein the

increase in the weight of Forecaster 1 towards the end of the time series is barely visible.

This implies that the DLM with adaptive discounting is not selecting lower values of

discount factor δt after the missing data period, despite the fact that this would lead

to a quicker return to the optimal weights (and consequently improved forecasting

performance). This was surprising, as the particle-learning approach developed by Irie

et al. (2022) was created to deal with sudden jumps in the parameter value; we discuss

possible reasons for the failings of this method in Section 4.4.
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On the other hand, Figure 4.3.4a shows the weights in the case that δ = 0.93. Here,

the poor performance of Forecaster 1 in the missing period has less of an effect on

the weight when the forecaster returns online, leading to a more visible increase in the

weight of Forecaster 1 towards the end of the time series. Given that we simulated

such that the covariance matrix of the forecasters Σ is constant with time, the optimal

combination weights before the missing period are equal to the optimal combination

weights after the missing period. Therefore, we expect the method with δ = 0.93 to

display superior forecasting performance when compared to the other point forecast

combination techniques considered.
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(a) δ = 0.93.
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(b) δ = 0.95.
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(c) δ = 0.99.
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(d) Adaptive discount factor δt.

Figure 4.3.4: Combination weights evaluated using DLM-based point forecast combi-
nation. Optimal weights in the case that no missing data is present are shown by the
dashed lines. Forecaster 1 missing in shaded grey region.

We also applied our density combination method to the simulation for the three

choices of forgetting factor, α = 0.93, 0.95, 0.99. The median estimated mixture weights
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across the 50 replications, along with the interquartile ranges, are shown in Figure 4.3.5,

with the missing data period shown by the shaded grey region. Again, we recall that

the aim of this method is not to minimise the MSE of the combination, and therefore

the oracle weights are excluded from the plots.

As was the case with the DLM-based point forecast combination methods, the weight

assigned to Forecaster 1 decreases drastically in the missing period; however, we note

that the rate at which this decrease occurs is quite different for the different values of

forgetting factor α. In the case of α = 0.93, shown in Figure 4.3.5a, the mixture weight

assigned to Forecaster 1 decreases to zero after approximately 10 periods of missing

data; this is inline with the point forecast combination methods. In order to counter

this decrease and ensure that the sum of the mixture weights remains equal to one,

the weights of the online forecasters increase in response. After the missing period, the

weight of Forecaster 1 increases at a rate that is much quicker than any of the point

forecast combination methods; by the end of the time series, the mixture weight has

almost returned to it’s pre-missing data level.

Figure 4.3.5c shows the case where the forgetting factor is set to α = 0.99. Here,

we see that the weight assigned to Forecaster 1 never drops to zero, even in the missing

data period. The decrease in the weight is gradual, followed by a gradual but clear

increase when the forecaster returns online. We emphasise that the rate at which the

weight of Forecaster 1 recovers to it’s pre-missing data level is much quicker for the

density combination methods than their point forecast combination counterparts. This

is a result of the fact that the spread of the density for Forecaster 1 decreases after the

missing data period. While the DLM-based point forecast combination method must

wait for the forecaster to prove itself enough to outweigh the effects of the previous

poor performance, the density combination method incorporates the reduced variance

of the missing forecaster into the assigned mixture weights. We explore how this affects

forecasting performance in the following subsection.
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(b) α = 0.95
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(c) α = 0.99

Figure 4.3.5: Combination weights evaluated using density forecast combination, de-
signed to maximise the exponentially weighted log predictive score. Forecaster 1 missing
in shaded grey region.

Forecasting performance

In contrast to the sporadic missing data case, wherein we compared forecasting perfor-

mance across the time series as a whole, we now consider forecasting performance in

three distinct time periods: before, during and after the missing data period. We re-

move the first k = 10 observations from the before period as a ‘burn in’. Once again we

consider the MSE, MAE, SMAPE and the log-likelihood of the different methods. For

the three error based metrics, we also include the simple average results as a benchmark;

for the log-likelihood, we include the simple average density.

Figure 4.3.6 displays box and whisker plots across the 50 replications for the period

before the missing data, comparing (a) MSEs, (b) MAEs, (c) SMAPEs and (d) log-
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(a) Comparison of MSE across repli-
cations.
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(b) Comparison of MAE across repli-
cations.
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(c) Comparison of SMAPE across
replications.
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(d) Comparison of log-likelihood
across replications.

Figure 4.3.6: Comparison of performance metrics across replications for the different
methods implemented for the period before the missing data, featuring: point fore-
cast combination with δ = 0.93, 0.95, 0.99, point forecast combination with adaptive
discounting, and density combination with α = 0.93, 0.95, 0.99. For the MSE, MAE
and SMAPE, simple averaging has also been included. For the log-likelihood, simple
average density has been included.

likelihoods, for the different methods. For this time period, results are largely similar

to those obtained in the sporadic missing data simulation. The lowest median MSE,

MAE and SMAPE are obtained by the DLM-based point forecast combination method

with adaptive discounting, and the density combination methods provide the greatest

log-likelihoods.

Consideration of the forecasting performance during and after the missing data
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(a) Comparison of MSE across repli-
cations.
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(b) Comparison of MAE across repli-
cations.
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(c) Comparison of SMAPE across
replications.
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(d) Comparison of log-likelihood
across replications.

Figure 4.3.7: Comparison of performance metrics across replications for the different
methods implemented for the period during the missing data, featuring: point fore-
cast combination with δ = 0.93, 0.95, 0.99, point forecast combination with adaptive
discounting, and density combination with α = 0.93, 0.95, 0.99. For the MSE, MAE
and SMAPE, simple averaging has also been included. For the log-likelihood, simple
average density has been included.

period is more interesting. Figure 4.3.7 displays box and whisker plots across the 50

replications for the period during the missing data, comparing (a) MSEs, (b) MAEs, (c)

SMAPEs and (d) log-likelihoods. Immediately, we observe that the density combination

approach with α = 0.99, and taking the simple average of the point forecasts, perform

the worst in terms of the error metrics. We expect that the unfavourable performance

of the density combination method with this choice of forgetting factor is due to the
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fact that the mixture weight did not fall to zero in the missing data period. Likewise,

we expect that simple averaging places too much weight on the missing forecaster,

leading to unsatisfactory forecasting performance. The smallest median MSE across

replications is achieved by our DLM-based point forecast combination method with

δ = 0.93 (1.326), closely followed by the adaptive discounting approach (1.345). We

surmise that this is due to the fact that these methods allow the weight of Forecaster

1 to decrease quickly in the missing period. Similar behaviour is shown for the MAEs

and SMAPEs.

Figure 4.3.7d shows the log-likelihoods for the different methods during the missing

data period. Unlike in the sporadic missing data study, wherein the density combination

methods always achieved greater log-likelihoods than the point combination methods,

this is not the case here. We see that density combination with α = 0.99 exhibits

significantly unfavourable performance, once again likely on account of the slow decrease

in mixture weight.

Figure 4.3.8 compares forecasting performance after the missing data period. Re-

call, the density combination methods allowed the weights to return to their pre-missing

data levels at a much faster rate than their point combination counterparts. Conse-

quently, we assumed that these methods would display superior forecasting performance

in this period. This is indeed shown to be the case, as the median MSE across replica-

tions for the density combination method with α = 0.93, and α = 0.99, is lower than

that of all of the DLM-based point forecast combination methods. This is particularly

notable, since the density combination methods do not aim to minimise the MSE. In

terms of MAE and SMAPE, all three density combination methods outperform the

DLM-based point forecast combination methods across replications. We also note that

the interquartile ranges are narrower for the density combination methods than the

DLM-based point forecast combination methods, implying that these methods display

more robust performance after the missing period. We do acknowledge that in this
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simulation setting, taking the simple average point forecast combination outperformed

all other methods in terms of MSE, MAE and SMAPE. We expect that this is due to

the fact that this method assigns a significant weight of 1/3 to Forecaster 1 immediately

as it returns online. Given that the quality of Forecaster 1 did not decrease during the

missing period, this leads to improved forecasting performance. On the other hand, our

methods were designed such that a forecaster is required to ‘earn’ their new weighting

after a period of missing data. Hence, we expect that our combination methods would

outperform simple averaging if the quality of Forecaster 1 decreased in the missing pe-

riod. The greatest log-likelihood is obtained by the density combination with α = 0.93,

closely followed by the density combination with α = 0.95. Once again, the simple

average density benchmark did not exhibit comparably favourable performance.

4.4 Discussion

In this chapter, we have proposed new dynamic forecast combination techniques, and

carried out a conceptual study of the often encountered problem of missing forecaster

data. Although forecast combination with unbalanced panels has been examined to

a limited extent in the literature, methods for dealing with missing forecasters often

resort to trimming those which fail to provide predictions for a sufficient number of

time points. This leads to a loss of potentially useful information, and therefore some

works instead consider imputing missing data by back-filling. However, such methods

are unsuitable for use in online settings, where forecasters arrive sequentially prior to

the observed data point yt, and imputation methods often differ. Furthermore, the

unbalanced panel literature mainly considers the case that forecasters fail to provide

predictions on a sporadic basis, rather than for extended numbers of observations.

In order to deal with missing forecaster data, we have proposed modelling each

individual forecaster using a DLM, where the particular DLM employed is chosen to
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(a) Comparison of MSE across repli-
cations.
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(b) Comparison of MAE across repli-
cations.
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(c) Comparison of SMAPE across
replications.
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(d) Comparison of log-likelihood
across replications.

Figure 4.3.8: Comparison of performance metrics across replications for the different
methods implemented for the period after the missing data, featuring: point forecast
combination with δ = 0.93, 0.95, 0.99, point forecast combination with adaptive dis-
counting, and density combination with α = 0.93, 0.95, 0.99. For the MSE, MAE and
SMAPE, simple averaging has also been included. For the log-likelihood, simple average
density has been included.

reflect the structure of the forecaster series. In our simulation studies, we simulated

such that forecasters could be modelled with an AR (1) plus noise DLM, but we note

that this methodology can be applied to any form of time series for which a DLM can

be defined. To the best of our knowledge, an investigation of the effects of imputing

missing observations in this way has not been considered in the forecast combination

setting before.
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This method enables forecasting distributions to be computed for each forecaster

at each time point, even in the case that a forecaster failed to provide a prediction;

point forecasts can be obtained by taking the expectation of the distribution. Since

using a DLM allows the temporal evolution of the forecaster series to be modelled, we

expect the imputed values to be more accurate than those which would be obtained

by a simple ‘fill forwards’ approach. Furthermore, due to the sequential nature of

DLMs, this method allows missing forecasts to be imputed in an online framework,

such that the newly imputed forecasts can be combined in a similarly online manner.

By implementing this consistent approach to dealing with missing forecasts, we negate

any issues in the comparison of methods that may arise due to differences in implicit

imputations (see Lahiri et al. (2017)), and allow all potentially useful historical data to

be included in our combinations.

In addition to providing a method for dealing with missing forecasts, we also dis-

cussed how modelling each individual forecaster as a DLM before the combination takes

place enables their associated uncertainty to be quantified. This direct interpretation of

forecaster uncertainty (as opposed to the indirect interpretation one might achieve from

analysis of combination weights) may be of value to decision makers, in order to enable

more informed decisions. When missing data does occur, modelling each forecaster as

a DLM leads to an increase in the variance of the distribution of the missing forecaster,

as shown in Figure 4.2.1.

Despite the fact that this imputation method offers a more accurate description of

the temporal evolution of the forecast series than simply filling forward, we acknowledge

that the quality of the imputations will likely be far lower than the quality of the

observed forecasters. This means that a sudden change in forecaster quality is likely

to be experienced when a forecaster goes offline, or similarly returns. To begin, we

considered how to account for such sudden changes in quality by extending the DLM-

based combination procedure, introduced in Chapter 3. Recall, the value of discount
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factor δ in our method influences the stochastic variation of the combination weights

throughout time. Therefore, in order to respond to sudden changes in forecaster quality,

we would like to adopt a lower value of discount factor δ. To this end, we synthesised

an existing particle-learning-based method for adaptive parameter selection with our

DLM-based combination procedure, in order to create a DLM-based point forecast

combination method with adaptive discounting. The new methodology can be used to

combine point forecasts, without the need for a user specified discount factor δ.

Furthermore, we also proposed a novel method for dynamically combining density

forecasts, based on maximising the exponentially weighted log predictive score at each

time point. Since modelling a missing forecaster using a DLM results in an increased

variance for the missing period, application of our proposed density combination tech-

nique allows this information to be directly fed into the finite mixture weights.

In our simulation studies, we considered two different types of missingness: sporadic

missing data and a large period of missing data. In the former case, our DLM-based

point forecast combination with adaptive discounting was shown to perform well in

terms of MSE, MAE and SMAPE. This implies that suitable choices of δt were selected

at each time. On the other hand, all DLM-based point forecast combination methods

exhibited poor performance in the large period of missing data case, for the period after

Forecaster 1 returned online. From analysis of the combination weights, we suspect that

this is due to the slow rate at which the weights adapt after this period.

Given that the particle-learning method of Irie et al. (2022) is designed to handle

abrupt changes in the value of δt, we were surprised by this poor performance. The un-

responsiveness of the observed weights is due to the particle-learning approach selecting

very high values of δ after the missing period. One possible reason for this is that the

increase in the likelihood of observing the data yt from assigning a lower value of δt is

not significant enough to cause the particles to sample more of these lower values. It is

possible that this is a consequence of the forecast combination setting, where the gains
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in likelihood achieved from assigning different combination weights are low, since the

quality of the forecasters are so similar. Perhaps if the forecasters had been defined

with more distinct qualities, this method would have assigned lower values of δt after

the missing period. Also, the hyperpriors selected for the method give rise to higher

values of δ since these are often most suitable. It is possible that the distributions of

the hyperparameters have become too narrow, meaning that it is extremely unlikely to

sample a low value of δt.

On the other hand, the density combination approach with α = 0.93 displayed

superior performance after the large missing data period for all metrics. We believe

this is due to the fact the mixture weights could evolve quickly through time, a direct

consequence of the decrease in variance of the forecasting distribution after the missing

period.

From our simulations, we conclude that the choice of which method is ‘best’ is

informed by the particular application. Our DLM-based point forecast combination

method with adaptive discount factor works well in the presence of sporadic missing

data. On the other hand, our dynamic density combination method displayed superior

performance after a forecaster had been offline for a long period of time, and we would

recommend applying this method (with a relatively low value of forgetting factor such

as α = 0.93) in such situations. We would particularly advise against simple average

point combination, as this performed especially poorly during the missing data period

as a consequence of placing weights that are too large on the imputed values.

To conclude this chapter, we acknowledge some disadvantages of the proposed meth-

ods. Clearly, our DLM-based point forecast combination procedure with adaptive dis-

counting greatly increases the computational complexity of the problem. Although an

obvious benefit of this approach is the fact no discount factor needs to be specified,

the improvements in MSE, MAE and SMAPE are perhaps not enough to warrant the

increased computational time, especially if working in a high frequency setting.
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In terms of our proposed density combination method, a clear challenge is appro-

priate selection of the forgetting factor α. We saw in our simulations that the choice

of α greatly impacts forecasting performance in periods of missing forecaster data, and

therefore choosing a suitable value for this parameter is no trivial task. We note that the

benefits obtained from density combination after a large period of missing data appear

to arise due to the fact that the uncertainty of the forecaster can be directly taken into

account, therefore allowing weights to adapt quicker to a forecaster returning online

than in the point combination approach. With this in mind, we expect that other den-

sity combination approaches for time varying weights would also show an improvement

on the point forecast combination framework in this setting, such as dynamic model

averaging (DMA) as proposed by Raftery et al. (2010). However, this method is also

dependent on an appropriate choice of discount parameter. To mitigate these issues,

one could investigate the loss discounting framework of Bernaciak and Griffin (2024) in

the missing data setting. This is left to further research.



Chapter 5

The ‘polyfoil’ stochastic process

In this chapter, we propose a simple stochastic process for modelling interacting oscil-

lations at different frequencies in multivariate time series. We term this the ‘polyfoil’

process, due to the shapes depicted when such time series are plotted in the complex

plane. We show that nonstationarity can be induced by ‘locking’ the phase difference

between the oscillations under expectation at general time t. Phase-locking the os-

cillations in this way leads to interactions between frequencies, and is motivated by

applications where non-zero coherence values exist between distinct frequencies. For

example, high coherences are often observed in the modelling of ocean waves (see Chave

et al. (2019)) and the Earth’s geomagnetic field (see Riegert and Thomson (2018)).

5.1 Introduction

The autoregressive process of order 1 (AR(1)) provides an effective model for describing

the evolution of random processes in a wide variety of applications; indeed, we used this

model in Chapter 3 to describe the evolution of the underlying time series of interest

ỹt. In this chapter, we shall use notation from the stochastic processes literature, and

126
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define the AR(1) model as,

Xt = ϕXt−1 + ϵt, ϵt
iid∼ (0, σ2

ϵ ).

It is sometimes the case that we do not wish to model the evolution of a single time

series Xt, but rather the interactions between a set of variables collected in an p × 1

vector, Xt. In such cases, one may apply the first order vector autoregressive model

(VAR(1)), defined as,

Xt = ΦXt−1 + ϵt,

where Φ an p× p matrix of autoregressive coefficients, and ϵt is a vector generalisation

of white noise. If we consider just the first time series in the vector, X1,t, this can be

written as,

X1,t = ϕ1,1X1,t−1 + ϕ1,2X2,t−1 + · · ·+ ϕ1,pXp,t−1 + ϵ1,t, ϵ1,t
iid∼ (0, σ2

ϵ ).

Therefore, in a VAR(1) series each variable is regressed onto its own previous value, in

addition to the values of the other p− 1 series at the previous time point; see Hamilton

(1994) for more details. In this chapter, we consider time series which can be described

by combinations of bivariate AR(1) processes. That is, we assume that two univariate

time series, Xt and Yt, are observed simultaneously, and we can model these according

to,

Xt = a cos(θ)Xt−1 − a sin(θ)Yt−1 + ϵ
{1}
t , ϵ

{1}
t

iid∼ (0, σ2
ϵ ), (5.1.1)

Yt = a cos(θ)Yt−1 + a sin(θ)Xt−1 + ϵ
{2}
t , ϵ

{2}
t

iid∼ (0, σ2
ϵ ).
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When the parameter |a| < 1, the above model describes a stationary process, which we

shall assume in this chapter. Furthermore we constrain θ ∈ [−π, π) for identifiability

due to the 2π-periodicity of the trigonemetric functions.

The bivariate representation is useful for practitioners, as it provides a convenient

interpretation of the generating process for the time series. However, it is possible to

instead consider the series as a complex AR(1) process, such that the real components

are provided by the series Xt, and the imaginary components are provided by the series

Yt. This is a popular choice in many applications, including oceanography (see Gonella

(1972)) and magnetic resonance imaging (see Rowe (2005)). As stated by Sykulski

et al. (2016), this is due to the ‘compactness and interpretability’ of the complex rep-

resentation. In particular, the complex-valued representation provides a more suitable

framework for the study of signals where X and Y represent orthogonal components

of the same process, for example westerly and northerly winds and ocean currents (see

Gonella (1972) and Sykulski et al. (2017)).
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(a) Circular oscillation with fre-
quency θ = 0.1.
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(b) Coupled circular oscillations with
frequencies θ = 0.1 and hθ = 0.4.

Figure 5.1.1: Simulated bivariate AR(1) series and polyfoil series of length N = 1000,
plotted in the complex plane. Damping parameter set to a = 0.99999 for visualisation,
and σ2

ϵ = 0.1.
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When it is assumed that the real and imaginary components of the noise are in-

dependent and identically distributed, as in equation (5.1.1), plotting such a bivariate

AR(1) process in the complex plane depicts circular oscillations. This is shown in Fig-

ure 5.1.1a, where we have assumed Gaussian distributions for the noise terms and the

value of parameter a has been set very close to one for visualisation purposes. One can

think of such a series as oscillating at a given frequency, θ. In the signal processing

community, such circular time series are often called ‘proper’ time series, for example

see Schreier and Scharf (2010).

In practice, it is often the case that we observe not just one signal oscillating at a

given frequency θ, but rather multiple oscillatory signals at different frequencies, which

may also include harmonic frequencies; for example, see Elipot et al. (2016) and Sykulski

et al. (2015). In such situations, it is desirable to study not just the frequencies of the

individual oscillations, but also the interactions between different pairs of frequencies

(if these exist). Coupling between frequency bands is observed in many applications,

including electroencephalography (EEG) data (see Olhede and Ombao (2013)), and

the Earth’s geomagnetic field (see Riegert and Thomson (2018)). In this chapter, we

shall consider a specific case of harmonic oscillations where an oscillation of frequency

θ is jointly observed with an oscillation of frequency hθ, where h is an integer. In

this setting, we term the former oscillation the fundamental oscillation, and the latter

the harmonic. Similarly, let us refer to θ and hθ as the fundamental and harmonic

frequencies, respectively.

We propose a stochastic process for modelling two interacting oscillatory signals by

superposing the fundamental oscillation with the harmonic. When realisations of this

new oscillatory process are plotted in the complex plane, a ‘polyfoil’ shape is depicted;

see Figure 5.1.1b for an example, where once again we have set the parameter a very

close to one for visualisation purposes. We refer to such shapes as polyfoils as they are

reminiscent of the trefoil and quatrefoil shapes commonly found in Gothic architecture,
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whose form depicts overlapping circles of the same size. Such shapes can also be referred

to as epicyloids, a geometric term first used in physics to help describe planetary motion

under the geocentric model of the universe.

In this chapter, we will show that enforcing a ‘locked’ phase difference between the

two oscillations, under expectation at general time t, allows us to construct a specific

form of nonstationarity for our process. This distinguishes our research from other work

on stochastic oscillations in the literature, where only a stationary oscillatory process is

considered (for example, see the widely linear complex AR(1) process of Sykulski et al.

(2016), which traces out elliptical, but stationary, oscillations in the complex plane).

Such polyfoil shapes have been observed in nature. Recently, Zheng et al. (2024)

discussed the underlying cause of the ‘flower-like’ trajectories observed for drifting buoys

at the surface of the ocean. The trajectories demonstrated in this paper exhibit a

significant resemblance to the depictions of our polyfoil process (see Figure 5.1.1b and

Figure 5.1.2). This chapter provides the first time series stochastic process model, to

our knowledge, for generating such oscillatory patterns observed in nature.

The remainder of this chapter is organised as follows. We begin by formally con-

structing the stochastic polyfoil process, and show how this is a four-dimensional

VAR(1) time series model. Following this, we provide some key background on the

spectral representation of nonstationary processes in Section 5.3, before deriving key

theoretical properties for the polyfoil model in Section 5.4. Finally, the theoretical re-

sults are compared with simulations in Section 5.5, and further work is discussed in

Section 5.6.

5.2 Construction of the polyfoil process

The polyfoil process is constructed as a simple extension to the complex-valued AR(1)

process, which is defined subsequently. To begin, let us define the fundamental oscilla-
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a = 0.9 a = 0.999 a = 0.99999
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Figure 5.1.2: Simulated polyfoil shapes, corresponding to time series of length N = 500,
for different values of damping parameter a and harmonic multiple h, for fixed noises
variances and fundamental frequency. Fundamental frequency set to θ = 0.01(2π) for
‘smooth’ shapes, and noise variances set to σ2

ϵ = 0.1 and σ2
ν = 0.05. Real and imaginary

components normalised.
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tion in terms of a bivariate AR(1) process,

X
{1}
t = a cos(θ)X

{1}
t−1 − a sin(θ)Y

{1}
t−1 + ϵ

{1}
t , ϵ

{1}
t ∼ N(0, σ2

ϵ ),

Y
{1}
t = a cos(θ)Y

{1}
t−1 + a sin(θ)X

{1}
t−1 + ϵ

{2}
t , ϵ

{2}
t ∼ N(0, σ2

ϵ ),

where |a| < 1, θ ∈ [−π, π), σ2
ϵ > 0 and the superscript {1} denotes this is the fundamen-

tal oscillation; the harmonic oscillation will subsequently have the superscript {2}. The

constraint that |a| < 1 has been imposed in order to ensure stationarity, and the noise

terms are independent of one another. Note now that we are also assuming Gaussian

noise to simplify subsequent theoretical derivations, but this assumption can be relaxed

with minor modification. As discussed in Section 5.1, realisations of this process depict

circular oscillations when plotted in the complex plane, i.e. Z
{1}
t = X

{1}
t + iY

{1}
t where

i =
√
−1.

By defining the rotation matrix R{1},

R{1} =

cos θ − sin θ

sin θ cos θ

 ,

one may express the bivariate AR(1) series in vector form as follows,

X{1}
t

Y
{1}
t

 = aR{1}

X{1}
t−1

Y
{1}
t−1

+

ϵ{1}t

ϵ
{2}
t

 .

The complex representation of the process is therefore given by,

Z
{1}
t = (a cos(θ)X

{1}
t−1 − a sin(θ)Y

{1}
t−1 + ϵ

{1}
t ) + i(a cos(θ)Y

{1}
t−1 + a sin(θ)X

{1}
t−1 + ϵ

{2}
t ),

= (X
{1}
t−1 + iY

{1}
t−1 )(a cos θ + ia sin θ) + ϵ

{1}
t + iϵ

{2}
t ,

= aeiθZ
{1}
t−1 + ν

{1}
t , (5.2.1)
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where {ν{1}
t } is a sequence of independent and identically distributed complex-valued

Gaussian noise with variance 2σ2
ϵ . Thus, the complex autoregressive coefficient is ex-

pressed in terms of an amplitude |a| < 1, and phase θ ∈ [−π, π). The phase θ defines

the angle of rotation of the process at each time step, and is often termed the spin

parameter. The harmonic oscillation is defined in a similar way, with the key difference

being the new frequency hθ,

X
{2}
t = a cos(hθ)X

{2}
t−1 − a sin(hθ)Y

{2}
t−1 + ζ

{1}
t , ζ

{1}
t ∼ N(0, σ2

ζ ),

Y
{2}
t = a cos(hθ)Y

{2}
t−1 + a sin(hθ)X

{2}
t−1 + ζ

{2}
t , ζ

{2}
t ∼ N(0, σ2

ζ ),

where we constrain |a| < 1, h ∈ Z, hθ ∈ [−π, π), σ2
ζ > 0. Note that the parameter a is

common to both the fundamental and harmonic oscillations, but this assumption can

be relaxed in extensions of the model. The complex representation of the harmonic

process is therefore given by,

Z
{2}
t = aeihθZ

{2}
t−1 + ν

{2}
t , (5.2.2)

where {ν{2}
t } is a sequence of complex-valued Gaussian noise with variance 2σ2

ζ .

We construct the polyfoil stochastic process by superposing the two oscillatory sig-

nals together, in order to define a new series Zt,

Zt = Z
{1}
t + Z

{2}
t .

The stochastic polyfoil is a five-parameter model and the particular shape depicted by

realisations of the polyfoil process depend on the choice of the parameters {a, θ, h, σ2
ϵ , σ

2
ζ}

in equations (5.2.1) and (5.2.2), where we emphasise the constraint |a| < 1 for station-

arity of each component, and hθ ∈ [−π, π) for identifiability due to 2π-periodicities.

When the fundamental frequency θ is small |θ| << π, this implies that the oscillation
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a = 0.9 a = 0.999 a = 0.99999

h = −2

h = −3

h = −4

h = −5

h = −6

h = −7

Figure 5.2.1: Simulated polyfoil shapes, corresponding to time series of length N = 500,
for different values of damping parameter a and negative harmonic multiple h, for fixed
noises variances and fundamental frequency. Fundamental frequency set to θ = 0.01(2π)
for ‘smooth’ shapes, and noise variances set to σ2

ϵ = 0.1 and σ2
ν = 0.05. Real and

imaginary components normalised to have comparable magnitude across polyfoils.
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completes a small fraction of a rotation at each time t, and therefore the subsequent

polyfoil is ‘smooth’. This is shown in Figure 5.1.1b, where θ = 0.1 and the polyfoil

displays curved edges. This is also the case in Figure 5.1.2 and Figure 5.2.1, where

the fundamental frequency has been set to θ = 0.01(2π). This implies that the pro-

cess completes 1/100th of an oscillation at every time step, leading to the exhibited

‘smooth’ shapes. On the other hand, a larger choice of fundamental frequency leads

to more angular polyfoils. The harmonic multiple h determines the number of ‘loops’

in the polyfoil (see Figure 5.1.2 for examples of polyfoils with positive harmonic fre-

quency h > 0, and Figure 5.2.1 for examples with negative harmonic frequency h < 0);

specifically, this is given by |h− 1|.

The shape of the polyfoil is also heavily influenced by the parameter a, which can

be thought of as a damping parameter. When this parameter is very close to one, very

little damping occurs, and as such the resulting polyfoil shape is almost completely

deterministic. This is demonstrated in Figure 5.1.2 and Figure 5.2.1, where polyfoils

become less stochastic as we increase the value of a. This is useful for visualisation

purposes; however, such highly deterministic systems are unlikely to be found repeatedly

in nature. We see that for lower values of damping parameter, simply viewing the

trajectory of series does not provide sufficient information about the characteristics of

the generating mechanism. For example, it is clearly impossible to determine the value

of h by eye from the plots with a = 0.9 in Figure 5.1.2. Moreover, it is not possible

to establish by eye whether or not the process is stationary. Thus, more sophisticated

analysis techniques must be employed. In the following section, we introduce some key

background on the spectral representation of nonstationary processes.
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5.3 Background

Let {Xt}t∈Z denote a discrete-time real-valued stochastic process, and let FX(Xt1 , Xt2 , . . . , XtN )

denote the cumulative distribution function of the joint distribution of a length-N pro-

cess (Xt1 , Xt2 , . . . , XtN ). The stochastic process is then said to be strictly stationary if

we have,

FX(Xt1 , Xt2 , . . . , XtN )=FX(Xt1+τ , Xt2+τ , . . . , XtN+τ ),

for all τ, t1, . . . , tN ∈ Z and N ∈ N0. Second-order stationarity describes a weaker form

of stationarity, wherein the mean of the distribution is constant throughout time and

the covariance between two time points depends only on the lag τ , and not the time t.

Let us consider a mean zero time series Xt that may or may not be stationary. The

dual-time autocovariance function of Xt is given by,

s(t, τ) = Cov(Xt, Xt−τ ) = E{XtXt−τ};

see Olhede and Ombao (2013). If Xt is second order stationary, then s(t, τ) takes the

simpler form of s̃(|τ |). It is often beneficial to express Xt in the frequency domain

rather than the time domain. This can be done using the Cramér representation, given

by,

Xt =

∫ 1/2

−1/2

ei2πftdZ(f),

where {dZ(f)} is a zero-mean orthogonal increments process. For stationary processes,

let us define the spectrum S̃(f) as the Fourier transform of the autocovariance sequence

s̃(|τ |), where f ∈ [−1/2, 1/2]. The spectrum is then equal to the variance of the

orthogonal increments process, Var(dZ(f)) = S̃(f). The spectrum provides a full

representation for Gaussian stationary processes; however, for most time series, it does
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not fully embody all relevant characteristics. For example, nonstationarity often leads

to the presence of correlations between distinct frequencies, which are not captured by

the spectrum. In order to characterise these correlations, Olhede and Ombao (2013),

use the concept of Loève coherence.

Olhede and Ombao (2013) use the formalism of harmonisable processes in order

to define the Loève coherence. Such processes describe time series which are gener-

ated by the superposition of random infinitesimal harmonic oscillators. The spectral

representation of harmonisable processes is given by,

Xt =

∫ 1/2

−1/2

ei2πftdZ(f),

where the increment random process dZ(f) has zero mean and satisfies,

Cov(dZ(f1)dZ(f2))) = E{dZ(f1)dZ∗(f2)} = S(f1, f2)df1df2.

The quantity S(f1, f2) denotes a complex scalar value, referred to as the Loève spec-

trum, or dual-frequency spectrum, with f1, f2 ∈ [−1/2, 1/2]. This is related to the

autocovariance of Xt by,

s(t, τ) =Cov(Xt, Xt−τ ), (5.3.1)

=

∫ 1/2

−1/2

S(f1, f2)e
2iπ[(f1−f2)t+f2τ ]df1df2,

and thus the Loève spectrum can be considered the Fourier pair of the nonstationary

autocovariance function, just as the spectrum is the Fourier pair of the stationary

autocovariance function. From the Loève spectrum it is possible to calculate the Loève
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coherency,

τ(f1, f2) =
S(f1, f2)√

S(f1, f1)S(f2, f2)
(5.3.2)

=ρ1/2(f1, f2)e
−iϕ(f1,f2).

Here, ρ(f1, f2) denotes the Loève coherence at the frequency pair (f1, f2), given by

ρ(f1, f2) = |τ(f1, f2)|2, and ϕ(f1, f2) denotes the corresponding Loève coherency phase.

These quantities can be used to describe cross-dependencies between different frequen-

cies in a nonstationary signal.

5.4 Theory

In this section we derive key theoretical results for the stochastic polyfoil process.

We begin by presenting known results, including the autocovariance sequence for the

stationary complex AR(1) process, and later use these to derive the autocovariance

function for the polyfoil process. We demonstrate that the polyfoil process can be

made nonstationary when the fundamental and harmonic oscillations are coupled in

a particular way by locking their phase relationship. For the nonstationary polyfoil

process, we derive the Loève spectrum and corresponding Loève coherency.

5.4.1 The complex AR(1) process

The polyfoil stochastic process is constructed by superposing two complex AR(1) pro-

cesses, representing a fundamental oscillation and harmonic oscillation. When viewed

in the complex plane, each process individually depicts circular oscillations, resulting

from the fact that the real and imaginary components of the noise are assumed to be in-

dependent and identically distributed. The autocovariance sequence for such processes

is already known and defined; we provide this here in the context of the fundamental
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oscillation for reference in later work. We note that all proofs in this section can be

easily extended to the harmonic oscillation by replacing the fundamental frequency θ

with the harmonic frequency hθ, and the noise term ν
{1}
t with ν

{2}
t .

The complex representation of the fundamental oscillation is written as,

Z
{1}
t = aeiθZ

{1}
t−1 + ν

{1}
t , (5.4.1)

where ν
{1}
t is complex-valued Gaussian white noise. The autocovariance sequence for a

complex-valued stationary process is given by st,τ = E{ZtZ
∗
t−τ}, and is independent of

t. For the complex AR(1) the autocovariance is given in the following theorem.

Theorem 5.4.1. For all lags τ ∈ Z, the autocovariance sequence s
{1}
t,τ of the fundamen-

tal oscillation described in equation (5.4.1) is given by,

s
{1}
t,τ = a|τ |eiθτs

{1}
0 ,

where s
{1}
0 = 2σ2

ϵ/(1− a2) is the variance of the fundamental oscillation.

Proof. For non-negative lag τ , the covariance sequence s
{1}
t,τ is given by,

s
{1}
t,τ = E{Z{1}

t Z
{1}∗
t−τ }

= E{(aeiθZ{1}
t−1 + ν

{1}
t )Z

{1}∗
t−τ }

= aeiθE{Z{1}
t−1Z

{1}∗
t−τ }+ E{ν{1}

t Z
{1}∗
t−τ }

= aeiθE{Z{1}
t−1Z

{1}∗
t−τ }

= aeiθs
{1}
τ−1

= aτeiθτs
{1}
0 .

Here, s
{1}
0 denotes the variance of the process, which can be found as follows. Assuming
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stationarity, such that Var(Z
{1}
t ) = Var(Z

{1}
t−1), we can write,

s
{1}
0 = Var(Z

{1}
t ) = Var(aeiθZ

{1}
t−1 + ν

{1}
t ),

= Var(aeiθZ
{1}
t−1) + Var(ν

{1}
t ),

= a2Var(Z
{1}
t−1) + 2σ2

ϵ ,

= a2s
{1}
0 + 2σ2

ϵ ,

such that

s
{1}
0 = 2σ2

ϵ/(1− a2),

as required. The sequence for negative lags is then given by the simple relationship

s−τ = s∗τ , where the superscript denotes the complex conjugate, such that we have

s
{1}
t,τ = a|τ |eiθτs

{1}
0 , for all τ ∈ Z.

The autocovariance sequence for the harmonic oscillation can be derived in a similar

way and is given in the following corollary.

Corollary 5.4.2. The autocovariance sequence for the harmonic oscillation is given

by,

s
{2}
t,τ = a|τ |eihθτs

{2}
0 ,

where s
{2}
0 = 2σ2

ζ/(1− a2) is the variance of the harmonic oscillation.

Proof. The proof follows the same reasoning as in Theorem 5.4.1.

As a remark, to completely characterise the second-order properties of a complex-

valued signal we must also define the pseudo-covariance or relation sequence rτ =

E{ZtZt−τ}. When this sequence is non-zero at any lag then the process is called

improper, otherwise it is proper; see Sykulski and Percival (2016) for more details.
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In our case we have rτ = E{ZtZt−τ} = 0 for all τ ∈ Z, and hence the complex

AR(1) process is proper. Given that the stochastic polyfoil process is constructed

from the addition of two proper processes, it is therefore also proper. Examples of

improper processes, where oscillations are elliptical, are given in Sykulski et al. (2016)

and Sykulski et al. (2022).

As discussed in Section 5.3, correlations between distinct frequencies for nonsta-

tionary processes can be studied using the Loéve spectrum; this will be derived for the

nonstationary polyfoil process later in this section. In order to aid in this derivation,

we first consider how the stationary complex AR(1) process behaves in the frequency

domain. The spectrum of such a process is given by the following theorem.

Theorem 5.4.3. The spectrum of the fundamental oscillation described in equation

5.4.1 is given by

f {1}(ω) =
2σ2

ϵ

1− 2a cos(ω − θ) + a2
.

Proof. The spectrum is found by taking the Fourier transform of the autocovariance

sequence given in Theorem 5.4.1. Define the unit step function,

u(τ) =


1 if τ ≥ 0,

0 if τ < 0.
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. The Fourier transform of the autocovariance sequence is then given by,

S{1}(ω) =
2σ2

ϵ

(1− a2)

∑
τ∈Z

a|τ |eiθτe−iωτ ,

=
2σ2

ϵ

(1− a2)

(∑
τ∈Z

aτeiθτu(τ)e−iωτ +
∑
τ∈Z

a−τeiθτu(−τ)e−iωτ − 1

)
=

2σ2
ϵ

(1− a2)

(
1

1− ae−i(ω−θ)
+

1

1− ae−i(−(ω−θ))
− 1

)
,

=
2σ2

ϵ

(1− a2)

(
1

1− ae−i(ω−θ)
+

1

1− aei(ω−θ)
− 1

)
,

=
2σ2

ϵ

(1− a2)

(
1− aei(ω−θ) + 1− ae−i(ω−θ) − (1− aei(ω−θ) − ae−i(ω−θ) + a2)

(1− aei(ω−θ))(1− ae−i(ω−θ))

)
,

=
2σ2

ϵ

(1− a2)

(
1− a2

(1− aei(ω−θ) − ae−i(ω−θ) + a2)

)
,

=
2σ2

ϵ

1− 2a cos(ω − θ) + a2
,

as required.

The spectrum for the harmonic oscillation is stated in the following corollary.

Corollary 5.4.4. The spectrum of the harmonic oscillation is given by,

S{2}(ω) =
2σ2

ζ

1− 2a cos(ω − hθ) + a2
.

Proof. The proof follows the same reasoning as in Theorem 5.4.3.

These expressions are utilised in the following subsection to derive the autocovari-

ance sequence and the Loève spectrum for the polyfoil process.

5.4.2 Autocovariance sequence of the polyfoil process

Recall, the polyfoil process is constructed by superposing two complex AR(1) processes,

representing a fundamental oscillation and a harmonic oscillation, such that we have

Zt = Z
{1}
t + Z

{2}
t . The autocovariance sequence of this process can be expressed as
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the sum of the stationary autocovariance sequences from the circular oscillations, plus

some nonstationary cross terms.

Lemma 5.4.5. The autocovariance sequence for the polyfoil model st,τ is given by

st,τ = s{1}τ + s{2}τ + E{Z{1}
t Z

{2}∗
t−τ }+ E{Z{2}

t Z
{1}∗
t−τ },

where s
{1}
τ is the autocovariance sequence of the fundamental oscillation and s

{2}
τ is the

autocovariance sequence of the harmonic oscillation.

Proof.

st,τ = E{ZtZ
∗
t−τ}

= E{(Z{1}
t + Z

{2}
t )(Z

{1}∗
t−τ + Z

{2}∗
t−τ )}

= E{Z{1}
t Z

{1}∗
t−τ + Z

{1}
t Z

{2}∗
t−τ + Z

{2}
t Z

{1}∗
t−τ + Z

{2}
t Z

{2}∗
t−τ }

= s{1}τ + s{2}τ + E{Z{1}
t Z

{2}∗
t−τ }+ E{Z{2}

t Z
{1}∗
t−τ },

as required.

The above expression may be simplified by individual consideration of the cross

terms, wherein the case of non-negative lag τ ≥ 0 and negative lag τ < 0 are dealt

with separately. The following lemma provides a simplified form of E{Z{1}
t Z

{2}∗
t−τ } for

non-negative lag τ .

Lemma 5.4.6. For non-negative lag τ ≥ 0, the expectation of E{Z{1}
t Z

{2}∗
t−τ } can be

written as,

E{Z{1}
t Z

{2}∗
t−τ } = (aeiθ)τE{Z{1}

t−τZ
{2}∗
t−τ }.
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Proof.

E{Z{1}
t Z

{2}∗
t−τ } = E{(aeiθZ{1}

t−1 + ν
{1}
t )Z

{2}∗
t−τ }

=aeiθE{Z{1}
t−1Z

{2}∗
t−τ }+ E{ν{1}

t Z
{2}∗
t−τ }

=aeiθE{(aeiθZ{1}
t−2 + ν

{1}
t−1)Z

{2}∗
t−τ }

=(aeiθ)2E{Z{1}
t−2Z

{2}∗
t−τ }

...

=(aeiθ)τE{Z{1}
t−τZ

{2}∗
t−τ },

as required.

A simplified form of E{Z{2}
t Z

{1}∗
t−τ } for non-negative lag τ can be obtained similarly.

This is given in the following corollary.

Corollary 5.4.7. For non-negative lag τ ≥ 0, the expectation of E{Z{2}
t Z

{1}∗
t−τ } can be

written as,

E{Z{2}
t Z

{1}∗
t−τ } = (aeihθ)τE{Z{2}

t−τZ
{1}∗
t−τ }.

The proof follows the same reasoning as in Lemma 5.4.6.

Similarly, the following lemma provides a simplified form of E{Z{1}
t Z

{2}∗
t−τ } for neg-

ative lag τ .

Lemma 5.4.8. For negative lag τ < 0, the expectation of E{Z{1}
t Z

{2}∗
t−τ } can be written

as,

E{Z{1}
t Z

{2}∗
t−τ } = a|τ |eihθτE{Z{1}

t Z
{2}∗
t }.
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Proof.

E{Z{1}
t Z

{2}∗
t−τ } = E{Z{1}

t (ae−ihθZ
{2}∗
t−τ−1 + ν

{2}∗
t−τ )}

=ae−ihθE{Z{1}
t Z

{2}∗
t−τ−1}+ E{Z{1}

t ν
{2}∗
t−τ }

...

=(ae−ihθ)|τ |E{Z{1}
t Z

{2}∗
t }

=a|τ |eihθτE{Z{1}
t Z

{2}∗
t },

as required.

The simplified form of E{Z{2}
t Z

{1}∗
t−τ } with negative lag τ is given in the following

corollary.

Corollary 5.4.9. For negative lag τ < 0, the expectation of E{Z{2}
t Z

{1}∗
t−τ } can be

written as,

E{Z{2}
t Z

{1}∗
t−τ } = a|τ |eiθτE{Z{2}

t Z
{1}∗
t }.

The proof follows the same reasoning as in Lemma 5.4.8.

If the two complex AR(1) processes are independent, then trivially all cross terms in

Lemma 5.4.5 vanish such that E{Z{1}
t Z

{2}∗
t−τ } = E{Z{2}

t Z
{1}∗
t−τ } = 0, and hence we create a

stationary polyfoil model with autocovariance st,τ = s
{1}
τ +s

{2}
τ which is only dependent

on τ and not t. However, we shall create a nonstationary polyfoil by modelling the

cross-term E{Z{1}
t Z

{2}∗
t } to be independent in amplitude between each component, but

‘locked’ in phase. Specifically, consider its polar representation:

E{Z{1}
t Z

{2}∗
t } = E{r{1}t eiφ

{1}
t r

{2}
t e−iφ

{2}
t },

= E{r{1}t r
{2}
t ei[φ

{1}
t −φ

{2}
t ]}.
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We will assume that the amplitudes r
{1}
t , r

{2}
t are independent of each other and the

phase difference, such that,

E{Z{1}
t Z

{2}∗
t } = E{r{1}t }E{r{2}t }E{ei[φ

{1}
t −φ

{2}
t ]}.

We then phase-lock the phase difference at t = 0 such that E{ei[φ
{1}
0 −φ

{2}
0 ]} = eiϕ0 ,

meaning that under expectation, the two oscillations are out of phase by angle ϕ0

at time t = 0. As the two components oscillate at difference frequencies, this phase

difference should be a function of time t. Specifically, with the first component we have

that

E{eiφ
{1}
t } = E{eiφ

{1}
0 }eiθt,

and with the second component

E{eiφ
{2}
t } = E{eiφ

{2}
0 }eihθt,

such that we assume the phase-locking under expectation at general time t is

E{ei[φ
{1}
t −φ

{2}
t ]} = E{ei[φ

{1}
0 −φ

{2}
0 ]}eiθte−ihθt (5.4.2)

= ei(ϕ0+θ(1−h)t),

such that the expected phase difference periodically oscillates with period t = 2π/(θ(h−

1)), which is consistent with the |h− 1| loops observed in Figure 5.1.2.

Note that the amplitude r
{1}
t can be written as,

r
{1}
t =

√
(X

{1}
t )2 + (Y

{1}
t )2.

By the stationarity and Gaussianity of X and Y , and the properties of the Rayleigh
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distribution, it is therefore possible to express the expectation of this as,

E{r{1}t } = E
{√

(X
{1}
t )2 + (Y

{1}
t )2

}
= σϵ

√
π

2(1− a2)
.

Similarly, for r
{2}
t we can write,

E{r{2}t } = σζ

√
π

2(1− a2)
.

These expressions can be modified for non-Gaussian processes in extensions of the

model. The term E{Z{1}
t Z

{2}∗
t } is then given by,

E{Z{1}
t Z

{2}∗
t } =

πσζσϵ

2(1− a2)
ei(ϕ0+θ(1−h)t).

Note that we can similarly express,

E{Z{2}
t Z

{1}∗
t } =

πσζσϵ

2(1− a2)
e−i(ϕ0+θ(1−h)t),

by noting that,

E{ei[φ
{2}
t −φ

{1}
t ]} = E{e−i[φ

{1}
t −φ

{2}
t ]},

= e−i(ϕ0+θ(1−h)t),

under our assumption of phase-locking. For non-negative lag, the cross expectations

can therefore be written as,

E{Z{1}
t Z

{2}∗
t−τ } = (aeiθ)τE{Z{1}

t−τZ
{2}∗
t−τ } = a|τ |eiθτ

πσζσϵ

2(1− a2)
ei(ϕ0+θ(1−h)(t−τ)),

E{Z{2}
t Z

{1}∗
t−τ } = (aeihθ)τE{Z{2}

t−τZ
{1}∗
t−τ } = a|τ |eihθτ

πσζσϵ

2(1− a2)
e−i(ϕ0+θ(1−h)(t−τ)),
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and for negative lag we can write,

E{Z{1}
t Z

{2}∗
t−τ } = a|τ |eihθE{Z{1}

t Z
{2}∗
t } = a|τ |eihθτ

πσζσϵ

2(1− a2)
ei(ϕ0+θ(1−h)t),

E{Z{2}
t Z

{1}∗
t−τ } = a|τ |eiθτE{Z{2}

t Z
{1}∗
t } = a|τ |eiθτ

πσζσϵ

2(1− a2)
e−i(ϕ0+θ(1−h)t).

Let s
{3}
t,τ = E{Z{1}

t Z
{2}∗
t−τ }+E{Z{2}

t Z
{1}∗
t−τ }, such that this term encapsulates the nonsta-

tionary component of the autocovariance sequence. This term can be expressed in one

expression for both non-negative and negative values of lag, as given in the following

proposition.

Proposition 5.4.10. For all lags τ ∈ Z, the nonstationary contribution to the auto-

covariance sequence of the polyfoil process with phase-locked oscillations, as defined by

equation (5.4.2), is given by,

s
{3}
t,τ =

πσζσϵ

2(1− a2)
a|τ |
(
ei[ϕ0+θ((1−h)t+hτ)] + e−i[ϕ0+θ((1−h)t−τ)]

)
.

Proof. For non-negative lag τ , the previous expressions give,

s
{3}
t,τ≥0 = a|τ |eiθτ

πσζσϵ

2(1− a2)
ei(ϕ0+θ(1−h)(t−τ)) + a|τ |eihθτ

πσζσϵ

2(1− a2)
e−i(ϕ0+θ(1−h)(t−τ)),

=
πσζσϵ

2(1− a2)
a|τ |
(
ei[ϕ0+θ((1−h)t+hτ)] + e−i[ϕ0+θ((1−h)t−τ)]

)
.

For negative lag τ , the previous expressions give,

s
{3}
t,τ<0 = a|τ |eihθτ

πσζσϵ

2(1− a2)
ei(ϕ0+θ(1−h)t) + a|τ |eiθτ

πσζσϵ

2(1− a2)
e−i(ϕ0+θ(1−h)t),

=
πσζσϵ

2(1− a2)
a|τ |
(
ei[ϕ0+θ((1−h)t+hτ)] + e−i[ϕ0+θ((1−h)t−τ)]

)
.
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Thus we have s
{3}
t,τ≥0 = s

{3}
t,τ<0, such that,

s
{3}
t,τ =

πσζσϵ

2(1− a2)
a|τ |
(
ei[ϕ0+θ((1−h)t+hτ)] + e−i[ϕ0+θ((1−h)t−τ)]

)
,

for all lag τ ∈ Z, as required.

It can be seen that the nonstationary contribution to the autocovariance sequence

s
{3}
t,τ obeys Hermitian symmetry be observing,

s
{3}
t−τ,−τ =

πσζσϵ

2(1− a2)
a|−τ |

(
ei[ϕ0+θ((1−h)(t−τ)−hτ)] + e−i[ϕ0+θ((1−h)(t−τ)+τ)]

)
=

πσζσϵ

2(1− a2)
a|τ |
(
ei[ϕ0+θ(1−h)t−τ)] + e−i[ϕ0+θ((1−h)t+hτ)]

)
= s

{3}∗
t,τ .

The autocovariance sequence for the nonstationary polyfoil process, defined under the

assumption of phase-locked oscillations, is therefore given in the following theorem.

Theorem 5.4.11. The autocovariance sequence for the polyfoil model with phase-locked

oscillations, as defined by equation (5.4.2), is given by,

st,τ =
2σ2

ϵ

(1− a2)
a|τ |eiθτ +

2σ2
ζ

(1− a2)
a|τ |eihθτ+

πσζσϵ

2(1− a2)
a|τ |
(
ei[ϕ0+θ((1−h)t+hτ)] + e−i[ϕ0+θ((1−h)t−τ)]

)
.

Proof. This follows directly from Lemma 5.4.5, Theorem 5.4.1, Corollary 5.4.2 and

Proposition 5.4.10.

5.4.3 Loève spectrum of the nonstationary polyfoil process

It is possible to derive an analytical form of the Loève spectrum for the nonstationary

polyfoil process. Equation (5.3.1) shows that the Loève spectrum can be found by

taking the double Fourier transform of the autocovariance function st,τ , in terms of

time t and lag τ , and this relationship holds true for complex-valued processes as well.
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By linearity of the Fourier transform, this can be written as,

S(ω, ν) =
∑
τ∈Z

∑
t∈Z

st,τe
−iωτe−iνt,

=
∑
τ∈Z

∑
t∈Z

(s{1}τ + s{2}τ + s
{3}
t,τ )e

−iωτe−iνt,

=
∑
τ∈Z

∑
t∈Z

s{1}τ e−iωτe−iνt +
∑
τ∈Z

∑
t∈Z

s{2}τ e−iωτe−iνt +
∑
τ∈Z

∑
t∈Z

s
{3}
t,τ e

−iωτe−iνt,

where ω and ν can be considered to be a frequency and frequency-offset parameter

respectively. For the sake of simplified notation, denote the above three terms by

S{1}(ω, ν), S{2}(ω, ν) and S{3}(ω, ν), such that the double Fourier transform can be

written as

S(ω, ν) = S{1}(ω, ν) + S{2}(ω, ν) + S{3}(ω, ν). (5.4.3)

The spectrum for the s
{1}
τ and s

{2}
τ components in terms of frequency ω are given

by Theorem 5.4.3 and Corollary 5.4.4 respectively. Since these expressions are not

dependent on t, we can use standard results of discrete time Fourier transform pairs in

order to obtain,

S{1}(ω, ν) =
∑
t∈Z

2σ2
ϵ

1− 2a cos(ω − θ) + a2
e−iνt, (5.4.4)

=
4σ2

ϵπ

1− 2a cos(ω − θ) + a2

∞∑
−∞

δ{ν − 2πk},

and

S{2}(ω, ν) =
∑
t∈Z

2σ2
ζ

1− 2a cos(ω − hθ) + a2
e−iνt, (5.4.5)

=
4σ2

ζπ

1− 2a cos(ω − hθ) + a2

∞∑
−∞

δ{ν − 2πk},
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where δ{·} is the Dirac-delta function. We note that typically ω and ν only need to be

considered in the range [−π, π) or [0, 2π), owing to the 2π-periodicity of S(ω, ν) in both

ω and ν, such that the Dirac-delta function is non-zero at ν = 0 only. The third term

is more complex due to the nonstationarity, and is given in the following proposition.

Proposition 5.4.12. The Loève spectrum of the nonstationary component of the poly-

foil is given by,

S{3}(ω, ν) =
π2σζσϵ

(1− 2a cos(ω − hθ) + a2)
eiϕ0

∞∑
k=−∞

δ{ν − θ(1− h)− 2πk}+

π2σζσϵ

(1− 2a cos(ω − θ) + a2)
e−iϕ0

∞∑
k=−∞

δ{ν + θ(1− h)− 2πk}

.

Proof. The Loève spectrum is given by taking the double Fourier transform of the
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autocovariance sequence s
{3}
t,τ in terms of t and τ as follows,

S{3}(ω, ν) =
∑
τ∈Z

∑
t∈Z

s
{3}
t,τ e

−iωτe−iνt,

πσζσϵ

2(1− a2)

∑
τ∈Z

∑
t∈Z

a|τ |
(
ei[ϕ0+θ((1−h)t+hτ)] + e−i[ϕ0+θ((1−h)t−τ)]

)
e−iωτe−iνt

=
πσζσϵ

2(1− a2)

∑
τ∈Z

∑
t∈Z

a|τ |ei[ϕ0+θ((1−h)t+hτ)]e−iωτe−iνt+

πσζσϵ

2(1− a2)

∑
τ∈Z

∑
t∈Z

a|τ |e−i[ϕ0+θ((1−h)t−τ)]e−iωτe−iνt,

=
πσζσϵ

2(1− a2)
eiϕ0

∑
τ∈Z

a|τ |eiθhτe−iωτ
∑
t∈Z

eiθ(1−h)te−iνt+

πσζσϵ

2(1− a2)
e−iϕ0

∑
τ∈Z

a|τ |eiθτe−iωτ
∑
t∈Z

e−iθ(1−h)te−iνt

=
πσζσϵ

2(1− a2)
eiϕ0

1− a2

1− 2a cos(ω − hθ) + a2

∑
t∈Z

eiθ(1−h)te−iνt+

πσζσϵ

2(1− a2)
e−iϕ0

1− a2

1− 2a cos(ω − θ) + a2

∑
t∈Z

e−iθ(1−h)te−iνt,

=
πσζσϵ

2(1− 2a cos(ω − hθ) + a2)
eiϕ0

∑
t∈Z

eiθ(1−h)te−iνt+

πσζσϵ

2(1− 2a cos(ω − θ) + a2)
e−iϕ0

∑
t∈Z

e−iθ(1−h)te−iνt.

Finally, using standard results from Fourier transform pairs, we may write,

S{3}(ω, ν) =
π2σζσϵ

(1− 2a cos(ω − hθ) + a2)
eiϕ0

∞∑
k=−∞

δ{ν − θ(1− h)− 2πk}+

π2σζσϵ

2(1− 2a cos(ω − θ) + a2)
e−iϕ0

∞∑
k=−∞

δ{ν + θ(1− h)− 2πk},

as required.

Note that the Dirac-delta function in S{3}(ω, ν) is non-zero at frequency off-set

ν = ±θ(1 − h) which is the difference in frequency between the two oscillations, thus

showing how their interaction manifests in the Loève spectrum. The Loève spectrum
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for the nonstationary polyfoil model, constrained in the range ω, ν ∈ [−π, π), is given

in the following theorem.

Theorem 5.4.13. For a nonstationary polyfoil with phase-locked oscillations, as de-

fined by equation (5.4.2), the Loève spectrum is given by,

S(ω, ν) =S{1}(ω, ν) + S{2}(ω, ν) + S{3}(ω, ν),

=
4σ2

ϵπ

1− 2a cos(ω − θ) + a2
δ{ν}+

4σ2
ζπ

1− 2a cos(ω − hθ) + a2
δ{ν}+

π2σζσϵ

(1− 2a cos(ω − hθ) + a2)
eiϕ0δ{ν − θ(1− h)}+

π2σζσϵ

(1− 2a cos(ω − θ) + a2)
e−iϕ0δ{ν + θ(1− h)},

where ω, ν ∈ [−π, π).

Proof. The Loève spectrum of the nonstationary polyfoil process can be written as the

sum of S{1}(ω, ν), S{2}(ω, ν), and S{3}(ω, ν), as given in equation (5.4.3). Expressions

for S{1}(ω, ν) and S{2}(ω, ν) are given by equations (5.4.4) and (5.4.5) respectively.

The Loève spectrum for the nonstationary component of the polyfoil process is given

in Proposition 5.4.12. It can be shown that the delta function summations in these

expressions simplify by considering how the frequencies are bounded. Given that we

are working with discrete-time processes (t ∈ Z) then we can restrict ourselves to

ω, ν ∈ [−π, π), such that they are within the Nyquist frequencies. Therefore the only

contributions from the delta functions occur when ν = 0 or ν = ±θ(1−h), and the full
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Loève spectrum for the nonstationary polyfoil model is given by,

S(ω, ν) =S{1}(ω, ν) + S{2}(ω, ν) + S{3}(ω, ν),

=
4σ2

ϵπ

1− 2a cos(ω − θ) + a2
δ{ν}+

4σ2
ζπ

1− 2a cos(ω − hθ) + a2
δ{ν}+

π2σζσϵ

(1− 2a cos(ω − hθ) + a2)
eiϕ0δ{ν − θ(1− h)}+

π2σζσϵ

(1− 2a cos(ω − θ) + a2)
e−iϕ0δ{ν + θ(1− h)},

as required.

Let ω1 = ω and ω2 = ω + ν. Hence, the above expression shows that the Loève

spectrum matrix is zero everywhere, apart from three parallel lines when ω1, ω2 ∈

[−π, π). Namely,

(i) We have a contribution from the first two terms in the summation when the

frequencies are equal ω1 = ω2 (that is, the frequency offset parameter ν is zero);

(ii) We have a contribution from the third term when ω2 = [ω1 + θ(1− h)]mod(2π);

(iii) We have a contribution from the fourth term when ω2 = [ω1 − θ(1− h)]mod(2π),

where [x]mod(2π) is the modulo function placing x in the range [−π, π) (as opposed

to [0, 2π) in slight abuse of convention). For the rest of this chapter we drop the

mod(2π) term for convenience, but note this should be added to always bring ω2 in

the range [−π, π). These parallel lines are a characteristic of the fact that the polyfoil

process is nonstationary under the assumption of phase-locked oscillations, which leads

to interactions between distinct frequencies. These can be studied further by computing

the Loève coherency, as is done in the following section.
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5.4.4 Loève coherency of the nonstationary polyfoil process

The Loève coherency is given as a function of the Loève spectrum in equation (5.3.2).

Clearly, since the Loève spectrum for the nonstationary polyfoil process is zero every-

where but the three aforementioned diagonals, this is also the case for the coherency.

In the case where ω1 = ω2, the coherency is simply equal to 1. The Loève coherency

along the line ω2 = ω1 + θ(1− h) is given in the following theorem.

Theorem 5.4.14. The Loève coherency of the nonstationary polyfoil process along the

line ω2 = ω1 + θ(1− h) is given by,

τ(ω1, ω1 + θ(1− h)) =
πσζσϵe

iϕ0

4(1− 2a cos(ω1 − hθ) + a2)

1√
(A+B)(C +D)

,

where we have defined

A =
σ2
ϵ

1− 2a cos(ω1 − θ) + a2
,

B =
σ2
ζ

1− 2a cos(ω1 − hθ) + a2
,

C =
σ2
ϵ

1− 2a cos(ω1 − hθ) + a2
,

D =
σ2
ζ

1− 2a cos(ω1 + θ − 2hθ) + a2
.

Proof. For the off-diagonal contribution along ω2 = ω1 + θ(1− h), we have

τ(ω1, ω1 + θ(1− h)) =
S(ω1, ω1 + θ(1− h))√

S(ω1, ω1)S(ω1 + θ(1− h), ω1 + θ(1− h))
.

Let us begin by considering the numerator. Clearly all components of the Loève spec-

trum are equal to zero, apart from the contribution with the delta function δ{ν− θ(1−
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h)}, which is given by

S(ω1, ω1 + θ(1− h)) =
π2σζσϵ

(1− 2a cos(ω1 − hθ) + a2)
eiϕ0δ{0}.

We can consider the two elements of the denominator in turn. Since these correspond

to values of the spectrum where the two frequencies are equal, the contributions come

from the first two terms in Theorem 5.4.13. For the first element we have,

S(ω1, ω1) =
4σ2

ϵπ

1− 2a cos(ω1 − θ) + a2
δ{0}+

4σ2
ζπ

1− 2a cos(ω1 − hθ) + a2
δ{0}.

Similarly, the second element is given by,

S(ω1 + θ(1− h), ω1 + θ(1− h)) =
4σ2

ϵπ

1− 2a cos(ω1 + θ(1− h)− θ) + a2
δ{0}+

4σ2
ζπ

1− 2a cos(ω1 + θ(1− h)− hθ) + a2
δ{0},

=
4σ2

ϵπ

1− 2a cos(ω1 − hθ) + a2
δ{0}+

4σ2
ζπ

1− 2a cos(ω1 + θ − 2hθ) + a2
δ{0}.

We can compute the denominator by evaluating the product of these two terms. Using

the above definitions,

A =
σ2
ϵ

1− 2a cos(ω1 − θ) + a2
,

B =
σ2
ζ

1− 2a cos(ω1 − hθ) + a2
,

C =
σ2
ϵ

1− 2a cos(ω1 − hθ) + a2
,

D =
σ2
ζ

1− 2a cos(ω1 + θ − 2hθ) + a2
,
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the product can be written as,

S(ω1, ω1)S(ω1 + θ(1− h), ω1 + θ(1− h)) =

(
4Aπδ{0}+ 4Bπδ{0}

)(
4Cδ{0}+ 4Dδ{0}

)
,

=

(
4πδ{0}(A+B)

)(
4πδ{0}(C +D)

)
,

=16π2δ{0}2(A+B)(C +D).

The denominator of the coherency is given by the square root of this product,

√
S(ω1, ω1)S(ω1 + θ(1− h), ω1 + θ(1− h)) =

√
16π2δ{0}2(A+B)(C +D),

=4πδ{0}
√

(A+B)(C +D).

The coherency for the off diagonal contribution when ω2 = ω1 + θ(1− h) is then given

by,

τ(ω1, ω1 + θ(1− h)) =
S(ω1, ω1 + θ(1− h))√

S(ω1, ω1)S(ω1 + θ(1− h), ω1 + θ(1− h))
,

=

(
π2σζσϵe

iϕ0δ{0}
(1− 2a cos(ω1 − hθ) + a2)

)(
1

4πδ{0}
√

(A+B)(C +D)

)
,

=
πσζσϵe

iϕ0

4(1− 2a cos(ω1 − hθ) + a2)

1√
(A+B)(C +D)

,

as required.

It is possible to find the Loève coherency along the line ω2 = ω1 − θ(1 − h) by a

similar procedure; this is given in the following corollary.

Corollary 5.4.15. The coherency along the line ω2 = ω1 − θ(1− h) is given by

τ(ω1, ω1 − θ(1− h)) =
πσζσϵe

−iϕ0

4(1− 2a cos(ω1 − θ) + a2)

1√
(A+B)(C̃ + D̃)

,
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where we have defined,

A =
σ2
ϵ

1− 2a cos(ω1 − θ) + a2
,

B =
σ2
ζ

1− 2a cos(ω1 − hθ) + a2
,

C̃ =
σ2
ϵ

1− 2a cos(ω1 − 2θ + hθ) + a2
,

D̃ =
σ2
ζ

1− 2a cos(ω1 − θ) + a2
.

Proof. The proof follows the same reasoning as in Theorem 5.4.14.

5.4.5 Reparameterisation of the Loève coherency

Theorem 5.4.14 states that the coherency of the nonstationary polyfoil process along

the line ω2 = ω1 + θ(1− h) is given by,

τ(ω1, ω1 + θ(1− h)) =
πσζσϵe

iϕ0

4(1− 2a cos(ω1 − hθ) + a2)

1√
(A+B)(C +D)

,

where we have defined

A =
σ2
ϵ

1− 2a cos(ω1 − θ) + a2
,

B =
σ2
ζ

1− 2a cos(ω1 − hθ) + a2
,

C =
σ2
ϵ

1− 2a cos(ω1 − hθ) + a2
,

D =
σ2
ζ

1− 2a cos(ω1 + θ − 2hθ) + a2
.

This is a function of six parameters, namely: the damping parameter, the fundamental

frequency, the harmonic multiple, the expected initial phase difference, and the noise

terms of the fundamental and harmonic oscillations, {a, θ, h, ϕ0, σ
2
ϵ , σ

2
ν}. If we introduce

a reparameterisation, such that γ1 = σϵσζ and γ2 = σϵ/σζ , it is then possible to express
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the coherency as a function of five parameters {a, θ, h, ϕ0, γ2}.

In order to implement the reparameterisation, denote,

A∗ = 1− 2a cos(ω1 − θ) + a2,

B∗ = 1− 2a cos(ω1 − hθ) + a2,

C∗ = 1− 2a cos(ω1 − hθ) + a2,

D∗ = 1− 2a cos(ω1 + θ − 2hθ) + a2,

such that the noise variance terms are separate. The product within the square root of

the expression for coherency can then be written in terms of γ1 and γ2 as follows,

(A+B)(C +D) =AC + AD +BC +BD,

=(σ2
ϵ )

2/A∗C∗ + (σ2
ϵσ

2
ζ )/A

∗D∗ + (σ2
ϵσ

2
ζ )/B

∗C∗ + (σ2
ζ )

2/B∗D∗,

=γ2
1γ

2
2/A

∗C∗ + γ2
1/A

∗D∗ + γ2
1/B

∗C∗ + γ2
1/(γ

2
2B

∗D∗).

Thus, the coherency can be written as,

τ(ω1, ω1 + θ(1− h)) =
πγ1e

iϕ0

4 (1− 2a cos(ω1 − hθ) + a2)

× 1√
γ2
1γ

2
2/A

∗C∗ + γ2
1/A

∗D∗ + γ2
1/B

∗C∗ + γ2
1/γ

2
2B

∗D∗
,

=
πeiϕ0

4 (1− 2a cos(ω1 − hθ) + a2)

× 1√
γ2
2/A

∗C∗ + 1/A∗D∗ + 1/B∗C∗ + 1/γ2
2B

∗D∗
.

Expressing the coherency in this way demonstrates that its magnitude is dependent

on the ratio of the noise parameters γ2 = σϵ/σζ , rather than the individual values.

Furthermore, the above expression allows one to consider what happens to the coherency

in limiting cases of the damping parameter, for example when a = 0 and a → 1.
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When a = 0, we note that A∗ = B∗ = C∗ = D∗ = 1 and hence,

τ(ω1, ω1 + θ(1− h)) =
πeiϕ0

4

1√
γ2
2 + 2 + 1/(γ2

2)
,

=
πeiϕ0

4

1√
(γ2 + 1/γ2)2

,

=
πeiϕ0

4(γ2 + 1/γ2)
.

Thus, the magnitude of the coherency is dependent only on the ratio of the noises, and

not the frequencies θ and hθ. This is reflective of the fact that setting a = 0 generates

a pure white noise process, since Zt is no longer dependent on Zt−1.

The case of a → 1 requires more careful consideration. For simplicity, let us consider

the value of the Loève coherency at the interaction point ω1 = hθ and ω2 = θ. In this

case, the above expressions simplify to

A∗ = 1− 2a cos(hθ − θ) + a2,

B∗ = 1− 2a+ a2,

C∗ = 1− 2a+ a2,

D∗ = 1− 2a cos(hθ − θ) + a2.

Since we have chosen to set ω1 and ω2 to fixed values, we shall express the coherency

as a function of the damping parameter a. In order to determine the behaviour of this

function as a → 1, denote u(a) = 1− 2a + a2 and v(a) = 1− 2a cos(hθ − θ) + a2. We

are therefore interested in finding,

lim
a→1

τ(a) = lim
a→1

πeiϕ0

4u(a)
√

γ2
2/u(a)v(a) + 1/v(a)2 + 1/u(a)2 + 1/γ2

2u(a)v(a)
.

We begin by considering the behaviour of v(a) and u(a) in the limit. Evaluating these
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expressions at a = 1 gives

u(1) = 1− 2(1) + 12 = 0,

v(1) = 1− 2 cos(hθ − θ) + 12 = 2− 2 cos(hθ − θ).

From this, it is easy to see that the term 1/u(a)2 dominates the expression inside

the square root as a → 1. Therefore, the expression inside the square root can be

approximated in the limit by,

√
γ2
2/u(a)v(a) + 1/v(a)2 + 1/u(a)2 + 1/γ2

2u(a)v(a) ≈
√

1/u(a)2 = 1/u(a).

Substituting this approximation into the expression for τ(a) then gives,

τ(a) ≈ πeiϕ0

4u(a)
u(a) =

πeiϕ0

4
.

Thus, our final expression for the coherency evaluated at (ω1, ω2) = (hθ, θ), as the

parameter a → 1, is given by,

lim
a→1

τ(a) =
πeiϕ0

4
.

This behaviour is shown in Figure 5.4.1, where the magnitude of the reparameterised

coherency at the interaction point (hθ, θ) has been plotted as a function of γ2 = σϵ/σζ ,

for different values of damping parameter a. We see that as a → 1, the magnitude of

the coherency tends towards π/4 for all values of γ2.

5.5 Simulations

In the previous section, we showed that a nonstationary polyfoil process can be con-

structed by phase-locking the two oscillations, leading to interactions between distinct
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Figure 5.4.1: Magnitude of coherency at interaction point (hθ, θ), function of γ2 =
σϵ/σζ . Fundamental frequency set to θ = 0.1π, harmonic frequency set to 0.4π.

frequencies that can be observed in the Loève spectrum. This is in contrast to the

stationary polyfoil process, which exhibits an observed Loève coherency matrix whose

magnitude is given by the N×N identity matrix, where N is the number of observations

in the time series; that is, there are no correlations between distinct frequencies.

We saw that the Loève spectrum for the nonstationary polyfoil was given by a sum

of three components. The spectral density is therefore zero everywhere, apart from

along three parallel lines: (i) there is a non zero contribution when the frequencies are

equal, ω1 = ω2, (ii) there is a non zero contribution when ω2 = ω1 + θ(1− h), and (iii)

there is a non zero contribution when ω2 = ω1 − θ(1 − h). As shown in Section 5.4.4,

this can then be used to derive a closed form expression for the Loève coherency, which

is zero everywhere apart from along the aforementioned parallel lines.

In this section, we compare our theoretical results with simulations. In particular,

we estimate the Loève coherency of simulated polyfoils with different parameter choices,

and show that both the magnitude and phase of the estimated coherency correspond
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to the theoretical derivations in Section 5.4. In order to estimate the Loève spectrum

and subsequent Loève coherency from simulated data, we use the multitaper estimation

method developed by Olhede and Ombao (2013); a brief description of this procedure

is given in the following. In their work, Olhede and Ombao (2013) use their multita-

per procedure to estimate the Loève coherence from several time aligned brain waves

recorded from R trials. We also choose to consider many replications in our simulations,

in order to provide better visualisations of the estimated Loève coherence.

In line with Olhede and Ombao (2013), denote Xr
t to be time series recorded at

the rth trial. Olhede and Ombao (2013) define h
(k)
t to be the k-th orthogonal taper

that satisfies
∑

t[h
(k)
t ]2 = 1 and

∑
t h

(k1)
t h

(k2)
t = 0 if k1 ̸= k2. The k-th orthogonal taper

can then be used to define the k-th tapered Fourier coefficient at frequency f , which is

given by,

x
(r)
k (f) =

∑
t

h
(k)
t Xr

t exp(−i2πft), f ∈
(
− 1

2
,
1

2

)
.

For the frequency pair (f1, f2), Olhede and Ombao (2013) then define the k-th Loève

periodogram to be

I
(r)
k (f1, f2) = x

(r)
k (f1)x

(r)∗
k (f2),

where (f1, f2) ∈ (−1/2, 1/2)× (−1/2, 1/2). Thus, there is an estimate of the Loève pe-

riodogram for each taper h
(k)
t . In order to produce a suitable non-parametric estimator

for the r-th trial, one can take the average of these estimates in order to produce the

Loève multitaper spectral estimator,

I
(r)
(f1, f2) =

1

K

∑
k

I
(r)
k (f1, f2).

As stated, this estimator is for a single trial. In order to obtain an estimate for the
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‘population’ Loève spectrum, that is, across the trails, Olhede and Ombao (2013) take

the average of the trial specific estimators,

I(f1, f2) =
1

R

∑
r

I
(r)
(f1, f2).

Furthermore, we recall that the coherency is given as a function of the Loève spectrum

(see equation (5.3.2)). Olhede and Ombao (2013) therefore also estimate the trial-

specific coherency using,

τ̂ (r)(f1, f2) =
I
(r)
(f1, f2)√

I
(r)
(f1, f1)I

(r)
(f2, f2)

,

where the population coherency can be estimated by averaging across the R replications,

τ̂(f1, f2) =
1

R

∑
r

τ̂ (r)(f1, f2).

The polyfoils in this section were simulated from the Cholesky decomposition of the

relevant covariance matrix; for stationary polyfoil simulation, we used the autocovari-

ance sequence st,τ = s
{1}
τ + s

{2}
τ , and for nonstationary polyfoil simulation, we used the

expression given in Theorem 5.4.11. The values of θ, h, a, ϕ0, σϵ and σζ are specified

individually for each simulation. All polyfoils were simulated with length N = 1000,

and R = 100 replications were carried out for each simulation. Estimates for the Loève

spectrum were then obtained by averaging over the 100 trial specific estimators as

above.

5.5.1 Magnitude of the Loève coherency

We begin by demonstrating the effects of nonstationarity on the magnitude of the Loève

coherency. For visualisation purposes, we shall begin by assuming a relatively high value

of damping parameter, a = 0.999. In order to ensure that a complete number of polyfoil
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rotations are observed in the N = 1000 simulated time points, we must ensure that

Nθ/(2π) is an integer. Therefore, let us set the fundamental frequency to be θ = 2π/20,

and the harmonic multiple to be h = 4. Finally, let us set the standard deviations of

the fundamental and harmonic noises to be σϵ = 10 and σζ = 5 respectively.

(a) Stationary polyfoils. (b) Nonstationary polyfoils.

Figure 5.5.1: First 20 replications, polyfoils simulated using Cholesky decomposition of
the relevant autocovariance sequence.

We simulated both stationary and nonstationary polyfoils with the aforementioned

parameter choices. Recall, nonstationarity is induced by phase-locking the oscillations

under expectation at general time t, according to equation (5.4.2). To begin, the

phase parameter was set to ϕ0 = 0.5. Figure 5.5.1a shows 20 polyfoils simulated

from the stationary autocovariance sequence, while Figure 5.5.1b shows 20 polyfoils

generated from the nonstationary autocovariance sequence. When viewing the polyfoil

replications in the complex plane as in Figure 5.5.1, there is no clear indication of

which are stationary and which are not. In both cases, the polyfoils change between

replications, both in terms of their size and orientation; this is a consequence of the

fact the Cholesky method draws the initial position of each replication from a complex-

valued Gaussian.
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(a) Theoretical coherency matrix. (b) Estimated coherency matrix.

Figure 5.5.2: Magnitude of coherency matrix for stationary polyfoil. Position of θ and
hθ marked by dashed black lines.

However, it becomes apparent which polyfoils are stationary and which are non-

stationary when we estimate the Loève coherency using the multitaper method. The

magnitude of the estimated coherency for the stationary polyfoil model is compared

with the stationary theoretical coherency in Figure 5.5.2. The black dashed lines have

been added to indicate the positions of θ and hθ. We see that the estimated magni-

tude of the Loève coherency displays no interactions between distinct frequencies, as

expected from the theory.

On the other hand, Figure 5.5.3 compares the magnitude of the estimated coherency

for the nonstationary polyfoils with the theoretical result. Clearly, the nonstationary

coherency displays interactions between distinct frequencies along the lines ω2 = ω1 +

θ(1−h) and ω2 = ω1−θ(1−h), as expected from the theory. Furthermore, the red points

indicate the maximum values along these lines. We see that these are very close to the

interaction points (θ, hθ) and (hθ, θ), which is where the true theoretical maximums

occur. We also note the parallel lines in the top-left and bottom-right corners of these

plots which are an effect of the 2π-periodicity of the coherency matrix, as discussed
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(a) Theoretical coherency matrix.
Maximum values on off-diagonal in-
teractions marked by red points.

(b) Estimated coherency matrix.
Maximum values on off-diagonal in-
teractions marked by red points.

Figure 5.5.3: Magnitude of coherency matrix for nonstationary polyfoil, a = 0.999.
Position of θ and hθ marked by dashed black lines.

previously.

Hence, while viewing the polyfoils in the complex plane does not indicate whether

or not the process is stationary, this can instead be determined by computing the Loève

coherency. Furthermore, the position of the off-diagonal interactions indicate both the

fundamental frequency and the harmonic frequency.

Of course, the choice of a = 0.999 is quite high. The magnitude of the estimated

Loève coherency of the nonstationary polyfoil process with a = 0.9 is compared with

the theoretical result in Figure 5.5.4. We see that even with reduced choice of a, the

interactions along the lines ω2 = ω1 + θ(1− h) and ω2 = ω1 − θ(1− h) are still clearly

visible.

It is also possible to carry out a more precise analysis by comparing the theoretical

results with the estimated coherency at a specific set of frequency pairs. We compared

the magnitude of the estimated coherency along the line ω2 = ω1 + θ(1 − h) with

the theoretical expression, for a = 0.9 and a = 0.999. This is shown in Figure 5.5.5,
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(a) Theoretical coherency matrix.
Maximum values on off-diagonal in-
teractions marked by red points.

(b) Estimated coherency matrix.
Maximum values on off-diagonal in-
teractions marked by red points.

Figure 5.5.4: Magnitude of coherency matrix for nonstationary polyfoil, a = 0.9. Posi-
tion of θ and hθ marked by dashed black lines.

(a) Damping parameter a = 0.999. (b) Damping parameter a = 0.9.

Figure 5.5.5: Estimated magnitude of coherency for nonstationary polyfoils across repli-
cations, along line ω2 = ω1 + θ(1 − h). Theoretical magnitude of coherency shown by
red line.
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where the frequency corresponding to the theoretical maximum of the magnitude of

the coherency is shown by the blue line; this is at hθ. We see that the multitaper

estimation method of Olhede and Ombao (2013) successfully captures the theoretically

derived behaviour of the Loève coherency along this line.

5.5.2 Phase of the Loève coherency

The previous simulations consider the magnitude of the Loève coherency. However,

when the polyfoil process is nonstationary, the Loève coherency is given by a complex

quantity; hence, it is also possible to study the phase. Theorem 5.4.14 provides the

expression for the Loève coherency of the nonstationary polyfoil model along the line

ω2 = ω1 + θ(1 − h); we see that this includes the term eiϕ0 . Similarly, the expression

for the Loève coherency along the line ω2 = ω1 − θ(1 − h) includes the term e−iϕ0 .

Therefore, we expect the phase of the Loève coherency estimated using the multitaper

method to be given by ϕ0 and −ϕ0 along the aforementioned parallel lines.

(a) Expected initial phase set to ϕ0 =
0.5.

(b) Expected initial phase set to ϕ0 =
−1.

Figure 5.5.6: Estimated phase of coherency for nonstationary polyfoils with a = 0.999.
Position of θ and hθ marked by dashed black lines.
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We confirm that this is the case for different values of a and ϕ0 in the following. To

begin, the damping parameter was set to a = 0.999. Figure 5.5.6 shows (a) the phase

of the estimated Loève coherency when ϕ0 = 0.5, and (b) the phase of the estimated

Loève coherency when ϕ0 = −1. We see that when ϕ0 is positive, the estimated

coherency phase along the line ω2 = ω1+θ(1−h) is also positive, while the phase along

ω2 = ω1 − θ(1 − h) is negative. When the initial expected phase difference is set to a

negative number, the signs of these two lines switch in accordance with the theory.

(a) Expected initial phase set to ϕ0 =
0.5.

(b) Expected initial phase set to ϕ0 =
−1.

Figure 5.5.7: Estimated phase of coherency for nonstationary polyfoils across replica-
tions, along line ω2 = ω1 + θ(1 − h). True initial expected phase ϕ0 shown by dashed
red line.

We can also examine the spread of the phase of the estimated Loève coherency along

the two parallel lines of interaction. Figure 5.5.7 shows a histogram of the mean phase

values along the line ω2 = ω1 + θ(1 − h), for (a) ϕ0 = 0.5, and (b) ϕ0 = −1. The

true values of ϕ0 are shown by the red dashed lines. We see that the estimated phase

along the line of interaction is narrowly distributed around the theoretically true value

in both cases, as desired.

We also considered the phase of the estimated Loève coherency for the nonstationary
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polyfoil process with a = 0.9. Figure 5.5.8 depicts the phase of the estimated Loève

coherency matrix when (a) ϕ0 = 0.5, and (b) for ϕ0 = −1. The spread of the phase of

the estimated Loève coherency along the line ω2 = ω1 + θ(1− h) for the two values of

ϕ0 is shown in Figure 5.5.9. The phase estimation remains stable for this more realistic

value of a.

(a) Expected initial phase set to ϕ0 =
0.5.

(b) Expected initial phase set to ϕ0 =
−1.

Figure 5.5.8: Estimated phase of coherency for nonstationary polyfoils with a = 0.9.
Position of θ and hθ marked by dashed black lines.

5.6 Discussion

In this chapter, we proposed a stochastic process for modelling two interacting oscilla-

tory signals of different frequencies. This is a logical extension to the complex-valued

AR(1) process, and is generated by superposing two such processes together. By super-

posing two complex AR(1) processes in this way, we defined a novel stochastic process

which depicts ‘polyfoil’ shapes when plotted in the complex plane (see Figure 5.1.2 for

examples). The key novelty of the polyfoil stochastic process is that we can construct
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(a) Expected initial phase set to ϕ0 =
0.5.

(b) Expected initial phase set to ϕ0 =
−1.

Figure 5.5.9: Estimated phase of coherency for nonstationary polyfoils across replica-
tions, along line ω2 = ω1 + θ(1 − h). True initial expected phase ϕ0 shown by dashed
red line.

nonstationarity by assuming that oscillations are phase-locked under expectation at

general time t. This differs from other works on stochastic oscillations in the literature,

for example the widely linear complex AR(1) process of Sykulski et al. (2016), which

consider only stationary oscillations.

We demonstrated that when oscillations are not phase-locked, the polyfoil stochastic

process is stationary. In this case, the autocovariance sequence for the process is simply

given by summing the individual autocovariance sequences of the two oscillatory signals,

and is therefore only dependent on the lag τ . On the other hand, we demonstrated

that a nonstationary polyfoil process can be constructed by enforcing phase-locking

on the oscillations. In this case, the autocovariance sequence features a nonstationary

component s
{3}
t,τ , which dependent on both lag τ and time t.

When a stochastic process is nonstationary, correlations may exist between distinct

frequencies. In such cases, standard spectral analysis techniques do not fully charac-

terise the process, and one must consider alternative methods. It is possible to observe
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such interactions in the Loève spectrum, which is a complex-valued quantity given by

taking the two-dimensional Fourier transform of the autocovariance function. In order

to quantify the correlations between frequencies ω1 and ω2, one may compute the Loève

coherency τ(ω1, ω2), which is a function of the Loève spectrum. The Loève coherence

at (ω1, ω2) is then given by ρ(ω1, ω2) = |τ(ω1, ω2)|2, which lies in the range [0, 1]. Com-

putation of the Loève coherency therefore provides insight on the characterisation of

nonstationary processes.

In this chapter, we derived the analytical form of the Loève spectrum and the Loève

coherency for our polyfoil stochastic process. We demonstrated that these quantities

depend on six parameters, {a, θ, h, σ2
ϵ , σ

2
ζ , ϕ0}, and are zero-valued everywhere, apart

from along the diagonal line ω1 = ω2, and the parallel lines ω2 = ω1 + θ(1 − h) and

ω2 = ω1−θ(1−h). The maximum values of the magnitude of the coherency along the off-

diagonal lines correspond to the interaction points (hθ, θ) and (θ, hθ). By introducing

a reparameterisation such that γ2 = σϵ/σζ , we showed that the coherency can instead

be written in terms of five parameters {a, θ, h, γ2, ϕ0}. This allowed us to consider what

happens to the magnitude of the coherency for limiting cases of the damping parameter

a, for fixed θ, h, and γ2. We saw that when the damping parameter a = 0, the magnitude

of the coherency depends only on the ratio of the noises γ2, which reflects the fact that

the polyfoil model defines a pure white noise process in this case. Furthermore, this

reparameterisation may also be beneficial in the future for practical applications, since

fewer parameters now require estimation.

Simulations were used to demonstrate the distinction between the stationary and

nonstationary polyfoil process, and to show agreement with the theoretically derived

results. For each choice of parameters, we simulated 100 realisations of the stochas-

tic process. In order to motivate the need for Loève spectrum analysis, we began by

plotting the first twenty polyfoils simulated from both the stationary and nonstation-

ary autocovariance sequences in the complex plane. We saw that there was no clearly
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visible distinction between the two, indicating that one cannot identify the stationarity

of a polyfoil process by simply plotting the realisations in this way. We therefore used

the multitaper method of Olhede and Ombao (2013) in order to estimate the Loève

spectrum and Loève coherency of the simulated processes. This estimation showed how

nonstationary processes display nonzero values in the off-diagonals of the Loève spec-

trum (and Loève coherency) matrix, and demonstrated that the theoretical derivations

correctly captured the exhibited behaviour.

To conclude this chapter, we highlight some key areas for further work. The results

presented in this chapter provide a substantial step in performing parametric inference

fitting the nonstationary polyfoil model to data, and clearly this is the immediate next

step in our future work. It is possible to estimate the parameters {a, θ, h, σ2
ϵ , σ

2
ζ} (but

not ϕ0) from the stationary model, as the stationary autocovariance/spectrum contains

all these parameters, even for a nonstationary process. However, it would be interesting

to investigate whether the inference on these parameters could be improved by including

the extra information available in the nonstationary model.

To begin, one could consider maximum likelihood methods in order to estimate the

parameters of our polyfoil process in the time domain. Under the assumption of complex

Gaussian error sequences, the polyfoil process can be modelled as a complex-valued

Gaussian process. Thus, the likelihood can be computed based on the assumption that

a vector of N complex-valued observations Z follows a multivariate complex-valued

normal distribution,

Z ∼ N(0,Σ),

where the pseudo-covariance or relation matrix is 0 for polyfoil oscillations as discussed

earlier. Here Σ is an N ×N covariance matrix between all pairs of observations, which

could be computed using the expression for autocovariance of the nonstationary polyfoil

model given in Theorem 5.4.11. The log-likelihood of the observed vector Z is then given



CHAPTER 5. THE ‘POLYFOIL’ STOCHASTIC PROCESS 175

by the log-likelihood of the multivariate normal distribution,

logL(Z) =
N

2
log(2π)− 1

2
log(det(Σ))− 1

2
Z†Σ−1Z.

Inversion of the matrix Σ is computationally expensive in the event that the number

of observations N is large, or in the case that we choose to perform inference over

many replications (as in the simulations in Section 5.5). In order to address this,

frequency domain methods for inference have been proposed. One such method is

the ‘Whittle’ likelihood (Whittle (1953)), which is a frequency domain approximation

to the maximum likelihood. However, this procedure requires stationarity, which is

not the case for the polyfoil process. Therefore, one possible avenue for further work

would be to consider a dual-frequency version of the Whittle likelihood, with the aim

of developing a more computationally efficient inference procedure for our model.

Another important avenue for future work is to consider more general extensions to

the polyfoil process. In this chapter, we assumed that the damping parameter a was

common between the fundamental and harmonic oscillations. Alternatively, it would

be possible to consider different damping parameters for each. Furthermore, it was

assumed in our derivations that the noise terms were uncorrelated. Our model could

be extended by introducing correlations between these variables.

Finally, we seek to find an application dataset to test our model in the real-world.

An obvious candidate is the polyfoil patterns observed recently in Zheng et al. (2024)

in oceanographic trajectories of particle motion.



Chapter 6

Conclusions and further work

In this thesis, we have considered two distinct nonstationary multivariate time series

problems: the combination of N expert forecasts, and the modelling of two interacting

oscillations using a novel nonstationary stochastic process. There exists a wealth of

literature concerning the former, wherein a variety of different methods for forecast

combination have been developed; some of these are outlined in Chapter 2. It is often

the case that different methods are suited to different applications, and therefore it is

not uncommon for forecasting methodologies to be developed with a specific operation

in mind. Rather than a specific application, our research was instead motivated by the

consideration of a specific forecasting setting. We assumed predictions were provided

sequentially by a set of N forecasters, in advance of the variable of interest yt being

observed. This necessitated the development of a computationally efficient combination

method which could be implemented in an online manner. Furthermore, we assumed

that forecaster quality was changing with time, and that correlations existed between

forecasters.

For Chapter 5, we considered a distinctly different nonstationary multivariate time

series problem. Namely, we developed a novel stochastic process for modelling two

interacting oscillations of different frequencies, θ and hθ. When realisations of such

176
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a process are plotted in the complex plane, the corresponding trajectory maps out a

‘polyfoil’ shape, and as such we defined our process as the polyfoil process. While

such stochastic oscillations have been studied in the literature, this is often under the

assumption of stationarity. Instead, we constructed a specific form of nonstationarity

by phase-locking the fundamental and harmonic oscillations.

While clearly disparate in terms of their focus and subject areas, both problems

require data to be described in a joint way, which incorporates relationships and in-

terdependencies across variables. Furthermore, both problems exhibit nonstationarity.

In the forecast combination problem, nonstationarity can arise from time-varying fore-

caster quality, and must be dealt with through dynamic combination techniques, while

in Chapter 5 a nonstationary oscillatory process was constructed. In this chapter, we

conclude our work by summarising key contributions. The research presented in Chap-

ters 3 and 4 is quite open-ended, and therefore we also highlight some possible avenues

for further work that have not yet been suggested. On the other hand, the direction of

further work concerning the polyfoil stochastic process is more explicit and has already

been discussed in Section 5.6, hence we will not deal with this further.

6.1 Key contributions

The first contribution of this thesis was presented in Chapter 3, wherein we introduced a

Dynamic Linear Model (DLM)-based procedure for combining N forecasts in an online

manner, assuming no missing forecaster data. The use of DLMs to combine forecasts has

been notionally investigated in the literature by LeSage and Magura (1992) and Sessions

and Chatterjee (1989), both of whom choose to model the evolution of the combination

weights as a random walk. However, the contribution presented in Chapter 3 of this

thesis is the first to formalise the procedure by providing a complete step-by-step guide

for the combination of point forecasts within the DLM framework. We explicitly state
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the roles of key parameters in the model, and provide clear methods for dealing with

unknown values, in addition to suitable prior parameter choices. In order to do this, we

give focus to the role of the discount factor parameter δ, and provide a reformulation

of the Kalman filtering equations in terms of this.

The DLM-framework enables inference on relevant distributions to be updated se-

quentially as more data become available, meaning that it is suitable for applications

in which forecasts arrive in quick succession. Distributions are updated by a closed-

form procedure, which outputs a forecast distribution for the variable of interest at

each time t, in addition to a distribution for the vector of combination weights (com-

bination weight estimates can be obtained by taking the expectation). Since weights

are modelled according to a random walk, dynamics in the combination weights can

be captured in order to reflect changing forecaster quality over time. Unlike other

performance-based weighting schemes, such as the regression based weights of Granger

and Ramanathan (1984) and the optimal covariance weights of Newbold and Granger

(1974), our DLM-based forecast combination method provides weight estimates from

the outset; this makes it a suitable choice in applications with little historical infor-

mation. Furthermore, unlike simple weighting schemes such as simple averaging, and

more complex weighting schemes such as machine learning based methods, our method

offers an interpretability regarding forecaster quality from the assigned weights; for

uncorrelated forecasters, a higher weight reflects a superior forecast quality.

Chapter 4 of this thesis considers the problem of missing forecaster data. Despite

being a frequent feature of empirical data (as evidenced by the AMOC and ECB data

sets), the question of how to deal with a forecaster going ‘offline’ has been scarcely con-

sidered in the literature. Motivated by Lahiri et al. (2017) (who discuss the challenges

of different combination algorithms implicitly imputing missing forecasters in different

ways), and the difficulties associated with just combining the available forecasters, we

decided that the best approach would to be impute missing forecaster data prior to
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combining. However, in our online setting, simple imputation techniques like linear

interpolation and smoothing cannot be applied. Instead, for the second contribution

of this thesis we proposed dealing with missing forecasts by modelling each individual

forecaster as a DLM.

Fitting a DLM to each forecaster series enables missing forecaster data to be dealt

with implicitly, as part of the filtering procedure. Application of the Kalman filter

enables the computation of forecasting distributions for each forecaster throughout

time, from which imputed values may be obtained in missing periods. Providing that

a suitable DLM is chosen, such that the temporal evolution of the forecaster series is

adequately described, the imputed values will be more accurate than simply ‘filling

forward’. Moreover, in periods of missing data, the spread of the forecast distribution

will increase in order to reflect the uncertainty associated with the imputed forecast.

We discussed how filtering the forecaster series in this way provides the practitioner

with a choice: should point forecasts be combined, or density forecasts? We noted

that, although the imputed values will be more accurate than those offered by simply

‘filling forward’, it is unlikely that this will provide a better forecast in the point forecast

framework than the available, online forecasters. Consequently, we expect the quality of

the missing forecaster to suddenly drop at the start of the missing period, and increase

when it returns online. In order to deal with this, we introduced a procedure for point

forecast combination with adaptive discount factor δt. This was achieved by integrating

the particle-learning based parameter estimation procedure of Irie et al. (2022) with our

DLM-based point forecast combination methodology introduced in Chapter 3.

We saw that this method performed well in the case of sporadic missing data,

obtaining the lowest MSE, MAE and SMAPE. On the other hand, this method struggled

to respond to improved forecaster performance after very large periods of missing data.

We also considered the combination of density forecasts in this chapter. As an exten-

sion of Hall and Mitchell (2007), we proposed computing dynamic mixture weights by
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maximising the exponentially weighted log predictive score at each time. This allowed

the increase in uncertainty of the forecasting distribution caused by missing data to be

explicitly incorporated into the combination. We saw how this resulted in improved

forecasting performance after a forecaster had been offline for an extended period of

time when compared to the point combination based approaches.

As the final contribution of this thesis, we presented the novel stochastic ‘polyfoil’

process. This was developed as a natural extension to the complex valued AR(1) pro-

cess, and defined by summing together two individual complex valued AR(1) processes

with different spin parameters, representing a fundamental and a harmonic oscillation.

Unlike other work on stochastic oscillations in the literature, our method allowed us to

induce nonstationary stochastic oscillations by setting the expected initial phase differ-

ence between the fundamental and harmonic oscillation to a constant value, which we

termed ‘phase-locking’.

Nonstationarity leads to interactions between distinct frequencies that can be ob-

served in the Loève spectrum. For the nonstationary polyfoil process, we derived closed-

form expressions for the autocovariance sequence, Loève spectrum and Loève coherency.

These theoretical results were shown to align with simulations in Section 5.5.

6.2 Further work

Our DLM-based forecast combination method, introduced in Chapter 3, was shown

to outperform almost all benchmarks in a range of simulation studies for different

scenarios: independent forecasters, correlated forecasters, stationary forecaster quality,

and changing forecaster quality. Furthermore, our method outperformed all benchmarks

when applied to the AMOC data set, for all values of discount factor δ used in the

analysis.

However, we noted that our DLM-based forecast combination method was outper-
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formed by the ‘recent best’ method and simple averaging in terms of the MSE, MAE

and SMAPE error metrics for the ECB data set. We discussed how this may be a

consequence of the high levels of correlation present between the forecasters, and pro-

vided a simple toy example investigating the effects of trimming negative weights on

forecasting performance. An obvious avenue for further work would be a more thorough

exploration of the effects of trimming in both simulations and empirical applications. In

particular, it would be interesting to see whether implementing a trimming procedure

such as in Radchenko et al. (2023) would improve the forecasting performance of our

method on the ECB data set.

It is possible to implement trimming as part of a two-step procedure, wherein weights

are first estimated, and then trimmed, or a one-step procedure, wherein weights are

estimated and trimmed in a single step via constrained optimisation. In the toy example

in Chapter 3, we demonstrated how a two-step procedure could be implemented. An

obvious extension would be to apply this procedure to a large scale simulation study,

and investigate the effects of trimming on forecasting performance for different levels

of correlation and different trimming thresholds.

An alternative method for trimming would be to carry out constrained Kalman

filtering, which would enable the computation of non-negative weights as part of the

forecast combination procedure itself. In particular, the constrained Kalman filter

considers the case where the system satisfies the equality constraints,

Dθt = d,

or the inequality constrains

Dθt ≤ d,

whereD is a known matrix and d is a known vector; recall the state vector θt is given by
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the vector of forecast combination weights in our application. There are several different

methods for modifying the Kalman filter in order to accommodate such constraints;

Simon (2010) provides a survey of linear and nonlinear algorithms for this purpose. As

detailed by Simon (2010), one possible method is to project the unconstrained state

vector estimate θ̂t onto the constrained surface. For the case of equality constraints,

the constrained estimate can then be written as,

θ̃t =

{
argmin

θ
(θ − θ̂t)

′W(θ − θ̂t) : Dθt = d

}
,

where W is a positive definite weighting matrix. The solution to this is then given by,

θ̃t = θ̂t −W−1D′(DW−1D′)−1(Dθ̂t − d).

As stated by Simon (2010), if the process and measurement noises are Gaussian, and the

positive definite weighting matrix is set to W = (Ct)
−1, then we obtain the maximum

probability estimate of the state subject to state constraints at time t. If instead we

set W = I2, we obtain the least squares estimate of the state vector subject to the

constraints. For the case of inequality constraints, the constrained estimate for the

state vector can be written as,

θ̃t =

{
argmin

θ
(θ − θ̂t)

′W(θ − θ̂t) : Dθt ≤ d

}
.

Finding this estimate is a quadratic programming problem, and can be solved used

interior point approaches or active set methods.

It would be possible to incorporate this projection estimation into our forecast com-

bination procedure in order to ensure that the estimated combination weights are non-

negative; however, we note that this would lead to increased computational complexity.

A comparison of this one-step trimming procedure with the two step trimming proce-
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dure described in Chapter 3 could be undertaken in future work.

In Chapter 4, challenges and extensions to the the adaptive discounting combination

approach and the dynamic density combination method were given. In this section, we

instead highlight a possible avenue for further work regarding the modelling of the

individual forecasters.

We proposed modelling each forecaster as a univariate DLM, wherein only the pre-

vious forecasts from that forecaster were taken into account. That is, the previous

forecasts from the other N − 1 experts are not included in the model. This can be

carried out in parallel, and is computationally efficient; however, it is natural to ques-

tion whether all N forecasters could be modelled together in a multivariate framework

instead. A multivariate DLM would take into account the correlations present between

the forecaster series. When a particular forecaster goes offline, this would be particu-

larly beneficial, since we would still gain some information with which to update the

distribution for the missing forecaster.

The full definition of a general multivariate DLM is given by West and Harrison

(1997). In short, the model equations for a multivariate DLM are given by,

yt = F ′
tθt + νt, νt ∼ N [0,Vt],

θt = Gtθt−1 + ωt, ωt ∼ N [0,W t].

Therefore, the key difference from the univariate case is that the observed data, and

the corresponding observational noise, is now a vector. West and Harrison (1997)

provide the updating, forecasting and filtering equation for such a DLM in the case

that the components of the defining quadruple are known. However, West and Harrison

(1997) state that in general, ‘there is no neat conjugate analysis available to enable the

sequential learning’ of the unknown covariance matrix Vt in the above model. This is

in contrast with the univariate case, wherein a sequential analysis can be applied by
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enforcing a gamma prior on the precision.

However, some methods do exist for a closed-form multivariate analysis in spe-

cific circumstances. Quintana and West (1987) develop the class of ‘Matrix Normal

DLMs’, which make the assumption that all individual component time series yi,t,

i ∈ {1, . . . , N}, follow univariate DLMs with common Ft and Gt. This allows a fully

conjugate analysis to be carried out, even in the case of an unknown multivariate covari-

ance structure. The cross-sectional structure across time series at time t is introduced

by an N ×N covariance matrix:

Σ =



σ2
1 σ1,2 . . . σ1,N

σ1,2 σ2
2 . . . σ2,N

...
...

. . .
...

σ1,N σ2,N . . . σ2
N


,

where σi,j determines the covariance between the series yi,t and yj,t, for all i and j,

(i = 1, . . . , N ; j = 1, . . . , N ; i ̸= j). By introducing a state matrix Θt, whose columns

are the state vectors of the individual DLMs, Quintana and West (1987) show that

the individual model equations can be written jointly in matrix notation; see also

West and Harrison (1997). In this multivariate framework, the observational error is

a N × 1 vector, defined to follow a multivariate normal distribution with covariance

matrix VtΣ, where Vt is an observational scale factor common across all N series. The

evolution error is now given by a matrix Ω, which follows a matrix normal distribution

(see Dawid (1981) and West and Harrison (1997)). Under this framework, West and

Harrison (1997) describe how the state matrix Θt and the covariance matrix Σ can

be learned about jointly in a closed-form manner, using the class of matrix normal/

inverse Wishart distributions.

Of course, the assumption that all univariate series share common Ft and Gt may

be restrictive in certain applications. However, in our case where we wish to model each
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individual forecaster as a DLM, it is perfectly possible that these should be modelled

in the same way. Consider, for example, our simulations in Chapter 4 where each

forecaster is modelled as an AR plus noise process. Since all forecasters are modelling

the same variable of interest yt, it seems likely that a common choice of Ft and Gt

would be suitable. Therefore, one possible extension to the work presented in Chapter

4 of this thesis could be the investigation of jointly modelling individual forecasters

in order to deal with missing data. It is possible that modelling the forecasters in a

multivariate framework would lead to better imputed values in missing data periods,

reducing the need for sudden changes in the combination weights.
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